1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
90 #include "coretypes.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
100 #include "insn-config.h"
102 #include "emit-rtl.h"
104 #include "diagnostic.h"
106 #include "stor-layout.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
114 #include "tree-pretty-print.h"
115 #include "rtl-iter.h"
116 #include "fibonacci_heap.h"
117 #include "print-rtl.h"
118 #include "function-abi.h"
119 #include "mux-utils.h"
121 typedef fibonacci_heap
<long, basic_block_def
> bb_heap_t
;
123 /* var-tracking.cc assumes that tree code with the same value as VALUE rtx code
124 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
125 Currently the value is the same as IDENTIFIER_NODE, which has such
126 a property. If this compile time assertion ever fails, make sure that
127 the new tree code that equals (int) VALUE has the same property. */
128 extern char check_value_val
[(int) VALUE
== (int) IDENTIFIER_NODE
? 1 : -1];
130 /* Type of micro operation. */
131 enum micro_operation_type
133 MO_USE
, /* Use location (REG or MEM). */
134 MO_USE_NO_VAR
,/* Use location which is not associated with a variable
135 or the variable is not trackable. */
136 MO_VAL_USE
, /* Use location which is associated with a value. */
137 MO_VAL_LOC
, /* Use location which appears in a debug insn. */
138 MO_VAL_SET
, /* Set location associated with a value. */
139 MO_SET
, /* Set location. */
140 MO_COPY
, /* Copy the same portion of a variable from one
141 location to another. */
142 MO_CLOBBER
, /* Clobber location. */
143 MO_CALL
, /* Call insn. */
144 MO_ADJUST
/* Adjust stack pointer. */
148 static const char * const ATTRIBUTE_UNUSED
149 micro_operation_type_name
[] = {
162 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
163 Notes emitted as AFTER_CALL are to take effect during the call,
164 rather than after the call. */
167 EMIT_NOTE_BEFORE_INSN
,
168 EMIT_NOTE_AFTER_INSN
,
169 EMIT_NOTE_AFTER_CALL_INSN
172 /* Structure holding information about micro operation. */
173 struct micro_operation
175 /* Type of micro operation. */
176 enum micro_operation_type type
;
178 /* The instruction which the micro operation is in, for MO_USE,
179 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
180 instruction or note in the original flow (before any var-tracking
181 notes are inserted, to simplify emission of notes), for MO_SET
186 /* Location. For MO_SET and MO_COPY, this is the SET that
187 performs the assignment, if known, otherwise it is the target
188 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
189 CONCAT of the VALUE and the LOC associated with it. For
190 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
191 associated with it. */
194 /* Stack adjustment. */
195 HOST_WIDE_INT adjust
;
200 /* A declaration of a variable, or an RTL value being handled like a
201 declaration by pointer_mux. */
202 typedef pointer_mux
<tree_node
, rtx_def
> decl_or_value
;
204 /* Return true if a decl_or_value DV is a DECL or NULL. */
206 dv_is_decl_p (decl_or_value dv
)
208 return dv
.is_first ();
211 /* Return true if a decl_or_value is a VALUE rtl. */
213 dv_is_value_p (decl_or_value dv
)
215 return dv
&& !dv_is_decl_p (dv
);
218 /* Return the decl in the decl_or_value. */
220 dv_as_decl (decl_or_value dv
)
222 gcc_checking_assert (dv_is_decl_p (dv
));
223 return dv
.known_first ();
226 /* Return the value in the decl_or_value. */
228 dv_as_value (decl_or_value dv
)
230 gcc_checking_assert (dv_is_value_p (dv
));
231 return dv
.known_second ();
235 /* Description of location of a part of a variable. The content of a physical
236 register is described by a chain of these structures.
237 The chains are pretty short (usually 1 or 2 elements) and thus
238 chain is the best data structure. */
241 /* Pointer to next member of the list. */
244 /* The rtx of register. */
247 /* The declaration corresponding to LOC. */
250 /* Offset from start of DECL. */
251 HOST_WIDE_INT offset
;
254 /* Structure for chaining the locations. */
255 struct location_chain
257 /* Next element in the chain. */
258 location_chain
*next
;
260 /* The location (REG, MEM or VALUE). */
263 /* The "value" stored in this location. */
267 enum var_init_status init
;
270 /* A vector of loc_exp_dep holds the active dependencies of a one-part
271 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
272 location of DV. Each entry is also part of VALUE' s linked-list of
273 backlinks back to DV. */
276 /* The dependent DV. */
278 /* The dependency VALUE or DECL_DEBUG. */
280 /* The next entry in VALUE's backlinks list. */
281 struct loc_exp_dep
*next
;
282 /* A pointer to the pointer to this entry (head or prev's next) in
283 the doubly-linked list. */
284 struct loc_exp_dep
**pprev
;
288 /* This data structure holds information about the depth of a variable
292 /* This measures the complexity of the expanded expression. It
293 grows by one for each level of expansion that adds more than one
296 /* This counts the number of ENTRY_VALUE expressions in an
297 expansion. We want to minimize their use. */
301 /* Type for dependencies actively used when expand FROM into cur_loc. */
302 typedef vec
<loc_exp_dep
, va_heap
, vl_embed
> deps_vec
;
304 /* This data structure is allocated for one-part variables at the time
305 of emitting notes. */
308 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
309 computation used the expansion of this variable, and that ought
310 to be notified should this variable change. If the DV's cur_loc
311 expanded to NULL, all components of the loc list are regarded as
312 active, so that any changes in them give us a chance to get a
313 location. Otherwise, only components of the loc that expanded to
314 non-NULL are regarded as active dependencies. */
315 loc_exp_dep
*backlinks
;
316 /* This holds the LOC that was expanded into cur_loc. We need only
317 mark a one-part variable as changed if the FROM loc is removed,
318 or if it has no known location and a loc is added, or if it gets
319 a change notification from any of its active dependencies. */
321 /* The depth of the cur_loc expression. */
323 /* Dependencies actively used when expand FROM into cur_loc. */
327 /* Structure describing one part of variable. */
330 /* Chain of locations of the part. */
331 location_chain
*loc_chain
;
333 /* Location which was last emitted to location list. */
338 /* The offset in the variable, if !var->onepart. */
339 HOST_WIDE_INT offset
;
341 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
342 struct onepart_aux
*onepaux
;
346 /* Maximum number of location parts. */
347 #define MAX_VAR_PARTS 16
349 /* Enumeration type used to discriminate various types of one-part
353 /* Not a one-part variable. */
355 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
357 /* A DEBUG_EXPR_DECL. */
363 /* Structure describing where the variable is located. */
366 /* The declaration of the variable, or an RTL value being handled
367 like a declaration. */
370 /* Reference count. */
373 /* Number of variable parts. */
376 /* What type of DV this is, according to enum onepart_enum. */
377 ENUM_BITFIELD (onepart_enum
) onepart
: CHAR_BIT
;
379 /* True if this variable_def struct is currently in the
380 changed_variables hash table. */
381 bool in_changed_variables
;
383 /* The variable parts. */
384 variable_part var_part
[1];
