1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Eval_Fat
; use Eval_Fat
;
34 with Exp_Util
; use Exp_Util
;
35 with Freeze
; use Freeze
;
37 with Namet
; use Namet
;
38 with Nmake
; use Nmake
;
39 with Nlists
; use Nlists
;
41 with Par_SCO
; use Par_SCO
;
42 with Rtsfind
; use Rtsfind
;
44 with Sem_Aux
; use Sem_Aux
;
45 with Sem_Cat
; use Sem_Cat
;
46 with Sem_Ch6
; use Sem_Ch6
;
47 with Sem_Ch8
; use Sem_Ch8
;
48 with Sem_Res
; use Sem_Res
;
49 with Sem_Util
; use Sem_Util
;
50 with Sem_Type
; use Sem_Type
;
51 with Sem_Warn
; use Sem_Warn
;
52 with Sinfo
; use Sinfo
;
53 with Snames
; use Snames
;
54 with Stand
; use Stand
;
55 with Stringt
; use Stringt
;
56 with Tbuild
; use Tbuild
;
58 package body Sem_Eval
is
60 -----------------------------------------
61 -- Handling of Compile Time Evaluation --
62 -----------------------------------------
64 -- The compile time evaluation of expressions is distributed over several
65 -- Eval_xxx procedures. These procedures are called immediately after
66 -- a subexpression is resolved and is therefore accomplished in a bottom
67 -- up fashion. The flags are synthesized using the following approach.
69 -- Is_Static_Expression is determined by following the detailed rules
70 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
71 -- flag of the operands in many cases.
73 -- Raises_Constraint_Error is set if any of the operands have the flag
74 -- set or if an attempt to compute the value of the current expression
75 -- results in detection of a runtime constraint error.
77 -- As described in the spec, the requirement is that Is_Static_Expression
78 -- be accurately set, and in addition for nodes for which this flag is set,
79 -- Raises_Constraint_Error must also be set. Furthermore a node which has
80 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
81 -- requirement is that the expression value must be precomputed, and the
82 -- node is either a literal, or the name of a constant entity whose value
83 -- is a static expression.
85 -- The general approach is as follows. First compute Is_Static_Expression.
86 -- If the node is not static, then the flag is left off in the node and
87 -- we are all done. Otherwise for a static node, we test if any of the
88 -- operands will raise constraint error, and if so, propagate the flag
89 -- Raises_Constraint_Error to the result node and we are done (since the
90 -- error was already posted at a lower level).
92 -- For the case of a static node whose operands do not raise constraint
93 -- error, we attempt to evaluate the node. If this evaluation succeeds,
94 -- then the node is replaced by the result of this computation. If the
95 -- evaluation raises constraint error, then we rewrite the node with
96 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
97 -- to post appropriate error messages.
103 type Bits
is array (Nat
range <>) of Boolean;
104 -- Used to convert unsigned (modular) values for folding logical ops
106 -- The following declarations are used to maintain a cache of nodes that
107 -- have compile time known values. The cache is maintained only for
108 -- discrete types (the most common case), and is populated by calls to
109 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
110 -- since it is possible for the status to change (in particular it is
111 -- possible for a node to get replaced by a constraint error node).
113 CV_Bits
: constant := 5;
114 -- Number of low order bits of Node_Id value used to reference entries
115 -- in the cache table.
117 CV_Cache_Size
: constant Nat
:= 2 ** CV_Bits
;
118 -- Size of cache for compile time values
120 subtype CV_Range
is Nat
range 0 .. CV_Cache_Size
;
122 type CV_Entry
is record
127 type Match_Result
is (Match
, No_Match
, Non_Static
);
128 -- Result returned from functions that test for a matching result. If the
129 -- operands are not OK_Static then Non_Static will be returned. Otherwise
130 -- Match/No_Match is returned depending on whether the match succeeds.
132 type CV_Cache_Array
is array (CV_Range
) of CV_Entry
;
134 CV_Cache
: CV_Cache_Array
:= (others => (Node_High_Bound
, Uint_0
));
135 -- This is the actual cache, with entries consisting of node/value pairs,
136 -- and the impossible value Node_High_Bound used for unset entries.
138 type Range_Membership
is (In_Range
, Out_Of_Range
, Unknown
);
139 -- Range membership may either be statically known to be in range or out
140 -- of range, or not statically known. Used for Test_In_Range below.
142 -----------------------
143 -- Local Subprograms --
144 -----------------------
146 function Choice_Matches
148 Choice
: Node_Id
) return Match_Result
;
149 -- Determines whether given value Expr matches the given Choice. The Expr
150 -- can be of discrete, real, or string type and must be a compile time
151 -- known value (it is an error to make the call if these conditions are
152 -- not met). The choice can be a range, subtype name, subtype indication,
153 -- or expression. The returned result is Non_Static if Choice is not
154 -- OK_Static, otherwise either Match or No_Match is returned depending
155 -- on whether Choice matches Expr. This is used for case expression
156 -- alternatives, and also for membership tests. In each case, more
157 -- possibilities are tested than the syntax allows (e.g. membership allows
158 -- subtype indications and non-discrete types, and case allows an OTHERS
159 -- choice), but it does not matter, since we have already done a full
160 -- semantic and syntax check of the construct, so the extra possibilities
161 -- just will not arise for correct expressions.
163 -- Note: if Choice_Matches finds that a choice raises Constraint_Error, e.g
164 -- a reference to a type, one of whose bounds raises Constraint_Error, then
165 -- it also sets the Raises_Constraint_Error flag on the Choice itself.
167 function Choices_Match
169 Choices
: List_Id
) return Match_Result
;
170 -- This function applies Choice_Matches to each element of Choices. If the
171 -- result is No_Match, then it continues and checks the next element. If
172 -- the result is Match or Non_Static, this result is immediately given
173 -- as the result without checking the rest of the list. Expr can be of
174 -- discrete, real, or string type and must be a compile time known value
175 -- (it is an error to make the call if these conditions are not met).
177 function Find_Universal_Operator_Type
(N
: Node_Id
) return Entity_Id
;
178 -- Check whether an arithmetic operation with universal operands which is a
179 -- rewritten function call with an explicit scope indication is ambiguous:
180 -- P."+" (1, 2) will be ambiguous if there is more than one visible numeric
181 -- type declared in P and the context does not impose a type on the result
182 -- (e.g. in the expression of a type conversion). If ambiguous, emit an
183 -- error and return Empty, else return the result type of the operator.
185 function From_Bits
(B
: Bits
; T
: Entity_Id
) return Uint
;
186 -- Converts a bit string of length B'Length to a Uint value to be used for
187 -- a target of type T, which is a modular type. This procedure includes the
188 -- necessary reduction by the modulus in the case of a nonbinary modulus
189 -- (for a binary modulus, the bit string is the right length any way so all
192 function Get_String_Val
(N
: Node_Id
) return Node_Id
;
193 -- Given a tree node for a folded string or character value, returns the
194 -- corresponding string literal or character literal (one of the two must
195 -- be available, or the operand would not have been marked as foldable in
196 -- the earlier analysis of the operation).
198 function Is_OK_Static_Choice
(Choice
: Node_Id
) return Boolean;
199 -- Given a choice (from a case expression or membership test), returns
200 -- True if the choice is static and does not raise a Constraint_Error.
202 function Is_OK_Static_Choice_List
(Choices
: List_Id
) return Boolean;
203 -- Given a choice list (from a case expression or membership test), return
204 -- True if all choices are static in the sense of Is_OK_Static_Choice.
206 function Is_Static_Choice
(Choice
: Node_Id
) return Boolean;
207 -- Given a choice (from a case expression or membership test), returns
208 -- True if the choice is static. No test is made for raising of constraint
209 -- error, so this function is used only for legality tests.
211 function Is_Static_Choice_List
(Choices
: List_Id
) return Boolean;
212 -- Given a choice list (from a case expression or membership test), return
213 -- True if all choices are static in the sense of Is_Static_Choice.
215 function Is_Static_Range
(N
: Node_Id
) return Boolean;
216 -- Determine if range is static, as defined in RM 4.9(26). The only allowed
217 -- argument is an N_Range node (but note that the semantic analysis of
218 -- equivalent range attribute references already turned them into the
219 -- equivalent range). This differs from Is_OK_Static_Range (which is what
220 -- must be used by clients) in that it does not care whether the bounds
221 -- raise Constraint_Error or not. Used for checking whether expressions are
222 -- static in the 4.9 sense (without worrying about exceptions).
224 function OK_Bits
(N
: Node_Id
; Bits
: Uint
) return Boolean;
225 -- Bits represents the number of bits in an integer value to be computed
226 -- (but the value has not been computed yet). If this value in Bits is
227 -- reasonable, a result of True is returned, with the implication that the
228 -- caller should go ahead and complete the calculation. If the value in
229 -- Bits is unreasonably large, then an error is posted on node N, and
230 -- False is returned (and the caller skips the proposed calculation).
232 procedure Out_Of_Range
(N
: Node_Id
);
233 -- This procedure is called if it is determined that node N, which appears
234 -- in a non-static context, is a compile time known value which is outside
235 -- its range, i.e. the range of Etype. This is used in contexts where
236 -- this is an illegality if N is static, and should generate a warning
239 function Real_Or_String_Static_Predicate_Matches
241 Typ
: Entity_Id
) return Boolean;
242 -- This is the function used to evaluate real or string static predicates.
243 -- Val is an unanalyzed N_Real_Literal or N_String_Literal node, which
244 -- represents the value to be tested against the predicate. Typ is the
245 -- type with the predicate, from which the predicate expression can be
246 -- extracted. The result returned is True if the given value satisfies
249 procedure Rewrite_In_Raise_CE
(N
: Node_Id
; Exp
: Node_Id
);
250 -- N and Exp are nodes representing an expression, Exp is known to raise
251 -- CE. N is rewritten in term of Exp in the optimal way.
253 function String_Type_Len
(Stype
: Entity_Id
) return Uint
;
254 -- Given a string type, determines the length of the index type, or, if
255 -- this index type is non-static, the length of the base type of this index
256 -- type. Note that if the string type is itself static, then the index type
257 -- is static, so the second case applies only if the string type passed is
260 function Test
(Cond
: Boolean) return Uint
;
261 pragma Inline
(Test
);
262 -- This function simply returns the appropriate Boolean'Pos value
263 -- corresponding to the value of Cond as a universal integer. It is
264 -- used for producing the result of the static evaluation of the
267 procedure Test_Expression_Is_Foldable
272 -- Tests to see if expression N whose single operand is Op1 is foldable,
273 -- i.e. the operand value is known at compile time. If the operation is
274 -- foldable, then Fold is True on return, and Stat indicates whether the
275 -- result is static (i.e. the operand was static). Note that it is quite
276 -- possible for Fold to be True, and Stat to be False, since there are
277 -- cases in which we know the value of an operand even though it is not
278 -- technically static (e.g. the static lower bound of a range whose upper
279 -- bound is non-static).
281 -- If Stat is set False on return, then Test_Expression_Is_Foldable makes
282 -- a call to Check_Non_Static_Context on the operand. If Fold is False on
283 -- return, then all processing is complete, and the caller should return,
284 -- since there is nothing else to do.
286 -- If Stat is set True on return, then Is_Static_Expression is also set
287 -- true in node N. There are some cases where this is over-enthusiastic,
288 -- e.g. in the two operand case below, for string comparison, the result is
289 -- not static even though the two operands are static. In such cases, the
290 -- caller must reset the Is_Static_Expression flag in N.
292 -- If Fold and Stat are both set to False then this routine performs also
293 -- the following extra actions:
295 -- If either operand is Any_Type then propagate it to result to prevent
298 -- If some operand raises constraint error, then replace the node N
299 -- with the raise constraint error node. This replacement inherits the
300 -- Is_Static_Expression flag from the operands.
302 procedure Test_Expression_Is_Foldable
308 CRT_Safe
: Boolean := False);
309 -- Same processing, except applies to an expression N with two operands
310 -- Op1 and Op2. The result is static only if both operands are static. If
311 -- CRT_Safe is set True, then CRT_Safe_Compile_Time_Known_Value is used
312 -- for the tests that the two operands are known at compile time. See
313 -- spec of this routine for further details.
315 function Test_In_Range
318 Assume_Valid
: Boolean;
320 Int_Real
: Boolean) return Range_Membership
;
321 -- Common processing for Is_In_Range and Is_Out_Of_Range: Returns In_Range
322 -- or Out_Of_Range if it can be guaranteed at compile time that expression
323 -- N is known to be in or out of range of the subtype Typ. If not compile
324 -- time known, Unknown is returned. See documentation of Is_In_Range for
325 -- complete description of parameters.
327 procedure To_Bits
(U
: Uint
; B
: out Bits
);
328 -- Converts a Uint value to a bit string of length B'Length
330 -----------------------------------------------
331 -- Check_Expression_Against_Static_Predicate --
332 -----------------------------------------------
334 procedure Check_Expression_Against_Static_Predicate
339 -- Nothing to do if expression is not known at compile time, or the
340 -- type has no static predicate set (will be the case for all non-scalar
341 -- types, so no need to make a special test for that).
343 if not (Has_Static_Predicate
(Typ
)
344 and then Compile_Time_Known_Value
(Expr
))
349 -- Here we have a static predicate (note that it could have arisen from
350 -- an explicitly specified Dynamic_Predicate whose expression met the
351 -- rules for being predicate-static). If the expression is known at
352 -- compile time and obeys the predicate, then it is static and must be
353 -- labeled as such, which matters e.g. for case statements. The original
354 -- expression may be a type conversion of a variable with a known value,
355 -- which might otherwise not be marked static.
357 -- Case of real static predicate
359 if Is_Real_Type
(Typ
) then
360 if Real_Or_String_Static_Predicate_Matches
361 (Val
=> Make_Real_Literal
(Sloc
(Expr
), Expr_Value_R
(Expr
)),
364 Set_Is_Static_Expression
(Expr
);
368 -- Case of string static predicate
370 elsif Is_String_Type
(Typ
) then
371 if Real_Or_String_Static_Predicate_Matches
372 (Val
=> Expr_Value_S
(Expr
), Typ
=> Typ
)
374 Set_Is_Static_Expression
(Expr
);
378 -- Case of discrete static predicate
381 pragma Assert
(Is_Discrete_Type
(Typ
));
383 -- If static predicate matches, nothing to do
385 if Choices_Match
(Expr
, Static_Discrete_Predicate
(Typ
)) = Match
then
386 Set_Is_Static_Expression
(Expr
);
391 -- Here we know that the predicate will fail
393 -- Special case of static expression failing a predicate (other than one
394 -- that was explicitly specified with a Dynamic_Predicate aspect). This
395 -- is the case where the expression is no longer considered static.
397 if Is_Static_Expression
(Expr
)
398 and then not Has_Dynamic_Predicate_Aspect
(Typ
)
401 ("??static expression fails static predicate check on &",
404 ("\??expression is no longer considered static", Expr
);
405 Set_Is_Static_Expression
(Expr
, False);
407 -- In all other cases, this is just a warning that a test will fail.
408 -- It does not matter if the expression is static or not, or if the
409 -- predicate comes from a dynamic predicate aspect or not.
413 ("??expression fails predicate check on &", Expr
, Typ
);
415 end Check_Expression_Against_Static_Predicate
;
417 ------------------------------
418 -- Check_Non_Static_Context --
419 ------------------------------
421 procedure Check_Non_Static_Context
(N
: Node_Id
) is
422 T
: constant Entity_Id
:= Etype
(N
);
423 Checks_On
: constant Boolean :=
424 not Index_Checks_Suppressed
(T
)
425 and not Range_Checks_Suppressed
(T
);
428 -- Ignore cases of non-scalar types, error types, or universal real
429 -- types that have no usable bounds.
432 or else not Is_Scalar_Type
(T
)
433 or else T
= Universal_Fixed
434 or else T
= Universal_Real
439 -- At this stage we have a scalar type. If we have an expression that
440 -- raises CE, then we already issued a warning or error msg so there is
441 -- nothing more to be done in this routine.
443 if Raises_Constraint_Error
(N
) then
447 -- Now we have a scalar type which is not marked as raising a constraint
448 -- error exception. The main purpose of this routine is to deal with
449 -- static expressions appearing in a non-static context. That means
450 -- that if we do not have a static expression then there is not much
451 -- to do. The one case that we deal with here is that if we have a
452 -- floating-point value that is out of range, then we post a warning
453 -- that an infinity will result.
455 if not Is_Static_Expression
(N
) then
456 if Is_Floating_Point_Type
(T
) then
457 if Is_Out_Of_Range
(N
, Base_Type
(T
), Assume_Valid
=> True) then
459 ("??float value out of range, infinity will be generated", N
);
461 -- The literal may be the result of constant-folding of a non-
462 -- static subexpression of a larger expression (e.g. a conversion
463 -- of a non-static variable whose value happens to be known). At
464 -- this point we must reduce the value of the subexpression to a
465 -- machine number (RM 4.9 (38/2)).
467 elsif Nkind
(N
) = N_Real_Literal
468 and then Nkind
(Parent
(N
)) in N_Subexpr
470 Rewrite
(N
, New_Copy
(N
));
472 (N
, Machine
(Base_Type
(T
), Realval
(N
), Round_Even
, N
));
479 -- Here we have the case of outer level static expression of scalar
480 -- type, where the processing of this procedure is needed.
482 -- For real types, this is where we convert the value to a machine
483 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should only
484 -- need to do this if the parent is a constant declaration, since in
485 -- other cases, gigi should do the necessary conversion correctly, but
486 -- experimentation shows that this is not the case on all machines, in
487 -- particular if we do not convert all literals to machine values in
488 -- non-static contexts, then ACVC test C490001 fails on Sparc/Solaris
491 -- This conversion is always done by GNATprove on real literals in
492 -- non-static expressions, by calling Check_Non_Static_Context from
493 -- gnat2why, as GNATprove cannot do the conversion later contrary
494 -- to gigi. The frontend computes the information about which
495 -- expressions are static, which is used by gnat2why to call
496 -- Check_Non_Static_Context on exactly those real literals that are
497 -- not subexpressions of static expressions.
499 if Nkind
(N
) = N_Real_Literal
500 and then not Is_Machine_Number
(N
)
501 and then not Is_Generic_Type
(Etype
(N
))
502 and then Etype
(N
) /= Universal_Real
504 -- Check that value is in bounds before converting to machine
505 -- number, so as not to lose case where value overflows in the
506 -- least significant bit or less. See B490001.
508 if Is_Out_Of_Range
(N
, Base_Type
(T
), Assume_Valid
=> True) then
513 -- Note: we have to copy the node, to avoid problems with conformance
514 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
516 Rewrite
(N
, New_Copy
(N
));
518 if not Is_Floating_Point_Type
(T
) then
520 (N
, Corresponding_Integer_Value
(N
) * Small_Value
(T
));
522 elsif not UR_Is_Zero
(Realval
(N
)) then
524 -- Note: even though RM 4.9(38) specifies biased rounding, this
525 -- has been modified by AI-100 in order to prevent confusing
526 -- differences in rounding between static and non-static
527 -- expressions. AI-100 specifies that the effect of such rounding
528 -- is implementation dependent, and in GNAT we round to nearest
529 -- even to match the run-time behavior. Note that this applies
530 -- to floating point literals, not fixed points ones, even though
531 -- their compiler representation is also as a universal real.
534 (N
, Machine
(Base_Type
(T
), Realval
(N
), Round_Even
, N
));
535 Set_Is_Machine_Number
(N
);
540 -- Check for out of range universal integer. This is a non-static
541 -- context, so the integer value must be in range of the runtime
542 -- representation of universal integers.
544 -- We do this only within an expression, because that is the only
545 -- case in which non-static universal integer values can occur, and
546 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
547 -- called in contexts like the expression of a number declaration where
548 -- we certainly want to allow out of range values.
550 if Etype
(N
) = Universal_Integer
551 and then Nkind
(N
) = N_Integer_Literal
552 and then Nkind
(Parent
(N
)) in N_Subexpr
554 (Intval
(N
) < Expr_Value
(Type_Low_Bound
(Universal_Integer
))
556 Intval
(N
) > Expr_Value
(Type_High_Bound
(Universal_Integer
)))
558 Apply_Compile_Time_Constraint_Error
559 (N
, "non-static universal integer value out of range<<",
560 CE_Range_Check_Failed
);
562 -- Check out of range of base type
564 elsif Is_Out_Of_Range
(N
, Base_Type
(T
), Assume_Valid
=> True) then
567 -- Give warning if outside subtype (where one or both of the bounds of
568 -- the subtype is static). This warning is omitted if the expression
569 -- appears in a range that could be null (warnings are handled elsewhere
572 elsif T
/= Base_Type
(T
) and then Nkind
(Parent
(N
)) /= N_Range
then
573 if Is_In_Range
(N
, T
, Assume_Valid
=> True) then
576 elsif Is_Out_Of_Range
(N
, T
, Assume_Valid
=> True) then
577 Apply_Compile_Time_Constraint_Error
578 (N
, "value not in range of}<<", CE_Range_Check_Failed
);
581 Enable_Range_Check
(N
);
584 Set_Do_Range_Check
(N
, False);
587 end Check_Non_Static_Context
;
589 ---------------------------------
590 -- Check_String_Literal_Length --
591 ---------------------------------
593 procedure Check_String_Literal_Length
(N
: Node_Id
; Ttype
: Entity_Id
) is
595 if not Raises_Constraint_Error
(N
) and then Is_Constrained
(Ttype
) then
596 if UI_From_Int
(String_Length
(Strval
(N
))) /= String_Type_Len
(Ttype
)
598 Apply_Compile_Time_Constraint_Error
599 (N
, "string length wrong for}??",
600 CE_Length_Check_Failed
,
605 end Check_String_Literal_Length
;
611 function Choice_Matches
613 Choice
: Node_Id
) return Match_Result
615 Etyp
: constant Entity_Id
:= Etype
(Expr
);
621 pragma Assert
(Compile_Time_Known_Value
(Expr
));
622 pragma Assert
(Is_Scalar_Type
(Etyp
) or else Is_String_Type
(Etyp
));
624 if not Is_OK_Static_Choice
(Choice
) then
625 Set_Raises_Constraint_Error
(Choice
);
628 -- When the choice denotes a subtype with a static predictate, check the
629 -- expression against the predicate values. Different procedures apply
630 -- to discrete and non-discrete types.
632 elsif (Nkind
(Choice
) = N_Subtype_Indication
633 or else (Is_Entity_Name
(Choice
)
634 and then Is_Type
(Entity
(Choice
))))
635 and then Has_Predicates
(Etype
(Choice
))
636 and then Has_Static_Predicate
(Etype
(Choice
))
638 if Is_Discrete_Type
(Etype
(Choice
)) then
641 (Expr
, Static_Discrete_Predicate
(Etype
(Choice
)));
643 elsif Real_Or_String_Static_Predicate_Matches
(Expr
, Etype
(Choice
))
651 -- Discrete type case only
653 elsif Is_Discrete_Type
(Etyp
) then
654 Val
:= Expr_Value
(Expr
);
656 if Nkind
(Choice
) = N_Range
then
657 if Val
>= Expr_Value
(Low_Bound
(Choice
))
659 Val
<= Expr_Value
(High_Bound
(Choice
))
666 elsif Nkind
(Choice
) = N_Subtype_Indication
667 or else (Is_Entity_Name
(Choice
) and then Is_Type
(Entity
(Choice
)))
669 if Val
>= Expr_Value
(Type_Low_Bound
(Etype
(Choice
)))
671 Val
<= Expr_Value
(Type_High_Bound
(Etype
(Choice
)))
678 elsif Nkind
(Choice
) = N_Others_Choice
then
682 if Val
= Expr_Value
(Choice
) then
691 elsif Is_Real_Type
(Etyp
) then
692 ValR
:= Expr_Value_R
(Expr
);
694 if Nkind
(Choice
) = N_Range
then
695 if ValR
>= Expr_Value_R
(Low_Bound
(Choice
))
697 ValR
<= Expr_Value_R
(High_Bound
(Choice
))
704 elsif Nkind
(Choice
) = N_Subtype_Indication
705 or else (Is_Entity_Name
(Choice
) and then Is_Type
(Entity
(Choice
)))
707 if ValR
>= Expr_Value_R
(Type_Low_Bound
(Etype
(Choice
)))
709 ValR
<= Expr_Value_R
(Type_High_Bound
(Etype
(Choice
)))
717 if ValR
= Expr_Value_R
(Choice
) then
727 pragma Assert
(Is_String_Type
(Etyp
));
728 ValS
:= Expr_Value_S
(Expr
);
730 if Nkind
(Choice
) = N_Subtype_Indication
731 or else (Is_Entity_Name
(Choice
) and then Is_Type
(Entity
(Choice
)))
733 if not Is_Constrained
(Etype
(Choice
)) then
738 Typlen
: constant Uint
:=
739 String_Type_Len
(Etype
(Choice
));
740 Strlen
: constant Uint
:=
741 UI_From_Int
(String_Length
(Strval
(ValS
)));
743 if Typlen
= Strlen
then
752 if String_Equal
(Strval
(ValS
), Strval
(Expr_Value_S
(Choice
)))
766 function Choices_Match
768 Choices
: List_Id
) return Match_Result
771 Result
: Match_Result
;
774 Choice
:= First
(Choices
);
775 while Present
(Choice
) loop
776 Result
:= Choice_Matches
(Expr
, Choice
);
778 if Result
/= No_Match
then
788 --------------------------
789 -- Compile_Time_Compare --
790 --------------------------
792 function Compile_Time_Compare
794 Assume_Valid
: Boolean) return Compare_Result
796 Discard
: aliased Uint
;
798 return Compile_Time_Compare
(L
, R
, Discard
'Access, Assume_Valid
);
799 end Compile_Time_Compare
;
801 function Compile_Time_Compare
804 Assume_Valid
: Boolean;
805 Rec
: Boolean := False) return Compare_Result
807 Ltyp
: Entity_Id
:= Etype
(L
);
808 Rtyp
: Entity_Id
:= Etype
(R
);
810 Discard
: aliased Uint
;
812 procedure Compare_Decompose
816 -- This procedure decomposes the node N into an expression node and a
817 -- signed offset, so that the value of N is equal to the value of R plus
818 -- the value V (which may be negative). If no such decomposition is
819 -- possible, then on return R is a copy of N, and V is set to zero.
