1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
80 #include "coretypes.h"
95 #include "stor-layout.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
108 /* Number of attempts to combine instructions in this function. */
110 static int combine_attempts
;
112 /* Number of attempts that got as far as substitution in this function. */
114 static int combine_merges
;
116 /* Number of instructions combined with added SETs in this function. */
118 static int combine_extras
;
120 /* Number of instructions combined in this function. */
122 static int combine_successes
;
124 /* Totals over entire compilation. */
126 static int total_attempts
, total_merges
, total_extras
, total_successes
;
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
135 static rtx_insn
*i2mod
;
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139 static rtx i2mod_old_rhs
;
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143 static rtx i2mod_new_rhs
;
145 struct reg_stat_type
{
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn
*last_death
;
149 /* Record last point of modification of (hard or pseudo) register n. */
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
158 We use an approach similar to that used by cse, but change it in the
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
165 Therefore, we maintain the following fields:
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
181 (The next two parameters are out of date).
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
195 /* Record last value assigned to (hard or pseudo) register n. */
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
202 int last_set_table_tick
;
204 /* Record the value of label_tick when the value for register n is placed in
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
214 unsigned HOST_WIDE_INT last_set_nonzero_bits
;
215 char last_set_sign_bit_copies
;
216 ENUM_BITFIELD(machine_mode
) last_set_mode
: 8;
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
222 char last_set_invalid
;
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
234 If an entry is zero, it means that we don't know anything special. */
236 unsigned char sign_bit_copies
;
238 unsigned HOST_WIDE_INT nonzero_bits
;
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
244 int truncation_label
;
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
251 ENUM_BITFIELD(machine_mode
) truncated_to_mode
: 8;
255 static vec
<reg_stat_type
> reg_stat
;
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
265 static unsigned int reg_n_sets_max
;
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
270 static int mem_last_set
;
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
275 static int last_call_luid
;
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
283 static rtx_insn
*subst_insn
;
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
292 static int subst_low_luid
;
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
297 static HARD_REG_SET newpat_used_regs
;
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
303 static rtx_insn
*added_links_insn
;
305 /* And similarly, for notes. */
307 static rtx_insn
*added_notes_insn
;
309 /* Basic block in which we are performing combines. */
310 static basic_block this_basic_block
;
311 static bool optimize_this_for_speed_p
;
314 /* Length of the currently allocated uid_insn_cost array. */
316 static int max_uid_known
;
318 /* The following array records the insn_cost for every insn
319 in the instruction stream. */
321 static int *uid_insn_cost
;
323 /* The following array records the LOG_LINKS for every insn in the
324 instruction stream as struct insn_link pointers. */
329 struct insn_link
*next
;
332 static struct insn_link
**uid_log_links
;
335 insn_uid_check (const_rtx insn
)
337 int uid
= INSN_UID (insn
);
338 gcc_checking_assert (uid
<= max_uid_known
);
342 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
343 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
345 #define FOR_EACH_LOG_LINK(L, INSN) \
346 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
348 /* Links for LOG_LINKS are allocated from this obstack. */
350 static struct obstack insn_link_obstack
;
352 /* Allocate a link. */
354 static inline struct insn_link
*
355 alloc_insn_link (rtx_insn
*insn
, unsigned int regno
, struct insn_link
*next
)
358 = (struct insn_link
*) obstack_alloc (&insn_link_obstack
,
359 sizeof (struct insn_link
));
366 /* Incremented for each basic block. */
368 static int label_tick
;
370 /* Reset to label_tick for each extended basic block in scanning order. */
372 static int label_tick_ebb_start
;
374 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
375 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
377 static scalar_int_mode nonzero_bits_mode
;
379 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
380 be safely used. It is zero while computing them and after combine has
381 completed. This former test prevents propagating values based on
382 previously set values, which can be incorrect if a variable is modified
385 static int nonzero_sign_valid
;
388 /* Record one modification to rtl structure
389 to be undone by storing old_contents into *where. */
391 enum undo_kind
{ UNDO_RTX
, UNDO_INT
, UNDO_MODE
, UNDO_LINKS
};
397 union { rtx r
; int i
; machine_mode m
; struct insn_link
*l
; } old_contents
;
398 union { rtx
*r
; int *i
; struct insn_link
**l
; } where
;
401 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
402 num_undo says how many are currently recorded.
404 other_insn is nonzero if we have modified some other insn in the process
405 of working on subst_insn. It must be verified too. */
411 rtx_insn
*other_insn
;
414 static struct undobuf undobuf
;
416 /* Number of times the pseudo being substituted for
417 was found and replaced. */
419 static int n_occurrences
;
421 static rtx
reg_nonzero_bits_for_combine (const_rtx
, scalar_int_mode
,
423 unsigned HOST_WIDE_INT
*);
424 static rtx
reg_num_sign_bit_copies_for_combine (const_rtx
, scalar_int_mode
,
427 static void do_SUBST (rtx
*, rtx
);
428 static void do_SUBST_INT (int *, int);
429 static void init_reg_last (void);
430 static void setup_incoming_promotions (rtx_insn
*);
431 static void set_nonzero_bits_and_sign_copies (rtx
, const_rtx
, void *);
432 static int cant_combine_insn_p (rtx_insn
*);
433 static int can_combine_p (rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx_insn
*,
434 rtx_insn
*, rtx_insn
*, rtx
*, rtx
*);
435 static int combinable_i3pat (rtx_insn
*, rtx
*, rtx
, rtx
, rtx
, int, int, rtx
*);
436 static int contains_muldiv (rtx
);
437 static rtx_insn
*try_combine (rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx_insn
*,
439 static void undo_all (void);
440 static void undo_commit (void);
441 static rtx
*find_split_point (rtx
*, rtx_insn
*, bool);
442 static rtx
subst (rtx
, rtx
, rtx
, int, int, int);
443 static rtx
combine_simplify_rtx (rtx
, machine_mode
, int, int);
444 static rtx
simplify_if_then_else (rtx
);
445 static rtx
simplify_set (rtx
);
446 static rtx
simplify_logical (rtx
);
447 static rtx
expand_compound_operation (rtx
);
448 static const_rtx
expand_field_assignment (const_rtx
);
449 static rtx
make_extraction (machine_mode
, rtx
, HOST_WIDE_INT
,
450 rtx
, unsigned HOST_WIDE_INT
, int, int, int);
451 static int get_pos_from_mask (unsigned HOST_WIDE_INT
,
452 unsigned HOST_WIDE_INT
*);
453 static rtx
canon_reg_for_combine (rtx
, rtx
);
454 static rtx
force_int_to_mode (rtx
, scalar_int_mode
, scalar_int_mode
,
455 scalar_int_mode
, unsigned HOST_WIDE_INT
, int);
456 static rtx
force_to_mode (rtx
, machine_mode
,
457 unsigned HOST_WIDE_INT
, int);
458 static rtx
if_then_else_cond (rtx
, rtx
*, rtx
*);
459 static rtx
known_cond (rtx
, enum rtx_code
, rtx
, rtx
);
460 static int rtx_equal_for_field_assignment_p (rtx
, rtx
, bool = false);
461 static rtx
make_field_assignment (rtx
);
462 static rtx
apply_distributive_law (rtx
);
463 static rtx
distribute_and_simplify_rtx (rtx
, int);
464 static rtx
simplify_and_const_int_1 (scalar_int_mode
, rtx
,
465 unsigned HOST_WIDE_INT
);
466 static rtx
simplify_and_const_int (rtx
, scalar_int_mode
, rtx
,
467 unsigned HOST_WIDE_INT
);
468 static int merge_outer_ops (enum rtx_code
*, HOST_WIDE_INT
*, enum rtx_code
,
469 HOST_WIDE_INT
, machine_mode
, int *);
470 static rtx
simplify_shift_const_1 (enum rtx_code
, machine_mode
, rtx
, int);
471 static rtx
simplify_shift_const (rtx
, enum rtx_code
, machine_mode
, rtx
,
473 static int recog_for_combine (rtx
*, rtx_insn
*, rtx
*);
474 static rtx
gen_lowpart_for_combine (machine_mode
, rtx
);
475 static enum rtx_code
simplify_compare_const (enum rtx_code
, machine_mode
,
477 static enum rtx_code
simplify_comparison (enum rtx_code
, rtx
*, rtx
*);
478 static void update_table_tick (rtx
);
479 static void record_value_for_reg (rtx
, rtx_insn
*, rtx
);
480 static void check_promoted_subreg (rtx_insn
*, rtx
);
481 static void record_dead_and_set_regs_1 (rtx
, const_rtx
, void *);
482 static void record_dead_and_set_regs (rtx_insn
*);
483 static int get_last_value_validate (rtx
*, rtx_insn
*, int, int);
484 static rtx
get_last_value (const_rtx
);
485 static void reg_dead_at_p_1 (rtx
, const_rtx
, void *);
486 static int reg_dead_at_p (rtx
, rtx_insn
*);
487 static void move_deaths (rtx
, rtx
, int, rtx_insn
*, rtx
*);
488 static int reg_bitfield_target_p (rtx
, rtx
);
489 static void distribute_notes (rtx
, rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx
, rtx
, rtx
);
490 static void distribute_links (struct insn_link
*);
491 static void mark_used_regs_combine (rtx
);
492 static void record_promoted_value (rtx_insn
*, rtx
);
493 static bool unmentioned_reg_p (rtx
, rtx
);
494 static void record_truncated_values (rtx
*, void *);
495 static bool reg_truncated_to_mode (machine_mode
, const_rtx
);
496 static rtx
gen_lowpart_or_truncate (machine_mode
, rtx
);
499 /* It is not safe to use ordinary gen_lowpart in combine.
500 See comments in gen_lowpart_for_combine. */
501 #undef RTL_HOOKS_GEN_LOWPART
502 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
504 /* Our implementation of gen_lowpart never emits a new pseudo. */
505 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
506 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
508 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
509 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
511 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
512 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
514 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
515 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
517 static const struct rtl_hooks combine_rtl_hooks
= RTL_HOOKS_INITIALIZER
;
520 /* Convenience wrapper for the canonicalize_comparison target hook.
521 Target hooks cannot use enum rtx_code. */
523 target_canonicalize_comparison (enum rtx_code
*code
, rtx
*op0
, rtx
*op1
,
524 bool op0_preserve_value
)
526 int code_int
= (int)*code
;
527 targetm
.canonicalize_comparison (&code_int
, op0
, op1
, op0_preserve_value
);
528 *code
= (enum rtx_code
)code_int
;
531 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
532 PATTERN can not be split. Otherwise, it returns an insn sequence.
533 This is a wrapper around split_insns which ensures that the
534 reg_stat vector is made larger if the splitter creates a new
538 combine_split_insns (rtx pattern
, rtx_insn
*insn
)
543 ret
= split_insns (pattern
, insn
);
544 nregs
= max_reg_num ();
545 if (nregs
> reg_stat
.length ())
546 reg_stat
.safe_grow_cleared (nregs
);
550 /* This is used by find_single_use to locate an rtx in LOC that
551 contains exactly one use of DEST, which is typically either a REG
552 or CC0. It returns a pointer to the innermost rtx expression
553 containing DEST. Appearances of DEST that are being used to
554 totally replace it are not counted. */
557 find_single_use_1 (rtx dest
, rtx
*loc
)
560 enum rtx_code code
= GET_CODE (x
);
576 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
577 of a REG that occupies all of the REG, the insn uses DEST if
578 it is mentioned in the destination or the source. Otherwise, we
579 need just check the source. */
580 if (GET_CODE (SET_DEST (x
)) != CC0
581 && GET_CODE (SET_DEST (x
)) != PC
582 && !REG_P (SET_DEST (x
))
583 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
584 && REG_P (SUBREG_REG (SET_DEST (x
)))
585 && !read_modify_subreg_p (SET_DEST (x
))))
588 return find_single_use_1 (dest
, &SET_SRC (x
));
592 return find_single_use_1 (dest
, &XEXP (x
, 0));
598 /* If it wasn't one of the common cases above, check each expression and
599 vector of this code. Look for a unique usage of DEST. */
601 fmt
= GET_RTX_FORMAT (code
);
602 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
606 if (dest
== XEXP (x
, i
)
607 || (REG_P (dest
) && REG_P (XEXP (x
, i
))
608 && REGNO (dest
) == REGNO (XEXP (x
, i
))))
611 this_result
= find_single_use_1 (dest
, &XEXP (x
, i
));
614 result
= this_result
;
615 else if (this_result
)
616 /* Duplicate usage. */
619 else if (fmt
[i
] == 'E')
623 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
625 if (XVECEXP (x
, i
, j
) == dest
627 && REG_P (XVECEXP (x
, i
, j
))
628 && REGNO (XVECEXP (x
, i
, j
)) == REGNO (dest
)))
631 this_result
= find_single_use_1 (dest
, &XVECEXP (x
, i
, j
));
634 result
= this_result
;
635 else if (this_result
)
645 /* See if DEST, produced in INSN, is used only a single time in the
646 sequel. If so, return a pointer to the innermost rtx expression in which
649 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
651 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
652 care about REG_DEAD notes or LOG_LINKS.
654 Otherwise, we find the single use by finding an insn that has a
655 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
656 only referenced once in that insn, we know that it must be the first
657 and last insn referencing DEST. */
660 find_single_use (rtx dest
, rtx_insn
*insn
, rtx_insn
**ploc
)
665 struct insn_link
*link
;
669 next
= NEXT_INSN (insn
);
671 || (!NONJUMP_INSN_P (next
) && !JUMP_P (next
)))
674 result
= find_single_use_1 (dest
, &PATTERN (next
));
683 bb
= BLOCK_FOR_INSN (insn
);
684 for (next
= NEXT_INSN (insn
);
685 next
&& BLOCK_FOR_INSN (next
) == bb
;
686 next
= NEXT_INSN (next
))
687 if (NONDEBUG_INSN_P (next
) && dead_or_set_p (next
, dest
))
689 FOR_EACH_LOG_LINK (link
, next
)
690 if (link
->insn
== insn
&& link
->regno
== REGNO (dest
))
695 result
= find_single_use_1 (dest
, &PATTERN (next
));
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706 insn. The substitution can be undone by undo_all. If INTO is already
707 set to NEWVAL, do not record this change. Because computing NEWVAL might
708 also call SUBST, we have to compute it before we put anything into
712 do_SUBST (rtx
*into
, rtx newval
)
717 if (oldval
== newval
)
720 /* We'd like to catch as many invalid transformations here as
721 possible. Unfortunately, there are way too many mode changes
722 that are perfectly valid, so we'd waste too much effort for
723 little gain doing the checks here. Focus on catching invalid
724 transformations involving integer constants. */
725 if (GET_MODE_CLASS (GET_MODE (oldval
)) == MODE_INT
726 && CONST_INT_P (newval
))
728 /* Sanity check that we're replacing oldval with a CONST_INT
729 that is a valid sign-extension for the original mode. */
730 gcc_assert (INTVAL (newval
)
731 == trunc_int_for_mode (INTVAL (newval
), GET_MODE (oldval
)));
733 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 CONST_INT is not valid, because after the replacement, the
735 original mode would be gone. Unfortunately, we can't tell
736 when do_SUBST is called to replace the operand thereof, so we
737 perform this test on oldval instead, checking whether an
738 invalid replacement took place before we got here. */
739 gcc_assert (!(GET_CODE (oldval
) == SUBREG
740 && CONST_INT_P (SUBREG_REG (oldval
))));
741 gcc_assert (!(GET_CODE (oldval
) == ZERO_EXTEND
742 && CONST_INT_P (XEXP (oldval
, 0))));
746 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
748 buf
= XNEW (struct undo
);
750 buf
->kind
= UNDO_RTX
;
752 buf
->old_contents
.r
= oldval
;
755 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
758 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
760 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
761 for the value of a HOST_WIDE_INT value (including CONST_INT) is
765 do_SUBST_INT (int *into
, int newval
)
770 if (oldval
== newval
)
774 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
776 buf
= XNEW (struct undo
);
778 buf
->kind
= UNDO_INT
;
780 buf
->old_contents
.i
= oldval
;
783 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
786 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
788 /* Similar to SUBST, but just substitute the mode. This is used when
789 changing the mode of a pseudo-register, so that any other
790 references to the entry in the regno_reg_rtx array will change as
794 do_SUBST_MODE (rtx
*into
, machine_mode newval
)
797 machine_mode oldval
= GET_MODE (*into
);
799 if (oldval
== newval
)
803 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
805 buf
= XNEW (struct undo
);
807 buf
->kind
= UNDO_MODE
;
809 buf
->old_contents
.m
= oldval
;
810 adjust_reg_mode (*into
, newval
);
812 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
815 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
820 do_SUBST_LINK (struct insn_link
**into
, struct insn_link
*newval
)
823 struct insn_link
* oldval
= *into
;
825 if (oldval
== newval
)
829 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
831 buf
= XNEW (struct undo
);
833 buf
->kind
= UNDO_LINKS
;
835 buf
->old_contents
.l
= oldval
;
838 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
843 /* Subroutine of try_combine. Determine whether the replacement patterns
844 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
845 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
846 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
847 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
848 of all the instructions can be estimated and the replacements are more
849 expensive than the original sequence. */
852 combine_validate_cost (rtx_insn
*i0
, rtx_insn
*i1
, rtx_insn
*i2
, rtx_insn
*i3
,
853 rtx newpat
, rtx newi2pat
, rtx newotherpat
)
855 int i0_cost
, i1_cost
, i2_cost
, i3_cost
;
856 int new_i2_cost
, new_i3_cost
;
857 int old_cost
, new_cost
;
859 /* Lookup the original insn_costs. */
860 i2_cost
= INSN_COST (i2
);
861 i3_cost
= INSN_COST (i3
);
865 i1_cost
= INSN_COST (i1
);
868 i0_cost
= INSN_COST (i0
);
869 old_cost
= (i0_cost
> 0 && i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
870 ? i0_cost
+ i1_cost
+ i2_cost
+ i3_cost
: 0);
874 old_cost
= (i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
875 ? i1_cost
+ i2_cost
+ i3_cost
: 0);
881 old_cost
= (i2_cost
> 0 && i3_cost
> 0) ? i2_cost
+ i3_cost
: 0;
882 i1_cost
= i0_cost
= 0;
885 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
887 if (old_cost
&& i1
&& INSN_UID (i1
) == INSN_UID (i2
))
891 /* Calculate the replacement insn_costs. */
892 rtx tmp
= PATTERN (i3
);
893 PATTERN (i3
) = newpat
;
894 int tmpi
= INSN_CODE (i3
);
896 new_i3_cost
= insn_cost (i3
, optimize_this_for_speed_p
);
898 INSN_CODE (i3
) = tmpi
;
902 PATTERN (i2
) = newi2pat
;
903 tmpi
= INSN_CODE (i2
);
905 new_i2_cost
= insn_cost (i2
, optimize_this_for_speed_p
);
907 INSN_CODE (i2
) = tmpi
;
908 new_cost
= (new_i2_cost
> 0 && new_i3_cost
> 0)
909 ? new_i2_cost
+ new_i3_cost
: 0;
913 new_cost
= new_i3_cost
;
917 if (undobuf
.other_insn
)
919 int old_other_cost
, new_other_cost
;
921 old_other_cost
= INSN_COST (undobuf
.other_insn
);
922 tmp
= PATTERN (undobuf
.other_insn
);
923 PATTERN (undobuf
.other_insn
) = newotherpat
;
924 tmpi
= INSN_CODE (undobuf
.other_insn
);
925 INSN_CODE (undobuf
.other_insn
) = -1;
926 new_other_cost
= insn_cost (undobuf
.other_insn
,
927 optimize_this_for_speed_p
);
928 PATTERN (undobuf
.other_insn
) = tmp
;
929 INSN_CODE (undobuf
.other_insn
) = tmpi
;
930 if (old_other_cost
> 0 && new_other_cost
> 0)
932 old_cost
+= old_other_cost
;
933 new_cost
+= new_other_cost
;
939 /* Disallow this combination if both new_cost and old_cost are greater than
940 zero, and new_cost is greater than old cost. */
941 int reject
= old_cost
> 0 && new_cost
> old_cost
;
945 fprintf (dump_file
, "%s combination of insns ",
946 reject
? "rejecting" : "allowing");
948 fprintf (dump_file
, "%d, ", INSN_UID (i0
));
949 if (i1
&& INSN_UID (i1
) != INSN_UID (i2
))
950 fprintf (dump_file
, "%d, ", INSN_UID (i1
));
951 fprintf (dump_file
, "%d and %d\n", INSN_UID (i2
), INSN_UID (i3
));
953 fprintf (dump_file
, "original costs ");
955 fprintf (dump_file
, "%d + ", i0_cost
);
956 if (i1
&& INSN_UID (i1
) != INSN_UID (i2
))
957 fprintf (dump_file
, "%d + ", i1_cost
);
958 fprintf (dump_file
, "%d + %d = %d\n", i2_cost
, i3_cost
, old_cost
);
961 fprintf (dump_file
, "replacement costs %d + %d = %d\n",
962 new_i2_cost
, new_i3_cost
, new_cost
);
964 fprintf (dump_file
, "replacement cost %d\n", new_cost
);
970 /* Update the uid_insn_cost array with the replacement costs. */
971 INSN_COST (i2
) = new_i2_cost
;
972 INSN_COST (i3
) = new_i3_cost
;
984 /* Delete any insns that copy a register to itself. */
987 delete_noop_moves (void)
989 rtx_insn
*insn
, *next
;
992 FOR_EACH_BB_FN (bb
, cfun
)
994 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
)); insn
= next
)
996 next
= NEXT_INSN (insn
);
997 if (INSN_P (insn
) && noop_move_p (insn
))
1000 fprintf (dump_file
, "deleting noop move %d\n", INSN_UID (insn
));
1002 delete_insn_and_edges (insn
);
1009 /* Return false if we do not want to (or cannot) combine DEF. */
1011 can_combine_def_p (df_ref def
)
1013 /* Do not consider if it is pre/post modification in MEM. */
1014 if (DF_REF_FLAGS (def
) & DF_REF_PRE_POST_MODIFY
)
1017 unsigned int regno
= DF_REF_REGNO (def
);
1019 /* Do not combine frame pointer adjustments. */
1020 if ((regno
== FRAME_POINTER_REGNUM
1021 && (!reload_completed
|| frame_pointer_needed
))
1022 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1023 && regno
== HARD_FRAME_POINTER_REGNUM
1024 && (!reload_completed
|| frame_pointer_needed
))
1025 || (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
1026 && regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
]))
1032 /* Return false if we do not want to (or cannot) combine USE. */
1034 can_combine_use_p (df_ref use
)
1036 /* Do not consider the usage of the stack pointer by function call. */
1037 if (DF_REF_FLAGS (use
) & DF_REF_CALL_STACK_USAGE
)
1043 /* Fill in log links field for all insns. */
1046 create_log_links (void)
1049 rtx_insn
**next_use
;
1053 next_use
= XCNEWVEC (rtx_insn
*, max_reg_num ());
1055 /* Pass through each block from the end, recording the uses of each
1056 register and establishing log links when def is encountered.
1057 Note that we do not clear next_use array in order to save time,
1058 so we have to test whether the use is in the same basic block as def.
1060 There are a few cases below when we do not consider the definition or
1061 usage -- these are taken from original flow.c did. Don't ask me why it is
1062 done this way; I don't know and if it works, I don't want to know. */
1064 FOR_EACH_BB_FN (bb
, cfun
)
1066 FOR_BB_INSNS_REVERSE (bb
, insn
)
1068 if (!NONDEBUG_INSN_P (insn
))
1071 /* Log links are created only once. */
1072 gcc_assert (!LOG_LINKS (insn
));
1074 FOR_EACH_INSN_DEF (def
, insn
)
1076 unsigned int regno
= DF_REF_REGNO (def
);
1079 if (!next_use
[regno
])
1082 if (!can_combine_def_p (def
))
1085 use_insn
= next_use
[regno
];
1086 next_use
[regno
] = NULL
;
1088 if (BLOCK_FOR_INSN (use_insn
) != bb
)
1093 We don't build a LOG_LINK for hard registers contained
1094 in ASM_OPERANDs. If these registers get replaced,
1095 we might wind up changing the semantics of the insn,
1096 even if reload can make what appear to be valid
1097 assignments later. */
1098 if (regno
< FIRST_PSEUDO_REGISTER
1099 && asm_noperands (PATTERN (use_insn
)) >= 0)
1102 /* Don't add duplicate links between instructions. */
1103 struct insn_link
*links
;
1104 FOR_EACH_LOG_LINK (links
, use_insn
)
1105 if (insn
== links
->insn
&& regno
== links
->regno
)
1109 LOG_LINKS (use_insn
)
1110 = alloc_insn_link (insn
, regno
, LOG_LINKS (use_insn
));
1113 FOR_EACH_INSN_USE (use
, insn
)
1114 if (can_combine_use_p (use
))
1115 next_use
[DF_REF_REGNO (use
)] = insn
;
1122 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1123 true if we found a LOG_LINK that proves that A feeds B. This only works
1124 if there are no instructions between A and B which could have a link
1125 depending on A, since in that case we would not record a link for B.
1126 We also check the implicit dependency created by a cc0 setter/user
1130 insn_a_feeds_b (rtx_insn
*a
, rtx_insn
*b
)
1132 struct insn_link
*links
;
1133 FOR_EACH_LOG_LINK (links
, b
)
1134 if (links
->insn
== a
)
1136 if (HAVE_cc0
&& sets_cc0_p (a
))
1141 /* Main entry point for combiner. F is the first insn of the function.
1142 NREGS is the first unused pseudo-reg number.
1144 Return nonzero if the combiner has turned an indirect jump
1145 instruction into a direct jump. */
1147 combine_instructions (rtx_insn
*f
, unsigned int nregs
)
1149 rtx_insn
*insn
, *next
;
1151 struct insn_link
*links
, *nextlinks
;
1153 basic_block last_bb
;
1155 int new_direct_jump_p
= 0;
1157 for (first
= f
; first
&& !NONDEBUG_INSN_P (first
); )
1158 first
= NEXT_INSN (first
);
1162 combine_attempts
= 0;
1165 combine_successes
= 0;
1167 rtl_hooks
= combine_rtl_hooks
;
1169 reg_stat
.safe_grow_cleared (nregs
);
1171 init_recog_no_volatile ();
1173 /* Allocate array for insn info. */
1174 max_uid_known
= get_max_uid ();
1175 uid_log_links
= XCNEWVEC (struct insn_link
*, max_uid_known
+ 1);
1176 uid_insn_cost
= XCNEWVEC (int, max_uid_known
+ 1);
1177 gcc_obstack_init (&insn_link_obstack
);
1179 nonzero_bits_mode
= int_mode_for_size (HOST_BITS_PER_WIDE_INT
, 0).require ();
1181 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1182 problems when, for example, we have j <<= 1 in a loop. */
1184 nonzero_sign_valid
= 0;
1185 label_tick
= label_tick_ebb_start
= 1;
1187 /* Scan all SETs and see if we can deduce anything about what
1188 bits are known to be zero for some registers and how many copies
1189 of the sign bit are known to exist for those registers.
1191 Also set any known values so that we can use it while searching
1192 for what bits are known to be set. */
1194 setup_incoming_promotions (first
);
1195 /* Allow the entry block and the first block to fall into the same EBB.
1196 Conceptually the incoming promotions are assigned to the entry block. */
1197 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1199 create_log_links ();
1200 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1202 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1207 if (!single_pred_p (this_basic_block
)
1208 || single_pred (this_basic_block
) != last_bb
)
1209 label_tick_ebb_start
= label_tick
;
1210 last_bb
= this_basic_block
;
1212 FOR_BB_INSNS (this_basic_block
, insn
)
1213 if (INSN_P (insn
) && BLOCK_FOR_INSN (insn
))
1217 subst_low_luid
= DF_INSN_LUID (insn
);
1220 note_stores (PATTERN (insn
), set_nonzero_bits_and_sign_copies
,
1222 record_dead_and_set_regs (insn
);
1225 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
1226 if (REG_NOTE_KIND (links
) == REG_INC
)
1227 set_nonzero_bits_and_sign_copies (XEXP (links
, 0), NULL_RTX
,
1230 /* Record the current insn_cost of this instruction. */
1231 if (NONJUMP_INSN_P (insn
))
1232 INSN_COST (insn
) = insn_cost (insn
, optimize_this_for_speed_p
);
1235 fprintf (dump_file
, "insn_cost %d for ", INSN_COST (insn
));
1236 dump_insn_slim (dump_file
, insn
);
1241 nonzero_sign_valid
= 1;
1243 /* Now scan all the insns in forward order. */
1244 label_tick
= label_tick_ebb_start
= 1;
1246 setup_incoming_promotions (first
);
1247 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1248 int max_combine
= PARAM_VALUE (PARAM_MAX_COMBINE_INSNS
);
1250 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1252 rtx_insn
*last_combined_insn
= NULL
;
1254 /* Ignore instruction combination in basic blocks that are going to
1255 be removed as unreachable anyway. See PR82386. */
1256 if (EDGE_COUNT (this_basic_block
->preds
) == 0)
1259 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1264 if (!single_pred_p (this_basic_block
)
1265 || single_pred (this_basic_block
) != last_bb
)
1266 label_tick_ebb_start
= label_tick
;
1267 last_bb
= this_basic_block
;
1269 rtl_profile_for_bb (this_basic_block
);
1270 for (insn
= BB_HEAD (this_basic_block
);
1271 insn
!= NEXT_INSN (BB_END (this_basic_block
));
1272 insn
= next
? next
: NEXT_INSN (insn
))
1275 if (!NONDEBUG_INSN_P (insn
))
1278 while (last_combined_insn
1279 && (!NONDEBUG_INSN_P (last_combined_insn
)
1280 || last_combined_insn
->deleted ()))
1281 last_combined_insn
= PREV_INSN (last_combined_insn
);
1282 if (last_combined_insn
== NULL_RTX
1283 || BLOCK_FOR_INSN (last_combined_insn
) != this_basic_block
1284 || DF_INSN_LUID (last_combined_insn
) <= DF_INSN_LUID (insn
))
1285 last_combined_insn
= insn
;
1287 /* See if we know about function return values before this
1288 insn based upon SUBREG flags. */
1289 check_promoted_subreg (insn
, PATTERN (insn
));
1291 /* See if we can find hardregs and subreg of pseudos in
1292 narrower modes. This could help turning TRUNCATEs
1294 note_uses (&PATTERN (insn
), record_truncated_values
, NULL
);
1296 /* Try this insn with each insn it links back to. */
1298 FOR_EACH_LOG_LINK (links
, insn
)
1299 if ((next
= try_combine (insn
, links
->insn
, NULL
,
1300 NULL
, &new_direct_jump_p
,
1301 last_combined_insn
)) != 0)
1303 statistics_counter_event (cfun
, "two-insn combine", 1);
1307 /* Try each sequence of three linked insns ending with this one. */
1309 if (max_combine
>= 3)
1310 FOR_EACH_LOG_LINK (links
, insn
)
1312 rtx_insn
*link
= links
->insn
;
1314 /* If the linked insn has been replaced by a note, then there
1315 is no point in pursuing this chain any further. */
1319 FOR_EACH_LOG_LINK (nextlinks
, link
)
1320 if ((next
= try_combine (insn
, link
, nextlinks
->insn
,
1321 NULL
, &new_direct_jump_p
,
1322 last_combined_insn
)) != 0)
1324 statistics_counter_event (cfun
, "three-insn combine", 1);
1329 /* Try to combine a jump insn that uses CC0
1330 with a preceding insn that sets CC0, and maybe with its
1331 logical predecessor as well.
1332 This is how we make decrement-and-branch insns.
1333 We need this special code because data flow connections
1334 via CC0 do not get entered in LOG_LINKS. */
1338 && (prev
= prev_nonnote_insn (insn
)) != 0
1339 && NONJUMP_INSN_P (prev
)
1340 && sets_cc0_p (PATTERN (prev
)))
1342 if ((next
= try_combine (insn
, prev
, NULL
, NULL
,
1344 last_combined_insn
)) != 0)
1347 FOR_EACH_LOG_LINK (nextlinks
, prev
)
1348 if ((next
= try_combine (insn
, prev
, nextlinks
->insn
,
1349 NULL
, &new_direct_jump_p
,
1350 last_combined_insn
)) != 0)
1354 /* Do the same for an insn that explicitly references CC0. */
1355 if (HAVE_cc0
&& NONJUMP_INSN_P (insn
)
1356 && (prev
= prev_nonnote_insn (insn
)) != 0
1357 && NONJUMP_INSN_P (prev
)
1358 && sets_cc0_p (PATTERN (prev
))
1359 && GET_CODE (PATTERN (insn
)) == SET
1360 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (insn
))))
1362 if ((next
= try_combine (insn
, prev
, NULL
, NULL
,
1364 last_combined_insn
)) != 0)
1367 FOR_EACH_LOG_LINK (nextlinks
, prev
)
1368 if ((next
= try_combine (insn
, prev
, nextlinks
->insn
,
1369 NULL
, &new_direct_jump_p
,
1370 last_combined_insn
)) != 0)
1374 /* Finally, see if any of the insns that this insn links to
1375 explicitly references CC0. If so, try this insn, that insn,
1376 and its predecessor if it sets CC0. */
1379 FOR_EACH_LOG_LINK (links
, insn
)
1380 if (NONJUMP_INSN_P (links
->insn
)
1381 && GET_CODE (PATTERN (links
->insn
)) == SET
1382 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (links
->insn
)))
1383 && (prev
= prev_nonnote_insn (links
->insn
)) != 0
1384 && NONJUMP_INSN_P (prev
)
1385 && sets_cc0_p (PATTERN (prev
))
1386 && (next
= try_combine (insn
, links
->insn
,
1387 prev
, NULL
, &new_direct_jump_p
,
1388 last_combined_insn
)) != 0)
1392 /* Try combining an insn with two different insns whose results it
1394 if (max_combine
>= 3)
1395 FOR_EACH_LOG_LINK (links
, insn
)
1396 for (nextlinks
= links
->next
; nextlinks
;
1397 nextlinks
= nextlinks
->next
)
1398 if ((next
= try_combine (insn
, links
->insn
,
1399 nextlinks
->insn
, NULL
,
1401 last_combined_insn
)) != 0)
1404 statistics_counter_event (cfun
, "three-insn combine", 1);
1408 /* Try four-instruction combinations. */
1409 if (max_combine
>= 4)
1410 FOR_EACH_LOG_LINK (links
, insn
)
1412 struct insn_link
*next1
;
1413 rtx_insn
*link
= links
->insn
;
1415 /* If the linked insn has been replaced by a note, then there
1416 is no point in pursuing this chain any further. */
1420 FOR_EACH_LOG_LINK (next1
, link
)
1422 rtx_insn
*link1
= next1
->insn
;
1425 /* I0 -> I1 -> I2 -> I3. */
1426 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1427 if ((next
= try_combine (insn
, link
, link1
,
1430 last_combined_insn
)) != 0)
1432 statistics_counter_event (cfun
, "four-insn combine", 1);
1435 /* I0, I1 -> I2, I2 -> I3. */
1436 for (nextlinks
= next1
->next
; nextlinks
;
1437 nextlinks
= nextlinks
->next
)
1438 if ((next
= try_combine (insn
, link
, link1
,
1441 last_combined_insn
)) != 0)
1443 statistics_counter_event (cfun
, "four-insn combine", 1);
1448 for (next1
= links
->next
; next1
; next1
= next1
->next
)
1450 rtx_insn
*link1
= next1
->insn
;
1453 /* I0 -> I2; I1, I2 -> I3. */
1454 FOR_EACH_LOG_LINK (nextlinks
, link
)
1455 if ((next
= try_combine (insn
, link
, link1
,
1458 last_combined_insn
)) != 0)
1460 statistics_counter_event (cfun
, "four-insn combine", 1);
1463 /* I0 -> I1; I1, I2 -> I3. */
1464 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1465 if ((next
= try_combine (insn
, link
, link1
,
1468 last_combined_insn
)) != 0)
1470 statistics_counter_event (cfun
, "four-insn combine", 1);
1476 /* Try this insn with each REG_EQUAL note it links back to. */
1477 FOR_EACH_LOG_LINK (links
, insn
)
1480 rtx_insn
*temp
= links
->insn
;
1481 if ((set
= single_set (temp
)) != 0
1482 && (note
= find_reg_equal_equiv_note (temp
)) != 0
1483 && (note
= XEXP (note
, 0), GET_CODE (note
)) != EXPR_LIST
1484 /* Avoid using a register that may already been marked
1485 dead by an earlier instruction. */
1486 && ! unmentioned_reg_p (note
, SET_SRC (set
))
1487 && (GET_MODE (note
) == VOIDmode
1488 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set
)))
1489 : (GET_MODE (SET_DEST (set
)) == GET_MODE (note
)
1490 && (GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
1491 || (GET_MODE (XEXP (SET_DEST (set
), 0))
1492 == GET_MODE (note
))))))
1494 /* Temporarily replace the set's source with the
1495 contents of the REG_EQUAL note. The insn will
1496 be deleted or recognized by try_combine. */
1497 rtx orig_src
= SET_SRC (set
);
1498 rtx orig_dest
= SET_DEST (set
);
1499 if (GET_CODE (SET_DEST (set
)) == ZERO_EXTRACT
)
1500 SET_DEST (set
) = XEXP (SET_DEST (set
), 0);
1501 SET_SRC (set
) = note
;
1503 i2mod_old_rhs
= copy_rtx (orig_src
);
1504 i2mod_new_rhs
= copy_rtx (note
);
1505 next
= try_combine (insn
, i2mod
, NULL
, NULL
,
1507 last_combined_insn
);
1511 statistics_counter_event (cfun
, "insn-with-note combine", 1);
1514 SET_SRC (set
) = orig_src
;
1515 SET_DEST (set
) = orig_dest
;
1520 record_dead_and_set_regs (insn
);
1527 default_rtl_profile ();
1529 new_direct_jump_p
|= purge_all_dead_edges ();
1530 delete_noop_moves ();
1533 obstack_free (&insn_link_obstack
, NULL
);
1534 free (uid_log_links
);
1535 free (uid_insn_cost
);
1536 reg_stat
.release ();
1539 struct undo
*undo
, *next
;
1540 for (undo
= undobuf
.frees
; undo
; undo
= next
)
1548 total_attempts
+= combine_attempts
;
1549 total_merges
+= combine_merges
;
1550 total_extras
+= combine_extras
;
1551 total_successes
+= combine_successes
;
1553 nonzero_sign_valid
= 0;
1554 rtl_hooks
= general_rtl_hooks
;
1556 /* Make recognizer allow volatile MEMs again. */
1559 return new_direct_jump_p
;
1562 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1565 init_reg_last (void)
1570 FOR_EACH_VEC_ELT (reg_stat
, i
, p
)
1571 memset (p
, 0, offsetof (reg_stat_type
, sign_bit_copies
));
1574 /* Set up any promoted values for incoming argument registers. */
1577 setup_incoming_promotions (rtx_insn
*first
)
1580 bool strictly_local
= false;
1582 for (arg
= DECL_ARGUMENTS (current_function_decl
); arg
;
1583 arg
= DECL_CHAIN (arg
))
1585 rtx x
, reg
= DECL_INCOMING_RTL (arg
);
1587 machine_mode mode1
, mode2
, mode3
, mode4
;
1589 /* Only continue if the incoming argument is in a register. */
1593 /* Determine, if possible, whether all call sites of the current
1594 function lie within the current compilation unit. (This does
1595 take into account the exporting of a function via taking its
1596 address, and so forth.) */
1597 strictly_local
= cgraph_node::local_info (current_function_decl
)->local
;
1599 /* The mode and signedness of the argument before any promotions happen
1600 (equal to the mode of the pseudo holding it at that stage). */
1601 mode1
= TYPE_MODE (TREE_TYPE (arg
));
1602 uns1
= TYPE_UNSIGNED (TREE_TYPE (arg
));
1604 /* The mode and signedness of the argument after any source language and
1605 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1606 mode2
= TYPE_MODE (DECL_ARG_TYPE (arg
));
1607 uns3
= TYPE_UNSIGNED (DECL_ARG_TYPE (arg
));
1609 /* The mode and signedness of the argument as it is actually passed,
1610 see assign_parm_setup_reg in function.c. */
1611 mode3
= promote_function_mode (TREE_TYPE (arg
), mode1
, &uns3
,
1612 TREE_TYPE (cfun
->decl
), 0);
1614 /* The mode of the register in which the argument is being passed. */
1615 mode4
= GET_MODE (reg
);
1617 /* Eliminate sign extensions in the callee when:
1618 (a) A mode promotion has occurred; */
1621 /* (b) The mode of the register is the same as the mode of
1622 the argument as it is passed; */
1625 /* (c) There's no language level extension; */
1628 /* (c.1) All callers are from the current compilation unit. If that's
1629 the case we don't have to rely on an ABI, we only have to know
1630 what we're generating right now, and we know that we will do the
1631 mode1 to mode2 promotion with the given sign. */
1632 else if (!strictly_local
)
1634 /* (c.2) The combination of the two promotions is useful. This is
1635 true when the signs match, or if the first promotion is unsigned.
1636 In the later case, (sign_extend (zero_extend x)) is the same as
1637 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1643 /* Record that the value was promoted from mode1 to mode3,
1644 so that any sign extension at the head of the current
1645 function may be eliminated. */
1646 x
= gen_rtx_CLOBBER (mode1
, const0_rtx
);
1647 x
= gen_rtx_fmt_e ((uns3
? ZERO_EXTEND
: SIGN_EXTEND
), mode3
, x
);
1648 record_value_for_reg (reg
, first
, x
);
1652 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1653 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1654 because some machines (maybe most) will actually do the sign-extension and
1655 this is the conservative approach.
1657 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1661 sign_extend_short_imm (rtx src
, machine_mode mode
, unsigned int prec
)
1663 scalar_int_mode int_mode
;
1664 if (CONST_INT_P (src
)
1665 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
1666 && GET_MODE_PRECISION (int_mode
) < prec
1668 && val_signbit_known_set_p (int_mode
, INTVAL (src
)))
1669 src
= GEN_INT (INTVAL (src
) | ~GET_MODE_MASK (int_mode
));
1674 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1678 update_rsp_from_reg_equal (reg_stat_type
*rsp
, rtx_insn
*insn
, const_rtx set
,
1681 rtx reg_equal_note
= insn
? find_reg_equal_equiv_note (insn
) : NULL_RTX
;
1682 unsigned HOST_WIDE_INT bits
= 0;
1683 rtx reg_equal
= NULL
, src
= SET_SRC (set
);
1684 unsigned int num
= 0;
1687 reg_equal
= XEXP (reg_equal_note
, 0);
1689 if (SHORT_IMMEDIATES_SIGN_EXTEND
)
1691 src
= sign_extend_short_imm (src
, GET_MODE (x
), BITS_PER_WORD
);
1693 reg_equal
= sign_extend_short_imm (reg_equal
, GET_MODE (x
), BITS_PER_WORD
);
1696 /* Don't call nonzero_bits if it cannot change anything. */
1697 if (rsp
->nonzero_bits
!= HOST_WIDE_INT_M1U
)
1699 bits
= nonzero_bits (src
, nonzero_bits_mode
);
1700 if (reg_equal
&& bits
)
1701 bits
&= nonzero_bits (reg_equal
, nonzero_bits_mode
);
1702 rsp
->nonzero_bits
|= bits
;
1705 /* Don't call num_sign_bit_copies if it cannot change anything. */
1706 if (rsp
->sign_bit_copies
!= 1)
1708 num
= num_sign_bit_copies (SET_SRC (set
), GET_MODE (x
));
1709 if (reg_equal
&& maybe_ne (num
, GET_MODE_PRECISION (GET_MODE (x
))))
1711 unsigned int numeq
= num_sign_bit_copies (reg_equal
, GET_MODE (x
));
1712 if (num
== 0 || numeq
> num
)
1715 if (rsp
->sign_bit_copies
== 0 || num
< rsp
->sign_bit_copies
)
1716 rsp
->sign_bit_copies
= num
;
1720 /* Called via note_stores. If X is a pseudo that is narrower than
1721 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1723 If we are setting only a portion of X and we can't figure out what
1724 portion, assume all bits will be used since we don't know what will
1727 Similarly, set how many bits of X are known to be copies of the sign bit
1728 at all locations in the function. This is the smallest number implied
1732 set_nonzero_bits_and_sign_copies (rtx x
, const_rtx set
, void *data
)
1734 rtx_insn
*insn
= (rtx_insn
*) data
;
1735 scalar_int_mode mode
;
1738 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
1739 /* If this register is undefined at the start of the file, we can't
1740 say what its contents were. */
1741 && ! REGNO_REG_SET_P
1742 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), REGNO (x
))
1743 && is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
)
1744 && HWI_COMPUTABLE_MODE_P (mode
))
1746 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
1748 if (set
== 0 || GET_CODE (set
) == CLOBBER
)
1750 rsp
->nonzero_bits
= GET_MODE_MASK (mode
);
1751 rsp
->sign_bit_copies
= 1;
1755 /* If this register is being initialized using itself, and the
1756 register is uninitialized in this basic block, and there are
1757 no LOG_LINKS which set the register, then part of the
1758 register is uninitialized. In that case we can't assume
1759 anything about the number of nonzero bits.
1761 ??? We could do better if we checked this in
1762 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1763 could avoid making assumptions about the insn which initially
1764 sets the register, while still using the information in other
1765 insns. We would have to be careful to check every insn
1766 involved in the combination. */
1769 && reg_referenced_p (x
, PATTERN (insn
))
1770 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn
)),
1773 struct insn_link
*link
;
1775 FOR_EACH_LOG_LINK (link
, insn
)
1776 if (dead_or_set_p (link
->insn
, x
))
1780 rsp
->nonzero_bits
= GET_MODE_MASK (mode
);
1781 rsp
->sign_bit_copies
= 1;
1786 /* If this is a complex assignment, see if we can convert it into a
1787 simple assignment. */
1788 set
= expand_field_assignment (set
);
1790 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1791 set what we know about X. */
1793 if (SET_DEST (set
) == x
1794 || (paradoxical_subreg_p (SET_DEST (set
))
1795 && SUBREG_REG (SET_DEST (set
)) == x
))
1796 update_rsp_from_reg_equal (rsp
, insn
, set
, x
);
1799 rsp
->nonzero_bits
= GET_MODE_MASK (mode
);
1800 rsp
->sign_bit_copies
= 1;
1805 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1806 optionally insns that were previously combined into I3 or that will be
1807 combined into the merger of INSN and I3. The order is PRED, PRED2,
1808 INSN, SUCC, SUCC2, I3.
1810 Return 0 if the combination is not allowed for any reason.
1812 If the combination is allowed, *PDEST will be set to the single
1813 destination of INSN and *PSRC to the single source, and this function
1817 can_combine_p (rtx_insn
*insn
, rtx_insn
*i3
, rtx_insn
*pred ATTRIBUTE_UNUSED
,
1818 rtx_insn
*pred2 ATTRIBUTE_UNUSED
, rtx_insn
*succ
, rtx_insn
*succ2
,
1819 rtx
*pdest
, rtx
*psrc
)
1826 bool all_adjacent
= true;
1827 int (*is_volatile_p
) (const_rtx
);
1833 if (next_active_insn (succ2
) != i3
)
1834 all_adjacent
= false;
1835 if (next_active_insn (succ
) != succ2
)
1836 all_adjacent
= false;
1838 else if (next_active_insn (succ
) != i3
)
1839 all_adjacent
= false;
1840 if (next_active_insn (insn
) != succ
)
1841 all_adjacent
= false;
1843 else if (next_active_insn (insn
) != i3
)
1844 all_adjacent
= false;
1846 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1847 or a PARALLEL consisting of such a SET and CLOBBERs.
1849 If INSN has CLOBBER parallel parts, ignore them for our processing.
1850 By definition, these happen during the execution of the insn. When it
1851 is merged with another insn, all bets are off. If they are, in fact,
1852 needed and aren't also supplied in I3, they may be added by
1853 recog_for_combine. Otherwise, it won't match.
1855 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1858 Get the source and destination of INSN. If more than one, can't
1861 if (GET_CODE (PATTERN (insn
)) == SET
)
1862 set
= PATTERN (insn
);
1863 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1864 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1866 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1868 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
1870 switch (GET_CODE (elt
))
1872 /* This is important to combine floating point insns
1873 for the SH4 port. */
1875 /* Combining an isolated USE doesn't make sense.
1876 We depend here on combinable_i3pat to reject them. */
1877 /* The code below this loop only verifies that the inputs of
1878 the SET in INSN do not change. We call reg_set_between_p
1879 to verify that the REG in the USE does not change between
1881 If the USE in INSN was for a pseudo register, the matching
1882 insn pattern will likely match any register; combining this
1883 with any other USE would only be safe if we knew that the
1884 used registers have identical values, or if there was
1885 something to tell them apart, e.g. different modes. For
1886 now, we forgo such complicated tests and simply disallow
1887 combining of USES of pseudo registers with any other USE. */
1888 if (REG_P (XEXP (elt
, 0))
1889 && GET_CODE (PATTERN (i3
)) == PARALLEL
)
1891 rtx i3pat
= PATTERN (i3
);
1892 int i
= XVECLEN (i3pat
, 0) - 1;
1893 unsigned int regno
= REGNO (XEXP (elt
, 0));
1897 rtx i3elt
= XVECEXP (i3pat
, 0, i
);
1899 if (GET_CODE (i3elt
) == USE
1900 && REG_P (XEXP (i3elt
, 0))
1901 && (REGNO (XEXP (i3elt
, 0)) == regno
1902 ? reg_set_between_p (XEXP (elt
, 0),
1903 PREV_INSN (insn
), i3
)
1904 : regno
>= FIRST_PSEUDO_REGISTER
))
1911 /* We can ignore CLOBBERs. */
1916 /* Ignore SETs whose result isn't used but not those that
1917 have side-effects. */
1918 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (elt
))
1919 && insn_nothrow_p (insn
)
1920 && !side_effects_p (elt
))
1923 /* If we have already found a SET, this is a second one and
1924 so we cannot combine with this insn. */
1932 /* Anything else means we can't combine. */
1938 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1939 so don't do anything with it. */
1940 || GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1949 /* The simplification in expand_field_assignment may call back to
1950 get_last_value, so set safe guard here. */
1951 subst_low_luid
= DF_INSN_LUID (insn
);
1953 set
= expand_field_assignment (set
);
1954 src
= SET_SRC (set
), dest
= SET_DEST (set
);
1956 /* Do not eliminate user-specified register if it is in an
1957 asm input because we may break the register asm usage defined
1958 in GCC manual if allow to do so.
1959 Be aware that this may cover more cases than we expect but this
1960 should be harmless. */
1961 if (REG_P (dest
) && REG_USERVAR_P (dest
) && HARD_REGISTER_P (dest
)
1962 && extract_asm_operands (PATTERN (i3
)))
1965 /* Don't eliminate a store in the stack pointer. */
1966 if (dest
== stack_pointer_rtx
1967 /* Don't combine with an insn that sets a register to itself if it has
1968 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1969 || (rtx_equal_p (src
, dest
) && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1970 /* Can't merge an ASM_OPERANDS. */
1971 || GET_CODE (src
) == ASM_OPERANDS
1972 /* Can't merge a function call. */
1973 || GET_CODE (src
) == CALL
1974 /* Don't eliminate a function call argument. */
1976 && (find_reg_fusage (i3
, USE
, dest
)
1978 && REGNO (dest
) < FIRST_PSEUDO_REGISTER
1979 && global_regs
[REGNO (dest
)])))
1980 /* Don't substitute into an incremented register. */
1981 || FIND_REG_INC_NOTE (i3
, dest
)
1982 || (succ
&& FIND_REG_INC_NOTE (succ
, dest
))
1983 || (succ2
&& FIND_REG_INC_NOTE (succ2
, dest
))
1984 /* Don't substitute into a non-local goto, this confuses CFG. */
1985 || (JUMP_P (i3
) && find_reg_note (i3
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
1986 /* Make sure that DEST is not used after INSN but before SUCC, or
1987 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1990 && (reg_used_between_p (dest
, succ2
, i3
)
1991 || reg_used_between_p (dest
, succ
, succ2
)))
1992 || (!succ2
&& succ
&& reg_used_between_p (dest
, succ
, i3
))
1993 || (!succ2
&& !succ
&& reg_used_between_p (dest
, insn
, i3
))
1995 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1996 that case SUCC is not in the insn stream, so use SUCC2
1997 instead for this test. */
1998 && reg_used_between_p (dest
, insn
,
2000 && INSN_UID (succ
) == INSN_UID (succ2
)
2002 /* Make sure that the value that is to be substituted for the register
2003 does not use any registers whose values alter in between. However,
2004 If the insns are adjacent, a use can't cross a set even though we
2005 think it might (this can happen for a sequence of insns each setting
2006 the same destination; last_set of that register might point to
2007 a NOTE). If INSN has a REG_EQUIV note, the register is always
2008 equivalent to the memory so the substitution is valid even if there
2009 are intervening stores. Also, don't move a volatile asm or
2010 UNSPEC_VOLATILE across any other insns. */
2013 || ! find_reg_note (insn
, REG_EQUIV
, src
))
2014 && modified_between_p (src
, insn
, i3
))
2015 || (GET_CODE (src
) == ASM_OPERANDS
&& MEM_VOLATILE_P (src
))
2016 || GET_CODE (src
) == UNSPEC_VOLATILE
))
2017 /* Don't combine across a CALL_INSN, because that would possibly
2018 change whether the life span of some REGs crosses calls or not,
2019 and it is a pain to update that information.
2020 Exception: if source is a constant, moving it later can't hurt.
2021 Accept that as a special case. */
2022 || (DF_INSN_LUID (insn
) < last_call_luid
&& ! CONSTANT_P (src
)))
2025 /* DEST must either be a REG or CC0. */
2028 /* If register alignment is being enforced for multi-word items in all
2029 cases except for parameters, it is possible to have a register copy
2030 insn referencing a hard register that is not allowed to contain the
2031 mode being copied and which would not be valid as an operand of most
2032 insns. Eliminate this problem by not combining with such an insn.
2034 Also, on some machines we don't want to extend the life of a hard
2038 && ((REGNO (dest
) < FIRST_PSEUDO_REGISTER
2039 && !targetm
.hard_regno_mode_ok (REGNO (dest
), GET_MODE (dest
)))
2040 /* Don't extend the life of a hard register unless it is
2041 user variable (if we have few registers) or it can't
2042 fit into the desired register (meaning something special
2044 Also avoid substituting a return register into I3, because
2045 reload can't handle a conflict with constraints of other
2047 || (REGNO (src
) < FIRST_PSEUDO_REGISTER
2048 && !targetm
.hard_regno_mode_ok (REGNO (src
),
2052 else if (GET_CODE (dest
) != CC0
)
2056 if (GET_CODE (PATTERN (i3
)) == PARALLEL
)
2057 for (i
= XVECLEN (PATTERN (i3
), 0) - 1; i
>= 0; i
--)
2058 if (GET_CODE (XVECEXP (PATTERN (i3
), 0, i
)) == CLOBBER
)
2060 rtx reg
= XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0);
2062 /* If the clobber represents an earlyclobber operand, we must not
2063 substitute an expression containing the clobbered register.
2064 As we do not analyze the constraint strings here, we have to
2065 make the conservative assumption. However, if the register is
2066 a fixed hard reg, the clobber cannot represent any operand;
2067 we leave it up to the machine description to either accept or
2068 reject use-and-clobber patterns. */
2070 || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
2071 || !fixed_regs
[REGNO (reg
)])
2072 if (reg_overlap_mentioned_p (reg
, src
))
2076 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2077 or not), reject, unless nothing volatile comes between it and I3 */
2079 if (GET_CODE (src
) == ASM_OPERANDS
|| volatile_refs_p (src
))
2081 /* Make sure neither succ nor succ2 contains a volatile reference. */
2082 if (succ2
!= 0 && volatile_refs_p (PATTERN (succ2
)))
2084 if (succ
!= 0 && volatile_refs_p (PATTERN (succ
)))
2086 /* We'll check insns between INSN and I3 below. */
2089 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2090 to be an explicit register variable, and was chosen for a reason. */
2092 if (GET_CODE (src
) == ASM_OPERANDS
2093 && REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
2096 /* If INSN contains volatile references (specifically volatile MEMs),
2097 we cannot combine across any other volatile references.
2098 Even if INSN doesn't contain volatile references, any intervening
2099 volatile insn might affect machine state. */
2101 is_volatile_p
= volatile_refs_p (PATTERN (insn
))
2105 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
2106 if (INSN_P (p
) && p
!= succ
&& p
!= succ2
&& is_volatile_p (PATTERN (p
)))
2109 /* If INSN contains an autoincrement or autodecrement, make sure that
2110 register is not used between there and I3, and not already used in
2111 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2112 Also insist that I3 not be a jump; if it were one
2113 and the incremented register were spilled, we would lose. */
2116 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2117 if (REG_NOTE_KIND (link
) == REG_INC
2119 || reg_used_between_p (XEXP (link
, 0), insn
, i3
)
2120 || (pred
!= NULL_RTX
2121 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred
)))
2122 || (pred2
!= NULL_RTX
2123 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred2
)))
2124 || (succ
!= NULL_RTX
2125 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ
)))
2126 || (succ2
!= NULL_RTX
2127 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ2
)))
2128 || reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i3
))))
2131 /* Don't combine an insn that follows a CC0-setting insn.
2132 An insn that uses CC0 must not be separated from the one that sets it.
2133 We do, however, allow I2 to follow a CC0-setting insn if that insn
2134 is passed as I1; in that case it will be deleted also.
2135 We also allow combining in this case if all the insns are adjacent
2136 because that would leave the two CC0 insns adjacent as well.
2137 It would be more logical to test whether CC0 occurs inside I1 or I2,
2138 but that would be much slower, and this ought to be equivalent. */
2142 p
= prev_nonnote_insn (insn
);
2143 if (p
&& p
!= pred
&& NONJUMP_INSN_P (p
) && sets_cc0_p (PATTERN (p
))
2148 /* If we get here, we have passed all the tests and the combination is
2157 /* LOC is the location within I3 that contains its pattern or the component
2158 of a PARALLEL of the pattern. We validate that it is valid for combining.
2160 One problem is if I3 modifies its output, as opposed to replacing it
2161 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2162 doing so would produce an insn that is not equivalent to the original insns.
2166 (set (reg:DI 101) (reg:DI 100))
2167 (set (subreg:SI (reg:DI 101) 0) <foo>)
2169 This is NOT equivalent to:
2171 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2172 (set (reg:DI 101) (reg:DI 100))])
2174 Not only does this modify 100 (in which case it might still be valid
2175 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2177 We can also run into a problem if I2 sets a register that I1
2178 uses and I1 gets directly substituted into I3 (not via I2). In that
2179 case, we would be getting the wrong value of I2DEST into I3, so we
2180 must reject the combination. This case occurs when I2 and I1 both
2181 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2182 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2183 of a SET must prevent combination from occurring. The same situation
2184 can occur for I0, in which case I0_NOT_IN_SRC is set.
2186 Before doing the above check, we first try to expand a field assignment
2187 into a set of logical operations.
2189 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2190 we place a register that is both set and used within I3. If more than one
2191 such register is detected, we fail.