387 /* Pointer to the BB's information specific to variable tracking pass. */
388 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
390 /* Return MEM_OFFSET (MEM) as a HOST_WIDE_INT, or 0 if we can't. */
392 static inline HOST_WIDE_INT
393 int_mem_offset (const_rtx mem
)
395 HOST_WIDE_INT offset
;
396 if (MEM_OFFSET_KNOWN_P (mem
) && MEM_OFFSET (mem
).is_constant (&offset
))
401 #if CHECKING_P && (GCC_VERSION >= 2007)
403 /* Access VAR's Ith part's offset, checking that it's not a one-part
405 #define VAR_PART_OFFSET(var, i) __extension__ \
406 (*({ variable *const __v = (var); \
407 gcc_checking_assert (!__v->onepart); \
408 &__v->var_part[(i)].aux.offset; }))
410 /* Access VAR's one-part auxiliary data, checking that it is a
411 one-part variable. */
412 #define VAR_LOC_1PAUX(var) __extension__ \
413 (*({ variable *const __v = (var); \
414 gcc_checking_assert (__v->onepart); \
415 &__v->var_part[0].aux.onepaux; }))
418 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
419 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
422 /* These are accessor macros for the one-part auxiliary data. When
423 convenient for users, they're guarded by tests that the data was
425 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
426 ? VAR_LOC_1PAUX (var)->backlinks \
428 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
429 ? &VAR_LOC_1PAUX (var)->backlinks \
431 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
432 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
433 #define VAR_LOC_DEP_VEC(var) var_loc_dep_vec (var)
435 /* Implements the VAR_LOC_DEP_VEC above as a function to work around
436 a bogus -Wnonnull (PR c/95554). */
438 static inline deps_vec
*
439 var_loc_dep_vec (variable
*var
)
441 return VAR_LOC_1PAUX (var
) ? &VAR_LOC_1PAUX (var
)->deps
: NULL
;
445 typedef unsigned int dvuid
;
447 /* Return the uid of DV. */
450 dv_uid (decl_or_value dv
)
452 if (dv_is_value_p (dv
))
453 return CSELIB_VAL_PTR (dv_as_value (dv
))->uid
;
455 return DECL_UID (dv_as_decl (dv
));
458 /* Compute the hash from the uid. */
460 static inline hashval_t
461 dv_uid2hash (dvuid uid
)
466 /* The hash function for a mask table in a shared_htab chain. */
468 static inline hashval_t
469 dv_htab_hash (decl_or_value dv
)
471 return dv_uid2hash (dv_uid (dv
));
474 static void variable_htab_free (void *);
476 /* Variable hashtable helpers. */
478 struct variable_hasher
: pointer_hash
<variable
>
480 typedef decl_or_value compare_type
;
481 static inline hashval_t
hash (const variable
*);
482 static inline bool equal (const variable
*, const decl_or_value
);
483 static inline void remove (variable
*);
486 /* The hash function for variable_htab, computes the hash value
487 from the declaration of variable X. */
490 variable_hasher::hash (const variable
*v
)
492 return dv_htab_hash (v
->dv
);
495 /* Compare the declaration of variable X with declaration Y. */
498 variable_hasher::equal (const variable
*v
, const decl_or_value y
)
503 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
506 variable_hasher::remove (variable
*var
)
508 variable_htab_free (var
);
511 typedef hash_table
<variable_hasher
> variable_table_type
;
512 typedef variable_table_type::iterator variable_iterator_type
;
514 /* Structure for passing some other parameters to function
515 emit_note_insn_var_location. */
516 struct emit_note_data
518 /* The instruction which the note will be emitted before/after. */
521 /* Where the note will be emitted (before/after insn)? */
522 enum emit_note_where where
;
524 /* The variables and values active at this point. */
525 variable_table_type
*vars
;
528 /* Structure holding a refcounted hash table. If refcount > 1,
529 it must be first unshared before modified. */
532 /* Reference count. */
535 /* Actual hash table. */
536 variable_table_type
*htab
;
539 /* Structure holding the IN or OUT set for a basic block. */
542 /* Adjustment of stack offset. */
543 HOST_WIDE_INT stack_adjust
;
545 /* Attributes for registers (lists of attrs). */
546 attrs
*regs
[FIRST_PSEUDO_REGISTER
];
548 /* Variable locations. */
551 /* Vars that is being traversed. */
552 shared_hash
*traversed_vars
;
555 /* The structure (one for each basic block) containing the information
556 needed for variable tracking. */
557 struct variable_tracking_info
559 /* The vector of micro operations. */
560 vec
<micro_operation
> mos
;
562 /* The IN and OUT set for dataflow analysis. */
566 /* The permanent-in dataflow set for this block. This is used to
567 hold values for which we had to compute entry values. ??? This
568 should probably be dynamically allocated, to avoid using more
569 memory in non-debug builds. */
572 /* Has the block been visited in DFS? */
575 /* Has the block been flooded in VTA? */
580 /* Alloc pool for struct attrs_def. */
581 object_allocator
<attrs
> attrs_pool ("attrs pool");
583 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
585 static pool_allocator var_pool
586 ("variable_def pool", sizeof (variable
) +
587 (MAX_VAR_PARTS
- 1) * sizeof (((variable
*)NULL
)->var_part
[0]));
589 /* Alloc pool for struct variable_def with a single var_part entry. */
590 static pool_allocator valvar_pool
591 ("small variable_def pool", sizeof (variable
));
593 /* Alloc pool for struct location_chain. */
594 static object_allocator
<location_chain
> location_chain_pool
595 ("location_chain pool");
597 /* Alloc pool for struct shared_hash. */
598 static object_allocator
<shared_hash
> shared_hash_pool ("shared_hash pool");
600 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
601 object_allocator
<loc_exp_dep
> loc_exp_dep_pool ("loc_exp_dep pool");
603 /* Changed variables, notes will be emitted for them. */
604 static variable_table_type
*changed_variables
;
606 /* Shall notes be emitted? */
607 static bool emit_notes
;
609 /* Values whose dynamic location lists have gone empty, but whose
610 cselib location lists are still usable. Use this to hold the
611 current location, the backlinks, etc, during emit_notes. */
612 static variable_table_type
*dropped_values
;
614 /* Empty shared hashtable. */
615 static shared_hash
*empty_shared_hash
;
617 /* Scratch register bitmap used by cselib_expand_value_rtx. */
618 static bitmap scratch_regs
= NULL
;
620 #ifdef HAVE_window_save
621 struct GTY(()) parm_reg
{
627 /* Vector of windowed parameter registers, if any. */
628 static vec
<parm_reg
, va_gc
> *windowed_parm_regs
= NULL
;
631 /* Variable used to tell whether cselib_process_insn called our hook. */
632 static bool cselib_hook_called
;
634 /* Local function prototypes. */
635 static void stack_adjust_offset_pre_post (rtx
, HOST_WIDE_INT
*,
637 static void insn_stack_adjust_offset_pre_post (rtx_insn
*, HOST_WIDE_INT
*,
639 static bool vt_stack_adjustments (void);
641 static void init_attrs_list_set (attrs
**);
642 static void attrs_list_clear (attrs
**);
643 static attrs
*attrs_list_member (attrs
*, decl_or_value
, HOST_WIDE_INT
);
644 static void attrs_list_insert (attrs
**, decl_or_value
, HOST_WIDE_INT
, rtx
);
645 static void attrs_list_copy (attrs
**, attrs
*);
646 static void attrs_list_union (attrs
**, attrs
*);
648 static variable
**unshare_variable (dataflow_set
*set
, variable
**slot
,
649 variable
*var
, enum var_init_status
);
650 static void vars_copy (variable_table_type
*, variable_table_type
*);
651 static tree
var_debug_decl (tree
);
652 static void var_reg_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