821 function Compare_Fixup
(N
: Node_Id
) return Node_Id
;
822 -- This function deals with replacing 'Last and 'First references with
823 -- their corresponding type bounds, which we then can compare. The
824 -- argument is the original node, the result is the identity, unless we
825 -- have a 'Last/'First reference in which case the value returned is the
826 -- appropriate type bound.
828 function Is_Known_Valid_Operand
(Opnd
: Node_Id
) return Boolean;
829 -- Even if the context does not assume that values are valid, some
830 -- simple cases can be recognized.
832 function Is_Same_Value
(L
, R
: Node_Id
) return Boolean;
833 -- Returns True iff L and R represent expressions that definitely have
834 -- identical (but not necessarily compile time known) values Indeed the
835 -- caller is expected to have already dealt with the cases of compile
836 -- time known values, so these are not tested here.
838 -----------------------
839 -- Compare_Decompose --
840 -----------------------
842 procedure Compare_Decompose
848 if Nkind
(N
) = N_Op_Add
849 and then Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
852 V
:= Intval
(Right_Opnd
(N
));
855 elsif Nkind
(N
) = N_Op_Subtract
856 and then Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
859 V
:= UI_Negate
(Intval
(Right_Opnd
(N
)));
862 elsif Nkind
(N
) = N_Attribute_Reference
then
863 if Attribute_Name
(N
) = Name_Succ
then
864 R
:= First
(Expressions
(N
));
868 elsif Attribute_Name
(N
) = Name_Pred
then
869 R
:= First
(Expressions
(N
));
877 end Compare_Decompose
;
883 function Compare_Fixup
(N
: Node_Id
) return Node_Id
is
889 -- Fixup only required for First/Last attribute reference
891 if Nkind
(N
) = N_Attribute_Reference
892 and then Nam_In
(Attribute_Name
(N
), Name_First
, Name_Last
)
894 Xtyp
:= Etype
(Prefix
(N
));
896 -- If we have no type, then just abandon the attempt to do
897 -- a fixup, this is probably the result of some other error.
903 -- Dereference an access type
905 if Is_Access_Type
(Xtyp
) then
906 Xtyp
:= Designated_Type
(Xtyp
);
909 -- If we don't have an array type at this stage, something is
910 -- peculiar, e.g. another error, and we abandon the attempt at
913 if not Is_Array_Type
(Xtyp
) then
917 -- Ignore unconstrained array, since bounds are not meaningful
919 if not Is_Constrained
(Xtyp
) then
923 if Ekind
(Xtyp
) = E_String_Literal_Subtype
then
924 if Attribute_Name
(N
) = Name_First
then
925 return String_Literal_Low_Bound
(Xtyp
);
928 Make_Integer_Literal
(Sloc
(N
),
929 Intval
=> Intval
(String_Literal_Low_Bound
(Xtyp
)) +
930 String_Literal_Length
(Xtyp
));
934 -- Find correct index type
936 Indx
:= First_Index
(Xtyp
);
938 if Present
(Expressions
(N
)) then
939 Subs
:= UI_To_Int
(Expr_Value
(First
(Expressions
(N
))));
941 for J
in 2 .. Subs
loop
942 Indx
:= Next_Index
(Indx
);
946 Xtyp
:= Etype
(Indx
);
948 if Attribute_Name
(N
) = Name_First
then
949 return Type_Low_Bound
(Xtyp
);
951 return Type_High_Bound
(Xtyp
);
958 ----------------------------
959 -- Is_Known_Valid_Operand --
960 ----------------------------
962 function Is_Known_Valid_Operand
(Opnd
: Node_Id
) return Boolean is
964 return (Is_Entity_Name
(Opnd
)
966 (Is_Known_Valid
(Entity
(Opnd
))
967 or else Ekind
(Entity
(Opnd
)) = E_In_Parameter
969 (Ekind
(Entity
(Opnd
)) in Object_Kind
970 and then Present
(Current_Value
(Entity
(Opnd
))))))
971 or else Is_OK_Static_Expression
(Opnd
);
972 end Is_Known_Valid_Operand
;
978 function Is_Same_Value
(L
, R
: Node_Id
) return Boolean is
979 Lf
: constant Node_Id
:= Compare_Fixup
(L
);
980 Rf
: constant Node_Id
:= Compare_Fixup
(R
);
982 function Is_Same_Subscript
(L
, R
: List_Id
) return Boolean;
983 -- L, R are the Expressions values from two attribute nodes for First
984 -- or Last attributes. Either may be set to No_List if no expressions
985 -- are present (indicating subscript 1). The result is True if both
986 -- expressions represent the same subscript (note one case is where
987 -- one subscript is missing and the other is explicitly set to 1).
989 -----------------------
990 -- Is_Same_Subscript --
991 -----------------------
993 function Is_Same_Subscript
(L
, R
: List_Id
) return Boolean is
999 return Expr_Value
(First
(R
)) = Uint_1
;
1004 return Expr_Value
(First
(L
)) = Uint_1
;
1006 return Expr_Value
(First
(L
)) = Expr_Value
(First
(R
));
1009 end Is_Same_Subscript
;
1011 -- Start of processing for Is_Same_Value
1014 -- Values are the same if they refer to the same entity and the
1015 -- entity is non-volatile. This does not however apply to Float
1016 -- types, since we may have two NaN values and they should never
1019 -- If the entity is a discriminant, the two expressions may be bounds
1020 -- of components of objects of the same discriminated type. The
1021 -- values of the discriminants are not static, and therefore the
1022 -- result is unknown.
1024 -- It would be better to comment individual branches of this test ???
1026 if Nkind_In
(Lf
, N_Identifier
, N_Expanded_Name
)
1027 and then Nkind_In
(Rf
, N_Identifier
, N_Expanded_Name
)
1028 and then Entity
(Lf
) = Entity
(Rf
)
1029 and then Ekind
(Entity
(Lf
)) /= E_Discriminant
1030 and then Present
(Entity
(Lf
))
1031 and then not Is_Floating_Point_Type
(Etype
(L
))
1032 and then not Is_Volatile_Reference
(L
)
1033 and then not Is_Volatile_Reference
(R
)
1037 -- Or if they are compile time known and identical
1039 elsif Compile_Time_Known_Value
(Lf
)
1041 Compile_Time_Known_Value
(Rf
)
1042 and then Expr_Value
(Lf
) = Expr_Value
(Rf
)
1046 -- False if Nkind of the two nodes is different for remaining cases
1048 elsif Nkind
(Lf
) /= Nkind
(Rf
) then
1051 -- True if both 'First or 'Last values applying to the same entity
1052 -- (first and last don't change even if value does). Note that we
1053 -- need this even with the calls to Compare_Fixup, to handle the
1054 -- case of unconstrained array attributes where Compare_Fixup
1055 -- cannot find useful bounds.
1057 elsif Nkind
(Lf
) = N_Attribute_Reference
1058 and then Attribute_Name
(Lf
) = Attribute_Name
(Rf
)
1059 and then Nam_In
(Attribute_Name
(Lf
), Name_First
, Name_Last
)
1060 and then Nkind_In
(Prefix
(Lf
), N_Identifier
, N_Expanded_Name
)
1061 and then Nkind_In
(Prefix
(Rf
), N_Identifier
, N_Expanded_Name
)
1062 and then Entity
(Prefix
(Lf
)) = Entity
(Prefix
(Rf
))
1063 and then Is_Same_Subscript
(Expressions
(Lf
), Expressions
(Rf
))
1067 -- True if the same selected component from the same record
1069 elsif Nkind
(Lf
) = N_Selected_Component
1070 and then Selector_Name
(Lf
) = Selector_Name
(Rf
)
1071 and then Is_Same_Value
(Prefix
(Lf
), Prefix
(Rf
))
1075 -- True if the same unary operator applied to the same operand
1077 elsif Nkind
(Lf
) in N_Unary_Op
1078 and then Is_Same_Value
(Right_Opnd
(Lf
), Right_Opnd
(Rf
))
1082 -- True if the same binary operator applied to the same operands
1084 elsif Nkind
(Lf
) in N_Binary_Op
1085 and then Is_Same_Value
(Left_Opnd
(Lf
), Left_Opnd
(Rf
))
1086 and then Is_Same_Value
(Right_Opnd
(Lf
), Right_Opnd
(Rf
))
1090 -- All other cases, we can't tell, so return False
1097 -- Start of processing for Compile_Time_Compare
1100 Diff
.all := No_Uint
;
1102 -- In preanalysis mode, always return Unknown unless the expression
1103 -- is static. It is too early to be thinking we know the result of a
1104 -- comparison, save that judgment for the full analysis. This is
1105 -- particularly important in the case of pre and postconditions, which
1106 -- otherwise can be prematurely collapsed into having True or False
1107 -- conditions when this is inappropriate.
1109 if not (Full_Analysis
1110 or else (Is_OK_Static_Expression
(L
)
1112 Is_OK_Static_Expression
(R
)))
1117 -- If either operand could raise constraint error, then we cannot
1118 -- know the result at compile time (since CE may be raised).
1120 if not (Cannot_Raise_Constraint_Error
(L
)
1122 Cannot_Raise_Constraint_Error
(R
))
1127 -- Identical operands are most certainly equal
1133 -- If expressions have no types, then do not attempt to determine if
1134 -- they are the same, since something funny is going on. One case in
1135 -- which this happens is during generic template analysis, when bounds
1136 -- are not fully analyzed.
1138 if No
(Ltyp
) or else No
(Rtyp
) then
1142 -- These get reset to the base type for the case of entities where
1143 -- Is_Known_Valid is not set. This takes care of handling possible
1144 -- invalid representations using the value of the base type, in
1145 -- accordance with RM 13.9.1(10).
1147 Ltyp
:= Underlying_Type
(Ltyp
);
1148 Rtyp
:= Underlying_Type
(Rtyp
);
1150 -- Same rationale as above, but for Underlying_Type instead of Etype
1152 if No
(Ltyp
) or else No
(Rtyp
) then
1156 -- We do not attempt comparisons for packed arrays represented as
1157 -- modular types, where the semantics of comparison is quite different.
1159 if Is_Packed_Array_Impl_Type
(Ltyp
)
1160 and then Is_Modular_Integer_Type
(Ltyp
)
1164 -- For access types, the only time we know the result at compile time
1165 -- (apart from identical operands, which we handled already) is if we
1166 -- know one operand is null and the other is not, or both operands are
1169 elsif Is_Access_Type
(Ltyp
) then
1170 if Known_Null
(L
) then
1171 if Known_Null
(R
) then
1173 elsif Known_Non_Null
(R
) then
1179 elsif Known_Non_Null
(L
) and then Known_Null
(R
) then
1186 -- Case where comparison involves two compile time known values
1188 elsif Compile_Time_Known_Value
(L
)
1190 Compile_Time_Known_Value
(R
)
1192 -- For the floating-point case, we have to be a little careful, since
1193 -- at compile time we are dealing with universal exact values, but at
1194 -- runtime, these will be in non-exact target form. That's why the
1195 -- returned results are LE and GE below instead of LT and GT.
1197 if Is_Floating_Point_Type
(Ltyp
)
1199 Is_Floating_Point_Type
(Rtyp
)
1202 Lo
: constant Ureal
:= Expr_Value_R
(L
);
1203 Hi
: constant Ureal
:= Expr_Value_R
(R
);
1214 -- For string types, we have two string literals and we proceed to
1215 -- compare them using the Ada style dictionary string comparison.
1217 elsif not Is_Scalar_Type
(Ltyp
) then
1219 Lstring
: constant String_Id
:= Strval
(Expr_Value_S
(L
));
1220 Rstring
: constant String_Id
:= Strval
(Expr_Value_S
(R
));
1221 Llen
: constant Nat
:= String_Length
(Lstring
);
1222 Rlen
: constant Nat
:= String_Length
(Rstring
);
1225 for J
in 1 .. Nat
'Min (Llen
, Rlen
) loop
1227 LC
: constant Char_Code
:= Get_String_Char
(Lstring
, J
);
1228 RC
: constant Char_Code
:= Get_String_Char
(Rstring
, J
);
1240 elsif Llen
> Rlen
then
1247 -- For remaining scalar cases we know exactly (note that this does
1248 -- include the fixed-point case, where we know the run time integer
1253 Lo
: constant Uint
:= Expr_Value
(L
);
1254 Hi
: constant Uint
:= Expr_Value
(R
);
1257 Diff
.all := Hi
- Lo
;
1262 Diff
.all := Lo
- Hi
;
1268 -- Cases where at least one operand is not known at compile time
1271 -- Remaining checks apply only for discrete types
1273 if not Is_Discrete_Type
(Ltyp
)
1275 not Is_Discrete_Type
(Rtyp
)
1280 -- Defend against generic types, or actually any expressions that
1281 -- contain a reference to a generic type from within a generic
1282 -- template. We don't want to do any range analysis of such
1283 -- expressions for two reasons. First, the bounds of a generic type
1284 -- itself are junk and cannot be used for any kind of analysis.
1285 -- Second, we may have a case where the range at run time is indeed
1286 -- known, but we don't want to do compile time analysis in the
1287 -- template based on that range since in an instance the value may be
1288 -- static, and able to be elaborated without reference to the bounds
1289 -- of types involved. As an example, consider:
1291 -- (F'Pos (F'Last) + 1) > Integer'Last
1293 -- The expression on the left side of > is Universal_Integer and thus
1294 -- acquires the type Integer for evaluation at run time, and at run
1295 -- time it is true that this condition is always False, but within
1296 -- an instance F may be a type with a static range greater than the
1297 -- range of Integer, and the expression statically evaluates to True.
1299 if References_Generic_Formal_Type
(L
)
1301 References_Generic_Formal_Type
(R
)
1306 -- Replace types by base types for the case of values which are not
1307 -- known to have valid representations. This takes care of properly
1308 -- dealing with invalid representations.
1310 if not Assume_Valid
then
1311 if not (Is_Entity_Name
(L
)
1312 and then (Is_Known_Valid
(Entity
(L
))
1313 or else Assume_No_Invalid_Values
))
1315 Ltyp
:= Underlying_Type
(Base_Type
(Ltyp
));
1318 if not (Is_Entity_Name
(R
)
1319 and then (Is_Known_Valid
(Entity
(R
))
1320 or else Assume_No_Invalid_Values
))
1322 Rtyp
:= Underlying_Type
(Base_Type
(Rtyp
));
1326 -- First attempt is to decompose the expressions to extract a
1327 -- constant offset resulting from the use of any of the forms:
1334 -- Then we see if the two expressions are the same value, and if so
1335 -- the result is obtained by comparing the offsets.
1337 -- Note: the reason we do this test first is that it returns only
1338 -- decisive results (with diff set), where other tests, like the
1339 -- range test, may not be as so decisive. Consider for example
1340 -- J .. J + 1. This code can conclude LT with a difference of 1,
1341 -- even if the range of J is not known.
1350 Compare_Decompose
(L
, Lnode
, Loffs
);
1351 Compare_Decompose
(R
, Rnode
, Roffs
);
1353 if Is_Same_Value
(Lnode
, Rnode
) then
1354 if Loffs
= Roffs
then
1358 -- When the offsets are not equal, we can go farther only if
1359 -- the types are not modular (e.g. X < X + 1 is False if X is
1360 -- the largest number).
1362 if not Is_Modular_Integer_Type
(Ltyp
)
1363 and then not Is_Modular_Integer_Type
(Rtyp
)
1365 if Loffs
< Roffs
then
1366 Diff
.all := Roffs
- Loffs
;
1369 Diff
.all := Loffs
- Roffs
;
1376 -- Next, try range analysis and see if operand ranges are disjoint
1384 -- True if each range is a single point
1387 Determine_Range
(L
, LOK
, LLo
, LHi
, Assume_Valid
);
1388 Determine_Range
(R
, ROK
, RLo
, RHi
, Assume_Valid
);
1391 Single
:= (LLo
= LHi
) and then (RLo
= RHi
);
1394 if Single
and Assume_Valid
then
1395 Diff
.all := RLo
- LLo
;
1400 elsif RHi
< LLo
then
1401 if Single
and Assume_Valid
then
1402 Diff
.all := LLo
- RLo
;
1407 elsif Single
and then LLo
= RLo
then
1409 -- If the range includes a single literal and we can assume
1410 -- validity then the result is known even if an operand is
1413 if Assume_Valid
then
1419 elsif LHi
= RLo
then
1422 elsif RHi
= LLo
then
1425 elsif not Is_Known_Valid_Operand
(L
)
1426 and then not Assume_Valid
1428 if Is_Same_Value
(L
, R
) then
1435 -- If the range of either operand cannot be determined, nothing
1436 -- further can be inferred.
1443 -- Here is where we check for comparisons against maximum bounds of
1444 -- types, where we know that no value can be outside the bounds of
1445 -- the subtype. Note that this routine is allowed to assume that all
1446 -- expressions are within their subtype bounds. Callers wishing to
1447 -- deal with possibly invalid values must in any case take special
1448 -- steps (e.g. conversions to larger types) to avoid this kind of
1449 -- optimization, which is always considered to be valid. We do not
1450 -- attempt this optimization with generic types, since the type
1451 -- bounds may not be meaningful in this case.
1453 -- We are in danger of an infinite recursion here. It does not seem
1454 -- useful to go more than one level deep, so the parameter Rec is
1455 -- used to protect ourselves against this infinite recursion.
1459 -- See if we can get a decisive check against one operand and a
1460 -- bound of the other operand (four possible tests here). Note
1461 -- that we avoid testing junk bounds of a generic type.
1463 if not Is_Generic_Type
(Rtyp
) then
1464 case Compile_Time_Compare
(L
, Type_Low_Bound
(Rtyp
),
1466 Assume_Valid
, Rec
=> True)
1468 when LT
=> return LT
;
1469 when LE
=> return LE
;
1470 when EQ
=> return LE
;
1471 when others => null;
1474 case Compile_Time_Compare
(L
, Type_High_Bound
(Rtyp
),
1476 Assume_Valid
, Rec
=> True)
1478 when GT
=> return GT
;
1479 when GE
=> return GE
;
1480 when EQ
=> return GE
;
1481 when others => null;
1485 if not Is_Generic_Type
(Ltyp
) then
1486 case Compile_Time_Compare
(Type_Low_Bound
(Ltyp
), R
,
1488 Assume_Valid
, Rec
=> True)
1490 when GT
=> return GT
;
1491 when GE
=> return GE
;
1492 when EQ
=> return GE
;
1493 when others => null;
1496 case Compile_Time_Compare
(Type_High_Bound
(Ltyp
), R
,
1498 Assume_Valid
, Rec
=> True)
1500 when LT
=> return LT
;
1501 when LE
=> return LE
;
1502 when EQ
=> return LE
;
1503 when others => null;
1508 -- Next attempt is to see if we have an entity compared with a
1509 -- compile time known value, where there is a current value
1510 -- conditional for the entity which can tell us the result.
1514 -- Entity variable (left operand)
1517 -- Value (right operand)
1520 -- If False, we have reversed the operands
1523 -- Comparison operator kind from Get_Current_Value_Condition call
1526 -- Value from Get_Current_Value_Condition call
1531 Result
: Compare_Result
;
1532 -- Known result before inversion
1535 if Is_Entity_Name
(L
)
1536 and then Compile_Time_Known_Value
(R
)
1539 Val
:= Expr_Value
(R
);
1542 elsif Is_Entity_Name
(R
)
1543 and then Compile_Time_Known_Value
(L
)
1546 Val
:= Expr_Value
(L
);
1549 -- That was the last chance at finding a compile time result
1555 Get_Current_Value_Condition
(Var
, Op
, Opn
);
1557 -- That was the last chance, so if we got nothing return
1563 Opv
:= Expr_Value
(Opn
);
1565 -- We got a comparison, so we might have something interesting
1567 -- Convert LE to LT and GE to GT, just so we have fewer cases
1569 if Op
= N_Op_Le
then
1573 elsif Op
= N_Op_Ge
then
1578 -- Deal with equality case
1580 if Op
= N_Op_Eq
then
1583 elsif Opv
< Val
then
1589 -- Deal with inequality case
1591 elsif Op
= N_Op_Ne
then
1598 -- Deal with greater than case
1600 elsif Op
= N_Op_Gt
then
1603 elsif Opv
= Val
- 1 then
1609 -- Deal with less than case
1611 else pragma Assert
(Op
= N_Op_Lt
);
1614 elsif Opv
= Val
+ 1 then
1621 -- Deal with inverting result
1625 when GT
=> return LT
;
1626 when GE
=> return LE
;
1627 when LT
=> return GT
;
1628 when LE
=> return GE
;
1629 when others => return Result
;
1636 end Compile_Time_Compare
;
1638 -------------------------------
1639 -- Compile_Time_Known_Bounds --
1640 -------------------------------
1642 function Compile_Time_Known_Bounds
(T
: Entity_Id
) return Boolean is
1647 if T
= Any_Composite
or else not Is_Array_Type
(T
) then
1651 Indx
:= First_Index
(T
);
1652 while Present
(Indx
) loop
1653 Typ
:= Underlying_Type
(Etype
(Indx
));
1655 -- Never look at junk bounds of a generic type
1657 if Is_Generic_Type
(Typ
) then
1661 -- Otherwise check bounds for compile time known
1663 if not Compile_Time_Known_Value
(Type_Low_Bound
(Typ
)) then
1665 elsif not Compile_Time_Known_Value
(Type_High_Bound
(Typ
)) then
1673 end Compile_Time_Known_Bounds
;
1675 ------------------------------
1676 -- Compile_Time_Known_Value --
1677 ------------------------------
1679 function Compile_Time_Known_Value
(Op
: Node_Id
) return Boolean is
1680 K
: constant Node_Kind
:= Nkind
(Op
);
1681 CV_Ent
: CV_Entry
renames CV_Cache
(Nat
(Op
) mod CV_Cache_Size
);
1684 -- Never known at compile time if bad type or raises constraint error
1685 -- or empty (latter case occurs only as a result of a previous error).
1688 Check_Error_Detected
;
1692 or else Etype
(Op
) = Any_Type
1693 or else Raises_Constraint_Error
(Op
)
1698 -- If we have an entity name, then see if it is the name of a constant
1699 -- and if so, test the corresponding constant value, or the name of
1700 -- an enumeration literal, which is always a constant.
1702 if Present
(Etype
(Op
)) and then Is_Entity_Name
(Op
) then
1704 E
: constant Entity_Id
:= Entity
(Op
);
1708 -- Never known at compile time if it is a packed array value.
1709 -- We might want to try to evaluate these at compile time one
1710 -- day, but we do not make that attempt now.