2193 Return 1 if the combination is valid, zero otherwise. */
2196 combinable_i3pat (rtx_insn
*i3
, rtx
*loc
, rtx i2dest
, rtx i1dest
, rtx i0dest
,
2197 int i1_not_in_src
, int i0_not_in_src
, rtx
*pi3dest_killed
)
2201 if (GET_CODE (x
) == SET
)
2204 rtx dest
= SET_DEST (set
);
2205 rtx src
= SET_SRC (set
);
2206 rtx inner_dest
= dest
;
2209 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
2210 || GET_CODE (inner_dest
) == SUBREG
2211 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
2212 inner_dest
= XEXP (inner_dest
, 0);
2214 /* Check for the case where I3 modifies its output, as discussed
2215 above. We don't want to prevent pseudos from being combined
2216 into the address of a MEM, so only prevent the combination if
2217 i1 or i2 set the same MEM. */
2218 if ((inner_dest
!= dest
&&
2219 (!MEM_P (inner_dest
)
2220 || rtx_equal_p (i2dest
, inner_dest
)
2221 || (i1dest
&& rtx_equal_p (i1dest
, inner_dest
))
2222 || (i0dest
&& rtx_equal_p (i0dest
, inner_dest
)))
2223 && (reg_overlap_mentioned_p (i2dest
, inner_dest
)
2224 || (i1dest
&& reg_overlap_mentioned_p (i1dest
, inner_dest
))
2225 || (i0dest
&& reg_overlap_mentioned_p (i0dest
, inner_dest
))))
2227 /* This is the same test done in can_combine_p except we can't test
2228 all_adjacent; we don't have to, since this instruction will stay
2229 in place, thus we are not considering increasing the lifetime of
2232 Also, if this insn sets a function argument, combining it with
2233 something that might need a spill could clobber a previous
2234 function argument; the all_adjacent test in can_combine_p also
2235 checks this; here, we do a more specific test for this case. */
2237 || (REG_P (inner_dest
)
2238 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
2239 && !targetm
.hard_regno_mode_ok (REGNO (inner_dest
),
2240 GET_MODE (inner_dest
)))
2241 || (i1_not_in_src
&& reg_overlap_mentioned_p (i1dest
, src
))
2242 || (i0_not_in_src
&& reg_overlap_mentioned_p (i0dest
, src
)))
2245 /* If DEST is used in I3, it is being killed in this insn, so
2246 record that for later. We have to consider paradoxical
2247 subregs here, since they kill the whole register, but we
2248 ignore partial subregs, STRICT_LOW_PART, etc.
2249 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2250 STACK_POINTER_REGNUM, since these are always considered to be
2251 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2253 if (GET_CODE (subdest
) == SUBREG
&& !partial_subreg_p (subdest
))
2254 subdest
= SUBREG_REG (subdest
);
2257 && reg_referenced_p (subdest
, PATTERN (i3
))
2258 && REGNO (subdest
) != FRAME_POINTER_REGNUM
2259 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2260 || REGNO (subdest
) != HARD_FRAME_POINTER_REGNUM
)
2261 && (FRAME_POINTER_REGNUM
== ARG_POINTER_REGNUM
2262 || (REGNO (subdest
) != ARG_POINTER_REGNUM
2263 || ! fixed_regs
[REGNO (subdest
)]))
2264 && REGNO (subdest
) != STACK_POINTER_REGNUM
)
2266 if (*pi3dest_killed
)
2269 *pi3dest_killed
= subdest
;
2273 else if (GET_CODE (x
) == PARALLEL
)
2277 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
2278 if (! combinable_i3pat (i3
, &XVECEXP (x
, 0, i
), i2dest
, i1dest
, i0dest
,
2279 i1_not_in_src
, i0_not_in_src
, pi3dest_killed
))
2286 /* Return 1 if X is an arithmetic expression that contains a multiplication
2287 and division. We don't count multiplications by powers of two here. */
2290 contains_muldiv (rtx x
)
2292 switch (GET_CODE (x
))
2294 case MOD
: case DIV
: case UMOD
: case UDIV
:
2298 return ! (CONST_INT_P (XEXP (x
, 1))
2299 && pow2p_hwi (UINTVAL (XEXP (x
, 1))));
2302 return contains_muldiv (XEXP (x
, 0))
2303 || contains_muldiv (XEXP (x
, 1));
2306 return contains_muldiv (XEXP (x
, 0));
2312 /* Determine whether INSN can be used in a combination. Return nonzero if
2313 not. This is used in try_combine to detect early some cases where we
2314 can't perform combinations. */
2317 cant_combine_insn_p (rtx_insn
*insn
)
2322 /* If this isn't really an insn, we can't do anything.
2323 This can occur when flow deletes an insn that it has merged into an
2324 auto-increment address. */
2325 if (!NONDEBUG_INSN_P (insn
))
2328 /* Never combine loads and stores involving hard regs that are likely
2329 to be spilled. The register allocator can usually handle such
2330 reg-reg moves by tying. If we allow the combiner to make
2331 substitutions of likely-spilled regs, reload might die.
2332 As an exception, we allow combinations involving fixed regs; these are
2333 not available to the register allocator so there's no risk involved. */
2335 set
= single_set (insn
);
2338 src
= SET_SRC (set
);
2339 dest
= SET_DEST (set
);
2340 if (GET_CODE (src
) == SUBREG
)
2341 src
= SUBREG_REG (src
);
2342 if (GET_CODE (dest
) == SUBREG
)
2343 dest
= SUBREG_REG (dest
);
2344 if (REG_P (src
) && REG_P (dest
)
2345 && ((HARD_REGISTER_P (src
)
2346 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (src
))
2347 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src
))))
2348 || (HARD_REGISTER_P (dest
)
2349 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (dest
))
2350 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest
))))))
2356 struct likely_spilled_retval_info
2358 unsigned regno
, nregs
;
2362 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2363 hard registers that are known to be written to / clobbered in full. */
2365 likely_spilled_retval_1 (rtx x
, const_rtx set
, void *data
)
2367 struct likely_spilled_retval_info
*const info
=
2368 (struct likely_spilled_retval_info
*) data
;
2369 unsigned regno
, nregs
;
2372 if (!REG_P (XEXP (set
, 0)))
2375 if (regno
>= info
->regno
+ info
->nregs
)
2377 nregs
= REG_NREGS (x
);
2378 if (regno
+ nregs
<= info
->regno
)
2380 new_mask
= (2U << (nregs
- 1)) - 1;
2381 if (regno
< info
->regno
)
2382 new_mask
>>= info
->regno
- regno
;
2384 new_mask
<<= regno
- info
->regno
;
2385 info
->mask
&= ~new_mask
;
2388 /* Return nonzero iff part of the return value is live during INSN, and
2389 it is likely spilled. This can happen when more than one insn is needed
2390 to copy the return value, e.g. when we consider to combine into the
2391 second copy insn for a complex value. */
2394 likely_spilled_retval_p (rtx_insn
*insn
)
2396 rtx_insn
*use
= BB_END (this_basic_block
);
2399 unsigned regno
, nregs
;
2400 /* We assume here that no machine mode needs more than
2401 32 hard registers when the value overlaps with a register
2402 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2404 struct likely_spilled_retval_info info
;
2406 if (!NONJUMP_INSN_P (use
) || GET_CODE (PATTERN (use
)) != USE
|| insn
== use
)
2408 reg
= XEXP (PATTERN (use
), 0);
2409 if (!REG_P (reg
) || !targetm
.calls
.function_value_regno_p (REGNO (reg
)))
2411 regno
= REGNO (reg
);
2412 nregs
= REG_NREGS (reg
);
2415 mask
= (2U << (nregs
- 1)) - 1;
2417 /* Disregard parts of the return value that are set later. */
2421 for (p
= PREV_INSN (use
); info
.mask
&& p
!= insn
; p
= PREV_INSN (p
))
2423 note_stores (PATTERN (p
), likely_spilled_retval_1
, &info
);
2426 /* Check if any of the (probably) live return value registers is
2431 if ((mask
& 1 << nregs
)
2432 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (regno
+ nregs
)))
2438 /* Adjust INSN after we made a change to its destination.
2440 Changing the destination can invalidate notes that say something about
2441 the results of the insn and a LOG_LINK pointing to the insn. */
2444 adjust_for_new_dest (rtx_insn
*insn
)
2446 /* For notes, be conservative and simply remove them. */
2447 remove_reg_equal_equiv_notes (insn
);
2449 /* The new insn will have a destination that was previously the destination
2450 of an insn just above it. Call distribute_links to make a LOG_LINK from
2451 the next use of that destination. */
2453 rtx set
= single_set (insn
);
2456 rtx reg
= SET_DEST (set
);
2458 while (GET_CODE (reg
) == ZERO_EXTRACT
2459 || GET_CODE (reg
) == STRICT_LOW_PART
2460 || GET_CODE (reg
) == SUBREG
)
2461 reg
= XEXP (reg
, 0);
2462 gcc_assert (REG_P (reg
));
2464 distribute_links (alloc_insn_link (insn
, REGNO (reg
), NULL
));
2466 df_insn_rescan (insn
);
2469 /* Return TRUE if combine can reuse reg X in mode MODE.
2470 ADDED_SETS is nonzero if the original set is still required. */
2472 can_change_dest_mode (rtx x
, int added_sets
, machine_mode mode
)
2479 /* Don't change between modes with different underlying register sizes,
2480 since this could lead to invalid subregs. */
2481 if (maybe_ne (REGMODE_NATURAL_SIZE (mode
),
2482 REGMODE_NATURAL_SIZE (GET_MODE (x
))))
2486 /* Allow hard registers if the new mode is legal, and occupies no more
2487 registers than the old mode. */
2488 if (regno
< FIRST_PSEUDO_REGISTER
)
2489 return (targetm
.hard_regno_mode_ok (regno
, mode
)
2490 && REG_NREGS (x
) >= hard_regno_nregs (regno
, mode
));
2492 /* Or a pseudo that is only used once. */
2493 return (regno
< reg_n_sets_max
2494 && REG_N_SETS (regno
) == 1
2496 && !REG_USERVAR_P (x
));
2500 /* Check whether X, the destination of a set, refers to part of
2501 the register specified by REG. */
2504 reg_subword_p (rtx x
, rtx reg
)
2506 /* Check that reg is an integer mode register. */
2507 if (!REG_P (reg
) || GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
2510 if (GET_CODE (x
) == STRICT_LOW_PART
2511 || GET_CODE (x
) == ZERO_EXTRACT
)
2514 return GET_CODE (x
) == SUBREG
2515 && SUBREG_REG (x
) == reg
2516 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
;
2519 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2520 Note that the INSN should be deleted *after* removing dead edges, so
2521 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2522 but not for a (set (pc) (label_ref FOO)). */
2525 update_cfg_for_uncondjump (rtx_insn
*insn
)
2527 basic_block bb
= BLOCK_FOR_INSN (insn
);
2528 gcc_assert (BB_END (bb
) == insn
);
2530 purge_dead_edges (bb
);
2533 if (EDGE_COUNT (bb
->succs
) == 1)
2537 single_succ_edge (bb
)->flags
|= EDGE_FALLTHRU
;
2539 /* Remove barriers from the footer if there are any. */
2540 for (insn
= BB_FOOTER (bb
); insn
; insn
= NEXT_INSN (insn
))
2541 if (BARRIER_P (insn
))
2543 if (PREV_INSN (insn
))
2544 SET_NEXT_INSN (PREV_INSN (insn
)) = NEXT_INSN (insn
);
2546 BB_FOOTER (bb
) = NEXT_INSN (insn
);
2547 if (NEXT_INSN (insn
))
2548 SET_PREV_INSN (NEXT_INSN (insn
)) = PREV_INSN (insn
);
2550 else if (LABEL_P (insn
))
2555 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2556 by an arbitrary number of CLOBBERs. */
2558 is_parallel_of_n_reg_sets (rtx pat
, int n
)
2560 if (GET_CODE (pat
) != PARALLEL
)
2563 int len
= XVECLEN (pat
, 0);
2568 for (i
= 0; i
< n
; i
++)
2569 if (GET_CODE (XVECEXP (pat
, 0, i
)) != SET
2570 || !REG_P (SET_DEST (XVECEXP (pat
, 0, i
))))
2572 for ( ; i
< len
; i
++)
2573 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
2574 || XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
2580 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2581 CLOBBERs), can be split into individual SETs in that order, without
2582 changing semantics. */
2584 can_split_parallel_of_n_reg_sets (rtx_insn
*insn
, int n
)
2586 if (!insn_nothrow_p (insn
))
2589 rtx pat
= PATTERN (insn
);
2592 for (i
= 0; i
< n
; i
++)
2594 if (side_effects_p (SET_SRC (XVECEXP (pat
, 0, i
))))
2597 rtx reg
= SET_DEST (XVECEXP (pat
, 0, i
));
2599 for (j
= i
+ 1; j
< n
; j
++)
2600 if (reg_referenced_p (reg
, XVECEXP (pat
, 0, j
)))
2607 /* Try to combine the insns I0, I1 and I2 into I3.
2608 Here I0, I1 and I2 appear earlier than I3.
2609 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2612 If we are combining more than two insns and the resulting insn is not
2613 recognized, try splitting it into two insns. If that happens, I2 and I3
2614 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2615 Otherwise, I0, I1 and I2 are pseudo-deleted.
2617 Return 0 if the combination does not work. Then nothing is changed.
2618 If we did the combination, return the insn at which combine should
2621 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2622 new direct jump instruction.
2624 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2625 been I3 passed to an earlier try_combine within the same basic
2629 try_combine (rtx_insn
*i3
, rtx_insn
*i2
, rtx_insn
*i1
, rtx_insn
*i0
,
2630 int *new_direct_jump_p
, rtx_insn
*last_combined_insn
)
2632 /* New patterns for I3 and I2, respectively. */
2633 rtx newpat
, newi2pat
= 0;
2634 rtvec newpat_vec_with_clobbers
= 0;
2635 int substed_i2
= 0, substed_i1
= 0, substed_i0
= 0;
2636 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2638 int added_sets_0
, added_sets_1
, added_sets_2
;
2639 /* Total number of SETs to put into I3. */
2641 /* Nonzero if I2's or I1's body now appears in I3. */
2642 int i2_is_used
= 0, i1_is_used
= 0;
2643 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2644 int insn_code_number
, i2_code_number
= 0, other_code_number
= 0;
2645 /* Contains I3 if the destination of I3 is used in its source, which means
2646 that the old life of I3 is being killed. If that usage is placed into
2647 I2 and not in I3, a REG_DEAD note must be made. */
2648 rtx i3dest_killed
= 0;
2649 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2650 rtx i2dest
= 0, i2src
= 0, i1dest
= 0, i1src
= 0, i0dest
= 0, i0src
= 0;
2651 /* Copy of SET_SRC of I1 and I0, if needed. */
2652 rtx i1src_copy
= 0, i0src_copy
= 0, i0src_copy2
= 0;
2653 /* Set if I2DEST was reused as a scratch register. */
2654 bool i2scratch
= false;
2655 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2656 rtx i0pat
= 0, i1pat
= 0, i2pat
= 0;
2657 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2658 int i2dest_in_i2src
= 0, i1dest_in_i1src
= 0, i2dest_in_i1src
= 0;
2659 int i0dest_in_i0src
= 0, i1dest_in_i0src
= 0, i2dest_in_i0src
= 0;
2660 int i2dest_killed
= 0, i1dest_killed
= 0, i0dest_killed
= 0;
2661 int i1_feeds_i2_n
= 0, i0_feeds_i2_n
= 0, i0_feeds_i1_n
= 0;
2662 /* Notes that must be added to REG_NOTES in I3 and I2. */
2663 rtx new_i3_notes
, new_i2_notes
;
2664 /* Notes that we substituted I3 into I2 instead of the normal case. */
2665 int i3_subst_into_i2
= 0;
2666 /* Notes that I1, I2 or I3 is a MULT operation. */
2670 int changed_i3_dest
= 0;
2673 rtx_insn
*temp_insn
;
2675 struct insn_link
*link
;
2677 rtx new_other_notes
;
2679 scalar_int_mode dest_mode
, temp_mode
;
2681 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2683 if (i1
== i2
|| i0
== i2
|| (i0
&& i0
== i1
))
2686 /* Only try four-insn combinations when there's high likelihood of
2687 success. Look for simple insns, such as loads of constants or
2688 binary operations involving a constant. */
2696 if (!flag_expensive_optimizations
)
2699 for (i
= 0; i
< 4; i
++)
2701 rtx_insn
*insn
= i
== 0 ? i0
: i
== 1 ? i1
: i
== 2 ? i2
: i3
;
2702 rtx set
= single_set (insn
);
2706 src
= SET_SRC (set
);
2707 if (CONSTANT_P (src
))
2712 else if (BINARY_P (src
) && CONSTANT_P (XEXP (src
, 1)))
2714 else if (GET_CODE (src
) == ASHIFT
|| GET_CODE (src
) == ASHIFTRT
2715 || GET_CODE (src
) == LSHIFTRT
)
2719 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2720 are likely manipulating its value. Ideally we'll be able to combine
2721 all four insns into a bitfield insertion of some kind.
2723 Note the source in I0 might be inside a sign/zero extension and the
2724 memory modes in I0 and I3 might be different. So extract the address
2725 from the destination of I3 and search for it in the source of I0.
2727 In the event that there's a match but the source/dest do not actually
2728 refer to the same memory, the worst that happens is we try some
2729 combinations that we wouldn't have otherwise. */
2730 if ((set0
= single_set (i0
))
2731 /* Ensure the source of SET0 is a MEM, possibly buried inside
2733 && (GET_CODE (SET_SRC (set0
)) == MEM
2734 || ((GET_CODE (SET_SRC (set0
)) == ZERO_EXTEND
2735 || GET_CODE (SET_SRC (set0
)) == SIGN_EXTEND
)
2736 && GET_CODE (XEXP (SET_SRC (set0
), 0)) == MEM
))
2737 && (set3
= single_set (i3
))
2738 /* Ensure the destination of SET3 is a MEM. */
2739 && GET_CODE (SET_DEST (set3
)) == MEM
2740 /* Would it be better to extract the base address for the MEM
2741 in SET3 and look for that? I don't have cases where it matters
2742 but I could envision such cases. */
2743 && rtx_referenced_p (XEXP (SET_DEST (set3
), 0), SET_SRC (set0
)))
2746 if (ngood
< 2 && nshift
< 2)
2750 /* Exit early if one of the insns involved can't be used for
2753 || (i1
&& CALL_P (i1
))
2754 || (i0
&& CALL_P (i0
))
2755 || cant_combine_insn_p (i3
)
2756 || cant_combine_insn_p (i2
)
2757 || (i1
&& cant_combine_insn_p (i1
))
2758 || (i0
&& cant_combine_insn_p (i0
))
2759 || likely_spilled_retval_p (i3
))
2763 undobuf
.other_insn
= 0;
2765 /* Reset the hard register usage information. */
2766 CLEAR_HARD_REG_SET (newpat_used_regs
);
2768 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2771 fprintf (dump_file
, "\nTrying %d, %d, %d -> %d:\n",
2772 INSN_UID (i0
), INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2774 fprintf (dump_file
, "\nTrying %d, %d -> %d:\n",
2775 INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2777 fprintf (dump_file
, "\nTrying %d -> %d:\n",
2778 INSN_UID (i2
), INSN_UID (i3
));
2781 dump_insn_slim (dump_file
, i0
);
2783 dump_insn_slim (dump_file
, i1
);
2784 dump_insn_slim (dump_file
, i2
);
2785 dump_insn_slim (dump_file
, i3
);
2788 /* If multiple insns feed into one of I2 or I3, they can be in any
2789 order. To simplify the code below, reorder them in sequence. */
2790 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i2
))
2792 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i1
))
2794 if (i1
&& DF_INSN_LUID (i1
) > DF_INSN_LUID (i2
))
2797 added_links_insn
= 0;
2798 added_notes_insn
= 0;
2800 /* First check for one important special case that the code below will
2801 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2802 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2803 we may be able to replace that destination with the destination of I3.
2804 This occurs in the common code where we compute both a quotient and
2805 remainder into a structure, in which case we want to do the computation
2806 directly into the structure to avoid register-register copies.
2808 Note that this case handles both multiple sets in I2 and also cases
2809 where I2 has a number of CLOBBERs inside the PARALLEL.
2811 We make very conservative checks below and only try to handle the
2812 most common cases of this. For example, we only handle the case
2813 where I2 and I3 are adjacent to avoid making difficult register
2816 if (i1
== 0 && NONJUMP_INSN_P (i3
) && GET_CODE (PATTERN (i3
)) == SET
2817 && REG_P (SET_SRC (PATTERN (i3
)))
2818 && REGNO (SET_SRC (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
2819 && find_reg_note (i3
, REG_DEAD
, SET_SRC (PATTERN (i3
)))
2820 && GET_CODE (PATTERN (i2
)) == PARALLEL
2821 && ! side_effects_p (SET_DEST (PATTERN (i3
)))
2822 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2823 below would need to check what is inside (and reg_overlap_mentioned_p
2824 doesn't support those codes anyway). Don't allow those destinations;
2825 the resulting insn isn't likely to be recognized anyway. */
2826 && GET_CODE (SET_DEST (PATTERN (i3
))) != ZERO_EXTRACT
2827 && GET_CODE (SET_DEST (PATTERN (i3
))) != STRICT_LOW_PART
2828 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3
)),
2829 SET_DEST (PATTERN (i3
)))
2830 && next_active_insn (i2
) == i3
)
2832 rtx p2
= PATTERN (i2
);
2834 /* Make sure that the destination of I3,
2835 which we are going to substitute into one output of I2,
2836 is not used within another output of I2. We must avoid making this:
2837 (parallel [(set (mem (reg 69)) ...)
2838 (set (reg 69) ...)])
2839 which is not well-defined as to order of actions.
2840 (Besides, reload can't handle output reloads for this.)
2842 The problem can also happen if the dest of I3 is a memory ref,
2843 if another dest in I2 is an indirect memory ref.
2845 Neither can this PARALLEL be an asm. We do not allow combining
2846 that usually (see can_combine_p), so do not here either. */
2848 for (i
= 0; ok
&& i
< XVECLEN (p2
, 0); i
++)
2850 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2851 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
2852 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3
)),
2853 SET_DEST (XVECEXP (p2
, 0, i
))))
2855 else if (GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2856 && GET_CODE (SET_SRC (XVECEXP (p2
, 0, i
))) == ASM_OPERANDS
)
2861 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
2862 if (GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2863 && SET_DEST (XVECEXP (p2
, 0, i
)) == SET_SRC (PATTERN (i3
)))
2868 subst_low_luid
= DF_INSN_LUID (i2
);
2870 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2871 i2src
= SET_SRC (XVECEXP (p2
, 0, i
));
2872 i2dest
= SET_DEST (XVECEXP (p2
, 0, i
));
2873 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2875 /* Replace the dest in I2 with our dest and make the resulting
2876 insn the new pattern for I3. Then skip to where we validate
2877 the pattern. Everything was set up above. */
2878 SUBST (SET_DEST (XVECEXP (p2
, 0, i
)), SET_DEST (PATTERN (i3
)));
2880 i3_subst_into_i2
= 1;
2881 goto validate_replacement
;
2885 /* If I2 is setting a pseudo to a constant and I3 is setting some
2886 sub-part of it to another constant, merge them by making a new
2889 && (temp_expr
= single_set (i2
)) != 0
2890 && is_a
<scalar_int_mode
> (GET_MODE (SET_DEST (temp_expr
)), &temp_mode
)
2891 && CONST_SCALAR_INT_P (SET_SRC (temp_expr
))
2892 && GET_CODE (PATTERN (i3
)) == SET
2893 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3
)))
2894 && reg_subword_p (SET_DEST (PATTERN (i3
)), SET_DEST (temp_expr
)))
2896 rtx dest
= SET_DEST (PATTERN (i3
));
2897 rtx temp_dest
= SET_DEST (temp_expr
);
2901 if (GET_CODE (dest
) == ZERO_EXTRACT
)
2903 if (CONST_INT_P (XEXP (dest
, 1))
2904 && CONST_INT_P (XEXP (dest
, 2))
2905 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (dest
, 0)),
2908 width
= INTVAL (XEXP (dest
, 1));
2909 offset
= INTVAL (XEXP (dest
, 2));
2910 dest
= XEXP (dest
, 0);
2911 if (BITS_BIG_ENDIAN
)
2912 offset
= GET_MODE_PRECISION (dest_mode
) - width
- offset
;
2917 if (GET_CODE (dest
) == STRICT_LOW_PART
)
2918 dest
= XEXP (dest
, 0);
2919 if (is_a
<scalar_int_mode
> (GET_MODE (dest
), &dest_mode
))
2921 width
= GET_MODE_PRECISION (dest_mode
);
2928 /* If this is the low part, we're done. */
2929 if (subreg_lowpart_p (dest
))
2931 /* Handle the case where inner is twice the size of outer. */
2932 else if (GET_MODE_PRECISION (temp_mode
)
2933 == 2 * GET_MODE_PRECISION (dest_mode
))
2934 offset
+= GET_MODE_PRECISION (dest_mode
);
2935 /* Otherwise give up for now. */
2942 rtx inner
= SET_SRC (PATTERN (i3
));
2943 rtx outer
= SET_SRC (temp_expr
);
2945 wide_int o
= wi::insert (rtx_mode_t (outer
, temp_mode
),
2946 rtx_mode_t (inner
, dest_mode
),
2951 subst_low_luid
= DF_INSN_LUID (i2
);
2952 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2954 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2956 /* Replace the source in I2 with the new constant and make the
2957 resulting insn the new pattern for I3. Then skip to where we
2958 validate the pattern. Everything was set up above. */
2959 SUBST (SET_SRC (temp_expr
),
2960 immed_wide_int_const (o
, temp_mode
));
2962 newpat
= PATTERN (i2
);
2964 /* The dest of I3 has been replaced with the dest of I2. */
2965 changed_i3_dest
= 1;
2966 goto validate_replacement
;
2970 /* If we have no I1 and I2 looks like:
2971 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2973 make up a dummy I1 that is
2976 (set (reg:CC X) (compare:CC Y (const_int 0)))
2978 (We can ignore any trailing CLOBBERs.)
2980 This undoes a previous combination and allows us to match a branch-and-
2983 if (!HAVE_cc0
&& i1
== 0
2984 && is_parallel_of_n_reg_sets (PATTERN (i2
), 2)
2985 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0))))
2987 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0))) == COMPARE
2988 && XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 1) == const0_rtx
2989 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 0),
2990 SET_SRC (XVECEXP (PATTERN (i2
), 0, 1)))
2991 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0)), i2
, i3
)
2992 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)), i2
, i3
))
2994 /* We make I1 with the same INSN_UID as I2. This gives it
2995 the same DF_INSN_LUID for value tracking. Our fake I1 will
2996 never appear in the insn stream so giving it the same INSN_UID
2997 as I2 will not cause a problem. */
2999 i1
= gen_rtx_INSN (VOIDmode
, NULL
, i2
, BLOCK_FOR_INSN (i2
),
3000 XVECEXP (PATTERN (i2
), 0, 1), INSN_LOCATION (i2
),
3002 INSN_UID (i1
) = INSN_UID (i2
);
3004 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 0));
3005 SUBST (XEXP (SET_SRC (PATTERN (i2
)), 0),
3006 SET_DEST (PATTERN (i1
)));
3007 unsigned int regno
= REGNO (SET_DEST (PATTERN (i1
)));
3008 SUBST_LINK (LOG_LINKS (i2
),
3009 alloc_insn_link (i1
, regno
, LOG_LINKS (i2
)));
3012 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3013 make those two SETs separate I1 and I2 insns, and make an I0 that is
3015 if (!HAVE_cc0
&& i0
== 0
3016 && is_parallel_of_n_reg_sets (PATTERN (i2
), 2)
3017 && can_split_parallel_of_n_reg_sets (i2
, 2)
3018 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0)), i2
, i3
)
3019 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)), i2
, i3
)
3020 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0)), i2
, i3
)
3021 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)), i2
, i3
))
3023 /* If there is no I1, there is no I0 either. */
3026 /* We make I1 with the same INSN_UID as I2. This gives it
3027 the same DF_INSN_LUID for value tracking. Our fake I1 will
3028 never appear in the insn stream so giving it the same INSN_UID
3029 as I2 will not cause a problem. */
3031 i1
= gen_rtx_INSN (VOIDmode
, NULL
, i2
, BLOCK_FOR_INSN (i2
),
3032 XVECEXP (PATTERN (i2
), 0, 0), INSN_LOCATION (i2
),
3034 INSN_UID (i1
) = INSN_UID (i2
);
3036 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 1));
3039 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3040 if (!can_combine_p (i2
, i3
, i0
, i1
, NULL
, NULL
, &i2dest
, &i2src
))
3043 fprintf (dump_file
, "Can't combine i2 into i3\n");
3047 if (i1
&& !can_combine_p (i1
, i3
, i0
, NULL
, i2
, NULL
, &i1dest
, &i1src
))
3050 fprintf (dump_file
, "Can't combine i1 into i3\n");
3054 if (i0
&& !can_combine_p (i0
, i3
, NULL
, NULL
, i1
, i2
, &i0dest
, &i0src
))
3057 fprintf (dump_file
, "Can't combine i0 into i3\n");
3062 /* Record whether I2DEST is used in I2SRC and similarly for the other
3063 cases. Knowing this will help in register status updating below. */
3064 i2dest_in_i2src
= reg_overlap_mentioned_p (i2dest
, i2src
);
3065 i1dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i1dest
, i1src
);
3066 i2dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i2dest
, i1src
);
3067 i0dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i0dest
, i0src
);
3068 i1dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i1dest
, i0src
);
3069 i2dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i2dest
, i0src
);
3070 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
3071 i1dest_killed
= i1
&& dead_or_set_p (i1
, i1dest
);
3072 i0dest_killed
= i0
&& dead_or_set_p (i0
, i0dest
);
3074 /* For the earlier insns, determine which of the subsequent ones they
3076 i1_feeds_i2_n
= i1
&& insn_a_feeds_b (i1
, i2
);
3077 i0_feeds_i1_n
= i0
&& insn_a_feeds_b (i0
, i1
);
3078 i0_feeds_i2_n
= (i0
&& (!i0_feeds_i1_n
? insn_a_feeds_b (i0
, i2
)
3079 : (!reg_overlap_mentioned_p (i1dest
, i0dest
)
3080 && reg_overlap_mentioned_p (i0dest
, i2src
))));
3082 /* Ensure that I3's pattern can be the destination of combines. */
3083 if (! combinable_i3pat (i3
, &PATTERN (i3
), i2dest
, i1dest
, i0dest
,
3084 i1
&& i2dest_in_i1src
&& !i1_feeds_i2_n
,
3085 i0
&& ((i2dest_in_i0src
&& !i0_feeds_i2_n
)
3086 || (i1dest_in_i0src
&& !i0_feeds_i1_n
)),
3093 /* See if any of the insns is a MULT operation. Unless one is, we will
3094 reject a combination that is, since it must be slower. Be conservative
3096 if (GET_CODE (i2src
) == MULT
3097 || (i1
!= 0 && GET_CODE (i1src
) == MULT
)
3098 || (i0
!= 0 && GET_CODE (i0src
) == MULT
)
3099 || (GET_CODE (PATTERN (i3
)) == SET
3100 && GET_CODE (SET_SRC (PATTERN (i3
))) == MULT
))
3103 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3104 We used to do this EXCEPT in one case: I3 has a post-inc in an
3105 output operand. However, that exception can give rise to insns like
3107 which is a famous insn on the PDP-11 where the value of r3 used as the
3108 source was model-dependent. Avoid this sort of thing. */
3111 if (!(GET_CODE (PATTERN (i3
)) == SET
3112 && REG_P (SET_SRC (PATTERN (i3
)))
3113 && MEM_P (SET_DEST (PATTERN (i3
)))
3114 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_INC
3115 || GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_DEC
)))
3116 /* It's not the exception. */
3121 for (link
= REG_NOTES (i3
); link
; link
= XEXP (link
, 1))
3122 if (REG_NOTE_KIND (link
) == REG_INC
3123 && (reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i2
))
3125 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i1
)))))
3132 /* See if the SETs in I1 or I2 need to be kept around in the merged
3133 instruction: whenever the value set there is still needed past I3.
3134 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3136 For the SET in I1, we have two cases: if I1 and I2 independently feed
3137 into I3, the set in I1 needs to be kept around unless I1DEST dies
3138 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3139 in I1 needs to be kept around unless I1DEST dies or is set in either
3140 I2 or I3. The same considerations apply to I0. */
3142 added_sets_2
= !dead_or_set_p (i3
, i2dest
);
3145 added_sets_1
= !(dead_or_set_p (i3
, i1dest
)
3146 || (i1_feeds_i2_n
&& dead_or_set_p (i2
, i1dest
)));
3151 added_sets_0
= !(dead_or_set_p (i3
, i0dest
)
3152 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
))
3153 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
3154 && dead_or_set_p (i2
, i0dest
)));
3158 /* We are about to copy insns for the case where they need to be kept
3159 around. Check that they can be copied in the merged instruction. */
3161 if (targetm
.cannot_copy_insn_p
3162 && ((added_sets_2
&& targetm
.cannot_copy_insn_p (i2
))
3163 || (i1
&& added_sets_1
&& targetm
.cannot_copy_insn_p (i1
))
3164 || (i0
&& added_sets_0
&& targetm
.cannot_copy_insn_p (i0
))))
3170 /* If the set in I2 needs to be kept around, we must make a copy of
3171 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3172 PATTERN (I2), we are only substituting for the original I1DEST, not into
3173 an already-substituted copy. This also prevents making self-referential
3174 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3179 if (GET_CODE (PATTERN (i2
)) == PARALLEL
)
3180 i2pat
= gen_rtx_SET (i2dest
, copy_rtx (i2src
));
3182 i2pat
= copy_rtx (PATTERN (i2
));
3187 if (GET_CODE (PATTERN (i1
)) == PARALLEL
)
3188 i1pat
= gen_rtx_SET (i1dest
, copy_rtx (i1src
));
3190 i1pat
= copy_rtx (PATTERN (i1
));
3195 if (GET_CODE (PATTERN (i0
)) == PARALLEL
)
3196 i0pat
= gen_rtx_SET (i0dest
, copy_rtx (i0src
));
3198 i0pat
= copy_rtx (PATTERN (i0
));
3203 /* Substitute in the latest insn for the regs set by the earlier ones. */
3205 maxreg
= max_reg_num ();
3209 /* Many machines that don't use CC0 have insns that can both perform an
3210 arithmetic operation and set the condition code. These operations will
3211 be represented as a PARALLEL with the first element of the vector
3212 being a COMPARE of an arithmetic operation with the constant zero.
3213 The second element of the vector will set some pseudo to the result
3214 of the same arithmetic operation. If we simplify the COMPARE, we won't
3215 match such a pattern and so will generate an extra insn. Here we test
3216 for this case, where both the comparison and the operation result are
3217 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3218 I2SRC. Later we will make the PARALLEL that contains I2. */
3220 if (!HAVE_cc0
&& i1
== 0 && added_sets_2
&& GET_CODE (PATTERN (i3
)) == SET
3221 && GET_CODE (SET_SRC (PATTERN (i3
))) == COMPARE
3222 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3
)), 1))
3223 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3
)), 0), i2dest
))
3226 rtx
*cc_use_loc
= NULL
;
3227 rtx_insn
*cc_use_insn
= NULL
;
3228 rtx op0
= i2src
, op1
= XEXP (SET_SRC (PATTERN (i3
)), 1);
3229 machine_mode compare_mode
, orig_compare_mode
;
3230 enum rtx_code compare_code
= UNKNOWN
, orig_compare_code
= UNKNOWN
;
3231 scalar_int_mode mode
;
3233 newpat
= PATTERN (i3
);
3234 newpat_dest
= SET_DEST (newpat
);
3235 compare_mode
= orig_compare_mode
= GET_MODE (newpat_dest
);
3237 if (undobuf
.other_insn
== 0
3238 && (cc_use_loc
= find_single_use (SET_DEST (newpat
), i3
,
3241 compare_code
= orig_compare_code
= GET_CODE (*cc_use_loc
);
3242 if (is_a
<scalar_int_mode
> (GET_MODE (i2dest
), &mode
))
3243 compare_code
= simplify_compare_const (compare_code
, mode
,
3245 target_canonicalize_comparison (&compare_code
, &op0
, &op1
, 1);
3248 /* Do the rest only if op1 is const0_rtx, which may be the
3249 result of simplification. */
3250 if (op1
== const0_rtx
)
3252 /* If a single use of the CC is found, prepare to modify it
3253 when SELECT_CC_MODE returns a new CC-class mode, or when
3254 the above simplify_compare_const() returned a new comparison
3255 operator. undobuf.other_insn is assigned the CC use insn
3256 when modifying it. */
3259 #ifdef SELECT_CC_MODE
3260 machine_mode new_mode
3261 = SELECT_CC_MODE (compare_code
, op0
, op1
);
3262 if (new_mode
!= orig_compare_mode
3263 && can_change_dest_mode (SET_DEST (newpat
),
3264 added_sets_2
, new_mode
))
3266 unsigned int regno
= REGNO (newpat_dest
);
3267 compare_mode
= new_mode
;
3268 if (regno
< FIRST_PSEUDO_REGISTER
)
3269 newpat_dest
= gen_rtx_REG (compare_mode
, regno
);
3272 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
3273 newpat_dest
= regno_reg_rtx
[regno
];
3277 /* Cases for modifying the CC-using comparison. */
3278 if (compare_code
!= orig_compare_code
3279 /* ??? Do we need to verify the zero rtx? */
3280 && XEXP (*cc_use_loc
, 1) == const0_rtx
)
3282 /* Replace cc_use_loc with entire new RTX. */
3284 gen_rtx_fmt_ee (compare_code
, compare_mode
,
3285 newpat_dest
, const0_rtx
));
3286 undobuf
.other_insn
= cc_use_insn
;
3288 else if (compare_mode
!= orig_compare_mode
)
3290 /* Just replace the CC reg with a new mode. */
3291 SUBST (XEXP (*cc_use_loc
, 0), newpat_dest
);
3292 undobuf
.other_insn
= cc_use_insn
;
3296 /* Now we modify the current newpat:
3297 First, SET_DEST(newpat) is updated if the CC mode has been
3298 altered. For targets without SELECT_CC_MODE, this should be
3300 if (compare_mode
!= orig_compare_mode
)
3301 SUBST (SET_DEST (newpat
), newpat_dest
);
3302 /* This is always done to propagate i2src into newpat. */
3303 SUBST (SET_SRC (newpat
),
3304 gen_rtx_COMPARE (compare_mode
, op0
, op1
));
3305 /* Create new version of i2pat if needed; the below PARALLEL
3306 creation needs this to work correctly. */
3307 if (! rtx_equal_p (i2src
, op0
))
3308 i2pat
= gen_rtx_SET (i2dest
, op0
);
3313 if (i2_is_used
== 0)
3315 /* It is possible that the source of I2 or I1 may be performing
3316 an unneeded operation, such as a ZERO_EXTEND of something
3317 that is known to have the high part zero. Handle that case
3318 by letting subst look at the inner insns.
3320 Another way to do this would be to have a function that tries
3321 to simplify a single insn instead of merging two or more
3322 insns. We don't do this because of the potential of infinite
3323 loops and because of the potential extra memory required.
3324 However, doing it the way we are is a bit of a kludge and
3325 doesn't catch all cases.
3327 But only do this if -fexpensive-optimizations since it slows
3328 things down and doesn't usually win.
3330 This is not done in the COMPARE case above because the
3331 unmodified I2PAT is used in the PARALLEL and so a pattern
3332 with a modified I2SRC would not match. */
3334 if (flag_expensive_optimizations
)
3336 /* Pass pc_rtx so no substitutions are done, just
3340 subst_low_luid
= DF_INSN_LUID (i1
);
3341 i1src
= subst (i1src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3344 subst_low_luid
= DF_INSN_LUID (i2
);
3345 i2src
= subst (i2src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3348 n_occurrences
= 0; /* `subst' counts here */
3349 subst_low_luid
= DF_INSN_LUID (i2
);
3351 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3352 copy of I2SRC each time we substitute it, in order to avoid creating
3353 self-referential RTL when we will be substituting I1SRC for I1DEST
3354 later. Likewise if I0 feeds into I2, either directly or indirectly
3355 through I1, and I0DEST is in I0SRC. */
3356 newpat
= subst (PATTERN (i3
), i2dest
, i2src
, 0, 0,
3357 (i1_feeds_i2_n
&& i1dest_in_i1src
)
3358 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
3359 && i0dest_in_i0src
));
3362 /* Record whether I2's body now appears within I3's body. */
3363 i2_is_used
= n_occurrences
;
3366 /* If we already got a failure, don't try to do more. Otherwise, try to
3367 substitute I1 if we have it. */
3369 if (i1
&& GET_CODE (newpat
) != CLOBBER
)
3371 /* Check that an autoincrement side-effect on I1 has not been lost.
3372 This happens if I1DEST is mentioned in I2 and dies there, and
3373 has disappeared from the new pattern. */
3374 if ((FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3376 && dead_or_set_p (i2
, i1dest
)
3377 && !reg_overlap_mentioned_p (i1dest
, newpat
))
3378 /* Before we can do this substitution, we must redo the test done
3379 above (see detailed comments there) that ensures I1DEST isn't
3380 mentioned in any SETs in NEWPAT that are field assignments. */
3381 || !combinable_i3pat (NULL
, &newpat
, i1dest
, NULL_RTX
, NULL_RTX
,
3389 subst_low_luid
= DF_INSN_LUID (i1
);
3391 /* If the following substitution will modify I1SRC, make a copy of it
3392 for the case where it is substituted for I1DEST in I2PAT later. */
3393 if (added_sets_2
&& i1_feeds_i2_n
)
3394 i1src_copy
= copy_rtx (i1src
);
3396 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3397 copy of I1SRC each time we substitute it, in order to avoid creating
3398 self-referential RTL when we will be substituting I0SRC for I0DEST
3400 newpat
= subst (newpat
, i1dest
, i1src
, 0, 0,
3401 i0_feeds_i1_n
&& i0dest_in_i0src
);
3404 /* Record whether I1's body now appears within I3's body. */
3405 i1_is_used
= n_occurrences
;
3408 /* Likewise for I0 if we have it. */
3410 if (i0
&& GET_CODE (newpat
) != CLOBBER
)
3412 if ((FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3413 && ((i0_feeds_i2_n
&& dead_or_set_p (i2
, i0dest
))
3414 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
)))
3415 && !reg_overlap_mentioned_p (i0dest
, newpat
))
3416 || !combinable_i3pat (NULL
, &newpat
, i0dest
, NULL_RTX
, NULL_RTX
,
3423 /* If the following substitution will modify I0SRC, make a copy of it
3424 for the case where it is substituted for I0DEST in I1PAT later. */
3425 if (added_sets_1
&& i0_feeds_i1_n
)
3426 i0src_copy
= copy_rtx (i0src
);
3427 /* And a copy for I0DEST in I2PAT substitution. */
3428 if (added_sets_2
&& ((i0_feeds_i1_n
&& i1_feeds_i2_n
)
3429 || (i0_feeds_i2_n
)))
3430 i0src_copy2
= copy_rtx (i0src
);
3433 subst_low_luid
= DF_INSN_LUID (i0
);
3434 newpat
= subst (newpat
, i0dest
, i0src
, 0, 0, 0);
3438 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3439 to count all the ways that I2SRC and I1SRC can be used. */
3440 if ((FIND_REG_INC_NOTE (i2
, NULL_RTX
) != 0
3441 && i2_is_used
+ added_sets_2
> 1)
3442 || (i1
!= 0 && FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3443 && (i1_is_used
+ added_sets_1
+ (added_sets_2
&& i1_feeds_i2_n
)
3445 || (i0
!= 0 && FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3446 && (n_occurrences
+ added_sets_0
3447 + (added_sets_1
&& i0_feeds_i1_n
)
3448 + (added_sets_2
&& i0_feeds_i2_n
)
3450 /* Fail if we tried to make a new register. */
3451 || max_reg_num () != maxreg
3452 /* Fail if we couldn't do something and have a CLOBBER. */
3453 || GET_CODE (newpat
) == CLOBBER
3454 /* Fail if this new pattern is a MULT and we didn't have one before
3455 at the outer level. */
3456 || (GET_CODE (newpat
) == SET
&& GET_CODE (SET_SRC (newpat
)) == MULT
3463 /* If the actions of the earlier insns must be kept
3464 in addition to substituting them into the latest one,
3465 we must make a new PARALLEL for the latest insn
3466 to hold additional the SETs. */
3468 if (added_sets_0
|| added_sets_1
|| added_sets_2
)
3470 int extra_sets
= added_sets_0
+ added_sets_1
+ added_sets_2
;
3473 if (GET_CODE (newpat
) == PARALLEL
)
3475 rtvec old
= XVEC (newpat
, 0);
3476 total_sets
= XVECLEN (newpat
, 0) + extra_sets
;
3477 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3478 memcpy (XVEC (newpat
, 0)->elem
, &old
->elem
[0],
3479 sizeof (old
->elem
[0]) * old
->num_elem
);
3484 total_sets
= 1 + extra_sets
;
3485 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3486 XVECEXP (newpat
, 0, 0) = old
;
3490 XVECEXP (newpat
, 0, --total_sets
) = i0pat
;
3496 t
= subst (t
, i0dest
, i0src_copy
? i0src_copy
: i0src
, 0, 0, 0);
3498 XVECEXP (newpat
, 0, --total_sets
) = t
;
3504 t
= subst (t
, i1dest
, i1src_copy
? i1src_copy
: i1src
, 0, 0,
3505 i0_feeds_i1_n
&& i0dest_in_i0src
);
3506 if ((i0_feeds_i1_n
&& i1_feeds_i2_n
) || i0_feeds_i2_n
)
3507 t
= subst (t
, i0dest
, i0src_copy2
? i0src_copy2
: i0src
, 0, 0, 0);
3509 XVECEXP (newpat
, 0, --total_sets
) = t
;
3513 validate_replacement
:
3515 /* Note which hard regs this insn has as inputs. */
3516 mark_used_regs_combine (newpat
);
3518 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3519 consider splitting this pattern, we might need these clobbers. */
3520 if (i1
&& GET_CODE (newpat
) == PARALLEL
3521 && GET_CODE (XVECEXP (newpat
, 0, XVECLEN (newpat
, 0) - 1)) == CLOBBER
)
3523 int len
= XVECLEN (newpat
, 0);
3525 newpat_vec_with_clobbers
= rtvec_alloc (len
);
3526 for (i
= 0; i
< len
; i
++)
3527 RTVEC_ELT (newpat_vec_with_clobbers
, i
) = XVECEXP (newpat
, 0, i
);
3530 /* We have recognized nothing yet. */
3531 insn_code_number
= -1;
3533 /* See if this is a PARALLEL of two SETs where one SET's destination is
3534 a register that is unused and this isn't marked as an instruction that
3535 might trap in an EH region. In that case, we just need the other SET.
3536 We prefer this over the PARALLEL.
3538 This can occur when simplifying a divmod insn. We *must* test for this
3539 case here because the code below that splits two independent SETs doesn't
3540 handle this case correctly when it updates the register status.
3542 It's pointless doing this if we originally had two sets, one from
3543 i3, and one from i2. Combining then splitting the parallel results
3544 in the original i2 again plus an invalid insn (which we delete).
3545 The net effect is only to move instructions around, which makes
3546 debug info less accurate.
3548 If the remaining SET came from I2 its destination should not be used
3549 between I2 and I3. See PR82024. */
3551 if (!(added_sets_2
&& i1
== 0)
3552 && is_parallel_of_n_reg_sets (newpat
, 2)
3553 && asm_noperands (newpat
) < 0)
3555 rtx set0
= XVECEXP (newpat
, 0, 0);
3556 rtx set1
= XVECEXP (newpat
, 0, 1);
3557 rtx oldpat
= newpat
;
3559 if (((REG_P (SET_DEST (set1
))
3560 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set1
)))
3561 || (GET_CODE (SET_DEST (set1
)) == SUBREG
3562 && find_reg_note (i3
, REG_UNUSED
, SUBREG_REG (SET_DEST (set1
)))))
3563 && insn_nothrow_p (i3
)
3564 && !side_effects_p (SET_SRC (set1
)))
3567 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3570 else if (((REG_P (SET_DEST (set0
))
3571 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set0
)))
3572 || (GET_CODE (SET_DEST (set0
)) == SUBREG
3573 && find_reg_note (i3
, REG_UNUSED
,
3574 SUBREG_REG (SET_DEST (set0
)))))
3575 && insn_nothrow_p (i3
)
3576 && !side_effects_p (SET_SRC (set0
)))
3578 rtx dest
= SET_DEST (set1
);
3579 if (GET_CODE (dest
) == SUBREG
)
3580 dest
= SUBREG_REG (dest
);
3581 if (!reg_used_between_p (dest
, i2
, i3
))
3584 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3586 if (insn_code_number
>= 0)
3587 changed_i3_dest
= 1;
3591 if (insn_code_number
< 0)
3595 /* Is the result of combination a valid instruction? */
3596 if (insn_code_number
< 0)
3597 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3599 /* If we were combining three insns and the result is a simple SET
3600 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3601 insns. There are two ways to do this. It can be split using a
3602 machine-specific method (like when you have an addition of a large
3603 constant) or by combine in the function find_split_point. */
3605 if (i1
&& insn_code_number
< 0 && GET_CODE (newpat
) == SET
3606 && asm_noperands (newpat
) < 0)
3608 rtx parallel
, *split
;
3609 rtx_insn
*m_split_insn
;
3611 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3612 use I2DEST as a scratch register will help. In the latter case,
3613 convert I2DEST to the mode of the source of NEWPAT if we can. */
3615 m_split_insn
= combine_split_insns (newpat
, i3
);
3617 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3618 inputs of NEWPAT. */
3620 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3621 possible to try that as a scratch reg. This would require adding
3622 more code to make it work though. */
3624 if (m_split_insn
== 0 && ! reg_overlap_mentioned_p (i2dest
, newpat
))
3626 machine_mode new_mode
= GET_MODE (SET_DEST (newpat
));
3628 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3629 (temporarily, until we are committed to this instruction
3630 combination) does not work: for example, any call to nonzero_bits
3631 on the register (from a splitter in the MD file, for example)
3632 will get the old information, which is invalid.
3634 Since nowadays we can create registers during combine just fine,
3635 we should just create a new one here, not reuse i2dest. */
3637 /* First try to split using the original register as a
3638 scratch register. */
3639 parallel
= gen_rtx_PARALLEL (VOIDmode
,
3640 gen_rtvec (2, newpat
,
3641 gen_rtx_CLOBBER (VOIDmode
,
3643 m_split_insn
= combine_split_insns (parallel
, i3
);
3645 /* If that didn't work, try changing the mode of I2DEST if
3647 if (m_split_insn
== 0
3648 && new_mode
!= GET_MODE (i2dest
)
3649 && new_mode
!= VOIDmode
3650 && can_change_dest_mode (i2dest
, added_sets_2
, new_mode
))
3652 machine_mode old_mode
= GET_MODE (i2dest
);
3655 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3656 ni2dest
= gen_rtx_REG (new_mode
, REGNO (i2dest
));
3659 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], new_mode
);
3660 ni2dest
= regno_reg_rtx
[REGNO (i2dest
)];
3663 parallel
= (gen_rtx_PARALLEL
3665 gen_rtvec (2, newpat
,
3666 gen_rtx_CLOBBER (VOIDmode
,
3668 m_split_insn
= combine_split_insns (parallel
, i3
);
3670 if (m_split_insn
== 0
3671 && REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
3675 adjust_reg_mode (regno_reg_rtx
[REGNO (i2dest
)], old_mode
);
3676 buf
= undobuf
.undos
;
3677 undobuf
.undos
= buf
->next
;
3678 buf
->next
= undobuf
.frees
;
3679 undobuf
.frees
= buf
;
3683 i2scratch
= m_split_insn
!= 0;
3686 /* If recog_for_combine has discarded clobbers, try to use them
3687 again for the split. */
3688 if (m_split_insn
== 0 && newpat_vec_with_clobbers
)
3690 parallel
= gen_rtx_PARALLEL (VOIDmode
, newpat_vec_with_clobbers
);
3691 m_split_insn
= combine_split_insns (parallel
, i3
);
3694 if (m_split_insn
&& NEXT_INSN (m_split_insn
) == NULL_RTX
)
3696 rtx m_split_pat
= PATTERN (m_split_insn
);
3697 insn_code_number
= recog_for_combine (&m_split_pat
, i3
, &new_i3_notes
);
3698 if (insn_code_number
>= 0)
3699 newpat
= m_split_pat
;
3701 else if (m_split_insn
&& NEXT_INSN (NEXT_INSN (m_split_insn
)) == NULL_RTX
3702 && (next_nonnote_nondebug_insn (i2
) == i3
3703 || !modified_between_p (PATTERN (m_split_insn
), i2
, i3
)))
3706 rtx newi3pat
= PATTERN (NEXT_INSN (m_split_insn
));
3707 newi2pat
= PATTERN (m_split_insn
);
3709 i3set
= single_set (NEXT_INSN (m_split_insn
));
3710 i2set
= single_set (m_split_insn
);
3712 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3714 /* If I2 or I3 has multiple SETs, we won't know how to track
3715 register status, so don't use these insns. If I2's destination
3716 is used between I2 and I3, we also can't use these insns. */
3718 if (i2_code_number
>= 0 && i2set
&& i3set
3719 && (next_nonnote_nondebug_insn (i2
) == i3
3720 || ! reg_used_between_p (SET_DEST (i2set
), i2
, i3
)))
3721 insn_code_number
= recog_for_combine (&newi3pat
, i3
,
3723 if (insn_code_number
>= 0)
3726 /* It is possible that both insns now set the destination of I3.
3727 If so, we must show an extra use of it. */
3729 if (insn_code_number
>= 0)
3731 rtx new_i3_dest
= SET_DEST (i3set
);
3732 rtx new_i2_dest
= SET_DEST (i2set
);
3734 while (GET_CODE (new_i3_dest
) == ZERO_EXTRACT
3735 || GET_CODE (new_i3_dest
) == STRICT_LOW_PART
3736 || GET_CODE (new_i3_dest
) == SUBREG
)
3737 new_i3_dest
= XEXP (new_i3_dest
, 0);
3739 while (GET_CODE (new_i2_dest
) == ZERO_EXTRACT
3740 || GET_CODE (new_i2_dest
) == STRICT_LOW_PART
3741 || GET_CODE (new_i2_dest
) == SUBREG
)
3742 new_i2_dest
= XEXP (new_i2_dest
, 0);
3744 if (REG_P (new_i3_dest
)
3745 && REG_P (new_i2_dest
)
3746 && REGNO (new_i3_dest
) == REGNO (new_i2_dest
)
3747 && REGNO (new_i2_dest
) < reg_n_sets_max
)
3748 INC_REG_N_SETS (REGNO (new_i2_dest
), 1);
3752 /* If we can split it and use I2DEST, go ahead and see if that
3753 helps things be recognized. Verify that none of the registers
3754 are set between I2 and I3. */
3755 if (insn_code_number
< 0
3756 && (split
= find_split_point (&newpat
, i3
, false)) != 0
3757 && (!HAVE_cc0
|| REG_P (i2dest
))
3758 /* We need I2DEST in the proper mode. If it is a hard register
3759 or the only use of a pseudo, we can change its mode.
3760 Make sure we don't change a hard register to have a mode that
3761 isn't valid for it, or change the number of registers. */
3762 && (GET_MODE (*split
) == GET_MODE (i2dest
)
3763 || GET_MODE (*split
) == VOIDmode
3764 || can_change_dest_mode (i2dest
, added_sets_2
,
3766 && (next_nonnote_nondebug_insn (i2
) == i3
3767 || !modified_between_p (*split
, i2
, i3
))
3768 /* We can't overwrite I2DEST if its value is still used by
3770 && ! reg_referenced_p (i2dest
, newpat
))
3772 rtx newdest
= i2dest
;
3773 enum rtx_code split_code
= GET_CODE (*split
);
3774 machine_mode split_mode
= GET_MODE (*split
);
3775 bool subst_done
= false;
3776 newi2pat
= NULL_RTX
;
3780 /* *SPLIT may be part of I2SRC, so make sure we have the
3781 original expression around for later debug processing.
3782 We should not need I2SRC any more in other cases. */
3783 if (MAY_HAVE_DEBUG_BIND_INSNS
)
3784 i2src
= copy_rtx (i2src
);
3788 /* Get NEWDEST as a register in the proper mode. We have already
3789 validated that we can do this. */
3790 if (GET_MODE (i2dest
) != split_mode
&& split_mode
!= VOIDmode
)
3792 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3793 newdest
= gen_rtx_REG (split_mode
, REGNO (i2dest
));
3796 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], split_mode
);
3797 newdest
= regno_reg_rtx
[REGNO (i2dest
)];
3801 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3802 an ASHIFT. This can occur if it was inside a PLUS and hence
3803 appeared to be a memory address. This is a kludge. */
3804 if (split_code
== MULT
3805 && CONST_INT_P (XEXP (*split
, 1))
3806 && INTVAL (XEXP (*split
, 1)) > 0
3807 && (i
= exact_log2 (UINTVAL (XEXP (*split
, 1)))) >= 0)
3809 rtx i_rtx
= gen_int_shift_amount (split_mode
, i
);
3810 SUBST (*split
, gen_rtx_ASHIFT (split_mode
,
3811 XEXP (*split
, 0), i_rtx
));
3812 /* Update split_code because we may not have a multiply
3814 split_code
= GET_CODE (*split
);
3817 /* Similarly for (plus (mult FOO (const_int pow2))). */
3818 if (split_code
== PLUS
3819 && GET_CODE (XEXP (*split
, 0)) == MULT
3820 && CONST_INT_P (XEXP (XEXP (*split
, 0), 1))
3821 && INTVAL (XEXP (XEXP (*split
, 0), 1)) > 0
3822 && (i
= exact_log2 (UINTVAL (XEXP (XEXP (*split
, 0), 1)))) >= 0)
3824 rtx nsplit
= XEXP (*split
, 0);
3825 rtx i_rtx
= gen_int_shift_amount (GET_MODE (nsplit
), i
);
3826 SUBST (XEXP (*split
, 0), gen_rtx_ASHIFT (GET_MODE (nsplit
),
3829 /* Update split_code because we may not have a multiply
3831 split_code
= GET_CODE (*split
);
3834 #ifdef INSN_SCHEDULING
3835 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3836 be written as a ZERO_EXTEND. */
3837 if (split_code
== SUBREG
&& MEM_P (SUBREG_REG (*split
)))
3839 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3840 what it really is. */
3841 if (load_extend_op (GET_MODE (SUBREG_REG (*split
)))
3843 SUBST (*split
, gen_rtx_SIGN_EXTEND (split_mode
,
3844 SUBREG_REG (*split
)));
3846 SUBST (*split
, gen_rtx_ZERO_EXTEND (split_mode
,
3847 SUBREG_REG (*split
)));
3851 /* Attempt to split binary operators using arithmetic identities. */
3852 if (BINARY_P (SET_SRC (newpat
))
3853 && split_mode
== GET_MODE (SET_SRC (newpat
))
3854 && ! side_effects_p (SET_SRC (newpat
)))
3856 rtx setsrc
= SET_SRC (newpat
);
3857 machine_mode mode
= GET_MODE (setsrc
);
3858 enum rtx_code code
= GET_CODE (setsrc
);
3859 rtx src_op0
= XEXP (setsrc
, 0);
3860 rtx src_op1
= XEXP (setsrc
, 1);
3862 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3863 if (rtx_equal_p (src_op0
, src_op1
))
3865 newi2pat
= gen_rtx_SET (newdest
, src_op0
);
3866 SUBST (XEXP (setsrc
, 0), newdest
);
3867 SUBST (XEXP (setsrc
, 1), newdest
);
3870 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3871 else if ((code
== PLUS
|| code
== MULT
)
3872 && GET_CODE (src_op0
) == code
3873 && GET_CODE (XEXP (src_op0
, 0)) == code
3874 && (INTEGRAL_MODE_P (mode
)
3875 || (FLOAT_MODE_P (mode
)
3876 && flag_unsafe_math_optimizations
)))
3878 rtx p
= XEXP (XEXP (src_op0
, 0), 0);
3879 rtx q
= XEXP (XEXP (src_op0
, 0), 1);
3880 rtx r
= XEXP (src_op0
, 1);
3883 /* Split both "((X op Y) op X) op Y" and
3884 "((X op Y) op Y) op X" as "T op T" where T is
3886 if ((rtx_equal_p (p
,r
) && rtx_equal_p (q
,s
))
3887 || (rtx_equal_p (p
,s
) && rtx_equal_p (q
,r
)))
3889 newi2pat
= gen_rtx_SET (newdest
, XEXP (src_op0
, 0));
3890 SUBST (XEXP (setsrc
, 0), newdest
);
3891 SUBST (XEXP (setsrc
, 1), newdest
);
3894 /* Split "((X op X) op Y) op Y)" as "T op T" where
3896 else if (rtx_equal_p (p
,q
) && rtx_equal_p (r
,s
))
3898 rtx tmp
= simplify_gen_binary (code
, mode
, p
, r
);
3899 newi2pat
= gen_rtx_SET (newdest
, tmp
);
3900 SUBST (XEXP (setsrc
, 0), newdest
);
3901 SUBST (XEXP (setsrc
, 1), newdest
);
3909 newi2pat
= gen_rtx_SET (newdest
, *split
);
3910 SUBST (*split
, newdest
);
3913 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3915 /* recog_for_combine might have added CLOBBERs to newi2pat.