653 static void var_reg_delete_and_set (dataflow_set
*, rtx
, bool,
654 enum var_init_status
, rtx
);
655 static void var_reg_delete (dataflow_set
*, rtx
, bool);
656 static void var_regno_delete (dataflow_set
*, int);
657 static void var_mem_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
658 static void var_mem_delete_and_set (dataflow_set
*, rtx
, bool,
659 enum var_init_status
, rtx
);
660 static void var_mem_delete (dataflow_set
*, rtx
, bool);
662 static void dataflow_set_init (dataflow_set
*);
663 static void dataflow_set_clear (dataflow_set
*);
664 static void dataflow_set_copy (dataflow_set
*, dataflow_set
*);
665 static int variable_union_info_cmp_pos (const void *, const void *);
666 static void dataflow_set_union (dataflow_set
*, dataflow_set
*);
667 static location_chain
*find_loc_in_1pdv (rtx
, variable
*,
668 variable_table_type
*);
669 static bool canon_value_cmp (rtx
, rtx
);
670 static int loc_cmp (rtx
, rtx
);
671 static bool variable_part_different_p (variable_part
*, variable_part
*);
672 static bool onepart_variable_different_p (variable
*, variable
*);
673 static bool variable_different_p (variable
*, variable
*);
674 static bool dataflow_set_different (dataflow_set
*, dataflow_set
*);
675 static void dataflow_set_destroy (dataflow_set
*);
677 static bool track_expr_p (tree
, bool);
678 static void add_uses_1 (rtx
*, void *);
679 static void add_stores (rtx
, const_rtx
, void *);
680 static bool compute_bb_dataflow (basic_block
);
681 static bool vt_find_locations (void);
683 static void dump_attrs_list (attrs
*);
684 static void dump_var (variable
*);
685 static void dump_vars (variable_table_type
*);
686 static void dump_dataflow_set (dataflow_set
*);
687 static void dump_dataflow_sets (void);
689 static void set_dv_changed (decl_or_value
, bool);
690 static void variable_was_changed (variable
*, dataflow_set
*);
691 static variable
**set_slot_part (dataflow_set
*, rtx
, variable
**,
692 decl_or_value
, HOST_WIDE_INT
,
693 enum var_init_status
, rtx
);
694 static void set_variable_part (dataflow_set
*, rtx
,
695 decl_or_value
, HOST_WIDE_INT
,
696 enum var_init_status
, rtx
, enum insert_option
);
697 static variable
**clobber_slot_part (dataflow_set
*, rtx
,
698 variable
**, HOST_WIDE_INT
, rtx
);
699 static void clobber_variable_part (dataflow_set
*, rtx
,
700 decl_or_value
, HOST_WIDE_INT
, rtx
);
701 static variable
**delete_slot_part (dataflow_set
*, rtx
, variable
**,
703 static void delete_variable_part (dataflow_set
*, rtx
,
704 decl_or_value
, HOST_WIDE_INT
);
705 static void emit_notes_in_bb (basic_block
, dataflow_set
*);
706 static void vt_emit_notes (void);
708 static void vt_add_function_parameters (void);
709 static bool vt_initialize (void);
710 static void vt_finalize (void);
712 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
715 stack_adjust_offset_pre_post_cb (rtx
, rtx op
, rtx dest
, rtx src
, rtx srcoff
,
718 if (dest
!= stack_pointer_rtx
)
721 switch (GET_CODE (op
))
725 ((HOST_WIDE_INT
*)arg
)[0] -= INTVAL (srcoff
);
729 ((HOST_WIDE_INT
*)arg
)[1] -= INTVAL (srcoff
);
733 /* We handle only adjustments by constant amount. */
734 gcc_assert (GET_CODE (src
) == PLUS
735 && CONST_INT_P (XEXP (src
, 1))
736 && XEXP (src
, 0) == stack_pointer_rtx
);
737 ((HOST_WIDE_INT
*)arg
)[GET_CODE (op
) == POST_MODIFY
]
738 -= INTVAL (XEXP (src
, 1));
745 /* Given a SET, calculate the amount of stack adjustment it contains
746 PRE- and POST-modifying stack pointer.
747 This function is similar to stack_adjust_offset. */
750 stack_adjust_offset_pre_post (rtx pattern
, HOST_WIDE_INT
*pre
,
753 rtx src
= SET_SRC (pattern
);
754 rtx dest
= SET_DEST (pattern
);
757 if (dest
== stack_pointer_rtx
)
759 /* (set (reg sp) (plus (reg sp) (const_int))) */
760 code
= GET_CODE (src
);
761 if (! (code
== PLUS
|| code
== MINUS
)
762 || XEXP (src
, 0) != stack_pointer_rtx
763 || !CONST_INT_P (XEXP (src
, 1)))
767 *post
+= INTVAL (XEXP (src
, 1));
769 *post
-= INTVAL (XEXP (src
, 1));
772 HOST_WIDE_INT res
[2] = { 0, 0 };
773 for_each_inc_dec (pattern
, stack_adjust_offset_pre_post_cb
, res
);
778 /* Given an INSN, calculate the amount of stack adjustment it contains
779 PRE- and POST-modifying stack pointer. */
782 insn_stack_adjust_offset_pre_post (rtx_insn
*insn
, HOST_WIDE_INT
*pre
,
790 pattern
= PATTERN (insn
);
791 if (RTX_FRAME_RELATED_P (insn
))
793 rtx expr
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
795 pattern
= XEXP (expr
, 0);
798 if (GET_CODE (pattern
) == SET
)
799 stack_adjust_offset_pre_post (pattern
, pre
, post
);
800 else if (GET_CODE (pattern
) == PARALLEL
801 || GET_CODE (pattern
) == SEQUENCE
)
805 /* There may be stack adjustments inside compound insns. Search
807 for ( i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
808 if (GET_CODE (XVECEXP (pattern
, 0, i
)) == SET
)
809 stack_adjust_offset_pre_post (XVECEXP (pattern
, 0, i
), pre
, post
);
813 /* Compute stack adjustments for all blocks by traversing DFS tree.
814 Return true when the adjustments on all incoming edges are consistent.
815 Heavily borrowed from pre_and_rev_post_order_compute. */
818 vt_stack_adjustments (void)
820 edge_iterator
*stack
;
823 /* Initialize entry block. */
824 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->visited
= true;
825 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->in
.stack_adjust
826 = INCOMING_FRAME_SP_OFFSET
;
827 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->out
.stack_adjust
828 = INCOMING_FRAME_SP_OFFSET
;
830 /* Allocate stack for back-tracking up CFG. */
831 stack
= XNEWVEC (edge_iterator
, n_basic_blocks_for_fn (cfun
) + 1);
834 /* Push the first edge on to the stack. */
835 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
);
843 /* Look at the edge on the top of the stack. */
845 src
= ei_edge (ei
)->src
;
846 dest
= ei_edge (ei
)->dest
;
848 /* Check if the edge destination has been visited yet. */
849 if (!VTI (dest
)->visited
)
852 HOST_WIDE_INT pre
, post
, offset
;
853 VTI (dest
)->visited
= true;
854 VTI (dest
)->in
.stack_adjust
= offset
= VTI (src
)->out
.stack_adjust
;
856 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
857 for (insn
= BB_HEAD (dest
);
858 insn
!= NEXT_INSN (BB_END (dest
));
859 insn
= NEXT_INSN (insn
))
862 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
863 offset
+= pre
+ post
;
866 VTI (dest
)->out
.stack_adjust
= offset
;
868 if (EDGE_COUNT (dest
->succs
) > 0)
869 /* Since the DEST node has been visited for the first
870 time, check its successors. */
871 stack
[sp
++] = ei_start (dest
->succs
);
875 /* We can end up with different stack adjustments for the exit block
876 of a shrink-wrapped function if stack_adjust_offset_pre_post
877 doesn't understand the rtx pattern used to restore the stack
878 pointer in the epilogue. For example, on s390(x), the stack
879 pointer is often restored via a load-multiple instruction
880 and so no stack_adjust offset is recorded for it. This means
881 that the stack offset at the end of the epilogue block is the
882 same as the offset before the epilogue, whereas other paths
883 to the exit block will have the correct stack_adjust.
885 It is safe to ignore these differences because (a) we never
886 use the stack_adjust for the exit block in this pass and
887 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
888 function are correct.