1712 if Is_Packed_Array_Impl_Type
(Etype
(Op
)) then
1716 if Ekind
(E
) = E_Enumeration_Literal
then
1719 elsif Ekind
(E
) = E_Constant
then
1720 V
:= Constant_Value
(E
);
1721 return Present
(V
) and then Compile_Time_Known_Value
(V
);
1725 -- We have a value, see if it is compile time known
1728 -- Integer literals are worth storing in the cache
1730 if K
= N_Integer_Literal
then
1732 CV_Ent
.V
:= Intval
(Op
);
1735 -- Other literals and NULL are known at compile time
1738 Nkind_In
(K
, N_Character_Literal
,
1747 -- If we fall through, not known at compile time
1751 -- If we get an exception while trying to do this test, then some error
1752 -- has occurred, and we simply say that the value is not known after all
1757 end Compile_Time_Known_Value
;
1759 --------------------------------------
1760 -- Compile_Time_Known_Value_Or_Aggr --
1761 --------------------------------------
1763 function Compile_Time_Known_Value_Or_Aggr
(Op
: Node_Id
) return Boolean is
1765 -- If we have an entity name, then see if it is the name of a constant
1766 -- and if so, test the corresponding constant value, or the name of
1767 -- an enumeration literal, which is always a constant.
1769 if Is_Entity_Name
(Op
) then
1771 E
: constant Entity_Id
:= Entity
(Op
);
1775 if Ekind
(E
) = E_Enumeration_Literal
then
1778 elsif Ekind
(E
) /= E_Constant
then
1782 V
:= Constant_Value
(E
);
1784 and then Compile_Time_Known_Value_Or_Aggr
(V
);
1788 -- We have a value, see if it is compile time known
1791 if Compile_Time_Known_Value
(Op
) then
1794 elsif Nkind
(Op
) = N_Aggregate
then
1796 if Present
(Expressions
(Op
)) then
1800 Expr
:= First
(Expressions
(Op
));
1801 while Present
(Expr
) loop
1802 if not Compile_Time_Known_Value_Or_Aggr
(Expr
) then
1811 if Present
(Component_Associations
(Op
)) then
1816 Cass
:= First
(Component_Associations
(Op
));
1817 while Present
(Cass
) loop
1819 Compile_Time_Known_Value_Or_Aggr
(Expression
(Cass
))
1831 elsif Nkind
(Op
) = N_Qualified_Expression
then
1832 return Compile_Time_Known_Value_Or_Aggr
(Expression
(Op
));
1834 -- All other types of values are not known at compile time
1841 end Compile_Time_Known_Value_Or_Aggr
;
1843 ---------------------------------------
1844 -- CRT_Safe_Compile_Time_Known_Value --
1845 ---------------------------------------
1847 function CRT_Safe_Compile_Time_Known_Value
(Op
: Node_Id
) return Boolean is
1849 if (Configurable_Run_Time_Mode
or No_Run_Time_Mode
)
1850 and then not Is_OK_Static_Expression
(Op
)
1854 return Compile_Time_Known_Value
(Op
);
1856 end CRT_Safe_Compile_Time_Known_Value
;
1862 -- This is only called for actuals of functions that are not predefined
1863 -- operators (which have already been rewritten as operators at this
1864 -- stage), so the call can never be folded, and all that needs doing for
1865 -- the actual is to do the check for a non-static context.
1867 procedure Eval_Actual
(N
: Node_Id
) is
1869 Check_Non_Static_Context
(N
);
1872 --------------------
1873 -- Eval_Allocator --
1874 --------------------
1876 -- Allocators are never static, so all we have to do is to do the
1877 -- check for a non-static context if an expression is present.
1879 procedure Eval_Allocator
(N
: Node_Id
) is
1880 Expr
: constant Node_Id
:= Expression
(N
);
1882 if Nkind
(Expr
) = N_Qualified_Expression
then
1883 Check_Non_Static_Context
(Expression
(Expr
));
1887 ------------------------
1888 -- Eval_Arithmetic_Op --
1889 ------------------------
1891 -- Arithmetic operations are static functions, so the result is static
1892 -- if both operands are static (RM 4.9(7), 4.9(20)).
1894 procedure Eval_Arithmetic_Op
(N
: Node_Id
) is
1895 Left
: constant Node_Id
:= Left_Opnd
(N
);
1896 Right
: constant Node_Id
:= Right_Opnd
(N
);
1897 Ltype
: constant Entity_Id
:= Etype
(Left
);
1898 Rtype
: constant Entity_Id
:= Etype
(Right
);
1899 Otype
: Entity_Id
:= Empty
;
1904 -- If not foldable we are done
1906 Test_Expression_Is_Foldable
(N
, Left
, Right
, Stat
, Fold
);
1912 -- Otherwise attempt to fold
1914 if Is_Universal_Numeric_Type
(Etype
(Left
))
1916 Is_Universal_Numeric_Type
(Etype
(Right
))
1918 Otype
:= Find_Universal_Operator_Type
(N
);
1921 -- Fold for cases where both operands are of integer type
1923 if Is_Integer_Type
(Ltype
) and then Is_Integer_Type
(Rtype
) then
1925 Left_Int
: constant Uint
:= Expr_Value
(Left
);
1926 Right_Int
: constant Uint
:= Expr_Value
(Right
);
1932 Result
:= Left_Int
+ Right_Int
;
1934 when N_Op_Subtract
=>
1935 Result
:= Left_Int
- Right_Int
;
1937 when N_Op_Multiply
=>
1940 (Num_Bits
(Left_Int
) + Num_Bits
(Right_Int
)))
1942 Result
:= Left_Int
* Right_Int
;
1949 -- The exception Constraint_Error is raised by integer
1950 -- division, rem and mod if the right operand is zero.
1952 if Right_Int
= 0 then
1954 -- When SPARK_Mode is On, force a warning instead of
1955 -- an error in that case, as this likely corresponds
1956 -- to deactivated code.
1958 Apply_Compile_Time_Constraint_Error
1959 (N
, "division by zero", CE_Divide_By_Zero
,
1960 Warn
=> not Stat
or SPARK_Mode
= On
);
1961 Set_Raises_Constraint_Error
(N
);
1964 -- Otherwise we can do the division
1967 Result
:= Left_Int
/ Right_Int
;
1972 -- The exception Constraint_Error is raised by integer
1973 -- division, rem and mod if the right operand is zero.
1975 if Right_Int
= 0 then
1977 -- When SPARK_Mode is On, force a warning instead of
1978 -- an error in that case, as this likely corresponds
1979 -- to deactivated code.
1981 Apply_Compile_Time_Constraint_Error
1982 (N
, "mod with zero divisor", CE_Divide_By_Zero
,
1983 Warn
=> not Stat
or SPARK_Mode
= On
);
1987 Result
:= Left_Int
mod Right_Int
;
1992 -- The exception Constraint_Error is raised by integer
1993 -- division, rem and mod if the right operand is zero.
1995 if Right_Int
= 0 then
1997 -- When SPARK_Mode is On, force a warning instead of
1998 -- an error in that case, as this likely corresponds
1999 -- to deactivated code.
2001 Apply_Compile_Time_Constraint_Error
2002 (N
, "rem with zero divisor", CE_Divide_By_Zero
,
2003 Warn
=> not Stat
or SPARK_Mode
= On
);
2007 Result
:= Left_Int
rem Right_Int
;
2011 raise Program_Error
;
2014 -- Adjust the result by the modulus if the type is a modular type
2016 if Is_Modular_Integer_Type
(Ltype
) then
2017 Result
:= Result
mod Modulus
(Ltype
);
2019 -- For a signed integer type, check non-static overflow
2021 elsif (not Stat
) and then Is_Signed_Integer_Type
(Ltype
) then
2023 BT
: constant Entity_Id
:= Base_Type
(Ltype
);
2024 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(BT
));
2025 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(BT
));
2027 if Result
< Lo
or else Result
> Hi
then
2028 Apply_Compile_Time_Constraint_Error
2029 (N
, "value not in range of }??",
2030 CE_Overflow_Check_Failed
,
2037 -- If we get here we can fold the result
2039 Fold_Uint
(N
, Result
, Stat
);
2042 -- Cases where at least one operand is a real. We handle the cases of
2043 -- both reals, or mixed/real integer cases (the latter happen only for
2044 -- divide and multiply, and the result is always real).
2046 elsif Is_Real_Type
(Ltype
) or else Is_Real_Type
(Rtype
) then
2053 if Is_Real_Type
(Ltype
) then
2054 Left_Real
:= Expr_Value_R
(Left
);
2056 Left_Real
:= UR_From_Uint
(Expr_Value
(Left
));
2059 if Is_Real_Type
(Rtype
) then
2060 Right_Real
:= Expr_Value_R
(Right
);
2062 Right_Real
:= UR_From_Uint
(Expr_Value
(Right
));
2065 if Nkind
(N
) = N_Op_Add
then
2066 Result
:= Left_Real
+ Right_Real
;
2068 elsif Nkind
(N
) = N_Op_Subtract
then
2069 Result
:= Left_Real
- Right_Real
;
2071 elsif Nkind
(N
) = N_Op_Multiply
then
2072 Result
:= Left_Real
* Right_Real
;
2074 else pragma Assert
(Nkind
(N
) = N_Op_Divide
);
2075 if UR_Is_Zero
(Right_Real
) then
2076 Apply_Compile_Time_Constraint_Error
2077 (N
, "division by zero", CE_Divide_By_Zero
);
2081 Result
:= Left_Real
/ Right_Real
;
2084 Fold_Ureal
(N
, Result
, Stat
);
2088 -- If the operator was resolved to a specific type, make sure that type
2089 -- is frozen even if the expression is folded into a literal (which has
2090 -- a universal type).
2092 if Present
(Otype
) then
2093 Freeze_Before
(N
, Otype
);
2095 end Eval_Arithmetic_Op
;
2097 ----------------------------
2098 -- Eval_Character_Literal --
2099 ----------------------------
2101 -- Nothing to be done
2103 procedure Eval_Character_Literal
(N
: Node_Id
) is
2104 pragma Warnings
(Off
, N
);
2107 end Eval_Character_Literal
;
2113 -- Static function calls are either calls to predefined operators
2114 -- with static arguments, or calls to functions that rename a literal.
2115 -- Only the latter case is handled here, predefined operators are
2116 -- constant-folded elsewhere.
2118 -- If the function is itself inherited (see 7423-001) the literal of
2119 -- the parent type must be explicitly converted to the return type
2122 procedure Eval_Call
(N
: Node_Id
) is
2123 Loc
: constant Source_Ptr
:= Sloc
(N
);
2124 Typ
: constant Entity_Id
:= Etype
(N
);
2128 if Nkind
(N
) = N_Function_Call
2129 and then No
(Parameter_Associations
(N
))
2130 and then Is_Entity_Name
(Name
(N
))
2131 and then Present
(Alias
(Entity
(Name
(N
))))
2132 and then Is_Enumeration_Type
(Base_Type
(Typ
))
2134 Lit
:= Ultimate_Alias
(Entity
(Name
(N
)));
2136 if Ekind
(Lit
) = E_Enumeration_Literal
then
2137 if Base_Type
(Etype
(Lit
)) /= Base_Type
(Typ
) then
2139 (N
, Convert_To
(Typ
, New_Occurrence_Of
(Lit
, Loc
)));
2141 Rewrite
(N
, New_Occurrence_Of
(Lit
, Loc
));
2149 --------------------------
2150 -- Eval_Case_Expression --
2151 --------------------------
2153 -- A conditional expression is static if all its conditions and dependent
2154 -- expressions are static. Note that we do not care if the dependent
2155 -- expressions raise CE, except for the one that will be selected.
2157 procedure Eval_Case_Expression
(N
: Node_Id
) is
2162 Set_Is_Static_Expression
(N
, False);
2164 if Error_Posted
(Expression
(N
))
2165 or else not Is_Static_Expression
(Expression
(N
))
2167 Check_Non_Static_Context
(Expression
(N
));
2171 -- First loop, make sure all the alternatives are static expressions
2172 -- none of which raise Constraint_Error. We make the constraint error
2173 -- check because part of the legality condition for a correct static
2174 -- case expression is that the cases are covered, like any other case
2175 -- expression. And we can't do that if any of the conditions raise an
2176 -- exception, so we don't even try to evaluate if that is the case.
2178 Alt
:= First
(Alternatives
(N
));
2179 while Present
(Alt
) loop
2181 -- The expression must be static, but we don't care at this stage
2182 -- if it raises Constraint_Error (the alternative might not match,
2183 -- in which case the expression is statically unevaluated anyway).
2185 if not Is_Static_Expression
(Expression
(Alt
)) then
2186 Check_Non_Static_Context
(Expression
(Alt
));
2190 -- The choices of a case always have to be static, and cannot raise
2191 -- an exception. If this condition is not met, then the expression
2192 -- is plain illegal, so just abandon evaluation attempts. No need
2193 -- to check non-static context when we have something illegal anyway.
2195 if not Is_OK_Static_Choice_List
(Discrete_Choices
(Alt
)) then
2202 -- OK, if the above loop gets through it means that all choices are OK
2203 -- static (don't raise exceptions), so the whole case is static, and we
2204 -- can find the matching alternative.
2206 Set_Is_Static_Expression
(N
);
2208 -- Now to deal with propagating a possible constraint error
2210 -- If the selecting expression raises CE, propagate and we are done
2212 if Raises_Constraint_Error
(Expression
(N
)) then
2213 Set_Raises_Constraint_Error
(N
);
2215 -- Otherwise we need to check the alternatives to find the matching
2216 -- one. CE's in other than the matching one are not relevant. But we
2217 -- do need to check the matching one. Unlike the first loop, we do not
2218 -- have to go all the way through, when we find the matching one, quit.
2221 Alt
:= First
(Alternatives
(N
));
2224 -- We must find a match among the alternatives. If not, this must
2225 -- be due to other errors, so just ignore, leaving as non-static.
2228 Set_Is_Static_Expression
(N
, False);
2232 -- Otherwise loop through choices of this alternative
2234 Choice
:= First
(Discrete_Choices
(Alt
));
2235 while Present
(Choice
) loop
2237 -- If we find a matching choice, then the Expression of this
2238 -- alternative replaces N (Raises_Constraint_Error flag is
2239 -- included, so we don't have to special case that).
2241 if Choice_Matches
(Expression
(N
), Choice
) = Match
then
2242 Rewrite
(N
, Relocate_Node
(Expression
(Alt
)));
2252 end Eval_Case_Expression
;
2254 ------------------------
2255 -- Eval_Concatenation --
2256 ------------------------
2258 -- Concatenation is a static function, so the result is static if both
2259 -- operands are static (RM 4.9(7), 4.9(21)).
2261 procedure Eval_Concatenation
(N
: Node_Id
) is
2262 Left
: constant Node_Id
:= Left_Opnd
(N
);
2263 Right
: constant Node_Id
:= Right_Opnd
(N
);
2264 C_Typ
: constant Entity_Id
:= Root_Type
(Component_Type
(Etype
(N
)));
2269 -- Concatenation is never static in Ada 83, so if Ada 83 check operand
2270 -- non-static context.
2272 if Ada_Version
= Ada_83
2273 and then Comes_From_Source
(N
)
2275 Check_Non_Static_Context
(Left
);
2276 Check_Non_Static_Context
(Right
);
2280 -- If not foldable we are done. In principle concatenation that yields
2281 -- any string type is static (i.e. an array type of character types).
2282 -- However, character types can include enumeration literals, and
2283 -- concatenation in that case cannot be described by a literal, so we
2284 -- only consider the operation static if the result is an array of
2285 -- (a descendant of) a predefined character type.
2287 Test_Expression_Is_Foldable
(N
, Left
, Right
, Stat
, Fold
);
2289 if not (Is_Standard_Character_Type
(C_Typ
) and then Fold
) then
2290 Set_Is_Static_Expression
(N
, False);
2294 -- Compile time string concatenation
2296 -- ??? Note that operands that are aggregates can be marked as static,
2297 -- so we should attempt at a later stage to fold concatenations with
2301 Left_Str
: constant Node_Id
:= Get_String_Val
(Left
);
2303 Right_Str
: constant Node_Id
:= Get_String_Val
(Right
);
2304 Folded_Val
: String_Id
:= No_String
;
2307 -- Establish new string literal, and store left operand. We make
2308 -- sure to use the special Start_String that takes an operand if
2309 -- the left operand is a string literal. Since this is optimized
2310 -- in the case where that is the most recently created string
2311 -- literal, we ensure efficient time/space behavior for the
2312 -- case of a concatenation of a series of string literals.
2314 if Nkind
(Left_Str
) = N_String_Literal
then
2315 Left_Len
:= String_Length
(Strval
(Left_Str
));
2317 -- If the left operand is the empty string, and the right operand
2318 -- is a string literal (the case of "" & "..."), the result is the
2319 -- value of the right operand. This optimization is important when
2320 -- Is_Folded_In_Parser, to avoid copying an enormous right
2323 if Left_Len
= 0 and then Nkind
(Right_Str
) = N_String_Literal
then
2324 Folded_Val
:= Strval
(Right_Str
);
2326 Start_String
(Strval
(Left_Str
));
2331 Store_String_Char
(UI_To_CC
(Char_Literal_Value
(Left_Str
)));
2335 -- Now append the characters of the right operand, unless we
2336 -- optimized the "" & "..." case above.
2338 if Nkind
(Right_Str
) = N_String_Literal
then
2339 if Left_Len
/= 0 then
2340 Store_String_Chars
(Strval
(Right_Str
));
2341 Folded_Val
:= End_String
;
2344 Store_String_Char
(UI_To_CC
(Char_Literal_Value
(Right_Str
)));
2345 Folded_Val
:= End_String
;
2348 Set_Is_Static_Expression
(N
, Stat
);
2350 -- If left operand is the empty string, the result is the
2351 -- right operand, including its bounds if anomalous.
2354 and then Is_Array_Type
(Etype
(Right
))
2355 and then Etype
(Right
) /= Any_String
2357 Set_Etype
(N
, Etype
(Right
));
2360 Fold_Str
(N
, Folded_Val
, Static
=> Stat
);
2362 end Eval_Concatenation
;
2364 ----------------------
2365 -- Eval_Entity_Name --
2366 ----------------------
2368 -- This procedure is used for identifiers and expanded names other than
2369 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
2370 -- static if they denote a static constant (RM 4.9(6)) or if the name
2371 -- denotes an enumeration literal (RM 4.9(22)).
2373 procedure Eval_Entity_Name
(N
: Node_Id
) is
2374 Def_Id
: constant Entity_Id
:= Entity
(N
);
2378 -- Enumeration literals are always considered to be constants
2379 -- and cannot raise constraint error (RM 4.9(22)).
2381 if Ekind
(Def_Id
) = E_Enumeration_Literal
then
2382 Set_Is_Static_Expression
(N
);
2385 -- A name is static if it denotes a static constant (RM 4.9(5)), and
2386 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
2387 -- it does not violate 10.2.1(8) here, since this is not a variable.
2389 elsif Ekind
(Def_Id
) = E_Constant
then
2391 -- Deferred constants must always be treated as nonstatic outside the
2392 -- scope of their full view.
2394 if Present
(Full_View
(Def_Id
))
2395 and then not In_Open_Scopes
(Scope
(Def_Id
))
2399 Val
:= Constant_Value
(Def_Id
);
2402 if Present
(Val
) then
2403 Set_Is_Static_Expression
2404 (N
, Is_Static_Expression
(Val
)
2405 and then Is_Static_Subtype
(Etype
(Def_Id
)));
2406 Set_Raises_Constraint_Error
(N
, Raises_Constraint_Error
(Val
));
2408 if not Is_Static_Expression
(N
)
2409 and then not Is_Generic_Type
(Etype
(N
))
2411 Validate_Static_Object_Name
(N
);
2414 -- Mark constant condition in SCOs
2417 and then Comes_From_Source
(N
)
2418 and then Is_Boolean_Type
(Etype
(Def_Id
))
2419 and then Compile_Time_Known_Value
(N
)
2421 Set_SCO_Condition
(N
, Expr_Value_E
(N
) = Standard_True
);
2428 -- Fall through if the name is not static
2430 Validate_Static_Object_Name
(N
);
2431 end Eval_Entity_Name
;
2433 ------------------------
2434 -- Eval_If_Expression --
2435 ------------------------
2437 -- We can fold to a static expression if the condition and both dependent
2438 -- expressions are static. Otherwise, the only required processing is to do
2439 -- the check for non-static context for the then and else expressions.
2441 procedure Eval_If_Expression
(N
: Node_Id
) is
2442 Condition
: constant Node_Id
:= First
(Expressions
(N
));
2443 Then_Expr
: constant Node_Id
:= Next
(Condition
);
2444 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
2446 Non_Result
: Node_Id
;
2448 Rstat
: constant Boolean :=
2449 Is_Static_Expression
(Condition
)
2451 Is_Static_Expression
(Then_Expr
)
2453 Is_Static_Expression
(Else_Expr
);
2454 -- True if result is static
2457 -- If result not static, nothing to do, otherwise set static result
2462 Set_Is_Static_Expression
(N
);
2465 -- If any operand is Any_Type, just propagate to result and do not try
2466 -- to fold, this prevents cascaded errors.
2468 if Etype
(Condition
) = Any_Type
or else
2469 Etype
(Then_Expr
) = Any_Type
or else
2470 Etype
(Else_Expr
) = Any_Type
2472 Set_Etype
(N
, Any_Type
);
2473 Set_Is_Static_Expression
(N
, False);
2477 -- If condition raises constraint error then we have already signaled
2478 -- an error, and we just propagate to the result and do not fold.
2480 if Raises_Constraint_Error
(Condition
) then
2481 Set_Raises_Constraint_Error
(N
);
2485 -- Static case where we can fold. Note that we don't try to fold cases
2486 -- where the condition is known at compile time, but the result is
2487 -- non-static. This avoids possible cases of infinite recursion where
2488 -- the expander puts in a redundant test and we remove it. Instead we
2489 -- deal with these cases in the expander.
2491 -- Select result operand
2493 if Is_True
(Expr_Value
(Condition
)) then
2494 Result
:= Then_Expr
;
2495 Non_Result
:= Else_Expr
;
2497 Result
:= Else_Expr
;
2498 Non_Result
:= Then_Expr
;
2501 -- Note that it does not matter if the non-result operand raises a
2502 -- Constraint_Error, but if the result raises constraint error then we
2503 -- replace the node with a raise constraint error. This will properly
2504 -- propagate Raises_Constraint_Error since this flag is set in Result.
2506 if Raises_Constraint_Error
(Result
) then
2507 Rewrite_In_Raise_CE
(N
, Result
);
2508 Check_Non_Static_Context
(Non_Result
);
2510 -- Otherwise the result operand replaces the original node
2513 Rewrite
(N
, Relocate_Node
(Result
));
2514 Set_Is_Static_Expression
(N
);
2516 end Eval_If_Expression
;
2518 ----------------------------
2519 -- Eval_Indexed_Component --
2520 ----------------------------
2522 -- Indexed components are never static, so we need to perform the check
2523 -- for non-static context on the index values. Then, we check if the
2524 -- value can be obtained at compile time, even though it is non-static.
2526 procedure Eval_Indexed_Component
(N
: Node_Id
) is
2530 -- Check for non-static context on index values
2532 Expr
:= First
(Expressions
(N
));
2533 while Present
(Expr
) loop
2534 Check_Non_Static_Context
(Expr
);
2538 -- If the indexed component appears in an object renaming declaration
2539 -- then we do not want to try to evaluate it, since in this case we
2540 -- need the identity of the array element.
2542 if Nkind
(Parent
(N
)) = N_Object_Renaming_Declaration
then
2545 -- Similarly if the indexed component appears as the prefix of an
2546 -- attribute we don't want to evaluate it, because at least for
2547 -- some cases of attributes we need the identify (e.g. Access, Size)
2549 elsif Nkind
(Parent
(N
)) = N_Attribute_Reference
then
2553 -- Note: there are other cases, such as the left side of an assignment,
2554 -- or an OUT parameter for a call, where the replacement results in the
2555 -- illegal use of a constant, But these cases are illegal in the first
2556 -- place, so the replacement, though silly, is harmless.
2558 -- Now see if this is a constant array reference
2560 if List_Length
(Expressions
(N
)) = 1
2561 and then Is_Entity_Name
(Prefix
(N
))
2562 and then Ekind
(Entity
(Prefix
(N
))) = E_Constant
2563 and then Present
(Constant_Value
(Entity
(Prefix
(N
))))
2566 Loc
: constant Source_Ptr
:= Sloc
(N
);
2567 Arr
: constant Node_Id
:= Constant_Value
(Entity
(Prefix
(N
)));
2568 Sub
: constant Node_Id
:= First
(Expressions
(N
));
2574 -- Linear one's origin subscript value for array reference
2577 -- Lower bound of the first array index
2580 -- Value from constant array
2583 Atyp
:= Etype
(Arr
);
2585 if Is_Access_Type
(Atyp
) then
2586 Atyp
:= Designated_Type
(Atyp
);
2589 -- If we have an array type (we should have but perhaps there are
2590 -- error cases where this is not the case), then see if we can do
2591 -- a constant evaluation of the array reference.