3916 Make sure NEWPAT does not depend on the clobbered regs. */
3917 if (GET_CODE (newi2pat
) == PARALLEL
)
3918 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
3919 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
3921 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
3922 if (reg_overlap_mentioned_p (reg
, newpat
))
3929 /* If the split point was a MULT and we didn't have one before,
3930 don't use one now. */
3931 if (i2_code_number
>= 0 && ! (split_code
== MULT
&& ! have_mult
))
3932 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3936 /* Check for a case where we loaded from memory in a narrow mode and
3937 then sign extended it, but we need both registers. In that case,
3938 we have a PARALLEL with both loads from the same memory location.
3939 We can split this into a load from memory followed by a register-register
3940 copy. This saves at least one insn, more if register allocation can
3943 We cannot do this if the destination of the first assignment is a
3944 condition code register or cc0. We eliminate this case by making sure
3945 the SET_DEST and SET_SRC have the same mode.
3947 We cannot do this if the destination of the second assignment is
3948 a register that we have already assumed is zero-extended. Similarly
3949 for a SUBREG of such a register. */
3951 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
3952 && GET_CODE (newpat
) == PARALLEL
3953 && XVECLEN (newpat
, 0) == 2
3954 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3955 && GET_CODE (SET_SRC (XVECEXP (newpat
, 0, 0))) == SIGN_EXTEND
3956 && (GET_MODE (SET_DEST (XVECEXP (newpat
, 0, 0)))
3957 == GET_MODE (SET_SRC (XVECEXP (newpat
, 0, 0))))
3958 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3959 && rtx_equal_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
3960 XEXP (SET_SRC (XVECEXP (newpat
, 0, 0)), 0))
3961 && !modified_between_p (SET_SRC (XVECEXP (newpat
, 0, 1)), i2
, i3
)
3962 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3963 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3964 && ! (temp_expr
= SET_DEST (XVECEXP (newpat
, 0, 1)),
3966 && reg_stat
[REGNO (temp_expr
)].nonzero_bits
!= 0
3967 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
3969 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
3971 && (reg_stat
[REGNO (temp_expr
)].nonzero_bits
3972 != GET_MODE_MASK (word_mode
))))
3973 && ! (GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == SUBREG
3974 && (temp_expr
= SUBREG_REG (SET_DEST (XVECEXP (newpat
, 0, 1))),
3976 && reg_stat
[REGNO (temp_expr
)].nonzero_bits
!= 0
3977 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
3979 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
3981 && (reg_stat
[REGNO (temp_expr
)].nonzero_bits
3982 != GET_MODE_MASK (word_mode
)))))
3983 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3984 SET_SRC (XVECEXP (newpat
, 0, 1)))
3985 && ! find_reg_note (i3
, REG_UNUSED
,
3986 SET_DEST (XVECEXP (newpat
, 0, 0))))
3990 newi2pat
= XVECEXP (newpat
, 0, 0);
3991 ni2dest
= SET_DEST (XVECEXP (newpat
, 0, 0));
3992 newpat
= XVECEXP (newpat
, 0, 1);
3993 SUBST (SET_SRC (newpat
),
3994 gen_lowpart (GET_MODE (SET_SRC (newpat
)), ni2dest
));
3995 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3997 if (i2_code_number
>= 0)
3998 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
4000 if (insn_code_number
>= 0)
4004 /* Similarly, check for a case where we have a PARALLEL of two independent
4005 SETs but we started with three insns. In this case, we can do the sets
4006 as two separate insns. This case occurs when some SET allows two
4007 other insns to combine, but the destination of that SET is still live.
4009 Also do this if we started with two insns and (at least) one of the
4010 resulting sets is a noop; this noop will be deleted later. */
4012 else if (insn_code_number
< 0 && asm_noperands (newpat
) < 0
4013 && GET_CODE (newpat
) == PARALLEL
4014 && XVECLEN (newpat
, 0) == 2
4015 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
4016 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
4017 && (i1
|| set_noop_p (XVECEXP (newpat
, 0, 0))
4018 || set_noop_p (XVECEXP (newpat
, 0, 1)))
4019 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != ZERO_EXTRACT
4020 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != STRICT_LOW_PART
4021 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
4022 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
4023 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
4024 XVECEXP (newpat
, 0, 0))
4025 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 0)),
4026 XVECEXP (newpat
, 0, 1))
4027 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 0)))
4028 && contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 1)))))
4030 rtx set0
= XVECEXP (newpat
, 0, 0);
4031 rtx set1
= XVECEXP (newpat
, 0, 1);
4033 /* Normally, it doesn't matter which of the two is done first,
4034 but the one that references cc0 can't be the second, and
4035 one which uses any regs/memory set in between i2 and i3 can't
4036 be first. The PARALLEL might also have been pre-existing in i3,
4037 so we need to make sure that we won't wrongly hoist a SET to i2
4038 that would conflict with a death note present in there. */
4039 if (!modified_between_p (SET_SRC (set1
), i2
, i3
)
4040 && !(REG_P (SET_DEST (set1
))
4041 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set1
)))
4042 && !(GET_CODE (SET_DEST (set1
)) == SUBREG
4043 && find_reg_note (i2
, REG_DEAD
,
4044 SUBREG_REG (SET_DEST (set1
))))
4045 && (!HAVE_cc0
|| !reg_referenced_p (cc0_rtx
, set0
))
4046 /* If I3 is a jump, ensure that set0 is a jump so that
4047 we do not create invalid RTL. */
4048 && (!JUMP_P (i3
) || SET_DEST (set0
) == pc_rtx
)
4054 else if (!modified_between_p (SET_SRC (set0
), i2
, i3
)
4055 && !(REG_P (SET_DEST (set0
))
4056 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set0
)))
4057 && !(GET_CODE (SET_DEST (set0
)) == SUBREG
4058 && find_reg_note (i2
, REG_DEAD
,
4059 SUBREG_REG (SET_DEST (set0
))))
4060 && (!HAVE_cc0
|| !reg_referenced_p (cc0_rtx
, set1
))
4061 /* If I3 is a jump, ensure that set1 is a jump so that
4062 we do not create invalid RTL. */
4063 && (!JUMP_P (i3
) || SET_DEST (set1
) == pc_rtx
)
4075 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
4077 if (i2_code_number
>= 0)
4079 /* recog_for_combine might have added CLOBBERs to newi2pat.
4080 Make sure NEWPAT does not depend on the clobbered regs. */
4081 if (GET_CODE (newi2pat
) == PARALLEL
)
4083 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
4084 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
4086 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
4087 if (reg_overlap_mentioned_p (reg
, newpat
))
4095 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
4097 if (insn_code_number
>= 0)
4102 /* If it still isn't recognized, fail and change things back the way they
4104 if ((insn_code_number
< 0
4105 /* Is the result a reasonable ASM_OPERANDS? */
4106 && (! check_asm_operands (newpat
) || added_sets_1
|| added_sets_2
)))
4112 /* If we had to change another insn, make sure it is valid also. */
4113 if (undobuf
.other_insn
)
4115 CLEAR_HARD_REG_SET (newpat_used_regs
);
4117 other_pat
= PATTERN (undobuf
.other_insn
);
4118 other_code_number
= recog_for_combine (&other_pat
, undobuf
.other_insn
,
4121 if (other_code_number
< 0 && ! check_asm_operands (other_pat
))
4128 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4129 they are adjacent to each other or not. */
4132 rtx_insn
*p
= prev_nonnote_insn (i3
);
4133 if (p
&& p
!= i2
&& NONJUMP_INSN_P (p
) && newi2pat
4134 && sets_cc0_p (newi2pat
))
4141 /* Only allow this combination if insn_cost reports that the
4142 replacement instructions are cheaper than the originals. */
4143 if (!combine_validate_cost (i0
, i1
, i2
, i3
, newpat
, newi2pat
, other_pat
))
4149 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4153 for (undo
= undobuf
.undos
; undo
; undo
= undo
->next
)
4154 if (undo
->kind
== UNDO_MODE
)
4156 rtx reg
= *undo
->where
.r
;
4157 machine_mode new_mode
= GET_MODE (reg
);
4158 machine_mode old_mode
= undo
->old_contents
.m
;
4160 /* Temporarily revert mode back. */
4161 adjust_reg_mode (reg
, old_mode
);
4163 if (reg
== i2dest
&& i2scratch
)
4165 /* If we used i2dest as a scratch register with a
4166 different mode, substitute it for the original
4167 i2src while its original mode is temporarily
4168 restored, and then clear i2scratch so that we don't
4169 do it again later. */
4170 propagate_for_debug (i2
, last_combined_insn
, reg
, i2src
,
4173 /* Put back the new mode. */
4174 adjust_reg_mode (reg
, new_mode
);
4178 rtx tempreg
= gen_raw_REG (old_mode
, REGNO (reg
));
4179 rtx_insn
*first
, *last
;
4184 last
= last_combined_insn
;
4189 last
= undobuf
.other_insn
;
4191 if (DF_INSN_LUID (last
)
4192 < DF_INSN_LUID (last_combined_insn
))
4193 last
= last_combined_insn
;
4196 /* We're dealing with a reg that changed mode but not
4197 meaning, so we want to turn it into a subreg for
4198 the new mode. However, because of REG sharing and
4199 because its mode had already changed, we have to do
4200 it in two steps. First, replace any debug uses of
4201 reg, with its original mode temporarily restored,
4202 with this copy we have created; then, replace the
4203 copy with the SUBREG of the original shared reg,
4204 once again changed to the new mode. */
4205 propagate_for_debug (first
, last
, reg
, tempreg
,
4207 adjust_reg_mode (reg
, new_mode
);
4208 propagate_for_debug (first
, last
, tempreg
,
4209 lowpart_subreg (old_mode
, reg
, new_mode
),
4215 /* If we will be able to accept this, we have made a
4216 change to the destination of I3. This requires us to
4217 do a few adjustments. */
4219 if (changed_i3_dest
)
4221 PATTERN (i3
) = newpat
;
4222 adjust_for_new_dest (i3
);
4225 /* We now know that we can do this combination. Merge the insns and
4226 update the status of registers and LOG_LINKS. */
4228 if (undobuf
.other_insn
)
4232 PATTERN (undobuf
.other_insn
) = other_pat
;
4234 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4235 ensure that they are still valid. Then add any non-duplicate
4236 notes added by recog_for_combine. */
4237 for (note
= REG_NOTES (undobuf
.other_insn
); note
; note
= next
)
4239 next
= XEXP (note
, 1);
4241 if ((REG_NOTE_KIND (note
) == REG_DEAD
4242 && !reg_referenced_p (XEXP (note
, 0),
4243 PATTERN (undobuf
.other_insn
)))
4244 ||(REG_NOTE_KIND (note
) == REG_UNUSED
4245 && !reg_set_p (XEXP (note
, 0),
4246 PATTERN (undobuf
.other_insn
)))
4247 /* Simply drop equal note since it may be no longer valid
4248 for other_insn. It may be possible to record that CC
4249 register is changed and only discard those notes, but
4250 in practice it's unnecessary complication and doesn't
4251 give any meaningful improvement.
4254 || REG_NOTE_KIND (note
) == REG_EQUAL
4255 || REG_NOTE_KIND (note
) == REG_EQUIV
)
4256 remove_note (undobuf
.other_insn
, note
);
4259 distribute_notes (new_other_notes
, undobuf
.other_insn
,
4260 undobuf
.other_insn
, NULL
, NULL_RTX
, NULL_RTX
,
4266 /* I3 now uses what used to be its destination and which is now
4267 I2's destination. This requires us to do a few adjustments. */
4268 PATTERN (i3
) = newpat
;
4269 adjust_for_new_dest (i3
);
4272 if (swap_i2i3
|| split_i2i3
)
4274 /* We might need a LOG_LINK from I3 to I2. But then we used to
4275 have one, so we still will.
4277 However, some later insn might be using I2's dest and have
4278 a LOG_LINK pointing at I3. We should change it to point at
4281 /* newi2pat is usually a SET here; however, recog_for_combine might
4282 have added some clobbers. */
4284 if (GET_CODE (x
) == PARALLEL
)
4285 x
= XVECEXP (newi2pat
, 0, 0);
4287 /* It can only be a SET of a REG or of a SUBREG of a REG. */
4288 unsigned int regno
= reg_or_subregno (SET_DEST (x
));
4291 for (rtx_insn
*insn
= NEXT_INSN (i3
);
4294 && NONDEBUG_INSN_P (insn
)
4295 && BLOCK_FOR_INSN (insn
) == this_basic_block
;
4296 insn
= NEXT_INSN (insn
))
4298 struct insn_link
*link
;
4299 FOR_EACH_LOG_LINK (link
, insn
)
4300 if (link
->insn
== i3
&& link
->regno
== regno
)
4310 rtx i3notes
, i2notes
, i1notes
= 0, i0notes
= 0;
4311 struct insn_link
*i3links
, *i2links
, *i1links
= 0, *i0links
= 0;
4314 /* Compute which registers we expect to eliminate. newi2pat may be setting
4315 either i3dest or i2dest, so we must check it. */
4316 rtx elim_i2
= ((newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4317 || i2dest_in_i2src
|| i2dest_in_i1src
|| i2dest_in_i0src
4320 /* For i1, we need to compute both local elimination and global
4321 elimination information with respect to newi2pat because i1dest
4322 may be the same as i3dest, in which case newi2pat may be setting
4323 i1dest. Global information is used when distributing REG_DEAD
4324 note for i2 and i3, in which case it does matter if newi2pat sets
4327 Local information is used when distributing REG_DEAD note for i1,
4328 in which case it doesn't matter if newi2pat sets i1dest or not.
4329 See PR62151, if we have four insns combination:
4331 i1: r1 <- i1src (using r0)
4333 i2: r0 <- i2src (using r1)
4334 i3: r3 <- i3src (using r0)
4336 From i1's point of view, r0 is eliminated, no matter if it is set
4337 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4338 should be discarded.
4340 Note local information only affects cases in forms like "I1->I2->I3",
4341 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4342 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4344 rtx local_elim_i1
= (i1
== 0 || i1dest_in_i1src
|| i1dest_in_i0src
4347 rtx elim_i1
= (local_elim_i1
== 0
4348 || (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4350 /* Same case as i1. */
4351 rtx local_elim_i0
= (i0
== 0 || i0dest_in_i0src
|| !i0dest_killed
4353 rtx elim_i0
= (local_elim_i0
== 0
4354 || (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4357 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4359 i3notes
= REG_NOTES (i3
), i3links
= LOG_LINKS (i3
);
4360 i2notes
= REG_NOTES (i2
), i2links
= LOG_LINKS (i2
);
4362 i1notes
= REG_NOTES (i1
), i1links
= LOG_LINKS (i1
);
4364 i0notes
= REG_NOTES (i0
), i0links
= LOG_LINKS (i0
);
4366 /* Ensure that we do not have something that should not be shared but
4367 occurs multiple times in the new insns. Check this by first
4368 resetting all the `used' flags and then copying anything is shared. */
4370 reset_used_flags (i3notes
);
4371 reset_used_flags (i2notes
);
4372 reset_used_flags (i1notes
);
4373 reset_used_flags (i0notes
);
4374 reset_used_flags (newpat
);
4375 reset_used_flags (newi2pat
);
4376 if (undobuf
.other_insn
)
4377 reset_used_flags (PATTERN (undobuf
.other_insn
));
4379 i3notes
= copy_rtx_if_shared (i3notes
);
4380 i2notes
= copy_rtx_if_shared (i2notes
);
4381 i1notes
= copy_rtx_if_shared (i1notes
);
4382 i0notes
= copy_rtx_if_shared (i0notes
);
4383 newpat
= copy_rtx_if_shared (newpat
);
4384 newi2pat
= copy_rtx_if_shared (newi2pat
);
4385 if (undobuf
.other_insn
)
4386 reset_used_flags (PATTERN (undobuf
.other_insn
));
4388 INSN_CODE (i3
) = insn_code_number
;
4389 PATTERN (i3
) = newpat
;
4391 if (CALL_P (i3
) && CALL_INSN_FUNCTION_USAGE (i3
))
4393 for (rtx link
= CALL_INSN_FUNCTION_USAGE (i3
); link
;
4394 link
= XEXP (link
, 1))
4398 /* I2SRC must still be meaningful at this point. Some
4399 splitting operations can invalidate I2SRC, but those
4400 operations do not apply to calls. */
4402 XEXP (link
, 0) = simplify_replace_rtx (XEXP (link
, 0),
4406 XEXP (link
, 0) = simplify_replace_rtx (XEXP (link
, 0),
4409 XEXP (link
, 0) = simplify_replace_rtx (XEXP (link
, 0),
4414 if (undobuf
.other_insn
)
4415 INSN_CODE (undobuf
.other_insn
) = other_code_number
;
4417 /* We had one special case above where I2 had more than one set and
4418 we replaced a destination of one of those sets with the destination
4419 of I3. In that case, we have to update LOG_LINKS of insns later
4420 in this basic block. Note that this (expensive) case is rare.
4422 Also, in this case, we must pretend that all REG_NOTEs for I2
4423 actually came from I3, so that REG_UNUSED notes from I2 will be
4424 properly handled. */
4426 if (i3_subst_into_i2
)
4428 for (i
= 0; i
< XVECLEN (PATTERN (i2
), 0); i
++)
4429 if ((GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == SET
4430 || GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == CLOBBER
)
4431 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)))
4432 && SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)) != i2dest
4433 && ! find_reg_note (i2
, REG_UNUSED
,
4434 SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))))
4435 for (temp_insn
= NEXT_INSN (i2
);
4437 && (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
4438 || BB_HEAD (this_basic_block
) != temp_insn
);
4439 temp_insn
= NEXT_INSN (temp_insn
))
4440 if (temp_insn
!= i3
&& NONDEBUG_INSN_P (temp_insn
))
4441 FOR_EACH_LOG_LINK (link
, temp_insn
)
4442 if (link
->insn
== i2
)
4448 while (XEXP (link
, 1))
4449 link
= XEXP (link
, 1);
4450 XEXP (link
, 1) = i2notes
;
4457 LOG_LINKS (i3
) = NULL
;
4459 LOG_LINKS (i2
) = NULL
;
4464 if (MAY_HAVE_DEBUG_BIND_INSNS
&& i2scratch
)
4465 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4467 INSN_CODE (i2
) = i2_code_number
;
4468 PATTERN (i2
) = newi2pat
;
4472 if (MAY_HAVE_DEBUG_BIND_INSNS
&& i2src
)
4473 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4475 SET_INSN_DELETED (i2
);
4480 LOG_LINKS (i1
) = NULL
;
4482 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4483 propagate_for_debug (i1
, last_combined_insn
, i1dest
, i1src
,
4485 SET_INSN_DELETED (i1
);
4490 LOG_LINKS (i0
) = NULL
;
4492 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4493 propagate_for_debug (i0
, last_combined_insn
, i0dest
, i0src
,
4495 SET_INSN_DELETED (i0
);
4498 /* Get death notes for everything that is now used in either I3 or
4499 I2 and used to die in a previous insn. If we built two new
4500 patterns, move from I1 to I2 then I2 to I3 so that we get the
4501 proper movement on registers that I2 modifies. */
4504 from_luid
= DF_INSN_LUID (i0
);
4506 from_luid
= DF_INSN_LUID (i1
);
4508 from_luid
= DF_INSN_LUID (i2
);
4510 move_deaths (newi2pat
, NULL_RTX
, from_luid
, i2
, &midnotes
);
4511 move_deaths (newpat
, newi2pat
, from_luid
, i3
, &midnotes
);
4513 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4515 distribute_notes (i3notes
, i3
, i3
, newi2pat
? i2
: NULL
,
4516 elim_i2
, elim_i1
, elim_i0
);
4518 distribute_notes (i2notes
, i2
, i3
, newi2pat
? i2
: NULL
,
4519 elim_i2
, elim_i1
, elim_i0
);
4521 distribute_notes (i1notes
, i1
, i3
, newi2pat
? i2
: NULL
,
4522 elim_i2
, local_elim_i1
, local_elim_i0
);
4524 distribute_notes (i0notes
, i0
, i3
, newi2pat
? i2
: NULL
,
4525 elim_i2
, elim_i1
, local_elim_i0
);
4527 distribute_notes (midnotes
, NULL
, i3
, newi2pat
? i2
: NULL
,
4528 elim_i2
, elim_i1
, elim_i0
);
4530 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4531 know these are REG_UNUSED and want them to go to the desired insn,
4532 so we always pass it as i3. */
4534 if (newi2pat
&& new_i2_notes
)
4535 distribute_notes (new_i2_notes
, i2
, i2
, NULL
, NULL_RTX
, NULL_RTX
,
4539 distribute_notes (new_i3_notes
, i3
, i3
, NULL
, NULL_RTX
, NULL_RTX
,
4542 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4543 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4544 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4545 in that case, it might delete I2. Similarly for I2 and I1.
4546 Show an additional death due to the REG_DEAD note we make here. If
4547 we discard it in distribute_notes, we will decrement it again. */
4551 rtx new_note
= alloc_reg_note (REG_DEAD
, i3dest_killed
, NULL_RTX
);
4552 if (newi2pat
&& reg_set_p (i3dest_killed
, newi2pat
))
4553 distribute_notes (new_note
, NULL
, i2
, NULL
, elim_i2
,
4556 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4557 elim_i2
, elim_i1
, elim_i0
);
4560 if (i2dest_in_i2src
)
4562 rtx new_note
= alloc_reg_note (REG_DEAD
, i2dest
, NULL_RTX
);
4563 if (newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4564 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4565 NULL_RTX
, NULL_RTX
);
4567 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4568 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4571 if (i1dest_in_i1src
)
4573 rtx new_note
= alloc_reg_note (REG_DEAD
, i1dest
, NULL_RTX
);
4574 if (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4575 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4576 NULL_RTX
, NULL_RTX
);
4578 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4579 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4582 if (i0dest_in_i0src
)
4584 rtx new_note
= alloc_reg_note (REG_DEAD
, i0dest
, NULL_RTX
);
4585 if (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4586 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4587 NULL_RTX
, NULL_RTX
);
4589 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4590 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4593 distribute_links (i3links
);
4594 distribute_links (i2links
);
4595 distribute_links (i1links
);
4596 distribute_links (i0links
);
4600 struct insn_link
*link
;
4601 rtx_insn
*i2_insn
= 0;
4602 rtx i2_val
= 0, set
;
4604 /* The insn that used to set this register doesn't exist, and
4605 this life of the register may not exist either. See if one of
4606 I3's links points to an insn that sets I2DEST. If it does,
4607 that is now the last known value for I2DEST. If we don't update
4608 this and I2 set the register to a value that depended on its old
4609 contents, we will get confused. If this insn is used, thing
4610 will be set correctly in combine_instructions. */
4611 FOR_EACH_LOG_LINK (link
, i3
)
4612 if ((set
= single_set (link
->insn
)) != 0
4613 && rtx_equal_p (i2dest
, SET_DEST (set
)))
4614 i2_insn
= link
->insn
, i2_val
= SET_SRC (set
);
4616 record_value_for_reg (i2dest
, i2_insn
, i2_val
);
4618 /* If the reg formerly set in I2 died only once and that was in I3,
4619 zero its use count so it won't make `reload' do any work. */
4621 && (newi2pat
== 0 || ! reg_mentioned_p (i2dest
, newi2pat
))
4622 && ! i2dest_in_i2src
4623 && REGNO (i2dest
) < reg_n_sets_max
)
4624 INC_REG_N_SETS (REGNO (i2dest
), -1);
4627 if (i1
&& REG_P (i1dest
))
4629 struct insn_link
*link
;
4630 rtx_insn
*i1_insn
= 0;
4631 rtx i1_val
= 0, set
;
4633 FOR_EACH_LOG_LINK (link
, i3
)
4634 if ((set
= single_set (link
->insn
)) != 0
4635 && rtx_equal_p (i1dest
, SET_DEST (set
)))
4636 i1_insn
= link
->insn
, i1_val
= SET_SRC (set
);
4638 record_value_for_reg (i1dest
, i1_insn
, i1_val
);
4641 && ! i1dest_in_i1src
4642 && REGNO (i1dest
) < reg_n_sets_max
)
4643 INC_REG_N_SETS (REGNO (i1dest
), -1);
4646 if (i0
&& REG_P (i0dest
))
4648 struct insn_link
*link
;
4649 rtx_insn
*i0_insn
= 0;
4650 rtx i0_val
= 0, set
;
4652 FOR_EACH_LOG_LINK (link
, i3
)
4653 if ((set
= single_set (link
->insn
)) != 0
4654 && rtx_equal_p (i0dest
, SET_DEST (set
)))
4655 i0_insn
= link
->insn
, i0_val
= SET_SRC (set
);
4657 record_value_for_reg (i0dest
, i0_insn
, i0_val
);
4660 && ! i0dest_in_i0src
4661 && REGNO (i0dest
) < reg_n_sets_max
)
4662 INC_REG_N_SETS (REGNO (i0dest
), -1);
4665 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4666 been made to this insn. The order is important, because newi2pat
4667 can affect nonzero_bits of newpat. */
4669 note_stores (newi2pat
, set_nonzero_bits_and_sign_copies
, NULL
);
4670 note_stores (newpat
, set_nonzero_bits_and_sign_copies
, NULL
);
4673 if (undobuf
.other_insn
!= NULL_RTX
)
4677 fprintf (dump_file
, "modifying other_insn ");
4678 dump_insn_slim (dump_file
, undobuf
.other_insn
);
4680 df_insn_rescan (undobuf
.other_insn
);
4683 if (i0
&& !(NOTE_P (i0
) && (NOTE_KIND (i0
) == NOTE_INSN_DELETED
)))
4687 fprintf (dump_file
, "modifying insn i0 ");
4688 dump_insn_slim (dump_file
, i0
);
4690 df_insn_rescan (i0
);
4693 if (i1
&& !(NOTE_P (i1
) && (NOTE_KIND (i1
) == NOTE_INSN_DELETED
)))
4697 fprintf (dump_file
, "modifying insn i1 ");
4698 dump_insn_slim (dump_file
, i1
);
4700 df_insn_rescan (i1
);
4703 if (i2
&& !(NOTE_P (i2
) && (NOTE_KIND (i2
) == NOTE_INSN_DELETED
)))
4707 fprintf (dump_file
, "modifying insn i2 ");
4708 dump_insn_slim (dump_file
, i2
);
4710 df_insn_rescan (i2
);
4713 if (i3
&& !(NOTE_P (i3
) && (NOTE_KIND (i3
) == NOTE_INSN_DELETED
)))
4717 fprintf (dump_file
, "modifying insn i3 ");
4718 dump_insn_slim (dump_file
, i3
);
4720 df_insn_rescan (i3
);
4723 /* Set new_direct_jump_p if a new return or simple jump instruction
4724 has been created. Adjust the CFG accordingly. */
4725 if (returnjump_p (i3
) || any_uncondjump_p (i3
))
4727 *new_direct_jump_p
= 1;
4728 mark_jump_label (PATTERN (i3
), i3
, 0);
4729 update_cfg_for_uncondjump (i3
);
4732 if (undobuf
.other_insn
!= NULL_RTX
4733 && (returnjump_p (undobuf
.other_insn
)
4734 || any_uncondjump_p (undobuf
.other_insn
)))
4736 *new_direct_jump_p
= 1;
4737 update_cfg_for_uncondjump (undobuf
.other_insn
);
4740 if (GET_CODE (PATTERN (i3
)) == TRAP_IF
4741 && XEXP (PATTERN (i3
), 0) == const1_rtx
)
4743 basic_block bb
= BLOCK_FOR_INSN (i3
);
4745 remove_edge (split_block (bb
, i3
));
4746 emit_barrier_after_bb (bb
);
4747 *new_direct_jump_p
= 1;
4750 if (undobuf
.other_insn
4751 && GET_CODE (PATTERN (undobuf
.other_insn
)) == TRAP_IF
4752 && XEXP (PATTERN (undobuf
.other_insn
), 0) == const1_rtx
)
4754 basic_block bb
= BLOCK_FOR_INSN (undobuf
.other_insn
);
4756 remove_edge (split_block (bb
, undobuf
.other_insn
));
4757 emit_barrier_after_bb (bb
);
4758 *new_direct_jump_p
= 1;
4761 /* A noop might also need cleaning up of CFG, if it comes from the
4762 simplification of a jump. */
4764 && GET_CODE (newpat
) == SET
4765 && SET_SRC (newpat
) == pc_rtx
4766 && SET_DEST (newpat
) == pc_rtx
)
4768 *new_direct_jump_p
= 1;
4769 update_cfg_for_uncondjump (i3
);
4772 if (undobuf
.other_insn
!= NULL_RTX
4773 && JUMP_P (undobuf
.other_insn
)
4774 && GET_CODE (PATTERN (undobuf
.other_insn
)) == SET
4775 && SET_SRC (PATTERN (undobuf
.other_insn
)) == pc_rtx
4776 && SET_DEST (PATTERN (undobuf
.other_insn
)) == pc_rtx
)
4778 *new_direct_jump_p
= 1;
4779 update_cfg_for_uncondjump (undobuf
.other_insn
);
4782 combine_successes
++;
4785 rtx_insn
*ret
= newi2pat
? i2
: i3
;
4786 if (added_links_insn
&& DF_INSN_LUID (added_links_insn
) < DF_INSN_LUID (ret
))
4787 ret
= added_links_insn
;
4788 if (added_notes_insn
&& DF_INSN_LUID (added_notes_insn
) < DF_INSN_LUID (ret
))
4789 ret
= added_notes_insn
;
4794 /* Get a marker for undoing to the current state. */
4797 get_undo_marker (void)
4799 return undobuf
.undos
;
4802 /* Undo the modifications up to the marker. */
4805 undo_to_marker (void *marker
)
4807 struct undo
*undo
, *next
;
4809 for (undo
= undobuf
.undos
; undo
!= marker
; undo
= next
)
4817 *undo
->where
.r
= undo
->old_contents
.r
;
4820 *undo
->where
.i
= undo
->old_contents
.i
;
4823 adjust_reg_mode (*undo
->where
.r
, undo
->old_contents
.m
);
4826 *undo
->where
.l
= undo
->old_contents
.l
;
4832 undo
->next
= undobuf
.frees
;
4833 undobuf
.frees
= undo
;
4836 undobuf
.undos
= (struct undo
*) marker
;
4839 /* Undo all the modifications recorded in undobuf. */
4847 /* We've committed to accepting the changes we made. Move all
4848 of the undos to the free list. */
4853 struct undo
*undo
, *next
;
4855 for (undo
= undobuf
.undos
; undo
; undo
= next
)
4858 undo
->next
= undobuf
.frees
;
4859 undobuf
.frees
= undo
;
4864 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4865 where we have an arithmetic expression and return that point. LOC will
4868 try_combine will call this function to see if an insn can be split into
4872 find_split_point (rtx
*loc
, rtx_insn
*insn
, bool set_src
)
4875 enum rtx_code code
= GET_CODE (x
);
4877 unsigned HOST_WIDE_INT len
= 0;
4878 HOST_WIDE_INT pos
= 0;
4880 rtx inner
= NULL_RTX
;
4881 scalar_int_mode mode
, inner_mode
;
4883 /* First special-case some codes. */
4887 #ifdef INSN_SCHEDULING
4888 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4890 if (MEM_P (SUBREG_REG (x
)))
4893 return find_split_point (&SUBREG_REG (x
), insn
, false);
4896 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4897 using LO_SUM and HIGH. */
4898 if (HAVE_lo_sum
&& (GET_CODE (XEXP (x
, 0)) == CONST
4899 || GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
))
4901 machine_mode address_mode
= get_address_mode (x
);
4904 gen_rtx_LO_SUM (address_mode
,
4905 gen_rtx_HIGH (address_mode
, XEXP (x
, 0)),
4907 return &XEXP (XEXP (x
, 0), 0);
4910 /* If we have a PLUS whose second operand is a constant and the
4911 address is not valid, perhaps will can split it up using
4912 the machine-specific way to split large constants. We use
4913 the first pseudo-reg (one of the virtual regs) as a placeholder;
4914 it will not remain in the result. */
4915 if (GET_CODE (XEXP (x
, 0)) == PLUS
4916 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
4917 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4918 MEM_ADDR_SPACE (x
)))
4920 rtx reg
= regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
4921 rtx_insn
*seq
= combine_split_insns (gen_rtx_SET (reg
, XEXP (x
, 0)),
4924 /* This should have produced two insns, each of which sets our
4925 placeholder. If the source of the second is a valid address,
4926 we can make put both sources together and make a split point
4930 && NEXT_INSN (seq
) != NULL_RTX
4931 && NEXT_INSN (NEXT_INSN (seq
)) == NULL_RTX
4932 && NONJUMP_INSN_P (seq
)
4933 && GET_CODE (PATTERN (seq
)) == SET
4934 && SET_DEST (PATTERN (seq
)) == reg
4935 && ! reg_mentioned_p (reg
,
4936 SET_SRC (PATTERN (seq
)))
4937 && NONJUMP_INSN_P (NEXT_INSN (seq
))
4938 && GET_CODE (PATTERN (NEXT_INSN (seq
))) == SET
4939 && SET_DEST (PATTERN (NEXT_INSN (seq
))) == reg
4940 && memory_address_addr_space_p
4941 (GET_MODE (x
), SET_SRC (PATTERN (NEXT_INSN (seq
))),
4942 MEM_ADDR_SPACE (x
)))
4944 rtx src1
= SET_SRC (PATTERN (seq
));
4945 rtx src2
= SET_SRC (PATTERN (NEXT_INSN (seq
)));
4947 /* Replace the placeholder in SRC2 with SRC1. If we can
4948 find where in SRC2 it was placed, that can become our
4949 split point and we can replace this address with SRC2.
4950 Just try two obvious places. */
4952 src2
= replace_rtx (src2
, reg
, src1
);
4954 if (XEXP (src2
, 0) == src1
)
4955 split
= &XEXP (src2
, 0);
4956 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2
, 0)))[0] == 'e'
4957 && XEXP (XEXP (src2
, 0), 0) == src1
)
4958 split
= &XEXP (XEXP (src2
, 0), 0);
4962 SUBST (XEXP (x
, 0), src2
);
4967 /* If that didn't work, perhaps the first operand is complex and
4968 needs to be computed separately, so make a split point there.
4969 This will occur on machines that just support REG + CONST
4970 and have a constant moved through some previous computation. */
4972 else if (!OBJECT_P (XEXP (XEXP (x
, 0), 0))
4973 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4974 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4975 return &XEXP (XEXP (x
, 0), 0);
4978 /* If we have a PLUS whose first operand is complex, try computing it
4979 separately by making a split there. */
4980 if (GET_CODE (XEXP (x
, 0)) == PLUS
4981 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4983 && ! OBJECT_P (XEXP (XEXP (x
, 0), 0))
4984 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4985 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4986 return &XEXP (XEXP (x
, 0), 0);
4990 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4991 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4992 we need to put the operand into a register. So split at that
4995 if (SET_DEST (x
) == cc0_rtx
4996 && GET_CODE (SET_SRC (x
)) != COMPARE
4997 && GET_CODE (SET_SRC (x
)) != ZERO_EXTRACT
4998 && !OBJECT_P (SET_SRC (x
))
4999 && ! (GET_CODE (SET_SRC (x
)) == SUBREG
5000 && OBJECT_P (SUBREG_REG (SET_SRC (x
)))))
5001 return &SET_SRC (x
);
5003 /* See if we can split SET_SRC as it stands. */
5004 split
= find_split_point (&SET_SRC (x
), insn
, true);
5005 if (split
&& split
!= &SET_SRC (x
))
5008 /* See if we can split SET_DEST as it stands. */
5009 split
= find_split_point (&SET_DEST (x
), insn
, false);
5010 if (split
&& split
!= &SET_DEST (x
))
5013 /* See if this is a bitfield assignment with everything constant. If
5014 so, this is an IOR of an AND, so split it into that. */
5015 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
5016 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (SET_DEST (x
), 0)),
5018 && HWI_COMPUTABLE_MODE_P (inner_mode
)
5019 && CONST_INT_P (XEXP (SET_DEST (x
), 1))
5020 && CONST_INT_P (XEXP (SET_DEST (x
), 2))
5021 && CONST_INT_P (SET_SRC (x
))
5022 && ((INTVAL (XEXP (SET_DEST (x
), 1))
5023 + INTVAL (XEXP (SET_DEST (x
), 2)))
5024 <= GET_MODE_PRECISION (inner_mode
))
5025 && ! side_effects_p (XEXP (SET_DEST (x
), 0)))
5027 HOST_WIDE_INT pos
= INTVAL (XEXP (SET_DEST (x
), 2));
5028 unsigned HOST_WIDE_INT len
= INTVAL (XEXP (SET_DEST (x
), 1));
5029 unsigned HOST_WIDE_INT src
= INTVAL (SET_SRC (x
));
5030 rtx dest
= XEXP (SET_DEST (x
), 0);
5031 unsigned HOST_WIDE_INT mask
5032 = (HOST_WIDE_INT_1U
<< len
) - 1;
5035 if (BITS_BIG_ENDIAN
)
5036 pos
= GET_MODE_PRECISION (inner_mode
) - len
- pos
;
5038 or_mask
= gen_int_mode (src
<< pos
, inner_mode
);
5041 simplify_gen_binary (IOR
, inner_mode
, dest
, or_mask
));
5044 rtx negmask
= gen_int_mode (~(mask
<< pos
), inner_mode
);
5046 simplify_gen_binary (IOR
, inner_mode
,
5047 simplify_gen_binary (AND
, inner_mode
,
5052 SUBST (SET_DEST (x
), dest
);
5054 split
= find_split_point (&SET_SRC (x
), insn
, true);
5055 if (split
&& split
!= &SET_SRC (x
))
5059 /* Otherwise, see if this is an operation that we can split into two.
5060 If so, try to split that. */
5061 code
= GET_CODE (SET_SRC (x
));
5066 /* If we are AND'ing with a large constant that is only a single
5067 bit and the result is only being used in a context where we
5068 need to know if it is zero or nonzero, replace it with a bit
5069 extraction. This will avoid the large constant, which might
5070 have taken more than one insn to make. If the constant were
5071 not a valid argument to the AND but took only one insn to make,
5072 this is no worse, but if it took more than one insn, it will
5075 if (CONST_INT_P (XEXP (SET_SRC (x
), 1))
5076 && REG_P (XEXP (SET_SRC (x
), 0))
5077 && (pos
= exact_log2 (UINTVAL (XEXP (SET_SRC (x
), 1)))) >= 7
5078 && REG_P (SET_DEST (x
))
5079 && (split
= find_single_use (SET_DEST (x
), insn
, NULL
)) != 0
5080 && (GET_CODE (*split
) == EQ
|| GET_CODE (*split
) == NE
)
5081 && XEXP (*split
, 0) == SET_DEST (x
)
5082 && XEXP (*split
, 1) == const0_rtx
)
5084 rtx extraction
= make_extraction (GET_MODE (SET_DEST (x
)),
5085 XEXP (SET_SRC (x
), 0),
5086 pos
, NULL_RTX
, 1, 1, 0, 0);
5087 if (extraction
!= 0)
5089 SUBST (SET_SRC (x
), extraction
);
5090 return find_split_point (loc
, insn
, false);
5096 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5097 is known to be on, this can be converted into a NEG of a shift. */
5098 if (STORE_FLAG_VALUE
== -1 && XEXP (SET_SRC (x
), 1) == const0_rtx
5099 && GET_MODE (SET_SRC (x
)) == GET_MODE (XEXP (SET_SRC (x
), 0))
5100 && ((pos
= exact_log2 (nonzero_bits (XEXP (SET_SRC (x
), 0),
5101 GET_MODE (XEXP (SET_SRC (x
),
5104 machine_mode mode
= GET_MODE (XEXP (SET_SRC (x
), 0));
5105 rtx pos_rtx
= gen_int_shift_amount (mode
, pos
);
5108 gen_rtx_LSHIFTRT (mode
,
5109 XEXP (SET_SRC (x
), 0),
5112 split
= find_split_point (&SET_SRC (x
), insn
, true);
5113 if (split
&& split
!= &SET_SRC (x
))
5119 inner
= XEXP (SET_SRC (x
), 0);
5121 /* We can't optimize if either mode is a partial integer
5122 mode as we don't know how many bits are significant
5124 if (!is_int_mode (GET_MODE (inner
), &inner_mode
)
5125 || GET_MODE_CLASS (GET_MODE (SET_SRC (x
))) == MODE_PARTIAL_INT
)
5129 len
= GET_MODE_PRECISION (inner_mode
);
5135 if (is_a
<scalar_int_mode
> (GET_MODE (XEXP (SET_SRC (x
), 0)),
5137 && CONST_INT_P (XEXP (SET_SRC (x
), 1))
5138 && CONST_INT_P (XEXP (SET_SRC (x
), 2)))
5140 inner
= XEXP (SET_SRC (x
), 0);
5141 len
= INTVAL (XEXP (SET_SRC (x
), 1));
5142 pos
= INTVAL (XEXP (SET_SRC (x
), 2));
5144 if (BITS_BIG_ENDIAN
)
5145 pos
= GET_MODE_PRECISION (inner_mode
) - len
- pos
;
5146 unsignedp
= (code
== ZERO_EXTRACT
);
5155 && known_subrange_p (pos
, len
,
5156 0, GET_MODE_PRECISION (GET_MODE (inner
)))
5157 && is_a
<scalar_int_mode
> (GET_MODE (SET_SRC (x
)), &mode
))
5159 /* For unsigned, we have a choice of a shift followed by an
5160 AND or two shifts. Use two shifts for field sizes where the
5161 constant might be too large. We assume here that we can
5162 always at least get 8-bit constants in an AND insn, which is
5163 true for every current RISC. */
5165 if (unsignedp
&& len
<= 8)
5167 unsigned HOST_WIDE_INT mask
5168 = (HOST_WIDE_INT_1U
<< len
) - 1;
5169 rtx pos_rtx
= gen_int_shift_amount (mode
, pos
);
5173 (mode
, gen_lowpart (mode
, inner
), pos_rtx
),
5174 gen_int_mode (mask
, mode
)));
5176 split
= find_split_point (&SET_SRC (x
), insn
, true);
5177 if (split
&& split
!= &SET_SRC (x
))
5182 int left_bits
= GET_MODE_PRECISION (mode
) - len
- pos
;
5183 int right_bits
= GET_MODE_PRECISION (mode
) - len
;
5186 (unsignedp
? LSHIFTRT
: ASHIFTRT
, mode
,
5187 gen_rtx_ASHIFT (mode
,
5188 gen_lowpart (mode
, inner
),
5189 gen_int_shift_amount (mode
, left_bits
)),
5190 gen_int_shift_amount (mode
, right_bits
)));
5192 split
= find_split_point (&SET_SRC (x
), insn
, true);
5193 if (split
&& split
!= &SET_SRC (x
))
5198 /* See if this is a simple operation with a constant as the second
5199 operand. It might be that this constant is out of range and hence
5200 could be used as a split point. */
5201 if (BINARY_P (SET_SRC (x
))
5202 && CONSTANT_P (XEXP (SET_SRC (x
), 1))
5203 && (OBJECT_P (XEXP (SET_SRC (x
), 0))
5204 || (GET_CODE (XEXP (SET_SRC (x
), 0)) == SUBREG
5205 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x
), 0))))))
5206 return &XEXP (SET_SRC (x
), 1);
5208 /* Finally, see if this is a simple operation with its first operand
5209 not in a register. The operation might require this operand in a
5210 register, so return it as a split point. We can always do this
5211 because if the first operand were another operation, we would have
5212 already found it as a split point. */
5213 if ((BINARY_P (SET_SRC (x
)) || UNARY_P (SET_SRC (x
)))
5214 && ! register_operand (XEXP (SET_SRC (x
), 0), VOIDmode
))
5215 return &XEXP (SET_SRC (x
), 0);
5221 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5222 it is better to write this as (not (ior A B)) so we can split it.
5223 Similarly for IOR. */
5224 if (GET_CODE (XEXP (x
, 0)) == NOT
&& GET_CODE (XEXP (x
, 1)) == NOT
)
5227 gen_rtx_NOT (GET_MODE (x
),
5228 gen_rtx_fmt_ee (code
== IOR
? AND
: IOR
,
5230 XEXP (XEXP (x
, 0), 0),
5231 XEXP (XEXP (x
, 1), 0))));
5232 return find_split_point (loc
, insn
, set_src
);
5235 /* Many RISC machines have a large set of logical insns. If the
5236 second operand is a NOT, put it first so we will try to split the
5237 other operand first. */
5238 if (GET_CODE (XEXP (x
, 1)) == NOT
)
5240 rtx tem
= XEXP (x
, 0);
5241 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5242 SUBST (XEXP (x
, 1), tem
);
5248 /* Canonicalization can produce (minus A (mult B C)), where C is a
5249 constant. It may be better to try splitting (plus (mult B -C) A)
5250 instead if this isn't a multiply by a power of two. */
5251 if (set_src
&& code
== MINUS
&& GET_CODE (XEXP (x
, 1)) == MULT
5252 && GET_CODE (XEXP (XEXP (x
, 1), 1)) == CONST_INT
5253 && !pow2p_hwi (INTVAL (XEXP (XEXP (x
, 1), 1))))
5255 machine_mode mode
= GET_MODE (x
);
5256 unsigned HOST_WIDE_INT this_int
= INTVAL (XEXP (XEXP (x
, 1), 1));
5257 HOST_WIDE_INT other_int
= trunc_int_for_mode (-this_int
, mode
);
5258 SUBST (*loc
, gen_rtx_PLUS (mode
,
5260 XEXP (XEXP (x
, 1), 0),
5261 gen_int_mode (other_int
,
5264 return find_split_point (loc
, insn
, set_src
);
5267 /* Split at a multiply-accumulate instruction. However if this is
5268 the SET_SRC, we likely do not have such an instruction and it's
5269 worthless to try this split. */
5271 && (GET_CODE (XEXP (x
, 0)) == MULT
5272 || (GET_CODE (XEXP (x
, 0)) == ASHIFT
5273 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)))
5280 /* Otherwise, select our actions depending on our rtx class. */
5281 switch (GET_RTX_CLASS (code
))
5283 case RTX_BITFIELD_OPS
: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5285 split
= find_split_point (&XEXP (x
, 2), insn
, false);
5290 case RTX_COMM_ARITH
:
5292 case RTX_COMM_COMPARE
:
5293 split
= find_split_point (&XEXP (x
, 1), insn
, false);
5298 /* Some machines have (and (shift ...) ...) insns. If X is not
5299 an AND, but XEXP (X, 0) is, use it as our split point. */
5300 if (GET_CODE (x
) != AND
&& GET_CODE (XEXP (x
, 0)) == AND
)
5301 return &XEXP (x
, 0);
5303 split
= find_split_point (&XEXP (x
, 0), insn
, false);
5309 /* Otherwise, we don't have a split point. */
5314 /* Throughout X, replace FROM with TO, and return the result.
5315 The result is TO if X is FROM;
5316 otherwise the result is X, but its contents may have been modified.
5317 If they were modified, a record was made in undobuf so that
5318 undo_all will (among other things) return X to its original state.
5320 If the number of changes necessary is too much to record to undo,
5321 the excess changes are not made, so the result is invalid.
5322 The changes already made can still be undone.
5323 undobuf.num_undo is incremented for such changes, so by testing that
5324 the caller can tell whether the result is valid.
5326 `n_occurrences' is incremented each time FROM is replaced.
5328 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5330 IN_COND is nonzero if we are at the top level of a condition.
5332 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5333 by copying if `n_occurrences' is nonzero. */
5336 subst (rtx x
, rtx from
, rtx to
, int in_dest
, int in_cond
, int unique_copy
)
5338 enum rtx_code code
= GET_CODE (x
);
5339 machine_mode op0_mode
= VOIDmode
;
5344 /* Two expressions are equal if they are identical copies of a shared
5345 RTX or if they are both registers with the same register number
5348 #define COMBINE_RTX_EQUAL_P(X,Y) \
5350 || (REG_P (X) && REG_P (Y) \
5351 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5353 /* Do not substitute into clobbers of regs -- this will never result in
5355 if (GET_CODE (x
) == CLOBBER
&& REG_P (XEXP (x
, 0)))
5358 if (! in_dest
&& COMBINE_RTX_EQUAL_P (x
, from
))
5361 return (unique_copy
&& n_occurrences
> 1 ? copy_rtx (to
) : to
);
5364 /* If X and FROM are the same register but different modes, they
5365 will not have been seen as equal above. However, the log links code
5366 will make a LOG_LINKS entry for that case. If we do nothing, we
5367 will try to rerecognize our original insn and, when it succeeds,
5368 we will delete the feeding insn, which is incorrect.
5370 So force this insn not to match in this (rare) case. */
5371 if (! in_dest
&& code
== REG
&& REG_P (from
)
5372 && reg_overlap_mentioned_p (x
, from
))
5373 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
5375 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5376 of which may contain things that can be combined. */
5377 if (code
!= MEM
&& code
!= LO_SUM
&& OBJECT_P (x
))
5380 /* It is possible to have a subexpression appear twice in the insn.
5381 Suppose that FROM is a register that appears within TO.
5382 Then, after that subexpression has been scanned once by `subst',
5383 the second time it is scanned, TO may be found. If we were
5384 to scan TO here, we would find FROM within it and create a
5385 self-referent rtl structure which is completely wrong. */
5386 if (COMBINE_RTX_EQUAL_P (x
, to
))
5389 /* Parallel asm_operands need special attention because all of the
5390 inputs are shared across the arms. Furthermore, unsharing the
5391 rtl results in recognition failures. Failure to handle this case
5392 specially can result in circular rtl.
5394 Solve this by doing a normal pass across the first entry of the
5395 parallel, and only processing the SET_DESTs of the subsequent
5398 if (code
== PARALLEL
5399 && GET_CODE (XVECEXP (x
, 0, 0)) == SET
5400 && GET_CODE (SET_SRC (XVECEXP (x
, 0, 0))) == ASM_OPERANDS
)
5402 new_rtx
= subst (XVECEXP (x
, 0, 0), from
, to
, 0, 0, unique_copy
);
5404 /* If this substitution failed, this whole thing fails. */
5405 if (GET_CODE (new_rtx
) == CLOBBER
5406 && XEXP (new_rtx
, 0) == const0_rtx
)
5409 SUBST (XVECEXP (x
, 0, 0), new_rtx
);
5411 for (i
= XVECLEN (x
, 0) - 1; i
>= 1; i
--)
5413 rtx dest
= SET_DEST (XVECEXP (x
, 0, i
));
5416 && GET_CODE (dest
) != CC0
5417 && GET_CODE (dest
) != PC
)
5419 new_rtx
= subst (dest
, from
, to
, 0, 0, unique_copy
);
5421 /* If this substitution failed, this whole thing fails. */
5422 if (GET_CODE (new_rtx
) == CLOBBER
5423 && XEXP (new_rtx
, 0) == const0_rtx
)
5426 SUBST (SET_DEST (XVECEXP (x
, 0, i
)), new_rtx
);
5432 len
= GET_RTX_LENGTH (code
);
5433 fmt
= GET_RTX_FORMAT (code
);
5435 /* We don't need to process a SET_DEST that is a register, CC0,
5436 or PC, so set up to skip this common case. All other cases
5437 where we want to suppress replacing something inside a
5438 SET_SRC are handled via the IN_DEST operand. */
5440 && (REG_P (SET_DEST (x
))
5441 || GET_CODE (SET_DEST (x
)) == CC0
5442 || GET_CODE (SET_DEST (x
)) == PC
))
5445 /* Trying to simplify the operands of a widening MULT is not likely
5446 to create RTL matching a machine insn. */
5448 && (GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
5449 || GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
)
5450 && (GET_CODE (XEXP (x
, 1)) == ZERO_EXTEND
5451 || GET_CODE (XEXP (x
, 1)) == SIGN_EXTEND
)
5452 && REG_P (XEXP (XEXP (x
, 0), 0))
5453 && REG_P (XEXP (XEXP (x
, 1), 0))
5458 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5461 op0_mode
= GET_MODE (XEXP (x
, 0));
5463 for (i
= 0; i
< len
; i
++)
5468 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5470 if (COMBINE_RTX_EQUAL_P (XVECEXP (x
, i
, j
), from
))
5472 new_rtx
= (unique_copy
&& n_occurrences
5473 ? copy_rtx (to
) : to
);
5478 new_rtx
= subst (XVECEXP (x
, i
, j
), from
, to
, 0, 0,
5481 /* If this substitution failed, this whole thing
5483 if (GET_CODE (new_rtx
) == CLOBBER
5484 && XEXP (new_rtx
, 0) == const0_rtx
)
5488 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
5491 else if (fmt
[i
] == 'e')
5493 /* If this is a register being set, ignore it. */
5494 new_rtx
= XEXP (x
, i
);
5497 && (((code
== SUBREG
|| code
== ZERO_EXTRACT
)
5499 || code
== STRICT_LOW_PART
))
5502 else if (COMBINE_RTX_EQUAL_P (XEXP (x
, i
), from
))
5504 /* In general, don't install a subreg involving two
5505 modes not tieable. It can worsen register
5506 allocation, and can even make invalid reload
5507 insns, since the reg inside may need to be copied
5508 from in the outside mode, and that may be invalid
5509 if it is an fp reg copied in integer mode.