890 We must check whether the adjustments on other edges are
892 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
893 && VTI (dest
)->in
.stack_adjust
!= VTI (src
)->out
.stack_adjust
)
899 if (! ei_one_before_end_p (ei
))
900 /* Go to the next edge. */
901 ei_next (&stack
[sp
- 1]);
903 /* Return to previous level if there are no more edges. */
912 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
913 hard_frame_pointer_rtx is being mapped to it and offset for it. */
914 static rtx cfa_base_rtx
;
915 static HOST_WIDE_INT cfa_base_offset
;
917 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
918 or hard_frame_pointer_rtx. */
921 compute_cfa_pointer (poly_int64 adjustment
)
923 return plus_constant (Pmode
, cfa_base_rtx
, adjustment
+ cfa_base_offset
);
926 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
927 or -1 if the replacement shouldn't be done. */
928 static poly_int64 hard_frame_pointer_adjustment
= -1;
930 /* Data for adjust_mems callback. */
932 class adjust_mem_data
936 machine_mode mem_mode
;
937 HOST_WIDE_INT stack_adjust
;
938 auto_vec
<rtx
> side_effects
;
941 /* Helper for adjust_mems. Return true if X is suitable for
942 transformation of wider mode arithmetics to narrower mode. */
945 use_narrower_mode_test (rtx x
, const_rtx subreg
)
947 subrtx_var_iterator::array_type array
;
948 FOR_EACH_SUBRTX_VAR (iter
, array
, x
, NONCONST
)
952 iter
.skip_subrtxes ();
954 switch (GET_CODE (x
))
957 if (cselib_lookup (x
, GET_MODE (SUBREG_REG (subreg
)), 0, VOIDmode
))
959 if (!validate_subreg (GET_MODE (subreg
), GET_MODE (x
), x
,
960 subreg_lowpart_offset (GET_MODE (subreg
),
969 if (GET_MODE (XEXP (x
, 1)) != VOIDmode
)
971 enum machine_mode mode
= GET_MODE (subreg
);
972 rtx op1
= XEXP (x
, 1);
973 enum machine_mode op1_mode
= GET_MODE (op1
);
974 if (GET_MODE_PRECISION (as_a
<scalar_int_mode
> (mode
))
975 < GET_MODE_PRECISION (as_a
<scalar_int_mode
> (op1_mode
)))
977 poly_uint64 byte
= subreg_lowpart_offset (mode
, op1_mode
);
978 if (GET_CODE (op1
) == SUBREG
|| GET_CODE (op1
) == CONCAT
)
980 if (!simplify_subreg (mode
, op1
, op1_mode
, byte
))
983 else if (!validate_subreg (mode
, op1_mode
, op1
, byte
))
987 iter
.substitute (XEXP (x
, 0));
996 /* Transform X into narrower mode MODE from wider mode WMODE. */
999 use_narrower_mode (rtx x
, scalar_int_mode mode
, scalar_int_mode wmode
)
1003 return lowpart_subreg (mode
, x
, wmode
);
1004 switch (GET_CODE (x
))
1007 return lowpart_subreg (mode
, x
, wmode
);
1011 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
1012 op1
= use_narrower_mode (XEXP (x
, 1), mode
, wmode
);
1013 return simplify_gen_binary (GET_CODE (x
), mode
, op0
, op1
);
1015 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
1017 /* Ensure shift amount is not wider than mode. */
1018 if (GET_MODE (op1
) == VOIDmode
)
1019 op1
= lowpart_subreg (mode
, op1
, wmode
);
1020 else if (GET_MODE_PRECISION (mode
)
1021 < GET_MODE_PRECISION (as_a
<scalar_int_mode
> (GET_MODE (op1
))))
1022 op1
= lowpart_subreg (mode
, op1
, GET_MODE (op1
));
1023 return simplify_gen_binary (ASHIFT
, mode
, op0
, op1
);
1029 /* Helper function for adjusting used MEMs. */
1032 adjust_mems (rtx loc
, const_rtx old_rtx
, void *data
)
1034 class adjust_mem_data
*amd
= (class adjust_mem_data
*) data
;
1035 rtx mem
, addr
= loc
, tem
;
1036 machine_mode mem_mode_save
;
1038 scalar_int_mode tem_mode
, tem_subreg_mode
;
1040 switch (GET_CODE (loc
))
1043 /* Don't do any sp or fp replacements outside of MEM addresses
1045 if (amd
->mem_mode
== VOIDmode
&& amd
->store
)
1047 if (loc
== stack_pointer_rtx
1048 && !frame_pointer_needed
1050 return compute_cfa_pointer (amd
->stack_adjust
);
1051 else if (loc
== hard_frame_pointer_rtx
1052 && frame_pointer_needed
1053 && maybe_ne (hard_frame_pointer_adjustment
, -1)
1055 return compute_cfa_pointer (hard_frame_pointer_adjustment
);
1056 gcc_checking_assert (loc
!= virtual_incoming_args_rtx
);
1062 mem
= targetm
.delegitimize_address (mem
);
1063 if (mem
!= loc
&& !MEM_P (mem
))
1064 return simplify_replace_fn_rtx (mem
, old_rtx
, adjust_mems
, data
);
1067 addr
= XEXP (mem
, 0);
1068 mem_mode_save
= amd
->mem_mode
;
1069 amd
->mem_mode
= GET_MODE (mem
);
1070 store_save
= amd
->store
;
1072 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1073 amd
->store
= store_save
;
1074 amd
->mem_mode
= mem_mode_save
;
1076 addr
= targetm
.delegitimize_address (addr
);
1077 if (addr
!= XEXP (mem
, 0))
1078 mem
= replace_equiv_address_nv (mem
, addr
);
1080 mem
= avoid_constant_pool_reference (mem
);
1084 size
= GET_MODE_SIZE (amd
->mem_mode
);
1085 addr
= plus_constant (GET_MODE (loc
), XEXP (loc
, 0),
1086 GET_CODE (loc
) == PRE_INC
? size
: -size
);
1091 addr
= XEXP (loc
, 0);
1092 gcc_assert (amd
->mem_mode
!= VOIDmode
&& amd
->mem_mode
!= BLKmode
);
1093 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1094 size
= GET_MODE_SIZE (amd
->mem_mode
);
1095 tem
= plus_constant (GET_MODE (loc
), XEXP (loc
, 0),
1096 (GET_CODE (loc
) == PRE_INC
1097 || GET_CODE (loc
) == POST_INC
) ? size
: -size
);
1098 store_save
= amd
->store
;
1100 tem
= simplify_replace_fn_rtx (tem
, old_rtx
, adjust_mems
, data
);
1101 amd
->store
= store_save
;
1102 amd
->side_effects
.safe_push (gen_rtx_SET (XEXP (loc
, 0), tem
));
1105 addr
= XEXP (loc
, 1);
1109 addr
= XEXP (loc
, 0);
1110 gcc_assert (amd
->mem_mode
!= VOIDmode
);
1111 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1112 store_save
= amd
->store
;
1114 tem
= simplify_replace_fn_rtx (XEXP (loc
, 1), old_rtx
,
1116 amd
->store
= store_save
;
1117 amd
->side_effects
.safe_push (gen_rtx_SET (XEXP (loc
, 0), tem
));
1120 /* First try without delegitimization of whole MEMs and
1121 avoid_constant_pool_reference, which is more likely to succeed. */
1122 store_save
= amd
->store
;
1124 addr
= simplify_replace_fn_rtx (SUBREG_REG (loc
), old_rtx
, adjust_mems
,
1126 amd
->store
= store_save
;
1127 mem
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1128 if (mem
== SUBREG_REG (loc
))
1133 tem
= simplify_gen_subreg (GET_MODE (loc
), mem
,
1134 GET_MODE (SUBREG_REG (loc
)),
1138 tem
= simplify_gen_subreg (GET_MODE (loc
), addr
,
1139 GET_MODE (SUBREG_REG (loc
)),
1141 if (tem
== NULL_RTX
)
1142 tem
= gen_rtx_raw_SUBREG (GET_MODE (loc
), addr
, SUBREG_BYTE (loc
));
1144 if (MAY_HAVE_DEBUG_BIND_INSNS
1145 && GET_CODE (tem
) == SUBREG
1146 && (GET_CODE (SUBREG_REG (tem
)) == PLUS
1147 || GET_CODE (SUBREG_REG (tem
)) == MINUS
1148 || GET_CODE (SUBREG_REG (tem
)) == MULT
1149 || GET_CODE (SUBREG_REG (tem
)) == ASHIFT
)
1150 && is_a
<scalar_int_mode
> (GET_MODE (tem
), &tem_mode
)
1151 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (tem
)),
1153 && (GET_MODE_PRECISION (tem_mode
)
1154 < GET_MODE_PRECISION (tem_subreg_mode
))
1155 && subreg_lowpart_p (tem
)
1156 && use_narrower_mode_test (SUBREG_REG (tem
), tem
))
1157 return use_narrower_mode (SUBREG_REG (tem
), tem_mode
, tem_subreg_mode
);