2593 if Is_Array_Type
(Atyp
) and then Atyp
/= Any_Composite
then
2594 if Ekind
(Atyp
) = E_String_Literal_Subtype
then
2595 Lbd
:= String_Literal_Low_Bound
(Atyp
);
2597 Lbd
:= Type_Low_Bound
(Etype
(First_Index
(Atyp
)));
2600 if Compile_Time_Known_Value
(Sub
)
2601 and then Nkind
(Arr
) = N_Aggregate
2602 and then Compile_Time_Known_Value
(Lbd
)
2603 and then Is_Discrete_Type
(Component_Type
(Atyp
))
2605 Lin
:= UI_To_Int
(Expr_Value
(Sub
) - Expr_Value
(Lbd
)) + 1;
2607 if List_Length
(Expressions
(Arr
)) >= Lin
then
2608 Elm
:= Pick
(Expressions
(Arr
), Lin
);
2610 -- If the resulting expression is compile time known,
2611 -- then we can rewrite the indexed component with this
2612 -- value, being sure to mark the result as non-static.
2613 -- We also reset the Sloc, in case this generates an
2614 -- error later on (e.g. 136'Access).
2616 if Compile_Time_Known_Value
(Elm
) then
2617 Rewrite
(N
, Duplicate_Subexpr_No_Checks
(Elm
));
2618 Set_Is_Static_Expression
(N
, False);
2623 -- We can also constant-fold if the prefix is a string literal.
2624 -- This will be useful in an instantiation or an inlining.
2626 elsif Compile_Time_Known_Value
(Sub
)
2627 and then Nkind
(Arr
) = N_String_Literal
2628 and then Compile_Time_Known_Value
(Lbd
)
2629 and then Expr_Value
(Lbd
) = 1
2630 and then Expr_Value
(Sub
) <=
2631 String_Literal_Length
(Etype
(Arr
))
2634 C
: constant Char_Code
:=
2635 Get_String_Char
(Strval
(Arr
),
2636 UI_To_Int
(Expr_Value
(Sub
)));
2638 Set_Character_Literal_Name
(C
);
2641 Make_Character_Literal
(Loc
,
2643 Char_Literal_Value
=> UI_From_CC
(C
));
2644 Set_Etype
(Elm
, Component_Type
(Atyp
));
2645 Rewrite
(N
, Duplicate_Subexpr_No_Checks
(Elm
));
2646 Set_Is_Static_Expression
(N
, False);
2652 end Eval_Indexed_Component
;
2654 --------------------------
2655 -- Eval_Integer_Literal --
2656 --------------------------
2658 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2659 -- as static by the analyzer. The reason we did it that early is to allow
2660 -- the possibility of turning off the Is_Static_Expression flag after
2661 -- analysis, but before resolution, when integer literals are generated in
2662 -- the expander that do not correspond to static expressions.
2664 procedure Eval_Integer_Literal
(N
: Node_Id
) is
2665 T
: constant Entity_Id
:= Etype
(N
);
2667 function In_Any_Integer_Context
return Boolean;
2668 -- If the literal is resolved with a specific type in a context where
2669 -- the expected type is Any_Integer, there are no range checks on the
2670 -- literal. By the time the literal is evaluated, it carries the type
2671 -- imposed by the enclosing expression, and we must recover the context
2672 -- to determine that Any_Integer is meant.
2674 ----------------------------
2675 -- In_Any_Integer_Context --
2676 ----------------------------
2678 function In_Any_Integer_Context
return Boolean is
2679 Par
: constant Node_Id
:= Parent
(N
);
2680 K
: constant Node_Kind
:= Nkind
(Par
);
2683 -- Any_Integer also appears in digits specifications for real types,
2684 -- but those have bounds smaller that those of any integer base type,
2685 -- so we can safely ignore these cases.
2687 return Nkind_In
(K
, N_Number_Declaration
,
2688 N_Attribute_Reference
,
2689 N_Attribute_Definition_Clause
,
2690 N_Modular_Type_Definition
,
2691 N_Signed_Integer_Type_Definition
);
2692 end In_Any_Integer_Context
;
2694 -- Start of processing for Eval_Integer_Literal
2698 -- If the literal appears in a non-expression context, then it is
2699 -- certainly appearing in a non-static context, so check it. This is
2700 -- actually a redundant check, since Check_Non_Static_Context would
2701 -- check it, but it seems worthwhile to optimize out the call.
2703 -- An exception is made for a literal in an if or case expression
2705 if (Nkind_In
(Parent
(N
), N_If_Expression
, N_Case_Expression_Alternative
)
2706 or else Nkind
(Parent
(N
)) not in N_Subexpr
)
2707 and then not In_Any_Integer_Context
2709 Check_Non_Static_Context
(N
);
2712 -- Modular integer literals must be in their base range
2714 if Is_Modular_Integer_Type
(T
)
2715 and then Is_Out_Of_Range
(N
, Base_Type
(T
), Assume_Valid
=> True)
2719 end Eval_Integer_Literal
;
2721 ---------------------
2722 -- Eval_Logical_Op --
2723 ---------------------
2725 -- Logical operations are static functions, so the result is potentially
2726 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2728 procedure Eval_Logical_Op
(N
: Node_Id
) is
2729 Left
: constant Node_Id
:= Left_Opnd
(N
);
2730 Right
: constant Node_Id
:= Right_Opnd
(N
);
2735 -- If not foldable we are done
2737 Test_Expression_Is_Foldable
(N
, Left
, Right
, Stat
, Fold
);
2743 -- Compile time evaluation of logical operation
2746 Left_Int
: constant Uint
:= Expr_Value
(Left
);
2747 Right_Int
: constant Uint
:= Expr_Value
(Right
);
2750 if Is_Modular_Integer_Type
(Etype
(N
)) then
2752 Left_Bits
: Bits
(0 .. UI_To_Int
(Esize
(Etype
(N
))) - 1);
2753 Right_Bits
: Bits
(0 .. UI_To_Int
(Esize
(Etype
(N
))) - 1);
2756 To_Bits
(Left_Int
, Left_Bits
);
2757 To_Bits
(Right_Int
, Right_Bits
);
2759 -- Note: should really be able to use array ops instead of
2760 -- these loops, but they weren't working at the time ???
2762 if Nkind
(N
) = N_Op_And
then
2763 for J
in Left_Bits
'Range loop
2764 Left_Bits
(J
) := Left_Bits
(J
) and Right_Bits
(J
);
2767 elsif Nkind
(N
) = N_Op_Or
then
2768 for J
in Left_Bits
'Range loop
2769 Left_Bits
(J
) := Left_Bits
(J
) or Right_Bits
(J
);
2773 pragma Assert
(Nkind
(N
) = N_Op_Xor
);
2775 for J
in Left_Bits
'Range loop
2776 Left_Bits
(J
) := Left_Bits
(J
) xor Right_Bits
(J
);
2780 Fold_Uint
(N
, From_Bits
(Left_Bits
, Etype
(N
)), Stat
);
2784 pragma Assert
(Is_Boolean_Type
(Etype
(N
)));
2786 if Nkind
(N
) = N_Op_And
then
2788 Test
(Is_True
(Left_Int
) and then Is_True
(Right_Int
)), Stat
);
2790 elsif Nkind
(N
) = N_Op_Or
then
2792 Test
(Is_True
(Left_Int
) or else Is_True
(Right_Int
)), Stat
);
2795 pragma Assert
(Nkind
(N
) = N_Op_Xor
);
2797 Test
(Is_True
(Left_Int
) xor Is_True
(Right_Int
)), Stat
);
2801 end Eval_Logical_Op
;
2803 ------------------------
2804 -- Eval_Membership_Op --
2805 ------------------------
2807 -- A membership test is potentially static if the expression is static, and
2808 -- the range is a potentially static range, or is a subtype mark denoting a
2809 -- static subtype (RM 4.9(12)).
2811 procedure Eval_Membership_Op
(N
: Node_Id
) is
2812 Alts
: constant List_Id
:= Alternatives
(N
);
2813 Choice
: constant Node_Id
:= Right_Opnd
(N
);
2814 Expr
: constant Node_Id
:= Left_Opnd
(N
);
2815 Result
: Match_Result
;
2818 -- Ignore if error in either operand, except to make sure that Any_Type
2819 -- is properly propagated to avoid junk cascaded errors.
2821 if Etype
(Expr
) = Any_Type
2822 or else (Present
(Choice
) and then Etype
(Choice
) = Any_Type
)
2824 Set_Etype
(N
, Any_Type
);
2828 -- If left operand non-static, then nothing to do
2830 if not Is_Static_Expression
(Expr
) then
2834 -- If choice is non-static, left operand is in non-static context
2836 if (Present
(Choice
) and then not Is_Static_Choice
(Choice
))
2837 or else (Present
(Alts
) and then not Is_Static_Choice_List
(Alts
))
2839 Check_Non_Static_Context
(Expr
);
2843 -- Otherwise we definitely have a static expression
2845 Set_Is_Static_Expression
(N
);
2847 -- If left operand raises constraint error, propagate and we are done
2849 if Raises_Constraint_Error
(Expr
) then
2850 Set_Raises_Constraint_Error
(N
, True);
2855 if Present
(Choice
) then
2856 Result
:= Choice_Matches
(Expr
, Choice
);
2858 Result
:= Choices_Match
(Expr
, Alts
);
2861 -- If result is Non_Static, it means that we raise Constraint_Error,
2862 -- since we already tested that the operands were themselves static.
2864 if Result
= Non_Static
then
2865 Set_Raises_Constraint_Error
(N
);
2867 -- Otherwise we have our result (flipped if NOT IN case)
2871 (N
, Test
((Result
= Match
) xor (Nkind
(N
) = N_Not_In
)), True);
2872 Warn_On_Known_Condition
(N
);
2875 end Eval_Membership_Op
;
2877 ------------------------
2878 -- Eval_Named_Integer --
2879 ------------------------
2881 procedure Eval_Named_Integer
(N
: Node_Id
) is
2884 Expr_Value
(Expression
(Declaration_Node
(Entity
(N
)))), True);
2885 end Eval_Named_Integer
;
2887 ---------------------
2888 -- Eval_Named_Real --
2889 ---------------------
2891 procedure Eval_Named_Real
(N
: Node_Id
) is
2894 Expr_Value_R
(Expression
(Declaration_Node
(Entity
(N
)))), True);
2895 end Eval_Named_Real
;
2901 -- Exponentiation is a static functions, so the result is potentially
2902 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2904 procedure Eval_Op_Expon
(N
: Node_Id
) is
2905 Left
: constant Node_Id
:= Left_Opnd
(N
);
2906 Right
: constant Node_Id
:= Right_Opnd
(N
);
2911 -- If not foldable we are done
2913 Test_Expression_Is_Foldable
2914 (N
, Left
, Right
, Stat
, Fold
, CRT_Safe
=> True);
2916 -- Return if not foldable
2922 if Configurable_Run_Time_Mode
and not Stat
then
2926 -- Fold exponentiation operation
2929 Right_Int
: constant Uint
:= Expr_Value
(Right
);
2934 if Is_Integer_Type
(Etype
(Left
)) then
2936 Left_Int
: constant Uint
:= Expr_Value
(Left
);
2940 -- Exponentiation of an integer raises Constraint_Error for a
2941 -- negative exponent (RM 4.5.6).
2943 if Right_Int
< 0 then
2944 Apply_Compile_Time_Constraint_Error
2945 (N
, "integer exponent negative", CE_Range_Check_Failed
,
2950 if OK_Bits
(N
, Num_Bits
(Left_Int
) * Right_Int
) then
2951 Result
:= Left_Int
** Right_Int
;
2956 if Is_Modular_Integer_Type
(Etype
(N
)) then
2957 Result
:= Result
mod Modulus
(Etype
(N
));
2960 Fold_Uint
(N
, Result
, Stat
);
2968 Left_Real
: constant Ureal
:= Expr_Value_R
(Left
);
2971 -- Cannot have a zero base with a negative exponent
2973 if UR_Is_Zero
(Left_Real
) then
2975 if Right_Int
< 0 then
2976 Apply_Compile_Time_Constraint_Error
2977 (N
, "zero ** negative integer", CE_Range_Check_Failed
,
2981 Fold_Ureal
(N
, Ureal_0
, Stat
);
2985 Fold_Ureal
(N
, Left_Real
** Right_Int
, Stat
);
2996 -- The not operation is a static functions, so the result is potentially
2997 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
2999 procedure Eval_Op_Not
(N
: Node_Id
) is
3000 Right
: constant Node_Id
:= Right_Opnd
(N
);
3005 -- If not foldable we are done
3007 Test_Expression_Is_Foldable
(N
, Right
, Stat
, Fold
);
3013 -- Fold not operation
3016 Rint
: constant Uint
:= Expr_Value
(Right
);
3017 Typ
: constant Entity_Id
:= Etype
(N
);
3020 -- Negation is equivalent to subtracting from the modulus minus one.
3021 -- For a binary modulus this is equivalent to the ones-complement of
3022 -- the original value. For a nonbinary modulus this is an arbitrary
3023 -- but consistent definition.
3025 if Is_Modular_Integer_Type
(Typ
) then
3026 Fold_Uint
(N
, Modulus
(Typ
) - 1 - Rint
, Stat
);
3027 else pragma Assert
(Is_Boolean_Type
(Typ
));
3028 Fold_Uint
(N
, Test
(not Is_True
(Rint
)), Stat
);
3031 Set_Is_Static_Expression
(N
, Stat
);
3035 -------------------------------
3036 -- Eval_Qualified_Expression --
3037 -------------------------------
3039 -- A qualified expression is potentially static if its subtype mark denotes
3040 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
3042 procedure Eval_Qualified_Expression
(N
: Node_Id
) is
3043 Operand
: constant Node_Id
:= Expression
(N
);
3044 Target_Type
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
3051 -- Can only fold if target is string or scalar and subtype is static.
3052 -- Also, do not fold if our parent is an allocator (this is because the
3053 -- qualified expression is really part of the syntactic structure of an
3054 -- allocator, and we do not want to end up with something that
3055 -- corresponds to "new 1" where the 1 is the result of folding a
3056 -- qualified expression).
3058 if not Is_Static_Subtype
(Target_Type
)
3059 or else Nkind
(Parent
(N
)) = N_Allocator
3061 Check_Non_Static_Context
(Operand
);
3063 -- If operand is known to raise constraint_error, set the flag on the
3064 -- expression so it does not get optimized away.
3066 if Nkind
(Operand
) = N_Raise_Constraint_Error
then
3067 Set_Raises_Constraint_Error
(N
);
3073 -- If not foldable we are done
3075 Test_Expression_Is_Foldable
(N
, Operand
, Stat
, Fold
);
3080 -- Don't try fold if target type has constraint error bounds
3082 elsif not Is_OK_Static_Subtype
(Target_Type
) then
3083 Set_Raises_Constraint_Error
(N
);
3087 -- Here we will fold, save Print_In_Hex indication
3089 Hex
:= Nkind
(Operand
) = N_Integer_Literal
3090 and then Print_In_Hex
(Operand
);
3092 -- Fold the result of qualification
3094 if Is_Discrete_Type
(Target_Type
) then
3095 Fold_Uint
(N
, Expr_Value
(Operand
), Stat
);
3097 -- Preserve Print_In_Hex indication
3099 if Hex
and then Nkind
(N
) = N_Integer_Literal
then
3100 Set_Print_In_Hex
(N
);
3103 elsif Is_Real_Type
(Target_Type
) then
3104 Fold_Ureal
(N
, Expr_Value_R
(Operand
), Stat
);
3107 Fold_Str
(N
, Strval
(Get_String_Val
(Operand
)), Stat
);
3110 Set_Is_Static_Expression
(N
, False);
3112 Check_String_Literal_Length
(N
, Target_Type
);
3118 -- The expression may be foldable but not static
3120 Set_Is_Static_Expression
(N
, Stat
);
3122 if Is_Out_Of_Range
(N
, Etype
(N
), Assume_Valid
=> True) then
3125 end Eval_Qualified_Expression
;
3127 -----------------------
3128 -- Eval_Real_Literal --
3129 -----------------------
3131 -- Numeric literals are static (RM 4.9(1)), and have already been marked
3132 -- as static by the analyzer. The reason we did it that early is to allow
3133 -- the possibility of turning off the Is_Static_Expression flag after
3134 -- analysis, but before resolution, when integer literals are generated
3135 -- in the expander that do not correspond to static expressions.
3137 procedure Eval_Real_Literal
(N
: Node_Id
) is
3138 PK
: constant Node_Kind
:= Nkind
(Parent
(N
));
3141 -- If the literal appears in a non-expression context and not as part of
3142 -- a number declaration, then it is appearing in a non-static context,
3145 if PK
not in N_Subexpr
and then PK
/= N_Number_Declaration
then
3146 Check_Non_Static_Context
(N
);
3148 end Eval_Real_Literal
;
3150 ------------------------
3151 -- Eval_Relational_Op --
3152 ------------------------
3154 -- Relational operations are static functions, so the result is static if
3155 -- both operands are static (RM 4.9(7), 4.9(20)), except that for strings,
3156 -- the result is never static, even if the operands are.
3158 -- However, for internally generated nodes, we allow string equality and
3159 -- inequality to be static. This is because we rewrite A in "ABC" as an
3160 -- equality test A = "ABC", and the former is definitely static.
3162 procedure Eval_Relational_Op
(N
: Node_Id
) is
3163 Left
: constant Node_Id
:= Left_Opnd
(N
);
3164 Right
: constant Node_Id
:= Right_Opnd
(N
);
3166 procedure Decompose_Expr
3168 Ent
: out Entity_Id
;
3169 Kind
: out Character;
3171 Orig
: Boolean := True);
3172 -- Given expression Expr, see if it is of the form X [+/- K]. If so, Ent
3173 -- is set to the entity in X, Kind is 'F','L','E' for 'First or 'Last or
3174 -- simple entity, and Cons is the value of K. If the expression is not
3175 -- of the required form, Ent is set to Empty.
3177 -- Orig indicates whether Expr is the original expression to consider,
3178 -- or if we are handling a subexpression (e.g. recursive call to
3181 procedure Fold_General_Op
(Is_Static
: Boolean);
3182 -- Attempt to fold arbitrary relational operator N. Flag Is_Static must
3183 -- be set when the operator denotes a static expression.
3185 procedure Fold_Static_Real_Op
;
3186 -- Attempt to fold static real type relational operator N
3188 function Static_Length
(Expr
: Node_Id
) return Uint
;
3189 -- If Expr is an expression for a constrained array whose length is
3190 -- known at compile time, return the non-negative length, otherwise
3193 --------------------
3194 -- Decompose_Expr --
3195 --------------------
3197 procedure Decompose_Expr
3199 Ent
: out Entity_Id
;
3200 Kind
: out Character;
3202 Orig
: Boolean := True)
3207 -- Assume that the expression does not meet the expected form
3213 if Nkind
(Expr
) = N_Op_Add
3214 and then Compile_Time_Known_Value
(Right_Opnd
(Expr
))
3216 Exp
:= Left_Opnd
(Expr
);
3217 Cons
:= Expr_Value
(Right_Opnd
(Expr
));
3219 elsif Nkind
(Expr
) = N_Op_Subtract
3220 and then Compile_Time_Known_Value
(Right_Opnd
(Expr
))
3222 Exp
:= Left_Opnd
(Expr
);
3223 Cons
:= -Expr_Value
(Right_Opnd
(Expr
));
3225 -- If the bound is a constant created to remove side effects, recover
3226 -- the original expression to see if it has one of the recognizable
3229 elsif Nkind
(Expr
) = N_Identifier
3230 and then not Comes_From_Source
(Entity
(Expr
))
3231 and then Ekind
(Entity
(Expr
)) = E_Constant
3232 and then Nkind
(Parent
(Entity
(Expr
))) = N_Object_Declaration
3234 Exp
:= Expression
(Parent
(Entity
(Expr
)));
3235 Decompose_Expr
(Exp
, Ent
, Kind
, Cons
, Orig
=> False);
3237 -- If original expression includes an entity, create a reference
3238 -- to it for use below.
3240 if Present
(Ent
) then
3241 Exp
:= New_Occurrence_Of
(Ent
, Sloc
(Ent
));
3247 -- Only consider the case of X + 0 for a full expression, and
3248 -- not when recursing, otherwise we may end up with evaluating
3249 -- expressions not known at compile time to 0.
3259 -- At this stage Exp is set to the potential X
3261 if Nkind
(Exp
) = N_Attribute_Reference
then
3262 if Attribute_Name
(Exp
) = Name_First
then
3264 elsif Attribute_Name
(Exp
) = Name_Last
then
3270 Exp
:= Prefix
(Exp
);
3276 if Is_Entity_Name
(Exp
) and then Present
(Entity
(Exp
)) then
3277 Ent
:= Entity
(Exp
);
3281 ---------------------
3282 -- Fold_General_Op --
3283 ---------------------
3285 procedure Fold_General_Op
(Is_Static
: Boolean) is
3286 CR
: constant Compare_Result
:=
3287 Compile_Time_Compare
(Left
, Right
, Assume_Valid
=> False);
3292 if CR
= Unknown
then
3300 elsif CR
= NE
or else CR
= GT
or else CR
= LT
then
3307 if CR
= GT
or else CR
= EQ
or else CR
= GE
then
3318 elsif CR
= EQ
or else CR
= LT
or else CR
= LE
then
3325 if CR
= LT
or else CR
= EQ
or else CR
= LE
then
3336 elsif CR
= EQ
or else CR
= GT
or else CR
= GE
then
3343 if CR
= NE
or else CR
= GT
or else CR
= LT
then
3352 raise Program_Error
;
3355 -- Determine the potential outcome of the relation assuming the
3356 -- operands are valid and emit a warning when the relation yields
3357 -- True or False only in the presence of invalid values.
3359 Warn_On_Constant_Valid_Condition
(N
);
3361 Fold_Uint
(N
, Test
(Result
), Is_Static
);
3362 end Fold_General_Op
;
3364 -------------------------
3365 -- Fold_Static_Real_Op --
3366 -------------------------
3368 procedure Fold_Static_Real_Op
is
3369 Left_Real
: constant Ureal
:= Expr_Value_R
(Left
);
3370 Right_Real
: constant Ureal
:= Expr_Value_R
(Right
);
3375 when N_Op_Eq
=> Result
:= (Left_Real
= Right_Real
);
3376 when N_Op_Ge
=> Result
:= (Left_Real
>= Right_Real
);
3377 when N_Op_Gt
=> Result
:= (Left_Real
> Right_Real
);
3378 when N_Op_Le
=> Result
:= (Left_Real
<= Right_Real
);
3379 when N_Op_Lt
=> Result
:= (Left_Real
< Right_Real
);
3380 when N_Op_Ne
=> Result
:= (Left_Real
/= Right_Real
);
3381 when others => raise Program_Error
;
3384 Fold_Uint
(N
, Test
(Result
), True);
3385 end Fold_Static_Real_Op
;
3391 function Static_Length
(Expr
: Node_Id
) return Uint
is
3401 -- First easy case string literal
3403 if Nkind
(Expr
) = N_String_Literal
then
3404 return UI_From_Int
(String_Length
(Strval
(Expr
)));
3406 -- Second easy case, not constrained subtype, so no length
3408 elsif not Is_Constrained
(Etype
(Expr
)) then
3409 return Uint_Minus_1
;
3414 Typ
:= Etype
(First_Index
(Etype
(Expr
)));
3416 -- The simple case, both bounds are known at compile time
3418 if Is_Discrete_Type
(Typ
)
3419 and then Compile_Time_Known_Value
(Type_Low_Bound
(Typ
))
3420 and then Compile_Time_Known_Value
(Type_High_Bound
(Typ
))
3423 UI_Max
(Uint_0
, Expr_Value
(Type_High_Bound
(Typ
)) -
3424 Expr_Value
(Type_Low_Bound
(Typ
)) + 1);
3427 -- A more complex case, where the bounds are of the form X [+/- K1]
3428 -- .. X [+/- K2]), where X is an expression that is either A'First or
3429 -- A'Last (with A an entity name), or X is an entity name, and the
3430 -- two X's are the same and K1 and K2 are known at compile time, in
3431 -- this case, the length can also be computed at compile time, even
3432 -- though the bounds are not known. A common case of this is e.g.