5511 We allow two exceptions to this: It is valid if
5512 it is inside another SUBREG and the mode of that
5513 SUBREG and the mode of the inside of TO is
5514 tieable and it is valid if X is a SET that copies
5517 if (GET_CODE (to
) == SUBREG
5518 && !targetm
.modes_tieable_p (GET_MODE (to
),
5519 GET_MODE (SUBREG_REG (to
)))
5520 && ! (code
== SUBREG
5521 && (targetm
.modes_tieable_p
5522 (GET_MODE (x
), GET_MODE (SUBREG_REG (to
)))))
5526 && XEXP (x
, 0) == cc0_rtx
))))
5527 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5531 && REGNO (to
) < FIRST_PSEUDO_REGISTER
5532 && simplify_subreg_regno (REGNO (to
), GET_MODE (to
),
5535 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5537 new_rtx
= (unique_copy
&& n_occurrences
? copy_rtx (to
) : to
);
5541 /* If we are in a SET_DEST, suppress most cases unless we
5542 have gone inside a MEM, in which case we want to
5543 simplify the address. We assume here that things that
5544 are actually part of the destination have their inner
5545 parts in the first expression. This is true for SUBREG,
5546 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5547 things aside from REG and MEM that should appear in a
5549 new_rtx
= subst (XEXP (x
, i
), from
, to
,
5551 && (code
== SUBREG
|| code
== STRICT_LOW_PART
5552 || code
== ZERO_EXTRACT
))
5555 code
== IF_THEN_ELSE
&& i
== 0,
5558 /* If we found that we will have to reject this combination,
5559 indicate that by returning the CLOBBER ourselves, rather than
5560 an expression containing it. This will speed things up as
5561 well as prevent accidents where two CLOBBERs are considered
5562 to be equal, thus producing an incorrect simplification. */
5564 if (GET_CODE (new_rtx
) == CLOBBER
&& XEXP (new_rtx
, 0) == const0_rtx
)
5567 if (GET_CODE (x
) == SUBREG
&& CONST_SCALAR_INT_P (new_rtx
))
5569 machine_mode mode
= GET_MODE (x
);
5571 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
5572 GET_MODE (SUBREG_REG (x
)),
5575 x
= gen_rtx_CLOBBER (mode
, const0_rtx
);
5577 else if (CONST_SCALAR_INT_P (new_rtx
)
5578 && (GET_CODE (x
) == ZERO_EXTEND
5579 || GET_CODE (x
) == FLOAT
5580 || GET_CODE (x
) == UNSIGNED_FLOAT
))
5582 x
= simplify_unary_operation (GET_CODE (x
), GET_MODE (x
),
5584 GET_MODE (XEXP (x
, 0)));
5586 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5589 SUBST (XEXP (x
, i
), new_rtx
);
5594 /* Check if we are loading something from the constant pool via float
5595 extension; in this case we would undo compress_float_constant
5596 optimization and degenerate constant load to an immediate value. */
5597 if (GET_CODE (x
) == FLOAT_EXTEND
5598 && MEM_P (XEXP (x
, 0))
5599 && MEM_READONLY_P (XEXP (x
, 0)))
5601 rtx tmp
= avoid_constant_pool_reference (x
);
5606 /* Try to simplify X. If the simplification changed the code, it is likely
5607 that further simplification will help, so loop, but limit the number
5608 of repetitions that will be performed. */
5610 for (i
= 0; i
< 4; i
++)
5612 /* If X is sufficiently simple, don't bother trying to do anything
5614 if (code
!= CONST_INT
&& code
!= REG
&& code
!= CLOBBER
)
5615 x
= combine_simplify_rtx (x
, op0_mode
, in_dest
, in_cond
);
5617 if (GET_CODE (x
) == code
)
5620 code
= GET_CODE (x
);
5622 /* We no longer know the original mode of operand 0 since we
5623 have changed the form of X) */
5624 op0_mode
= VOIDmode
;
5630 /* If X is a commutative operation whose operands are not in the canonical
5631 order, use substitutions to swap them. */
5634 maybe_swap_commutative_operands (rtx x
)
5636 if (COMMUTATIVE_ARITH_P (x
)
5637 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
5639 rtx temp
= XEXP (x
, 0);
5640 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5641 SUBST (XEXP (x
, 1), temp
);
5645 /* Simplify X, a piece of RTL. We just operate on the expression at the
5646 outer level; call `subst' to simplify recursively. Return the new
5649 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5650 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5654 combine_simplify_rtx (rtx x
, machine_mode op0_mode
, int in_dest
,
5657 enum rtx_code code
= GET_CODE (x
);
5658 machine_mode mode
= GET_MODE (x
);
5659 scalar_int_mode int_mode
;
5663 /* If this is a commutative operation, put a constant last and a complex
5664 expression first. We don't need to do this for comparisons here. */
5665 maybe_swap_commutative_operands (x
);
5667 /* Try to fold this expression in case we have constants that weren't
5670 switch (GET_RTX_CLASS (code
))
5673 if (op0_mode
== VOIDmode
)
5674 op0_mode
= GET_MODE (XEXP (x
, 0));
5675 temp
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
5678 case RTX_COMM_COMPARE
:
5680 machine_mode cmp_mode
= GET_MODE (XEXP (x
, 0));
5681 if (cmp_mode
== VOIDmode
)
5683 cmp_mode
= GET_MODE (XEXP (x
, 1));
5684 if (cmp_mode
== VOIDmode
)
5685 cmp_mode
= op0_mode
;
5687 temp
= simplify_relational_operation (code
, mode
, cmp_mode
,
5688 XEXP (x
, 0), XEXP (x
, 1));
5691 case RTX_COMM_ARITH
:
5693 temp
= simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5695 case RTX_BITFIELD_OPS
:
5697 temp
= simplify_ternary_operation (code
, mode
, op0_mode
, XEXP (x
, 0),
5698 XEXP (x
, 1), XEXP (x
, 2));
5707 code
= GET_CODE (temp
);
5708 op0_mode
= VOIDmode
;
5709 mode
= GET_MODE (temp
);
5712 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5713 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5714 things. Check for cases where both arms are testing the same
5717 Don't do anything if all operands are very simple. */
5720 && ((!OBJECT_P (XEXP (x
, 0))
5721 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5722 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))
5723 || (!OBJECT_P (XEXP (x
, 1))
5724 && ! (GET_CODE (XEXP (x
, 1)) == SUBREG
5725 && OBJECT_P (SUBREG_REG (XEXP (x
, 1)))))))
5727 && (!OBJECT_P (XEXP (x
, 0))
5728 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5729 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))))
5731 rtx cond
, true_rtx
, false_rtx
;
5733 cond
= if_then_else_cond (x
, &true_rtx
, &false_rtx
);
5735 /* If everything is a comparison, what we have is highly unlikely
5736 to be simpler, so don't use it. */
5737 && ! (COMPARISON_P (x
)
5738 && (COMPARISON_P (true_rtx
) || COMPARISON_P (false_rtx
)))
5739 /* Similarly, if we end up with one of the expressions the same
5740 as the original, it is certainly not simpler. */
5741 && ! rtx_equal_p (x
, true_rtx
)
5742 && ! rtx_equal_p (x
, false_rtx
))
5744 rtx cop1
= const0_rtx
;
5745 enum rtx_code cond_code
= simplify_comparison (NE
, &cond
, &cop1
);
5747 if (cond_code
== NE
&& COMPARISON_P (cond
))
5750 /* Simplify the alternative arms; this may collapse the true and
5751 false arms to store-flag values. Be careful to use copy_rtx
5752 here since true_rtx or false_rtx might share RTL with x as a
5753 result of the if_then_else_cond call above. */
5754 true_rtx
= subst (copy_rtx (true_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5755 false_rtx
= subst (copy_rtx (false_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5757 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5758 is unlikely to be simpler. */
5759 if (general_operand (true_rtx
, VOIDmode
)
5760 && general_operand (false_rtx
, VOIDmode
))
5762 enum rtx_code reversed
;
5764 /* Restarting if we generate a store-flag expression will cause
5765 us to loop. Just drop through in this case. */
5767 /* If the result values are STORE_FLAG_VALUE and zero, we can
5768 just make the comparison operation. */
5769 if (true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
5770 x
= simplify_gen_relational (cond_code
, mode
, VOIDmode
,
5772 else if (true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
5773 && ((reversed
= reversed_comparison_code_parts
5774 (cond_code
, cond
, cop1
, NULL
))
5776 x
= simplify_gen_relational (reversed
, mode
, VOIDmode
,
5779 /* Likewise, we can make the negate of a comparison operation
5780 if the result values are - STORE_FLAG_VALUE and zero. */
5781 else if (CONST_INT_P (true_rtx
)
5782 && INTVAL (true_rtx
) == - STORE_FLAG_VALUE
5783 && false_rtx
== const0_rtx
)
5784 x
= simplify_gen_unary (NEG
, mode
,
5785 simplify_gen_relational (cond_code
,
5789 else if (CONST_INT_P (false_rtx
)
5790 && INTVAL (false_rtx
) == - STORE_FLAG_VALUE
5791 && true_rtx
== const0_rtx
5792 && ((reversed
= reversed_comparison_code_parts
5793 (cond_code
, cond
, cop1
, NULL
))
5795 x
= simplify_gen_unary (NEG
, mode
,
5796 simplify_gen_relational (reversed
,
5801 return gen_rtx_IF_THEN_ELSE (mode
,
5802 simplify_gen_relational (cond_code
,
5807 true_rtx
, false_rtx
);
5809 code
= GET_CODE (x
);
5810 op0_mode
= VOIDmode
;
5815 /* First see if we can apply the inverse distributive law. */
5816 if (code
== PLUS
|| code
== MINUS
5817 || code
== AND
|| code
== IOR
|| code
== XOR
)
5819 x
= apply_distributive_law (x
);
5820 code
= GET_CODE (x
);
5821 op0_mode
= VOIDmode
;
5824 /* If CODE is an associative operation not otherwise handled, see if we
5825 can associate some operands. This can win if they are constants or
5826 if they are logically related (i.e. (a & b) & a). */
5827 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
|| code
== DIV
5828 || code
== AND
|| code
== IOR
|| code
== XOR
5829 || code
== SMAX
|| code
== SMIN
|| code
== UMAX
|| code
== UMIN
)
5830 && ((INTEGRAL_MODE_P (mode
) && code
!= DIV
)
5831 || (flag_associative_math
&& FLOAT_MODE_P (mode
))))
5833 if (GET_CODE (XEXP (x
, 0)) == code
)
5835 rtx other
= XEXP (XEXP (x
, 0), 0);
5836 rtx inner_op0
= XEXP (XEXP (x
, 0), 1);
5837 rtx inner_op1
= XEXP (x
, 1);
5840 /* Make sure we pass the constant operand if any as the second
5841 one if this is a commutative operation. */
5842 if (CONSTANT_P (inner_op0
) && COMMUTATIVE_ARITH_P (x
))
5843 std::swap (inner_op0
, inner_op1
);
5844 inner
= simplify_binary_operation (code
== MINUS
? PLUS
5845 : code
== DIV
? MULT
5847 mode
, inner_op0
, inner_op1
);
5849 /* For commutative operations, try the other pair if that one
5851 if (inner
== 0 && COMMUTATIVE_ARITH_P (x
))
5853 other
= XEXP (XEXP (x
, 0), 1);
5854 inner
= simplify_binary_operation (code
, mode
,
5855 XEXP (XEXP (x
, 0), 0),
5860 return simplify_gen_binary (code
, mode
, other
, inner
);
5864 /* A little bit of algebraic simplification here. */
5868 /* Ensure that our address has any ASHIFTs converted to MULT in case
5869 address-recognizing predicates are called later. */
5870 temp
= make_compound_operation (XEXP (x
, 0), MEM
);
5871 SUBST (XEXP (x
, 0), temp
);
5875 if (op0_mode
== VOIDmode
)
5876 op0_mode
= GET_MODE (SUBREG_REG (x
));
5878 /* See if this can be moved to simplify_subreg. */
5879 if (CONSTANT_P (SUBREG_REG (x
))
5880 && known_eq (subreg_lowpart_offset (mode
, op0_mode
), SUBREG_BYTE (x
))
5881 /* Don't call gen_lowpart if the inner mode
5882 is VOIDmode and we cannot simplify it, as SUBREG without
5883 inner mode is invalid. */
5884 && (GET_MODE (SUBREG_REG (x
)) != VOIDmode
5885 || gen_lowpart_common (mode
, SUBREG_REG (x
))))
5886 return gen_lowpart (mode
, SUBREG_REG (x
));
5888 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_CC
)
5892 temp
= simplify_subreg (mode
, SUBREG_REG (x
), op0_mode
,
5897 /* If op is known to have all lower bits zero, the result is zero. */
5898 scalar_int_mode int_mode
, int_op0_mode
;
5900 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
5901 && is_a
<scalar_int_mode
> (op0_mode
, &int_op0_mode
)
5902 && (GET_MODE_PRECISION (int_mode
)
5903 < GET_MODE_PRECISION (int_op0_mode
))
5904 && known_eq (subreg_lowpart_offset (int_mode
, int_op0_mode
),
5906 && HWI_COMPUTABLE_MODE_P (int_op0_mode
)
5907 && (nonzero_bits (SUBREG_REG (x
), int_op0_mode
)
5908 & GET_MODE_MASK (int_mode
)) == 0)
5909 return CONST0_RTX (int_mode
);
5912 /* Don't change the mode of the MEM if that would change the meaning
5914 if (MEM_P (SUBREG_REG (x
))
5915 && (MEM_VOLATILE_P (SUBREG_REG (x
))
5916 || mode_dependent_address_p (XEXP (SUBREG_REG (x
), 0),
5917 MEM_ADDR_SPACE (SUBREG_REG (x
)))))
5918 return gen_rtx_CLOBBER (mode
, const0_rtx
);
5920 /* Note that we cannot do any narrowing for non-constants since
5921 we might have been counting on using the fact that some bits were
5922 zero. We now do this in the SET. */
5927 temp
= expand_compound_operation (XEXP (x
, 0));
5929 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5930 replaced by (lshiftrt X C). This will convert
5931 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5933 if (GET_CODE (temp
) == ASHIFTRT
5934 && CONST_INT_P (XEXP (temp
, 1))
5935 && INTVAL (XEXP (temp
, 1)) == GET_MODE_UNIT_PRECISION (mode
) - 1)
5936 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (temp
, 0),
5937 INTVAL (XEXP (temp
, 1)));
5939 /* If X has only a single bit that might be nonzero, say, bit I, convert
5940 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5941 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5942 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5943 or a SUBREG of one since we'd be making the expression more
5944 complex if it was just a register. */
5947 && ! (GET_CODE (temp
) == SUBREG
5948 && REG_P (SUBREG_REG (temp
)))
5949 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
5950 && (i
= exact_log2 (nonzero_bits (temp
, int_mode
))) >= 0)
5952 rtx temp1
= simplify_shift_const
5953 (NULL_RTX
, ASHIFTRT
, int_mode
,
5954 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
, temp
,
5955 GET_MODE_PRECISION (int_mode
) - 1 - i
),
5956 GET_MODE_PRECISION (int_mode
) - 1 - i
);
5958 /* If all we did was surround TEMP with the two shifts, we
5959 haven't improved anything, so don't use it. Otherwise,
5960 we are better off with TEMP1. */
5961 if (GET_CODE (temp1
) != ASHIFTRT
5962 || GET_CODE (XEXP (temp1
, 0)) != ASHIFT
5963 || XEXP (XEXP (temp1
, 0), 0) != temp
)
5969 /* We can't handle truncation to a partial integer mode here
5970 because we don't know the real bitsize of the partial
5972 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
5975 if (HWI_COMPUTABLE_MODE_P (mode
))
5977 force_to_mode (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
5978 GET_MODE_MASK (mode
), 0));
5980 /* We can truncate a constant value and return it. */
5981 if (CONST_INT_P (XEXP (x
, 0)))
5982 return gen_int_mode (INTVAL (XEXP (x
, 0)), mode
);
5984 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5985 whose value is a comparison can be replaced with a subreg if
5986 STORE_FLAG_VALUE permits. */
5987 if (HWI_COMPUTABLE_MODE_P (mode
)
5988 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0
5989 && (temp
= get_last_value (XEXP (x
, 0)))
5990 && COMPARISON_P (temp
))
5991 return gen_lowpart (mode
, XEXP (x
, 0));
5995 /* (const (const X)) can become (const X). Do it this way rather than
5996 returning the inner CONST since CONST can be shared with a
5998 if (GET_CODE (XEXP (x
, 0)) == CONST
)
5999 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
6003 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6004 can add in an offset. find_split_point will split this address up
6005 again if it doesn't match. */
6006 if (HAVE_lo_sum
&& GET_CODE (XEXP (x
, 0)) == HIGH
6007 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))
6012 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6013 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6014 bit-field and can be replaced by either a sign_extend or a
6015 sign_extract. The `and' may be a zero_extend and the two
6016 <c>, -<c> constants may be reversed. */
6017 if (GET_CODE (XEXP (x
, 0)) == XOR
6018 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6019 && CONST_INT_P (XEXP (x
, 1))
6020 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
6021 && INTVAL (XEXP (x
, 1)) == -INTVAL (XEXP (XEXP (x
, 0), 1))
6022 && ((i
= exact_log2 (UINTVAL (XEXP (XEXP (x
, 0), 1)))) >= 0
6023 || (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0)
6024 && HWI_COMPUTABLE_MODE_P (int_mode
)
6025 && ((GET_CODE (XEXP (XEXP (x
, 0), 0)) == AND
6026 && CONST_INT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
6027 && (UINTVAL (XEXP (XEXP (XEXP (x
, 0), 0), 1))
6028 == (HOST_WIDE_INT_1U
<< (i
+ 1)) - 1))
6029 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
6030 && known_eq ((GET_MODE_PRECISION
6031 (GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)))),
6032 (unsigned int) i
+ 1))))
6033 return simplify_shift_const
6034 (NULL_RTX
, ASHIFTRT
, int_mode
,
6035 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6036 XEXP (XEXP (XEXP (x
, 0), 0), 0),
6037 GET_MODE_PRECISION (int_mode
) - (i
+ 1)),
6038 GET_MODE_PRECISION (int_mode
) - (i
+ 1));
6040 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6041 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6042 the bitsize of the mode - 1. This allows simplification of
6043 "a = (b & 8) == 0;" */
6044 if (XEXP (x
, 1) == constm1_rtx
6045 && !REG_P (XEXP (x
, 0))
6046 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
6047 && REG_P (SUBREG_REG (XEXP (x
, 0))))
6048 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6049 && nonzero_bits (XEXP (x
, 0), int_mode
) == 1)
6050 return simplify_shift_const
6051 (NULL_RTX
, ASHIFTRT
, int_mode
,
6052 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6053 gen_rtx_XOR (int_mode
, XEXP (x
, 0),
6055 GET_MODE_PRECISION (int_mode
) - 1),
6056 GET_MODE_PRECISION (int_mode
) - 1);
6058 /* If we are adding two things that have no bits in common, convert
6059 the addition into an IOR. This will often be further simplified,
6060 for example in cases like ((a & 1) + (a & 2)), which can
6063 if (HWI_COMPUTABLE_MODE_P (mode
)
6064 && (nonzero_bits (XEXP (x
, 0), mode
)
6065 & nonzero_bits (XEXP (x
, 1), mode
)) == 0)
6067 /* Try to simplify the expression further. */
6068 rtx tor
= simplify_gen_binary (IOR
, mode
, XEXP (x
, 0), XEXP (x
, 1));
6069 temp
= combine_simplify_rtx (tor
, VOIDmode
, in_dest
, 0);
6071 /* If we could, great. If not, do not go ahead with the IOR
6072 replacement, since PLUS appears in many special purpose
6073 address arithmetic instructions. */
6074 if (GET_CODE (temp
) != CLOBBER
6075 && (GET_CODE (temp
) != IOR
6076 || ((XEXP (temp
, 0) != XEXP (x
, 0)
6077 || XEXP (temp
, 1) != XEXP (x
, 1))
6078 && (XEXP (temp
, 0) != XEXP (x
, 1)
6079 || XEXP (temp
, 1) != XEXP (x
, 0)))))
6083 /* Canonicalize x + x into x << 1. */
6084 if (GET_MODE_CLASS (mode
) == MODE_INT
6085 && rtx_equal_p (XEXP (x
, 0), XEXP (x
, 1))
6086 && !side_effects_p (XEXP (x
, 0)))
6087 return simplify_gen_binary (ASHIFT
, mode
, XEXP (x
, 0), const1_rtx
);
6092 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6093 (and <foo> (const_int pow2-1)) */
6094 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
6095 && GET_CODE (XEXP (x
, 1)) == AND
6096 && CONST_INT_P (XEXP (XEXP (x
, 1), 1))
6097 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x
, 1), 1)))
6098 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
6099 return simplify_and_const_int (NULL_RTX
, int_mode
, XEXP (x
, 0),
6100 -INTVAL (XEXP (XEXP (x
, 1), 1)) - 1);
6104 /* If we have (mult (plus A B) C), apply the distributive law and then
6105 the inverse distributive law to see if things simplify. This
6106 occurs mostly in addresses, often when unrolling loops. */
6108 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
6110 rtx result
= distribute_and_simplify_rtx (x
, 0);
6115 /* Try simplify a*(b/c) as (a*b)/c. */
6116 if (FLOAT_MODE_P (mode
) && flag_associative_math
6117 && GET_CODE (XEXP (x
, 0)) == DIV
)
6119 rtx tem
= simplify_binary_operation (MULT
, mode
,
6120 XEXP (XEXP (x
, 0), 0),
6123 return simplify_gen_binary (DIV
, mode
, tem
, XEXP (XEXP (x
, 0), 1));
6128 /* If this is a divide by a power of two, treat it as a shift if
6129 its first operand is a shift. */
6130 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
6131 && CONST_INT_P (XEXP (x
, 1))
6132 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0
6133 && (GET_CODE (XEXP (x
, 0)) == ASHIFT
6134 || GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6135 || GET_CODE (XEXP (x
, 0)) == ASHIFTRT
6136 || GET_CODE (XEXP (x
, 0)) == ROTATE
6137 || GET_CODE (XEXP (x
, 0)) == ROTATERT
))
6138 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, int_mode
,
6143 case GT
: case GTU
: case GE
: case GEU
:
6144 case LT
: case LTU
: case LE
: case LEU
:
6145 case UNEQ
: case LTGT
:
6146 case UNGT
: case UNGE
:
6147 case UNLT
: case UNLE
:
6148 case UNORDERED
: case ORDERED
:
6149 /* If the first operand is a condition code, we can't do anything
6151 if (GET_CODE (XEXP (x
, 0)) == COMPARE
6152 || (GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))) != MODE_CC
6153 && ! CC0_P (XEXP (x
, 0))))
6155 rtx op0
= XEXP (x
, 0);
6156 rtx op1
= XEXP (x
, 1);
6157 enum rtx_code new_code
;
6159 if (GET_CODE (op0
) == COMPARE
)
6160 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
6162 /* Simplify our comparison, if possible. */
6163 new_code
= simplify_comparison (code
, &op0
, &op1
);
6165 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6166 if only the low-order bit is possibly nonzero in X (such as when
6167 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6168 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6169 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6172 Remove any ZERO_EXTRACT we made when thinking this was a
6173 comparison. It may now be simpler to use, e.g., an AND. If a
6174 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6175 the call to make_compound_operation in the SET case.
6177 Don't apply these optimizations if the caller would
6178 prefer a comparison rather than a value.
6179 E.g., for the condition in an IF_THEN_ELSE most targets need
6180 an explicit comparison. */
6185 else if (STORE_FLAG_VALUE
== 1
6187 && is_int_mode (mode
, &int_mode
)
6188 && op1
== const0_rtx
6189 && int_mode
== GET_MODE (op0
)
6190 && nonzero_bits (op0
, int_mode
) == 1)
6191 return gen_lowpart (int_mode
,
6192 expand_compound_operation (op0
));
6194 else if (STORE_FLAG_VALUE
== 1
6196 && is_int_mode (mode
, &int_mode
)
6197 && op1
== const0_rtx
6198 && int_mode
== GET_MODE (op0
)
6199 && (num_sign_bit_copies (op0
, int_mode
)
6200 == GET_MODE_PRECISION (int_mode
)))
6202 op0
= expand_compound_operation (op0
);
6203 return simplify_gen_unary (NEG
, int_mode
,
6204 gen_lowpart (int_mode
, op0
),
6208 else if (STORE_FLAG_VALUE
== 1
6210 && is_int_mode (mode
, &int_mode
)
6211 && op1
== const0_rtx
6212 && int_mode
== GET_MODE (op0
)
6213 && nonzero_bits (op0
, int_mode
) == 1)
6215 op0
= expand_compound_operation (op0
);
6216 return simplify_gen_binary (XOR
, int_mode
,
6217 gen_lowpart (int_mode
, op0
),
6221 else if (STORE_FLAG_VALUE
== 1
6223 && is_int_mode (mode
, &int_mode
)
6224 && op1
== const0_rtx
6225 && int_mode
== GET_MODE (op0
)
6226 && (num_sign_bit_copies (op0
, int_mode
)
6227 == GET_MODE_PRECISION (int_mode
)))
6229 op0
= expand_compound_operation (op0
);
6230 return plus_constant (int_mode
, gen_lowpart (int_mode
, op0
), 1);
6233 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6238 else if (STORE_FLAG_VALUE
== -1
6240 && is_int_mode (mode
, &int_mode
)
6241 && op1
== const0_rtx
6242 && int_mode
== GET_MODE (op0
)
6243 && (num_sign_bit_copies (op0
, int_mode
)
6244 == GET_MODE_PRECISION (int_mode
)))
6245 return gen_lowpart (int_mode
, expand_compound_operation (op0
));
6247 else if (STORE_FLAG_VALUE
== -1
6249 && is_int_mode (mode
, &int_mode
)
6250 && op1
== const0_rtx
6251 && int_mode
== GET_MODE (op0
)
6252 && nonzero_bits (op0
, int_mode
) == 1)
6254 op0
= expand_compound_operation (op0
);
6255 return simplify_gen_unary (NEG
, int_mode
,
6256 gen_lowpart (int_mode
, op0
),
6260 else if (STORE_FLAG_VALUE
== -1
6262 && is_int_mode (mode
, &int_mode
)
6263 && op1
== const0_rtx
6264 && int_mode
== GET_MODE (op0
)
6265 && (num_sign_bit_copies (op0
, int_mode
)
6266 == GET_MODE_PRECISION (int_mode
)))
6268 op0
= expand_compound_operation (op0
);
6269 return simplify_gen_unary (NOT
, int_mode
,
6270 gen_lowpart (int_mode
, op0
),
6274 /* If X is 0/1, (eq X 0) is X-1. */
6275 else if (STORE_FLAG_VALUE
== -1
6277 && is_int_mode (mode
, &int_mode
)
6278 && op1
== const0_rtx
6279 && int_mode
== GET_MODE (op0
)
6280 && nonzero_bits (op0
, int_mode
) == 1)
6282 op0
= expand_compound_operation (op0
);
6283 return plus_constant (int_mode
, gen_lowpart (int_mode
, op0
), -1);
6286 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6287 one bit that might be nonzero, we can convert (ne x 0) to
6288 (ashift x c) where C puts the bit in the sign bit. Remove any
6289 AND with STORE_FLAG_VALUE when we are done, since we are only
6290 going to test the sign bit. */
6292 && is_int_mode (mode
, &int_mode
)
6293 && HWI_COMPUTABLE_MODE_P (int_mode
)
6294 && val_signbit_p (int_mode
, STORE_FLAG_VALUE
)
6295 && op1
== const0_rtx
6296 && int_mode
== GET_MODE (op0
)
6297 && (i
= exact_log2 (nonzero_bits (op0
, int_mode
))) >= 0)
6299 x
= simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6300 expand_compound_operation (op0
),
6301 GET_MODE_PRECISION (int_mode
) - 1 - i
);
6302 if (GET_CODE (x
) == AND
&& XEXP (x
, 1) == const_true_rtx
)
6308 /* If the code changed, return a whole new comparison.
6309 We also need to avoid using SUBST in cases where
6310 simplify_comparison has widened a comparison with a CONST_INT,
6311 since in that case the wider CONST_INT may fail the sanity
6312 checks in do_SUBST. */
6313 if (new_code
!= code
6314 || (CONST_INT_P (op1
)
6315 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 0))
6316 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 1))))
6317 return gen_rtx_fmt_ee (new_code
, mode
, op0
, op1
);
6319 /* Otherwise, keep this operation, but maybe change its operands.
6320 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6321 SUBST (XEXP (x
, 0), op0
);
6322 SUBST (XEXP (x
, 1), op1
);
6327 return simplify_if_then_else (x
);
6333 /* If we are processing SET_DEST, we are done. */
6337 return expand_compound_operation (x
);
6340 return simplify_set (x
);
6344 return simplify_logical (x
);
6351 /* If this is a shift by a constant amount, simplify it. */
6352 if (CONST_INT_P (XEXP (x
, 1)))
6353 return simplify_shift_const (x
, code
, mode
, XEXP (x
, 0),
6354 INTVAL (XEXP (x
, 1)));
6356 else if (SHIFT_COUNT_TRUNCATED
&& !REG_P (XEXP (x
, 1)))
6358 force_to_mode (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)),
6360 << exact_log2 (GET_MODE_UNIT_BITSIZE
6373 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6376 simplify_if_then_else (rtx x
)
6378 machine_mode mode
= GET_MODE (x
);
6379 rtx cond
= XEXP (x
, 0);
6380 rtx true_rtx
= XEXP (x
, 1);
6381 rtx false_rtx
= XEXP (x
, 2);
6382 enum rtx_code true_code
= GET_CODE (cond
);
6383 int comparison_p
= COMPARISON_P (cond
);
6386 enum rtx_code false_code
;
6388 scalar_int_mode int_mode
, inner_mode
;
6390 /* Simplify storing of the truth value. */
6391 if (comparison_p
&& true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
6392 return simplify_gen_relational (true_code
, mode
, VOIDmode
,
6393 XEXP (cond
, 0), XEXP (cond
, 1));
6395 /* Also when the truth value has to be reversed. */
6397 && true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
6398 && (reversed
= reversed_comparison (cond
, mode
)))
6401 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6402 in it is being compared against certain values. Get the true and false
6403 comparisons and see if that says anything about the value of each arm. */
6406 && ((false_code
= reversed_comparison_code (cond
, NULL
))
6408 && REG_P (XEXP (cond
, 0)))
6411 rtx from
= XEXP (cond
, 0);
6412 rtx true_val
= XEXP (cond
, 1);
6413 rtx false_val
= true_val
;
6416 /* If FALSE_CODE is EQ, swap the codes and arms. */
6418 if (false_code
== EQ
)
6420 swapped
= 1, true_code
= EQ
, false_code
= NE
;
6421 std::swap (true_rtx
, false_rtx
);
6424 scalar_int_mode from_mode
;
6425 if (is_a
<scalar_int_mode
> (GET_MODE (from
), &from_mode
))
6427 /* If we are comparing against zero and the expression being
6428 tested has only a single bit that might be nonzero, that is
6429 its value when it is not equal to zero. Similarly if it is
6430 known to be -1 or 0. */
6432 && true_val
== const0_rtx
6433 && pow2p_hwi (nzb
= nonzero_bits (from
, from_mode
)))
6436 false_val
= gen_int_mode (nzb
, from_mode
);
6438 else if (true_code
== EQ
6439 && true_val
== const0_rtx
6440 && (num_sign_bit_copies (from
, from_mode
)
6441 == GET_MODE_PRECISION (from_mode
)))
6444 false_val
= constm1_rtx
;
6448 /* Now simplify an arm if we know the value of the register in the
6449 branch and it is used in the arm. Be careful due to the potential
6450 of locally-shared RTL. */
6452 if (reg_mentioned_p (from
, true_rtx
))
6453 true_rtx
= subst (known_cond (copy_rtx (true_rtx
), true_code
,
6455 pc_rtx
, pc_rtx
, 0, 0, 0);
6456 if (reg_mentioned_p (from
, false_rtx
))
6457 false_rtx
= subst (known_cond (copy_rtx (false_rtx
), false_code
,
6459 pc_rtx
, pc_rtx
, 0, 0, 0);
6461 SUBST (XEXP (x
, 1), swapped
? false_rtx
: true_rtx
);
6462 SUBST (XEXP (x
, 2), swapped
? true_rtx
: false_rtx
);
6464 true_rtx
= XEXP (x
, 1);
6465 false_rtx
= XEXP (x
, 2);
6466 true_code
= GET_CODE (cond
);
6469 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6470 reversed, do so to avoid needing two sets of patterns for
6471 subtract-and-branch insns. Similarly if we have a constant in the true
6472 arm, the false arm is the same as the first operand of the comparison, or
6473 the false arm is more complicated than the true arm. */
6476 && reversed_comparison_code (cond
, NULL
) != UNKNOWN
6477 && (true_rtx
== pc_rtx
6478 || (CONSTANT_P (true_rtx
)
6479 && !CONST_INT_P (false_rtx
) && false_rtx
!= pc_rtx
)
6480 || true_rtx
== const0_rtx
6481 || (OBJECT_P (true_rtx
) && !OBJECT_P (false_rtx
))
6482 || (GET_CODE (true_rtx
) == SUBREG
&& OBJECT_P (SUBREG_REG (true_rtx
))
6483 && !OBJECT_P (false_rtx
))
6484 || reg_mentioned_p (true_rtx
, false_rtx
)
6485 || rtx_equal_p (false_rtx
, XEXP (cond
, 0))))
6487 true_code
= reversed_comparison_code (cond
, NULL
);
6488 SUBST (XEXP (x
, 0), reversed_comparison (cond
, GET_MODE (cond
)));
6489 SUBST (XEXP (x
, 1), false_rtx
);
6490 SUBST (XEXP (x
, 2), true_rtx
);
6492 std::swap (true_rtx
, false_rtx
);
6495 /* It is possible that the conditional has been simplified out. */
6496 true_code
= GET_CODE (cond
);
6497 comparison_p
= COMPARISON_P (cond
);
6500 /* If the two arms are identical, we don't need the comparison. */
6502 if (rtx_equal_p (true_rtx
, false_rtx
) && ! side_effects_p (cond
))
6505 /* Convert a == b ? b : a to "a". */
6506 if (true_code
== EQ
&& ! side_effects_p (cond
)
6507 && !HONOR_NANS (mode
)
6508 && rtx_equal_p (XEXP (cond
, 0), false_rtx
)
6509 && rtx_equal_p (XEXP (cond
, 1), true_rtx
))
6511 else if (true_code
== NE
&& ! side_effects_p (cond
)
6512 && !HONOR_NANS (mode
)
6513 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6514 && rtx_equal_p (XEXP (cond
, 1), false_rtx
))
6517 /* Look for cases where we have (abs x) or (neg (abs X)). */
6519 if (GET_MODE_CLASS (mode
) == MODE_INT
6521 && XEXP (cond
, 1) == const0_rtx
6522 && GET_CODE (false_rtx
) == NEG
6523 && rtx_equal_p (true_rtx
, XEXP (false_rtx
, 0))
6524 && rtx_equal_p (true_rtx
, XEXP (cond
, 0))
6525 && ! side_effects_p (true_rtx
))
6530 return simplify_gen_unary (ABS
, mode
, true_rtx
, mode
);
6534 simplify_gen_unary (NEG
, mode
,
6535 simplify_gen_unary (ABS
, mode
, true_rtx
, mode
),
6541 /* Look for MIN or MAX. */
6543 if ((! FLOAT_MODE_P (mode
) || flag_unsafe_math_optimizations
)
6545 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6546 && rtx_equal_p (XEXP (cond
, 1), false_rtx
)
6547 && ! side_effects_p (cond
))
6552 return simplify_gen_binary (SMAX
, mode
, true_rtx
, false_rtx
);
6555 return simplify_gen_binary (SMIN
, mode
, true_rtx
, false_rtx
);
6558 return simplify_gen_binary (UMAX
, mode
, true_rtx
, false_rtx
);
6561 return simplify_gen_binary (UMIN
, mode
, true_rtx
, false_rtx
);
6566 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6567 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6568 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6569 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6570 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6571 neither 1 or -1, but it isn't worth checking for. */
6573 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
6575 && is_int_mode (mode
, &int_mode
)
6576 && ! side_effects_p (x
))
6578 rtx t
= make_compound_operation (true_rtx
, SET
);
6579 rtx f
= make_compound_operation (false_rtx
, SET
);
6580 rtx cond_op0
= XEXP (cond
, 0);
6581 rtx cond_op1
= XEXP (cond
, 1);
6582 enum rtx_code op
= UNKNOWN
, extend_op
= UNKNOWN
;
6583 scalar_int_mode m
= int_mode
;
6584 rtx z
= 0, c1
= NULL_RTX
;
6586 if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == MINUS
6587 || GET_CODE (t
) == IOR
|| GET_CODE (t
) == XOR
6588 || GET_CODE (t
) == ASHIFT
6589 || GET_CODE (t
) == LSHIFTRT
|| GET_CODE (t
) == ASHIFTRT
)
6590 && rtx_equal_p (XEXP (t
, 0), f
))
6591 c1
= XEXP (t
, 1), op
= GET_CODE (t
), z
= f
;
6593 /* If an identity-zero op is commutative, check whether there
6594 would be a match if we swapped the operands. */
6595 else if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == IOR
6596 || GET_CODE (t
) == XOR
)
6597 && rtx_equal_p (XEXP (t
, 1), f
))
6598 c1
= XEXP (t
, 0), op
= GET_CODE (t
), z
= f
;
6599 else if (GET_CODE (t
) == SIGN_EXTEND
6600 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6601 && (GET_CODE (XEXP (t
, 0)) == PLUS
6602 || GET_CODE (XEXP (t
, 0)) == MINUS
6603 || GET_CODE (XEXP (t
, 0)) == IOR
6604 || GET_CODE (XEXP (t
, 0)) == XOR
6605 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6606 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6607 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6608 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6609 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6610 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6611 && (num_sign_bit_copies (f
, GET_MODE (f
))
6613 (GET_MODE_PRECISION (int_mode
)
6614 - GET_MODE_PRECISION (inner_mode
))))
6616 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6617 extend_op
= SIGN_EXTEND
;
6620 else if (GET_CODE (t
) == SIGN_EXTEND
6621 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6622 && (GET_CODE (XEXP (t
, 0)) == PLUS
6623 || GET_CODE (XEXP (t
, 0)) == IOR
6624 || GET_CODE (XEXP (t
, 0)) == XOR
)
6625 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6626 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6627 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6628 && (num_sign_bit_copies (f
, GET_MODE (f
))
6630 (GET_MODE_PRECISION (int_mode
)
6631 - GET_MODE_PRECISION (inner_mode
))))
6633 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6634 extend_op
= SIGN_EXTEND
;
6637 else if (GET_CODE (t
) == ZERO_EXTEND
6638 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6639 && (GET_CODE (XEXP (t
, 0)) == PLUS
6640 || GET_CODE (XEXP (t
, 0)) == MINUS
6641 || GET_CODE (XEXP (t
, 0)) == IOR
6642 || GET_CODE (XEXP (t
, 0)) == XOR
6643 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6644 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6645 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6646 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6647 && HWI_COMPUTABLE_MODE_P (int_mode
)
6648 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6649 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6650 && ((nonzero_bits (f
, GET_MODE (f
))
6651 & ~GET_MODE_MASK (inner_mode
))
6654 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6655 extend_op
= ZERO_EXTEND
;
6658 else if (GET_CODE (t
) == ZERO_EXTEND
6659 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6660 && (GET_CODE (XEXP (t
, 0)) == PLUS
6661 || GET_CODE (XEXP (t
, 0)) == IOR
6662 || GET_CODE (XEXP (t
, 0)) == XOR
)
6663 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6664 && HWI_COMPUTABLE_MODE_P (int_mode
)
6665 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6666 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6667 && ((nonzero_bits (f
, GET_MODE (f
))
6668 & ~GET_MODE_MASK (inner_mode
))
6671 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6672 extend_op
= ZERO_EXTEND
;
6678 machine_mode cm
= m
;
6679 if ((op
== ASHIFT
|| op
== LSHIFTRT
|| op
== ASHIFTRT
)
6680 && GET_MODE (c1
) != VOIDmode
)
6682 temp
= subst (simplify_gen_relational (true_code
, cm
, VOIDmode
,
6683 cond_op0
, cond_op1
),
6684 pc_rtx
, pc_rtx
, 0, 0, 0);
6685 temp
= simplify_gen_binary (MULT
, cm
, temp
,
6686 simplify_gen_binary (MULT
, cm
, c1
,
6688 temp
= subst (temp
, pc_rtx
, pc_rtx
, 0, 0, 0);
6689 temp
= simplify_gen_binary (op
, m
, gen_lowpart (m
, z
), temp
);
6691 if (extend_op
!= UNKNOWN
)
6692 temp
= simplify_gen_unary (extend_op
, int_mode
, temp
, m
);
6698 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6699 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6700 negation of a single bit, we can convert this operation to a shift. We
6701 can actually do this more generally, but it doesn't seem worth it. */
6704 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6705 && XEXP (cond
, 1) == const0_rtx
6706 && false_rtx
== const0_rtx
6707 && CONST_INT_P (true_rtx
)
6708 && ((nonzero_bits (XEXP (cond
, 0), int_mode
) == 1
6709 && (i
= exact_log2 (UINTVAL (true_rtx
))) >= 0)
6710 || ((num_sign_bit_copies (XEXP (cond
, 0), int_mode
)
6711 == GET_MODE_PRECISION (int_mode
))
6712 && (i
= exact_log2 (-UINTVAL (true_rtx
))) >= 0)))
6714 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6715 gen_lowpart (int_mode
, XEXP (cond
, 0)), i
);
6717 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6718 non-zero bit in A is C1. */
6719 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
6720 && false_rtx
== const0_rtx
&& CONST_INT_P (true_rtx
)
6721 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6722 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (cond
, 0)), &inner_mode
)
6723 && (UINTVAL (true_rtx
) & GET_MODE_MASK (int_mode
))
6724 == nonzero_bits (XEXP (cond
, 0), inner_mode
)
6725 && (i
= exact_log2 (UINTVAL (true_rtx
) & GET_MODE_MASK (int_mode
))) >= 0)
6727 rtx val
= XEXP (cond
, 0);
6728 if (inner_mode
== int_mode
)
6730 else if (GET_MODE_PRECISION (inner_mode
) < GET_MODE_PRECISION (int_mode
))
6731 return simplify_gen_unary (ZERO_EXTEND
, int_mode
, val
, inner_mode
);
6737 /* Simplify X, a SET expression. Return the new expression. */
6740 simplify_set (rtx x
)
6742 rtx src
= SET_SRC (x
);
6743 rtx dest
= SET_DEST (x
);
6745 = GET_MODE (src
) != VOIDmode
? GET_MODE (src
) : GET_MODE (dest
);
6746 rtx_insn
*other_insn
;
6748 scalar_int_mode int_mode
;
6750 /* (set (pc) (return)) gets written as (return). */
6751 if (GET_CODE (dest
) == PC
&& ANY_RETURN_P (src
))
6754 /* Now that we know for sure which bits of SRC we are using, see if we can
6755 simplify the expression for the object knowing that we only need the
6758 if (GET_MODE_CLASS (mode
) == MODE_INT
&& HWI_COMPUTABLE_MODE_P (mode
))
6760 src
= force_to_mode (src
, mode
, HOST_WIDE_INT_M1U
, 0);
6761 SUBST (SET_SRC (x
), src
);
6764 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6765 the comparison result and try to simplify it unless we already have used
6766 undobuf.other_insn. */
6767 if ((GET_MODE_CLASS (mode
) == MODE_CC
6768 || GET_CODE (src
) == COMPARE
6770 && (cc_use
= find_single_use (dest
, subst_insn
, &other_insn
)) != 0
6771 && (undobuf
.other_insn
== 0 || other_insn
== undobuf
.other_insn
)
6772 && COMPARISON_P (*cc_use
)
6773 && rtx_equal_p (XEXP (*cc_use
, 0), dest
))
6775 enum rtx_code old_code
= GET_CODE (*cc_use
);
6776 enum rtx_code new_code
;
6778 int other_changed
= 0;
6779 rtx inner_compare
= NULL_RTX
;
6780 machine_mode compare_mode
= GET_MODE (dest
);
6782 if (GET_CODE (src
) == COMPARE
)
6784 op0
= XEXP (src
, 0), op1
= XEXP (src
, 1);
6785 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
6787 inner_compare
= op0
;
6788 op0
= XEXP (inner_compare
, 0), op1
= XEXP (inner_compare
, 1);
6792 op0
= src
, op1
= CONST0_RTX (GET_MODE (src
));
6794 tmp
= simplify_relational_operation (old_code
, compare_mode
, VOIDmode
,
6797 new_code
= old_code
;
6798 else if (!CONSTANT_P (tmp
))
6800 new_code
= GET_CODE (tmp
);
6801 op0
= XEXP (tmp
, 0);
6802 op1
= XEXP (tmp
, 1);
6806 rtx pat
= PATTERN (other_insn
);
6807 undobuf
.other_insn
= other_insn
;
6808 SUBST (*cc_use
, tmp
);
6810 /* Attempt to simplify CC user. */
6811 if (GET_CODE (pat
) == SET
)
6813 rtx new_rtx
= simplify_rtx (SET_SRC (pat
));
6814 if (new_rtx
!= NULL_RTX
)
6815 SUBST (SET_SRC (pat
), new_rtx
);
6818 /* Convert X into a no-op move. */
6819 SUBST (SET_DEST (x
), pc_rtx
);
6820 SUBST (SET_SRC (x
), pc_rtx
);
6824 /* Simplify our comparison, if possible. */
6825 new_code
= simplify_comparison (new_code
, &op0
, &op1
);
6827 #ifdef SELECT_CC_MODE
6828 /* If this machine has CC modes other than CCmode, check to see if we
6829 need to use a different CC mode here. */
6830 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
6831 compare_mode
= GET_MODE (op0
);
6832 else if (inner_compare
6833 && GET_MODE_CLASS (GET_MODE (inner_compare
)) == MODE_CC
6834 && new_code
== old_code
6835 && op0
== XEXP (inner_compare
, 0)
6836 && op1
== XEXP (inner_compare
, 1))
6837 compare_mode
= GET_MODE (inner_compare
);
6839 compare_mode
= SELECT_CC_MODE (new_code
, op0
, op1
);
6841 /* If the mode changed, we have to change SET_DEST, the mode in the
6842 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6843 a hard register, just build new versions with the proper mode. If it
6844 is a pseudo, we lose unless it is only time we set the pseudo, in
6845 which case we can safely change its mode. */
6846 if (!HAVE_cc0
&& compare_mode
!= GET_MODE (dest
))
6848 if (can_change_dest_mode (dest
, 0, compare_mode
))
6850 unsigned int regno
= REGNO (dest
);
6853 if (regno
< FIRST_PSEUDO_REGISTER
)
6854 new_dest
= gen_rtx_REG (compare_mode
, regno
);
6857 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
6858 new_dest
= regno_reg_rtx
[regno
];
6861 SUBST (SET_DEST (x
), new_dest
);
6862 SUBST (XEXP (*cc_use
, 0), new_dest
);
6868 #endif /* SELECT_CC_MODE */
6870 /* If the code changed, we have to build a new comparison in
6871 undobuf.other_insn. */
6872 if (new_code
!= old_code
)
6874 int other_changed_previously
= other_changed
;
6875 unsigned HOST_WIDE_INT mask
;
6876 rtx old_cc_use
= *cc_use
;
6878 SUBST (*cc_use
, gen_rtx_fmt_ee (new_code
, GET_MODE (*cc_use
),
6882 /* If the only change we made was to change an EQ into an NE or
6883 vice versa, OP0 has only one bit that might be nonzero, and OP1
6884 is zero, check if changing the user of the condition code will
6885 produce a valid insn. If it won't, we can keep the original code
6886 in that insn by surrounding our operation with an XOR. */
6888 if (((old_code
== NE
&& new_code
== EQ
)
6889 || (old_code
== EQ
&& new_code
== NE
))
6890 && ! other_changed_previously
&& op1
== const0_rtx
6891 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
6892 && pow2p_hwi (mask
= nonzero_bits (op0
, GET_MODE (op0
))))
6894 rtx pat
= PATTERN (other_insn
), note
= 0;
6896 if ((recog_for_combine (&pat
, other_insn
, ¬e
) < 0
6897 && ! check_asm_operands (pat
)))
6899 *cc_use
= old_cc_use
;
6902 op0
= simplify_gen_binary (XOR
, GET_MODE (op0
), op0
,
6910 undobuf
.other_insn
= other_insn
;
6912 /* Don't generate a compare of a CC with 0, just use that CC. */
6913 if (GET_MODE (op0
) == compare_mode
&& op1
== const0_rtx
)
6915 SUBST (SET_SRC (x
), op0
);
6918 /* Otherwise, if we didn't previously have the same COMPARE we
6919 want, create it from scratch. */
6920 else if (GET_CODE (src
) != COMPARE
|| GET_MODE (src
) != compare_mode
6921 || XEXP (src
, 0) != op0
|| XEXP (src
, 1) != op1
)
6923 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
6929 /* Get SET_SRC in a form where we have placed back any
6930 compound expressions. Then do the checks below. */
6931 src
= make_compound_operation (src
, SET
);
6932 SUBST (SET_SRC (x
), src
);
6935 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6936 and X being a REG or (subreg (reg)), we may be able to convert this to
6937 (set (subreg:m2 x) (op)).
6939 We can always do this if M1 is narrower than M2 because that means that
6940 we only care about the low bits of the result.
6942 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6943 perform a narrower operation than requested since the high-order bits will
6944 be undefined. On machine where it is defined, this transformation is safe
6945 as long as M1 and M2 have the same number of words. */
6947 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
6948 && !OBJECT_P (SUBREG_REG (src
))
6949 && (known_equal_after_align_up
6950 (GET_MODE_SIZE (GET_MODE (src
)),
6951 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))),
6953 && (WORD_REGISTER_OPERATIONS
|| !paradoxical_subreg_p (src
))
6954 && ! (REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
6955 && !REG_CAN_CHANGE_MODE_P (REGNO (dest
),
6956 GET_MODE (SUBREG_REG (src
)),
6959 || (GET_CODE (dest
) == SUBREG
6960 && REG_P (SUBREG_REG (dest
)))))
6962 SUBST (SET_DEST (x
),
6963 gen_lowpart (GET_MODE (SUBREG_REG (src
)),
6965 SUBST (SET_SRC (x
), SUBREG_REG (src
));
6967 src
= SET_SRC (x
), dest
= SET_DEST (x
);
6970 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6973 && partial_subreg_p (src
)
6974 && subreg_lowpart_p (src
))
6976 rtx inner
= SUBREG_REG (src
);
6977 machine_mode inner_mode
= GET_MODE (inner
);
6979 /* Here we make sure that we don't have a sign bit on. */
6980 if (val_signbit_known_clear_p (GET_MODE (src
),
6981 nonzero_bits (inner
, inner_mode
)))
6983 SUBST (SET_SRC (x
), inner
);
6988 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6989 would require a paradoxical subreg. Replace the subreg with a
6990 zero_extend to avoid the reload that would otherwise be required.
6991 Don't do this unless we have a scalar integer mode, otherwise the
6992 transformation is incorrect. */
6994 enum rtx_code extend_op
;
6995 if (paradoxical_subreg_p (src
)
6996 && MEM_P (SUBREG_REG (src
))
6997 && SCALAR_INT_MODE_P (GET_MODE (src
))
6998 && (extend_op
= load_extend_op (GET_MODE (SUBREG_REG (src
)))) != UNKNOWN
)
7001 gen_rtx_fmt_e (extend_op
, GET_MODE (src
), SUBREG_REG (src
)));
7006 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7007 are comparing an item known to be 0 or -1 against 0, use a logical
7008 operation instead. Check for one of the arms being an IOR of the other
7009 arm with some value. We compute three terms to be IOR'ed together. In
7010 practice, at most two will be nonzero. Then we do the IOR's. */
7012 if (GET_CODE (dest
) != PC
7013 && GET_CODE (src
) == IF_THEN_ELSE
7014 && is_int_mode (GET_MODE (src
), &int_mode
)
7015 && (GET_CODE (XEXP (src
, 0)) == EQ
|| GET_CODE (XEXP (src
, 0)) == NE
)
7016 && XEXP (XEXP (src
, 0), 1) == const0_rtx
7017 && int_mode
== GET_MODE (XEXP (XEXP (src
, 0), 0))
7018 && (!HAVE_conditional_move
7019 || ! can_conditionally_move_p (int_mode
))
7020 && (num_sign_bit_copies (XEXP (XEXP (src
, 0), 0), int_mode
)
7021 == GET_MODE_PRECISION (int_mode
))
7022 && ! side_effects_p (src
))
7024 rtx true_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
7025 ? XEXP (src
, 1) : XEXP (src
, 2));
7026 rtx false_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
7027 ? XEXP (src
, 2) : XEXP (src
, 1));
7028 rtx term1
= const0_rtx
, term2
, term3
;
7030 if (GET_CODE (true_rtx
) == IOR
7031 && rtx_equal_p (XEXP (true_rtx
, 0), false_rtx
))
7032 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 1), false_rtx
= const0_rtx
;
7033 else if (GET_CODE (true_rtx
) == IOR
7034 && rtx_equal_p (XEXP (true_rtx
, 1), false_rtx
))
7035 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 0), false_rtx
= const0_rtx
;
7036 else if (GET_CODE (false_rtx
) == IOR
7037 && rtx_equal_p (XEXP (false_rtx
, 0), true_rtx
))
7038 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 1), true_rtx
= const0_rtx
;
7039 else if (GET_CODE (false_rtx
) == IOR
7040 && rtx_equal_p (XEXP (false_rtx
, 1), true_rtx
))
7041 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 0), true_rtx
= const0_rtx
;
7043 term2
= simplify_gen_binary (AND
, int_mode
,
7044 XEXP (XEXP (src
, 0), 0), true_rtx
);
7045 term3
= simplify_gen_binary (AND
, int_mode
,
7046 simplify_gen_unary (NOT
, int_mode
,
7047 XEXP (XEXP (src
, 0), 0),
7052 simplify_gen_binary (IOR
, int_mode
,
7053 simplify_gen_binary (IOR
, int_mode
,
7060 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7061 whole thing fail. */
7062 if (GET_CODE (src
) == CLOBBER
&& XEXP (src
, 0) == const0_rtx
)
7064 else if (GET_CODE (dest
) == CLOBBER
&& XEXP (dest
, 0) == const0_rtx
)
7067 /* Convert this into a field assignment operation, if possible. */
7068 return make_field_assignment (x
);
7071 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7075 simplify_logical (rtx x
)
7077 rtx op0
= XEXP (x
, 0);
7078 rtx op1
= XEXP (x
, 1);
7079 scalar_int_mode mode
;
7081 switch (GET_CODE (x
))
7084 /* We can call simplify_and_const_int only if we don't lose
7085 any (sign) bits when converting INTVAL (op1) to
7086 "unsigned HOST_WIDE_INT". */
7087 if (is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
)
7088 && CONST_INT_P (op1
)
7089 && (HWI_COMPUTABLE_MODE_P (mode
)
7090 || INTVAL (op1
) > 0))
7092 x
= simplify_and_const_int (x
, mode
, op0
, INTVAL (op1
));
7093 if (GET_CODE (x
) != AND
)
7100 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7101 apply the distributive law and then the inverse distributive
7102 law to see if things simplify. */
7103 if (GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == XOR
)
7105 rtx result
= distribute_and_simplify_rtx (x
, 0);
7109 if (GET_CODE (op1
) == IOR
|| GET_CODE (op1
) == XOR
)
7111 rtx result
= distribute_and_simplify_rtx (x
, 1);
7118 /* If we have (ior (and A B) C), apply the distributive law and then
7119 the inverse distributive law to see if things simplify. */
7121 if (GET_CODE (op0
) == AND
)
7123 rtx result
= distribute_and_simplify_rtx (x
, 0);
7128 if (GET_CODE (op1
) == AND
)
7130 rtx result
= distribute_and_simplify_rtx (x
, 1);
7143 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7144 operations" because they can be replaced with two more basic operations.
7145 ZERO_EXTEND is also considered "compound" because it can be replaced with
7146 an AND operation, which is simpler, though only one operation.
7148 The function expand_compound_operation is called with an rtx expression
7149 and will convert it to the appropriate shifts and AND operations,
7150 simplifying at each stage.
7152 The function make_compound_operation is called to convert an expression
7153 consisting of shifts and ANDs into the equivalent compound expression.
7154 It is the inverse of this function, loosely speaking. */
7157 expand_compound_operation (rtx x
)
7159 unsigned HOST_WIDE_INT pos
= 0, len
;
7161 unsigned int modewidth
;
7163 scalar_int_mode inner_mode
;
7165 switch (GET_CODE (x
))
7171 /* We can't necessarily use a const_int for a multiword mode;
7172 it depends on implicitly extending the value.
7173 Since we don't know the right way to extend it,
7174 we can't tell whether the implicit way is right.
7176 Even for a mode that is no wider than a const_int,
7177 we can't win, because we need to sign extend one of its bits through
7178 the rest of it, and we don't know which bit. */
7179 if (CONST_INT_P (XEXP (x
, 0)))
7182 /* Reject modes that aren't scalar integers because turning vector
7183 or complex modes into shifts causes problems. */
7184 if (!is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
))
7187 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7188 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7189 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7190 reloaded. If not for that, MEM's would very rarely be safe.
7192 Reject modes bigger than a word, because we might not be able
7193 to reference a two-register group starting with an arbitrary register
7194 (and currently gen_lowpart might crash for a SUBREG). */
7196 if (GET_MODE_SIZE (inner_mode
) > UNITS_PER_WORD
)
7199 len
= GET_MODE_PRECISION (inner_mode
);
7200 /* If the inner object has VOIDmode (the only way this can happen
7201 is if it is an ASM_OPERANDS), we can't do anything since we don't
7202 know how much masking to do. */
7214 /* If the operand is a CLOBBER, just return it. */
7215 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
7218 if (!CONST_INT_P (XEXP (x
, 1))
7219 || !CONST_INT_P (XEXP (x
, 2)))
7222 /* Reject modes that aren't scalar integers because turning vector
7223 or complex modes into shifts causes problems. */
7224 if (!is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
))
7227 len
= INTVAL (XEXP (x
, 1));
7228 pos
= INTVAL (XEXP (x
, 2));
7230 /* This should stay within the object being extracted, fail otherwise. */
7231 if (len
+ pos
> GET_MODE_PRECISION (inner_mode
))
7234 if (BITS_BIG_ENDIAN
)
7235 pos
= GET_MODE_PRECISION (inner_mode
) - len
- pos
;
7243 /* We've rejected non-scalar operations by now. */
7244 scalar_int_mode mode
= as_a
<scalar_int_mode
> (GET_MODE (x
));
7246 /* Convert sign extension to zero extension, if we know that the high
7247 bit is not set, as this is easier to optimize. It will be converted
7248 back to cheaper alternative in make_extraction. */
7249 if (GET_CODE (x
) == SIGN_EXTEND
7250 && HWI_COMPUTABLE_MODE_P (mode
)
7251 && ((nonzero_bits (XEXP (x
, 0), inner_mode
)
7252 & ~(((unsigned HOST_WIDE_INT
) GET_MODE_MASK (inner_mode
)) >> 1))
7255 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, XEXP (x
, 0));
7256 rtx temp2
= expand_compound_operation (temp
);
7258 /* Make sure this is a profitable operation. */
7259 if (set_src_cost (x
, mode
, optimize_this_for_speed_p
)
7260 > set_src_cost (temp2
, mode
, optimize_this_for_speed_p
))
7262 else if (set_src_cost (x
, mode
, optimize_this_for_speed_p
)
7263 > set_src_cost (temp
, mode
, optimize_this_for_speed_p
))
7269 /* We can optimize some special cases of ZERO_EXTEND. */
7270 if (GET_CODE (x
) == ZERO_EXTEND
)
7272 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7273 know that the last value didn't have any inappropriate bits
7275 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
7276 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
7277 && HWI_COMPUTABLE_MODE_P (mode
)
7278 && (nonzero_bits (XEXP (XEXP (x
, 0), 0), mode
)
7279 & ~GET_MODE_MASK (inner_mode
)) == 0)
7280 return XEXP (XEXP (x
, 0), 0);
7282 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7283 if (GET_CODE (XEXP (x
, 0)) == SUBREG
7284 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == mode
7285 && subreg_lowpart_p (XEXP (x
, 0))
7286 && HWI_COMPUTABLE_MODE_P (mode
)
7287 && (nonzero_bits (SUBREG_REG (XEXP (x
, 0)), mode
)
7288 & ~GET_MODE_MASK (inner_mode
)) == 0)
7289 return SUBREG_REG (XEXP (x
, 0));
7291 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7292 is a comparison and STORE_FLAG_VALUE permits. This is like
7293 the first case, but it works even when MODE is larger
7294 than HOST_WIDE_INT. */
7295 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
7296 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
7297 && COMPARISON_P (XEXP (XEXP (x
, 0), 0))
7298 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
7299 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (inner_mode
)) == 0)
7300 return XEXP (XEXP (x
, 0), 0);
7302 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7303 if (GET_CODE (XEXP (x
, 0)) == SUBREG
7304 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == mode
7305 && subreg_lowpart_p (XEXP (x
, 0))
7306 && COMPARISON_P (SUBREG_REG (XEXP (x
, 0)))
7307 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
7308 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (inner_mode
)) == 0)
7309 return SUBREG_REG (XEXP (x
, 0));
7313 /* If we reach here, we want to return a pair of shifts. The inner
7314 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7315 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7316 logical depending on the value of UNSIGNEDP.
7318 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7319 converted into an AND of a shift.