1160 /* Don't do any replacements in second and following
1161 ASM_OPERANDS of inline-asm with multiple sets.
1162 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1163 and ASM_OPERANDS_LABEL_VEC need to be equal between
1164 all the ASM_OPERANDs in the insn and adjust_insn will
1166 if (ASM_OPERANDS_OUTPUT_IDX (loc
) != 0)
1175 /* Helper function for replacement of uses. */
1178 adjust_mem_uses (rtx
*x
, void *data
)
1180 rtx new_x
= simplify_replace_fn_rtx (*x
, NULL_RTX
, adjust_mems
, data
);
1182 validate_change (NULL_RTX
, x
, new_x
, true);
1185 /* Helper function for replacement of stores. */
1188 adjust_mem_stores (rtx loc
, const_rtx expr
, void *data
)
1192 rtx new_dest
= simplify_replace_fn_rtx (SET_DEST (expr
), NULL_RTX
,
1194 if (new_dest
!= SET_DEST (expr
))
1196 rtx xexpr
= CONST_CAST_RTX (expr
);
1197 validate_change (NULL_RTX
, &SET_DEST (xexpr
), new_dest
, true);
1202 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1203 replace them with their value in the insn and add the side-effects
1204 as other sets to the insn. */
1207 adjust_insn (basic_block bb
, rtx_insn
*insn
)
1211 #ifdef HAVE_window_save
1212 /* If the target machine has an explicit window save instruction, the
1213 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1214 if (RTX_FRAME_RELATED_P (insn
)
1215 && find_reg_note (insn
, REG_CFA_WINDOW_SAVE
, NULL_RTX
))
1217 unsigned int i
, nregs
= vec_safe_length (windowed_parm_regs
);
1218 rtx rtl
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (nregs
* 2));
1221 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs
, i
, p
)
1223 XVECEXP (rtl
, 0, i
* 2)
1224 = gen_rtx_SET (p
->incoming
, p
->outgoing
);
1225 /* Do not clobber the attached DECL, but only the REG. */
1226 XVECEXP (rtl
, 0, i
* 2 + 1)
1227 = gen_rtx_CLOBBER (GET_MODE (p
->outgoing
),
1228 gen_raw_REG (GET_MODE (p
->outgoing
),
1229 REGNO (p
->outgoing
)));
1232 validate_change (NULL_RTX
, &PATTERN (insn
), rtl
, true);
1237 adjust_mem_data amd
;
1238 amd
.mem_mode
= VOIDmode
;
1239 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
1242 note_stores (insn
, adjust_mem_stores
, &amd
);
1245 if (GET_CODE (PATTERN (insn
)) == PARALLEL
1246 && asm_noperands (PATTERN (insn
)) > 0
1247 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1252 /* inline-asm with multiple sets is tiny bit more complicated,
1253 because the 3 vectors in ASM_OPERANDS need to be shared between
1254 all ASM_OPERANDS in the instruction. adjust_mems will
1255 not touch ASM_OPERANDS other than the first one, asm_noperands
1256 test above needs to be called before that (otherwise it would fail)
1257 and afterwards this code fixes it up. */
1258 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
1259 body
= PATTERN (insn
);
1260 set0
= XVECEXP (body
, 0, 0);
1261 gcc_checking_assert (GET_CODE (set0
) == SET
1262 && GET_CODE (SET_SRC (set0
)) == ASM_OPERANDS
1263 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0
)) == 0);
1264 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
1265 if (GET_CODE (XVECEXP (body
, 0, i
)) != SET
)
1269 set
= XVECEXP (body
, 0, i
);
1270 gcc_checking_assert (GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
1271 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set
))
1273 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set
))
1274 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
))
1275 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set
))
1276 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
))
1277 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set
))
1278 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
)))
1280 rtx newsrc
= shallow_copy_rtx (SET_SRC (set
));
1281 ASM_OPERANDS_INPUT_VEC (newsrc
)
1282 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
));
1283 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc
)
1284 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
));
1285 ASM_OPERANDS_LABEL_VEC (newsrc
)
1286 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
));
1287 validate_change (NULL_RTX
, &SET_SRC (set
), newsrc
, true);
1292 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
1294 /* For read-only MEMs containing some constant, prefer those
1296 set
= single_set (insn
);
1297 if (set
&& MEM_P (SET_SRC (set
)) && MEM_READONLY_P (SET_SRC (set
)))
1299 rtx note
= find_reg_equal_equiv_note (insn
);
1301 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1302 validate_change (NULL_RTX
, &SET_SRC (set
), XEXP (note
, 0), true);
1305 if (!amd
.side_effects
.is_empty ())
1310 pat
= &PATTERN (insn
);
1311 if (GET_CODE (*pat
) == COND_EXEC
)
1312 pat
= &COND_EXEC_CODE (*pat
);
1313 if (GET_CODE (*pat
) == PARALLEL
)
1314 oldn
= XVECLEN (*pat
, 0);
1317 unsigned int newn
= amd
.side_effects
.length ();
1318 new_pat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (oldn
+ newn
));
1319 if (GET_CODE (*pat
) == PARALLEL
)
1320 for (i
= 0; i
< oldn
; i
++)
1321 XVECEXP (new_pat
, 0, i
) = XVECEXP (*pat
, 0, i
);
1323 XVECEXP (new_pat
, 0, 0) = *pat
;
1327 FOR_EACH_VEC_ELT_REVERSE (amd
.side_effects
, j
, effect
)
1328 XVECEXP (new_pat
, 0, j
+ oldn
) = effect
;
1329 validate_change (NULL_RTX
, pat
, new_pat
, true);
1333 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1335 dv_as_rtx (decl_or_value dv
)
1339 if (dv_is_value_p (dv
))
1340 return dv_as_value (dv
);
1342 decl
= dv_as_decl (dv
);
1344 gcc_checking_assert (TREE_CODE (decl
) == DEBUG_EXPR_DECL
);
1345 return DECL_RTL_KNOWN_SET (decl
);
1348 /* Return nonzero if a decl_or_value must not have more than one
1349 variable part. The returned value discriminates among various
1350 kinds of one-part DVs ccording to enum onepart_enum. */
1351 static inline onepart_enum
1352 dv_onepart_p (decl_or_value dv
)
1356 if (!MAY_HAVE_DEBUG_BIND_INSNS
)
1359 if (dv_is_value_p (dv
))
1360 return ONEPART_VALUE
;
1362 decl
= dv_as_decl (dv
);
1364 if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
1365 return ONEPART_DEXPR
;
1367 if (target_for_debug_bind (decl
) != NULL_TREE
)
1368 return ONEPART_VDECL
;
1373 /* Return the variable pool to be used for a dv of type ONEPART. */
1374 static inline pool_allocator
&
1375 onepart_pool (onepart_enum onepart
)
1377 return onepart
? valvar_pool
: var_pool
;
1380 /* Allocate a variable_def from the corresponding variable pool. */
1381 static inline variable
*
1382 onepart_pool_allocate (onepart_enum onepart
)
1384 return (variable
*) onepart_pool (onepart
).allocate ();
1387 /* Build a decl_or_value out of a decl. */
1388 static inline decl_or_value
1389 dv_from_decl (tree decl
)
1391 decl_or_value dv
= decl
;
1392 gcc_checking_assert (dv_is_decl_p (dv
));
1396 /* Build a decl_or_value out of a value. */
1397 static inline decl_or_value
1398 dv_from_value (rtx value
)
1400 decl_or_value dv
= value
;
1401 gcc_checking_assert (dv_is_value_p (dv
));
1405 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1406 static inline decl_or_value