3433 -- (X'First .. X'First+5).
3436 (Original_Node
(Type_Low_Bound
(Typ
)), Ent1
, Kind1
, Cons1
);
3438 (Original_Node
(Type_High_Bound
(Typ
)), Ent2
, Kind2
, Cons2
);
3440 if Present
(Ent1
) and then Ent1
= Ent2
and then Kind1
= Kind2
then
3441 return Cons2
- Cons1
+ 1;
3443 return Uint_Minus_1
;
3449 Left_Typ
: constant Entity_Id
:= Etype
(Left
);
3450 Right_Typ
: constant Entity_Id
:= Etype
(Right
);
3453 Op_Typ
: Entity_Id
:= Empty
;
3456 Is_Static_Expression
: Boolean;
3458 -- Start of processing for Eval_Relational_Op
3461 -- One special case to deal with first. If we can tell that the result
3462 -- will be false because the lengths of one or more index subtypes are
3463 -- compile-time known and different, then we can replace the entire
3464 -- result by False. We only do this for one-dimensional arrays, because
3465 -- the case of multidimensional arrays is rare and too much trouble. If
3466 -- one of the operands is an illegal aggregate, its type might still be
3467 -- an arbitrary composite type, so nothing to do.
3469 if Is_Array_Type
(Left_Typ
)
3470 and then Left_Typ
/= Any_Composite
3471 and then Number_Dimensions
(Left_Typ
) = 1
3472 and then Nkind_In
(N
, N_Op_Eq
, N_Op_Ne
)
3474 if Raises_Constraint_Error
(Left
)
3476 Raises_Constraint_Error
(Right
)
3480 -- OK, we have the case where we may be able to do this fold
3483 Left_Len
:= Static_Length
(Left
);
3484 Right_Len
:= Static_Length
(Right
);
3486 if Left_Len
/= Uint_Minus_1
3487 and then Right_Len
/= Uint_Minus_1
3488 and then Left_Len
/= Right_Len
3490 Fold_Uint
(N
, Test
(Nkind
(N
) = N_Op_Ne
), False);
3491 Warn_On_Known_Condition
(N
);
3499 -- Initialize the value of Is_Static_Expression. The value of Fold
3500 -- returned by Test_Expression_Is_Foldable is not needed since, even
3501 -- when some operand is a variable, we can still perform the static
3502 -- evaluation of the expression in some cases (for example, for a
3503 -- variable of a subtype of Integer we statically know that any value
3504 -- stored in such variable is smaller than Integer'Last).
3506 Test_Expression_Is_Foldable
3507 (N
, Left
, Right
, Is_Static_Expression
, Fold
);
3509 -- Only comparisons of scalars can give static results. A comparison
3510 -- of strings never yields a static result, even if both operands are
3511 -- static strings, except that as noted above, we allow equality and
3512 -- inequality for strings.
3514 if Is_String_Type
(Left_Typ
)
3515 and then not Comes_From_Source
(N
)
3516 and then Nkind_In
(N
, N_Op_Eq
, N_Op_Ne
)
3520 elsif not Is_Scalar_Type
(Left_Typ
) then
3521 Is_Static_Expression
:= False;
3522 Set_Is_Static_Expression
(N
, False);
3525 -- For operators on universal numeric types called as functions with
3526 -- an explicit scope, determine appropriate specific numeric type,
3527 -- and diagnose possible ambiguity.
3529 if Is_Universal_Numeric_Type
(Left_Typ
)
3531 Is_Universal_Numeric_Type
(Right_Typ
)
3533 Op_Typ
:= Find_Universal_Operator_Type
(N
);
3536 -- Attempt to fold the relational operator
3538 if Is_Static_Expression
and then Is_Real_Type
(Left_Typ
) then
3539 Fold_Static_Real_Op
;
3541 Fold_General_Op
(Is_Static_Expression
);
3545 -- For the case of a folded relational operator on a specific numeric
3546 -- type, freeze the operand type now.
3548 if Present
(Op_Typ
) then
3549 Freeze_Before
(N
, Op_Typ
);
3552 Warn_On_Known_Condition
(N
);
3553 end Eval_Relational_Op
;
3559 -- Shift operations are intrinsic operations that can never be static, so
3560 -- the only processing required is to perform the required check for a non
3561 -- static context for the two operands.
3563 -- Actually we could do some compile time evaluation here some time ???
3565 procedure Eval_Shift
(N
: Node_Id
) is
3567 Check_Non_Static_Context
(Left_Opnd
(N
));
3568 Check_Non_Static_Context
(Right_Opnd
(N
));
3571 ------------------------
3572 -- Eval_Short_Circuit --
3573 ------------------------
3575 -- A short circuit operation is potentially static if both operands are
3576 -- potentially static (RM 4.9 (13)).
3578 procedure Eval_Short_Circuit
(N
: Node_Id
) is
3579 Kind
: constant Node_Kind
:= Nkind
(N
);
3580 Left
: constant Node_Id
:= Left_Opnd
(N
);
3581 Right
: constant Node_Id
:= Right_Opnd
(N
);
3584 Rstat
: constant Boolean :=
3585 Is_Static_Expression
(Left
)
3587 Is_Static_Expression
(Right
);
3590 -- Short circuit operations are never static in Ada 83
3592 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
3593 Check_Non_Static_Context
(Left
);
3594 Check_Non_Static_Context
(Right
);
3598 -- Now look at the operands, we can't quite use the normal call to
3599 -- Test_Expression_Is_Foldable here because short circuit operations
3600 -- are a special case, they can still be foldable, even if the right
3601 -- operand raises constraint error.
3603 -- If either operand is Any_Type, just propagate to result and do not
3604 -- try to fold, this prevents cascaded errors.
3606 if Etype
(Left
) = Any_Type
or else Etype
(Right
) = Any_Type
then
3607 Set_Etype
(N
, Any_Type
);
3610 -- If left operand raises constraint error, then replace node N with
3611 -- the raise constraint error node, and we are obviously not foldable.
3612 -- Is_Static_Expression is set from the two operands in the normal way,
3613 -- and we check the right operand if it is in a non-static context.
3615 elsif Raises_Constraint_Error
(Left
) then
3617 Check_Non_Static_Context
(Right
);
3620 Rewrite_In_Raise_CE
(N
, Left
);
3621 Set_Is_Static_Expression
(N
, Rstat
);
3624 -- If the result is not static, then we won't in any case fold
3626 elsif not Rstat
then
3627 Check_Non_Static_Context
(Left
);
3628 Check_Non_Static_Context
(Right
);
3632 -- Here the result is static, note that, unlike the normal processing
3633 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
3634 -- the right operand raises constraint error, that's because it is not
3635 -- significant if the left operand is decisive.
3637 Set_Is_Static_Expression
(N
);
3639 -- It does not matter if the right operand raises constraint error if
3640 -- it will not be evaluated. So deal specially with the cases where
3641 -- the right operand is not evaluated. Note that we will fold these
3642 -- cases even if the right operand is non-static, which is fine, but
3643 -- of course in these cases the result is not potentially static.
3645 Left_Int
:= Expr_Value
(Left
);
3647 if (Kind
= N_And_Then
and then Is_False
(Left_Int
))
3649 (Kind
= N_Or_Else
and then Is_True
(Left_Int
))
3651 Fold_Uint
(N
, Left_Int
, Rstat
);
3655 -- If first operand not decisive, then it does matter if the right
3656 -- operand raises constraint error, since it will be evaluated, so
3657 -- we simply replace the node with the right operand. Note that this
3658 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
3659 -- (both are set to True in Right).
3661 if Raises_Constraint_Error
(Right
) then
3662 Rewrite_In_Raise_CE
(N
, Right
);
3663 Check_Non_Static_Context
(Left
);
3667 -- Otherwise the result depends on the right operand
3669 Fold_Uint
(N
, Expr_Value
(Right
), Rstat
);
3671 end Eval_Short_Circuit
;
3677 -- Slices can never be static, so the only processing required is to check
3678 -- for non-static context if an explicit range is given.
3680 procedure Eval_Slice
(N
: Node_Id
) is
3681 Drange
: constant Node_Id
:= Discrete_Range
(N
);
3684 if Nkind
(Drange
) = N_Range
then
3685 Check_Non_Static_Context
(Low_Bound
(Drange
));
3686 Check_Non_Static_Context
(High_Bound
(Drange
));
3689 -- A slice of the form A (subtype), when the subtype is the index of
3690 -- the type of A, is redundant, the slice can be replaced with A, and
3691 -- this is worth a warning.
3693 if Is_Entity_Name
(Prefix
(N
)) then
3695 E
: constant Entity_Id
:= Entity
(Prefix
(N
));
3696 T
: constant Entity_Id
:= Etype
(E
);
3699 if Ekind
(E
) = E_Constant
3700 and then Is_Array_Type
(T
)
3701 and then Is_Entity_Name
(Drange
)
3703 if Is_Entity_Name
(Original_Node
(First_Index
(T
)))
3704 and then Entity
(Original_Node
(First_Index
(T
)))
3707 if Warn_On_Redundant_Constructs
then
3708 Error_Msg_N
("redundant slice denotes whole array?r?", N
);
3711 -- The following might be a useful optimization???
3713 -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
3720 -------------------------
3721 -- Eval_String_Literal --
3722 -------------------------
3724 procedure Eval_String_Literal
(N
: Node_Id
) is
3725 Typ
: constant Entity_Id
:= Etype
(N
);
3726 Bas
: constant Entity_Id
:= Base_Type
(Typ
);
3732 -- Nothing to do if error type (handles cases like default expressions
3733 -- or generics where we have not yet fully resolved the type).
3735 if Bas
= Any_Type
or else Bas
= Any_String
then
3739 -- String literals are static if the subtype is static (RM 4.9(2)), so
3740 -- reset the static expression flag (it was set unconditionally in
3741 -- Analyze_String_Literal) if the subtype is non-static. We tell if
3742 -- the subtype is static by looking at the lower bound.
3744 if Ekind
(Typ
) = E_String_Literal_Subtype
then
3745 if not Is_OK_Static_Expression
(String_Literal_Low_Bound
(Typ
)) then
3746 Set_Is_Static_Expression
(N
, False);
3750 -- Here if Etype of string literal is normal Etype (not yet possible,
3751 -- but may be possible in future).
3753 elsif not Is_OK_Static_Expression
3754 (Type_Low_Bound
(Etype
(First_Index
(Typ
))))
3756 Set_Is_Static_Expression
(N
, False);
3760 -- If original node was a type conversion, then result if non-static
3762 if Nkind
(Original_Node
(N
)) = N_Type_Conversion
then
3763 Set_Is_Static_Expression
(N
, False);
3767 -- Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
3768 -- if its bounds are outside the index base type and this index type is
3769 -- static. This can happen in only two ways. Either the string literal
3770 -- is too long, or it is null, and the lower bound is type'First. Either
3771 -- way it is the upper bound that is out of range of the index type.
3773 if Ada_Version
>= Ada_95
then
3774 if Is_Standard_String_Type
(Bas
) then
3775 Xtp
:= Standard_Positive
;
3777 Xtp
:= Etype
(First_Index
(Bas
));
3780 if Ekind
(Typ
) = E_String_Literal_Subtype
then
3781 Lo
:= String_Literal_Low_Bound
(Typ
);
3783 Lo
:= Type_Low_Bound
(Etype
(First_Index
(Typ
)));
3786 -- Check for string too long
3788 Len
:= String_Length
(Strval
(N
));
3790 if UI_From_Int
(Len
) > String_Type_Len
(Bas
) then
3792 -- Issue message. Note that this message is a warning if the
3793 -- string literal is not marked as static (happens in some cases
3794 -- of folding strings known at compile time, but not static).
3795 -- Furthermore in such cases, we reword the message, since there
3796 -- is no string literal in the source program.
3798 if Is_Static_Expression
(N
) then
3799 Apply_Compile_Time_Constraint_Error
3800 (N
, "string literal too long for}", CE_Length_Check_Failed
,
3802 Typ
=> First_Subtype
(Bas
));
3804 Apply_Compile_Time_Constraint_Error
3805 (N
, "string value too long for}", CE_Length_Check_Failed
,
3807 Typ
=> First_Subtype
(Bas
),
3811 -- Test for null string not allowed
3814 and then not Is_Generic_Type
(Xtp
)
3816 Expr_Value
(Lo
) = Expr_Value
(Type_Low_Bound
(Base_Type
(Xtp
)))
3818 -- Same specialization of message
3820 if Is_Static_Expression
(N
) then
3821 Apply_Compile_Time_Constraint_Error
3822 (N
, "null string literal not allowed for}",
3823 CE_Length_Check_Failed
,
3825 Typ
=> First_Subtype
(Bas
));
3827 Apply_Compile_Time_Constraint_Error
3828 (N
, "null string value not allowed for}",
3829 CE_Length_Check_Failed
,
3831 Typ
=> First_Subtype
(Bas
),
3836 end Eval_String_Literal
;
3838 --------------------------
3839 -- Eval_Type_Conversion --
3840 --------------------------
3842 -- A type conversion is potentially static if its subtype mark is for a
3843 -- static scalar subtype, and its operand expression is potentially static
3846 procedure Eval_Type_Conversion
(N
: Node_Id
) is
3847 Operand
: constant Node_Id
:= Expression
(N
);
3848 Source_Type
: constant Entity_Id
:= Etype
(Operand
);
3849 Target_Type
: constant Entity_Id
:= Etype
(N
);
3851 function To_Be_Treated_As_Integer
(T
: Entity_Id
) return Boolean;
3852 -- Returns true if type T is an integer type, or if it is a fixed-point
3853 -- type to be treated as an integer (i.e. the flag Conversion_OK is set
3854 -- on the conversion node).
3856 function To_Be_Treated_As_Real
(T
: Entity_Id
) return Boolean;
3857 -- Returns true if type T is a floating-point type, or if it is a
3858 -- fixed-point type that is not to be treated as an integer (i.e. the
3859 -- flag Conversion_OK is not set on the conversion node).
3861 ------------------------------
3862 -- To_Be_Treated_As_Integer --
3863 ------------------------------
3865 function To_Be_Treated_As_Integer
(T
: Entity_Id
) return Boolean is
3869 or else (Is_Fixed_Point_Type
(T
) and then Conversion_OK
(N
));
3870 end To_Be_Treated_As_Integer
;
3872 ---------------------------
3873 -- To_Be_Treated_As_Real --
3874 ---------------------------
3876 function To_Be_Treated_As_Real
(T
: Entity_Id
) return Boolean is
3879 Is_Floating_Point_Type
(T
)
3880 or else (Is_Fixed_Point_Type
(T
) and then not Conversion_OK
(N
));
3881 end To_Be_Treated_As_Real
;
3888 -- Start of processing for Eval_Type_Conversion
3891 -- Cannot fold if target type is non-static or if semantic error
3893 if not Is_Static_Subtype
(Target_Type
) then
3894 Check_Non_Static_Context
(Operand
);
3896 elsif Error_Posted
(N
) then
3900 -- If not foldable we are done
3902 Test_Expression_Is_Foldable
(N
, Operand
, Stat
, Fold
);
3907 -- Don't try fold if target type has constraint error bounds
3909 elsif not Is_OK_Static_Subtype
(Target_Type
) then
3910 Set_Raises_Constraint_Error
(N
);
3914 -- Remaining processing depends on operand types. Note that in the
3915 -- following type test, fixed-point counts as real unless the flag
3916 -- Conversion_OK is set, in which case it counts as integer.
3918 -- Fold conversion, case of string type. The result is not static
3920 if Is_String_Type
(Target_Type
) then
3921 Fold_Str
(N
, Strval
(Get_String_Val
(Operand
)), Static
=> False);
3924 -- Fold conversion, case of integer target type
3926 elsif To_Be_Treated_As_Integer
(Target_Type
) then
3931 -- Integer to integer conversion
3933 if To_Be_Treated_As_Integer
(Source_Type
) then
3934 Result
:= Expr_Value
(Operand
);
3936 -- Real to integer conversion
3939 Result
:= UR_To_Uint
(Expr_Value_R
(Operand
));
3942 -- If fixed-point type (Conversion_OK must be set), then the
3943 -- result is logically an integer, but we must replace the
3944 -- conversion with the corresponding real literal, since the
3945 -- type from a semantic point of view is still fixed-point.
3947 if Is_Fixed_Point_Type
(Target_Type
) then
3949 (N
, UR_From_Uint
(Result
) * Small_Value
(Target_Type
), Stat
);
3951 -- Otherwise result is integer literal
3954 Fold_Uint
(N
, Result
, Stat
);
3958 -- Fold conversion, case of real target type
3960 elsif To_Be_Treated_As_Real
(Target_Type
) then
3965 if To_Be_Treated_As_Real
(Source_Type
) then
3966 Result
:= Expr_Value_R
(Operand
);
3968 Result
:= UR_From_Uint
(Expr_Value
(Operand
));
3971 Fold_Ureal
(N
, Result
, Stat
);
3974 -- Enumeration types
3977 Fold_Uint
(N
, Expr_Value
(Operand
), Stat
);
3980 if Is_Out_Of_Range
(N
, Etype
(N
), Assume_Valid
=> True) then
3984 end Eval_Type_Conversion
;
3990 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
3991 -- are potentially static if the operand is potentially static (RM 4.9(7)).
3993 procedure Eval_Unary_Op
(N
: Node_Id
) is
3994 Right
: constant Node_Id
:= Right_Opnd
(N
);
3995 Otype
: Entity_Id
:= Empty
;
4000 -- If not foldable we are done
4002 Test_Expression_Is_Foldable
(N
, Right
, Stat
, Fold
);
4008 if Etype
(Right
) = Universal_Integer
4010 Etype
(Right
) = Universal_Real
4012 Otype
:= Find_Universal_Operator_Type
(N
);
4015 -- Fold for integer case
4017 if Is_Integer_Type
(Etype
(N
)) then
4019 Rint
: constant Uint
:= Expr_Value
(Right
);
4023 -- In the case of modular unary plus and abs there is no need
4024 -- to adjust the result of the operation since if the original
4025 -- operand was in bounds the result will be in the bounds of the
4026 -- modular type. However, in the case of modular unary minus the
4027 -- result may go out of the bounds of the modular type and needs
4030 if Nkind
(N
) = N_Op_Plus
then
4033 elsif Nkind
(N
) = N_Op_Minus
then
4034 if Is_Modular_Integer_Type
(Etype
(N
)) then
4035 Result
:= (-Rint
) mod Modulus
(Etype
(N
));
4041 pragma Assert
(Nkind
(N
) = N_Op_Abs
);
4045 Fold_Uint
(N
, Result
, Stat
);
4048 -- Fold for real case
4050 elsif Is_Real_Type
(Etype
(N
)) then
4052 Rreal
: constant Ureal
:= Expr_Value_R
(Right
);
4056 if Nkind
(N
) = N_Op_Plus
then
4058 elsif Nkind
(N
) = N_Op_Minus
then
4059 Result
:= UR_Negate
(Rreal
);
4061 pragma Assert
(Nkind
(N
) = N_Op_Abs
);
4062 Result
:= abs Rreal
;
4065 Fold_Ureal
(N
, Result
, Stat
);
4069 -- If the operator was resolved to a specific type, make sure that type
4070 -- is frozen even if the expression is folded into a literal (which has
4071 -- a universal type).
4073 if Present
(Otype
) then
4074 Freeze_Before
(N
, Otype
);
4078 -------------------------------
4079 -- Eval_Unchecked_Conversion --
4080 -------------------------------
4082 -- Unchecked conversions can never be static, so the only required
4083 -- processing is to check for a non-static context for the operand.
4085 procedure Eval_Unchecked_Conversion
(N
: Node_Id
) is
4087 Check_Non_Static_Context
(Expression
(N
));
4088 end Eval_Unchecked_Conversion
;
4090 --------------------
4091 -- Expr_Rep_Value --
4092 --------------------
4094 function Expr_Rep_Value
(N
: Node_Id
) return Uint
is
4095 Kind
: constant Node_Kind
:= Nkind
(N
);
4099 if Is_Entity_Name
(N
) then
4102 -- An enumeration literal that was either in the source or created
4103 -- as a result of static evaluation.
4105 if Ekind
(Ent
) = E_Enumeration_Literal
then
4106 return Enumeration_Rep
(Ent
);
4108 -- A user defined static constant
4111 pragma Assert
(Ekind
(Ent
) = E_Constant
);
4112 return Expr_Rep_Value
(Constant_Value
(Ent
));
4115 -- An integer literal that was either in the source or created as a
4116 -- result of static evaluation.
4118 elsif Kind
= N_Integer_Literal
then
4121 -- A real literal for a fixed-point type. This must be the fixed-point
4122 -- case, either the literal is of a fixed-point type, or it is a bound
4123 -- of a fixed-point type, with type universal real. In either case we
4124 -- obtain the desired value from Corresponding_Integer_Value.
4126 elsif Kind
= N_Real_Literal
then
4127 pragma Assert
(Is_Fixed_Point_Type
(Underlying_Type
(Etype
(N
))));
4128 return Corresponding_Integer_Value
(N
);
4130 -- Otherwise must be character literal
4133 pragma Assert
(Kind
= N_Character_Literal
);
4136 -- Since Character literals of type Standard.Character don't have any
4137 -- defining character literals built for them, they do not have their
4138 -- Entity set, so just use their Char code. Otherwise for user-
4139 -- defined character literals use their Pos value as usual which is
4140 -- the same as the Rep value.
4143 return Char_Literal_Value
(N
);
4145 return Enumeration_Rep
(Ent
);
4154 function Expr_Value
(N
: Node_Id
) return Uint
is
4155 Kind
: constant Node_Kind
:= Nkind
(N
);
4156 CV_Ent
: CV_Entry
renames CV_Cache
(Nat
(N
) mod CV_Cache_Size
);
4161 -- If already in cache, then we know it's compile time known and we can
4162 -- return the value that was previously stored in the cache since
4163 -- compile time known values cannot change.
4165 if CV_Ent
.N
= N
then
4169 -- Otherwise proceed to test value
4171 if Is_Entity_Name
(N
) then
4174 -- An enumeration literal that was either in the source or created as
4175 -- a result of static evaluation.
4177 if Ekind
(Ent
) = E_Enumeration_Literal
then
4178 Val
:= Enumeration_Pos
(Ent
);
4180 -- A user defined static constant
4183 pragma Assert
(Ekind
(Ent
) = E_Constant
);
4184 Val
:= Expr_Value
(Constant_Value
(Ent
));
4187 -- An integer literal that was either in the source or created as a
4188 -- result of static evaluation.
4190 elsif Kind
= N_Integer_Literal
then
4193 -- A real literal for a fixed-point type. This must be the fixed-point
4194 -- case, either the literal is of a fixed-point type, or it is a bound
4195 -- of a fixed-point type, with type universal real. In either case we
4196 -- obtain the desired value from Corresponding_Integer_Value.
4198 elsif Kind
= N_Real_Literal
then
4199 pragma Assert
(Is_Fixed_Point_Type
(Underlying_Type
(Etype
(N
))));
4200 Val
:= Corresponding_Integer_Value
(N
);
4202 -- The NULL access value
4204 elsif Kind
= N_Null
then
4205 pragma Assert
(Is_Access_Type
(Underlying_Type
(Etype
(N
))));
4208 -- Otherwise must be character literal
4211 pragma Assert
(Kind
= N_Character_Literal
);
4214 -- Since Character literals of type Standard.Character don't
4215 -- have any defining character literals built for them, they
4216 -- do not have their Entity set, so just use their Char
4217 -- code. Otherwise for user-defined character literals use
4218 -- their Pos value as usual.
4221 Val
:= Char_Literal_Value
(N
);
4223 Val
:= Enumeration_Pos
(Ent
);
4227 -- Come here with Val set to value to be returned, set cache
4238 function Expr_Value_E
(N
: Node_Id
) return Entity_Id
is
4239 Ent
: constant Entity_Id
:= Entity
(N
);
4241 if Ekind
(Ent
) = E_Enumeration_Literal
then
4244 pragma Assert
(Ekind
(Ent
) = E_Constant
);
4245 return Expr_Value_E
(Constant_Value
(Ent
));
4253 function Expr_Value_R
(N
: Node_Id
) return Ureal
is
4254 Kind
: constant Node_Kind
:= Nkind
(N
);
4258 if Kind
= N_Real_Literal
then
4261 elsif Kind
= N_Identifier
or else Kind
= N_Expanded_Name
then
4263 pragma Assert
(Ekind
(Ent
) = E_Constant
);
4264 return Expr_Value_R
(Constant_Value
(Ent
));
4266 elsif Kind
= N_Integer_Literal
then
4267 return UR_From_Uint
(Expr_Value
(N
));
4269 -- Here, we have a node that cannot be interpreted as a compile time
4270 -- constant. That is definitely an error.