7321 We must check for the case where the left shift would have a negative
7322 count. This can happen in a case like (x >> 31) & 255 on machines
7323 that can't shift by a constant. On those machines, we would first
7324 combine the shift with the AND to produce a variable-position
7325 extraction. Then the constant of 31 would be substituted in
7326 to produce such a position. */
7328 modewidth
= GET_MODE_PRECISION (mode
);
7329 if (modewidth
>= pos
+ len
)
7331 tem
= gen_lowpart (mode
, XEXP (x
, 0));
7332 if (!tem
|| GET_CODE (tem
) == CLOBBER
)
7334 tem
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
7335 tem
, modewidth
- pos
- len
);
7336 tem
= simplify_shift_const (NULL_RTX
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
7337 mode
, tem
, modewidth
- len
);
7339 else if (unsignedp
&& len
< HOST_BITS_PER_WIDE_INT
)
7340 tem
= simplify_and_const_int (NULL_RTX
, mode
,
7341 simplify_shift_const (NULL_RTX
, LSHIFTRT
,
7344 (HOST_WIDE_INT_1U
<< len
) - 1);
7346 /* Any other cases we can't handle. */
7349 /* If we couldn't do this for some reason, return the original
7351 if (GET_CODE (tem
) == CLOBBER
)
7357 /* X is a SET which contains an assignment of one object into
7358 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7359 or certain SUBREGS). If possible, convert it into a series of
7362 We half-heartedly support variable positions, but do not at all
7363 support variable lengths. */
7366 expand_field_assignment (const_rtx x
)
7369 rtx pos
; /* Always counts from low bit. */
7371 rtx mask
, cleared
, masked
;
7372 scalar_int_mode compute_mode
;
7374 /* Loop until we find something we can't simplify. */
7377 if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
7378 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
)
7380 rtx x0
= XEXP (SET_DEST (x
), 0);
7381 if (!GET_MODE_PRECISION (GET_MODE (x0
)).is_constant (&len
))
7383 inner
= SUBREG_REG (XEXP (SET_DEST (x
), 0));
7384 pos
= gen_int_mode (subreg_lsb (XEXP (SET_DEST (x
), 0)),
7387 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
7388 && CONST_INT_P (XEXP (SET_DEST (x
), 1)))
7390 inner
= XEXP (SET_DEST (x
), 0);
7391 if (!GET_MODE_PRECISION (GET_MODE (inner
)).is_constant (&inner_len
))
7394 len
= INTVAL (XEXP (SET_DEST (x
), 1));
7395 pos
= XEXP (SET_DEST (x
), 2);
7397 /* A constant position should stay within the width of INNER. */
7398 if (CONST_INT_P (pos
) && INTVAL (pos
) + len
> inner_len
)
7401 if (BITS_BIG_ENDIAN
)
7403 if (CONST_INT_P (pos
))
7404 pos
= GEN_INT (inner_len
- len
- INTVAL (pos
));
7405 else if (GET_CODE (pos
) == MINUS
7406 && CONST_INT_P (XEXP (pos
, 1))
7407 && INTVAL (XEXP (pos
, 1)) == inner_len
- len
)
7408 /* If position is ADJUST - X, new position is X. */
7409 pos
= XEXP (pos
, 0);
7411 pos
= simplify_gen_binary (MINUS
, GET_MODE (pos
),
7412 gen_int_mode (inner_len
- len
,
7418 /* If the destination is a subreg that overwrites the whole of the inner
7419 register, we can move the subreg to the source. */
7420 else if (GET_CODE (SET_DEST (x
)) == SUBREG
7421 /* We need SUBREGs to compute nonzero_bits properly. */
7422 && nonzero_sign_valid
7423 && !read_modify_subreg_p (SET_DEST (x
)))
7425 x
= gen_rtx_SET (SUBREG_REG (SET_DEST (x
)),
7427 (GET_MODE (SUBREG_REG (SET_DEST (x
))),
7434 while (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
7435 inner
= SUBREG_REG (inner
);
7437 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7438 if (!is_a
<scalar_int_mode
> (GET_MODE (inner
), &compute_mode
))
7440 /* Don't do anything for vector or complex integral types. */
7441 if (! FLOAT_MODE_P (GET_MODE (inner
)))
7444 /* Try to find an integral mode to pun with. */
7445 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner
)), 0)
7446 .exists (&compute_mode
))
7449 inner
= gen_lowpart (compute_mode
, inner
);
7452 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7453 if (len
>= HOST_BITS_PER_WIDE_INT
)
7456 /* Don't try to compute in too wide unsupported modes. */
7457 if (!targetm
.scalar_mode_supported_p (compute_mode
))
7460 /* Now compute the equivalent expression. Make a copy of INNER
7461 for the SET_DEST in case it is a MEM into which we will substitute;
7462 we don't want shared RTL in that case. */
7463 mask
= gen_int_mode ((HOST_WIDE_INT_1U
<< len
) - 1,
7465 cleared
= simplify_gen_binary (AND
, compute_mode
,
7466 simplify_gen_unary (NOT
, compute_mode
,
7467 simplify_gen_binary (ASHIFT
,
7472 masked
= simplify_gen_binary (ASHIFT
, compute_mode
,
7473 simplify_gen_binary (
7475 gen_lowpart (compute_mode
, SET_SRC (x
)),
7479 x
= gen_rtx_SET (copy_rtx (inner
),
7480 simplify_gen_binary (IOR
, compute_mode
,
7487 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7488 it is an RTX that represents the (variable) starting position; otherwise,
7489 POS is the (constant) starting bit position. Both are counted from the LSB.
7491 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7493 IN_DEST is nonzero if this is a reference in the destination of a SET.
7494 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7495 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7498 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7499 ZERO_EXTRACT should be built even for bits starting at bit 0.
7501 MODE is the desired mode of the result (if IN_DEST == 0).
7503 The result is an RTX for the extraction or NULL_RTX if the target
7507 make_extraction (machine_mode mode
, rtx inner
, HOST_WIDE_INT pos
,
7508 rtx pos_rtx
, unsigned HOST_WIDE_INT len
, int unsignedp
,
7509 int in_dest
, int in_compare
)
7511 /* This mode describes the size of the storage area
7512 to fetch the overall value from. Within that, we
7513 ignore the POS lowest bits, etc. */
7514 machine_mode is_mode
= GET_MODE (inner
);
7515 machine_mode inner_mode
;
7516 scalar_int_mode wanted_inner_mode
;
7517 scalar_int_mode wanted_inner_reg_mode
= word_mode
;
7518 scalar_int_mode pos_mode
= word_mode
;
7519 machine_mode extraction_mode
= word_mode
;
7521 rtx orig_pos_rtx
= pos_rtx
;
7522 HOST_WIDE_INT orig_pos
;
7524 if (pos_rtx
&& CONST_INT_P (pos_rtx
))
7525 pos
= INTVAL (pos_rtx
), pos_rtx
= 0;
7527 if (GET_CODE (inner
) == SUBREG
7528 && subreg_lowpart_p (inner
)
7529 && (paradoxical_subreg_p (inner
)
7530 /* If trying or potentionally trying to extract
7531 bits outside of is_mode, don't look through
7532 non-paradoxical SUBREGs. See PR82192. */
7533 || (pos_rtx
== NULL_RTX
7534 && known_le (pos
+ len
, GET_MODE_PRECISION (is_mode
)))))
7536 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7537 consider just the QI as the memory to extract from.
7538 The subreg adds or removes high bits; its mode is
7539 irrelevant to the meaning of this extraction,
7540 since POS and LEN count from the lsb. */
7541 if (MEM_P (SUBREG_REG (inner
)))
7542 is_mode
= GET_MODE (SUBREG_REG (inner
));
7543 inner
= SUBREG_REG (inner
);
7545 else if (GET_CODE (inner
) == ASHIFT
7546 && CONST_INT_P (XEXP (inner
, 1))
7547 && pos_rtx
== 0 && pos
== 0
7548 && len
> UINTVAL (XEXP (inner
, 1)))
7550 /* We're extracting the least significant bits of an rtx
7551 (ashift X (const_int C)), where LEN > C. Extract the
7552 least significant (LEN - C) bits of X, giving an rtx
7553 whose mode is MODE, then shift it left C times. */
7554 new_rtx
= make_extraction (mode
, XEXP (inner
, 0),
7555 0, 0, len
- INTVAL (XEXP (inner
, 1)),
7556 unsignedp
, in_dest
, in_compare
);
7558 return gen_rtx_ASHIFT (mode
, new_rtx
, XEXP (inner
, 1));
7560 else if (GET_CODE (inner
) == TRUNCATE
7561 /* If trying or potentionally trying to extract
7562 bits outside of is_mode, don't look through
7563 TRUNCATE. See PR82192. */
7564 && pos_rtx
== NULL_RTX
7565 && known_le (pos
+ len
, GET_MODE_PRECISION (is_mode
)))
7566 inner
= XEXP (inner
, 0);
7568 inner_mode
= GET_MODE (inner
);
7570 /* See if this can be done without an extraction. We never can if the
7571 width of the field is not the same as that of some integer mode. For
7572 registers, we can only avoid the extraction if the position is at the
7573 low-order bit and this is either not in the destination or we have the
7574 appropriate STRICT_LOW_PART operation available.
7576 For MEM, we can avoid an extract if the field starts on an appropriate
7577 boundary and we can change the mode of the memory reference. */
7579 scalar_int_mode tmode
;
7580 if (int_mode_for_size (len
, 1).exists (&tmode
)
7581 && ((pos_rtx
== 0 && (pos
% BITS_PER_WORD
) == 0
7583 && (pos
== 0 || REG_P (inner
))
7584 && (inner_mode
== tmode
7586 || TRULY_NOOP_TRUNCATION_MODES_P (tmode
, inner_mode
)
7587 || reg_truncated_to_mode (tmode
, inner
))
7590 && have_insn_for (STRICT_LOW_PART
, tmode
))))
7591 || (MEM_P (inner
) && pos_rtx
== 0
7593 % (STRICT_ALIGNMENT
? GET_MODE_ALIGNMENT (tmode
)
7594 : BITS_PER_UNIT
)) == 0
7595 /* We can't do this if we are widening INNER_MODE (it
7596 may not be aligned, for one thing). */
7597 && !paradoxical_subreg_p (tmode
, inner_mode
)
7598 && (inner_mode
== tmode
7599 || (! mode_dependent_address_p (XEXP (inner
, 0),
7600 MEM_ADDR_SPACE (inner
))
7601 && ! MEM_VOLATILE_P (inner
))))))
7603 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7604 field. If the original and current mode are the same, we need not
7605 adjust the offset. Otherwise, we do if bytes big endian.
7607 If INNER is not a MEM, get a piece consisting of just the field
7608 of interest (in this case POS % BITS_PER_WORD must be 0). */
7614 /* POS counts from lsb, but make OFFSET count in memory order. */
7615 if (BYTES_BIG_ENDIAN
)
7616 offset
= bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode
)
7619 offset
= pos
/ BITS_PER_UNIT
;
7621 new_rtx
= adjust_address_nv (inner
, tmode
, offset
);
7623 else if (REG_P (inner
))
7625 if (tmode
!= inner_mode
)
7627 /* We can't call gen_lowpart in a DEST since we
7628 always want a SUBREG (see below) and it would sometimes
7629 return a new hard register. */
7633 = subreg_offset_from_lsb (tmode
, inner_mode
, pos
);
7635 /* Avoid creating invalid subregs, for example when
7636 simplifying (x>>32)&255. */
7637 if (!validate_subreg (tmode
, inner_mode
, inner
, offset
))
7640 new_rtx
= gen_rtx_SUBREG (tmode
, inner
, offset
);
7643 new_rtx
= gen_lowpart (tmode
, inner
);
7649 new_rtx
= force_to_mode (inner
, tmode
,
7650 len
>= HOST_BITS_PER_WIDE_INT
7652 : (HOST_WIDE_INT_1U
<< len
) - 1, 0);
7654 /* If this extraction is going into the destination of a SET,
7655 make a STRICT_LOW_PART unless we made a MEM. */
7658 return (MEM_P (new_rtx
) ? new_rtx
7659 : (GET_CODE (new_rtx
) != SUBREG
7660 ? gen_rtx_CLOBBER (tmode
, const0_rtx
)
7661 : gen_rtx_STRICT_LOW_PART (VOIDmode
, new_rtx
)));
7666 if (CONST_SCALAR_INT_P (new_rtx
))
7667 return simplify_unary_operation (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7668 mode
, new_rtx
, tmode
);
7670 /* If we know that no extraneous bits are set, and that the high
7671 bit is not set, convert the extraction to the cheaper of
7672 sign and zero extension, that are equivalent in these cases. */
7673 if (flag_expensive_optimizations
7674 && (HWI_COMPUTABLE_MODE_P (tmode
)
7675 && ((nonzero_bits (new_rtx
, tmode
)
7676 & ~(((unsigned HOST_WIDE_INT
)GET_MODE_MASK (tmode
)) >> 1))
7679 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, new_rtx
);
7680 rtx temp1
= gen_rtx_SIGN_EXTEND (mode
, new_rtx
);
7682 /* Prefer ZERO_EXTENSION, since it gives more information to
7684 if (set_src_cost (temp
, mode
, optimize_this_for_speed_p
)
7685 <= set_src_cost (temp1
, mode
, optimize_this_for_speed_p
))
7690 /* Otherwise, sign- or zero-extend unless we already are in the
7693 return (gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7697 /* Unless this is a COMPARE or we have a funny memory reference,
7698 don't do anything with zero-extending field extracts starting at
7699 the low-order bit since they are simple AND operations. */
7700 if (pos_rtx
== 0 && pos
== 0 && ! in_dest
7701 && ! in_compare
&& unsignedp
)
7704 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7705 if the position is not a constant and the length is not 1. In all
7706 other cases, we would only be going outside our object in cases when
7707 an original shift would have been undefined. */
7709 && ((pos_rtx
== 0 && maybe_gt (pos
+ len
, GET_MODE_PRECISION (is_mode
)))
7710 || (pos_rtx
!= 0 && len
!= 1)))
7713 enum extraction_pattern pattern
= (in_dest
? EP_insv
7714 : unsignedp
? EP_extzv
: EP_extv
);
7716 /* If INNER is not from memory, we want it to have the mode of a register
7717 extraction pattern's structure operand, or word_mode if there is no
7718 such pattern. The same applies to extraction_mode and pos_mode
7719 and their respective operands.
7721 For memory, assume that the desired extraction_mode and pos_mode
7722 are the same as for a register operation, since at present we don't
7723 have named patterns for aligned memory structures. */
7724 struct extraction_insn insn
;
7725 unsigned int inner_size
;
7726 if (GET_MODE_BITSIZE (inner_mode
).is_constant (&inner_size
)
7727 && get_best_reg_extraction_insn (&insn
, pattern
, inner_size
, mode
))
7729 wanted_inner_reg_mode
= insn
.struct_mode
.require ();
7730 pos_mode
= insn
.pos_mode
;
7731 extraction_mode
= insn
.field_mode
;
7734 /* Never narrow an object, since that might not be safe. */
7736 if (mode
!= VOIDmode
7737 && partial_subreg_p (extraction_mode
, mode
))
7738 extraction_mode
= mode
;
7741 wanted_inner_mode
= wanted_inner_reg_mode
;
7744 /* Be careful not to go beyond the extracted object and maintain the
7745 natural alignment of the memory. */
7746 wanted_inner_mode
= smallest_int_mode_for_size (len
);
7747 while (pos
% GET_MODE_BITSIZE (wanted_inner_mode
) + len
7748 > GET_MODE_BITSIZE (wanted_inner_mode
))
7749 wanted_inner_mode
= GET_MODE_WIDER_MODE (wanted_inner_mode
).require ();
7754 if (BITS_BIG_ENDIAN
)
7756 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7757 BITS_BIG_ENDIAN style. If position is constant, compute new
7758 position. Otherwise, build subtraction.
7759 Note that POS is relative to the mode of the original argument.
7760 If it's a MEM we need to recompute POS relative to that.
7761 However, if we're extracting from (or inserting into) a register,
7762 we want to recompute POS relative to wanted_inner_mode. */
7765 width
= GET_MODE_BITSIZE (wanted_inner_mode
);
7766 else if (!GET_MODE_BITSIZE (is_mode
).is_constant (&width
))
7770 pos
= width
- len
- pos
;
7773 = gen_rtx_MINUS (GET_MODE (pos_rtx
),
7774 gen_int_mode (width
- len
, GET_MODE (pos_rtx
)),
7776 /* POS may be less than 0 now, but we check for that below.
7777 Note that it can only be less than 0 if !MEM_P (inner). */
7780 /* If INNER has a wider mode, and this is a constant extraction, try to
7781 make it smaller and adjust the byte to point to the byte containing
7783 if (wanted_inner_mode
!= VOIDmode
7784 && inner_mode
!= wanted_inner_mode
7786 && partial_subreg_p (wanted_inner_mode
, is_mode
)
7788 && ! mode_dependent_address_p (XEXP (inner
, 0), MEM_ADDR_SPACE (inner
))
7789 && ! MEM_VOLATILE_P (inner
))
7791 poly_int64 offset
= 0;
7793 /* The computations below will be correct if the machine is big
7794 endian in both bits and bytes or little endian in bits and bytes.
7795 If it is mixed, we must adjust. */
7797 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7798 adjust OFFSET to compensate. */
7799 if (BYTES_BIG_ENDIAN
7800 && paradoxical_subreg_p (is_mode
, inner_mode
))
7801 offset
-= GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (inner_mode
);
7803 /* We can now move to the desired byte. */
7804 offset
+= (pos
/ GET_MODE_BITSIZE (wanted_inner_mode
))
7805 * GET_MODE_SIZE (wanted_inner_mode
);
7806 pos
%= GET_MODE_BITSIZE (wanted_inner_mode
);
7808 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
7809 && is_mode
!= wanted_inner_mode
)
7810 offset
= (GET_MODE_SIZE (is_mode
)
7811 - GET_MODE_SIZE (wanted_inner_mode
) - offset
);
7813 inner
= adjust_address_nv (inner
, wanted_inner_mode
, offset
);
7816 /* If INNER is not memory, get it into the proper mode. If we are changing
7817 its mode, POS must be a constant and smaller than the size of the new
7819 else if (!MEM_P (inner
))
7821 /* On the LHS, don't create paradoxical subregs implicitely truncating
7822 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7824 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner
),
7828 if (GET_MODE (inner
) != wanted_inner_mode
7830 || orig_pos
+ len
> GET_MODE_BITSIZE (wanted_inner_mode
)))
7836 inner
= force_to_mode (inner
, wanted_inner_mode
,
7838 || len
+ orig_pos
>= HOST_BITS_PER_WIDE_INT
7840 : (((HOST_WIDE_INT_1U
<< len
) - 1)
7845 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7846 have to zero extend. Otherwise, we can just use a SUBREG.
7848 We dealt with constant rtxes earlier, so pos_rtx cannot
7849 have VOIDmode at this point. */
7851 && (GET_MODE_SIZE (pos_mode
)
7852 > GET_MODE_SIZE (as_a
<scalar_int_mode
> (GET_MODE (pos_rtx
)))))
7854 rtx temp
= simplify_gen_unary (ZERO_EXTEND
, pos_mode
, pos_rtx
,
7855 GET_MODE (pos_rtx
));
7857 /* If we know that no extraneous bits are set, and that the high
7858 bit is not set, convert extraction to cheaper one - either
7859 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7861 if (flag_expensive_optimizations
7862 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx
))
7863 && ((nonzero_bits (pos_rtx
, GET_MODE (pos_rtx
))
7864 & ~(((unsigned HOST_WIDE_INT
)
7865 GET_MODE_MASK (GET_MODE (pos_rtx
)))
7869 rtx temp1
= simplify_gen_unary (SIGN_EXTEND
, pos_mode
, pos_rtx
,
7870 GET_MODE (pos_rtx
));
7872 /* Prefer ZERO_EXTENSION, since it gives more information to
7874 if (set_src_cost (temp1
, pos_mode
, optimize_this_for_speed_p
)
7875 < set_src_cost (temp
, pos_mode
, optimize_this_for_speed_p
))
7881 /* Make POS_RTX unless we already have it and it is correct. If we don't
7882 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7884 if (pos_rtx
== 0 && orig_pos_rtx
!= 0 && INTVAL (orig_pos_rtx
) == pos
)
7885 pos_rtx
= orig_pos_rtx
;
7887 else if (pos_rtx
== 0)
7888 pos_rtx
= GEN_INT (pos
);
7890 /* Make the required operation. See if we can use existing rtx. */
7891 new_rtx
= gen_rtx_fmt_eee (unsignedp
? ZERO_EXTRACT
: SIGN_EXTRACT
,
7892 extraction_mode
, inner
, GEN_INT (len
), pos_rtx
);
7894 new_rtx
= gen_lowpart (mode
, new_rtx
);
7899 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7900 can be commuted with any other operations in X. Return X without
7901 that shift if so. */
7904 extract_left_shift (scalar_int_mode mode
, rtx x
, int count
)
7906 enum rtx_code code
= GET_CODE (x
);
7912 /* This is the shift itself. If it is wide enough, we will return
7913 either the value being shifted if the shift count is equal to
7914 COUNT or a shift for the difference. */
7915 if (CONST_INT_P (XEXP (x
, 1))
7916 && INTVAL (XEXP (x
, 1)) >= count
)
7917 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (x
, 0),
7918 INTVAL (XEXP (x
, 1)) - count
);
7922 if ((tem
= extract_left_shift (mode
, XEXP (x
, 0), count
)) != 0)
7923 return simplify_gen_unary (code
, mode
, tem
, mode
);
7927 case PLUS
: case IOR
: case XOR
: case AND
:
7928 /* If we can safely shift this constant and we find the inner shift,
7929 make a new operation. */
7930 if (CONST_INT_P (XEXP (x
, 1))
7931 && (UINTVAL (XEXP (x
, 1))
7932 & (((HOST_WIDE_INT_1U
<< count
)) - 1)) == 0
7933 && (tem
= extract_left_shift (mode
, XEXP (x
, 0), count
)) != 0)
7935 HOST_WIDE_INT val
= INTVAL (XEXP (x
, 1)) >> count
;
7936 return simplify_gen_binary (code
, mode
, tem
,
7937 gen_int_mode (val
, mode
));
7948 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7949 level of the expression and MODE is its mode. IN_CODE is as for
7950 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7951 that should be used when recursing on operands of *X_PTR.
7953 There are two possible actions:
7955 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7956 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7958 - Return a new rtx, which the caller returns directly. */
7961 make_compound_operation_int (scalar_int_mode mode
, rtx
*x_ptr
,
7962 enum rtx_code in_code
,
7963 enum rtx_code
*next_code_ptr
)
7966 enum rtx_code next_code
= *next_code_ptr
;
7967 enum rtx_code code
= GET_CODE (x
);
7968 int mode_width
= GET_MODE_PRECISION (mode
);
7973 scalar_int_mode inner_mode
;
7974 bool equality_comparison
= false;
7978 equality_comparison
= true;
7982 /* Process depending on the code of this operation. If NEW is set
7983 nonzero, it will be returned. */
7988 /* Convert shifts by constants into multiplications if inside
7990 if (in_code
== MEM
&& CONST_INT_P (XEXP (x
, 1))
7991 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
7992 && INTVAL (XEXP (x
, 1)) >= 0)
7994 HOST_WIDE_INT count
= INTVAL (XEXP (x
, 1));
7995 HOST_WIDE_INT multval
= HOST_WIDE_INT_1
<< count
;
7997 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
7998 if (GET_CODE (new_rtx
) == NEG
)
8000 new_rtx
= XEXP (new_rtx
, 0);
8003 multval
= trunc_int_for_mode (multval
, mode
);
8004 new_rtx
= gen_rtx_MULT (mode
, new_rtx
, gen_int_mode (multval
, mode
));
8011 lhs
= make_compound_operation (lhs
, next_code
);
8012 rhs
= make_compound_operation (rhs
, next_code
);
8013 if (GET_CODE (lhs
) == MULT
&& GET_CODE (XEXP (lhs
, 0)) == NEG
)
8015 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (lhs
, 0), 0),
8017 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
8019 else if (GET_CODE (lhs
) == MULT
8020 && (CONST_INT_P (XEXP (lhs
, 1)) && INTVAL (XEXP (lhs
, 1)) < 0))
8022 tem
= simplify_gen_binary (MULT
, mode
, XEXP (lhs
, 0),
8023 simplify_gen_unary (NEG
, mode
,
8026 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
8030 SUBST (XEXP (x
, 0), lhs
);
8031 SUBST (XEXP (x
, 1), rhs
);
8033 maybe_swap_commutative_operands (x
);
8039 lhs
= make_compound_operation (lhs
, next_code
);
8040 rhs
= make_compound_operation (rhs
, next_code
);
8041 if (GET_CODE (rhs
) == MULT
&& GET_CODE (XEXP (rhs
, 0)) == NEG
)
8043 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (rhs
, 0), 0),
8045 return simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
8047 else if (GET_CODE (rhs
) == MULT
8048 && (CONST_INT_P (XEXP (rhs
, 1)) && INTVAL (XEXP (rhs
, 1)) < 0))
8050 tem
= simplify_gen_binary (MULT
, mode
, XEXP (rhs
, 0),
8051 simplify_gen_unary (NEG
, mode
,
8054 return simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
8058 SUBST (XEXP (x
, 0), lhs
);
8059 SUBST (XEXP (x
, 1), rhs
);
8064 /* If the second operand is not a constant, we can't do anything
8066 if (!CONST_INT_P (XEXP (x
, 1)))
8069 /* If the constant is a power of two minus one and the first operand
8070 is a logical right shift, make an extraction. */
8071 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8072 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8074 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
8075 new_rtx
= make_extraction (mode
, new_rtx
, 0, XEXP (XEXP (x
, 0), 1),
8076 i
, 1, 0, in_code
== COMPARE
);
8079 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8080 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
8081 && subreg_lowpart_p (XEXP (x
, 0))
8082 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (XEXP (x
, 0))),
8084 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == LSHIFTRT
8085 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8087 rtx inner_x0
= SUBREG_REG (XEXP (x
, 0));
8088 new_rtx
= make_compound_operation (XEXP (inner_x0
, 0), next_code
);
8089 new_rtx
= make_extraction (inner_mode
, new_rtx
, 0,
8091 i
, 1, 0, in_code
== COMPARE
);
8093 /* If we narrowed the mode when dropping the subreg, then we lose. */
8094 if (GET_MODE_SIZE (inner_mode
) < GET_MODE_SIZE (mode
))
8097 /* If that didn't give anything, see if the AND simplifies on
8099 if (!new_rtx
&& i
>= 0)
8101 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
8102 new_rtx
= make_extraction (mode
, new_rtx
, 0, NULL_RTX
, i
, 1,
8103 0, in_code
== COMPARE
);
8106 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8107 else if ((GET_CODE (XEXP (x
, 0)) == XOR
8108 || GET_CODE (XEXP (x
, 0)) == IOR
)
8109 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LSHIFTRT
8110 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == LSHIFTRT
8111 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8113 /* Apply the distributive law, and then try to make extractions. */
8114 new_rtx
= gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)), mode
,
8115 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 0),
8117 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 1),
8119 new_rtx
= make_compound_operation (new_rtx
, in_code
);
8122 /* If we are have (and (rotate X C) M) and C is larger than the number
8123 of bits in M, this is an extraction. */
8125 else if (GET_CODE (XEXP (x
, 0)) == ROTATE
8126 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8127 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0
8128 && i
<= INTVAL (XEXP (XEXP (x
, 0), 1)))
8130 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
8131 new_rtx
= make_extraction (mode
, new_rtx
,
8132 (GET_MODE_PRECISION (mode
)
8133 - INTVAL (XEXP (XEXP (x
, 0), 1))),
8134 NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
8137 /* On machines without logical shifts, if the operand of the AND is
8138 a logical shift and our mask turns off all the propagated sign
8139 bits, we can replace the logical shift with an arithmetic shift. */
8140 else if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8141 && !have_insn_for (LSHIFTRT
, mode
)
8142 && have_insn_for (ASHIFTRT
, mode
)
8143 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8144 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8145 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
8146 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
8148 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
8150 mask
>>= INTVAL (XEXP (XEXP (x
, 0), 1));
8151 if ((INTVAL (XEXP (x
, 1)) & ~mask
) == 0)
8153 gen_rtx_ASHIFTRT (mode
,
8154 make_compound_operation (XEXP (XEXP (x
,
8158 XEXP (XEXP (x
, 0), 1)));
8161 /* If the constant is one less than a power of two, this might be
8162 representable by an extraction even if no shift is present.
8163 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8164 we are in a COMPARE. */
8165 else if ((i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8166 new_rtx
= make_extraction (mode
,
8167 make_compound_operation (XEXP (x
, 0),
8169 0, NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
8171 /* If we are in a comparison and this is an AND with a power of two,
8172 convert this into the appropriate bit extract. */
8173 else if (in_code
== COMPARE
8174 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0
8175 && (equality_comparison
|| i
< GET_MODE_PRECISION (mode
) - 1))
8176 new_rtx
= make_extraction (mode
,
8177 make_compound_operation (XEXP (x
, 0),
8179 i
, NULL_RTX
, 1, 1, 0, 1);
8181 /* If the one operand is a paradoxical subreg of a register or memory and
8182 the constant (limited to the smaller mode) has only zero bits where
8183 the sub expression has known zero bits, this can be expressed as
8185 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
)
8189 sub
= XEXP (XEXP (x
, 0), 0);
8190 machine_mode sub_mode
= GET_MODE (sub
);
8192 if ((REG_P (sub
) || MEM_P (sub
))
8193 && GET_MODE_PRECISION (sub_mode
).is_constant (&sub_width
)
8194 && sub_width
< mode_width
)
8196 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (sub_mode
);
8197 unsigned HOST_WIDE_INT mask
;
8199 /* original AND constant with all the known zero bits set */
8200 mask
= UINTVAL (XEXP (x
, 1)) | (~nonzero_bits (sub
, sub_mode
));
8201 if ((mask
& mode_mask
) == mode_mask
)
8203 new_rtx
= make_compound_operation (sub
, next_code
);
8204 new_rtx
= make_extraction (mode
, new_rtx
, 0, 0, sub_width
,
8205 1, 0, in_code
== COMPARE
);
8213 /* If the sign bit is known to be zero, replace this with an
8214 arithmetic shift. */
8215 if (have_insn_for (ASHIFTRT
, mode
)
8216 && ! have_insn_for (LSHIFTRT
, mode
)
8217 && mode_width
<= HOST_BITS_PER_WIDE_INT
8218 && (nonzero_bits (XEXP (x
, 0), mode
) & (1 << (mode_width
- 1))) == 0)
8220 new_rtx
= gen_rtx_ASHIFTRT (mode
,
8221 make_compound_operation (XEXP (x
, 0),
8233 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8234 this is a SIGN_EXTRACT. */
8235 if (CONST_INT_P (rhs
)
8236 && GET_CODE (lhs
) == ASHIFT
8237 && CONST_INT_P (XEXP (lhs
, 1))
8238 && INTVAL (rhs
) >= INTVAL (XEXP (lhs
, 1))
8239 && INTVAL (XEXP (lhs
, 1)) >= 0
8240 && INTVAL (rhs
) < mode_width
)
8242 new_rtx
= make_compound_operation (XEXP (lhs
, 0), next_code
);
8243 new_rtx
= make_extraction (mode
, new_rtx
,
8244 INTVAL (rhs
) - INTVAL (XEXP (lhs
, 1)),
8245 NULL_RTX
, mode_width
- INTVAL (rhs
),
8246 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
8250 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8251 If so, try to merge the shifts into a SIGN_EXTEND. We could
8252 also do this for some cases of SIGN_EXTRACT, but it doesn't
8253 seem worth the effort; the case checked for occurs on Alpha. */
8256 && ! (GET_CODE (lhs
) == SUBREG
8257 && (OBJECT_P (SUBREG_REG (lhs
))))
8258 && CONST_INT_P (rhs
)
8259 && INTVAL (rhs
) >= 0
8260 && INTVAL (rhs
) < HOST_BITS_PER_WIDE_INT
8261 && INTVAL (rhs
) < mode_width
8262 && (new_rtx
= extract_left_shift (mode
, lhs
, INTVAL (rhs
))) != 0)
8263 new_rtx
= make_extraction (mode
, make_compound_operation (new_rtx
,
8265 0, NULL_RTX
, mode_width
- INTVAL (rhs
),
8266 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
8271 /* Call ourselves recursively on the inner expression. If we are
8272 narrowing the object and it has a different RTL code from
8273 what it originally did, do this SUBREG as a force_to_mode. */
8275 rtx inner
= SUBREG_REG (x
), simplified
;
8276 enum rtx_code subreg_code
= in_code
;
8278 /* If the SUBREG is masking of a logical right shift,
8279 make an extraction. */
8280 if (GET_CODE (inner
) == LSHIFTRT
8281 && is_a
<scalar_int_mode
> (GET_MODE (inner
), &inner_mode
)
8282 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (inner_mode
)
8283 && CONST_INT_P (XEXP (inner
, 1))
8284 && UINTVAL (XEXP (inner
, 1)) < GET_MODE_PRECISION (inner_mode
)
8285 && subreg_lowpart_p (x
))
8287 new_rtx
= make_compound_operation (XEXP (inner
, 0), next_code
);
8288 int width
= GET_MODE_PRECISION (inner_mode
)
8289 - INTVAL (XEXP (inner
, 1));
8290 if (width
> mode_width
)
8292 new_rtx
= make_extraction (mode
, new_rtx
, 0, XEXP (inner
, 1),
8293 width
, 1, 0, in_code
== COMPARE
);
8297 /* If in_code is COMPARE, it isn't always safe to pass it through
8298 to the recursive make_compound_operation call. */
8299 if (subreg_code
== COMPARE
8300 && (!subreg_lowpart_p (x
)
8301 || GET_CODE (inner
) == SUBREG
8302 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8303 is (const_int 0), rather than
8304 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8305 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8306 for non-equality comparisons against 0 is not equivalent
8307 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8308 || (GET_CODE (inner
) == AND
8309 && CONST_INT_P (XEXP (inner
, 1))
8310 && partial_subreg_p (x
)
8311 && exact_log2 (UINTVAL (XEXP (inner
, 1)))
8312 >= GET_MODE_BITSIZE (mode
) - 1)))
8315 tem
= make_compound_operation (inner
, subreg_code
);
8318 = simplify_subreg (mode
, tem
, GET_MODE (inner
), SUBREG_BYTE (x
));
8322 if (GET_CODE (tem
) != GET_CODE (inner
)
8323 && partial_subreg_p (x
)
8324 && subreg_lowpart_p (x
))
8327 = force_to_mode (tem
, mode
, HOST_WIDE_INT_M1U
, 0);
8329 /* If we have something other than a SUBREG, we might have
8330 done an expansion, so rerun ourselves. */
8331 if (GET_CODE (newer
) != SUBREG
)
8332 newer
= make_compound_operation (newer
, in_code
);
8334 /* force_to_mode can expand compounds. If it just re-expanded
8335 the compound, use gen_lowpart to convert to the desired
8337 if (rtx_equal_p (newer
, x
)
8338 /* Likewise if it re-expanded the compound only partially.
8339 This happens for SUBREG of ZERO_EXTRACT if they extract
8340 the same number of bits. */
8341 || (GET_CODE (newer
) == SUBREG
8342 && (GET_CODE (SUBREG_REG (newer
)) == LSHIFTRT
8343 || GET_CODE (SUBREG_REG (newer
)) == ASHIFTRT
)
8344 && GET_CODE (inner
) == AND
8345 && rtx_equal_p (SUBREG_REG (newer
), XEXP (inner
, 0))))
8346 return gen_lowpart (GET_MODE (x
), tem
);
8361 *x_ptr
= gen_lowpart (mode
, new_rtx
);
8362 *next_code_ptr
= next_code
;
8366 /* Look at the expression rooted at X. Look for expressions
8367 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8368 Form these expressions.
8370 Return the new rtx, usually just X.
8372 Also, for machines like the VAX that don't have logical shift insns,
8373 try to convert logical to arithmetic shift operations in cases where
8374 they are equivalent. This undoes the canonicalizations to logical
8375 shifts done elsewhere.
8377 We try, as much as possible, to re-use rtl expressions to save memory.
8379 IN_CODE says what kind of expression we are processing. Normally, it is
8380 SET. In a memory address it is MEM. When processing the arguments of
8381 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8382 precisely it is an equality comparison against zero. */
8385 make_compound_operation (rtx x
, enum rtx_code in_code
)
8387 enum rtx_code code
= GET_CODE (x
);
8390 enum rtx_code next_code
;
8393 /* Select the code to be used in recursive calls. Once we are inside an
8394 address, we stay there. If we have a comparison, set to COMPARE,
8395 but once inside, go back to our default of SET. */
8397 next_code
= (code
== MEM
? MEM
8398 : ((code
== COMPARE
|| COMPARISON_P (x
))
8399 && XEXP (x
, 1) == const0_rtx
) ? COMPARE
8400 : in_code
== COMPARE
|| in_code
== EQ
? SET
: in_code
);
8402 scalar_int_mode mode
;
8403 if (is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
))
8405 rtx new_rtx
= make_compound_operation_int (mode
, &x
, in_code
,
8409 code
= GET_CODE (x
);
8412 /* Now recursively process each operand of this operation. We need to
8413 handle ZERO_EXTEND specially so that we don't lose track of the
8415 if (code
== ZERO_EXTEND
)
8417 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
8418 tem
= simplify_const_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
8419 new_rtx
, GET_MODE (XEXP (x
, 0)));
8422 SUBST (XEXP (x
, 0), new_rtx
);
8426 fmt
= GET_RTX_FORMAT (code
);
8427 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
8430 new_rtx
= make_compound_operation (XEXP (x
, i
), next_code
);
8431 SUBST (XEXP (x
, i
), new_rtx
);
8433 else if (fmt
[i
] == 'E')
8434 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
8436 new_rtx
= make_compound_operation (XVECEXP (x
, i
, j
), next_code
);
8437 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
8440 maybe_swap_commutative_operands (x
);
8444 /* Given M see if it is a value that would select a field of bits
8445 within an item, but not the entire word. Return -1 if not.
8446 Otherwise, return the starting position of the field, where 0 is the
8449 *PLEN is set to the length of the field. */
8452 get_pos_from_mask (unsigned HOST_WIDE_INT m
, unsigned HOST_WIDE_INT
*plen
)
8454 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8455 int pos
= m
? ctz_hwi (m
) : -1;
8459 /* Now shift off the low-order zero bits and see if we have a
8460 power of two minus 1. */
8461 len
= exact_log2 ((m
>> pos
) + 1);
8470 /* If X refers to a register that equals REG in value, replace these
8471 references with REG. */
8473 canon_reg_for_combine (rtx x
, rtx reg
)
8480 enum rtx_code code
= GET_CODE (x
);
8481 switch (GET_RTX_CLASS (code
))
8484 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8485 if (op0
!= XEXP (x
, 0))
8486 return simplify_gen_unary (GET_CODE (x
), GET_MODE (x
), op0
,
8491 case RTX_COMM_ARITH
:
8492 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8493 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8494 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8495 return simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
8499 case RTX_COMM_COMPARE
:
8500 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8501 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8502 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8503 return simplify_gen_relational (GET_CODE (x
), GET_MODE (x
),
8504 GET_MODE (op0
), op0
, op1
);
8508 case RTX_BITFIELD_OPS
:
8509 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8510 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8511 op2
= canon_reg_for_combine (XEXP (x
, 2), reg
);
8512 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1) || op2
!= XEXP (x
, 2))
8513 return simplify_gen_ternary (GET_CODE (x
), GET_MODE (x
),
8514 GET_MODE (op0
), op0
, op1
, op2
);
8520 if (rtx_equal_p (get_last_value (reg
), x
)
8521 || rtx_equal_p (reg
, get_last_value (x
)))
8530 fmt
= GET_RTX_FORMAT (code
);
8532 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
8535 rtx op
= canon_reg_for_combine (XEXP (x
, i
), reg
);
8536 if (op
!= XEXP (x
, i
))
8546 else if (fmt
[i
] == 'E')
8549 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
8551 rtx op
= canon_reg_for_combine (XVECEXP (x
, i
, j
), reg
);
8552 if (op
!= XVECEXP (x
, i
, j
))
8559 XVECEXP (x
, i
, j
) = op
;
8570 /* Return X converted to MODE. If the value is already truncated to
8571 MODE we can just return a subreg even though in the general case we
8572 would need an explicit truncation. */
8575 gen_lowpart_or_truncate (machine_mode mode
, rtx x
)
8577 if (!CONST_INT_P (x
)
8578 && partial_subreg_p (mode
, GET_MODE (x
))
8579 && !TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (x
))
8580 && !(REG_P (x
) && reg_truncated_to_mode (mode
, x
)))
8582 /* Bit-cast X into an integer mode. */
8583 if (!SCALAR_INT_MODE_P (GET_MODE (x
)))
8584 x
= gen_lowpart (int_mode_for_mode (GET_MODE (x
)).require (), x
);
8585 x
= simplify_gen_unary (TRUNCATE
, int_mode_for_mode (mode
).require (),
8589 return gen_lowpart (mode
, x
);
8592 /* See if X can be simplified knowing that we will only refer to it in
8593 MODE and will only refer to those bits that are nonzero in MASK.
8594 If other bits are being computed or if masking operations are done
8595 that select a superset of the bits in MASK, they can sometimes be
8598 Return a possibly simplified expression, but always convert X to
8599 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8601 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8602 are all off in X. This is used when X will be complemented, by either
8603 NOT, NEG, or XOR. */
8606 force_to_mode (rtx x
, machine_mode mode
, unsigned HOST_WIDE_INT mask
,
8609 enum rtx_code code
= GET_CODE (x
);
8610 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
8611 machine_mode op_mode
;
8612 unsigned HOST_WIDE_INT nonzero
;
8614 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8615 code below will do the wrong thing since the mode of such an
8616 expression is VOIDmode.
8618 Also do nothing if X is a CLOBBER; this can happen if X was
8619 the return value from a call to gen_lowpart. */
8620 if (code
== CALL
|| code
== ASM_OPERANDS
|| code
== CLOBBER
)
8623 /* We want to perform the operation in its present mode unless we know
8624 that the operation is valid in MODE, in which case we do the operation
8626 op_mode
= ((GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (x
))
8627 && have_insn_for (code
, mode
))
8628 ? mode
: GET_MODE (x
));
8630 /* It is not valid to do a right-shift in a narrower mode
8631 than the one it came in with. */
8632 if ((code
== LSHIFTRT
|| code
== ASHIFTRT
)
8633 && partial_subreg_p (mode
, GET_MODE (x
)))
8634 op_mode
= GET_MODE (x
);
8636 /* Truncate MASK to fit OP_MODE. */
8638 mask
&= GET_MODE_MASK (op_mode
);
8640 /* Determine what bits of X are guaranteed to be (non)zero. */
8641 nonzero
= nonzero_bits (x
, mode
);
8643 /* If none of the bits in X are needed, return a zero. */
8644 if (!just_select
&& (nonzero
& mask
) == 0 && !side_effects_p (x
))
8647 /* If X is a CONST_INT, return a new one. Do this here since the
8648 test below will fail. */
8649 if (CONST_INT_P (x
))
8651 if (SCALAR_INT_MODE_P (mode
))
8652 return gen_int_mode (INTVAL (x
) & mask
, mode
);
8655 x
= GEN_INT (INTVAL (x
) & mask
);
8656 return gen_lowpart_common (mode
, x
);
8660 /* If X is narrower than MODE and we want all the bits in X's mode, just
8661 get X in the proper mode. */
8662 if (paradoxical_subreg_p (mode
, GET_MODE (x
))
8663 && (GET_MODE_MASK (GET_MODE (x
)) & ~mask
) == 0)
8664 return gen_lowpart (mode
, x
);
8666 /* We can ignore the effect of a SUBREG if it narrows the mode or
8667 if the constant masks to zero all the bits the mode doesn't have. */
8668 if (GET_CODE (x
) == SUBREG
8669 && subreg_lowpart_p (x
)
8670 && (partial_subreg_p (x
)
8672 & GET_MODE_MASK (GET_MODE (x
))
8673 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
)))) == 0))
8674 return force_to_mode (SUBREG_REG (x
), mode
, mask
, next_select
);
8676 scalar_int_mode int_mode
, xmode
;
8677 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
8678 && is_a
<scalar_int_mode
> (GET_MODE (x
), &xmode
))
8679 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8681 return force_int_to_mode (x
, int_mode
, xmode
,
8682 as_a
<scalar_int_mode
> (op_mode
),
8685 return gen_lowpart_or_truncate (mode
, x
);
8688 /* Subroutine of force_to_mode that handles cases in which both X and
8689 the result are scalar integers. MODE is the mode of the result,
8690 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8691 is preferred for simplified versions of X. The other arguments
8692 are as for force_to_mode. */
8695 force_int_to_mode (rtx x
, scalar_int_mode mode
, scalar_int_mode xmode
,
8696 scalar_int_mode op_mode
, unsigned HOST_WIDE_INT mask
,
8699 enum rtx_code code
= GET_CODE (x
);
8700 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
8701 unsigned HOST_WIDE_INT fuller_mask
;
8704 /* When we have an arithmetic operation, or a shift whose count we
8705 do not know, we need to assume that all bits up to the highest-order
8706 bit in MASK will be needed. This is how we form such a mask. */
8707 if (mask
& (HOST_WIDE_INT_1U
<< (HOST_BITS_PER_WIDE_INT
- 1)))
8708 fuller_mask
= HOST_WIDE_INT_M1U
;
8710 fuller_mask
= ((HOST_WIDE_INT_1U
<< (floor_log2 (mask
) + 1))
8716 /* If X is a (clobber (const_int)), return it since we know we are
8717 generating something that won't match. */
8724 x
= expand_compound_operation (x
);
8725 if (GET_CODE (x
) != code
)
8726 return force_to_mode (x
, mode
, mask
, next_select
);
8730 /* Similarly for a truncate. */
8731 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8734 /* If this is an AND with a constant, convert it into an AND
8735 whose constant is the AND of that constant with MASK. If it
8736 remains an AND of MASK, delete it since it is redundant. */
8738 if (CONST_INT_P (XEXP (x
, 1)))
8740 x
= simplify_and_const_int (x
, op_mode
, XEXP (x
, 0),
8741 mask
& INTVAL (XEXP (x
, 1)));
8744 /* If X is still an AND, see if it is an AND with a mask that
8745 is just some low-order bits. If so, and it is MASK, we don't
8748 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8749 && (INTVAL (XEXP (x
, 1)) & GET_MODE_MASK (xmode
)) == mask
)
8752 /* If it remains an AND, try making another AND with the bits
8753 in the mode mask that aren't in MASK turned on. If the
8754 constant in the AND is wide enough, this might make a
8755 cheaper constant. */
8757 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8758 && GET_MODE_MASK (xmode
) != mask
8759 && HWI_COMPUTABLE_MODE_P (xmode
))
8761 unsigned HOST_WIDE_INT cval
8762 = UINTVAL (XEXP (x
, 1)) | (GET_MODE_MASK (xmode
) & ~mask
);
8765 y
= simplify_gen_binary (AND
, xmode
, XEXP (x
, 0),
8766 gen_int_mode (cval
, xmode
));
8767 if (set_src_cost (y
, xmode
, optimize_this_for_speed_p
)
8768 < set_src_cost (x
, xmode
, optimize_this_for_speed_p
))
8778 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8779 low-order bits (as in an alignment operation) and FOO is already
8780 aligned to that boundary, mask C1 to that boundary as well.
8781 This may eliminate that PLUS and, later, the AND. */
8784 unsigned int width
= GET_MODE_PRECISION (mode
);
8785 unsigned HOST_WIDE_INT smask
= mask
;
8787 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8788 number, sign extend it. */
8790 if (width
< HOST_BITS_PER_WIDE_INT
8791 && (smask
& (HOST_WIDE_INT_1U
<< (width
- 1))) != 0)
8792 smask
|= HOST_WIDE_INT_M1U
<< width
;
8794 if (CONST_INT_P (XEXP (x
, 1))
8795 && pow2p_hwi (- smask
)
8796 && (nonzero_bits (XEXP (x
, 0), mode
) & ~smask
) == 0
8797 && (INTVAL (XEXP (x
, 1)) & ~smask
) != 0)
8798 return force_to_mode (plus_constant (xmode
, XEXP (x
, 0),
8799 (INTVAL (XEXP (x
, 1)) & smask
)),
8800 mode
, smask
, next_select
);
8806 /* Substituting into the operands of a widening MULT is not likely to
8807 create RTL matching a machine insn. */
8809 && (GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
8810 || GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
)
8811 && (GET_CODE (XEXP (x
, 1)) == ZERO_EXTEND
8812 || GET_CODE (XEXP (x
, 1)) == SIGN_EXTEND
)
8813 && REG_P (XEXP (XEXP (x
, 0), 0))
8814 && REG_P (XEXP (XEXP (x
, 1), 0)))
8815 return gen_lowpart_or_truncate (mode
, x
);
8817 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8818 most significant bit in MASK since carries from those bits will
8819 affect the bits we are interested in. */
8824 /* If X is (minus C Y) where C's least set bit is larger than any bit
8825 in the mask, then we may replace with (neg Y). */
8826 if (CONST_INT_P (XEXP (x
, 0))
8827 && least_bit_hwi (UINTVAL (XEXP (x
, 0))) > mask
)
8829 x
= simplify_gen_unary (NEG
, xmode
, XEXP (x
, 1), xmode
);
8830 return force_to_mode (x
, mode
, mask
, next_select
);
8833 /* Similarly, if C contains every bit in the fuller_mask, then we may
8834 replace with (not Y). */
8835 if (CONST_INT_P (XEXP (x
, 0))
8836 && ((UINTVAL (XEXP (x
, 0)) | fuller_mask
) == UINTVAL (XEXP (x
, 0))))
8838 x
= simplify_gen_unary (NOT
, xmode
, XEXP (x
, 1), xmode
);
8839 return force_to_mode (x
, mode
, mask
, next_select
);
8847 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8848 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8849 operation which may be a bitfield extraction. Ensure that the
8850 constant we form is not wider than the mode of X. */
8852 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8853 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8854 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8855 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
8856 && CONST_INT_P (XEXP (x
, 1))
8857 && ((INTVAL (XEXP (XEXP (x
, 0), 1))
8858 + floor_log2 (INTVAL (XEXP (x
, 1))))
8859 < GET_MODE_PRECISION (xmode
))
8860 && (UINTVAL (XEXP (x
, 1))
8861 & ~nonzero_bits (XEXP (x
, 0), xmode
)) == 0)
8863 temp
= gen_int_mode ((INTVAL (XEXP (x
, 1)) & mask
)
8864 << INTVAL (XEXP (XEXP (x
, 0), 1)),
8866 temp
= simplify_gen_binary (GET_CODE (x
), xmode
,
8867 XEXP (XEXP (x
, 0), 0), temp
);
8868 x
= simplify_gen_binary (LSHIFTRT
, xmode
, temp
,
8869 XEXP (XEXP (x
, 0), 1));
8870 return force_to_mode (x
, mode
, mask
, next_select
);
8874 /* For most binary operations, just propagate into the operation and
8875 change the mode if we have an operation of that mode. */
8877 op0
= force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8878 op1
= force_to_mode (XEXP (x
, 1), mode
, mask
, next_select
);
8880 /* If we ended up truncating both operands, truncate the result of the
8881 operation instead. */
8882 if (GET_CODE (op0
) == TRUNCATE
8883 && GET_CODE (op1
) == TRUNCATE
)
8885 op0
= XEXP (op0
, 0);
8886 op1
= XEXP (op1
, 0);
8889 op0
= gen_lowpart_or_truncate (op_mode
, op0
);
8890 op1
= gen_lowpart_or_truncate (op_mode
, op1
);
8892 if (op_mode
!= xmode
|| op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8894 x
= simplify_gen_binary (code
, op_mode
, op0
, op1
);
8900 /* For left shifts, do the same, but just for the first operand.
8901 However, we cannot do anything with shifts where we cannot
8902 guarantee that the counts are smaller than the size of the mode
8903 because such a count will have a different meaning in a
8906 if (! (CONST_INT_P (XEXP (x
, 1))
8907 && INTVAL (XEXP (x
, 1)) >= 0
8908 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (mode
))
8909 && ! (GET_MODE (XEXP (x
, 1)) != VOIDmode
8910 && (nonzero_bits (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)))
8911 < (unsigned HOST_WIDE_INT
) GET_MODE_PRECISION (mode
))))
8914 /* If the shift count is a constant and we can do arithmetic in
8915 the mode of the shift, refine which bits we need. Otherwise, use the
8916 conservative form of the mask. */
8917 if (CONST_INT_P (XEXP (x
, 1))
8918 && INTVAL (XEXP (x
, 1)) >= 0
8919 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (op_mode
)
8920 && HWI_COMPUTABLE_MODE_P (op_mode
))
8921 mask
>>= INTVAL (XEXP (x
, 1));
8925 op0
= gen_lowpart_or_truncate (op_mode
,
8926 force_to_mode (XEXP (x
, 0), mode
,
8927 mask
, next_select
));
8929 if (op_mode
!= xmode
|| op0
!= XEXP (x
, 0))
8931 x
= simplify_gen_binary (code
, op_mode
, op0
, XEXP (x
, 1));
8937 /* Here we can only do something if the shift count is a constant,
8938 this shift constant is valid for the host, and we can do arithmetic
8941 if (CONST_INT_P (XEXP (x
, 1))
8942 && INTVAL (XEXP (x
, 1)) >= 0
8943 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
8944 && HWI_COMPUTABLE_MODE_P (op_mode
))
8946 rtx inner
= XEXP (x
, 0);
8947 unsigned HOST_WIDE_INT inner_mask
;
8949 /* Select the mask of the bits we need for the shift operand. */
8950 inner_mask
= mask
<< INTVAL (XEXP (x
, 1));
8952 /* We can only change the mode of the shift if we can do arithmetic
8953 in the mode of the shift and INNER_MASK is no wider than the
8954 width of X's mode. */
8955 if ((inner_mask
& ~GET_MODE_MASK (xmode
)) != 0)
8958 inner
= force_to_mode (inner
, op_mode
, inner_mask
, next_select
);
8960 if (xmode
!= op_mode
|| inner
!= XEXP (x
, 0))
8962 x
= simplify_gen_binary (LSHIFTRT
, op_mode
, inner
, XEXP (x
, 1));
8967 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8968 shift and AND produces only copies of the sign bit (C2 is one less
8969 than a power of two), we can do this with just a shift. */
8971 if (GET_CODE (x
) == LSHIFTRT
8972 && CONST_INT_P (XEXP (x
, 1))
8973 /* The shift puts one of the sign bit copies in the least significant
8975 && ((INTVAL (XEXP (x
, 1))
8976 + num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0))))
8977 >= GET_MODE_PRECISION (xmode
))
8978 && pow2p_hwi (mask
+ 1)
8979 /* Number of bits left after the shift must be more than the mask
8981 && ((INTVAL (XEXP (x
, 1)) + exact_log2 (mask
+ 1))
8982 <= GET_MODE_PRECISION (xmode
))
8983 /* Must be more sign bit copies than the mask needs. */
8984 && ((int) num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
8985 >= exact_log2 (mask
+ 1)))
8987 int nbits
= GET_MODE_PRECISION (xmode
) - exact_log2 (mask
+ 1);
8988 x
= simplify_gen_binary (LSHIFTRT
, xmode
, XEXP (x
, 0),
8989 gen_int_shift_amount (xmode
, nbits
));
8994 /* If we are just looking for the sign bit, we don't need this shift at
8995 all, even if it has a variable count. */
8996 if (val_signbit_p (xmode
, mask
))
8997 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8999 /* If this is a shift by a constant, get a mask that contains those bits
9000 that are not copies of the sign bit. We then have two cases: If
9001 MASK only includes those bits, this can be a logical shift, which may
9002 allow simplifications. If MASK is a single-bit field not within
9003 those bits, we are requesting a copy of the sign bit and hence can
9004 shift the sign bit to the appropriate location. */
9006 if (CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0
9007 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
9009 unsigned HOST_WIDE_INT nonzero
;
9012 /* If the considered data is wider than HOST_WIDE_INT, we can't
9013 represent a mask for all its bits in a single scalar.
9014 But we only care about the lower bits, so calculate these. */
9016 if (GET_MODE_PRECISION (xmode
) > HOST_BITS_PER_WIDE_INT
)
9018 nonzero
= HOST_WIDE_INT_M1U
;
9020 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9021 is the number of bits a full-width mask would have set.
9022 We need only shift if these are fewer than nonzero can
9023 hold. If not, we must keep all bits set in nonzero. */
9025 if (GET_MODE_PRECISION (xmode
) - INTVAL (XEXP (x
, 1))
9026 < HOST_BITS_PER_WIDE_INT
)
9027 nonzero
>>= INTVAL (XEXP (x
, 1))
9028 + HOST_BITS_PER_WIDE_INT
9029 - GET_MODE_PRECISION (xmode
);
9033 nonzero
= GET_MODE_MASK (xmode
);
9034 nonzero
>>= INTVAL (XEXP (x
, 1));
9037 if ((mask
& ~nonzero
) == 0)
9039 x
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, xmode
,
9040 XEXP (x
, 0), INTVAL (XEXP (x
, 1)));
9041 if (GET_CODE (x
) != ASHIFTRT
)
9042 return force_to_mode (x
, mode
, mask
, next_select
);
9045 else if ((i
= exact_log2 (mask
)) >= 0)
9047 x
= simplify_shift_const
9048 (NULL_RTX
, LSHIFTRT
, xmode
, XEXP (x
, 0),
9049 GET_MODE_PRECISION (xmode
) - 1 - i
);
9051 if (GET_CODE (x
) != ASHIFTRT
)
9052 return force_to_mode (x
, mode
, mask
, next_select
);
9056 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9057 even if the shift count isn't a constant. */
9059 x
= simplify_gen_binary (LSHIFTRT
, xmode
, XEXP (x
, 0), XEXP (x
, 1));
9063 /* If this is a zero- or sign-extension operation that just affects bits
9064 we don't care about, remove it. Be sure the call above returned
9065 something that is still a shift. */
9067 if ((GET_CODE (x
) == LSHIFTRT
|| GET_CODE (x
) == ASHIFTRT
)
9068 && CONST_INT_P (XEXP (x
, 1))
9069 && INTVAL (XEXP (x
, 1)) >= 0
9070 && (INTVAL (XEXP (x
, 1))
9071 <= GET_MODE_PRECISION (xmode
) - (floor_log2 (mask
) + 1))
9072 && GET_CODE (XEXP (x
, 0)) == ASHIFT
9073 && XEXP (XEXP (x
, 0), 1) == XEXP (x
, 1))
9074 return force_to_mode (XEXP (XEXP (x
, 0), 0), mode
, mask
,
9081 /* If the shift count is constant and we can do computations
9082 in the mode of X, compute where the bits we care about are.
9083 Otherwise, we can't do anything. Don't change the mode of
9084 the shift or propagate MODE into the shift, though. */
9085 if (CONST_INT_P (XEXP (x
, 1))
9086 && INTVAL (XEXP (x
, 1)) >= 0)
9088 temp
= simplify_binary_operation (code
== ROTATE
? ROTATERT
: ROTATE
,
9089 xmode
, gen_int_mode (mask
, xmode
),
9091 if (temp
&& CONST_INT_P (temp
))
9092 x
= simplify_gen_binary (code
, xmode
,
9093 force_to_mode (XEXP (x
, 0), xmode
,
9094 INTVAL (temp
), next_select
),
9100 /* If we just want the low-order bit, the NEG isn't needed since it
9101 won't change the low-order bit. */
9103 return force_to_mode (XEXP (x
, 0), mode
, mask
, just_select
);
9105 /* We need any bits less significant than the most significant bit in
9106 MASK since carries from those bits will affect the bits we are
9112 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9113 same as the XOR case above. Ensure that the constant we form is not
9114 wider than the mode of X. */
9116 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
9117 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
9118 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
9119 && (INTVAL (XEXP (XEXP (x
, 0), 1)) + floor_log2 (mask
)
9120 < GET_MODE_PRECISION (xmode
))
9121 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
9123 temp
= gen_int_mode (mask
<< INTVAL (XEXP (XEXP (x
, 0), 1)), xmode
);
9124 temp
= simplify_gen_binary (XOR
, xmode
, XEXP (XEXP (x
, 0), 0), temp
);
9125 x
= simplify_gen_binary (LSHIFTRT
, xmode
,
9126 temp
, XEXP (XEXP (x
, 0), 1));
9128 return force_to_mode (x
, mode
, mask
, next_select
);
9131 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9132 use the full mask inside the NOT. */
9136 op0
= gen_lowpart_or_truncate (op_mode
,
9137 force_to_mode (XEXP (x
, 0), mode
, mask
,
9139 if (op_mode
!= xmode
|| op0
!= XEXP (x
, 0))
9141 x
= simplify_gen_unary (code
, op_mode
, op0
, op_mode
);
9147 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9148 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9149 which is equal to STORE_FLAG_VALUE. */
9150 if ((mask
& ~STORE_FLAG_VALUE
) == 0
9151 && XEXP (x
, 1) == const0_rtx
9152 && GET_MODE (XEXP (x
, 0)) == mode
9153 && pow2p_hwi (nonzero_bits (XEXP (x
, 0), mode
))
9154 && (nonzero_bits (XEXP (x
, 0), mode
)
9155 == (unsigned HOST_WIDE_INT
) STORE_FLAG_VALUE
))
9156 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
9161 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9162 written in a narrower mode. We play it safe and do not do so. */
9164 op0
= gen_lowpart_or_truncate (xmode
,
9165 force_to_mode (XEXP (x
, 1), mode
,
9166 mask
, next_select
));
9167 op1
= gen_lowpart_or_truncate (xmode
,
9168 force_to_mode (XEXP (x
, 2), mode
,
9169 mask
, next_select
));
9170 if (op0
!= XEXP (x
, 1) || op1
!= XEXP (x
, 2))
9171 x
= simplify_gen_ternary (IF_THEN_ELSE
, xmode
,
9172 GET_MODE (XEXP (x
, 0)), XEXP (x
, 0),
9180 /* Ensure we return a value of the proper mode. */
9181 return gen_lowpart_or_truncate (mode
, x
);
9184 /* Return nonzero if X is an expression that has one of two values depending on
9185 whether some other value is zero or nonzero. In that case, we return the
9186 value that is being tested, *PTRUE is set to the value if the rtx being
9187 returned has a nonzero value, and *PFALSE is set to the other alternative.