1411 switch (GET_CODE (x
))
1414 dv
= dv_from_decl (DEBUG_EXPR_TREE_DECL (x
));
1415 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x
)) == x
);
1419 dv
= dv_from_value (x
);
1429 extern void debug_dv (decl_or_value dv
);
1432 debug_dv (decl_or_value dv
)
1434 if (dv_is_value_p (dv
))
1435 debug_rtx (dv_as_value (dv
));
1437 debug_generic_stmt (dv_as_decl (dv
));
1440 static void loc_exp_dep_clear (variable
*var
);
1442 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1445 variable_htab_free (void *elem
)
1448 variable
*var
= (variable
*) elem
;
1449 location_chain
*node
, *next
;
1451 gcc_checking_assert (var
->refcount
> 0);
1454 if (var
->refcount
> 0)
1457 for (i
= 0; i
< var
->n_var_parts
; i
++)
1459 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= next
)
1464 var
->var_part
[i
].loc_chain
= NULL
;
1466 if (var
->onepart
&& VAR_LOC_1PAUX (var
))
1468 loc_exp_dep_clear (var
);
1469 if (VAR_LOC_DEP_LST (var
))
1470 VAR_LOC_DEP_LST (var
)->pprev
= NULL
;
1471 XDELETE (VAR_LOC_1PAUX (var
));
1472 /* These may be reused across functions, so reset
1474 if (var
->onepart
== ONEPART_DEXPR
)
1475 set_dv_changed (var
->dv
, true);
1477 onepart_pool (var
->onepart
).remove (var
);
1480 /* Initialize the set (array) SET of attrs to empty lists. */
1483 init_attrs_list_set (attrs
**set
)
1487 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1491 /* Make the list *LISTP empty. */
1494 attrs_list_clear (attrs
**listp
)
1498 for (list
= *listp
; list
; list
= next
)
1506 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1509 attrs_list_member (attrs
*list
, decl_or_value dv
, HOST_WIDE_INT offset
)
1511 for (; list
; list
= list
->next
)
1512 if (list
->dv
== dv
&& list
->offset
== offset
)
1517 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1520 attrs_list_insert (attrs
**listp
, decl_or_value dv
,
1521 HOST_WIDE_INT offset
, rtx loc
)
1523 attrs
*list
= new attrs
;
1526 list
->offset
= offset
;
1527 list
->next
= *listp
;
1531 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1534 attrs_list_copy (attrs
**dstp
, attrs
*src
)
1536 attrs_list_clear (dstp
);
1537 for (; src
; src
= src
->next
)
1539 attrs
*n
= new attrs
;
1542 n
->offset
= src
->offset
;
1548 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1551 attrs_list_union (attrs
**dstp
, attrs
*src
)
1553 for (; src
; src
= src
->next
)
1555 if (!attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1556 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1560 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1564 attrs_list_mpdv_union (attrs
**dstp
, attrs
*src
, attrs
*src2
)
1566 gcc_assert (!*dstp
);
1567 for (; src
; src
= src
->next
)
1569 if (!dv_onepart_p (src
->dv
))
1570 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1572 for (src
= src2
; src
; src
= src
->next
)
1574 if (!dv_onepart_p (src
->dv
)
1575 && !attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1576 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1580 /* Shared hashtable support. */
1582 /* Return true if VARS is shared. */
1585 shared_hash_shared (shared_hash
*vars
)
1587 return vars
->refcount
> 1;
1590 /* Return the hash table for VARS. */
1592 static inline variable_table_type
*
1593 shared_hash_htab (shared_hash
*vars
)
1598 /* Return true if VAR is shared, or maybe because VARS is shared. */
1601 shared_var_p (variable
*var
, shared_hash
*vars
)
1603 /* Don't count an entry in the changed_variables table as a duplicate. */
1604 return ((var
->refcount
> 1 + (int) var
->in_changed_variables
)
1605 || shared_hash_shared (vars
));
1608 /* Copy variables into a new hash table. */
1610 static shared_hash
*
1611 shared_hash_unshare (shared_hash
*vars
)
1613 shared_hash
*new_vars
= new shared_hash
;
1614 gcc_assert (vars
->refcount
> 1);
1615 new_vars
->refcount
= 1;
1616 new_vars
->htab
= new variable_table_type (vars
->htab
->elements () + 3);
1617 vars_copy (new_vars
->htab
, vars
->htab
);
1622 /* Increment reference counter on VARS and return it. */
1624 static inline shared_hash
*
1625 shared_hash_copy (shared_hash
*vars
)
1631 /* Decrement reference counter and destroy hash table if not shared
1635 shared_hash_destroy (shared_hash
*vars
)
1637 gcc_checking_assert (vars
->refcount
> 0);
1638 if (--vars
->refcount
== 0)
1645 /* Unshare *PVARS if shared and return slot for DV. If INS is
1646 INSERT, insert it if not already present. */
1648 static inline variable
**
1649 shared_hash_find_slot_unshare_1 (shared_hash
**pvars
, decl_or_value dv
,
1650 hashval_t dvhash
, enum insert_option ins
)
1652 if (shared_hash_shared (*pvars
))
1653 *pvars
= shared_hash_unshare (*pvars
);
1654 return shared_hash_htab (*pvars
)->find_slot_with_hash (dv
, dvhash
, ins
);
1657 static inline variable
**
1658 shared_hash_find_slot_unshare (shared_hash
**pvars
, decl_or_value dv
,
1659 enum insert_option ins
)
1661 return shared_hash_find_slot_unshare_1 (pvars
, dv
, dv_htab_hash (dv
), ins
);
1664 /* Return slot for DV, if it is already present in the hash table.
1665 If it is not present, insert it only VARS is not shared, otherwise
1668 static inline variable
**
1669 shared_hash_find_slot_1 (shared_hash
*vars
, decl_or_value dv
, hashval_t dvhash
)
1671 return shared_hash_htab (vars
)->find_slot_with_hash (dv
, dvhash
,
1672 shared_hash_shared (vars
)
1673 ? NO_INSERT
: INSERT
);
1676 static inline variable
**
1677 shared_hash_find_slot (shared_hash
*vars
, decl_or_value dv
)
1679 return shared_hash_find_slot_1 (vars
, dv
, dv_htab_hash (dv
));
1682 /* Return slot for DV only if it is already present in the hash table. */
1684 static inline variable
**
1685 shared_hash_find_slot_noinsert_1 (shared_hash
*vars
, decl_or_value dv
,
1688 return shared_hash_htab (vars
)->find_slot_with_hash (dv
, dvhash
, NO_INSERT
);
1691 static inline variable
**
1692 shared_hash_find_slot_noinsert (shared_hash
*vars
, decl_or_value dv
)
1694 return shared_hash_find_slot_noinsert_1 (vars
, dv
, dv_htab_hash (dv
));
1697 /* Return variable for DV or NULL if not already present in the hash
1700 static inline variable
*
1701 shared_hash_find_1 (shared_hash
*vars
, decl_or_value dv
, hashval_t dvhash
)
1703 return shared_hash_htab (vars
)->find_with_hash (dv
, dvhash
);
1706 static inline variable
*
1707 shared_hash_find (shared_hash
*vars
, decl_or_value dv
)
1709 return shared_hash_find_1 (vars
, dv
, dv_htab_hash (dv
));
1712 /* Return true if TVAL is better than CVAL as a canonival value. We
1713 choose lowest-numbered VALUEs, using the RTX address as a
1714 tie-breaker. The idea is to arrange them into a star topology,
1715 such that all of them are at most one step away from the canonical
1716 value, and the canonical value has backlinks to all of them, in
1717 addition to all the actual locations. We don't enforce this
1718 topology throughout the entire dataflow analysis, though.