4273 raise Program_Error
;
4281 function Expr_Value_S
(N
: Node_Id
) return Node_Id
is
4283 if Nkind
(N
) = N_String_Literal
then
4286 pragma Assert
(Ekind
(Entity
(N
)) = E_Constant
);
4287 return Expr_Value_S
(Constant_Value
(Entity
(N
)));
4291 ----------------------------------
4292 -- Find_Universal_Operator_Type --
4293 ----------------------------------
4295 function Find_Universal_Operator_Type
(N
: Node_Id
) return Entity_Id
is
4296 PN
: constant Node_Id
:= Parent
(N
);
4297 Call
: constant Node_Id
:= Original_Node
(N
);
4298 Is_Int
: constant Boolean := Is_Integer_Type
(Etype
(N
));
4300 Is_Fix
: constant Boolean :=
4301 Nkind
(N
) in N_Binary_Op
4302 and then Nkind
(Right_Opnd
(N
)) /= Nkind
(Left_Opnd
(N
));
4303 -- A mixed-mode operation in this context indicates the presence of
4304 -- fixed-point type in the designated package.
4306 Is_Relational
: constant Boolean := Etype
(N
) = Standard_Boolean
;
4307 -- Case where N is a relational (or membership) operator (else it is an
4310 In_Membership
: constant Boolean :=
4311 Nkind
(PN
) in N_Membership_Test
4313 Nkind
(Right_Opnd
(PN
)) = N_Range
4315 Is_Universal_Numeric_Type
(Etype
(Left_Opnd
(PN
)))
4317 Is_Universal_Numeric_Type
4318 (Etype
(Low_Bound
(Right_Opnd
(PN
))))
4320 Is_Universal_Numeric_Type
4321 (Etype
(High_Bound
(Right_Opnd
(PN
))));
4322 -- Case where N is part of a membership test with a universal range
4326 Typ1
: Entity_Id
:= Empty
;
4329 function Is_Mixed_Mode_Operand
(Op
: Node_Id
) return Boolean;
4330 -- Check whether one operand is a mixed-mode operation that requires the
4331 -- presence of a fixed-point type. Given that all operands are universal
4332 -- and have been constant-folded, retrieve the original function call.
4334 ---------------------------
4335 -- Is_Mixed_Mode_Operand --
4336 ---------------------------
4338 function Is_Mixed_Mode_Operand
(Op
: Node_Id
) return Boolean is
4339 Onod
: constant Node_Id
:= Original_Node
(Op
);
4341 return Nkind
(Onod
) = N_Function_Call
4342 and then Present
(Next_Actual
(First_Actual
(Onod
)))
4343 and then Etype
(First_Actual
(Onod
)) /=
4344 Etype
(Next_Actual
(First_Actual
(Onod
)));
4345 end Is_Mixed_Mode_Operand
;
4347 -- Start of processing for Find_Universal_Operator_Type
4350 if Nkind
(Call
) /= N_Function_Call
4351 or else Nkind
(Name
(Call
)) /= N_Expanded_Name
4355 -- There are several cases where the context does not imply the type of
4357 -- - the universal expression appears in a type conversion;
4358 -- - the expression is a relational operator applied to universal
4360 -- - the expression is a membership test with a universal operand
4361 -- and a range with universal bounds.
4363 elsif Nkind
(Parent
(N
)) = N_Type_Conversion
4364 or else Is_Relational
4365 or else In_Membership
4367 Pack
:= Entity
(Prefix
(Name
(Call
)));
4369 -- If the prefix is a package declared elsewhere, iterate over its
4370 -- visible entities, otherwise iterate over all declarations in the
4371 -- designated scope.
4373 if Ekind
(Pack
) = E_Package
4374 and then not In_Open_Scopes
(Pack
)
4376 Priv_E
:= First_Private_Entity
(Pack
);
4382 E
:= First_Entity
(Pack
);
4383 while Present
(E
) and then E
/= Priv_E
loop
4384 if Is_Numeric_Type
(E
)
4385 and then Nkind
(Parent
(E
)) /= N_Subtype_Declaration
4386 and then Comes_From_Source
(E
)
4387 and then Is_Integer_Type
(E
) = Is_Int
4388 and then (Nkind
(N
) in N_Unary_Op
4389 or else Is_Relational
4390 or else Is_Fixed_Point_Type
(E
) = Is_Fix
)
4395 -- Before emitting an error, check for the presence of a
4396 -- mixed-mode operation that specifies a fixed point type.
4400 (Is_Mixed_Mode_Operand
(Left_Opnd
(N
))
4401 or else Is_Mixed_Mode_Operand
(Right_Opnd
(N
)))
4402 and then Is_Fixed_Point_Type
(E
) /= Is_Fixed_Point_Type
(Typ1
)
4405 if Is_Fixed_Point_Type
(E
) then
4410 -- More than one type of the proper class declared in P
4412 Error_Msg_N
("ambiguous operation", N
);
4413 Error_Msg_Sloc
:= Sloc
(Typ1
);
4414 Error_Msg_N
("\possible interpretation (inherited)#", N
);
4415 Error_Msg_Sloc
:= Sloc
(E
);
4416 Error_Msg_N
("\possible interpretation (inherited)#", N
);
4426 end Find_Universal_Operator_Type
;
4428 --------------------------
4429 -- Flag_Non_Static_Expr --
4430 --------------------------
4432 procedure Flag_Non_Static_Expr
(Msg
: String; Expr
: Node_Id
) is
4434 if Error_Posted
(Expr
) and then not All_Errors_Mode
then
4437 Error_Msg_F
(Msg
, Expr
);
4438 Why_Not_Static
(Expr
);
4440 end Flag_Non_Static_Expr
;
4446 procedure Fold_Str
(N
: Node_Id
; Val
: String_Id
; Static
: Boolean) is
4447 Loc
: constant Source_Ptr
:= Sloc
(N
);
4448 Typ
: constant Entity_Id
:= Etype
(N
);
4451 if Raises_Constraint_Error
(N
) then
4452 Set_Is_Static_Expression
(N
, Static
);
4456 Rewrite
(N
, Make_String_Literal
(Loc
, Strval
=> Val
));
4458 -- We now have the literal with the right value, both the actual type
4459 -- and the expected type of this literal are taken from the expression
4460 -- that was evaluated. So now we do the Analyze and Resolve.
4462 -- Note that we have to reset Is_Static_Expression both after the
4463 -- analyze step (because Resolve will evaluate the literal, which
4464 -- will cause semantic errors if it is marked as static), and after
4465 -- the Resolve step (since Resolve in some cases resets this flag).
4468 Set_Is_Static_Expression
(N
, Static
);
4471 Set_Is_Static_Expression
(N
, Static
);
4478 procedure Fold_Uint
(N
: Node_Id
; Val
: Uint
; Static
: Boolean) is
4479 Loc
: constant Source_Ptr
:= Sloc
(N
);
4480 Typ
: Entity_Id
:= Etype
(N
);
4484 if Raises_Constraint_Error
(N
) then
4485 Set_Is_Static_Expression
(N
, Static
);
4489 -- If we are folding a named number, retain the entity in the literal,
4492 if Is_Entity_Name
(N
) and then Ekind
(Entity
(N
)) = E_Named_Integer
then
4498 if Is_Private_Type
(Typ
) then
4499 Typ
:= Full_View
(Typ
);
4502 -- For a result of type integer, substitute an N_Integer_Literal node
4503 -- for the result of the compile time evaluation of the expression.
4504 -- For ASIS use, set a link to the original named number when not in
4505 -- a generic context.
4507 if Is_Integer_Type
(Typ
) then
4508 Rewrite
(N
, Make_Integer_Literal
(Loc
, Val
));
4509 Set_Original_Entity
(N
, Ent
);
4511 -- Otherwise we have an enumeration type, and we substitute either
4512 -- an N_Identifier or N_Character_Literal to represent the enumeration
4513 -- literal corresponding to the given value, which must always be in
4514 -- range, because appropriate tests have already been made for this.
4516 else pragma Assert
(Is_Enumeration_Type
(Typ
));
4517 Rewrite
(N
, Get_Enum_Lit_From_Pos
(Etype
(N
), Val
, Loc
));
4520 -- We now have the literal with the right value, both the actual type
4521 -- and the expected type of this literal are taken from the expression
4522 -- that was evaluated. So now we do the Analyze and Resolve.
4524 -- Note that we have to reset Is_Static_Expression both after the
4525 -- analyze step (because Resolve will evaluate the literal, which
4526 -- will cause semantic errors if it is marked as static), and after
4527 -- the Resolve step (since Resolve in some cases sets this flag).
4530 Set_Is_Static_Expression
(N
, Static
);
4533 Set_Is_Static_Expression
(N
, Static
);
4540 procedure Fold_Ureal
(N
: Node_Id
; Val
: Ureal
; Static
: Boolean) is
4541 Loc
: constant Source_Ptr
:= Sloc
(N
);
4542 Typ
: constant Entity_Id
:= Etype
(N
);
4546 if Raises_Constraint_Error
(N
) then
4547 Set_Is_Static_Expression
(N
, Static
);
4551 -- If we are folding a named number, retain the entity in the literal,
4554 if Is_Entity_Name
(N
) and then Ekind
(Entity
(N
)) = E_Named_Real
then
4560 Rewrite
(N
, Make_Real_Literal
(Loc
, Realval
=> Val
));
4562 -- Set link to original named number, for ASIS use
4564 Set_Original_Entity
(N
, Ent
);
4566 -- We now have the literal with the right value, both the actual type
4567 -- and the expected type of this literal are taken from the expression
4568 -- that was evaluated. So now we do the Analyze and Resolve.
4570 -- Note that we have to reset Is_Static_Expression both after the
4571 -- analyze step (because Resolve will evaluate the literal, which
4572 -- will cause semantic errors if it is marked as static), and after
4573 -- the Resolve step (since Resolve in some cases sets this flag).
4576 Set_Is_Static_Expression
(N
, Static
);
4579 Set_Is_Static_Expression
(N
, Static
);
4586 function From_Bits
(B
: Bits
; T
: Entity_Id
) return Uint
is
4590 for J
in 0 .. B
'Last loop
4596 if Non_Binary_Modulus
(T
) then
4597 V
:= V
mod Modulus
(T
);
4603 --------------------
4604 -- Get_String_Val --
4605 --------------------
4607 function Get_String_Val
(N
: Node_Id
) return Node_Id
is
4609 if Nkind_In
(N
, N_String_Literal
, N_Character_Literal
) then
4612 pragma Assert
(Is_Entity_Name
(N
));
4613 return Get_String_Val
(Constant_Value
(Entity
(N
)));
4621 procedure Initialize
is
4623 CV_Cache
:= (others => (Node_High_Bound
, Uint_0
));
4626 --------------------
4627 -- In_Subrange_Of --
4628 --------------------
4630 function In_Subrange_Of
4633 Fixed_Int
: Boolean := False) return Boolean
4642 if T1
= T2
or else Is_Subtype_Of
(T1
, T2
) then
4645 -- Never in range if both types are not scalar. Don't know if this can
4646 -- actually happen, but just in case.
4648 elsif not Is_Scalar_Type
(T1
) or else not Is_Scalar_Type
(T2
) then
4651 -- If T1 has infinities but T2 doesn't have infinities, then T1 is
4652 -- definitely not compatible with T2.
4654 elsif Is_Floating_Point_Type
(T1
)
4655 and then Has_Infinities
(T1
)
4656 and then Is_Floating_Point_Type
(T2
)
4657 and then not Has_Infinities
(T2
)
4662 L1
:= Type_Low_Bound
(T1
);
4663 H1
:= Type_High_Bound
(T1
);
4665 L2
:= Type_Low_Bound
(T2
);
4666 H2
:= Type_High_Bound
(T2
);
4668 -- Check bounds to see if comparison possible at compile time
4670 if Compile_Time_Compare
(L1
, L2
, Assume_Valid
=> True) in Compare_GE
4672 Compile_Time_Compare
(H1
, H2
, Assume_Valid
=> True) in Compare_LE
4677 -- If bounds not comparable at compile time, then the bounds of T2
4678 -- must be compile time known or we cannot answer the query.
4680 if not Compile_Time_Known_Value
(L2
)
4681 or else not Compile_Time_Known_Value
(H2
)
4686 -- If the bounds of T1 are know at compile time then use these
4687 -- ones, otherwise use the bounds of the base type (which are of
4688 -- course always static).
4690 if not Compile_Time_Known_Value
(L1
) then
4691 L1
:= Type_Low_Bound
(Base_Type
(T1
));
4694 if not Compile_Time_Known_Value
(H1
) then
4695 H1
:= Type_High_Bound
(Base_Type
(T1
));
4698 -- Fixed point types should be considered as such only if
4699 -- flag Fixed_Int is set to False.
4701 if Is_Floating_Point_Type
(T1
) or else Is_Floating_Point_Type
(T2
)
4702 or else (Is_Fixed_Point_Type
(T1
) and then not Fixed_Int
)
4703 or else (Is_Fixed_Point_Type
(T2
) and then not Fixed_Int
)
4706 Expr_Value_R
(L2
) <= Expr_Value_R
(L1
)
4708 Expr_Value_R
(H2
) >= Expr_Value_R
(H1
);
4712 Expr_Value
(L2
) <= Expr_Value
(L1
)
4714 Expr_Value
(H2
) >= Expr_Value
(H1
);
4719 -- If any exception occurs, it means that we have some bug in the compiler
4720 -- possibly triggered by a previous error, or by some unforeseen peculiar
4721 -- occurrence. However, this is only an optimization attempt, so there is
4722 -- really no point in crashing the compiler. Instead we just decide, too
4723 -- bad, we can't figure out the answer in this case after all.
4728 -- Debug flag K disables this behavior (useful for debugging)
4730 if Debug_Flag_K
then
4741 function Is_In_Range
4744 Assume_Valid
: Boolean := False;
4745 Fixed_Int
: Boolean := False;
4746 Int_Real
: Boolean := False) return Boolean
4750 Test_In_Range
(N
, Typ
, Assume_Valid
, Fixed_Int
, Int_Real
) = In_Range
;
4757 function Is_Null_Range
(Lo
: Node_Id
; Hi
: Node_Id
) return Boolean is
4759 if Compile_Time_Known_Value
(Lo
)
4760 and then Compile_Time_Known_Value
(Hi
)
4763 Typ
: Entity_Id
:= Etype
(Lo
);
4764 Full_Typ
: constant Entity_Id
:= Full_View
(Typ
);
4766 -- When called from the frontend, as part of the analysis of
4767 -- potentially static expressions, Typ will be the full view of a
4768 -- type with all the info needed to answer this query. When called
4769 -- from the backend, for example to know whether a range of a loop
4770 -- is null, Typ might be a private type and we need to explicitly
4771 -- switch to its corresponding full view to access the same info.
4773 if Present
(Full_Typ
) then
4777 if Is_Discrete_Type
(Typ
) then
4778 return Expr_Value
(Lo
) > Expr_Value
(Hi
);
4779 else pragma Assert
(Is_Real_Type
(Typ
));
4780 return Expr_Value_R
(Lo
) > Expr_Value_R
(Hi
);
4788 -------------------------
4789 -- Is_OK_Static_Choice --
4790 -------------------------
4792 function Is_OK_Static_Choice
(Choice
: Node_Id
) return Boolean is
4794 -- Check various possibilities for choice
4796 -- Note: for membership tests, we test more cases than are possible
4797 -- (in particular subtype indication), but it doesn't matter because
4798 -- it just won't occur (we have already done a syntax check).
4800 if Nkind
(Choice
) = N_Others_Choice
then
4803 elsif Nkind
(Choice
) = N_Range
then
4804 return Is_OK_Static_Range
(Choice
);
4806 elsif Nkind
(Choice
) = N_Subtype_Indication
4807 or else (Is_Entity_Name
(Choice
) and then Is_Type
(Entity
(Choice
)))
4809 return Is_OK_Static_Subtype
(Etype
(Choice
));
4812 return Is_OK_Static_Expression
(Choice
);
4814 end Is_OK_Static_Choice
;
4816 ------------------------------
4817 -- Is_OK_Static_Choice_List --
4818 ------------------------------
4820 function Is_OK_Static_Choice_List
(Choices
: List_Id
) return Boolean is
4824 if not Is_Static_Choice_List
(Choices
) then
4828 Choice
:= First
(Choices
);
4829 while Present
(Choice
) loop
4830 if not Is_OK_Static_Choice
(Choice
) then
4831 Set_Raises_Constraint_Error
(Choice
);
4839 end Is_OK_Static_Choice_List
;
4841 -----------------------------
4842 -- Is_OK_Static_Expression --
4843 -----------------------------
4845 function Is_OK_Static_Expression
(N
: Node_Id
) return Boolean is
4847 return Is_Static_Expression
(N
) and then not Raises_Constraint_Error
(N
);
4848 end Is_OK_Static_Expression
;
4850 ------------------------
4851 -- Is_OK_Static_Range --
4852 ------------------------
4854 -- A static range is a range whose bounds are static expressions, or a
4855 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4856 -- We have already converted range attribute references, so we get the
4857 -- "or" part of this rule without needing a special test.
4859 function Is_OK_Static_Range
(N
: Node_Id
) return Boolean is
4861 return Is_OK_Static_Expression
(Low_Bound
(N
))
4862 and then Is_OK_Static_Expression
(High_Bound
(N
));
4863 end Is_OK_Static_Range
;
4865 --------------------------
4866 -- Is_OK_Static_Subtype --
4867 --------------------------
4869 -- Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
4870 -- neither bound raises constraint error when evaluated.
4872 function Is_OK_Static_Subtype
(Typ
: Entity_Id
) return Boolean is
4873 Base_T
: constant Entity_Id
:= Base_Type
(Typ
);
4874 Anc_Subt
: Entity_Id
;
4877 -- First a quick check on the non static subtype flag. As described
4878 -- in further detail in Einfo, this flag is not decisive in all cases,
4879 -- but if it is set, then the subtype is definitely non-static.
4881 if Is_Non_Static_Subtype
(Typ
) then
4885 Anc_Subt
:= Ancestor_Subtype
(Typ
);
4887 if Anc_Subt
= Empty
then
4891 if Is_Generic_Type
(Root_Type
(Base_T
))
4892 or else Is_Generic_Actual_Type
(Base_T
)
4896 elsif Has_Dynamic_Predicate_Aspect
(Typ
) then
4901 elsif Is_String_Type
(Typ
) then
4903 Ekind
(Typ
) = E_String_Literal_Subtype
4905 (Is_OK_Static_Subtype
(Component_Type
(Typ
))
4906 and then Is_OK_Static_Subtype
(Etype
(First_Index
(Typ
))));
4910 elsif Is_Scalar_Type
(Typ
) then
4911 if Base_T
= Typ
then
4915 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so use
4916 -- Get_Type_{Low,High}_Bound.
4918 return Is_OK_Static_Subtype
(Anc_Subt
)
4919 and then Is_OK_Static_Expression
(Type_Low_Bound
(Typ
))
4920 and then Is_OK_Static_Expression
(Type_High_Bound
(Typ
));
4923 -- Types other than string and scalar types are never static
4928 end Is_OK_Static_Subtype
;
4930 ---------------------
4931 -- Is_Out_Of_Range --
4932 ---------------------
4934 function Is_Out_Of_Range
4937 Assume_Valid
: Boolean := False;
4938 Fixed_Int
: Boolean := False;
4939 Int_Real
: Boolean := False) return Boolean
4942 return Test_In_Range
(N
, Typ
, Assume_Valid
, Fixed_Int
, Int_Real
) =
4944 end Is_Out_Of_Range
;
4946 ----------------------
4947 -- Is_Static_Choice --
4948 ----------------------
4950 function Is_Static_Choice
(Choice
: Node_Id
) return Boolean is
4952 -- Check various possibilities for choice
4954 -- Note: for membership tests, we test more cases than are possible
4955 -- (in particular subtype indication), but it doesn't matter because
4956 -- it just won't occur (we have already done a syntax check).
4958 if Nkind
(Choice
) = N_Others_Choice
then
4961 elsif Nkind
(Choice
) = N_Range
then
4962 return Is_Static_Range
(Choice
);
4964 elsif Nkind
(Choice
) = N_Subtype_Indication
4965 or else (Is_Entity_Name
(Choice
) and then Is_Type
(Entity
(Choice
)))
4967 return Is_Static_Subtype
(Etype
(Choice
));
4970 return Is_Static_Expression
(Choice
);
4972 end Is_Static_Choice
;
4974 ---------------------------
4975 -- Is_Static_Choice_List --
4976 ---------------------------
4978 function Is_Static_Choice_List
(Choices
: List_Id
) return Boolean is
4982 Choice
:= First
(Choices
);
4983 while Present
(Choice
) loop
4984 if not Is_Static_Choice
(Choice
) then
4992 end Is_Static_Choice_List
;
4994 ---------------------
4995 -- Is_Static_Range --
4996 ---------------------
4998 -- A static range is a range whose bounds are static expressions, or a
4999 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
5000 -- We have already converted range attribute references, so we get the
5001 -- "or" part of this rule without needing a special test.
5003 function Is_Static_Range
(N
: Node_Id
) return Boolean is
5005 return Is_Static_Expression
(Low_Bound
(N
))
5007 Is_Static_Expression
(High_Bound
(N
));
5008 end Is_Static_Range
;
5010 -----------------------
5011 -- Is_Static_Subtype --
5012 -----------------------
5014 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
5016 function Is_Static_Subtype
(Typ
: Entity_Id
) return Boolean is
5017 Base_T
: constant Entity_Id
:= Base_Type
(Typ
);
5018 Anc_Subt
: Entity_Id
;
5021 -- First a quick check on the non static subtype flag. As described
5022 -- in further detail in Einfo, this flag is not decisive in all cases,
5023 -- but if it is set, then the subtype is definitely non-static.
5025 if Is_Non_Static_Subtype
(Typ
) then
5029 Anc_Subt
:= Ancestor_Subtype
(Typ
);
5031 if Anc_Subt
= Empty
then
5035 if Is_Generic_Type
(Root_Type
(Base_T
))
5036 or else Is_Generic_Actual_Type
(Base_T
)
5040 -- If there is a dynamic predicate for the type (declared or inherited)
5041 -- the expression is not static.
5043 elsif Has_Dynamic_Predicate_Aspect
(Typ
)
5044 or else (Is_Derived_Type
(Typ
)
5045 and then Has_Aspect
(Typ
, Aspect_Dynamic_Predicate
))
5051 elsif Is_String_Type
(Typ
) then
5053 Ekind
(Typ
) = E_String_Literal_Subtype
5054 or else (Is_Static_Subtype
(Component_Type
(Typ
))
5055 and then Is_Static_Subtype
(Etype
(First_Index
(Typ
))));
5059 elsif Is_Scalar_Type
(Typ
) then
5060 if Base_T
= Typ
then
5064 return Is_Static_Subtype
(Anc_Subt
)
5065 and then Is_Static_Expression
(Type_Low_Bound
(Typ
))
5066 and then Is_Static_Expression
(Type_High_Bound
(Typ
));
5069 -- Types other than string and scalar types are never static
5074 end Is_Static_Subtype
;
5076 -------------------------------
5077 -- Is_Statically_Unevaluated --
5078 -------------------------------
5080 function Is_Statically_Unevaluated
(Expr
: Node_Id
) return Boolean is
5081 function Check_Case_Expr_Alternative
5082 (CEA
: Node_Id
) return Match_Result
;
5083 -- We have a message emanating from the Expression of a case expression
5084 -- alternative. We examine this alternative, as follows:
5086 -- If the selecting expression of the parent case is non-static, or
5087 -- if any of the discrete choices of the given case alternative are
5088 -- non-static or raise Constraint_Error, return Non_Static.