9189 If we return zero, we set *PTRUE and *PFALSE to X. */
9192 if_then_else_cond (rtx x
, rtx
*ptrue
, rtx
*pfalse
)
9194 machine_mode mode
= GET_MODE (x
);
9195 enum rtx_code code
= GET_CODE (x
);
9196 rtx cond0
, cond1
, true0
, true1
, false0
, false1
;
9197 unsigned HOST_WIDE_INT nz
;
9198 scalar_int_mode int_mode
;
9200 /* If we are comparing a value against zero, we are done. */
9201 if ((code
== NE
|| code
== EQ
)
9202 && XEXP (x
, 1) == const0_rtx
)
9204 *ptrue
= (code
== NE
) ? const_true_rtx
: const0_rtx
;
9205 *pfalse
= (code
== NE
) ? const0_rtx
: const_true_rtx
;
9209 /* If this is a unary operation whose operand has one of two values, apply
9210 our opcode to compute those values. */
9211 else if (UNARY_P (x
)
9212 && (cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
)) != 0)
9214 *ptrue
= simplify_gen_unary (code
, mode
, true0
, GET_MODE (XEXP (x
, 0)));
9215 *pfalse
= simplify_gen_unary (code
, mode
, false0
,
9216 GET_MODE (XEXP (x
, 0)));
9220 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9221 make can't possibly match and would suppress other optimizations. */
9222 else if (code
== COMPARE
)
9225 /* If this is a binary operation, see if either side has only one of two
9226 values. If either one does or if both do and they are conditional on
9227 the same value, compute the new true and false values. */
9228 else if (BINARY_P (x
))
9230 rtx op0
= XEXP (x
, 0);
9231 rtx op1
= XEXP (x
, 1);
9232 cond0
= if_then_else_cond (op0
, &true0
, &false0
);
9233 cond1
= if_then_else_cond (op1
, &true1
, &false1
);
9235 if ((cond0
!= 0 && cond1
!= 0 && !rtx_equal_p (cond0
, cond1
))
9236 && (REG_P (op0
) || REG_P (op1
)))
9238 /* Try to enable a simplification by undoing work done by
9239 if_then_else_cond if it converted a REG into something more
9244 true0
= false0
= op0
;
9249 true1
= false1
= op1
;
9253 if ((cond0
!= 0 || cond1
!= 0)
9254 && ! (cond0
!= 0 && cond1
!= 0 && !rtx_equal_p (cond0
, cond1
)))
9256 /* If if_then_else_cond returned zero, then true/false are the
9257 same rtl. We must copy one of them to prevent invalid rtl
9260 true0
= copy_rtx (true0
);
9261 else if (cond1
== 0)
9262 true1
= copy_rtx (true1
);
9264 if (COMPARISON_P (x
))
9266 *ptrue
= simplify_gen_relational (code
, mode
, VOIDmode
,
9268 *pfalse
= simplify_gen_relational (code
, mode
, VOIDmode
,
9273 *ptrue
= simplify_gen_binary (code
, mode
, true0
, true1
);
9274 *pfalse
= simplify_gen_binary (code
, mode
, false0
, false1
);
9277 return cond0
? cond0
: cond1
;
9280 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9281 operands is zero when the other is nonzero, and vice-versa,
9282 and STORE_FLAG_VALUE is 1 or -1. */
9284 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9285 && (code
== PLUS
|| code
== IOR
|| code
== XOR
|| code
== MINUS
9287 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
9289 rtx op0
= XEXP (XEXP (x
, 0), 1);
9290 rtx op1
= XEXP (XEXP (x
, 1), 1);
9292 cond0
= XEXP (XEXP (x
, 0), 0);
9293 cond1
= XEXP (XEXP (x
, 1), 0);
9295 if (COMPARISON_P (cond0
)
9296 && COMPARISON_P (cond1
)
9297 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
9298 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
9299 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
9300 || ((swap_condition (GET_CODE (cond0
))
9301 == reversed_comparison_code (cond1
, NULL
))
9302 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
9303 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
9304 && ! side_effects_p (x
))
9306 *ptrue
= simplify_gen_binary (MULT
, mode
, op0
, const_true_rtx
);
9307 *pfalse
= simplify_gen_binary (MULT
, mode
,
9309 ? simplify_gen_unary (NEG
, mode
,
9317 /* Similarly for MULT, AND and UMIN, except that for these the result
9319 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9320 && (code
== MULT
|| code
== AND
|| code
== UMIN
)
9321 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
9323 cond0
= XEXP (XEXP (x
, 0), 0);
9324 cond1
= XEXP (XEXP (x
, 1), 0);
9326 if (COMPARISON_P (cond0
)
9327 && COMPARISON_P (cond1
)
9328 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
9329 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
9330 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
9331 || ((swap_condition (GET_CODE (cond0
))
9332 == reversed_comparison_code (cond1
, NULL
))
9333 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
9334 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
9335 && ! side_effects_p (x
))
9337 *ptrue
= *pfalse
= const0_rtx
;
9343 else if (code
== IF_THEN_ELSE
)
9345 /* If we have IF_THEN_ELSE already, extract the condition and
9346 canonicalize it if it is NE or EQ. */
9347 cond0
= XEXP (x
, 0);
9348 *ptrue
= XEXP (x
, 1), *pfalse
= XEXP (x
, 2);
9349 if (GET_CODE (cond0
) == NE
&& XEXP (cond0
, 1) == const0_rtx
)
9350 return XEXP (cond0
, 0);
9351 else if (GET_CODE (cond0
) == EQ
&& XEXP (cond0
, 1) == const0_rtx
)
9353 *ptrue
= XEXP (x
, 2), *pfalse
= XEXP (x
, 1);
9354 return XEXP (cond0
, 0);
9360 /* If X is a SUBREG, we can narrow both the true and false values
9361 if the inner expression, if there is a condition. */
9362 else if (code
== SUBREG
9363 && (cond0
= if_then_else_cond (SUBREG_REG (x
), &true0
,
9366 true0
= simplify_gen_subreg (mode
, true0
,
9367 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
9368 false0
= simplify_gen_subreg (mode
, false0
,
9369 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
9370 if (true0
&& false0
)
9378 /* If X is a constant, this isn't special and will cause confusions
9379 if we treat it as such. Likewise if it is equivalent to a constant. */
9380 else if (CONSTANT_P (x
)
9381 || ((cond0
= get_last_value (x
)) != 0 && CONSTANT_P (cond0
)))
9384 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9385 will be least confusing to the rest of the compiler. */
9386 else if (mode
== BImode
)
9388 *ptrue
= GEN_INT (STORE_FLAG_VALUE
), *pfalse
= const0_rtx
;
9392 /* If X is known to be either 0 or -1, those are the true and
9393 false values when testing X. */
9394 else if (x
== constm1_rtx
|| x
== const0_rtx
9395 || (is_a
<scalar_int_mode
> (mode
, &int_mode
)
9396 && (num_sign_bit_copies (x
, int_mode
)
9397 == GET_MODE_PRECISION (int_mode
))))
9399 *ptrue
= constm1_rtx
, *pfalse
= const0_rtx
;
9403 /* Likewise for 0 or a single bit. */
9404 else if (HWI_COMPUTABLE_MODE_P (mode
)
9405 && pow2p_hwi (nz
= nonzero_bits (x
, mode
)))
9407 *ptrue
= gen_int_mode (nz
, mode
), *pfalse
= const0_rtx
;
9411 /* Otherwise fail; show no condition with true and false values the same. */
9412 *ptrue
= *pfalse
= x
;
9416 /* Return the value of expression X given the fact that condition COND
9417 is known to be true when applied to REG as its first operand and VAL
9418 as its second. X is known to not be shared and so can be modified in
9421 We only handle the simplest cases, and specifically those cases that
9422 arise with IF_THEN_ELSE expressions. */
9425 known_cond (rtx x
, enum rtx_code cond
, rtx reg
, rtx val
)
9427 enum rtx_code code
= GET_CODE (x
);
9431 if (side_effects_p (x
))
9434 /* If either operand of the condition is a floating point value,
9435 then we have to avoid collapsing an EQ comparison. */
9437 && rtx_equal_p (x
, reg
)
9438 && ! FLOAT_MODE_P (GET_MODE (x
))
9439 && ! FLOAT_MODE_P (GET_MODE (val
)))
9442 if (cond
== UNEQ
&& rtx_equal_p (x
, reg
))
9445 /* If X is (abs REG) and we know something about REG's relationship
9446 with zero, we may be able to simplify this. */
9448 if (code
== ABS
&& rtx_equal_p (XEXP (x
, 0), reg
) && val
== const0_rtx
)
9451 case GE
: case GT
: case EQ
:
9454 return simplify_gen_unary (NEG
, GET_MODE (XEXP (x
, 0)),
9456 GET_MODE (XEXP (x
, 0)));
9461 /* The only other cases we handle are MIN, MAX, and comparisons if the
9462 operands are the same as REG and VAL. */
9464 else if (COMPARISON_P (x
) || COMMUTATIVE_ARITH_P (x
))
9466 if (rtx_equal_p (XEXP (x
, 0), val
))
9468 std::swap (val
, reg
);
9469 cond
= swap_condition (cond
);
9472 if (rtx_equal_p (XEXP (x
, 0), reg
) && rtx_equal_p (XEXP (x
, 1), val
))
9474 if (COMPARISON_P (x
))
9476 if (comparison_dominates_p (cond
, code
))
9477 return const_true_rtx
;
9479 code
= reversed_comparison_code (x
, NULL
);
9481 && comparison_dominates_p (cond
, code
))
9486 else if (code
== SMAX
|| code
== SMIN
9487 || code
== UMIN
|| code
== UMAX
)
9489 int unsignedp
= (code
== UMIN
|| code
== UMAX
);
9491 /* Do not reverse the condition when it is NE or EQ.
9492 This is because we cannot conclude anything about
9493 the value of 'SMAX (x, y)' when x is not equal to y,
9494 but we can when x equals y. */
9495 if ((code
== SMAX
|| code
== UMAX
)
9496 && ! (cond
== EQ
|| cond
== NE
))
9497 cond
= reverse_condition (cond
);
9502 return unsignedp
? x
: XEXP (x
, 1);
9504 return unsignedp
? x
: XEXP (x
, 0);
9506 return unsignedp
? XEXP (x
, 1) : x
;
9508 return unsignedp
? XEXP (x
, 0) : x
;
9515 else if (code
== SUBREG
)
9517 machine_mode inner_mode
= GET_MODE (SUBREG_REG (x
));
9518 rtx new_rtx
, r
= known_cond (SUBREG_REG (x
), cond
, reg
, val
);
9520 if (SUBREG_REG (x
) != r
)
9522 /* We must simplify subreg here, before we lose track of the
9523 original inner_mode. */
9524 new_rtx
= simplify_subreg (GET_MODE (x
), r
,
9525 inner_mode
, SUBREG_BYTE (x
));
9529 SUBST (SUBREG_REG (x
), r
);
9534 /* We don't have to handle SIGN_EXTEND here, because even in the
9535 case of replacing something with a modeless CONST_INT, a
9536 CONST_INT is already (supposed to be) a valid sign extension for
9537 its narrower mode, which implies it's already properly
9538 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9539 story is different. */
9540 else if (code
== ZERO_EXTEND
)
9542 machine_mode inner_mode
= GET_MODE (XEXP (x
, 0));
9543 rtx new_rtx
, r
= known_cond (XEXP (x
, 0), cond
, reg
, val
);
9545 if (XEXP (x
, 0) != r
)
9547 /* We must simplify the zero_extend here, before we lose
9548 track of the original inner_mode. */
9549 new_rtx
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
9554 SUBST (XEXP (x
, 0), r
);
9560 fmt
= GET_RTX_FORMAT (code
);
9561 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
9564 SUBST (XEXP (x
, i
), known_cond (XEXP (x
, i
), cond
, reg
, val
));
9565 else if (fmt
[i
] == 'E')
9566 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
9567 SUBST (XVECEXP (x
, i
, j
), known_cond (XVECEXP (x
, i
, j
),
9574 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9575 assignment as a field assignment. */
9578 rtx_equal_for_field_assignment_p (rtx x
, rtx y
, bool widen_x
)
9580 if (widen_x
&& GET_MODE (x
) != GET_MODE (y
))
9582 if (paradoxical_subreg_p (GET_MODE (x
), GET_MODE (y
)))
9584 if (BYTES_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
9586 x
= adjust_address_nv (x
, GET_MODE (y
),
9587 byte_lowpart_offset (GET_MODE (y
),
9591 if (x
== y
|| rtx_equal_p (x
, y
))
9594 if (x
== 0 || y
== 0 || GET_MODE (x
) != GET_MODE (y
))
9597 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9598 Note that all SUBREGs of MEM are paradoxical; otherwise they
9599 would have been rewritten. */
9600 if (MEM_P (x
) && GET_CODE (y
) == SUBREG
9601 && MEM_P (SUBREG_REG (y
))
9602 && rtx_equal_p (SUBREG_REG (y
),
9603 gen_lowpart (GET_MODE (SUBREG_REG (y
)), x
)))
9606 if (MEM_P (y
) && GET_CODE (x
) == SUBREG
9607 && MEM_P (SUBREG_REG (x
))
9608 && rtx_equal_p (SUBREG_REG (x
),
9609 gen_lowpart (GET_MODE (SUBREG_REG (x
)), y
)))
9612 /* We used to see if get_last_value of X and Y were the same but that's
9613 not correct. In one direction, we'll cause the assignment to have
9614 the wrong destination and in the case, we'll import a register into this
9615 insn that might have already have been dead. So fail if none of the
9616 above cases are true. */
9620 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9621 Return that assignment if so.
9623 We only handle the most common cases. */
9626 make_field_assignment (rtx x
)
9628 rtx dest
= SET_DEST (x
);
9629 rtx src
= SET_SRC (x
);
9634 unsigned HOST_WIDE_INT len
;
9637 /* All the rules in this function are specific to scalar integers. */
9638 scalar_int_mode mode
;
9639 if (!is_a
<scalar_int_mode
> (GET_MODE (dest
), &mode
))
9642 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9643 a clear of a one-bit field. We will have changed it to
9644 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9647 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == ROTATE
9648 && CONST_INT_P (XEXP (XEXP (src
, 0), 0))
9649 && INTVAL (XEXP (XEXP (src
, 0), 0)) == -2
9650 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9652 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9655 return gen_rtx_SET (assign
, const0_rtx
);
9659 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == SUBREG
9660 && subreg_lowpart_p (XEXP (src
, 0))
9661 && partial_subreg_p (XEXP (src
, 0))
9662 && GET_CODE (SUBREG_REG (XEXP (src
, 0))) == ROTATE
9663 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src
, 0)), 0))
9664 && INTVAL (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == -2
9665 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9667 assign
= make_extraction (VOIDmode
, dest
, 0,
9668 XEXP (SUBREG_REG (XEXP (src
, 0)), 1),
9671 return gen_rtx_SET (assign
, const0_rtx
);
9675 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9677 if (GET_CODE (src
) == IOR
&& GET_CODE (XEXP (src
, 0)) == ASHIFT
9678 && XEXP (XEXP (src
, 0), 0) == const1_rtx
9679 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9681 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9684 return gen_rtx_SET (assign
, const1_rtx
);
9688 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9689 SRC is an AND with all bits of that field set, then we can discard
9691 if (GET_CODE (dest
) == ZERO_EXTRACT
9692 && CONST_INT_P (XEXP (dest
, 1))
9693 && GET_CODE (src
) == AND
9694 && CONST_INT_P (XEXP (src
, 1)))
9696 HOST_WIDE_INT width
= INTVAL (XEXP (dest
, 1));
9697 unsigned HOST_WIDE_INT and_mask
= INTVAL (XEXP (src
, 1));
9698 unsigned HOST_WIDE_INT ze_mask
;
9700 if (width
>= HOST_BITS_PER_WIDE_INT
)
9703 ze_mask
= ((unsigned HOST_WIDE_INT
)1 << width
) - 1;
9705 /* Complete overlap. We can remove the source AND. */
9706 if ((and_mask
& ze_mask
) == ze_mask
)
9707 return gen_rtx_SET (dest
, XEXP (src
, 0));
9709 /* Partial overlap. We can reduce the source AND. */
9710 if ((and_mask
& ze_mask
) != and_mask
)
9712 src
= gen_rtx_AND (mode
, XEXP (src
, 0),
9713 gen_int_mode (and_mask
& ze_mask
, mode
));
9714 return gen_rtx_SET (dest
, src
);
9718 /* The other case we handle is assignments into a constant-position
9719 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9720 a mask that has all one bits except for a group of zero bits and
9721 OTHER is known to have zeros where C1 has ones, this is such an
9722 assignment. Compute the position and length from C1. Shift OTHER
9723 to the appropriate position, force it to the required mode, and
9724 make the extraction. Check for the AND in both operands. */
9726 /* One or more SUBREGs might obscure the constant-position field
9727 assignment. The first one we are likely to encounter is an outer
9728 narrowing SUBREG, which we can just strip for the purposes of
9729 identifying the constant-field assignment. */
9730 scalar_int_mode src_mode
= mode
;
9731 if (GET_CODE (src
) == SUBREG
9732 && subreg_lowpart_p (src
)
9733 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (src
)), &src_mode
))
9734 src
= SUBREG_REG (src
);
9736 if (GET_CODE (src
) != IOR
&& GET_CODE (src
) != XOR
)
9739 rhs
= expand_compound_operation (XEXP (src
, 0));
9740 lhs
= expand_compound_operation (XEXP (src
, 1));
9742 if (GET_CODE (rhs
) == AND
9743 && CONST_INT_P (XEXP (rhs
, 1))
9744 && rtx_equal_for_field_assignment_p (XEXP (rhs
, 0), dest
))
9745 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
9746 /* The second SUBREG that might get in the way is a paradoxical
9747 SUBREG around the first operand of the AND. We want to
9748 pretend the operand is as wide as the destination here. We
9749 do this by adjusting the MEM to wider mode for the sole
9750 purpose of the call to rtx_equal_for_field_assignment_p. Also
9751 note this trick only works for MEMs. */
9752 else if (GET_CODE (rhs
) == AND
9753 && paradoxical_subreg_p (XEXP (rhs
, 0))
9754 && MEM_P (SUBREG_REG (XEXP (rhs
, 0)))
9755 && CONST_INT_P (XEXP (rhs
, 1))
9756 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs
, 0)),
9758 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
9759 else if (GET_CODE (lhs
) == AND
9760 && CONST_INT_P (XEXP (lhs
, 1))
9761 && rtx_equal_for_field_assignment_p (XEXP (lhs
, 0), dest
))
9762 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
9763 /* The second SUBREG that might get in the way is a paradoxical
9764 SUBREG around the first operand of the AND. We want to
9765 pretend the operand is as wide as the destination here. We
9766 do this by adjusting the MEM to wider mode for the sole
9767 purpose of the call to rtx_equal_for_field_assignment_p. Also
9768 note this trick only works for MEMs. */
9769 else if (GET_CODE (lhs
) == AND
9770 && paradoxical_subreg_p (XEXP (lhs
, 0))
9771 && MEM_P (SUBREG_REG (XEXP (lhs
, 0)))
9772 && CONST_INT_P (XEXP (lhs
, 1))
9773 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs
, 0)),
9775 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
9779 pos
= get_pos_from_mask ((~c1
) & GET_MODE_MASK (mode
), &len
);
9781 || pos
+ len
> GET_MODE_PRECISION (mode
)
9782 || GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
9783 || (c1
& nonzero_bits (other
, mode
)) != 0)
9786 assign
= make_extraction (VOIDmode
, dest
, pos
, NULL_RTX
, len
, 1, 1, 0);
9790 /* The mode to use for the source is the mode of the assignment, or of
9791 what is inside a possible STRICT_LOW_PART. */
9792 machine_mode new_mode
= (GET_CODE (assign
) == STRICT_LOW_PART
9793 ? GET_MODE (XEXP (assign
, 0)) : GET_MODE (assign
));
9795 /* Shift OTHER right POS places and make it the source, restricting it
9796 to the proper length and mode. */
9798 src
= canon_reg_for_combine (simplify_shift_const (NULL_RTX
, LSHIFTRT
,
9799 src_mode
, other
, pos
),
9801 src
= force_to_mode (src
, new_mode
,
9802 len
>= HOST_BITS_PER_WIDE_INT
9804 : (HOST_WIDE_INT_1U
<< len
) - 1,
9807 /* If SRC is masked by an AND that does not make a difference in
9808 the value being stored, strip it. */
9809 if (GET_CODE (assign
) == ZERO_EXTRACT
9810 && CONST_INT_P (XEXP (assign
, 1))
9811 && INTVAL (XEXP (assign
, 1)) < HOST_BITS_PER_WIDE_INT
9812 && GET_CODE (src
) == AND
9813 && CONST_INT_P (XEXP (src
, 1))
9814 && UINTVAL (XEXP (src
, 1))
9815 == (HOST_WIDE_INT_1U
<< INTVAL (XEXP (assign
, 1))) - 1)
9816 src
= XEXP (src
, 0);
9818 return gen_rtx_SET (assign
, src
);
9821 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9825 apply_distributive_law (rtx x
)
9827 enum rtx_code code
= GET_CODE (x
);
9828 enum rtx_code inner_code
;
9829 rtx lhs
, rhs
, other
;
9832 /* Distributivity is not true for floating point as it can change the
9833 value. So we don't do it unless -funsafe-math-optimizations. */
9834 if (FLOAT_MODE_P (GET_MODE (x
))
9835 && ! flag_unsafe_math_optimizations
)
9838 /* The outer operation can only be one of the following: */
9839 if (code
!= IOR
&& code
!= AND
&& code
!= XOR
9840 && code
!= PLUS
&& code
!= MINUS
)
9846 /* If either operand is a primitive we can't do anything, so get out
9848 if (OBJECT_P (lhs
) || OBJECT_P (rhs
))
9851 lhs
= expand_compound_operation (lhs
);
9852 rhs
= expand_compound_operation (rhs
);
9853 inner_code
= GET_CODE (lhs
);
9854 if (inner_code
!= GET_CODE (rhs
))
9857 /* See if the inner and outer operations distribute. */
9864 /* These all distribute except over PLUS. */
9865 if (code
== PLUS
|| code
== MINUS
)
9870 if (code
!= PLUS
&& code
!= MINUS
)
9875 /* This is also a multiply, so it distributes over everything. */
9878 /* This used to handle SUBREG, but this turned out to be counter-
9879 productive, since (subreg (op ...)) usually is not handled by
9880 insn patterns, and this "optimization" therefore transformed
9881 recognizable patterns into unrecognizable ones. Therefore the
9882 SUBREG case was removed from here.
9884 It is possible that distributing SUBREG over arithmetic operations
9885 leads to an intermediate result than can then be optimized further,
9886 e.g. by moving the outer SUBREG to the other side of a SET as done
9887 in simplify_set. This seems to have been the original intent of
9888 handling SUBREGs here.
9890 However, with current GCC this does not appear to actually happen,
9891 at least on major platforms. If some case is found where removing
9892 the SUBREG case here prevents follow-on optimizations, distributing
9893 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9899 /* Set LHS and RHS to the inner operands (A and B in the example
9900 above) and set OTHER to the common operand (C in the example).
9901 There is only one way to do this unless the inner operation is
9903 if (COMMUTATIVE_ARITH_P (lhs
)
9904 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 0)))
9905 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 1);
9906 else if (COMMUTATIVE_ARITH_P (lhs
)
9907 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 1)))
9908 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 0);
9909 else if (COMMUTATIVE_ARITH_P (lhs
)
9910 && rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 0)))
9911 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 1);
9912 else if (rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 1)))
9913 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 0);
9917 /* Form the new inner operation, seeing if it simplifies first. */
9918 tem
= simplify_gen_binary (code
, GET_MODE (x
), lhs
, rhs
);
9920 /* There is one exception to the general way of distributing:
9921 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9922 if (code
== XOR
&& inner_code
== IOR
)
9925 other
= simplify_gen_unary (NOT
, GET_MODE (x
), other
, GET_MODE (x
));
9928 /* We may be able to continuing distributing the result, so call
9929 ourselves recursively on the inner operation before forming the
9930 outer operation, which we return. */
9931 return simplify_gen_binary (inner_code
, GET_MODE (x
),
9932 apply_distributive_law (tem
), other
);
9935 /* See if X is of the form (* (+ A B) C), and if so convert to
9936 (+ (* A C) (* B C)) and try to simplify.
9938 Most of the time, this results in no change. However, if some of
9939 the operands are the same or inverses of each other, simplifications
9942 For example, (and (ior A B) (not B)) can occur as the result of
9943 expanding a bit field assignment. When we apply the distributive
9944 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9945 which then simplifies to (and (A (not B))).
9947 Note that no checks happen on the validity of applying the inverse
9948 distributive law. This is pointless since we can do it in the
9949 few places where this routine is called.
9951 N is the index of the term that is decomposed (the arithmetic operation,
9952 i.e. (+ A B) in the first example above). !N is the index of the term that
9953 is distributed, i.e. of C in the first example above. */
9955 distribute_and_simplify_rtx (rtx x
, int n
)
9958 enum rtx_code outer_code
, inner_code
;
9959 rtx decomposed
, distributed
, inner_op0
, inner_op1
, new_op0
, new_op1
, tmp
;
9961 /* Distributivity is not true for floating point as it can change the
9962 value. So we don't do it unless -funsafe-math-optimizations. */
9963 if (FLOAT_MODE_P (GET_MODE (x
))
9964 && ! flag_unsafe_math_optimizations
)
9967 decomposed
= XEXP (x
, n
);
9968 if (!ARITHMETIC_P (decomposed
))
9971 mode
= GET_MODE (x
);
9972 outer_code
= GET_CODE (x
);
9973 distributed
= XEXP (x
, !n
);
9975 inner_code
= GET_CODE (decomposed
);
9976 inner_op0
= XEXP (decomposed
, 0);
9977 inner_op1
= XEXP (decomposed
, 1);
9979 /* Special case (and (xor B C) (not A)), which is equivalent to
9980 (xor (ior A B) (ior A C)) */
9981 if (outer_code
== AND
&& inner_code
== XOR
&& GET_CODE (distributed
) == NOT
)
9983 distributed
= XEXP (distributed
, 0);
9989 /* Distribute the second term. */
9990 new_op0
= simplify_gen_binary (outer_code
, mode
, inner_op0
, distributed
);
9991 new_op1
= simplify_gen_binary (outer_code
, mode
, inner_op1
, distributed
);
9995 /* Distribute the first term. */
9996 new_op0
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op0
);
9997 new_op1
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op1
);
10000 tmp
= apply_distributive_law (simplify_gen_binary (inner_code
, mode
,
10001 new_op0
, new_op1
));
10002 if (GET_CODE (tmp
) != outer_code
10003 && (set_src_cost (tmp
, mode
, optimize_this_for_speed_p
)
10004 < set_src_cost (x
, mode
, optimize_this_for_speed_p
)))
10010 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10011 in MODE. Return an equivalent form, if different from (and VAROP
10012 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10015 simplify_and_const_int_1 (scalar_int_mode mode
, rtx varop
,
10016 unsigned HOST_WIDE_INT constop
)
10018 unsigned HOST_WIDE_INT nonzero
;
10019 unsigned HOST_WIDE_INT orig_constop
;
10023 orig_varop
= varop
;
10024 orig_constop
= constop
;
10025 if (GET_CODE (varop
) == CLOBBER
)
10028 /* Simplify VAROP knowing that we will be only looking at some of the
10031 Note by passing in CONSTOP, we guarantee that the bits not set in
10032 CONSTOP are not significant and will never be examined. We must
10033 ensure that is the case by explicitly masking out those bits
10034 before returning. */
10035 varop
= force_to_mode (varop
, mode
, constop
, 0);
10037 /* If VAROP is a CLOBBER, we will fail so return it. */
10038 if (GET_CODE (varop
) == CLOBBER
)
10041 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10042 to VAROP and return the new constant. */
10043 if (CONST_INT_P (varop
))
10044 return gen_int_mode (INTVAL (varop
) & constop
, mode
);
10046 /* See what bits may be nonzero in VAROP. Unlike the general case of
10047 a call to nonzero_bits, here we don't care about bits outside
10050 nonzero
= nonzero_bits (varop
, mode
) & GET_MODE_MASK (mode
);
10052 /* Turn off all bits in the constant that are known to already be zero.
10053 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10054 which is tested below. */
10056 constop
&= nonzero
;
10058 /* If we don't have any bits left, return zero. */
10062 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10063 a power of two, we can replace this with an ASHIFT. */
10064 if (GET_CODE (varop
) == NEG
&& nonzero_bits (XEXP (varop
, 0), mode
) == 1
10065 && (i
= exact_log2 (constop
)) >= 0)
10066 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (varop
, 0), i
);
10068 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10069 or XOR, then try to apply the distributive law. This may eliminate
10070 operations if either branch can be simplified because of the AND.
10071 It may also make some cases more complex, but those cases probably
10072 won't match a pattern either with or without this. */
10074 if (GET_CODE (varop
) == IOR
|| GET_CODE (varop
) == XOR
)
10076 scalar_int_mode varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10080 apply_distributive_law
10081 (simplify_gen_binary (GET_CODE (varop
), varop_mode
,
10082 simplify_and_const_int (NULL_RTX
, varop_mode
,
10085 simplify_and_const_int (NULL_RTX
, varop_mode
,
10090 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10091 the AND and see if one of the operands simplifies to zero. If so, we
10092 may eliminate it. */
10094 if (GET_CODE (varop
) == PLUS
10095 && pow2p_hwi (constop
+ 1))
10099 o0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 0), constop
);
10100 o1
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 1), constop
);
10101 if (o0
== const0_rtx
)
10103 if (o1
== const0_rtx
)
10107 /* Make a SUBREG if necessary. If we can't make it, fail. */
10108 varop
= gen_lowpart (mode
, varop
);
10109 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
10112 /* If we are only masking insignificant bits, return VAROP. */
10113 if (constop
== nonzero
)
10116 if (varop
== orig_varop
&& constop
== orig_constop
)
10119 /* Otherwise, return an AND. */
10120 return simplify_gen_binary (AND
, mode
, varop
, gen_int_mode (constop
, mode
));
10124 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10127 Return an equivalent form, if different from X. Otherwise, return X. If
10128 X is zero, we are to always construct the equivalent form. */
10131 simplify_and_const_int (rtx x
, scalar_int_mode mode
, rtx varop
,
10132 unsigned HOST_WIDE_INT constop
)
10134 rtx tem
= simplify_and_const_int_1 (mode
, varop
, constop
);
10139 x
= simplify_gen_binary (AND
, GET_MODE (varop
), varop
,
10140 gen_int_mode (constop
, mode
));
10141 if (GET_MODE (x
) != mode
)
10142 x
= gen_lowpart (mode
, x
);
10146 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10147 We don't care about bits outside of those defined in MODE.
10149 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10150 a shift, AND, or zero_extract, we can do better. */
10153 reg_nonzero_bits_for_combine (const_rtx x
, scalar_int_mode xmode
,
10154 scalar_int_mode mode
,
10155 unsigned HOST_WIDE_INT
*nonzero
)
10158 reg_stat_type
*rsp
;
10160 /* If X is a register whose nonzero bits value is current, use it.
10161 Otherwise, if X is a register whose value we can find, use that
10162 value. Otherwise, use the previously-computed global nonzero bits
10163 for this register. */
10165 rsp
= ®_stat
[REGNO (x
)];
10166 if (rsp
->last_set_value
!= 0
10167 && (rsp
->last_set_mode
== mode
10168 || (GET_MODE_CLASS (rsp
->last_set_mode
) == MODE_INT
10169 && GET_MODE_CLASS (mode
) == MODE_INT
))
10170 && ((rsp
->last_set_label
>= label_tick_ebb_start
10171 && rsp
->last_set_label
< label_tick
)
10172 || (rsp
->last_set_label
== label_tick
10173 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
10174 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
10175 && REGNO (x
) < reg_n_sets_max
10176 && REG_N_SETS (REGNO (x
)) == 1
10177 && !REGNO_REG_SET_P
10178 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
10181 /* Note that, even if the precision of last_set_mode is lower than that
10182 of mode, record_value_for_reg invoked nonzero_bits on the register
10183 with nonzero_bits_mode (because last_set_mode is necessarily integral
10184 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10185 are all valid, hence in mode too since nonzero_bits_mode is defined
10186 to the largest HWI_COMPUTABLE_MODE_P mode. */
10187 *nonzero
&= rsp
->last_set_nonzero_bits
;
10191 tem
= get_last_value (x
);
10194 if (SHORT_IMMEDIATES_SIGN_EXTEND
)
10195 tem
= sign_extend_short_imm (tem
, xmode
, GET_MODE_PRECISION (mode
));
10200 if (nonzero_sign_valid
&& rsp
->nonzero_bits
)
10202 unsigned HOST_WIDE_INT mask
= rsp
->nonzero_bits
;
10204 if (GET_MODE_PRECISION (xmode
) < GET_MODE_PRECISION (mode
))
10205 /* We don't know anything about the upper bits. */
10206 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (xmode
);
10214 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10215 end of X that are known to be equal to the sign bit. X will be used
10216 in mode MODE; the returned value will always be between 1 and the
10217 number of bits in MODE. */
10220 reg_num_sign_bit_copies_for_combine (const_rtx x
, scalar_int_mode xmode
,
10221 scalar_int_mode mode
,
10222 unsigned int *result
)
10225 reg_stat_type
*rsp
;
10227 rsp
= ®_stat
[REGNO (x
)];
10228 if (rsp
->last_set_value
!= 0
10229 && rsp
->last_set_mode
== mode
10230 && ((rsp
->last_set_label
>= label_tick_ebb_start
10231 && rsp
->last_set_label
< label_tick
)
10232 || (rsp
->last_set_label
== label_tick
10233 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
10234 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
10235 && REGNO (x
) < reg_n_sets_max
10236 && REG_N_SETS (REGNO (x
)) == 1
10237 && !REGNO_REG_SET_P
10238 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
10241 *result
= rsp
->last_set_sign_bit_copies
;
10245 tem
= get_last_value (x
);
10249 if (nonzero_sign_valid
&& rsp
->sign_bit_copies
!= 0
10250 && GET_MODE_PRECISION (xmode
) == GET_MODE_PRECISION (mode
))
10251 *result
= rsp
->sign_bit_copies
;
10256 /* Return the number of "extended" bits there are in X, when interpreted
10257 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10258 unsigned quantities, this is the number of high-order zero bits.
10259 For signed quantities, this is the number of copies of the sign bit
10260 minus 1. In both case, this function returns the number of "spare"
10261 bits. For example, if two quantities for which this function returns
10262 at least 1 are added, the addition is known not to overflow.
10264 This function will always return 0 unless called during combine, which
10265 implies that it must be called from a define_split. */
10268 extended_count (const_rtx x
, machine_mode mode
, int unsignedp
)
10270 if (nonzero_sign_valid
== 0)
10273 scalar_int_mode int_mode
;
10275 ? (is_a
<scalar_int_mode
> (mode
, &int_mode
)
10276 && HWI_COMPUTABLE_MODE_P (int_mode
)
10277 ? (unsigned int) (GET_MODE_PRECISION (int_mode
) - 1
10278 - floor_log2 (nonzero_bits (x
, int_mode
)))
10280 : num_sign_bit_copies (x
, mode
) - 1);
10283 /* This function is called from `simplify_shift_const' to merge two
10284 outer operations. Specifically, we have already found that we need
10285 to perform operation *POP0 with constant *PCONST0 at the outermost
10286 position. We would now like to also perform OP1 with constant CONST1
10287 (with *POP0 being done last).
10289 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10290 the resulting operation. *PCOMP_P is set to 1 if we would need to
10291 complement the innermost operand, otherwise it is unchanged.
10293 MODE is the mode in which the operation will be done. No bits outside
10294 the width of this mode matter. It is assumed that the width of this mode
10295 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10297 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10298 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10299 result is simply *PCONST0.
10301 If the resulting operation cannot be expressed as one operation, we
10302 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10305 merge_outer_ops (enum rtx_code
*pop0
, HOST_WIDE_INT
*pconst0
, enum rtx_code op1
, HOST_WIDE_INT const1
, machine_mode mode
, int *pcomp_p
)
10307 enum rtx_code op0
= *pop0
;
10308 HOST_WIDE_INT const0
= *pconst0
;
10310 const0
&= GET_MODE_MASK (mode
);
10311 const1
&= GET_MODE_MASK (mode
);
10313 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10317 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10320 if (op1
== UNKNOWN
|| op0
== SET
)
10323 else if (op0
== UNKNOWN
)
10324 op0
= op1
, const0
= const1
;
10326 else if (op0
== op1
)
10350 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10351 else if (op0
== PLUS
|| op1
== PLUS
|| op0
== NEG
|| op1
== NEG
)
10354 /* If the two constants aren't the same, we can't do anything. The
10355 remaining six cases can all be done. */
10356 else if (const0
!= const1
)
10364 /* (a & b) | b == b */
10366 else /* op1 == XOR */
10367 /* (a ^ b) | b == a | b */
10373 /* (a & b) ^ b == (~a) & b */
10374 op0
= AND
, *pcomp_p
= 1;
10375 else /* op1 == IOR */
10376 /* (a | b) ^ b == a & ~b */
10377 op0
= AND
, const0
= ~const0
;
10382 /* (a | b) & b == b */
10384 else /* op1 == XOR */
10385 /* (a ^ b) & b) == (~a) & b */
10392 /* Check for NO-OP cases. */
10393 const0
&= GET_MODE_MASK (mode
);
10395 && (op0
== IOR
|| op0
== XOR
|| op0
== PLUS
))
10397 else if (const0
== 0 && op0
== AND
)
10399 else if ((unsigned HOST_WIDE_INT
) const0
== GET_MODE_MASK (mode
)
10405 /* ??? Slightly redundant with the above mask, but not entirely.
10406 Moving this above means we'd have to sign-extend the mode mask
10407 for the final test. */
10408 if (op0
!= UNKNOWN
&& op0
!= NEG
)
10409 *pconst0
= trunc_int_for_mode (const0
, mode
);
10414 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10415 the shift in. The original shift operation CODE is performed on OP in
10416 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10417 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10418 result of the shift is subject to operation OUTER_CODE with operand
10421 static scalar_int_mode
10422 try_widen_shift_mode (enum rtx_code code
, rtx op
, int count
,
10423 scalar_int_mode orig_mode
, scalar_int_mode mode
,
10424 enum rtx_code outer_code
, HOST_WIDE_INT outer_const
)
10426 gcc_assert (GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (orig_mode
));
10428 /* In general we can't perform in wider mode for right shift and rotate. */
10432 /* We can still widen if the bits brought in from the left are identical
10433 to the sign bit of ORIG_MODE. */
10434 if (num_sign_bit_copies (op
, mode
)
10435 > (unsigned) (GET_MODE_PRECISION (mode
)
10436 - GET_MODE_PRECISION (orig_mode
)))
10441 /* Similarly here but with zero bits. */
10442 if (HWI_COMPUTABLE_MODE_P (mode
)
10443 && (nonzero_bits (op
, mode
) & ~GET_MODE_MASK (orig_mode
)) == 0)
10446 /* We can also widen if the bits brought in will be masked off. This
10447 operation is performed in ORIG_MODE. */
10448 if (outer_code
== AND
)
10450 int care_bits
= low_bitmask_len (orig_mode
, outer_const
);
10453 && GET_MODE_PRECISION (orig_mode
) - care_bits
>= count
)
10462 gcc_unreachable ();
10469 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10470 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10471 if we cannot simplify it. Otherwise, return a simplified value.
10473 The shift is normally computed in the widest mode we find in VAROP, as
10474 long as it isn't a different number of words than RESULT_MODE. Exceptions
10475 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10478 simplify_shift_const_1 (enum rtx_code code
, machine_mode result_mode
,
10479 rtx varop
, int orig_count
)
10481 enum rtx_code orig_code
= code
;
10482 rtx orig_varop
= varop
;
10484 machine_mode mode
= result_mode
;
10485 machine_mode shift_mode
;
10486 scalar_int_mode tmode
, inner_mode
, int_mode
, int_varop_mode
, int_result_mode
;
10487 /* We form (outer_op (code varop count) (outer_const)). */
10488 enum rtx_code outer_op
= UNKNOWN
;
10489 HOST_WIDE_INT outer_const
= 0;
10490 int complement_p
= 0;
10493 /* Make sure and truncate the "natural" shift on the way in. We don't
10494 want to do this inside the loop as it makes it more difficult to
10496 if (SHIFT_COUNT_TRUNCATED
)
10497 orig_count
&= GET_MODE_UNIT_BITSIZE (mode
) - 1;
10499 /* If we were given an invalid count, don't do anything except exactly
10500 what was requested. */
10502 if (orig_count
< 0 || orig_count
>= (int) GET_MODE_UNIT_PRECISION (mode
))
10505 count
= orig_count
;
10507 /* Unless one of the branches of the `if' in this loop does a `continue',
10508 we will `break' the loop after the `if'. */
10512 /* If we have an operand of (clobber (const_int 0)), fail. */
10513 if (GET_CODE (varop
) == CLOBBER
)
10516 /* Convert ROTATERT to ROTATE. */
10517 if (code
== ROTATERT
)
10519 unsigned int bitsize
= GET_MODE_UNIT_PRECISION (result_mode
);
10521 count
= bitsize
- count
;
10524 shift_mode
= result_mode
;
10525 if (shift_mode
!= mode
)
10527 /* We only change the modes of scalar shifts. */
10528 int_mode
= as_a
<scalar_int_mode
> (mode
);
10529 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10530 shift_mode
= try_widen_shift_mode (code
, varop
, count
,
10531 int_result_mode
, int_mode
,
10532 outer_op
, outer_const
);
10535 scalar_int_mode shift_unit_mode
10536 = as_a
<scalar_int_mode
> (GET_MODE_INNER (shift_mode
));
10538 /* Handle cases where the count is greater than the size of the mode
10539 minus 1. For ASHIFT, use the size minus one as the count (this can
10540 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10541 take the count modulo the size. For other shifts, the result is
10544 Since these shifts are being produced by the compiler by combining
10545 multiple operations, each of which are defined, we know what the
10546 result is supposed to be. */
10548 if (count
> (GET_MODE_PRECISION (shift_unit_mode
) - 1))
10550 if (code
== ASHIFTRT
)
10551 count
= GET_MODE_PRECISION (shift_unit_mode
) - 1;
10552 else if (code
== ROTATE
|| code
== ROTATERT
)
10553 count
%= GET_MODE_PRECISION (shift_unit_mode
);
10556 /* We can't simply return zero because there may be an
10558 varop
= const0_rtx
;
10564 /* If we discovered we had to complement VAROP, leave. Making a NOT
10565 here would cause an infinite loop. */
10569 if (shift_mode
== shift_unit_mode
)
10571 /* An arithmetic right shift of a quantity known to be -1 or 0
10573 if (code
== ASHIFTRT
10574 && (num_sign_bit_copies (varop
, shift_unit_mode
)
10575 == GET_MODE_PRECISION (shift_unit_mode
)))
10581 /* If we are doing an arithmetic right shift and discarding all but
10582 the sign bit copies, this is equivalent to doing a shift by the
10583 bitsize minus one. Convert it into that shift because it will
10584 often allow other simplifications. */
10586 if (code
== ASHIFTRT
10587 && (count
+ num_sign_bit_copies (varop
, shift_unit_mode
)
10588 >= GET_MODE_PRECISION (shift_unit_mode
)))
10589 count
= GET_MODE_PRECISION (shift_unit_mode
) - 1;
10591 /* We simplify the tests below and elsewhere by converting
10592 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10593 `make_compound_operation' will convert it to an ASHIFTRT for
10594 those machines (such as VAX) that don't have an LSHIFTRT. */
10595 if (code
== ASHIFTRT
10596 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10597 && val_signbit_known_clear_p (shift_unit_mode
,
10598 nonzero_bits (varop
,
10602 if (((code
== LSHIFTRT
10603 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10604 && !(nonzero_bits (varop
, shift_unit_mode
) >> count
))
10606 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10607 && !((nonzero_bits (varop
, shift_unit_mode
) << count
)
10608 & GET_MODE_MASK (shift_unit_mode
))))
10609 && !side_effects_p (varop
))
10610 varop
= const0_rtx
;
10613 switch (GET_CODE (varop
))
10619 new_rtx
= expand_compound_operation (varop
);
10620 if (new_rtx
!= varop
)
10628 /* The following rules apply only to scalars. */
10629 if (shift_mode
!= shift_unit_mode
)
10631 int_mode
= as_a
<scalar_int_mode
> (mode
);
10633 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10634 minus the width of a smaller mode, we can do this with a
10635 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10636 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10637 && ! mode_dependent_address_p (XEXP (varop
, 0),
10638 MEM_ADDR_SPACE (varop
))
10639 && ! MEM_VOLATILE_P (varop
)
10640 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode
) - count
, 1)
10643 new_rtx
= adjust_address_nv (varop
, tmode
,
10644 BYTES_BIG_ENDIAN
? 0
10645 : count
/ BITS_PER_UNIT
);
10647 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
10648 : ZERO_EXTEND
, int_mode
, new_rtx
);
10655 /* The following rules apply only to scalars. */
10656 if (shift_mode
!= shift_unit_mode
)
10658 int_mode
= as_a
<scalar_int_mode
> (mode
);
10659 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10661 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10662 the same number of words as what we've seen so far. Then store
10663 the widest mode in MODE. */
10664 if (subreg_lowpart_p (varop
)
10665 && is_int_mode (GET_MODE (SUBREG_REG (varop
)), &inner_mode
)
10666 && GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (int_varop_mode
)
10667 && (CEIL (GET_MODE_SIZE (inner_mode
), UNITS_PER_WORD
)
10668 == CEIL (GET_MODE_SIZE (int_mode
), UNITS_PER_WORD
))
10669 && GET_MODE_CLASS (int_varop_mode
) == MODE_INT
)
10671 varop
= SUBREG_REG (varop
);
10672 if (GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (int_mode
))
10679 /* Some machines use MULT instead of ASHIFT because MULT
10680 is cheaper. But it is still better on those machines to
10681 merge two shifts into one. */
10682 if (CONST_INT_P (XEXP (varop
, 1))
10683 && (log2
= exact_log2 (UINTVAL (XEXP (varop
, 1)))) >= 0)
10685 rtx log2_rtx
= gen_int_shift_amount (GET_MODE (varop
), log2
);
10686 varop
= simplify_gen_binary (ASHIFT
, GET_MODE (varop
),
10687 XEXP (varop
, 0), log2_rtx
);
10693 /* Similar, for when divides are cheaper. */
10694 if (CONST_INT_P (XEXP (varop
, 1))
10695 && (log2
= exact_log2 (UINTVAL (XEXP (varop
, 1)))) >= 0)
10697 rtx log2_rtx
= gen_int_shift_amount (GET_MODE (varop
), log2
);
10698 varop
= simplify_gen_binary (LSHIFTRT
, GET_MODE (varop
),
10699 XEXP (varop
, 0), log2_rtx
);
10705 /* If we are extracting just the sign bit of an arithmetic
10706 right shift, that shift is not needed. However, the sign
10707 bit of a wider mode may be different from what would be
10708 interpreted as the sign bit in a narrower mode, so, if
10709 the result is narrower, don't discard the shift. */
10710 if (code
== LSHIFTRT
10711 && count
== (GET_MODE_UNIT_BITSIZE (result_mode
) - 1)
10712 && (GET_MODE_UNIT_BITSIZE (result_mode
)
10713 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop
))))
10715 varop
= XEXP (varop
, 0);
10724 /* The following rules apply only to scalars. */
10725 if (shift_mode
!= shift_unit_mode
)
10727 int_mode
= as_a
<scalar_int_mode
> (mode
);
10728 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10729 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10731 /* Here we have two nested shifts. The result is usually the
10732 AND of a new shift with a mask. We compute the result below. */
10733 if (CONST_INT_P (XEXP (varop
, 1))
10734 && INTVAL (XEXP (varop
, 1)) >= 0
10735 && INTVAL (XEXP (varop
, 1)) < GET_MODE_PRECISION (int_varop_mode
)
10736 && HWI_COMPUTABLE_MODE_P (int_result_mode
)
10737 && HWI_COMPUTABLE_MODE_P (int_mode
))
10739 enum rtx_code first_code
= GET_CODE (varop
);
10740 unsigned int first_count
= INTVAL (XEXP (varop
, 1));
10741 unsigned HOST_WIDE_INT mask
;
10744 /* We have one common special case. We can't do any merging if
10745 the inner code is an ASHIFTRT of a smaller mode. However, if
10746 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10747 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10748 we can convert it to
10749 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10750 This simplifies certain SIGN_EXTEND operations. */
10751 if (code
== ASHIFT
&& first_code
== ASHIFTRT
10752 && count
== (GET_MODE_PRECISION (int_result_mode
)
10753 - GET_MODE_PRECISION (int_varop_mode
)))
10755 /* C3 has the low-order C1 bits zero. */
10757 mask
= GET_MODE_MASK (int_mode
)
10758 & ~((HOST_WIDE_INT_1U
<< first_count
) - 1);
10760 varop
= simplify_and_const_int (NULL_RTX
, int_result_mode
,
10761 XEXP (varop
, 0), mask
);
10762 varop
= simplify_shift_const (NULL_RTX
, ASHIFT
,
10763 int_result_mode
, varop
, count
);
10764 count
= first_count
;
10769 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10770 than C1 high-order bits equal to the sign bit, we can convert
10771 this to either an ASHIFT or an ASHIFTRT depending on the
10774 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10776 if (code
== ASHIFTRT
&& first_code
== ASHIFT
10777 && int_varop_mode
== shift_unit_mode
10778 && (num_sign_bit_copies (XEXP (varop
, 0), shift_unit_mode
)
10781 varop
= XEXP (varop
, 0);
10782 count
-= first_count
;
10792 /* There are some cases we can't do. If CODE is ASHIFTRT,
10793 we can only do this if FIRST_CODE is also ASHIFTRT.
10795 We can't do the case when CODE is ROTATE and FIRST_CODE is
10798 If the mode of this shift is not the mode of the outer shift,
10799 we can't do this if either shift is a right shift or ROTATE.
10801 Finally, we can't do any of these if the mode is too wide
10802 unless the codes are the same.
10804 Handle the case where the shift codes are the same
10807 if (code
== first_code
)
10809 if (int_varop_mode
!= int_result_mode
10810 && (code
== ASHIFTRT
|| code
== LSHIFTRT
10811 || code
== ROTATE
))
10814 count
+= first_count
;
10815 varop
= XEXP (varop
, 0);
10819 if (code
== ASHIFTRT
10820 || (code
== ROTATE
&& first_code
== ASHIFTRT
)
10821 || GET_MODE_PRECISION (int_mode
) > HOST_BITS_PER_WIDE_INT
10822 || (int_varop_mode
!= int_result_mode
10823 && (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
10824 || first_code
== ROTATE
10825 || code
== ROTATE
)))
10828 /* To compute the mask to apply after the shift, shift the
10829 nonzero bits of the inner shift the same way the
10830 outer shift will. */
10832 mask_rtx
= gen_int_mode (nonzero_bits (varop
, int_varop_mode
),
10834 rtx count_rtx
= gen_int_shift_amount (int_result_mode
, count
);
10836 = simplify_const_binary_operation (code
, int_result_mode
,
10837 mask_rtx
, count_rtx
);
10839 /* Give up if we can't compute an outer operation to use. */
10841 || !CONST_INT_P (mask_rtx
)
10842 || ! merge_outer_ops (&outer_op
, &outer_const
, AND
,
10844 int_result_mode
, &complement_p
))
10847 /* If the shifts are in the same direction, we add the
10848 counts. Otherwise, we subtract them. */
10849 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10850 == (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
))
10851 count
+= first_count
;
10853 count
-= first_count
;
10855 /* If COUNT is positive, the new shift is usually CODE,
10856 except for the two exceptions below, in which case it is
10857 FIRST_CODE. If the count is negative, FIRST_CODE should
10860 && ((first_code
== ROTATE
&& code
== ASHIFT
)
10861 || (first_code
== ASHIFTRT
&& code
== LSHIFTRT
)))
10863 else if (count
< 0)
10864 code
= first_code
, count
= -count
;
10866 varop
= XEXP (varop
, 0);
10870 /* If we have (A << B << C) for any shift, we can convert this to
10871 (A << C << B). This wins if A is a constant. Only try this if
10872 B is not a constant. */
10874 else if (GET_CODE (varop
) == code
10875 && CONST_INT_P (XEXP (varop
, 0))
10876 && !CONST_INT_P (XEXP (varop
, 1)))
10878 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10879 sure the result will be masked. See PR70222. */
10880 if (code
== LSHIFTRT
10881 && int_mode
!= int_result_mode
10882 && !merge_outer_ops (&outer_op
, &outer_const
, AND
,
10883 GET_MODE_MASK (int_result_mode
)
10884 >> orig_count
, int_result_mode
,
10887 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10888 up outer sign extension (often left and right shift) is
10889 hardly more efficient than the original. See PR70429. */
10890 if (code
== ASHIFTRT
&& int_mode
!= int_result_mode
)
10893 rtx count_rtx
= gen_int_shift_amount (int_result_mode
, count
);
10894 rtx new_rtx
= simplify_const_binary_operation (code
, int_mode
,
10897 varop
= gen_rtx_fmt_ee (code
, int_mode
, new_rtx
, XEXP (varop
, 1));
10904 /* The following rules apply only to scalars. */
10905 if (shift_mode
!= shift_unit_mode
)
10908 /* Make this fit the case below. */
10909 varop
= gen_rtx_XOR (mode
, XEXP (varop
, 0), constm1_rtx
);
10915 /* The following rules apply only to scalars. */
10916 if (shift_mode
!= shift_unit_mode
)
10918 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10919 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10921 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10922 with C the size of VAROP - 1 and the shift is logical if
10923 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10924 we have an (le X 0) operation. If we have an arithmetic shift
10925 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10926 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10928 if (GET_CODE (varop
) == IOR
&& GET_CODE (XEXP (varop
, 0)) == PLUS
10929 && XEXP (XEXP (varop
, 0), 1) == constm1_rtx
10930 && (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
10931 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
10932 && count
== (GET_MODE_PRECISION (int_varop_mode
) - 1)
10933 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
10936 varop
= gen_rtx_LE (int_varop_mode
, XEXP (varop
, 1),
10939 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
10940 varop
= gen_rtx_NEG (int_varop_mode
, varop
);
10945 /* If we have (shift (logical)), move the logical to the outside
10946 to allow it to possibly combine with another logical and the
10947 shift to combine with another shift. This also canonicalizes to
10948 what a ZERO_EXTRACT looks like. Also, some machines have
10949 (and (shift)) insns. */
10951 if (CONST_INT_P (XEXP (varop
, 1))
10952 /* We can't do this if we have (ashiftrt (xor)) and the
10953 constant has its sign bit set in shift_unit_mode with
10954 shift_unit_mode wider than result_mode. */
10955 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10956 && int_result_mode
!= shift_unit_mode
10957 && trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10958 shift_unit_mode
) < 0)
10959 && (new_rtx
= simplify_const_binary_operation
10960 (code
, int_result_mode
,
10961 gen_int_mode (INTVAL (XEXP (varop
, 1)), int_result_mode
),
10962 gen_int_shift_amount (int_result_mode
, count
))) != 0
10963 && CONST_INT_P (new_rtx
)
10964 && merge_outer_ops (&outer_op
, &outer_const
, GET_CODE (varop
),
10965 INTVAL (new_rtx
), int_result_mode
,
10968 varop
= XEXP (varop
, 0);
10972 /* If we can't do that, try to simplify the shift in each arm of the
10973 logical expression, make a new logical expression, and apply
10974 the inverse distributive law. This also can't be done for
10975 (ashiftrt (xor)) where we've widened the shift and the constant
10976 changes the sign bit. */
10977 if (CONST_INT_P (XEXP (varop
, 1))
10978 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10979 && int_result_mode
!= shift_unit_mode
10980 && trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10981 shift_unit_mode
) < 0))
10983 rtx lhs
= simplify_shift_const (NULL_RTX
, code
, shift_unit_mode
,
10984 XEXP (varop
, 0), count
);
10985 rtx rhs
= simplify_shift_const (NULL_RTX
, code
, shift_unit_mode
,
10986 XEXP (varop
, 1), count
);
10988 varop
= simplify_gen_binary (GET_CODE (varop
), shift_unit_mode
,
10990 varop
= apply_distributive_law (varop
);
10998 /* The following rules apply only to scalars. */
10999 if (shift_mode
!= shift_unit_mode
)
11001 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11003 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11004 says that the sign bit can be tested, FOO has mode MODE, C is
11005 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11006 that may be nonzero. */
11007 if (code
== LSHIFTRT
11008 && XEXP (varop
, 1) == const0_rtx
11009 && GET_MODE (XEXP (varop
, 0)) == int_result_mode
11010 && count
== (GET_MODE_PRECISION (int_result_mode
) - 1)
11011 && HWI_COMPUTABLE_MODE_P (int_result_mode
)
11012 && STORE_FLAG_VALUE
== -1
11013 && nonzero_bits (XEXP (varop
, 0), int_result_mode
) == 1
11014 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1,
11015 int_result_mode
, &complement_p
))
11017 varop
= XEXP (varop
, 0);
11024 /* The following rules apply only to scalars. */
11025 if (shift_mode
!= shift_unit_mode
)
11027 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11029 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11030 than the number of bits in the mode is equivalent to A. */
11031 if (code
== LSHIFTRT
11032 && count
== (GET_MODE_PRECISION (int_result_mode
) - 1)
11033 && nonzero_bits (XEXP (varop
, 0), int_result_mode
) == 1)
11035 varop
= XEXP (varop
, 0);
11040 /* NEG commutes with ASHIFT since it is multiplication. Move the
11041 NEG outside to allow shifts to combine. */
11043 && merge_outer_ops (&outer_op
, &outer_const
, NEG
, 0,
11044 int_result_mode
, &complement_p
))
11046 varop
= XEXP (varop
, 0);
11052 /* The following rules apply only to scalars. */
11053 if (shift_mode
!= shift_unit_mode
)
11055 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11057 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11058 is one less than the number of bits in the mode is
11059 equivalent to (xor A 1). */
11060 if (code
== LSHIFTRT
11061 && count
== (GET_MODE_PRECISION (int_result_mode
) - 1)
11062 && XEXP (varop
, 1) == constm1_rtx
11063 && nonzero_bits (XEXP (varop
, 0), int_result_mode
) == 1
11064 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1,
11065 int_result_mode
, &complement_p
))
11068 varop
= XEXP (varop
, 0);
11072 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11073 that might be nonzero in BAR are those being shifted out and those
11074 bits are known zero in FOO, we can replace the PLUS with FOO.