1722 canon_value_cmp (rtx tval
, rtx cval
)
1725 || CSELIB_VAL_PTR (tval
)->uid
< CSELIB_VAL_PTR (cval
)->uid
;
1728 static bool dst_can_be_shared
;
1730 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1733 unshare_variable (dataflow_set
*set
, variable
**slot
, variable
*var
,
1734 enum var_init_status initialized
)
1739 new_var
= onepart_pool_allocate (var
->onepart
);
1740 new_var
->dv
= var
->dv
;
1741 new_var
->refcount
= 1;
1743 new_var
->n_var_parts
= var
->n_var_parts
;
1744 new_var
->onepart
= var
->onepart
;
1745 new_var
->in_changed_variables
= false;
1747 if (! flag_var_tracking_uninit
)
1748 initialized
= VAR_INIT_STATUS_INITIALIZED
;
1750 for (i
= 0; i
< var
->n_var_parts
; i
++)
1752 location_chain
*node
;
1753 location_chain
**nextp
;
1755 if (i
== 0 && var
->onepart
)
1757 /* One-part auxiliary data is only used while emitting
1758 notes, so propagate it to the new variable in the active
1759 dataflow set. If we're not emitting notes, this will be
1761 gcc_checking_assert (!VAR_LOC_1PAUX (var
) || emit_notes
);
1762 VAR_LOC_1PAUX (new_var
) = VAR_LOC_1PAUX (var
);
1763 VAR_LOC_1PAUX (var
) = NULL
;
1766 VAR_PART_OFFSET (new_var
, i
) = VAR_PART_OFFSET (var
, i
);
1767 nextp
= &new_var
->var_part
[i
].loc_chain
;
1768 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
1770 location_chain
*new_lc
;
1772 new_lc
= new location_chain
;
1773 new_lc
->next
= NULL
;
1774 if (node
->init
> initialized
)
1775 new_lc
->init
= node
->init
;
1777 new_lc
->init
= initialized
;
1778 if (node
->set_src
&& !(MEM_P (node
->set_src
)))
1779 new_lc
->set_src
= node
->set_src
;
1781 new_lc
->set_src
= NULL
;
1782 new_lc
->loc
= node
->loc
;
1785 nextp
= &new_lc
->next
;
1788 new_var
->var_part
[i
].cur_loc
= var
->var_part
[i
].cur_loc
;
1791 dst_can_be_shared
= false;
1792 if (shared_hash_shared (set
->vars
))
1793 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
, NO_INSERT
);
1794 else if (set
->traversed_vars
&& set
->vars
!= set
->traversed_vars
)
1795 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
1797 if (var
->in_changed_variables
)
1800 = changed_variables
->find_slot_with_hash (var
->dv
,
1801 dv_htab_hash (var
->dv
),
1803 gcc_assert (*cslot
== (void *) var
);
1804 var
->in_changed_variables
= false;
1805 variable_htab_free (var
);
1807 new_var
->in_changed_variables
= true;
1812 /* Copy all variables from hash table SRC to hash table DST. */
1815 vars_copy (variable_table_type
*dst
, variable_table_type
*src
)
1817 variable_iterator_type hi
;
1820 FOR_EACH_HASH_TABLE_ELEMENT (*src
, var
, variable
, hi
)
1824 dstp
= dst
->find_slot_with_hash (var
->dv
, dv_htab_hash (var
->dv
), INSERT
);
1829 /* Map a decl to its main debug decl. */
1832 var_debug_decl (tree decl
)
1834 if (decl
&& VAR_P (decl
) && DECL_HAS_DEBUG_EXPR_P (decl
))
1836 tree debugdecl
= DECL_DEBUG_EXPR (decl
);
1837 if (DECL_P (debugdecl
))
1844 /* Set the register LOC to contain DV, OFFSET. */
1847 var_reg_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1848 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
1849 enum insert_option iopt
)
1852 bool decl_p
= dv_is_decl_p (dv
);
1855 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
1857 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
1858 if (node
->dv
== dv
&& node
->offset
== offset
)
1861 attrs_list_insert (&set
->regs
[REGNO (loc
)], dv
, offset
, loc
);
1862 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
1865 /* Return true if we should track a location that is OFFSET bytes from
1866 a variable. Store the constant offset in *OFFSET_OUT if so. */
1869 track_offset_p (poly_int64 offset
, HOST_WIDE_INT
*offset_out
)
1871 HOST_WIDE_INT const_offset
;
1872 if (!offset
.is_constant (&const_offset
)
1873 || !IN_RANGE (const_offset
, 0, MAX_VAR_PARTS
- 1))
1875 *offset_out
= const_offset
;
1879 /* Return the offset of a register that track_offset_p says we
1882 static HOST_WIDE_INT
1883 get_tracked_reg_offset (rtx loc
)
1885 HOST_WIDE_INT offset
;
1886 if (!track_offset_p (REG_OFFSET (loc
), &offset
))
1891 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1894 var_reg_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1897 tree decl
= REG_EXPR (loc
);
1898 HOST_WIDE_INT offset
= get_tracked_reg_offset (loc
);
1900 var_reg_decl_set (set
, loc
, initialized
,
1901 dv_from_decl (decl
), offset
, set_src
, INSERT
);
1904 static enum var_init_status
1905 get_init_value (dataflow_set
*set
, rtx loc
, decl_or_value dv
)
1909 enum var_init_status ret_val
= VAR_INIT_STATUS_UNKNOWN
;
1911 if (! flag_var_tracking_uninit
)
1912 return VAR_INIT_STATUS_INITIALIZED
;
1914 var
= shared_hash_find (set
->vars
, dv
);
1917 for (i
= 0; i
< var
->n_var_parts
&& ret_val
== VAR_INIT_STATUS_UNKNOWN
; i
++)
1919 location_chain
*nextp
;
1920 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
; nextp
= nextp
->next
)
1921 if (rtx_equal_p (nextp
->loc
, loc
))
1923 ret_val
= nextp
->init
;
1932 /* Delete current content of register LOC in dataflow set SET and set
1933 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1934 MODIFY is true, any other live copies of the same variable part are
1935 also deleted from the dataflow set, otherwise the variable part is
1936 assumed to be copied from another location holding the same
1940 var_reg_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
1941 enum var_init_status initialized
, rtx set_src
)
1943 tree decl
= REG_EXPR (loc
);
1944 HOST_WIDE_INT offset
= get_tracked_reg_offset (loc
);
1948 decl
= var_debug_decl (decl
);
1950 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
1951 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
1953 nextp
= &set
->regs
[REGNO (loc
)];
1954 for (node
= *nextp
; node
; node
= next
)
1957 if (node
->dv
!= decl
|| node
->offset
!= offset
)
1959 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1966 nextp
= &node
->next
;
1970 clobber_variable_part (set
, loc
, dv_from_decl (decl
), offset
, set_src
);
1971 var_reg_set (set
, loc
, initialized
, set_src
);
1974 /* Delete the association of register LOC in dataflow set SET with any
1975 variables that aren't onepart. If CLOBBER is true, also delete any
1976 other live copies of the same variable part, and delete the
1977 association with onepart dvs too. */
1980 var_reg_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
1982 attrs
**nextp
= &set
->regs
[REGNO (loc
)];
1985 HOST_WIDE_INT offset
;
1986 if (clobber
&& track_offset_p (REG_OFFSET (loc
), &offset
))
1988 tree decl
= REG_EXPR (loc
);
1990 decl
= var_debug_decl (decl
);
1992 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
1995 for (node
= *nextp
; node
; node
= next
)
1998 if (clobber
|| !dv_onepart_p (node
->dv
))
2000 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
2005 nextp
= &node
->next
;
2009 /* Delete content of register with number REGNO in dataflow set SET. */
2012 var_regno_delete (dataflow_set
*set
, int regno
)
2014 attrs
**reg
= &set
->regs
[regno
];
2017 for (node
= *reg
; node
; node
= next
)
2020 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