5090 -- Otherwise check if the selecting expression matches any of the given
5091 -- discrete choices. If so, the alternative is executed and we return
5092 -- Match, otherwise, the alternative can never be executed, and so we
5095 ---------------------------------
5096 -- Check_Case_Expr_Alternative --
5097 ---------------------------------
5099 function Check_Case_Expr_Alternative
5100 (CEA
: Node_Id
) return Match_Result
5102 Case_Exp
: constant Node_Id
:= Parent
(CEA
);
5107 pragma Assert
(Nkind
(Case_Exp
) = N_Case_Expression
);
5109 -- Check that selecting expression is static
5111 if not Is_OK_Static_Expression
(Expression
(Case_Exp
)) then
5115 if not Is_OK_Static_Choice_List
(Discrete_Choices
(CEA
)) then
5119 -- All choices are now known to be static. Now see if alternative
5120 -- matches one of the choices.
5122 Choice
:= First
(Discrete_Choices
(CEA
));
5123 while Present
(Choice
) loop
5125 -- Check various possibilities for choice, returning Match if we
5126 -- find the selecting value matches any of the choices. Note that
5127 -- we know we are the last choice, so we don't have to keep going.
5129 if Nkind
(Choice
) = N_Others_Choice
then
5131 -- Others choice is a bit annoying, it matches if none of the
5132 -- previous alternatives matches (note that we know we are the
5133 -- last alternative in this case, so we can just go backwards
5134 -- from us to see if any previous one matches).
5136 Prev_CEA
:= Prev
(CEA
);
5137 while Present
(Prev_CEA
) loop
5138 if Check_Case_Expr_Alternative
(Prev_CEA
) = Match
then
5147 -- Else we have a normal static choice
5149 elsif Choice_Matches
(Expression
(Case_Exp
), Choice
) = Match
then
5153 -- If we fall through, it means that the discrete choice did not
5154 -- match the selecting expression, so continue.
5159 -- If we get through that loop then all choices were static, and none
5160 -- of them matched the selecting expression. So return No_Match.
5163 end Check_Case_Expr_Alternative
;
5171 -- Start of processing for Is_Statically_Unevaluated
5174 -- The (32.x) references here are from RM section 4.9
5176 -- (32.1) An expression is statically unevaluated if it is part of ...
5178 -- This means we have to climb the tree looking for one of the cases
5185 -- (32.2) The right operand of a static short-circuit control form
5186 -- whose value is determined by its left operand.
5188 -- AND THEN with False as left operand
5190 if Nkind
(P
) = N_And_Then
5191 and then Compile_Time_Known_Value
(Left_Opnd
(P
))
5192 and then Is_False
(Expr_Value
(Left_Opnd
(P
)))
5196 -- OR ELSE with True as left operand
5198 elsif Nkind
(P
) = N_Or_Else
5199 and then Compile_Time_Known_Value
(Left_Opnd
(P
))
5200 and then Is_True
(Expr_Value
(Left_Opnd
(P
)))
5204 -- (32.3) A dependent_expression of an if_expression whose associated
5205 -- condition is static and equals False.
5207 elsif Nkind
(P
) = N_If_Expression
then
5209 Cond
: constant Node_Id
:= First
(Expressions
(P
));
5210 Texp
: constant Node_Id
:= Next
(Cond
);
5211 Fexp
: constant Node_Id
:= Next
(Texp
);
5214 if Compile_Time_Known_Value
(Cond
) then
5216 -- Condition is True and we are in the right operand
5218 if Is_True
(Expr_Value
(Cond
)) and then OldP
= Fexp
then
5221 -- Condition is False and we are in the left operand
5223 elsif Is_False
(Expr_Value
(Cond
)) and then OldP
= Texp
then
5229 -- (32.4) A condition or dependent_expression of an if_expression
5230 -- where the condition corresponding to at least one preceding
5231 -- dependent_expression of the if_expression is static and equals
5234 -- This refers to cases like
5236 -- (if True then 1 elsif 1/0=2 then 2 else 3)
5238 -- But we expand elsif's out anyway, so the above looks like:
5240 -- (if True then 1 else (if 1/0=2 then 2 else 3))
5242 -- So for us this is caught by the above check for the 32.3 case.
5244 -- (32.5) A dependent_expression of a case_expression whose
5245 -- selecting_expression is static and whose value is not covered
5246 -- by the corresponding discrete_choice_list.
5248 elsif Nkind
(P
) = N_Case_Expression_Alternative
then
5250 -- First, we have to be in the expression to suppress messages.
5251 -- If we are within one of the choices, we want the message.
5253 if OldP
= Expression
(P
) then
5255 -- Statically unevaluated if alternative does not match
5257 if Check_Case_Expr_Alternative
(P
) = No_Match
then
5262 -- (32.6) A choice_expression (or a simple_expression of a range
5263 -- that occurs as a membership_choice of a membership_choice_list)
5264 -- of a static membership test that is preceded in the enclosing
5265 -- membership_choice_list by another item whose individual
5266 -- membership test (see (RM 4.5.2)) statically yields True.
5268 elsif Nkind
(P
) in N_Membership_Test
then
5270 -- Only possibly unevaluated if simple expression is static
5272 if not Is_OK_Static_Expression
(Left_Opnd
(P
)) then
5275 -- All members of the choice list must be static
5277 elsif (Present
(Right_Opnd
(P
))
5278 and then not Is_OK_Static_Choice
(Right_Opnd
(P
)))
5279 or else (Present
(Alternatives
(P
))
5281 not Is_OK_Static_Choice_List
(Alternatives
(P
)))
5285 -- If expression is the one and only alternative, then it is
5286 -- definitely not statically unevaluated, so we only have to
5287 -- test the case where there are alternatives present.
5289 elsif Present
(Alternatives
(P
)) then
5291 -- Look for previous matching Choice
5293 Choice
:= First
(Alternatives
(P
));
5294 while Present
(Choice
) loop
5296 -- If we reached us and no previous choices matched, this
5297 -- is not the case where we are statically unevaluated.
5299 exit when OldP
= Choice
;
5301 -- If a previous choice matches, then that is the case where
5302 -- we know our choice is statically unevaluated.
5304 if Choice_Matches
(Left_Opnd
(P
), Choice
) = Match
then
5311 -- If we fall through the loop, we were not one of the choices,
5312 -- we must have been the expression, so that is not covered by
5313 -- this rule, and we keep going.
5319 -- OK, not statically unevaluated at this level, see if we should
5320 -- keep climbing to look for a higher level reason.
5322 -- Special case for component association in aggregates, where
5323 -- we want to keep climbing up to the parent aggregate.
5325 if Nkind
(P
) = N_Component_Association
5326 and then Nkind
(Parent
(P
)) = N_Aggregate
5330 -- All done if not still within subexpression
5333 exit when Nkind
(P
) not in N_Subexpr
;
5337 -- If we fall through the loop, not one of the cases covered!
5340 end Is_Statically_Unevaluated
;
5342 --------------------
5343 -- Not_Null_Range --
5344 --------------------
5346 function Not_Null_Range
(Lo
: Node_Id
; Hi
: Node_Id
) return Boolean is
5348 if Compile_Time_Known_Value
(Lo
)
5349 and then Compile_Time_Known_Value
(Hi
)
5352 Typ
: Entity_Id
:= Etype
(Lo
);
5353 Full_Typ
: constant Entity_Id
:= Full_View
(Typ
);
5355 -- When called from the frontend, as part of the analysis of
5356 -- potentially static expressions, Typ will be the full view of a
5357 -- type with all the info needed to answer this query. When called
5358 -- from the backend, for example to know whether a range of a loop
5359 -- is null, Typ might be a private type and we need to explicitly
5360 -- switch to its corresponding full view to access the same info.
5362 if Present
(Full_Typ
) then
5366 if Is_Discrete_Type
(Typ
) then
5367 return Expr_Value
(Lo
) <= Expr_Value
(Hi
);
5368 else pragma Assert
(Is_Real_Type
(Typ
));
5369 return Expr_Value_R
(Lo
) <= Expr_Value_R
(Hi
);
5382 function OK_Bits
(N
: Node_Id
; Bits
: Uint
) return Boolean is
5384 -- We allow a maximum of 500,000 bits which seems a reasonable limit
5386 if Bits
< 500_000
then
5389 -- Error if this maximum is exceeded
5392 Error_Msg_N
("static value too large, capacity exceeded", N
);
5401 procedure Out_Of_Range
(N
: Node_Id
) is
5403 -- If we have the static expression case, then this is an illegality
5404 -- in Ada 95 mode, except that in an instance, we never generate an
5405 -- error (if the error is legitimate, it was already diagnosed in the
5408 if Is_Static_Expression
(N
)
5409 and then not In_Instance
5410 and then not In_Inlined_Body
5411 and then Ada_Version
>= Ada_95
5413 -- No message if we are statically unevaluated
5415 if Is_Statically_Unevaluated
(N
) then
5418 -- The expression to compute the length of a packed array is attached
5419 -- to the array type itself, and deserves a separate message.
5421 elsif Nkind
(Parent
(N
)) = N_Defining_Identifier
5422 and then Is_Array_Type
(Parent
(N
))
5423 and then Present
(Packed_Array_Impl_Type
(Parent
(N
)))
5424 and then Present
(First_Rep_Item
(Parent
(N
)))
5427 ("length of packed array must not exceed Integer''Last",
5428 First_Rep_Item
(Parent
(N
)));
5429 Rewrite
(N
, Make_Integer_Literal
(Sloc
(N
), Uint_1
));
5431 -- All cases except the special array case
5434 Apply_Compile_Time_Constraint_Error
5435 (N
, "value not in range of}", CE_Range_Check_Failed
);
5438 -- Here we generate a warning for the Ada 83 case, or when we are in an
5439 -- instance, or when we have a non-static expression case.
5442 Apply_Compile_Time_Constraint_Error
5443 (N
, "value not in range of}??", CE_Range_Check_Failed
);
5447 ----------------------
5448 -- Predicates_Match --
5449 ----------------------
5451 function Predicates_Match
(T1
, T2
: Entity_Id
) return Boolean is
5456 if Ada_Version
< Ada_2012
then
5459 -- Both types must have predicates or lack them
5461 elsif Has_Predicates
(T1
) /= Has_Predicates
(T2
) then
5464 -- Check matching predicates
5469 (T1
, Name_Static_Predicate
, Check_Parents
=> False);
5472 (T2
, Name_Static_Predicate
, Check_Parents
=> False);
5474 -- Subtypes statically match if the predicate comes from the
5475 -- same declaration, which can only happen if one is a subtype
5476 -- of the other and has no explicit predicate.
5478 -- Suppress warnings on order of actuals, which is otherwise
5479 -- triggered by one of the two calls below.
5481 pragma Warnings
(Off
);
5482 return Pred1
= Pred2
5483 or else (No
(Pred1
) and then Is_Subtype_Of
(T1
, T2
))
5484 or else (No
(Pred2
) and then Is_Subtype_Of
(T2
, T1
));
5485 pragma Warnings
(On
);
5487 end Predicates_Match
;
5489 ---------------------------------------------
5490 -- Real_Or_String_Static_Predicate_Matches --
5491 ---------------------------------------------
5493 function Real_Or_String_Static_Predicate_Matches
5495 Typ
: Entity_Id
) return Boolean
5497 Expr
: constant Node_Id
:= Static_Real_Or_String_Predicate
(Typ
);
5498 -- The predicate expression from the type
5500 Pfun
: constant Entity_Id
:= Predicate_Function
(Typ
);
5501 -- The entity for the predicate function
5503 Ent_Name
: constant Name_Id
:= Chars
(First_Formal
(Pfun
));
5504 -- The name of the formal of the predicate function. Occurrences of the
5505 -- type name in Expr have been rewritten as references to this formal,
5506 -- and it has a unique name, so we can identify references by this name.
5509 -- Copy of the predicate function tree
5511 function Process
(N
: Node_Id
) return Traverse_Result
;
5512 -- Function used to process nodes during the traversal in which we will
5513 -- find occurrences of the entity name, and replace such occurrences
5514 -- by a real literal with the value to be tested.
5516 procedure Traverse
is new Traverse_Proc
(Process
);
5517 -- The actual traversal procedure
5523 function Process
(N
: Node_Id
) return Traverse_Result
is
5525 if Nkind
(N
) = N_Identifier
and then Chars
(N
) = Ent_Name
then
5527 Nod
: constant Node_Id
:= New_Copy
(Val
);
5529 Set_Sloc
(Nod
, Sloc
(N
));
5534 -- The predicate function may contain string-comparison operations
5535 -- that have been converted into calls to run-time array-comparison
5536 -- routines. To evaluate the predicate statically, we recover the
5537 -- original comparison operation and replace the occurrence of the
5538 -- formal by the static string value. The actuals of the generated
5539 -- call are of the form X'Address.
5541 elsif Nkind
(N
) in N_Op_Compare
5542 and then Nkind
(Left_Opnd
(N
)) = N_Function_Call
5545 C
: constant Node_Id
:= Left_Opnd
(N
);
5546 F
: constant Node_Id
:= First
(Parameter_Associations
(C
));
5547 L
: constant Node_Id
:= Prefix
(F
);
5548 R
: constant Node_Id
:= Prefix
(Next
(F
));
5551 -- If an operand is an entity name, it is the formal of the
5552 -- predicate function, so replace it with the string value.
5553 -- It may be either operand in the call. The other operand
5554 -- is a static string from the original predicate.
5556 if Is_Entity_Name
(L
) then
5557 Rewrite
(Left_Opnd
(N
), New_Copy
(Val
));
5558 Rewrite
(Right_Opnd
(N
), New_Copy
(R
));
5561 Rewrite
(Left_Opnd
(N
), New_Copy
(L
));
5562 Rewrite
(Right_Opnd
(N
), New_Copy
(Val
));
5573 -- Start of processing for Real_Or_String_Static_Predicate_Matches
5576 -- First deal with special case of inherited predicate, where the
5577 -- predicate expression looks like:
5579 -- xxPredicate (typ (Ent)) and then Expr
5581 -- where Expr is the predicate expression for this level, and the
5582 -- left operand is the call to evaluate the inherited predicate.
5584 if Nkind
(Expr
) = N_And_Then
5585 and then Nkind
(Left_Opnd
(Expr
)) = N_Function_Call
5586 and then Is_Predicate_Function
(Entity
(Name
(Left_Opnd
(Expr
))))
5588 -- OK we have the inherited case, so make a call to evaluate the
5589 -- inherited predicate. If that fails, so do we!
5592 Real_Or_String_Static_Predicate_Matches
5594 Typ
=> Etype
(First_Formal
(Entity
(Name
(Left_Opnd
(Expr
))))))
5599 -- Use the right operand for the continued processing
5601 Copy
:= Copy_Separate_Tree
(Right_Opnd
(Expr
));
5603 -- Case where call to predicate function appears on its own (this means
5604 -- that the predicate at this level is just inherited from the parent).
5606 elsif Nkind
(Expr
) = N_Function_Call
then
5608 Typ
: constant Entity_Id
:=
5609 Etype
(First_Formal
(Entity
(Name
(Expr
))));
5612 -- If the inherited predicate is dynamic, just ignore it. We can't
5613 -- go trying to evaluate a dynamic predicate as a static one!
5615 if Has_Dynamic_Predicate_Aspect
(Typ
) then
5618 -- Otherwise inherited predicate is static, check for match
5621 return Real_Or_String_Static_Predicate_Matches
(Val
, Typ
);
5625 -- If not just an inherited predicate, copy whole expression
5628 Copy
:= Copy_Separate_Tree
(Expr
);
5631 -- Now we replace occurrences of the entity by the value
5635 -- And analyze the resulting static expression to see if it is True
5637 Analyze_And_Resolve
(Copy
, Standard_Boolean
);
5638 return Is_True
(Expr_Value
(Copy
));
5639 end Real_Or_String_Static_Predicate_Matches
;
5641 -------------------------
5642 -- Rewrite_In_Raise_CE --
5643 -------------------------
5645 procedure Rewrite_In_Raise_CE
(N
: Node_Id
; Exp
: Node_Id
) is
5646 Typ
: constant Entity_Id
:= Etype
(N
);
5647 Stat
: constant Boolean := Is_Static_Expression
(N
);
5650 -- If we want to raise CE in the condition of a N_Raise_CE node, we
5651 -- can just clear the condition if the reason is appropriate. We do
5652 -- not do this operation if the parent has a reason other than range
5653 -- check failed, because otherwise we would change the reason.
5655 if Present
(Parent
(N
))
5656 and then Nkind
(Parent
(N
)) = N_Raise_Constraint_Error
5657 and then Reason
(Parent
(N
)) =
5658 UI_From_Int
(RT_Exception_Code
'Pos (CE_Range_Check_Failed
))
5660 Set_Condition
(Parent
(N
), Empty
);
5662 -- Else build an explicit N_Raise_CE
5666 Make_Raise_Constraint_Error
(Sloc
(Exp
),
5667 Reason
=> CE_Range_Check_Failed
));
5668 Set_Raises_Constraint_Error
(N
);
5672 -- Set proper flags in result
5674 Set_Raises_Constraint_Error
(N
, True);
5675 Set_Is_Static_Expression
(N
, Stat
);
5676 end Rewrite_In_Raise_CE
;
5678 ---------------------
5679 -- String_Type_Len --
5680 ---------------------
5682 function String_Type_Len
(Stype
: Entity_Id
) return Uint
is
5683 NT
: constant Entity_Id
:= Etype
(First_Index
(Stype
));
5687 if Is_OK_Static_Subtype
(NT
) then
5690 T
:= Base_Type
(NT
);
5693 return Expr_Value
(Type_High_Bound
(T
)) -
5694 Expr_Value
(Type_Low_Bound
(T
)) + 1;
5695 end String_Type_Len
;
5697 ------------------------------------
5698 -- Subtypes_Statically_Compatible --
5699 ------------------------------------
5701 function Subtypes_Statically_Compatible
5704 Formal_Derived_Matching
: Boolean := False) return Boolean
5709 if Is_Scalar_Type
(T1
) then
5711 -- Definitely compatible if we match
5713 if Subtypes_Statically_Match
(T1
, T2
) then
5716 -- If either subtype is nonstatic then they're not compatible
5718 elsif not Is_OK_Static_Subtype
(T1
)
5720 not Is_OK_Static_Subtype
(T2
)
5724 -- Base types must match, but we don't check that (should we???) but
5725 -- we do at least check that both types are real, or both types are
5728 elsif Is_Real_Type
(T1
) /= Is_Real_Type
(T2
) then
5731 -- Here we check the bounds
5735 LB1
: constant Node_Id
:= Type_Low_Bound
(T1
);
5736 HB1
: constant Node_Id
:= Type_High_Bound
(T1
);
5737 LB2
: constant Node_Id
:= Type_Low_Bound
(T2
);
5738 HB2
: constant Node_Id
:= Type_High_Bound
(T2
);
5741 if Is_Real_Type
(T1
) then
5743 Expr_Value_R
(LB1
) > Expr_Value_R
(HB1
)
5745 (Expr_Value_R
(LB2
) <= Expr_Value_R
(LB1
)
5746 and then Expr_Value_R
(HB1
) <= Expr_Value_R
(HB2
));
5750 Expr_Value
(LB1
) > Expr_Value
(HB1
)
5752 (Expr_Value
(LB2
) <= Expr_Value
(LB1
)
5753 and then Expr_Value
(HB1
) <= Expr_Value
(HB2
));
5760 elsif Is_Access_Type
(T1
) then
5762 (not Is_Constrained
(T2
)
5763 or else Subtypes_Statically_Match
5764 (Designated_Type
(T1
), Designated_Type
(T2
)))
5765 and then not (Can_Never_Be_Null
(T2
)
5766 and then not Can_Never_Be_Null
(T1
));
5772 (Is_Composite_Type
(T1
) and then not Is_Constrained
(T2
))
5773 or else Subtypes_Statically_Match
5774 (T1
, T2
, Formal_Derived_Matching
);
5776 end Subtypes_Statically_Compatible
;
5778 -------------------------------
5779 -- Subtypes_Statically_Match --
5780 -------------------------------
5782 -- Subtypes statically match if they have statically matching constraints
5783 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
5784 -- they are the same identical constraint, or if they are static and the
5785 -- values match (RM 4.9.1(1)).
5787 -- In addition, in GNAT, the object size (Esize) values of the types must
5788 -- match if they are set (unless checking an actual for a formal derived
5789 -- type). The use of 'Object_Size can cause this to be false even if the
5790 -- types would otherwise match in the RM sense.
5792 function Subtypes_Statically_Match
5795 Formal_Derived_Matching
: Boolean := False) return Boolean
5798 -- A type always statically matches itself
5803 -- No match if sizes different (from use of 'Object_Size). This test
5804 -- is excluded if Formal_Derived_Matching is True, as the base types
5805 -- can be different in that case and typically have different sizes.
5806 -- ??? Frontend_Layout_On_Target used to set Esizes but this is no
5807 -- longer the case, consider removing the last test below.
5809 elsif not Formal_Derived_Matching
5810 and then Known_Static_Esize
(T1
)
5811 and then Known_Static_Esize
(T2
)
5812 and then Esize
(T1
) /= Esize
(T2
)
5816 -- No match if predicates do not match
5818 elsif not Predicates_Match
(T1
, T2
) then
5823 elsif Is_Scalar_Type
(T1
) then
5825 -- Base types must be the same
5827 if Base_Type
(T1
) /= Base_Type
(T2
) then
5831 -- A constrained numeric subtype never matches an unconstrained
5832 -- subtype, i.e. both types must be constrained or unconstrained.
5834 -- To understand the requirement for this test, see RM 4.9.1(1).
5835 -- As is made clear in RM 3.5.4(11), type Integer, for example is
5836 -- a constrained subtype with constraint bounds matching the bounds
5837 -- of its corresponding unconstrained base type. In this situation,
5838 -- Integer and Integer'Base do not statically match, even though
5839 -- they have the same bounds.
5841 -- We only apply this test to types in Standard and types that appear
5842 -- in user programs. That way, we do not have to be too careful about
5843 -- setting Is_Constrained right for Itypes.
5845 if Is_Numeric_Type
(T1
)
5846 and then (Is_Constrained
(T1
) /= Is_Constrained
(T2
))
5847 and then (Scope
(T1
) = Standard_Standard
5848 or else Comes_From_Source
(T1
))
5849 and then (Scope
(T2
) = Standard_Standard
5850 or else Comes_From_Source
(T2
))
5854 -- A generic scalar type does not statically match its base type
5855 -- (AI-311). In this case we make sure that the formals, which are
5856 -- first subtypes of their bases, are constrained.
5858 elsif Is_Generic_Type
(T1
)
5859 and then Is_Generic_Type
(T2
)
5860 and then (Is_Constrained
(T1
) /= Is_Constrained
(T2
))
5865 -- If there was an error in either range, then just assume the types
5866 -- statically match to avoid further junk errors.
5868 if No
(Scalar_Range
(T1
)) or else No
(Scalar_Range
(T2
))
5869 or else Error_Posted
(Scalar_Range
(T1
))
5870 or else Error_Posted
(Scalar_Range
(T2
))
5875 -- Otherwise both types have bounds that can be compared
5878 LB1
: constant Node_Id
:= Type_Low_Bound
(T1
);
5879 HB1
: constant Node_Id
:= Type_High_Bound
(T1
);
5880 LB2
: constant Node_Id
:= Type_Low_Bound
(T2
);
5881 HB2
: constant Node_Id
:= Type_High_Bound
(T2
);
5884 -- If the bounds are the same tree node, then match (common case)
5886 if LB1
= LB2
and then HB1
= HB2
then
5889 -- Otherwise bounds must be static and identical value
5892 if not Is_OK_Static_Subtype
(T1
)
5894 not Is_OK_Static_Subtype
(T2
)
5898 elsif Is_Real_Type
(T1
) then
5900 Expr_Value_R
(LB1
) = Expr_Value_R
(LB2
)
5902 Expr_Value_R
(HB1
) = Expr_Value_R
(HB2
);
5906 Expr_Value
(LB1
) = Expr_Value
(LB2
)
5908 Expr_Value
(HB1
) = Expr_Value
(HB2
);
5913 -- Type with discriminants
5915 elsif Has_Discriminants
(T1
) or else Has_Discriminants
(T2
) then
5917 -- Because of view exchanges in multiple instantiations, conformance
5918 -- checking might try to match a partial view of a type with no
5919 -- discriminants with a full view that has defaulted discriminants.
5920 -- In such a case, use the discriminant constraint of the full view,
5921 -- which must exist because we know that the two subtypes have the
5924 if Has_Discriminants
(T1
) /= Has_Discriminants
(T2
) then
5925 -- A generic actual type is declared through a subtype declaration
5926 -- and may have an inconsistent indication of the presence of
5927 -- discriminants, so check the type it renames.