11075 Similarly in the other operand order. This code occurs when
11076 we are computing the size of a variable-size array. */
11078 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
11079 && count
< HOST_BITS_PER_WIDE_INT
11080 && nonzero_bits (XEXP (varop
, 1), int_result_mode
) >> count
== 0
11081 && (nonzero_bits (XEXP (varop
, 1), int_result_mode
)
11082 & nonzero_bits (XEXP (varop
, 0), int_result_mode
)) == 0)
11084 varop
= XEXP (varop
, 0);
11087 else if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
11088 && count
< HOST_BITS_PER_WIDE_INT
11089 && HWI_COMPUTABLE_MODE_P (int_result_mode
)
11090 && (nonzero_bits (XEXP (varop
, 0), int_result_mode
)
11092 && (nonzero_bits (XEXP (varop
, 0), int_result_mode
)
11093 & nonzero_bits (XEXP (varop
, 1), int_result_mode
)) == 0)
11095 varop
= XEXP (varop
, 1);
11099 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11101 && CONST_INT_P (XEXP (varop
, 1))
11102 && (new_rtx
= simplify_const_binary_operation
11103 (ASHIFT
, int_result_mode
,
11104 gen_int_mode (INTVAL (XEXP (varop
, 1)), int_result_mode
),
11105 gen_int_shift_amount (int_result_mode
, count
))) != 0
11106 && CONST_INT_P (new_rtx
)
11107 && merge_outer_ops (&outer_op
, &outer_const
, PLUS
,
11108 INTVAL (new_rtx
), int_result_mode
,
11111 varop
= XEXP (varop
, 0);
11115 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11116 signbit', and attempt to change the PLUS to an XOR and move it to
11117 the outer operation as is done above in the AND/IOR/XOR case
11118 leg for shift(logical). See details in logical handling above
11119 for reasoning in doing so. */
11120 if (code
== LSHIFTRT
11121 && CONST_INT_P (XEXP (varop
, 1))
11122 && mode_signbit_p (int_result_mode
, XEXP (varop
, 1))
11123 && (new_rtx
= simplify_const_binary_operation
11124 (code
, int_result_mode
,
11125 gen_int_mode (INTVAL (XEXP (varop
, 1)), int_result_mode
),
11126 gen_int_shift_amount (int_result_mode
, count
))) != 0
11127 && CONST_INT_P (new_rtx
)
11128 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
11129 INTVAL (new_rtx
), int_result_mode
,
11132 varop
= XEXP (varop
, 0);
11139 /* The following rules apply only to scalars. */
11140 if (shift_mode
!= shift_unit_mode
)
11142 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
11144 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11145 with C the size of VAROP - 1 and the shift is logical if
11146 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11147 we have a (gt X 0) operation. If the shift is arithmetic with
11148 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11149 we have a (neg (gt X 0)) operation. */
11151 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
11152 && GET_CODE (XEXP (varop
, 0)) == ASHIFTRT
11153 && count
== (GET_MODE_PRECISION (int_varop_mode
) - 1)
11154 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
11155 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
11156 && INTVAL (XEXP (XEXP (varop
, 0), 1)) == count
11157 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
11160 varop
= gen_rtx_GT (int_varop_mode
, XEXP (varop
, 1),
11163 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
11164 varop
= gen_rtx_NEG (int_varop_mode
, varop
);
11171 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11172 if the truncate does not affect the value. */
11173 if (code
== LSHIFTRT
11174 && GET_CODE (XEXP (varop
, 0)) == LSHIFTRT
11175 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
11176 && (INTVAL (XEXP (XEXP (varop
, 0), 1))
11177 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop
, 0)))
11178 - GET_MODE_UNIT_PRECISION (GET_MODE (varop
)))))
11180 rtx varop_inner
= XEXP (varop
, 0);
11181 int new_count
= count
+ INTVAL (XEXP (varop_inner
, 1));
11182 rtx new_count_rtx
= gen_int_shift_amount (GET_MODE (varop_inner
),
11184 varop_inner
= gen_rtx_LSHIFTRT (GET_MODE (varop_inner
),
11185 XEXP (varop_inner
, 0),
11187 varop
= gen_rtx_TRUNCATE (GET_MODE (varop
), varop_inner
);
11200 shift_mode
= result_mode
;
11201 if (shift_mode
!= mode
)
11203 /* We only change the modes of scalar shifts. */
11204 int_mode
= as_a
<scalar_int_mode
> (mode
);
11205 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11206 shift_mode
= try_widen_shift_mode (code
, varop
, count
, int_result_mode
,
11207 int_mode
, outer_op
, outer_const
);
11210 /* We have now finished analyzing the shift. The result should be
11211 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11212 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11213 to the result of the shift. OUTER_CONST is the relevant constant,
11214 but we must turn off all bits turned off in the shift. */
11216 if (outer_op
== UNKNOWN
11217 && orig_code
== code
&& orig_count
== count
11218 && varop
== orig_varop
11219 && shift_mode
== GET_MODE (varop
))
11222 /* Make a SUBREG if necessary. If we can't make it, fail. */
11223 varop
= gen_lowpart (shift_mode
, varop
);
11224 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
11227 /* If we have an outer operation and we just made a shift, it is
11228 possible that we could have simplified the shift were it not
11229 for the outer operation. So try to do the simplification
11232 if (outer_op
!= UNKNOWN
)
11233 x
= simplify_shift_const_1 (code
, shift_mode
, varop
, count
);
11238 x
= simplify_gen_binary (code
, shift_mode
, varop
,
11239 gen_int_shift_amount (shift_mode
, count
));
11241 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11242 turn off all the bits that the shift would have turned off. */
11243 if (orig_code
== LSHIFTRT
&& result_mode
!= shift_mode
)
11244 /* We only change the modes of scalar shifts. */
11245 x
= simplify_and_const_int (NULL_RTX
, as_a
<scalar_int_mode
> (shift_mode
),
11246 x
, GET_MODE_MASK (result_mode
) >> orig_count
);
11248 /* Do the remainder of the processing in RESULT_MODE. */
11249 x
= gen_lowpart_or_truncate (result_mode
, x
);
11251 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11254 x
= simplify_gen_unary (NOT
, result_mode
, x
, result_mode
);
11256 if (outer_op
!= UNKNOWN
)
11258 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11260 if (GET_RTX_CLASS (outer_op
) != RTX_UNARY
11261 && GET_MODE_PRECISION (int_result_mode
) < HOST_BITS_PER_WIDE_INT
)
11262 outer_const
= trunc_int_for_mode (outer_const
, int_result_mode
);
11264 if (outer_op
== AND
)
11265 x
= simplify_and_const_int (NULL_RTX
, int_result_mode
, x
, outer_const
);
11266 else if (outer_op
== SET
)
11268 /* This means that we have determined that the result is
11269 equivalent to a constant. This should be rare. */
11270 if (!side_effects_p (x
))
11271 x
= GEN_INT (outer_const
);
11273 else if (GET_RTX_CLASS (outer_op
) == RTX_UNARY
)
11274 x
= simplify_gen_unary (outer_op
, int_result_mode
, x
, int_result_mode
);
11276 x
= simplify_gen_binary (outer_op
, int_result_mode
, x
,
11277 GEN_INT (outer_const
));
11283 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11284 The result of the shift is RESULT_MODE. If we cannot simplify it,
11285 return X or, if it is NULL, synthesize the expression with
11286 simplify_gen_binary. Otherwise, return a simplified value.
11288 The shift is normally computed in the widest mode we find in VAROP, as
11289 long as it isn't a different number of words than RESULT_MODE. Exceptions
11290 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11293 simplify_shift_const (rtx x
, enum rtx_code code
, machine_mode result_mode
,
11294 rtx varop
, int count
)
11296 rtx tem
= simplify_shift_const_1 (code
, result_mode
, varop
, count
);
11301 x
= simplify_gen_binary (code
, GET_MODE (varop
), varop
,
11302 gen_int_shift_amount (GET_MODE (varop
), count
));
11303 if (GET_MODE (x
) != result_mode
)
11304 x
= gen_lowpart (result_mode
, x
);
11309 /* A subroutine of recog_for_combine. See there for arguments and
11313 recog_for_combine_1 (rtx
*pnewpat
, rtx_insn
*insn
, rtx
*pnotes
)
11315 rtx pat
= *pnewpat
;
11316 rtx pat_without_clobbers
;
11317 int insn_code_number
;
11318 int num_clobbers_to_add
= 0;
11320 rtx notes
= NULL_RTX
;
11321 rtx old_notes
, old_pat
;
11324 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11325 we use to indicate that something didn't match. If we find such a
11326 thing, force rejection. */
11327 if (GET_CODE (pat
) == PARALLEL
)
11328 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
11329 if (GET_CODE (XVECEXP (pat
, 0, i
)) == CLOBBER
11330 && XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
11333 old_pat
= PATTERN (insn
);
11334 old_notes
= REG_NOTES (insn
);
11335 PATTERN (insn
) = pat
;
11336 REG_NOTES (insn
) = NULL_RTX
;
11338 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
11339 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11341 if (insn_code_number
< 0)
11342 fputs ("Failed to match this instruction:\n", dump_file
);
11344 fputs ("Successfully matched this instruction:\n", dump_file
);
11345 print_rtl_single (dump_file
, pat
);
11348 /* If it isn't, there is the possibility that we previously had an insn
11349 that clobbered some register as a side effect, but the combined
11350 insn doesn't need to do that. So try once more without the clobbers
11351 unless this represents an ASM insn. */
11353 if (insn_code_number
< 0 && ! check_asm_operands (pat
)
11354 && GET_CODE (pat
) == PARALLEL
)
11358 for (pos
= 0, i
= 0; i
< XVECLEN (pat
, 0); i
++)
11359 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
)
11362 SUBST (XVECEXP (pat
, 0, pos
), XVECEXP (pat
, 0, i
));
11366 SUBST_INT (XVECLEN (pat
, 0), pos
);
11369 pat
= XVECEXP (pat
, 0, 0);
11371 PATTERN (insn
) = pat
;
11372 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
11373 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11375 if (insn_code_number
< 0)
11376 fputs ("Failed to match this instruction:\n", dump_file
);
11378 fputs ("Successfully matched this instruction:\n", dump_file
);
11379 print_rtl_single (dump_file
, pat
);
11383 pat_without_clobbers
= pat
;
11385 PATTERN (insn
) = old_pat
;
11386 REG_NOTES (insn
) = old_notes
;
11388 /* Recognize all noop sets, these will be killed by followup pass. */
11389 if (insn_code_number
< 0 && GET_CODE (pat
) == SET
&& set_noop_p (pat
))
11390 insn_code_number
= NOOP_MOVE_INSN_CODE
, num_clobbers_to_add
= 0;
11392 /* If we had any clobbers to add, make a new pattern than contains
11393 them. Then check to make sure that all of them are dead. */
11394 if (num_clobbers_to_add
)
11396 rtx newpat
= gen_rtx_PARALLEL (VOIDmode
,
11397 rtvec_alloc (GET_CODE (pat
) == PARALLEL
11398 ? (XVECLEN (pat
, 0)
11399 + num_clobbers_to_add
)
11400 : num_clobbers_to_add
+ 1));
11402 if (GET_CODE (pat
) == PARALLEL
)
11403 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
11404 XVECEXP (newpat
, 0, i
) = XVECEXP (pat
, 0, i
);
11406 XVECEXP (newpat
, 0, 0) = pat
;
11408 add_clobbers (newpat
, insn_code_number
);
11410 for (i
= XVECLEN (newpat
, 0) - num_clobbers_to_add
;
11411 i
< XVECLEN (newpat
, 0); i
++)
11413 if (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0))
11414 && ! reg_dead_at_p (XEXP (XVECEXP (newpat
, 0, i
), 0), insn
))
11416 if (GET_CODE (XEXP (XVECEXP (newpat
, 0, i
), 0)) != SCRATCH
)
11418 gcc_assert (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0)));
11419 notes
= alloc_reg_note (REG_UNUSED
,
11420 XEXP (XVECEXP (newpat
, 0, i
), 0), notes
);
11426 if (insn_code_number
>= 0
11427 && insn_code_number
!= NOOP_MOVE_INSN_CODE
)
11429 old_pat
= PATTERN (insn
);
11430 old_notes
= REG_NOTES (insn
);
11431 old_icode
= INSN_CODE (insn
);
11432 PATTERN (insn
) = pat
;
11433 REG_NOTES (insn
) = notes
;
11434 INSN_CODE (insn
) = insn_code_number
;
11436 /* Allow targets to reject combined insn. */
11437 if (!targetm
.legitimate_combined_insn (insn
))
11439 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11440 fputs ("Instruction not appropriate for target.",
11443 /* Callers expect recog_for_combine to strip
11444 clobbers from the pattern on failure. */
11445 pat
= pat_without_clobbers
;
11448 insn_code_number
= -1;
11451 PATTERN (insn
) = old_pat
;
11452 REG_NOTES (insn
) = old_notes
;
11453 INSN_CODE (insn
) = old_icode
;
11459 return insn_code_number
;
11462 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11463 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11464 Return whether anything was so changed. */
11467 change_zero_ext (rtx pat
)
11469 bool changed
= false;
11470 rtx
*src
= &SET_SRC (pat
);
11472 subrtx_ptr_iterator::array_type array
;
11473 FOR_EACH_SUBRTX_PTR (iter
, array
, src
, NONCONST
)
11476 scalar_int_mode mode
, inner_mode
;
11477 if (!is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
))
11481 if (GET_CODE (x
) == ZERO_EXTRACT
11482 && CONST_INT_P (XEXP (x
, 1))
11483 && CONST_INT_P (XEXP (x
, 2))
11484 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
)
11485 && GET_MODE_PRECISION (inner_mode
) <= GET_MODE_PRECISION (mode
))
11487 size
= INTVAL (XEXP (x
, 1));
11489 int start
= INTVAL (XEXP (x
, 2));
11490 if (BITS_BIG_ENDIAN
)
11491 start
= GET_MODE_PRECISION (inner_mode
) - size
- start
;
11494 x
= gen_rtx_LSHIFTRT (inner_mode
, XEXP (x
, 0),
11495 gen_int_shift_amount (inner_mode
, start
));
11499 if (mode
!= inner_mode
)
11501 if (REG_P (x
) && HARD_REGISTER_P (x
)
11502 && !can_change_dest_mode (x
, 0, mode
))
11505 x
= gen_lowpart_SUBREG (mode
, x
);
11508 else if (GET_CODE (x
) == ZERO_EXTEND
11509 && GET_CODE (XEXP (x
, 0)) == SUBREG
11510 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x
, 0))))
11511 && !paradoxical_subreg_p (XEXP (x
, 0))
11512 && subreg_lowpart_p (XEXP (x
, 0)))
11514 inner_mode
= as_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)));
11515 size
= GET_MODE_PRECISION (inner_mode
);
11516 x
= SUBREG_REG (XEXP (x
, 0));
11517 if (GET_MODE (x
) != mode
)
11519 if (REG_P (x
) && HARD_REGISTER_P (x
)
11520 && !can_change_dest_mode (x
, 0, mode
))
11523 x
= gen_lowpart_SUBREG (mode
, x
);
11526 else if (GET_CODE (x
) == ZERO_EXTEND
11527 && REG_P (XEXP (x
, 0))
11528 && HARD_REGISTER_P (XEXP (x
, 0))
11529 && can_change_dest_mode (XEXP (x
, 0), 0, mode
))
11531 inner_mode
= as_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)));
11532 size
= GET_MODE_PRECISION (inner_mode
);
11533 x
= gen_rtx_REG (mode
, REGNO (XEXP (x
, 0)));
11538 if (!(GET_CODE (x
) == LSHIFTRT
11539 && CONST_INT_P (XEXP (x
, 1))
11540 && size
+ INTVAL (XEXP (x
, 1)) == GET_MODE_PRECISION (mode
)))
11542 wide_int mask
= wi::mask (size
, false, GET_MODE_PRECISION (mode
));
11543 x
= gen_rtx_AND (mode
, x
, immed_wide_int_const (mask
, mode
));
11551 FOR_EACH_SUBRTX_PTR (iter
, array
, src
, NONCONST
)
11552 maybe_swap_commutative_operands (**iter
);
11554 rtx
*dst
= &SET_DEST (pat
);
11555 scalar_int_mode mode
;
11556 if (GET_CODE (*dst
) == ZERO_EXTRACT
11557 && REG_P (XEXP (*dst
, 0))
11558 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (*dst
, 0)), &mode
)
11559 && CONST_INT_P (XEXP (*dst
, 1))
11560 && CONST_INT_P (XEXP (*dst
, 2)))
11562 rtx reg
= XEXP (*dst
, 0);
11563 int width
= INTVAL (XEXP (*dst
, 1));
11564 int offset
= INTVAL (XEXP (*dst
, 2));
11565 int reg_width
= GET_MODE_PRECISION (mode
);
11566 if (BITS_BIG_ENDIAN
)
11567 offset
= reg_width
- width
- offset
;
11570 wide_int mask
= wi::shifted_mask (offset
, width
, true, reg_width
);
11571 wide_int mask2
= wi::shifted_mask (offset
, width
, false, reg_width
);
11572 x
= gen_rtx_AND (mode
, reg
, immed_wide_int_const (mask
, mode
));
11574 y
= gen_rtx_ASHIFT (mode
, SET_SRC (pat
), GEN_INT (offset
));
11577 z
= gen_rtx_AND (mode
, y
, immed_wide_int_const (mask2
, mode
));
11578 w
= gen_rtx_IOR (mode
, x
, z
);
11579 SUBST (SET_DEST (pat
), reg
);
11580 SUBST (SET_SRC (pat
), w
);
11588 /* Like recog, but we receive the address of a pointer to a new pattern.
11589 We try to match the rtx that the pointer points to.
11590 If that fails, we may try to modify or replace the pattern,
11591 storing the replacement into the same pointer object.
11593 Modifications include deletion or addition of CLOBBERs. If the
11594 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11595 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11596 (and undo if that fails).
11598 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11599 the CLOBBERs are placed.
11601 The value is the final insn code from the pattern ultimately matched,
11605 recog_for_combine (rtx
*pnewpat
, rtx_insn
*insn
, rtx
*pnotes
)
11607 rtx pat
= *pnewpat
;
11608 int insn_code_number
= recog_for_combine_1 (pnewpat
, insn
, pnotes
);
11609 if (insn_code_number
>= 0 || check_asm_operands (pat
))
11610 return insn_code_number
;
11612 void *marker
= get_undo_marker ();
11613 bool changed
= false;
11615 if (GET_CODE (pat
) == SET
)
11616 changed
= change_zero_ext (pat
);
11617 else if (GET_CODE (pat
) == PARALLEL
)
11620 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
11622 rtx set
= XVECEXP (pat
, 0, i
);
11623 if (GET_CODE (set
) == SET
)
11624 changed
|= change_zero_ext (set
);
11630 insn_code_number
= recog_for_combine_1 (pnewpat
, insn
, pnotes
);
11632 if (insn_code_number
< 0)
11633 undo_to_marker (marker
);
11636 return insn_code_number
;
11639 /* Like gen_lowpart_general but for use by combine. In combine it
11640 is not possible to create any new pseudoregs. However, it is
11641 safe to create invalid memory addresses, because combine will
11642 try to recognize them and all they will do is make the combine
11645 If for some reason this cannot do its job, an rtx
11646 (clobber (const_int 0)) is returned.
11647 An insn containing that will not be recognized. */
11650 gen_lowpart_for_combine (machine_mode omode
, rtx x
)
11652 machine_mode imode
= GET_MODE (x
);
11655 if (omode
== imode
)
11658 /* We can only support MODE being wider than a word if X is a
11659 constant integer or has a mode the same size. */
11660 if (maybe_gt (GET_MODE_SIZE (omode
), UNITS_PER_WORD
)
11661 && ! (CONST_SCALAR_INT_P (x
)
11662 || known_eq (GET_MODE_SIZE (imode
), GET_MODE_SIZE (omode
))))
11665 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11666 won't know what to do. So we will strip off the SUBREG here and
11667 process normally. */
11668 if (GET_CODE (x
) == SUBREG
&& MEM_P (SUBREG_REG (x
)))
11670 x
= SUBREG_REG (x
);
11672 /* For use in case we fall down into the address adjustments
11673 further below, we need to adjust the known mode and size of
11674 x; imode and isize, since we just adjusted x. */
11675 imode
= GET_MODE (x
);
11677 if (imode
== omode
)
11681 result
= gen_lowpart_common (omode
, x
);
11688 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11690 if (MEM_VOLATILE_P (x
)
11691 || mode_dependent_address_p (XEXP (x
, 0), MEM_ADDR_SPACE (x
)))
11694 /* If we want to refer to something bigger than the original memref,
11695 generate a paradoxical subreg instead. That will force a reload
11696 of the original memref X. */
11697 if (paradoxical_subreg_p (omode
, imode
))
11698 return gen_rtx_SUBREG (omode
, x
, 0);
11700 poly_int64 offset
= byte_lowpart_offset (omode
, imode
);
11701 return adjust_address_nv (x
, omode
, offset
);
11704 /* If X is a comparison operator, rewrite it in a new mode. This
11705 probably won't match, but may allow further simplifications. */
11706 else if (COMPARISON_P (x
))
11707 return gen_rtx_fmt_ee (GET_CODE (x
), omode
, XEXP (x
, 0), XEXP (x
, 1));
11709 /* If we couldn't simplify X any other way, just enclose it in a
11710 SUBREG. Normally, this SUBREG won't match, but some patterns may
11711 include an explicit SUBREG or we may simplify it further in combine. */
11716 if (imode
== VOIDmode
)
11718 imode
= int_mode_for_mode (omode
).require ();
11719 x
= gen_lowpart_common (imode
, x
);
11723 res
= lowpart_subreg (omode
, x
, imode
);
11729 return gen_rtx_CLOBBER (omode
, const0_rtx
);
11732 /* Try to simplify a comparison between OP0 and a constant OP1,
11733 where CODE is the comparison code that will be tested, into a
11734 (CODE OP0 const0_rtx) form.
11736 The result is a possibly different comparison code to use.
11737 *POP1 may be updated. */
11739 static enum rtx_code
11740 simplify_compare_const (enum rtx_code code
, machine_mode mode
,
11741 rtx op0
, rtx
*pop1
)
11743 scalar_int_mode int_mode
;
11744 HOST_WIDE_INT const_op
= INTVAL (*pop1
);
11746 /* Get the constant we are comparing against and turn off all bits
11747 not on in our mode. */
11748 if (mode
!= VOIDmode
)
11749 const_op
= trunc_int_for_mode (const_op
, mode
);
11751 /* If we are comparing against a constant power of two and the value
11752 being compared can only have that single bit nonzero (e.g., it was
11753 `and'ed with that bit), we can replace this with a comparison
11756 && (code
== EQ
|| code
== NE
|| code
== GE
|| code
== GEU
11757 || code
== LT
|| code
== LTU
)
11758 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11759 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11760 && pow2p_hwi (const_op
& GET_MODE_MASK (int_mode
))
11761 && (nonzero_bits (op0
, int_mode
)
11762 == (unsigned HOST_WIDE_INT
) (const_op
& GET_MODE_MASK (int_mode
))))
11764 code
= (code
== EQ
|| code
== GE
|| code
== GEU
? NE
: EQ
);
11768 /* Similarly, if we are comparing a value known to be either -1 or
11769 0 with -1, change it to the opposite comparison against zero. */
11771 && (code
== EQ
|| code
== NE
|| code
== GT
|| code
== LE
11772 || code
== GEU
|| code
== LTU
)
11773 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11774 && num_sign_bit_copies (op0
, int_mode
) == GET_MODE_PRECISION (int_mode
))
11776 code
= (code
== EQ
|| code
== LE
|| code
== GEU
? NE
: EQ
);
11780 /* Do some canonicalizations based on the comparison code. We prefer
11781 comparisons against zero and then prefer equality comparisons.
11782 If we can reduce the size of a constant, we will do that too. */
11786 /* < C is equivalent to <= (C - 1) */
11791 /* ... fall through to LE case below. */
11792 gcc_fallthrough ();
11798 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11805 /* If we are doing a <= 0 comparison on a value known to have
11806 a zero sign bit, we can replace this with == 0. */
11807 else if (const_op
== 0
11808 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11809 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11810 && (nonzero_bits (op0
, int_mode
)
11811 & (HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
11817 /* >= C is equivalent to > (C - 1). */
11822 /* ... fall through to GT below. */
11823 gcc_fallthrough ();
11829 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11836 /* If we are doing a > 0 comparison on a value known to have
11837 a zero sign bit, we can replace this with != 0. */
11838 else if (const_op
== 0
11839 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11840 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11841 && (nonzero_bits (op0
, int_mode
)
11842 & (HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
11848 /* < C is equivalent to <= (C - 1). */
11853 /* ... fall through ... */
11854 gcc_fallthrough ();
11856 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11857 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
11858 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11859 && ((unsigned HOST_WIDE_INT
) const_op
11860 == HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
11870 /* unsigned <= 0 is equivalent to == 0 */
11873 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11874 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
11875 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11876 && ((unsigned HOST_WIDE_INT
) const_op
11877 == ((HOST_WIDE_INT_1U
11878 << (GET_MODE_PRECISION (int_mode
) - 1)) - 1)))
11886 /* >= C is equivalent to > (C - 1). */
11891 /* ... fall through ... */
11892 gcc_fallthrough ();
11895 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11896 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
11897 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11898 && ((unsigned HOST_WIDE_INT
) const_op
11899 == HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
11909 /* unsigned > 0 is equivalent to != 0 */
11912 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11913 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
11914 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11915 && ((unsigned HOST_WIDE_INT
) const_op
11916 == (HOST_WIDE_INT_1U
11917 << (GET_MODE_PRECISION (int_mode
) - 1)) - 1))
11928 *pop1
= GEN_INT (const_op
);
11932 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11933 comparison code that will be tested.
11935 The result is a possibly different comparison code to use. *POP0 and
11936 *POP1 may be updated.
11938 It is possible that we might detect that a comparison is either always
11939 true or always false. However, we do not perform general constant
11940 folding in combine, so this knowledge isn't useful. Such tautologies
11941 should have been detected earlier. Hence we ignore all such cases. */
11943 static enum rtx_code
11944 simplify_comparison (enum rtx_code code
, rtx
*pop0
, rtx
*pop1
)
11950 scalar_int_mode mode
, inner_mode
, tmode
;
11951 opt_scalar_int_mode tmode_iter
;
11953 /* Try a few ways of applying the same transformation to both operands. */
11956 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11957 so check specially. */
11958 if (!WORD_REGISTER_OPERATIONS
11959 && code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
11960 && GET_CODE (op0
) == ASHIFTRT
&& GET_CODE (op1
) == ASHIFTRT
11961 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11962 && GET_CODE (XEXP (op1
, 0)) == ASHIFT
11963 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == SUBREG
11964 && GET_CODE (XEXP (XEXP (op1
, 0), 0)) == SUBREG
11965 && is_a
<scalar_int_mode
> (GET_MODE (op0
), &mode
)
11966 && (is_a
<scalar_int_mode
>
11967 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0))), &inner_mode
))
11968 && inner_mode
== GET_MODE (SUBREG_REG (XEXP (XEXP (op1
, 0), 0)))
11969 && CONST_INT_P (XEXP (op0
, 1))
11970 && XEXP (op0
, 1) == XEXP (op1
, 1)
11971 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
11972 && XEXP (op0
, 1) == XEXP (XEXP (op1
, 0), 1)
11973 && (INTVAL (XEXP (op0
, 1))
11974 == (GET_MODE_PRECISION (mode
)
11975 - GET_MODE_PRECISION (inner_mode
))))
11977 op0
= SUBREG_REG (XEXP (XEXP (op0
, 0), 0));
11978 op1
= SUBREG_REG (XEXP (XEXP (op1
, 0), 0));
11981 /* If both operands are the same constant shift, see if we can ignore the
11982 shift. We can if the shift is a rotate or if the bits shifted out of
11983 this shift are known to be zero for both inputs and if the type of
11984 comparison is compatible with the shift. */
11985 if (GET_CODE (op0
) == GET_CODE (op1
)
11986 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
11987 && ((GET_CODE (op0
) == ROTATE
&& (code
== NE
|| code
== EQ
))
11988 || ((GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFT
)
11989 && (code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
))
11990 || (GET_CODE (op0
) == ASHIFTRT
11991 && (code
!= GTU
&& code
!= LTU
11992 && code
!= GEU
&& code
!= LEU
)))
11993 && CONST_INT_P (XEXP (op0
, 1))
11994 && INTVAL (XEXP (op0
, 1)) >= 0
11995 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
11996 && XEXP (op0
, 1) == XEXP (op1
, 1))
11998 machine_mode mode
= GET_MODE (op0
);
11999 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
12000 int shift_count
= INTVAL (XEXP (op0
, 1));
12002 if (GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFTRT
)
12003 mask
&= (mask
>> shift_count
) << shift_count
;
12004 else if (GET_CODE (op0
) == ASHIFT
)
12005 mask
= (mask
& (mask
<< shift_count
)) >> shift_count
;
12007 if ((nonzero_bits (XEXP (op0
, 0), mode
) & ~mask
) == 0
12008 && (nonzero_bits (XEXP (op1
, 0), mode
) & ~mask
) == 0)
12009 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0);
12014 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12015 SUBREGs are of the same mode, and, in both cases, the AND would
12016 be redundant if the comparison was done in the narrower mode,
12017 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12018 and the operand's possibly nonzero bits are 0xffffff01; in that case
12019 if we only care about QImode, we don't need the AND). This case
12020 occurs if the output mode of an scc insn is not SImode and
12021 STORE_FLAG_VALUE == 1 (e.g., the 386).
12023 Similarly, check for a case where the AND's are ZERO_EXTEND
12024 operations from some narrower mode even though a SUBREG is not
12027 else if (GET_CODE (op0
) == AND
&& GET_CODE (op1
) == AND
12028 && CONST_INT_P (XEXP (op0
, 1))
12029 && CONST_INT_P (XEXP (op1
, 1)))
12031 rtx inner_op0
= XEXP (op0
, 0);
12032 rtx inner_op1
= XEXP (op1
, 0);
12033 HOST_WIDE_INT c0
= INTVAL (XEXP (op0
, 1));
12034 HOST_WIDE_INT c1
= INTVAL (XEXP (op1
, 1));
12037 if (paradoxical_subreg_p (inner_op0
)
12038 && GET_CODE (inner_op1
) == SUBREG
12039 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0
)))
12040 && (GET_MODE (SUBREG_REG (inner_op0
))
12041 == GET_MODE (SUBREG_REG (inner_op1
)))
12042 && ((~c0
) & nonzero_bits (SUBREG_REG (inner_op0
),
12043 GET_MODE (SUBREG_REG (inner_op0
)))) == 0
12044 && ((~c1
) & nonzero_bits (SUBREG_REG (inner_op1
),
12045 GET_MODE (SUBREG_REG (inner_op1
)))) == 0)
12047 op0
= SUBREG_REG (inner_op0
);
12048 op1
= SUBREG_REG (inner_op1
);
12050 /* The resulting comparison is always unsigned since we masked
12051 off the original sign bit. */
12052 code
= unsigned_condition (code
);
12058 FOR_EACH_MODE_UNTIL (tmode
,
12059 as_a
<scalar_int_mode
> (GET_MODE (op0
)))
12060 if ((unsigned HOST_WIDE_INT
) c0
== GET_MODE_MASK (tmode
))
12062 op0
= gen_lowpart_or_truncate (tmode
, inner_op0
);
12063 op1
= gen_lowpart_or_truncate (tmode
, inner_op1
);
12064 code
= unsigned_condition (code
);
12073 /* If both operands are NOT, we can strip off the outer operation
12074 and adjust the comparison code for swapped operands; similarly for
12075 NEG, except that this must be an equality comparison. */
12076 else if ((GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == NOT
)
12077 || (GET_CODE (op0
) == NEG
&& GET_CODE (op1
) == NEG
12078 && (code
== EQ
|| code
== NE
)))
12079 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0), code
= swap_condition (code
);
12085 /* If the first operand is a constant, swap the operands and adjust the
12086 comparison code appropriately, but don't do this if the second operand
12087 is already a constant integer. */
12088 if (swap_commutative_operands_p (op0
, op1
))
12090 std::swap (op0
, op1
);
12091 code
= swap_condition (code
);
12094 /* We now enter a loop during which we will try to simplify the comparison.
12095 For the most part, we only are concerned with comparisons with zero,
12096 but some things may really be comparisons with zero but not start
12097 out looking that way. */
12099 while (CONST_INT_P (op1
))
12101 machine_mode raw_mode
= GET_MODE (op0
);
12102 scalar_int_mode int_mode
;
12103 int equality_comparison_p
;
12104 int sign_bit_comparison_p
;
12105 int unsigned_comparison_p
;
12106 HOST_WIDE_INT const_op
;
12108 /* We only want to handle integral modes. This catches VOIDmode,
12109 CCmode, and the floating-point modes. An exception is that we
12110 can handle VOIDmode if OP0 is a COMPARE or a comparison
12113 if (GET_MODE_CLASS (raw_mode
) != MODE_INT
12114 && ! (raw_mode
== VOIDmode
12115 && (GET_CODE (op0
) == COMPARE
|| COMPARISON_P (op0
))))
12118 /* Try to simplify the compare to constant, possibly changing the
12119 comparison op, and/or changing op1 to zero. */
12120 code
= simplify_compare_const (code
, raw_mode
, op0
, &op1
);
12121 const_op
= INTVAL (op1
);
12123 /* Compute some predicates to simplify code below. */
12125 equality_comparison_p
= (code
== EQ
|| code
== NE
);
12126 sign_bit_comparison_p
= ((code
== LT
|| code
== GE
) && const_op
== 0);
12127 unsigned_comparison_p
= (code
== LTU
|| code
== LEU
|| code
== GTU
12130 /* If this is a sign bit comparison and we can do arithmetic in
12131 MODE, say that we will only be needing the sign bit of OP0. */
12132 if (sign_bit_comparison_p
12133 && is_a
<scalar_int_mode
> (raw_mode
, &int_mode
)
12134 && HWI_COMPUTABLE_MODE_P (int_mode
))
12135 op0
= force_to_mode (op0
, int_mode
,
12137 << (GET_MODE_PRECISION (int_mode
) - 1),
12140 if (COMPARISON_P (op0
))
12142 /* We can't do anything if OP0 is a condition code value, rather
12143 than an actual data value. */
12145 || CC0_P (XEXP (op0
, 0))
12146 || GET_MODE_CLASS (GET_MODE (XEXP (op0
, 0))) == MODE_CC
)
12149 /* Get the two operands being compared. */
12150 if (GET_CODE (XEXP (op0
, 0)) == COMPARE
)
12151 tem
= XEXP (XEXP (op0
, 0), 0), tem1
= XEXP (XEXP (op0
, 0), 1);
12153 tem
= XEXP (op0
, 0), tem1
= XEXP (op0
, 1);
12155 /* Check for the cases where we simply want the result of the
12156 earlier test or the opposite of that result. */
12157 if (code
== NE
|| code
== EQ
12158 || (val_signbit_known_set_p (raw_mode
, STORE_FLAG_VALUE
)
12159 && (code
== LT
|| code
== GE
)))
12161 enum rtx_code new_code
;
12162 if (code
== LT
|| code
== NE
)
12163 new_code
= GET_CODE (op0
);
12165 new_code
= reversed_comparison_code (op0
, NULL
);
12167 if (new_code
!= UNKNOWN
)
12178 if (raw_mode
== VOIDmode
)
12180 scalar_int_mode mode
= as_a
<scalar_int_mode
> (raw_mode
);
12182 /* Now try cases based on the opcode of OP0. If none of the cases
12183 does a "continue", we exit this loop immediately after the
12186 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
12187 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
12188 switch (GET_CODE (op0
))
12191 /* If we are extracting a single bit from a variable position in
12192 a constant that has only a single bit set and are comparing it
12193 with zero, we can convert this into an equality comparison
12194 between the position and the location of the single bit. */
12195 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12196 have already reduced the shift count modulo the word size. */
12197 if (!SHIFT_COUNT_TRUNCATED
12198 && CONST_INT_P (XEXP (op0
, 0))
12199 && XEXP (op0
, 1) == const1_rtx
12200 && equality_comparison_p
&& const_op
== 0
12201 && (i
= exact_log2 (UINTVAL (XEXP (op0
, 0)))) >= 0)
12203 if (BITS_BIG_ENDIAN
)
12204 i
= BITS_PER_WORD
- 1 - i
;
12206 op0
= XEXP (op0
, 2);
12210 /* Result is nonzero iff shift count is equal to I. */
12211 code
= reverse_condition (code
);
12218 tem
= expand_compound_operation (op0
);
12227 /* If testing for equality, we can take the NOT of the constant. */
12228 if (equality_comparison_p
12229 && (tem
= simplify_unary_operation (NOT
, mode
, op1
, mode
)) != 0)
12231 op0
= XEXP (op0
, 0);
12236 /* If just looking at the sign bit, reverse the sense of the
12238 if (sign_bit_comparison_p
)
12240 op0
= XEXP (op0
, 0);
12241 code
= (code
== GE
? LT
: GE
);
12247 /* If testing for equality, we can take the NEG of the constant. */
12248 if (equality_comparison_p
12249 && (tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
)) != 0)
12251 op0
= XEXP (op0
, 0);
12256 /* The remaining cases only apply to comparisons with zero. */
12260 /* When X is ABS or is known positive,
12261 (neg X) is < 0 if and only if X != 0. */
12263 if (sign_bit_comparison_p
12264 && (GET_CODE (XEXP (op0
, 0)) == ABS
12265 || (mode_width
<= HOST_BITS_PER_WIDE_INT
12266 && (nonzero_bits (XEXP (op0
, 0), mode
)
12267 & (HOST_WIDE_INT_1U
<< (mode_width
- 1)))
12270 op0
= XEXP (op0
, 0);
12271 code
= (code
== LT
? NE
: EQ
);
12275 /* If we have NEG of something whose two high-order bits are the
12276 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12277 if (num_sign_bit_copies (op0
, mode
) >= 2)
12279 op0
= XEXP (op0
, 0);
12280 code
= swap_condition (code
);
12286 /* If we are testing equality and our count is a constant, we
12287 can perform the inverse operation on our RHS. */
12288 if (equality_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
12289 && (tem
= simplify_binary_operation (ROTATERT
, mode
,
12290 op1
, XEXP (op0
, 1))) != 0)
12292 op0
= XEXP (op0
, 0);
12297 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12298 a particular bit. Convert it to an AND of a constant of that
12299 bit. This will be converted into a ZERO_EXTRACT. */
12300 if (const_op
== 0 && sign_bit_comparison_p
12301 && CONST_INT_P (XEXP (op0
, 1))
12302 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
12304 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
12307 - INTVAL (XEXP (op0
, 1)))));
12308 code
= (code
== LT
? NE
: EQ
);
12312 /* Fall through. */
12315 /* ABS is ignorable inside an equality comparison with zero. */
12316 if (const_op
== 0 && equality_comparison_p
)
12318 op0
= XEXP (op0
, 0);
12324 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12325 (compare FOO CONST) if CONST fits in FOO's mode and we
12326 are either testing inequality or have an unsigned
12327 comparison with ZERO_EXTEND or a signed comparison with
12328 SIGN_EXTEND. But don't do it if we don't have a compare
12329 insn of the given mode, since we'd have to revert it
12330 later on, and then we wouldn't know whether to sign- or
12332 if (is_int_mode (GET_MODE (XEXP (op0
, 0)), &mode
)
12333 && ! unsigned_comparison_p
12334 && HWI_COMPUTABLE_MODE_P (mode
)
12335 && trunc_int_for_mode (const_op
, mode
) == const_op
12336 && have_insn_for (COMPARE
, mode
))
12338 op0
= XEXP (op0
, 0);
12344 /* Check for the case where we are comparing A - C1 with C2, that is
12346 (subreg:MODE (plus (A) (-C1))) op (C2)
12348 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12349 comparison in the wider mode. One of the following two conditions
12350 must be true in order for this to be valid:
12352 1. The mode extension results in the same bit pattern being added
12353 on both sides and the comparison is equality or unsigned. As
12354 C2 has been truncated to fit in MODE, the pattern can only be
12357 2. The mode extension results in the sign bit being copied on
12360 The difficulty here is that we have predicates for A but not for
12361 (A - C1) so we need to check that C1 is within proper bounds so
12362 as to perturbate A as little as possible. */
12364 if (mode_width
<= HOST_BITS_PER_WIDE_INT
12365 && subreg_lowpart_p (op0
)
12366 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (op0
)),
12368 && GET_MODE_PRECISION (inner_mode
) > mode_width
12369 && GET_CODE (SUBREG_REG (op0
)) == PLUS
12370 && CONST_INT_P (XEXP (SUBREG_REG (op0
), 1)))
12372 rtx a
= XEXP (SUBREG_REG (op0
), 0);
12373 HOST_WIDE_INT c1
= -INTVAL (XEXP (SUBREG_REG (op0
), 1));
12376 && (unsigned HOST_WIDE_INT
) c1
12377 < HOST_WIDE_INT_1U
<< (mode_width
- 1)
12378 && (equality_comparison_p
|| unsigned_comparison_p
)
12379 /* (A - C1) zero-extends if it is positive and sign-extends
12380 if it is negative, C2 both zero- and sign-extends. */
12381 && (((nonzero_bits (a
, inner_mode
)
12382 & ~GET_MODE_MASK (mode
)) == 0
12384 /* (A - C1) sign-extends if it is positive and 1-extends
12385 if it is negative, C2 both sign- and 1-extends. */
12386 || (num_sign_bit_copies (a
, inner_mode
)
12387 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
12390 || ((unsigned HOST_WIDE_INT
) c1
12391 < HOST_WIDE_INT_1U
<< (mode_width
- 2)
12392 /* (A - C1) always sign-extends, like C2. */
12393 && num_sign_bit_copies (a
, inner_mode
)
12394 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
12395 - (mode_width
- 1))))
12397 op0
= SUBREG_REG (op0
);
12402 /* If the inner mode is narrower and we are extracting the low part,
12403 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12404 if (paradoxical_subreg_p (op0
))
12406 else if (subreg_lowpart_p (op0
)
12407 && GET_MODE_CLASS (mode
) == MODE_INT
12408 && is_int_mode (GET_MODE (SUBREG_REG (op0
)), &inner_mode
)
12409 && (code
== NE
|| code
== EQ
)
12410 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
12411 && !paradoxical_subreg_p (op0
)
12412 && (nonzero_bits (SUBREG_REG (op0
), inner_mode
)
12413 & ~GET_MODE_MASK (mode
)) == 0)
12415 /* Remove outer subregs that don't do anything. */
12416 tem
= gen_lowpart (inner_mode
, op1
);
12418 if ((nonzero_bits (tem
, inner_mode
)
12419 & ~GET_MODE_MASK (mode
)) == 0)
12421 op0
= SUBREG_REG (op0
);
12433 if (is_int_mode (GET_MODE (XEXP (op0
, 0)), &mode
)
12434 && (unsigned_comparison_p
|| equality_comparison_p
)
12435 && HWI_COMPUTABLE_MODE_P (mode
)
12436 && (unsigned HOST_WIDE_INT
) const_op
<= GET_MODE_MASK (mode
)
12438 && have_insn_for (COMPARE
, mode
))
12440 op0
= XEXP (op0
, 0);
12446 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12447 this for equality comparisons due to pathological cases involving
12449 if (equality_comparison_p
12450 && (tem
= simplify_binary_operation (MINUS
, mode
,
12451 op1
, XEXP (op0
, 1))) != 0)
12453 op0
= XEXP (op0
, 0);
12458 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12459 if (const_op
== 0 && XEXP (op0
, 1) == constm1_rtx
12460 && GET_CODE (XEXP (op0
, 0)) == ABS
&& sign_bit_comparison_p
)
12462 op0
= XEXP (XEXP (op0
, 0), 0);
12463 code
= (code
== LT
? EQ
: NE
);
12469 /* We used to optimize signed comparisons against zero, but that
12470 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12471 arrive here as equality comparisons, or (GEU, LTU) are
12472 optimized away. No need to special-case them. */
12474 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12475 (eq B (minus A C)), whichever simplifies. We can only do
12476 this for equality comparisons due to pathological cases involving
12478 if (equality_comparison_p
12479 && (tem
= simplify_binary_operation (PLUS
, mode
,
12480 XEXP (op0
, 1), op1
)) != 0)
12482 op0
= XEXP (op0
, 0);
12487 if (equality_comparison_p
12488 && (tem
= simplify_binary_operation (MINUS
, mode
,
12489 XEXP (op0
, 0), op1
)) != 0)
12491 op0
= XEXP (op0
, 1);
12496 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12497 of bits in X minus 1, is one iff X > 0. */
12498 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == ASHIFTRT
12499 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12500 && UINTVAL (XEXP (XEXP (op0
, 0), 1)) == mode_width
- 1
12501 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
12503 op0
= XEXP (op0
, 1);
12504 code
= (code
== GE
? LE
: GT
);
12510 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12511 if C is zero or B is a constant. */
12512 if (equality_comparison_p
12513 && (tem
= simplify_binary_operation (XOR
, mode
,
12514 XEXP (op0
, 1), op1
)) != 0)
12516 op0
= XEXP (op0
, 0);
12524 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12526 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == PLUS
12527 && XEXP (XEXP (op0
, 0), 1) == constm1_rtx
12528 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
12530 op0
= XEXP (op0
, 1);
12531 code
= (code
== GE
? GT
: LE
);
12537 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12538 will be converted to a ZERO_EXTRACT later. */
12539 if (const_op
== 0 && equality_comparison_p
12540 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
12541 && XEXP (XEXP (op0
, 0), 0) == const1_rtx
)
12543 op0
= gen_rtx_LSHIFTRT (mode
, XEXP (op0
, 1),
12544 XEXP (XEXP (op0
, 0), 1));
12545 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
12549 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12550 zero and X is a comparison and C1 and C2 describe only bits set
12551 in STORE_FLAG_VALUE, we can compare with X. */
12552 if (const_op
== 0 && equality_comparison_p
12553 && mode_width
<= HOST_BITS_PER_WIDE_INT
12554 && CONST_INT_P (XEXP (op0
, 1))
12555 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
12556 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12557 && INTVAL (XEXP (XEXP (op0
, 0), 1)) >= 0
12558 && INTVAL (XEXP (XEXP (op0
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
12560 mask
= ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
12561 << INTVAL (XEXP (XEXP (op0
, 0), 1)));
12562 if ((~STORE_FLAG_VALUE
& mask
) == 0
12563 && (COMPARISON_P (XEXP (XEXP (op0
, 0), 0))
12564 || ((tem
= get_last_value (XEXP (XEXP (op0
, 0), 0))) != 0
12565 && COMPARISON_P (tem
))))
12567 op0
= XEXP (XEXP (op0
, 0), 0);
12572 /* If we are doing an equality comparison of an AND of a bit equal
12573 to the sign bit, replace this with a LT or GE comparison of
12574 the underlying value. */
12575 if (equality_comparison_p
12577 && CONST_INT_P (XEXP (op0
, 1))
12578 && mode_width
<= HOST_BITS_PER_WIDE_INT
12579 && ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
12580 == HOST_WIDE_INT_1U
<< (mode_width
- 1)))
12582 op0
= XEXP (op0
, 0);
12583 code
= (code
== EQ
? GE
: LT
);
12587 /* If this AND operation is really a ZERO_EXTEND from a narrower
12588 mode, the constant fits within that mode, and this is either an
12589 equality or unsigned comparison, try to do this comparison in
12594 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12595 -> (ne:DI (reg:SI 4) (const_int 0))
12597 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12598 known to hold a value of the required mode the
12599 transformation is invalid. */
12600 if ((equality_comparison_p
|| unsigned_comparison_p
)
12601 && CONST_INT_P (XEXP (op0
, 1))
12602 && (i
= exact_log2 ((UINTVAL (XEXP (op0
, 1))
12603 & GET_MODE_MASK (mode
))
12605 && const_op
>> i
== 0
12606 && int_mode_for_size (i
, 1).exists (&tmode
))
12608 op0
= gen_lowpart_or_truncate (tmode
, XEXP (op0
, 0));
12612 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12613 fits in both M1 and M2 and the SUBREG is either paradoxical
12614 or represents the low part, permute the SUBREG and the AND
12616 if (GET_CODE (XEXP (op0
, 0)) == SUBREG
12617 && CONST_INT_P (XEXP (op0
, 1)))
12619 unsigned HOST_WIDE_INT c1
= INTVAL (XEXP (op0
, 1));
12620 /* Require an integral mode, to avoid creating something like
12622 if ((is_a
<scalar_int_mode
>
12623 (GET_MODE (SUBREG_REG (XEXP (op0
, 0))), &tmode
))
12624 /* It is unsafe to commute the AND into the SUBREG if the
12625 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12626 not defined. As originally written the upper bits
12627 have a defined value due to the AND operation.
12628 However, if we commute the AND inside the SUBREG then
12629 they no longer have defined values and the meaning of
12630 the code has been changed.
12631 Also C1 should not change value in the smaller mode,
12632 see PR67028 (a positive C1 can become negative in the
12633 smaller mode, so that the AND does no longer mask the
12635 && ((WORD_REGISTER_OPERATIONS
12636 && mode_width
> GET_MODE_PRECISION (tmode
)
12637 && mode_width
<= BITS_PER_WORD
12638 && trunc_int_for_mode (c1
, tmode
) == (HOST_WIDE_INT
) c1
)
12639 || (mode_width
<= GET_MODE_PRECISION (tmode
)
12640 && subreg_lowpart_p (XEXP (op0
, 0))))
12641 && mode_width
<= HOST_BITS_PER_WIDE_INT
12642 && HWI_COMPUTABLE_MODE_P (tmode
)
12643 && (c1
& ~mask
) == 0
12644 && (c1
& ~GET_MODE_MASK (tmode
)) == 0
12646 && c1
!= GET_MODE_MASK (tmode
))
12648 op0
= simplify_gen_binary (AND
, tmode
,
12649 SUBREG_REG (XEXP (op0
, 0)),
12650 gen_int_mode (c1
, tmode
));
12651 op0
= gen_lowpart (mode
, op0
);
12656 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12657 if (const_op
== 0 && equality_comparison_p
12658 && XEXP (op0
, 1) == const1_rtx
12659 && GET_CODE (XEXP (op0
, 0)) == NOT
)
12661 op0
= simplify_and_const_int (NULL_RTX
, mode
,
12662 XEXP (XEXP (op0
, 0), 0), 1);
12663 code
= (code
== NE
? EQ
: NE
);
12667 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12668 (eq (and (lshiftrt X) 1) 0).
12669 Also handle the case where (not X) is expressed using xor. */
12670 if (const_op
== 0 && equality_comparison_p
12671 && XEXP (op0
, 1) == const1_rtx
12672 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
)
12674 rtx shift_op
= XEXP (XEXP (op0
, 0), 0);
12675 rtx shift_count
= XEXP (XEXP (op0
, 0), 1);
12677 if (GET_CODE (shift_op
) == NOT
12678 || (GET_CODE (shift_op
) == XOR
12679 && CONST_INT_P (XEXP (shift_op
, 1))
12680 && CONST_INT_P (shift_count
)
12681 && HWI_COMPUTABLE_MODE_P (mode
)
12682 && (UINTVAL (XEXP (shift_op
, 1))
12683 == HOST_WIDE_INT_1U
12684 << INTVAL (shift_count
))))
12687 = gen_rtx_LSHIFTRT (mode
, XEXP (shift_op
, 0), shift_count
);
12688 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
12689 code
= (code
== NE
? EQ
: NE
);
12696 /* If we have (compare (ashift FOO N) (const_int C)) and
12697 the high order N bits of FOO (N+1 if an inequality comparison)
12698 are known to be zero, we can do this by comparing FOO with C
12699 shifted right N bits so long as the low-order N bits of C are
12701 if (CONST_INT_P (XEXP (op0
, 1))
12702 && INTVAL (XEXP (op0
, 1)) >= 0
12703 && ((INTVAL (XEXP (op0
, 1)) + ! equality_comparison_p
)
12704 < HOST_BITS_PER_WIDE_INT
)
12705 && (((unsigned HOST_WIDE_INT
) const_op
12706 & ((HOST_WIDE_INT_1U
<< INTVAL (XEXP (op0
, 1)))
12708 && mode_width
<= HOST_BITS_PER_WIDE_INT
12709 && (nonzero_bits (XEXP (op0
, 0), mode
)
12710 & ~(mask
>> (INTVAL (XEXP (op0
, 1))
12711 + ! equality_comparison_p
))) == 0)
12713 /* We must perform a logical shift, not an arithmetic one,
12714 as we want the top N bits of C to be zero. */
12715 unsigned HOST_WIDE_INT temp
= const_op
& GET_MODE_MASK (mode
);
12717 temp
>>= INTVAL (XEXP (op0
, 1));
12718 op1
= gen_int_mode (temp
, mode
);
12719 op0
= XEXP (op0
, 0);
12723 /* If we are doing a sign bit comparison, it means we are testing
12724 a particular bit. Convert it to the appropriate AND. */
12725 if (sign_bit_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
12726 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
12728 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
12731 - INTVAL (XEXP (op0
, 1)))));
12732 code
= (code
== LT
? NE
: EQ
);
12736 /* If this an equality comparison with zero and we are shifting
12737 the low bit to the sign bit, we can convert this to an AND of the
12739 if (const_op
== 0 && equality_comparison_p
12740 && CONST_INT_P (XEXP (op0
, 1))
12741 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
12743 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0), 1);
12749 /* If this is an equality comparison with zero, we can do this
12750 as a logical shift, which might be much simpler. */
12751 if (equality_comparison_p
&& const_op
== 0
12752 && CONST_INT_P (XEXP (op0
, 1)))
12754 op0
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
,
12756 INTVAL (XEXP (op0
, 1)));
12760 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12761 do the comparison in a narrower mode. */
12762 if (! unsigned_comparison_p
12763 && CONST_INT_P (XEXP (op0
, 1))
12764 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
12765 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
12766 && (int_mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)), 1)
12768 && (((unsigned HOST_WIDE_INT
) const_op
12769 + (GET_MODE_MASK (tmode
) >> 1) + 1)
12770 <= GET_MODE_MASK (tmode
)))
12772 op0
= gen_lowpart (tmode
, XEXP (XEXP (op0
, 0), 0));
12776 /* Likewise if OP0 is a PLUS of a sign extension with a
12777 constant, which is usually represented with the PLUS
12778 between the shifts. */
12779 if (! unsigned_comparison_p
12780 && CONST_INT_P (XEXP (op0
, 1))
12781 && GET_CODE (XEXP (op0
, 0)) == PLUS
12782 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12783 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == ASHIFT
12784 && XEXP (op0
, 1) == XEXP (XEXP (XEXP (op0
, 0), 0), 1)
12785 && (int_mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)), 1)
12787 && (((unsigned HOST_WIDE_INT
) const_op
12788 + (GET_MODE_MASK (tmode
) >> 1) + 1)
12789 <= GET_MODE_MASK (tmode
)))
12791 rtx inner
= XEXP (XEXP (XEXP (op0
, 0), 0), 0);
12792 rtx add_const
= XEXP (XEXP (op0
, 0), 1);
12793 rtx new_const
= simplify_gen_binary (ASHIFTRT
, mode
,
12794 add_const
, XEXP (op0
, 1));
12796 op0
= simplify_gen_binary (PLUS
, tmode
,
12797 gen_lowpart (tmode
, inner
),
12804 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12805 the low order N bits of FOO are known to be zero, we can do this
12806 by comparing FOO with C shifted left N bits so long as no
12807 overflow occurs. Even if the low order N bits of FOO aren't known
12808 to be zero, if the comparison is >= or < we can use the same
12809 optimization and for > or <= by setting all the low
12810 order N bits in the comparison constant. */
12811 if (CONST_INT_P (XEXP (op0
, 1))
12812 && INTVAL (XEXP (op0
, 1)) > 0
12813 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
12814 && mode_width
<= HOST_BITS_PER_WIDE_INT
12815 && (((unsigned HOST_WIDE_INT
) const_op
12816 + (GET_CODE (op0
) != LSHIFTRT
12817 ? ((GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1)) >> 1)
12820 <= GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1))))
12822 unsigned HOST_WIDE_INT low_bits
12823 = (nonzero_bits (XEXP (op0
, 0), mode
)
12824 & ((HOST_WIDE_INT_1U
12825 << INTVAL (XEXP (op0
, 1))) - 1));
12826 if (low_bits
== 0 || !equality_comparison_p
)
12828 /* If the shift was logical, then we must make the condition
12830 if (GET_CODE (op0
) == LSHIFTRT
)
12831 code
= unsigned_condition (code
);
12833 const_op
= (unsigned HOST_WIDE_INT
) const_op
12834 << INTVAL (XEXP (op0
, 1));
12836 && (code
== GT
|| code
== GTU
12837 || code
== LE
|| code
== LEU
))
12839 |= ((HOST_WIDE_INT_1
<< INTVAL (XEXP (op0
, 1))) - 1);
12840 op1
= GEN_INT (const_op
);
12841 op0
= XEXP (op0
, 0);
12846 /* If we are using this shift to extract just the sign bit, we
12847 can replace this with an LT or GE comparison. */
12849 && (equality_comparison_p
|| sign_bit_comparison_p
)
12850 && CONST_INT_P (XEXP (op0
, 1))
12851 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
12853 op0
= XEXP (op0
, 0);
12854 code
= (code
== NE
|| code
== GT
? LT
: GE
);
12866 /* Now make any compound operations involved in this comparison. Then,
12867 check for an outmost SUBREG on OP0 that is not doing anything or is
12868 paradoxical. The latter transformation must only be performed when
12869 it is known that the "extra" bits will be the same in op0 and op1 or
12870 that they don't matter. There are three cases to consider:
12872 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12873 care bits and we can assume they have any convenient value. So
12874 making the transformation is safe.
12876 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12877 In this case the upper bits of op0 are undefined. We should not make
12878 the simplification in that case as we do not know the contents of
12881 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12882 In that case we know those bits are zeros or ones. We must also be
12883 sure that they are the same as the upper bits of op1.
12885 We can never remove a SUBREG for a non-equality comparison because
12886 the sign bit is in a different place in the underlying object. */
12888 rtx_code op0_mco_code
= SET
;
12889 if (op1
== const0_rtx
)
12890 op0_mco_code
= code
== NE
|| code
== EQ
? EQ
: COMPARE
;
12892 op0
= make_compound_operation (op0
, op0_mco_code
);
12893 op1
= make_compound_operation (op1
, SET
);
12895 if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
12896 && is_int_mode (GET_MODE (op0
), &mode
)
12897 && is_int_mode (GET_MODE (SUBREG_REG (op0
)), &inner_mode
)
12898 && (code
== NE
|| code
== EQ
))
12900 if (paradoxical_subreg_p (op0
))
12902 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12904 if (REG_P (SUBREG_REG (op0
)))
12906 op0
= SUBREG_REG (op0
);
12907 op1
= gen_lowpart (inner_mode
, op1
);
12910 else if (GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
12911 && (nonzero_bits (SUBREG_REG (op0
), inner_mode
)
12912 & ~GET_MODE_MASK (mode
)) == 0)
12914 tem
= gen_lowpart (inner_mode
, op1
);
12916 if ((nonzero_bits (tem
, inner_mode
) & ~GET_MODE_MASK (mode
)) == 0)
12917 op0
= SUBREG_REG (op0
), op1
= tem
;
12921 /* We now do the opposite procedure: Some machines don't have compare
12922 insns in all modes. If OP0's mode is an integer mode smaller than a
12923 word and we can't do a compare in that mode, see if there is a larger
12924 mode for which we can do the compare. There are a number of cases in
12925 which we can use the wider mode. */
12927 if (is_int_mode (GET_MODE (op0
), &mode
)
12928 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
12929 && ! have_insn_for (COMPARE
, mode
))
12930 FOR_EACH_WIDER_MODE (tmode_iter
, mode
)
12932 tmode
= tmode_iter
.require ();
12933 if (!HWI_COMPUTABLE_MODE_P (tmode
))
12935 if (have_insn_for (COMPARE
, tmode
))
12939 /* If this is a test for negative, we can make an explicit
12940 test of the sign bit. Test this first so we can use
12941 a paradoxical subreg to extend OP0. */
12943 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
12944 && HWI_COMPUTABLE_MODE_P (mode
))
12946 unsigned HOST_WIDE_INT sign
12947 = HOST_WIDE_INT_1U
<< (GET_MODE_BITSIZE (mode
) - 1);
12948 op0
= simplify_gen_binary (AND
, tmode
,
12949 gen_lowpart (tmode
, op0
),
12950 gen_int_mode (sign
, tmode
));
12951 code
= (code
== LT
) ? NE
: EQ
;
12955 /* If the only nonzero bits in OP0 and OP1 are those in the
12956 narrower mode and this is an equality or unsigned comparison,
12957 we can use the wider mode. Similarly for sign-extended
12958 values, in which case it is true for all comparisons. */
12959 zero_extended
= ((code
== EQ
|| code
== NE
12960 || code
== GEU
|| code
== GTU
12961 || code
== LEU
|| code
== LTU
)
12962 && (nonzero_bits (op0
, tmode
)
12963 & ~GET_MODE_MASK (mode
)) == 0
12964 && ((CONST_INT_P (op1
)
12965 || (nonzero_bits (op1
, tmode
)
12966 & ~GET_MODE_MASK (mode
)) == 0)));
12969 || ((num_sign_bit_copies (op0
, tmode
)
12970 > (unsigned int) (GET_MODE_PRECISION (tmode
)
12971 - GET_MODE_PRECISION (mode
)))
12972 && (num_sign_bit_copies (op1
, tmode
)
12973 > (unsigned int) (GET_MODE_PRECISION (tmode
)
12974 - GET_MODE_PRECISION (mode
)))))
12976 /* If OP0 is an AND and we don't have an AND in MODE either,
12977 make a new AND in the proper mode. */
12978 if (GET_CODE (op0
) == AND
12979 && !have_insn_for (AND
, mode
))
12980 op0
= simplify_gen_binary (AND
, tmode
,
12981 gen_lowpart (tmode
,
12983 gen_lowpart (tmode
,
12989 op0
= simplify_gen_unary (ZERO_EXTEND
, tmode
,
12991 op1
= simplify_gen_unary (ZERO_EXTEND
, tmode
,
12996 op0
= simplify_gen_unary (SIGN_EXTEND
, tmode
,
12998 op1
= simplify_gen_unary (SIGN_EXTEND
, tmode
,
13007 /* We may have changed the comparison operands. Re-canonicalize. */
13008 if (swap_commutative_operands_p (op0
, op1
))
13010 std::swap (op0
, op1
);
13011 code
= swap_condition (code
);
13014 /* If this machine only supports a subset of valid comparisons, see if we
13015 can convert an unsupported one into a supported one. */
13016 target_canonicalize_comparison (&code
, &op0
, &op1
, 0);
13024 /* Utility function for record_value_for_reg. Count number of
13029 enum rtx_code code
= GET_CODE (x
);
13033 if (GET_RTX_CLASS (code
) == RTX_BIN_ARITH
13034 || GET_RTX_CLASS (code
) == RTX_COMM_ARITH
)
13036 rtx x0
= XEXP (x
, 0);
13037 rtx x1
= XEXP (x
, 1);
13040 return 1 + 2 * count_rtxs (x0
);
13042 if ((GET_RTX_CLASS (GET_CODE (x1
)) == RTX_BIN_ARITH
13043 || GET_RTX_CLASS (GET_CODE (x1
)) == RTX_COMM_ARITH
)
13044 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
13045 return 2 + 2 * count_rtxs (x0
)
13046 + count_rtxs (x
== XEXP (x1
, 0)
13047 ? XEXP (x1
, 1) : XEXP (x1
, 0));
13049 if ((GET_RTX_CLASS (GET_CODE (x0
)) == RTX_BIN_ARITH
13050 || GET_RTX_CLASS (GET_CODE (x0
)) == RTX_COMM_ARITH
)
13051 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
13052 return 2 + 2 * count_rtxs (x1
)
13053 + count_rtxs (x
== XEXP (x0
, 0)
13054 ? XEXP (x0
, 1) : XEXP (x0
, 0));
13057 fmt
= GET_RTX_FORMAT (code
);
13058 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
13060 ret
+= count_rtxs (XEXP (x
, i
));
13061 else if (fmt
[i
] == 'E')
13062 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13063 ret
+= count_rtxs (XVECEXP (x
, i
, j
));
13068 /* Utility function for following routine. Called when X is part of a value
13069 being stored into last_set_value. Sets last_set_table_tick
13070 for each register mentioned. Similar to mention_regs in cse.c */
13073 update_table_tick (rtx x
)
13075 enum rtx_code code
= GET_CODE (x
);
13076 const char *fmt
= GET_RTX_FORMAT (code
);
13081 unsigned int regno
= REGNO (x
);
13082 unsigned int endregno
= END_REGNO (x
);
13085 for (r
= regno
; r
< endregno
; r
++)
13087 reg_stat_type
*rsp
= ®_stat
[r
];
13088 rsp
->last_set_table_tick
= label_tick
;
13094 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
13097 /* Check for identical subexpressions. If x contains
13098 identical subexpression we only have to traverse one of
13100 if (i
== 0 && ARITHMETIC_P (x
))
13102 /* Note that at this point x1 has already been
13104 rtx x0
= XEXP (x
, 0);
13105 rtx x1
= XEXP (x
, 1);
13107 /* If x0 and x1 are identical then there is no need to
13112 /* If x0 is identical to a subexpression of x1 then while
13113 processing x1, x0 has already been processed. Thus we
13114 are done with x. */
13115 if (ARITHMETIC_P (x1
)
13116 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
13119 /* If x1 is identical to a subexpression of x0 then we
13120 still have to process the rest of x0. */
13121 if (ARITHMETIC_P (x0
)
13122 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
13124 update_table_tick (XEXP (x0
, x1
== XEXP (x0
, 0) ? 1 : 0));
13129 update_table_tick (XEXP (x
, i
));
13131 else if (fmt
[i
] == 'E')
13132 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13133 update_table_tick (XVECEXP (x
, i
, j
));
13136 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13137 are saying that the register is clobbered and we no longer know its
13138 value. If INSN is zero, don't update reg_stat[].last_set; this is
13139 only permitted with VALUE also zero and is used to invalidate the
13143 record_value_for_reg (rtx reg
, rtx_insn
*insn
, rtx value
)
13145 unsigned int regno
= REGNO (reg
);
13146 unsigned int endregno
= END_REGNO (reg
);
13148 reg_stat_type
*rsp
;
13150 /* If VALUE contains REG and we have a previous value for REG, substitute
13151 the previous value. */
13152 if (value
&& insn
&& reg_overlap_mentioned_p (reg
, value
))
13156 /* Set things up so get_last_value is allowed to see anything set up to
13158 subst_low_luid
= DF_INSN_LUID (insn
);
13159 tem
= get_last_value (reg
);
13161 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13162 it isn't going to be useful and will take a lot of time to process,
13163 so just use the CLOBBER. */
13167 if (ARITHMETIC_P (tem
)
13168 && GET_CODE (XEXP (tem
, 0)) == CLOBBER
13169 && GET_CODE (XEXP (tem
, 1)) == CLOBBER
)
13170 tem
= XEXP (tem
, 0);
13171 else if (count_occurrences (value
, reg
, 1) >= 2)
13173 /* If there are two or more occurrences of REG in VALUE,
13174 prevent the value from growing too much. */
13175 if (count_rtxs (tem
) > MAX_LAST_VALUE_RTL
)
13176 tem
= gen_rtx_CLOBBER (GET_MODE (tem
), const0_rtx
);
13179 value
= replace_rtx (copy_rtx (value
), reg
, tem
);
13183 /* For each register modified, show we don't know its value, that
13184 we don't know about its bitwise content, that its value has been
13185 updated, and that we don't know the location of the death of the
13187 for (i
= regno
; i
< endregno
; i
++)
13189 rsp
= ®_stat
[i
];
13192 rsp
->last_set
= insn
;
13194 rsp
->last_set_value
= 0;
13195 rsp
->last_set_mode
= VOIDmode
;
13196 rsp
->last_set_nonzero_bits
= 0;
13197 rsp
->last_set_sign_bit_copies
= 0;
13198 rsp
->last_death
= 0;
13199 rsp
->truncated_to_mode
= VOIDmode
;
13202 /* Mark registers that are being referenced in this value. */
13204 update_table_tick (value
);
13206 /* Now update the status of each register being set.
13207 If someone is using this register in this block, set this register
13208 to invalid since we will get confused between the two lives in this
13209 basic block. This makes using this register always invalid. In cse, we
13210 scan the table to invalidate all entries using this register, but this
13211 is too much work for us. */
13213 for (i
= regno
; i
< endregno
; i
++)
13215 rsp
= ®_stat
[i
];
13216 rsp
->last_set_label
= label_tick
;
13218 || (value
&& rsp
->last_set_table_tick
>= label_tick_ebb_start
))
13219 rsp
->last_set_invalid
= 1;
13221 rsp
->last_set_invalid
= 0;
13224 /* The value being assigned might refer to X (like in "x++;"). In that
13225 case, we must replace it with (clobber (const_int 0)) to prevent
13227 rsp
= ®_stat
[regno
];
13228 if (value
&& !get_last_value_validate (&value
, insn
, label_tick
, 0))
13230 value
= copy_rtx (value
);
13231 if (!get_last_value_validate (&value
, insn
, label_tick
, 1))
13235 /* For the main register being modified, update the value, the mode, the
13236 nonzero bits, and the number of sign bit copies. */
13238 rsp
->last_set_value
= value
;
13242 machine_mode mode
= GET_MODE (reg
);
13243 subst_low_luid
= DF_INSN_LUID (insn
);
13244 rsp
->last_set_mode
= mode
;
13245 if (GET_MODE_CLASS (mode
) == MODE_INT
13246 && HWI_COMPUTABLE_MODE_P (mode
))
13247 mode
= nonzero_bits_mode
;
13248 rsp
->last_set_nonzero_bits
= nonzero_bits (value
, mode
);
13249 rsp
->last_set_sign_bit_copies
13250 = num_sign_bit_copies (value
, GET_MODE (reg
));
13254 /* Called via note_stores from record_dead_and_set_regs to handle one
13255 SET or CLOBBER in an insn. DATA is the instruction in which the
13256 set is occurring. */
13259 record_dead_and_set_regs_1 (rtx dest
, const_rtx setter
, void *data
)
13261 rtx_insn
*record_dead_insn
= (rtx_insn
*) data
;
13263 if (GET_CODE (dest
) == SUBREG
)
13264 dest
= SUBREG_REG (dest
);
13266 if (!record_dead_insn
)
13269 record_value_for_reg (dest
, NULL
, NULL_RTX
);
13275 /* If we are setting the whole register, we know its value. Otherwise
13276 show that we don't know the value. We can handle a SUBREG if it's
13277 the low part, but we must be careful with paradoxical SUBREGs on
13278 RISC architectures because we cannot strip e.g. an extension around
13279 a load and record the naked load since the RTL middle-end considers
13280 that the upper bits are defined according to LOAD_EXTEND_OP. */
13281 if (GET_CODE (setter
) == SET
&& dest
== SET_DEST (setter
))
13282 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
13283 else if (GET_CODE (setter
) == SET
13284 && GET_CODE (SET_DEST (setter
)) == SUBREG
13285 && SUBREG_REG (SET_DEST (setter
)) == dest
13286 && known_le (GET_MODE_PRECISION (GET_MODE (dest
)),
13288 && subreg_lowpart_p (SET_DEST (setter
)))
13289 record_value_for_reg (dest
, record_dead_insn
,
13290 WORD_REGISTER_OPERATIONS
13291 && paradoxical_subreg_p (SET_DEST (setter
))
13293 : gen_lowpart (GET_MODE (dest
),
13294 SET_SRC (setter
)));
13296 record_value_for_reg (dest
, record_dead_insn
, NULL_RTX
);
13298 else if (MEM_P (dest
)
13299 /* Ignore pushes, they clobber nothing. */
13300 && ! push_operand (dest
, GET_MODE (dest
)))
13301 mem_last_set
= DF_INSN_LUID (record_dead_insn
);
13304 /* Update the records of when each REG was most recently set or killed
13305 for the things done by INSN. This is the last thing done in processing
13306 INSN in the combiner loop.
13308 We update reg_stat[], in particular fields last_set, last_set_value,
13309 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13310 last_death, and also the similar information mem_last_set (which insn
13311 most recently modified memory) and last_call_luid (which insn was the
13312 most recent subroutine call). */
13315 record_dead_and_set_regs (rtx_insn
*insn
)
13320 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
13322 if (REG_NOTE_KIND (link
) == REG_DEAD
13323 && REG_P (XEXP (link
, 0)))
13325 unsigned int regno
= REGNO (XEXP (link
, 0));
13326 unsigned int endregno
= END_REGNO (XEXP (link
, 0));
13328 for (i
= regno
; i
< endregno
; i
++)
13330 reg_stat_type
*rsp
;
13332 rsp
= ®_stat
[i
];
13333 rsp
->last_death
= insn
;
13336 else if (REG_NOTE_KIND (link
) == REG_INC
)
13337 record_value_for_reg (XEXP (link
, 0), insn
, NULL_RTX
);
13342 hard_reg_set_iterator hrsi
;
13343 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call
, 0, i
, hrsi
)
13345 reg_stat_type
*rsp
;
13347 rsp
= ®_stat
[i
];
13348 rsp
->last_set_invalid
= 1;
13349 rsp
->last_set
= insn
;
13350 rsp
->last_set_value
= 0;
13351 rsp
->last_set_mode
= VOIDmode
;
13352 rsp
->last_set_nonzero_bits
= 0;
13353 rsp
->last_set_sign_bit_copies
= 0;
13354 rsp
->last_death
= 0;
13355 rsp
->truncated_to_mode
= VOIDmode
;
13358 last_call_luid
= mem_last_set
= DF_INSN_LUID (insn
);
13360 /* We can't combine into a call pattern. Remember, though, that
13361 the return value register is set at this LUID. We could
13362 still replace a register with the return value from the
13363 wrong subroutine call! */
13364 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, NULL_RTX
);
13367 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, insn
);
13370 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13371 register present in the SUBREG, so for each such SUBREG go back and
13372 adjust nonzero and sign bit information of the registers that are
13373 known to have some zero/sign bits set.
13375 This is needed because when combine blows the SUBREGs away, the
13376 information on zero/sign bits is lost and further combines can be
13377 missed because of that. */
13380 record_promoted_value (rtx_insn
*insn
, rtx subreg
)
13382 struct insn_link
*links
;
13384 unsigned int regno
= REGNO (SUBREG_REG (subreg
));
13385 machine_mode mode
= GET_MODE (subreg
);
13387 if (!HWI_COMPUTABLE_MODE_P (mode
))
13390 for (links
= LOG_LINKS (insn
); links
;)
13392 reg_stat_type
*rsp
;
13394 insn
= links
->insn
;
13395 set
= single_set (insn
);
13397 if (! set
|| !REG_P (SET_DEST (set
))
13398 || REGNO (SET_DEST (set
)) != regno
13399 || GET_MODE (SET_DEST (set
)) != GET_MODE (SUBREG_REG (subreg
)))
13401 links
= links
->next
;
13405 rsp
= ®_stat
[regno
];
13406 if (rsp
->last_set
== insn
)
13408 if (SUBREG_PROMOTED_UNSIGNED_P (subreg
))
13409 rsp
->last_set_nonzero_bits
&= GET_MODE_MASK (mode
);
13412 if (REG_P (SET_SRC (set
)))
13414 regno
= REGNO (SET_SRC (set
));
13415 links
= LOG_LINKS (insn
);
13422 /* Check if X, a register, is known to contain a value already
13423 truncated to MODE. In this case we can use a subreg to refer to
13424 the truncated value even though in the generic case we would need
13425 an explicit truncation. */
13428 reg_truncated_to_mode (machine_mode mode
, const_rtx x
)
13430 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
13431 machine_mode truncated
= rsp
->truncated_to_mode
;
13434 || rsp
->truncation_label
< label_tick_ebb_start
)
13436 if (!partial_subreg_p (mode
, truncated
))
13438 if (TRULY_NOOP_TRUNCATION_MODES_P (mode
, truncated
))
13443 /* If X is a hard reg or a subreg record the mode that the register is
13444 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13445 able to turn a truncate into a subreg using this information. Return true
13446 if traversing X is complete. */
13449 record_truncated_value (rtx x
)
13451 machine_mode truncated_mode
;
13452 reg_stat_type
*rsp
;
13454 if (GET_CODE (x
) == SUBREG
&& REG_P (SUBREG_REG (x
)))
13456 machine_mode original_mode
= GET_MODE (SUBREG_REG (x
));
13457 truncated_mode
= GET_MODE (x
);
13459 if (!partial_subreg_p (truncated_mode
, original_mode
))
13462 truncated_mode
= GET_MODE (x
);
13463 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode
, original_mode
))
13466 x
= SUBREG_REG (x
);
13468 /* ??? For hard-regs we now record everything. We might be able to
13469 optimize this using last_set_mode. */
13470 else if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
13471 truncated_mode
= GET_MODE (x
);
13475 rsp
= ®_stat
[REGNO (x
)];
13476 if (rsp
->truncated_to_mode
== 0
13477 || rsp
->truncation_label
< label_tick_ebb_start
13478 || partial_subreg_p (truncated_mode
, rsp
->truncated_to_mode
))
13480 rsp
->truncated_to_mode
= truncated_mode
;
13481 rsp
->truncation_label
= label_tick
;
13487 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13488 the modes they are used in. This can help truning TRUNCATEs into
13492 record_truncated_values (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
13494 subrtx_var_iterator::array_type array
;
13495 FOR_EACH_SUBRTX_VAR (iter
, array
, *loc
, NONCONST
)
13496 if (record_truncated_value (*iter
))
13497 iter
.skip_subrtxes ();
13500 /* Scan X for promoted SUBREGs. For each one found,
13501 note what it implies to the registers used in it. */
13504 check_promoted_subreg (rtx_insn
*insn
, rtx x
)
13506 if (GET_CODE (x
) == SUBREG
13507 && SUBREG_PROMOTED_VAR_P (x
)
13508 && REG_P (SUBREG_REG (x
)))
13509 record_promoted_value (insn
, x
);
13512 const char *format
= GET_RTX_FORMAT (GET_CODE (x
));
13515 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (x
)); i
++)
13519 check_promoted_subreg (insn
, XEXP (x
, i
));
13523 if (XVEC (x
, i
) != 0)
13524 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13525 check_promoted_subreg (insn
, XVECEXP (x
, i
, j
));
13531 /* Verify that all the registers and memory references mentioned in *LOC are
13532 still valid. *LOC was part of a value set in INSN when label_tick was
13533 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13534 the invalid references with (clobber (const_int 0)) and return 1. This
13535 replacement is useful because we often can get useful information about
13536 the form of a value (e.g., if it was produced by a shift that always
13537 produces -1 or 0) even though we don't know exactly what registers it
13538 was produced from. */
13541 get_last_value_validate (rtx
*loc
, rtx_insn
*insn
, int tick
, int replace
)
13544 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
13545 int len
= GET_RTX_LENGTH (GET_CODE (x
));
13550 unsigned int regno
= REGNO (x
);
13551 unsigned int endregno
= END_REGNO (x
);
13554 for (j
= regno
; j
< endregno
; j
++)
13556 reg_stat_type
*rsp
= ®_stat
[j
];
13557 if (rsp
->last_set_invalid
13558 /* If this is a pseudo-register that was only set once and not
13559 live at the beginning of the function, it is always valid. */
13560 || (! (regno
>= FIRST_PSEUDO_REGISTER
13561 && regno
< reg_n_sets_max
13562 && REG_N_SETS (regno
) == 1
13563 && (!REGNO_REG_SET_P
13564 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
13566 && rsp
->last_set_label
> tick
))
13569 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
13576 /* If this is a memory reference, make sure that there were no stores after
13577 it that might have clobbered the value. We don't have alias info, so we
13578 assume any store invalidates it. Moreover, we only have local UIDs, so
13579 we also assume that there were stores in the intervening basic blocks. */
13580 else if (MEM_P (x
) && !MEM_READONLY_P (x
)
13581 && (tick
!= label_tick
|| DF_INSN_LUID (insn
) <= mem_last_set
))
13584 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
13588 for (i
= 0; i
< len
; i
++)
13592 /* Check for identical subexpressions. If x contains
13593 identical subexpression we only have to traverse one of
13595 if (i
== 1 && ARITHMETIC_P (x
))
13597 /* Note that at this point x0 has already been checked
13598 and found valid. */
13599 rtx x0
= XEXP (x
, 0);
13600 rtx x1
= XEXP (x
, 1);
13602 /* If x0 and x1 are identical then x is also valid. */
13606 /* If x1 is identical to a subexpression of x0 then
13607 while checking x0, x1 has already been checked. Thus
13608 it is valid and so as x. */
13609 if (ARITHMETIC_P (x0
)
13610 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
13613 /* If x0 is identical to a subexpression of x1 then x is
13614 valid iff the rest of x1 is valid. */
13615 if (ARITHMETIC_P (x1
)
13616 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
13618 get_last_value_validate (&XEXP (x1
,
13619 x0
== XEXP (x1
, 0) ? 1 : 0),
13620 insn
, tick
, replace
);
13623 if (get_last_value_validate (&XEXP (x
, i
), insn
, tick
,
13627 else if (fmt
[i
] == 'E')
13628 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13629 if (get_last_value_validate (&XVECEXP (x
, i
, j
),
13630 insn
, tick
, replace
) == 0)
13634 /* If we haven't found a reason for it to be invalid, it is valid. */
13638 /* Get the last value assigned to X, if known. Some registers
13639 in the value may be replaced with (clobber (const_int 0)) if their value
13640 is known longer known reliably. */
13643 get_last_value (const_rtx x
)
13645 unsigned int regno
;
13647 reg_stat_type
*rsp
;
13649 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13650 then convert it to the desired mode. If this is a paradoxical SUBREG,
13651 we cannot predict what values the "extra" bits might have. */
13652 if (GET_CODE (x
) == SUBREG
13653 && subreg_lowpart_p (x
)
13654 && !paradoxical_subreg_p (x
)
13655 && (value
= get_last_value (SUBREG_REG (x
))) != 0)
13656 return gen_lowpart (GET_MODE (x
), value
);
13662 rsp
= ®_stat
[regno
];
13663 value
= rsp
->last_set_value
;
13665 /* If we don't have a value, or if it isn't for this basic block and
13666 it's either a hard register, set more than once, or it's a live
13667 at the beginning of the function, return 0.
13669 Because if it's not live at the beginning of the function then the reg
13670 is always set before being used (is never used without being set).
13671 And, if it's set only once, and it's always set before use, then all
13672 uses must have the same last value, even if it's not from this basic
13676 || (rsp
->last_set_label
< label_tick_ebb_start
13677 && (regno
< FIRST_PSEUDO_REGISTER
13678 || regno
>= reg_n_sets_max
13679 || REG_N_SETS (regno
) != 1
13681 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), regno
))))
13684 /* If the value was set in a later insn than the ones we are processing,
13685 we can't use it even if the register was only set once. */
13686 if (rsp
->last_set_label
== label_tick
13687 && DF_INSN_LUID (rsp
->last_set
) >= subst_low_luid
)
13690 /* If fewer bits were set than what we are asked for now, we cannot use
13692 if (maybe_lt (GET_MODE_PRECISION (rsp
->last_set_mode
),
13693 GET_MODE_PRECISION (GET_MODE (x
))))
13696 /* If the value has all its registers valid, return it. */
13697 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 0))
13700 /* Otherwise, make a copy and replace any invalid register with
13701 (clobber (const_int 0)). If that fails for some reason, return 0. */
13703 value
= copy_rtx (value
);
13704 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 1))
13710 /* Define three variables used for communication between the following
13713 static unsigned int reg_dead_regno
, reg_dead_endregno
;
13714 static int reg_dead_flag
;
13716 /* Function called via note_stores from reg_dead_at_p.
13718 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13719 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13722 reg_dead_at_p_1 (rtx dest
, const_rtx x
, void *data ATTRIBUTE_UNUSED
)
13724 unsigned int regno
, endregno
;
13729 regno
= REGNO (dest
);
13730 endregno
= END_REGNO (dest
);
13731 if (reg_dead_endregno
> regno
&& reg_dead_regno
< endregno
)
13732 reg_dead_flag
= (GET_CODE (x
) == CLOBBER
) ? 1 : -1;
13735 /* Return nonzero if REG is known to be dead at INSN.
13737 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13738 referencing REG, it is dead. If we hit a SET referencing REG, it is
13739 live. Otherwise, see if it is live or dead at the start of the basic
13740 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13741 must be assumed to be always live. */
13744 reg_dead_at_p (rtx reg
, rtx_insn
*insn
)
13749 /* Set variables for reg_dead_at_p_1. */
13750 reg_dead_regno
= REGNO (reg
);
13751 reg_dead_endregno
= END_REGNO (reg
);
13755 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13756 we allow the machine description to decide whether use-and-clobber
13757 patterns are OK. */
13758 if (reg_dead_regno
< FIRST_PSEUDO_REGISTER
)
13760 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
13761 if (!fixed_regs
[i
] && TEST_HARD_REG_BIT (newpat_used_regs
, i
))
13765 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13766 beginning of basic block. */
13767 block
= BLOCK_FOR_INSN (insn
);
13772 if (find_regno_note (insn
, REG_UNUSED
, reg_dead_regno
))
13775 note_stores (PATTERN (insn
), reg_dead_at_p_1
, NULL
);
13777 return reg_dead_flag
== 1 ? 1 : 0;
13779 if (find_regno_note (insn
, REG_DEAD
, reg_dead_regno
))
13783 if (insn
== BB_HEAD (block
))
13786 insn
= PREV_INSN (insn
);
13789 /* Look at live-in sets for the basic block that we were in. */
13790 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
13791 if (REGNO_REG_SET_P (df_get_live_in (block
), i
))
13797 /* Note hard registers in X that are used. */
13800 mark_used_regs_combine (rtx x
)
13802 RTX_CODE code
= GET_CODE (x
);
13803 unsigned int regno
;
13814 case ADDR_DIFF_VEC
:
13816 /* CC0 must die in the insn after it is set, so we don't need to take
13817 special note of it here. */
13822 /* If we are clobbering a MEM, mark any hard registers inside the
13823 address as used. */
13824 if (MEM_P (XEXP (x
, 0)))
13825 mark_used_regs_combine (XEXP (XEXP (x
, 0), 0));
13830 /* A hard reg in a wide mode may really be multiple registers.
13831 If so, mark all of them just like the first. */
13832 if (regno
< FIRST_PSEUDO_REGISTER
)
13834 /* None of this applies to the stack, frame or arg pointers. */
13835 if (regno
== STACK_POINTER_REGNUM
13836 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13837 && regno
== HARD_FRAME_POINTER_REGNUM
)
13838 || (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
13839 && regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
13840 || regno
== FRAME_POINTER_REGNUM
)
13843 add_to_hard_reg_set (&newpat_used_regs
, GET_MODE (x
), regno
);
13849 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13851 rtx testreg
= SET_DEST (x
);
13853 while (GET_CODE (testreg
) == SUBREG
13854 || GET_CODE (testreg
) == ZERO_EXTRACT
13855 || GET_CODE (testreg
) == STRICT_LOW_PART
)
13856 testreg
= XEXP (testreg
, 0);
13858 if (MEM_P (testreg
))
13859 mark_used_regs_combine (XEXP (testreg
, 0));
13861 mark_used_regs_combine (SET_SRC (x
));
13869 /* Recursively scan the operands of this expression. */
13872 const char *fmt
= GET_RTX_FORMAT (code
);
13874 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
13877 mark_used_regs_combine (XEXP (x
, i
));
13878 else if (fmt
[i
] == 'E')
13882 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13883 mark_used_regs_combine (XVECEXP (x
, i
, j
));
13889 /* Remove register number REGNO from the dead registers list of INSN.
13891 Return the note used to record the death, if there was one. */
13894 remove_death (unsigned int regno
, rtx_insn
*insn
)
13896 rtx note
= find_regno_note (insn
, REG_DEAD
, regno
);
13899 remove_note (insn
, note
);
13904 /* For each register (hardware or pseudo) used within expression X, if its
13905 death is in an instruction with luid between FROM_LUID (inclusive) and
13906 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13907 list headed by PNOTES.
13909 That said, don't move registers killed by maybe_kill_insn.
13911 This is done when X is being merged by combination into TO_INSN. These
13912 notes will then be distributed as needed. */
13915 move_deaths (rtx x
, rtx maybe_kill_insn
, int from_luid
, rtx_insn
*to_insn
,
13920 enum rtx_code code
= GET_CODE (x
);
13924 unsigned int regno
= REGNO (x
);
13925 rtx_insn
*where_dead
= reg_stat
[regno
].last_death
;
13927 /* If we do not know where the register died, it may still die between
13928 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
13929 if (!where_dead
|| DF_INSN_LUID (where_dead
) >= DF_INSN_LUID (to_insn
))
13931 rtx_insn
*insn
= prev_real_nondebug_insn (to_insn
);
13933 && BLOCK_FOR_INSN (insn
) == BLOCK_FOR_INSN (to_insn
)
13934 && DF_INSN_LUID (insn
) >= from_luid
)
13936 if (dead_or_set_regno_p (insn
, regno
))
13938 if (find_regno_note (insn
, REG_DEAD
, regno
))
13943 insn
= prev_real_nondebug_insn (insn
);
13947 /* Don't move the register if it gets killed in between from and to. */
13948 if (maybe_kill_insn
&& reg_set_p (x
, maybe_kill_insn
)
13949 && ! reg_referenced_p (x
, maybe_kill_insn
))
13953 && BLOCK_FOR_INSN (where_dead
) == BLOCK_FOR_INSN (to_insn
)
13954 && DF_INSN_LUID (where_dead
) >= from_luid
13955 && DF_INSN_LUID (where_dead
) < DF_INSN_LUID (to_insn
))
13957 rtx note
= remove_death (regno
, where_dead
);
13959 /* It is possible for the call above to return 0. This can occur
13960 when last_death points to I2 or I1 that we combined with.
13961 In that case make a new note.
13963 We must also check for the case where X is a hard register
13964 and NOTE is a death note for a range of hard registers
13965 including X. In that case, we must put REG_DEAD notes for
13966 the remaining registers in place of NOTE. */
13968 if (note
!= 0 && regno
< FIRST_PSEUDO_REGISTER
13969 && partial_subreg_p (GET_MODE (x
), GET_MODE (XEXP (note
, 0))))
13971 unsigned int deadregno
= REGNO (XEXP (note
, 0));
13972 unsigned int deadend
= END_REGNO (XEXP (note
, 0));
13973 unsigned int ourend
= END_REGNO (x
);
13976 for (i
= deadregno
; i
< deadend
; i
++)
13977 if (i
< regno
|| i
>= ourend
)
13978 add_reg_note (where_dead
, REG_DEAD
, regno_reg_rtx
[i
]);
13981 /* If we didn't find any note, or if we found a REG_DEAD note that
13982 covers only part of the given reg, and we have a multi-reg hard
13983 register, then to be safe we must check for REG_DEAD notes
13984 for each register other than the first. They could have
13985 their own REG_DEAD notes lying around. */
13986 else if ((note
== 0
13988 && partial_subreg_p (GET_MODE (XEXP (note
, 0)),
13990 && regno
< FIRST_PSEUDO_REGISTER
13991 && REG_NREGS (x
) > 1)
13993 unsigned int ourend
= END_REGNO (x
);
13994 unsigned int i
, offset
;
13998 offset
= hard_regno_nregs (regno
, GET_MODE (XEXP (note
, 0)));
14002 for (i
= regno
+ offset
; i
< ourend
; i
++)
14003 move_deaths (regno_reg_rtx
[i
],
14004 maybe_kill_insn
, from_luid
, to_insn
, &oldnotes
);
14007 if (note
!= 0 && GET_MODE (XEXP (note
, 0)) == GET_MODE (x
))
14009 XEXP (note
, 1) = *pnotes
;
14013 *pnotes
= alloc_reg_note (REG_DEAD
, x
, *pnotes
);
14019 else if (GET_CODE (x
) == SET
)
14021 rtx dest
= SET_DEST (x
);
14023 move_deaths (SET_SRC (x
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
14025 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14026 that accesses one word of a multi-word item, some
14027 piece of everything register in the expression is used by
14028 this insn, so remove any old death. */
14029 /* ??? So why do we test for equality of the sizes? */
14031 if (GET_CODE (dest
) == ZERO_EXTRACT
14032 || GET_CODE (dest
) == STRICT_LOW_PART
14033 || (GET_CODE (dest
) == SUBREG
14034 && !read_modify_subreg_p (dest
)))
14036 move_deaths (dest
, maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
14040 /* If this is some other SUBREG, we know it replaces the entire
14041 value, so use that as the destination. */
14042 if (GET_CODE (dest
) == SUBREG
)
14043 dest
= SUBREG_REG (dest
);
14045 /* If this is a MEM, adjust deaths of anything used in the address.
14046 For a REG (the only other possibility), the entire value is
14047 being replaced so the old value is not used in this insn. */
14050 move_deaths (XEXP (dest
, 0), maybe_kill_insn
, from_luid
,
14055 else if (GET_CODE (x
) == CLOBBER
)
14058 len
= GET_RTX_LENGTH (code
);
14059 fmt
= GET_RTX_FORMAT (code
);
14061 for (i
= 0; i
< len
; i
++)
14066 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
14067 move_deaths (XVECEXP (x
, i
, j
), maybe_kill_insn
, from_luid
,
14070 else if (fmt
[i
] == 'e')
14071 move_deaths (XEXP (x
, i
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
14075 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14076 pattern of an insn. X must be a REG. */
14079 reg_bitfield_target_p (rtx x
, rtx body
)
14083 if (GET_CODE (body
) == SET
)
14085 rtx dest
= SET_DEST (body
);
14087 unsigned int regno
, tregno
, endregno
, endtregno
;
14089 if (GET_CODE (dest
) == ZERO_EXTRACT
)
14090 target
= XEXP (dest
, 0);
14091 else if (GET_CODE (dest
) == STRICT_LOW_PART
)
14092 target
= SUBREG_REG (XEXP (dest
, 0));
14096 if (GET_CODE (target
) == SUBREG
)
14097 target
= SUBREG_REG (target
);
14099 if (!REG_P (target
))
14102 tregno
= REGNO (target
), regno
= REGNO (x
);
14103 if (tregno
>= FIRST_PSEUDO_REGISTER
|| regno
>= FIRST_PSEUDO_REGISTER
)
14104 return target
== x
;
14106 endtregno
= end_hard_regno (GET_MODE (target
), tregno
);
14107 endregno
= end_hard_regno (GET_MODE (x
), regno
);
14109 return endregno
> tregno
&& regno
< endtregno
;
14112 else if (GET_CODE (body
) == PARALLEL
)
14113 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
14114 if (reg_bitfield_target_p (x
, XVECEXP (body
, 0, i
)))
14120 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14121 as appropriate. I3 and I2 are the insns resulting from the combination
14122 insns including FROM (I2 may be zero).
14124 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14125 not need REG_DEAD notes because they are being substituted for. This
14126 saves searching in the most common cases.
14128 Each note in the list is either ignored or placed on some insns, depending
14129 on the type of note. */
14132 distribute_notes (rtx notes
, rtx_insn
*from_insn
, rtx_insn
*i3
, rtx_insn
*i2
,
14133 rtx elim_i2
, rtx elim_i1
, rtx elim_i0
)
14135 rtx note
, next_note
;
14137 rtx_insn
*tem_insn
;
14139 for (note
= notes
; note
; note
= next_note
)
14141 rtx_insn
*place
= 0, *place2
= 0;
14143 next_note
= XEXP (note
, 1);
14144 switch (REG_NOTE_KIND (note
))
14148 /* Doesn't matter much where we put this, as long as it's somewhere.
14149 It is preferable to keep these notes on branches, which is most
14150 likely to be i3. */
14154 case REG_NON_LOCAL_GOTO
:
14159 gcc_assert (i2
&& JUMP_P (i2
));
14164 case REG_EH_REGION
:
14165 /* These notes must remain with the call or trapping instruction. */
14168 else if (i2
&& CALL_P (i2
))
14172 gcc_assert (cfun
->can_throw_non_call_exceptions
);
14173 if (may_trap_p (i3
))
14175 else if (i2
&& may_trap_p (i2
))
14177 /* ??? Otherwise assume we've combined things such that we
14178 can now prove that the instructions can't trap. Drop the
14179 note in this case. */
14183 case REG_ARGS_SIZE
:
14184 /* ??? How to distribute between i3-i1. Assume i3 contains the
14185 entire adjustment. Assert i3 contains at least some adjust. */
14186 if (!noop_move_p (i3
))
14188 poly_int64 old_size
, args_size
= get_args_size (note
);
14189 /* fixup_args_size_notes looks at REG_NORETURN note,
14190 so ensure the note is placed there first. */
14194 for (np
= &next_note
; *np
; np
= &XEXP (*np
, 1))
14195 if (REG_NOTE_KIND (*np
) == REG_NORETURN
)
14199 XEXP (n
, 1) = REG_NOTES (i3
);
14200 REG_NOTES (i3
) = n
;
14204 old_size
= fixup_args_size_notes (PREV_INSN (i3
), i3
, args_size
);
14205 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14206 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14207 gcc_assert (maybe_ne (old_size
, args_size
)
14209 && !ACCUMULATE_OUTGOING_ARGS
14210 && find_reg_note (i3
, REG_NORETURN
, NULL_RTX
)));
14217 case REG_CALL_DECL
:
14218 case REG_CALL_NOCF_CHECK
:
14219 /* These notes must remain with the call. It should not be
14220 possible for both I2 and I3 to be a call. */
14225 gcc_assert (i2
&& CALL_P (i2
));
14231 /* Any clobbers for i3 may still exist, and so we must process
14232 REG_UNUSED notes from that insn.
14234 Any clobbers from i2 or i1 can only exist if they were added by
14235 recog_for_combine. In that case, recog_for_combine created the
14236 necessary REG_UNUSED notes. Trying to keep any original
14237 REG_UNUSED notes from these insns can cause incorrect output
14238 if it is for the same register as the original i3 dest.
14239 In that case, we will notice that the register is set in i3,
14240 and then add a REG_UNUSED note for the destination of i3, which
14241 is wrong. However, it is possible to have REG_UNUSED notes from
14242 i2 or i1 for register which were both used and clobbered, so
14243 we keep notes from i2 or i1 if they will turn into REG_DEAD
14246 /* If this register is set or clobbered in I3, put the note there
14247 unless there is one already. */
14248 if (reg_set_p (XEXP (note
, 0), PATTERN (i3
)))
14250 if (from_insn
!= i3
)
14253 if (! (REG_P (XEXP (note
, 0))
14254 ? find_regno_note (i3
, REG_UNUSED
, REGNO (XEXP (note
, 0)))
14255 : find_reg_note (i3
, REG_UNUSED
, XEXP (note
, 0))))
14258 /* Otherwise, if this register is used by I3, then this register
14259 now dies here, so we must put a REG_DEAD note here unless there
14261 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
))
14262 && ! (REG_P (XEXP (note
, 0))
14263 ? find_regno_note (i3
, REG_DEAD
,
14264 REGNO (XEXP (note
, 0)))
14265 : find_reg_note (i3
, REG_DEAD
, XEXP (note
, 0))))
14267 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
14271 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14272 but we can't tell which at this point. We must reset any
14273 expectations we had about the value that was previously
14274 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14275 and, if appropriate, restore its previous value, but we
14276 don't have enough information for that at this point. */
14279 record_value_for_reg (XEXP (note
, 0), NULL
, NULL_RTX
);
14281 /* Otherwise, if this register is now referenced in i2
14282 then the register used to be modified in one of the
14283 original insns. If it was i3 (say, in an unused
14284 parallel), it's now completely gone, so the note can
14285 be discarded. But if it was modified in i2, i1 or i0
14286 and we still reference it in i2, then we're
14287 referencing the previous value, and since the
14288 register was modified and REG_UNUSED, we know that
14289 the previous value is now dead. So, if we only
14290 reference the register in i2, we change the note to
14291 REG_DEAD, to reflect the previous value. However, if
14292 we're also setting or clobbering the register as
14293 scratch, we know (because the register was not
14294 referenced in i3) that it's unused, just as it was
14295 unused before, and we place the note in i2. */
14296 if (from_insn
!= i3
&& i2
&& INSN_P (i2
)
14297 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
14299 if (!reg_set_p (XEXP (note
, 0), PATTERN (i2
)))
14300 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
14301 if (! (REG_P (XEXP (note
, 0))
14302 ? find_regno_note (i2
, REG_NOTE_KIND (note
),
14303 REGNO (XEXP (note
, 0)))
14304 : find_reg_note (i2
, REG_NOTE_KIND (note
),
14315 /* These notes say something about results of an insn. We can
14316 only support them if they used to be on I3 in which case they
14317 remain on I3. Otherwise they are ignored.
14319 If the note refers to an expression that is not a constant, we
14320 must also ignore the note since we cannot tell whether the
14321 equivalence is still true. It might be possible to do
14322 slightly better than this (we only have a problem if I2DEST
14323 or I1DEST is present in the expression), but it doesn't
14324 seem worth the trouble. */
14326 if (from_insn
== i3
14327 && (XEXP (note
, 0) == 0 || CONSTANT_P (XEXP (note
, 0))))
14332 /* These notes say something about how a register is used. They must
14333 be present on any use of the register in I2 or I3. */
14334 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
)))
14337 if (i2
&& reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
)))
14346 case REG_LABEL_TARGET
:
14347 case REG_LABEL_OPERAND
:
14348 /* This can show up in several ways -- either directly in the
14349 pattern, or hidden off in the constant pool with (or without?)
14350 a REG_EQUAL note. */
14351 /* ??? Ignore the without-reg_equal-note problem for now. */
14352 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
))
14353 || ((tem_note
= find_reg_note (i3
, REG_EQUAL
, NULL_RTX
))
14354 && GET_CODE (XEXP (tem_note
, 0)) == LABEL_REF
14355 && label_ref_label (XEXP (tem_note
, 0)) == XEXP (note
, 0)))
14359 && (reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
))
14360 || ((tem_note
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
))
14361 && GET_CODE (XEXP (tem_note
, 0)) == LABEL_REF
14362 && label_ref_label (XEXP (tem_note
, 0)) == XEXP (note
, 0))))
14370 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14371 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14373 if (place
&& JUMP_P (place
)
14374 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
14375 && (JUMP_LABEL (place
) == NULL
14376 || JUMP_LABEL (place
) == XEXP (note
, 0)))
14378 rtx label
= JUMP_LABEL (place
);
14381 JUMP_LABEL (place
) = XEXP (note
, 0);
14382 else if (LABEL_P (label
))
14383 LABEL_NUSES (label
)--;
14386 if (place2
&& JUMP_P (place2
)
14387 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
14388 && (JUMP_LABEL (place2
) == NULL
14389 || JUMP_LABEL (place2
) == XEXP (note
, 0)))
14391 rtx label
= JUMP_LABEL (place2
);
14394 JUMP_LABEL (place2
) = XEXP (note
, 0);
14395 else if (LABEL_P (label
))
14396 LABEL_NUSES (label
)--;
14402 /* This note says something about the value of a register prior
14403 to the execution of an insn. It is too much trouble to see
14404 if the note is still correct in all situations. It is better
14405 to simply delete it. */
14409 /* If we replaced the right hand side of FROM_INSN with a
14410 REG_EQUAL note, the original use of the dying register
14411 will not have been combined into I3 and I2. In such cases,
14412 FROM_INSN is guaranteed to be the first of the combined
14413 instructions, so we simply need to search back before
14414 FROM_INSN for the previous use or set of this register,
14415 then alter the notes there appropriately.
14417 If the register is used as an input in I3, it dies there.
14418 Similarly for I2, if it is nonzero and adjacent to I3.
14420 If the register is not used as an input in either I3 or I2
14421 and it is not one of the registers we were supposed to eliminate,
14422 there are two possibilities. We might have a non-adjacent I2
14423 or we might have somehow eliminated an additional register
14424 from a computation. For example, we might have had A & B where
14425 we discover that B will always be zero. In this case we will
14426 eliminate the reference to A.
14428 In both cases, we must search to see if we can find a previous
14429 use of A and put the death note there. */
14432 && from_insn
== i2mod
14433 && !reg_overlap_mentioned_p (XEXP (note
, 0), i2mod_new_rhs
))
14434 tem_insn
= from_insn
;
14438 && CALL_P (from_insn
)
14439 && find_reg_fusage (from_insn
, USE
, XEXP (note
, 0)))
14441 else if (i2
&& reg_set_p (XEXP (note
, 0), PATTERN (i2
)))
14443 /* If the new I2 sets the same register that is marked
14444 dead in the note, we do not in general know where to
14445 put the note. One important case we _can_ handle is
14446 when the note comes from I3. */
14447 if (from_insn
== i3
)
14452 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
)))
14454 else if (i2
!= 0 && next_nonnote_nondebug_insn (i2
) == i3
14455 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
14457 else if ((rtx_equal_p (XEXP (note
, 0), elim_i2
)
14459 && reg_overlap_mentioned_p (XEXP (note
, 0),
14461 || rtx_equal_p (XEXP (note
, 0), elim_i1
)
14462 || rtx_equal_p (XEXP (note
, 0), elim_i0
))
14469 basic_block bb
= this_basic_block
;
14471 for (tem_insn
= PREV_INSN (tem_insn
); place
== 0; tem_insn
= PREV_INSN (tem_insn
))
14473 if (!NONDEBUG_INSN_P (tem_insn
))
14475 if (tem_insn
== BB_HEAD (bb
))
14480 /* If the register is being set at TEM_INSN, see if that is all
14481 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14482 into a REG_UNUSED note instead. Don't delete sets to
14483 global register vars. */
14484 if ((REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
14485 || !global_regs
[REGNO (XEXP (note
, 0))])
14486 && reg_set_p (XEXP (note
, 0), PATTERN (tem_insn
)))
14488 rtx set
= single_set (tem_insn
);
14489 rtx inner_dest
= 0;
14490 rtx_insn
*cc0_setter
= NULL
;
14493 for (inner_dest
= SET_DEST (set
);
14494 (GET_CODE (inner_dest
) == STRICT_LOW_PART
14495 || GET_CODE (inner_dest
) == SUBREG
14496 || GET_CODE (inner_dest
) == ZERO_EXTRACT
);
14497 inner_dest
= XEXP (inner_dest
, 0))
14500 /* Verify that it was the set, and not a clobber that
14501 modified the register.
14503 CC0 targets must be careful to maintain setter/user
14504 pairs. If we cannot delete the setter due to side
14505 effects, mark the user with an UNUSED note instead
14508 if (set
!= 0 && ! side_effects_p (SET_SRC (set
))
14509 && rtx_equal_p (XEXP (note
, 0), inner_dest
)
14511 || (! reg_mentioned_p (cc0_rtx
, SET_SRC (set
))
14512 || ((cc0_setter
= prev_cc0_setter (tem_insn
)) != NULL
14513 && sets_cc0_p (PATTERN (cc0_setter
)) > 0))))
14515 /* Move the notes and links of TEM_INSN elsewhere.
14516 This might delete other dead insns recursively.
14517 First set the pattern to something that won't use
14519 rtx old_notes
= REG_NOTES (tem_insn
);
14521 PATTERN (tem_insn
) = pc_rtx
;
14522 REG_NOTES (tem_insn
) = NULL
;
14524 distribute_notes (old_notes
, tem_insn
, tem_insn
, NULL
,
14525 NULL_RTX
, NULL_RTX
, NULL_RTX
);
14526 distribute_links (LOG_LINKS (tem_insn
));
14528 unsigned int regno
= REGNO (XEXP (note
, 0));
14529 reg_stat_type
*rsp
= ®_stat
[regno
];
14530 if (rsp
->last_set
== tem_insn
)
14531 record_value_for_reg (XEXP (note
, 0), NULL
, NULL_RTX
);
14533 SET_INSN_DELETED (tem_insn
);
14534 if (tem_insn
== i2
)
14537 /* Delete the setter too. */
14540 PATTERN (cc0_setter
) = pc_rtx
;
14541 old_notes
= REG_NOTES (cc0_setter
);
14542 REG_NOTES (cc0_setter
) = NULL
;
14544 distribute_notes (old_notes
, cc0_setter
,
14546 NULL_RTX
, NULL_RTX
, NULL_RTX
);
14547 distribute_links (LOG_LINKS (cc0_setter
));
14549 SET_INSN_DELETED (cc0_setter
);
14550 if (cc0_setter
== i2
)
14556 PUT_REG_NOTE_KIND (note
, REG_UNUSED
);
14558 /* If there isn't already a REG_UNUSED note, put one
14559 here. Do not place a REG_DEAD note, even if
14560 the register is also used here; that would not
14561 match the algorithm used in lifetime analysis
14562 and can cause the consistency check in the
14563 scheduler to fail. */
14564 if (! find_regno_note (tem_insn
, REG_UNUSED
,
14565 REGNO (XEXP (note
, 0))))
14570 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (tem_insn
))
14571 || (CALL_P (tem_insn
)
14572 && find_reg_fusage (tem_insn
, USE
, XEXP (note
, 0))))
14576 /* If we are doing a 3->2 combination, and we have a
14577 register which formerly died in i3 and was not used
14578 by i2, which now no longer dies in i3 and is used in
14579 i2 but does not die in i2, and place is between i2
14580 and i3, then we may need to move a link from place to
14582 if (i2
&& DF_INSN_LUID (place
) > DF_INSN_LUID (i2
)
14584 && DF_INSN_LUID (from_insn
) > DF_INSN_LUID (i2
)
14585 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
14587 struct insn_link
*links
= LOG_LINKS (place
);
14588 LOG_LINKS (place
) = NULL
;
14589 distribute_links (links
);
14594 if (tem_insn
== BB_HEAD (bb
))
14600 /* If the register is set or already dead at PLACE, we needn't do
14601 anything with this note if it is still a REG_DEAD note.
14602 We check here if it is set at all, not if is it totally replaced,
14603 which is what `dead_or_set_p' checks, so also check for it being
14606 if (place
&& REG_NOTE_KIND (note
) == REG_DEAD
)
14608 unsigned int regno
= REGNO (XEXP (note
, 0));
14609 reg_stat_type
*rsp
= ®_stat
[regno
];
14611 if (dead_or_set_p (place
, XEXP (note
, 0))
14612 || reg_bitfield_target_p (XEXP (note
, 0), PATTERN (place
)))
14614 /* Unless the register previously died in PLACE, clear
14615 last_death. [I no longer understand why this is
14617 if (rsp
->last_death
!= place
)
14618 rsp
->last_death
= 0;
14622 rsp
->last_death
= place
;
14624 /* If this is a death note for a hard reg that is occupying
14625 multiple registers, ensure that we are still using all
14626 parts of the object. If we find a piece of the object
14627 that is unused, we must arrange for an appropriate REG_DEAD
14628 note to be added for it. However, we can't just emit a USE
14629 and tag the note to it, since the register might actually
14630 be dead; so we recourse, and the recursive call then finds
14631 the previous insn that used this register. */
14633 if (place
&& REG_NREGS (XEXP (note
, 0)) > 1)
14635 unsigned int endregno
= END_REGNO (XEXP (note
, 0));
14636 bool all_used
= true;
14639 for (i
= regno
; i
< endregno
; i
++)
14640 if ((! refers_to_regno_p (i
, PATTERN (place
))
14641 && ! find_regno_fusage (place
, USE
, i
))
14642 || dead_or_set_regno_p (place
, i
))
14650 /* Put only REG_DEAD notes for pieces that are
14651 not already dead or set. */
14653 for (i
= regno
; i
< endregno
;
14654 i
+= hard_regno_nregs (i
, reg_raw_mode
[i
]))
14656 rtx piece
= regno_reg_rtx
[i
];
14657 basic_block bb
= this_basic_block
;
14659 if (! dead_or_set_p (place
, piece
)
14660 && ! reg_bitfield_target_p (piece
,
14663 rtx new_note
= alloc_reg_note (REG_DEAD
, piece
,
14666 distribute_notes (new_note
, place
, place
,
14667 NULL
, NULL_RTX
, NULL_RTX
,
14670 else if (! refers_to_regno_p (i
, PATTERN (place
))
14671 && ! find_regno_fusage (place
, USE
, i
))
14672 for (tem_insn
= PREV_INSN (place
); ;
14673 tem_insn
= PREV_INSN (tem_insn
))
14675 if (!NONDEBUG_INSN_P (tem_insn
))
14677 if (tem_insn
== BB_HEAD (bb
))
14681 if (dead_or_set_p (tem_insn
, piece
)
14682 || reg_bitfield_target_p (piece
,
14683 PATTERN (tem_insn
)))
14685 add_reg_note (tem_insn
, REG_UNUSED
, piece
);
14698 /* Any other notes should not be present at this point in the
14700 gcc_unreachable ();
14705 XEXP (note
, 1) = REG_NOTES (place
);
14706 REG_NOTES (place
) = note
;
14708 /* Set added_notes_insn to the earliest insn we added a note to. */
14709 if (added_notes_insn
== 0
14710 || DF_INSN_LUID (added_notes_insn
) > DF_INSN_LUID (place
))
14711 added_notes_insn
= place
;
14716 add_shallow_copy_of_reg_note (place2
, note
);
14718 /* Set added_notes_insn to the earliest insn we added a note to. */
14719 if (added_notes_insn
== 0
14720 || DF_INSN_LUID (added_notes_insn
) > DF_INSN_LUID (place2
))
14721 added_notes_insn
= place2
;
14726 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14727 I3, I2, and I1 to new locations. This is also called to add a link
14728 pointing at I3 when I3's destination is changed. */
14731 distribute_links (struct insn_link
*links
)
14733 struct insn_link
*link
, *next_link
;
14735 for (link
= links
; link
; link
= next_link
)
14737 rtx_insn
*place
= 0;
14741 next_link
= link
->next
;
14743 /* If the insn that this link points to is a NOTE, ignore it. */
14744 if (NOTE_P (link
->insn
))
14748 rtx pat
= PATTERN (link
->insn
);
14749 if (GET_CODE (pat
) == SET
)
14751 else if (GET_CODE (pat
) == PARALLEL
)
14754 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
14756 set
= XVECEXP (pat
, 0, i
);
14757 if (GET_CODE (set
) != SET
)
14760 reg
= SET_DEST (set
);
14761 while (GET_CODE (reg
) == ZERO_EXTRACT
14762 || GET_CODE (reg
) == STRICT_LOW_PART
14763 || GET_CODE (reg
) == SUBREG
)
14764 reg
= XEXP (reg
, 0);
14769 if (REGNO (reg
) == link
->regno
)
14772 if (i
== XVECLEN (pat
, 0))
14778 reg
= SET_DEST (set
);
14780 while (GET_CODE (reg
) == ZERO_EXTRACT
14781 || GET_CODE (reg
) == STRICT_LOW_PART
14782 || GET_CODE (reg
) == SUBREG
)
14783 reg
= XEXP (reg
, 0);
14788 /* A LOG_LINK is defined as being placed on the first insn that uses
14789 a register and points to the insn that sets the register. Start
14790 searching at the next insn after the target of the link and stop
14791 when we reach a set of the register or the end of the basic block.
14793 Note that this correctly handles the link that used to point from
14794 I3 to I2. Also note that not much searching is typically done here
14795 since most links don't point very far away. */
14797 for (insn
= NEXT_INSN (link
->insn
);
14798 (insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
14799 || BB_HEAD (this_basic_block
->next_bb
) != insn
));
14800 insn
= NEXT_INSN (insn
))
14801 if (DEBUG_INSN_P (insn
))
14803 else if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
14805 if (reg_referenced_p (reg
, PATTERN (insn
)))
14809 else if (CALL_P (insn
)
14810 && find_reg_fusage (insn
, USE
, reg
))
14815 else if (INSN_P (insn
) && reg_set_p (reg
, insn
))
14818 /* If we found a place to put the link, place it there unless there
14819 is already a link to the same insn as LINK at that point. */
14823 struct insn_link
*link2
;
14825 FOR_EACH_LOG_LINK (link2
, place
)
14826 if (link2
->insn
== link
->insn
&& link2
->regno
== link
->regno
)
14831 link
->next
= LOG_LINKS (place
);
14832 LOG_LINKS (place
) = link
;
14834 /* Set added_links_insn to the earliest insn we added a
14836 if (added_links_insn
== 0
14837 || DF_INSN_LUID (added_links_insn
) > DF_INSN_LUID (place
))
14838 added_links_insn
= place
;
14844 /* Check for any register or memory mentioned in EQUIV that is not
14845 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14846 of EXPR where some registers may have been replaced by constants. */
14849 unmentioned_reg_p (rtx equiv
, rtx expr
)
14851 subrtx_iterator::array_type array
;
14852 FOR_EACH_SUBRTX (iter
, array
, equiv
, NONCONST
)
14854 const_rtx x
= *iter
;
14855 if ((REG_P (x
) || MEM_P (x
))
14856 && !reg_mentioned_p (x
, expr
))
14862 DEBUG_FUNCTION
void
14863 dump_combine_stats (FILE *file
)
14867 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14868 combine_attempts
, combine_merges
, combine_extras
, combine_successes
);
14872 dump_combine_total_stats (FILE *file
)
14876 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14877 total_attempts
, total_merges
, total_extras
, total_successes
);
14880 /* Try combining insns through substitution. */
14881 static unsigned int
14882 rest_of_handle_combine (void)
14884 int rebuild_jump_labels_after_combine
;
14886 df_set_flags (DF_LR_RUN_DCE
+ DF_DEFER_INSN_RESCAN
);
14887 df_note_add_problem ();
14890 regstat_init_n_sets_and_refs ();
14891 reg_n_sets_max
= max_reg_num ();
14893 rebuild_jump_labels_after_combine
14894 = combine_instructions (get_insns (), max_reg_num ());
14896 /* Combining insns may have turned an indirect jump into a
14897 direct jump. Rebuild the JUMP_LABEL fields of jumping
14899 if (rebuild_jump_labels_after_combine
)
14901 if (dom_info_available_p (CDI_DOMINATORS
))
14902 free_dominance_info (CDI_DOMINATORS
);
14903 timevar_push (TV_JUMP
);
14904 rebuild_jump_labels (get_insns ());
14906 timevar_pop (TV_JUMP
);
14909 regstat_free_n_sets_and_refs ();
14915 const pass_data pass_data_combine
=
14917 RTL_PASS
, /* type */
14918 "combine", /* name */
14919 OPTGROUP_NONE
, /* optinfo_flags */
14920 TV_COMBINE
, /* tv_id */
14921 PROP_cfglayout
, /* properties_required */
14922 0, /* properties_provided */
14923 0, /* properties_destroyed */
14924 0, /* todo_flags_start */
14925 TODO_df_finish
, /* todo_flags_finish */
14928 class pass_combine
: public rtl_opt_pass
14931 pass_combine (gcc::context
*ctxt
)
14932 : rtl_opt_pass (pass_data_combine
, ctxt
)
14935 /* opt_pass methods: */
14936 virtual bool gate (function
*) { return (optimize
> 0); }
14937 virtual unsigned int execute (function
*)
14939 return rest_of_handle_combine ();
14942 }; // class pass_combine
14944 } // anon namespace
14947 make_pass_combine (gcc::context
*ctxt
)
14949 return new pass_combine (ctxt
);