5929 if Is_Generic_Actual_Type
(T1
)
5930 and then not Has_Discriminants
(Etype
(T1
))
5931 and then not Has_Discriminants
(T2
)
5935 elsif In_Instance
then
5936 if Is_Private_Type
(T2
)
5937 and then Present
(Full_View
(T2
))
5938 and then Has_Discriminants
(Full_View
(T2
))
5940 return Subtypes_Statically_Match
(T1
, Full_View
(T2
));
5942 elsif Is_Private_Type
(T1
)
5943 and then Present
(Full_View
(T1
))
5944 and then Has_Discriminants
(Full_View
(T1
))
5946 return Subtypes_Statically_Match
(Full_View
(T1
), T2
);
5957 DL1
: constant Elist_Id
:= Discriminant_Constraint
(T1
);
5958 DL2
: constant Elist_Id
:= Discriminant_Constraint
(T2
);
5966 elsif Is_Constrained
(T1
) /= Is_Constrained
(T2
) then
5970 -- Now loop through the discriminant constraints
5972 -- Note: the guard here seems necessary, since it is possible at
5973 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
5975 if Present
(DL1
) and then Present
(DL2
) then
5976 DA1
:= First_Elmt
(DL1
);
5977 DA2
:= First_Elmt
(DL2
);
5978 while Present
(DA1
) loop
5980 Expr1
: constant Node_Id
:= Node
(DA1
);
5981 Expr2
: constant Node_Id
:= Node
(DA2
);
5984 if not Is_OK_Static_Expression
(Expr1
)
5985 or else not Is_OK_Static_Expression
(Expr2
)
5989 -- If either expression raised a constraint error,
5990 -- consider the expressions as matching, since this
5991 -- helps to prevent cascading errors.
5993 elsif Raises_Constraint_Error
(Expr1
)
5994 or else Raises_Constraint_Error
(Expr2
)
5998 elsif Expr_Value
(Expr1
) /= Expr_Value
(Expr2
) then
6011 -- A definite type does not match an indefinite or classwide type.
6012 -- However, a generic type with unknown discriminants may be
6013 -- instantiated with a type with no discriminants, and conformance
6014 -- checking on an inherited operation may compare the actual with the
6015 -- subtype that renames it in the instance.
6017 elsif Has_Unknown_Discriminants
(T1
) /= Has_Unknown_Discriminants
(T2
)
6020 Is_Generic_Actual_Type
(T1
) or else Is_Generic_Actual_Type
(T2
);
6024 elsif Is_Array_Type
(T1
) then
6026 -- If either subtype is unconstrained then both must be, and if both
6027 -- are unconstrained then no further checking is needed.
6029 if not Is_Constrained
(T1
) or else not Is_Constrained
(T2
) then
6030 return not (Is_Constrained
(T1
) or else Is_Constrained
(T2
));
6033 -- Both subtypes are constrained, so check that the index subtypes
6034 -- statically match.
6037 Index1
: Node_Id
:= First_Index
(T1
);
6038 Index2
: Node_Id
:= First_Index
(T2
);
6041 while Present
(Index1
) loop
6043 Subtypes_Statically_Match
(Etype
(Index1
), Etype
(Index2
))
6048 Next_Index
(Index1
);
6049 Next_Index
(Index2
);
6055 elsif Is_Access_Type
(T1
) then
6056 if Can_Never_Be_Null
(T1
) /= Can_Never_Be_Null
(T2
) then
6059 elsif Ekind_In
(T1
, E_Access_Subprogram_Type
,
6060 E_Anonymous_Access_Subprogram_Type
)
6064 (Designated_Type
(T1
),
6065 Designated_Type
(T2
));
6068 Subtypes_Statically_Match
6069 (Designated_Type
(T1
),
6070 Designated_Type
(T2
))
6071 and then Is_Access_Constant
(T1
) = Is_Access_Constant
(T2
);
6074 -- All other types definitely match
6079 end Subtypes_Statically_Match
;
6085 function Test
(Cond
: Boolean) return Uint
is
6094 ---------------------
6095 -- Test_Comparison --
6096 ---------------------
6098 procedure Test_Comparison
6100 Assume_Valid
: Boolean;
6101 True_Result
: out Boolean;
6102 False_Result
: out Boolean)
6104 Left
: constant Node_Id
:= Left_Opnd
(Op
);
6105 Left_Typ
: constant Entity_Id
:= Etype
(Left
);
6106 Orig_Op
: constant Node_Id
:= Original_Node
(Op
);
6108 procedure Replacement_Warning
(Msg
: String);
6109 -- Emit a warning on a comparison that can be replaced by '='
6111 -------------------------
6112 -- Replacement_Warning --
6113 -------------------------
6115 procedure Replacement_Warning
(Msg
: String) is
6117 if Constant_Condition_Warnings
6118 and then Comes_From_Source
(Orig_Op
)
6119 and then Is_Integer_Type
(Left_Typ
)
6120 and then not Error_Posted
(Op
)
6121 and then not Has_Warnings_Off
(Left_Typ
)
6122 and then not In_Instance
6124 Error_Msg_N
(Msg
, Op
);
6126 end Replacement_Warning
;
6130 Res
: constant Compare_Result
:=
6131 Compile_Time_Compare
(Left
, Right_Opnd
(Op
), Assume_Valid
);
6133 -- Start of processing for Test_Comparison
6136 case N_Op_Compare
(Nkind
(Op
)) is
6138 True_Result
:= Res
= EQ
;
6139 False_Result
:= Res
= LT
or else Res
= GT
or else Res
= NE
;
6142 True_Result
:= Res
in Compare_GE
;
6143 False_Result
:= Res
= LT
;
6145 if Res
= LE
and then Nkind
(Orig_Op
) = N_Op_Ge
then
6147 ("can never be greater than, could replace by ""'=""?c?");
6151 True_Result
:= Res
= GT
;
6152 False_Result
:= Res
in Compare_LE
;
6155 True_Result
:= Res
in Compare_LE
;
6156 False_Result
:= Res
= GT
;
6158 if Res
= GE
and then Nkind
(Orig_Op
) = N_Op_Le
then
6160 ("can never be less than, could replace by ""'=""?c?");
6164 True_Result
:= Res
= LT
;
6165 False_Result
:= Res
in Compare_GE
;
6168 True_Result
:= Res
= NE
or else Res
= GT
or else Res
= LT
;
6169 False_Result
:= Res
= EQ
;
6171 end Test_Comparison
;
6173 ---------------------------------
6174 -- Test_Expression_Is_Foldable --
6175 ---------------------------------
6179 procedure Test_Expression_Is_Foldable
6189 if Debug_Flag_Dot_F
and then In_Extended_Main_Source_Unit
(N
) then
6193 -- If operand is Any_Type, just propagate to result and do not
6194 -- try to fold, this prevents cascaded errors.
6196 if Etype
(Op1
) = Any_Type
then
6197 Set_Etype
(N
, Any_Type
);
6200 -- If operand raises constraint error, then replace node N with the
6201 -- raise constraint error node, and we are obviously not foldable.
6202 -- Note that this replacement inherits the Is_Static_Expression flag
6203 -- from the operand.
6205 elsif Raises_Constraint_Error
(Op1
) then
6206 Rewrite_In_Raise_CE
(N
, Op1
);
6209 -- If the operand is not static, then the result is not static, and
6210 -- all we have to do is to check the operand since it is now known
6211 -- to appear in a non-static context.
6213 elsif not Is_Static_Expression
(Op1
) then
6214 Check_Non_Static_Context
(Op1
);
6215 Fold
:= Compile_Time_Known_Value
(Op1
);
6218 -- An expression of a formal modular type is not foldable because
6219 -- the modulus is unknown.
6221 elsif Is_Modular_Integer_Type
(Etype
(Op1
))
6222 and then Is_Generic_Type
(Etype
(Op1
))
6224 Check_Non_Static_Context
(Op1
);
6227 -- Here we have the case of an operand whose type is OK, which is
6228 -- static, and which does not raise constraint error, we can fold.
6231 Set_Is_Static_Expression
(N
);
6235 end Test_Expression_Is_Foldable
;
6239 procedure Test_Expression_Is_Foldable
6245 CRT_Safe
: Boolean := False)
6247 Rstat
: constant Boolean := Is_Static_Expression
(Op1
)
6249 Is_Static_Expression
(Op2
);
6255 -- Inhibit folding if -gnatd.f flag set
6257 if Debug_Flag_Dot_F
and then In_Extended_Main_Source_Unit
(N
) then
6261 -- If either operand is Any_Type, just propagate to result and
6262 -- do not try to fold, this prevents cascaded errors.
6264 if Etype
(Op1
) = Any_Type
or else Etype
(Op2
) = Any_Type
then
6265 Set_Etype
(N
, Any_Type
);
6268 -- If left operand raises constraint error, then replace node N with the
6269 -- Raise_Constraint_Error node, and we are obviously not foldable.
6270 -- Is_Static_Expression is set from the two operands in the normal way,
6271 -- and we check the right operand if it is in a non-static context.
6273 elsif Raises_Constraint_Error
(Op1
) then
6275 Check_Non_Static_Context
(Op2
);
6278 Rewrite_In_Raise_CE
(N
, Op1
);
6279 Set_Is_Static_Expression
(N
, Rstat
);
6282 -- Similar processing for the case of the right operand. Note that we
6283 -- don't use this routine for the short-circuit case, so we do not have
6284 -- to worry about that special case here.
6286 elsif Raises_Constraint_Error
(Op2
) then
6288 Check_Non_Static_Context
(Op1
);
6291 Rewrite_In_Raise_CE
(N
, Op2
);
6292 Set_Is_Static_Expression
(N
, Rstat
);
6295 -- Exclude expressions of a generic modular type, as above
6297 elsif Is_Modular_Integer_Type
(Etype
(Op1
))
6298 and then Is_Generic_Type
(Etype
(Op1
))
6300 Check_Non_Static_Context
(Op1
);
6303 -- If result is not static, then check non-static contexts on operands
6304 -- since one of them may be static and the other one may not be static.
6306 elsif not Rstat
then
6307 Check_Non_Static_Context
(Op1
);
6308 Check_Non_Static_Context
(Op2
);
6311 Fold
:= CRT_Safe_Compile_Time_Known_Value
(Op1
)
6312 and then CRT_Safe_Compile_Time_Known_Value
(Op2
);
6314 Fold
:= Compile_Time_Known_Value
(Op1
)
6315 and then Compile_Time_Known_Value
(Op2
);
6320 -- Else result is static and foldable. Both operands are static, and
6321 -- neither raises constraint error, so we can definitely fold.
6324 Set_Is_Static_Expression
(N
);
6329 end Test_Expression_Is_Foldable
;
6335 function Test_In_Range
6338 Assume_Valid
: Boolean;
6339 Fixed_Int
: Boolean;
6340 Int_Real
: Boolean) return Range_Membership
6345 pragma Warnings
(Off
, Assume_Valid
);
6346 -- For now Assume_Valid is unreferenced since the current implementation
6347 -- always returns Unknown if N is not a compile time known value, but we
6348 -- keep the parameter to allow for future enhancements in which we try
6349 -- to get the information in the variable case as well.
6352 -- If an error was posted on expression, then return Unknown, we do not
6353 -- want cascaded errors based on some false analysis of a junk node.
6355 if Error_Posted
(N
) then
6358 -- Expression that raises constraint error is an odd case. We certainly
6359 -- do not want to consider it to be in range. It might make sense to
6360 -- consider it always out of range, but this causes incorrect error
6361 -- messages about static expressions out of range. So we just return
6362 -- Unknown, which is always safe.
6364 elsif Raises_Constraint_Error
(N
) then
6367 -- Universal types have no range limits, so always in range
6369 elsif Typ
= Universal_Integer
or else Typ
= Universal_Real
then
6372 -- Never known if not scalar type. Don't know if this can actually
6373 -- happen, but our spec allows it, so we must check.
6375 elsif not Is_Scalar_Type
(Typ
) then
6378 -- Never known if this is a generic type, since the bounds of generic
6379 -- types are junk. Note that if we only checked for static expressions
6380 -- (instead of compile time known values) below, we would not need this
6381 -- check, because values of a generic type can never be static, but they
6382 -- can be known at compile time.
6384 elsif Is_Generic_Type
(Typ
) then
6387 -- Case of a known compile time value, where we can check if it is in
6388 -- the bounds of the given type.
6390 elsif Compile_Time_Known_Value
(N
) then
6399 Lo
:= Type_Low_Bound
(Typ
);
6400 Hi
:= Type_High_Bound
(Typ
);
6402 LB_Known
:= Compile_Time_Known_Value
(Lo
);
6403 HB_Known
:= Compile_Time_Known_Value
(Hi
);
6405 -- Fixed point types should be considered as such only if flag
6406 -- Fixed_Int is set to False.
6408 if Is_Floating_Point_Type
(Typ
)
6409 or else (Is_Fixed_Point_Type
(Typ
) and then not Fixed_Int
)
6412 Valr
:= Expr_Value_R
(N
);
6414 if LB_Known
and HB_Known
then
6415 if Valr
>= Expr_Value_R
(Lo
)
6417 Valr
<= Expr_Value_R
(Hi
)
6421 return Out_Of_Range
;
6424 elsif (LB_Known
and then Valr
< Expr_Value_R
(Lo
))
6426 (HB_Known
and then Valr
> Expr_Value_R
(Hi
))
6428 return Out_Of_Range
;
6435 Val
:= Expr_Value
(N
);
6437 if LB_Known
and HB_Known
then
6438 if Val
>= Expr_Value
(Lo
) and then Val
<= Expr_Value
(Hi
)
6442 return Out_Of_Range
;
6445 elsif (LB_Known
and then Val
< Expr_Value
(Lo
))
6447 (HB_Known
and then Val
> Expr_Value
(Hi
))
6449 return Out_Of_Range
;
6457 -- Here for value not known at compile time. Case of expression subtype
6458 -- is Typ or is a subtype of Typ, and we can assume expression is valid.
6459 -- In this case we know it is in range without knowing its value.
6462 and then (Etype
(N
) = Typ
or else Is_Subtype_Of
(Etype
(N
), Typ
))
6466 -- Another special case. For signed integer types, if the target type
6467 -- has Is_Known_Valid set, and the source type does not have a larger
6468 -- size, then the source value must be in range. We exclude biased
6469 -- types, because they bizarrely can generate out of range values.
6471 elsif Is_Signed_Integer_Type
(Etype
(N
))
6472 and then Is_Known_Valid
(Typ
)
6473 and then Esize
(Etype
(N
)) <= Esize
(Typ
)
6474 and then not Has_Biased_Representation
(Etype
(N
))
6478 -- For all other cases, result is unknown
6489 procedure To_Bits
(U
: Uint
; B
: out Bits
) is
6491 for J
in 0 .. B
'Last loop
6492 B
(J
) := (U
/ (2 ** J
)) mod 2 /= 0;
6496 --------------------
6497 -- Why_Not_Static --
6498 --------------------
6500 procedure Why_Not_Static
(Expr
: Node_Id
) is
6501 N
: constant Node_Id
:= Original_Node
(Expr
);
6502 Typ
: Entity_Id
:= Empty
;
6507 procedure Why_Not_Static_List
(L
: List_Id
);
6508 -- A version that can be called on a list of expressions. Finds all
6509 -- non-static violations in any element of the list.
6511 -------------------------
6512 -- Why_Not_Static_List --
6513 -------------------------
6515 procedure Why_Not_Static_List
(L
: List_Id
) is
6518 if Is_Non_Empty_List
(L
) then
6520 while Present
(N
) loop
6525 end Why_Not_Static_List
;
6527 -- Start of processing for Why_Not_Static
6530 -- Ignore call on error or empty node
6532 if No
(Expr
) or else Nkind
(Expr
) = N_Error
then
6536 -- Preprocessing for sub expressions
6538 if Nkind
(Expr
) in N_Subexpr
then
6540 -- Nothing to do if expression is static
6542 if Is_OK_Static_Expression
(Expr
) then
6546 -- Test for constraint error raised
6548 if Raises_Constraint_Error
(Expr
) then
6550 -- Special case membership to find out which piece to flag
6552 if Nkind
(N
) in N_Membership_Test
then
6553 if Raises_Constraint_Error
(Left_Opnd
(N
)) then
6554 Why_Not_Static
(Left_Opnd
(N
));
6557 elsif Present
(Right_Opnd
(N
))
6558 and then Raises_Constraint_Error
(Right_Opnd
(N
))
6560 Why_Not_Static
(Right_Opnd
(N
));
6564 pragma Assert
(Present
(Alternatives
(N
)));
6566 Alt
:= First
(Alternatives
(N
));
6567 while Present
(Alt
) loop
6568 if Raises_Constraint_Error
(Alt
) then
6569 Why_Not_Static
(Alt
);
6577 -- Special case a range to find out which bound to flag
6579 elsif Nkind
(N
) = N_Range
then
6580 if Raises_Constraint_Error
(Low_Bound
(N
)) then
6581 Why_Not_Static
(Low_Bound
(N
));
6584 elsif Raises_Constraint_Error
(High_Bound
(N
)) then
6585 Why_Not_Static
(High_Bound
(N
));
6589 -- Special case attribute to see which part to flag
6591 elsif Nkind
(N
) = N_Attribute_Reference
then
6592 if Raises_Constraint_Error
(Prefix
(N
)) then
6593 Why_Not_Static
(Prefix
(N
));
6597 if Present
(Expressions
(N
)) then
6598 Exp
:= First
(Expressions
(N
));
6599 while Present
(Exp
) loop
6600 if Raises_Constraint_Error
(Exp
) then
6601 Why_Not_Static
(Exp
);
6609 -- Special case a subtype name
6611 elsif Is_Entity_Name
(Expr
) and then Is_Type
(Entity
(Expr
)) then
6613 ("!& is not a static subtype (RM 4.9(26))", N
, Entity
(Expr
));
6617 -- End of special cases
6620 ("!expression raises exception, cannot be static (RM 4.9(34))",
6625 -- If no type, then something is pretty wrong, so ignore
6627 Typ
:= Etype
(Expr
);
6633 -- Type must be scalar or string type (but allow Bignum, since this
6634 -- is really a scalar type from our point of view in this diagnosis).
6636 if not Is_Scalar_Type
(Typ
)
6637 and then not Is_String_Type
(Typ
)
6638 and then not Is_RTE
(Typ
, RE_Bignum
)
6641 ("!static expression must have scalar or string type " &
6647 -- If we got through those checks, test particular node kind
6653 when N_Expanded_Name
6659 if Is_Named_Number
(E
) then
6662 elsif Ekind
(E
) = E_Constant
then
6664 -- One case we can give a metter message is when we have a
6665 -- string literal created by concatenating an aggregate with
6666 -- an others expression.
6668 Entity_Case
: declare
6669 CV
: constant Node_Id
:= Constant_Value
(E
);
6670 CO
: constant Node_Id
:= Original_Node
(CV
);
6672 function Is_Aggregate
(N
: Node_Id
) return Boolean;
6673 -- See if node N came from an others aggregate, if so
6674 -- return True and set Error_Msg_Sloc to aggregate.
6680 function Is_Aggregate
(N
: Node_Id
) return Boolean is
6682 if Nkind
(Original_Node
(N
)) = N_Aggregate
then
6683 Error_Msg_Sloc
:= Sloc
(Original_Node
(N
));
6686 elsif Is_Entity_Name
(N
)
6687 and then Ekind
(Entity
(N
)) = E_Constant
6689 Nkind
(Original_Node
(Constant_Value
(Entity
(N
)))) =
6693 Sloc
(Original_Node
(Constant_Value
(Entity
(N
))));
6701 -- Start of processing for Entity_Case
6704 if Is_Aggregate
(CV
)
6705 or else (Nkind
(CO
) = N_Op_Concat
6706 and then (Is_Aggregate
(Left_Opnd
(CO
))
6708 Is_Aggregate
(Right_Opnd
(CO
))))
6710 Error_Msg_N
("!aggregate (#) is never static", N
);
6712 elsif No
(CV
) or else not Is_Static_Expression
(CV
) then
6714 ("!& is not a static constant (RM 4.9(5))", N
, E
);
6718 elsif Is_Type
(E
) then
6720 ("!& is not a static subtype (RM 4.9(26))", N
, E
);
6724 ("!& is not static constant or named number "
6725 & "(RM 4.9(5))", N
, E
);
6734 if Nkind
(N
) in N_Op_Shift
then
6736 ("!shift functions are never static (RM 4.9(6,18))", N
);
6738 Why_Not_Static
(Left_Opnd
(N
));
6739 Why_Not_Static
(Right_Opnd
(N
));
6745 Why_Not_Static
(Right_Opnd
(N
));
6747 -- Attribute reference
6749 when N_Attribute_Reference
=>
6750 Why_Not_Static_List
(Expressions
(N
));
6752 E
:= Etype
(Prefix
(N
));
6754 if E
= Standard_Void_Type
then
6758 -- Special case non-scalar'Size since this is a common error
6760 if Attribute_Name
(N
) = Name_Size
then
6762 ("!size attribute is only static for static scalar type "
6763 & "(RM 4.9(7,8))", N
);
6767 elsif Is_Array_Type
(E
) then
6768 if not Nam_In
(Attribute_Name
(N
), Name_First
,
6773 ("!static array attribute must be Length, First, or Last "
6774 & "(RM 4.9(8))", N
);
6776 -- Since we know the expression is not-static (we already
6777 -- tested for this, must mean array is not static).
6781 ("!prefix is non-static array (RM 4.9(8))", Prefix
(N
));
6786 -- Special case generic types, since again this is a common source
6789 elsif Is_Generic_Actual_Type
(E
) or else Is_Generic_Type
(E
) then
6791 ("!attribute of generic type is never static "
6792 & "(RM 4.9(7,8))", N
);
6794 elsif Is_OK_Static_Subtype
(E
) then
6797 elsif Is_Scalar_Type
(E
) then
6799 ("!prefix type for attribute is not static scalar subtype "
6800 & "(RM 4.9(7))", N
);
6804 ("!static attribute must apply to array/scalar type "
6805 & "(RM 4.9(7,8))", N
);
6810 when N_String_Literal
=>
6812 ("!subtype of string literal is non-static (RM 4.9(4))", N
);
6814 -- Explicit dereference
6816 when N_Explicit_Dereference
=>
6818 ("!explicit dereference is never static (RM 4.9)", N
);
6822 when N_Function_Call
=>
6823 Why_Not_Static_List
(Parameter_Associations
(N
));
6825 -- Complain about non-static function call unless we have Bignum
6826 -- which means that the underlying expression is really some
6827 -- scalar arithmetic operation.
6829 if not Is_RTE
(Typ
, RE_Bignum
) then
6830 Error_Msg_N
("!non-static function call (RM 4.9(6,18))", N
);
6833 -- Parameter assocation (test actual parameter)
6835 when N_Parameter_Association
=>
6836 Why_Not_Static
(Explicit_Actual_Parameter
(N
));
6838 -- Indexed component
6840 when N_Indexed_Component
=>
6841 Error_Msg_N
("!indexed component is never static (RM 4.9)", N
);
6845 when N_Procedure_Call_Statement
=>
6846 Error_Msg_N
("!procedure call is never static (RM 4.9)", N
);
6848 -- Qualified expression (test expression)
6850 when N_Qualified_Expression
=>
6851 Why_Not_Static
(Expression
(N
));
6856 | N_Extension_Aggregate
6858 Error_Msg_N
("!an aggregate is never static (RM 4.9)", N
);
6863 Why_Not_Static
(Low_Bound
(N
));
6864 Why_Not_Static
(High_Bound
(N
));
6866 -- Range constraint, test range expression
6868 when N_Range_Constraint
=>
6869 Why_Not_Static
(Range_Expression
(N
));
6871 -- Subtype indication, test constraint
6873 when N_Subtype_Indication
=>
6874 Why_Not_Static
(Constraint
(N
));
6876 -- Selected component
6878 when N_Selected_Component
=>
6879 Error_Msg_N
("!selected component is never static (RM 4.9)", N
);
6884 Error_Msg_N
("!slice is never static (RM 4.9)", N
);
6886 when N_Type_Conversion
=>
6887 Why_Not_Static
(Expression
(N
));
6889 if not Is_Scalar_Type
(Entity
(Subtype_Mark
(N
)))
6890 or else not Is_OK_Static_Subtype
(Entity
(Subtype_Mark
(N
)))
6893 ("!static conversion requires static scalar subtype result "
6894 & "(RM 4.9(9))", N
);
6897 -- Unchecked type conversion
6899 when N_Unchecked_Type_Conversion
=>
6901 ("!unchecked type conversion is never static (RM 4.9)", N
);
6903 -- All other cases, no reason to give