2026 /* Return true if I is the negated value of a power of two. */
2028 negative_power_of_two_p (HOST_WIDE_INT i
)
2030 unsigned HOST_WIDE_INT x
= -(unsigned HOST_WIDE_INT
)i
;
2031 return pow2_or_zerop (x
);
2034 /* Strip constant offsets and alignments off of LOC. Return the base
2038 vt_get_canonicalize_base (rtx loc
)
2040 while ((GET_CODE (loc
) == PLUS
2041 || GET_CODE (loc
) == AND
)
2042 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
2043 && (GET_CODE (loc
) != AND
2044 || negative_power_of_two_p (INTVAL (XEXP (loc
, 1)))))
2045 loc
= XEXP (loc
, 0);
2050 /* This caches canonicalized addresses for VALUEs, computed using
2051 information in the global cselib table. */
2052 static hash_map
<rtx
, rtx
> *global_get_addr_cache
;
2054 /* This caches canonicalized addresses for VALUEs, computed using
2055 information from the global cache and information pertaining to a
2056 basic block being analyzed. */
2057 static hash_map
<rtx
, rtx
> *local_get_addr_cache
;
2059 static rtx
vt_canonicalize_addr (dataflow_set
*, rtx
);
2061 /* Return the canonical address for LOC, that must be a VALUE, using a
2062 cached global equivalence or computing it and storing it in the
2066 get_addr_from_global_cache (rtx
const loc
)
2070 gcc_checking_assert (GET_CODE (loc
) == VALUE
);
2073 rtx
*slot
= &global_get_addr_cache
->get_or_insert (loc
, &existed
);
2077 x
= canon_rtx (get_addr (loc
));
2079 /* Tentative, avoiding infinite recursion. */
2084 rtx nx
= vt_canonicalize_addr (NULL
, x
);
2087 /* The table may have moved during recursion, recompute
2089 *global_get_addr_cache
->get (loc
) = x
= nx
;
2096 /* Return the canonical address for LOC, that must be a VALUE, using a
2097 cached local equivalence or computing it and storing it in the
2101 get_addr_from_local_cache (dataflow_set
*set
, rtx
const loc
)
2108 gcc_checking_assert (GET_CODE (loc
) == VALUE
);
2111 rtx
*slot
= &local_get_addr_cache
->get_or_insert (loc
, &existed
);
2115 x
= get_addr_from_global_cache (loc
);
2117 /* Tentative, avoiding infinite recursion. */
2120 /* Recurse to cache local expansion of X, or if we need to search
2121 for a VALUE in the expansion. */
2124 rtx nx
= vt_canonicalize_addr (set
, x
);
2127 slot
= local_get_addr_cache
->get (loc
);
2133 dv
= dv_from_rtx (x
);
2134 var
= shared_hash_find (set
->vars
, dv
);
2138 /* Look for an improved equivalent expression. */
2139 for (l
= var
->var_part
[0].loc_chain
; l
; l
= l
->next
)
2141 rtx base
= vt_get_canonicalize_base (l
->loc
);
2142 if (GET_CODE (base
) == VALUE
2143 && canon_value_cmp (base
, loc
))
2145 rtx nx
= vt_canonicalize_addr (set
, l
->loc
);
2148 slot
= local_get_addr_cache
->get (loc
);
2158 /* Canonicalize LOC using equivalences from SET in addition to those
2159 in the cselib static table. It expects a VALUE-based expression,
2160 and it will only substitute VALUEs with other VALUEs or
2161 function-global equivalences, so that, if two addresses have base
2162 VALUEs that are locally or globally related in ways that
2163 memrefs_conflict_p cares about, they will both canonicalize to
2164 expressions that have the same base VALUE.
2166 The use of VALUEs as canonical base addresses enables the canonical
2167 RTXs to remain unchanged globally, if they resolve to a constant,
2168 or throughout a basic block otherwise, so that they can be cached
2169 and the cache needs not be invalidated when REGs, MEMs or such
2173 vt_canonicalize_addr (dataflow_set
*set
, rtx oloc
)
2175 poly_int64 ofst
= 0, term
;
2176 machine_mode mode
= GET_MODE (oloc
);
2183 while (GET_CODE (loc
) == PLUS
2184 && poly_int_rtx_p (XEXP (loc
, 1), &term
))
2187 loc
= XEXP (loc
, 0);
2190 /* Alignment operations can't normally be combined, so just
2191 canonicalize the base and we're done. We'll normally have
2192 only one stack alignment anyway. */
2193 if (GET_CODE (loc
) == AND
2194 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
2195 && negative_power_of_two_p (INTVAL (XEXP (loc
, 1))))
2197 x
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2198 if (x
!= XEXP (loc
, 0))
2199 loc
= gen_rtx_AND (mode
, x
, XEXP (loc
, 1));
2203 if (GET_CODE (loc
) == VALUE
)
2206 loc
= get_addr_from_local_cache (set
, loc
);
2208 loc
= get_addr_from_global_cache (loc
);
2210 /* Consolidate plus_constants. */
2211 while (maybe_ne (ofst
, 0)
2212 && GET_CODE (loc
) == PLUS
2213 && poly_int_rtx_p (XEXP (loc
, 1), &term
))
2216 loc
= XEXP (loc
, 0);
2223 x
= canon_rtx (loc
);
2230 /* Add OFST back in. */
2231 if (maybe_ne (ofst
, 0))
2233 /* Don't build new RTL if we can help it. */
2234 if (strip_offset (oloc
, &term
) == loc
&& known_eq (term
, ofst
))
2237 loc
= plus_constant (mode
, loc
, ofst
);
2243 /* Return true iff there's a true dependence between MLOC and LOC.
2244 MADDR must be a canonicalized version of MLOC's address. */
2247 vt_canon_true_dep (dataflow_set
*set
, rtx mloc
, rtx maddr
, rtx loc
)
2249 if (GET_CODE (loc
) != MEM
)
2252 rtx addr
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2253 if (!canon_true_dependence (mloc
, GET_MODE (mloc
), maddr
, loc
, addr
))
2259 /* Hold parameters for the hashtab traversal function
2260 drop_overlapping_mem_locs, see below. */
2262 struct overlapping_mems
2268 /* Remove all MEMs that overlap with COMS->LOC from the location list
2269 of a hash table entry for a onepart variable. COMS->ADDR must be a
2270 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2271 canonicalized itself. */
2274 drop_overlapping_mem_locs (variable
**slot
, overlapping_mems
*coms
)
2276 dataflow_set
*set
= coms
->set
;
2277 rtx mloc
= coms
->loc
, addr
= coms
->addr
;
2278 variable
*var
= *slot
;
2280 if (var
->onepart
!= NOT_ONEPART
)
2282 location_chain
*loc
, **locp
;
2283 bool changed
= false;
2286 gcc_assert (var
->n_var_parts
== 1);
2288 if (shared_var_p (var
, set
->vars
))
2290 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
2291 if (vt_canon_true_dep (set
, mloc
, addr
, loc
->loc
))
2297 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
2299 gcc_assert (var
->n_var_parts
== 1);
2302 if (VAR_LOC_1PAUX (var
))
2303 cur_loc
= VAR_LOC_FROM (var
);
2305 cur_loc
= var
->var_part
[0].cur_loc
;
2307 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
2310 if (!vt_canon_true_dep (set
, mloc
, addr
, loc
->loc
))
2317 /* If we have deleted the location which was last emitted
2318 we have to emit new location so add the variable to set
2319 of changed variables. */
2320 if (cur_loc
== loc
->loc
)
2323 var
->var_part
[0].cur_loc
= NULL
;
2324 if (VAR_LOC_1PAUX (var
))
2325 VAR_LOC_FROM (var
) = NULL
;
2330 if (!var
->var_part
[0].loc_chain
)
2336 variable_was_changed (var
, set
);
2342 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2345 clobber_overlapping_mems (dataflow_set
*set
, rtx loc
)
2347 struct overlapping_mems coms
;
2349 gcc_checking_assert (GET_CODE (loc
) == MEM
);
2352 coms
.loc
= canon_rtx (loc
);
2353 coms
.addr
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2355 set
->traversed_vars
= set
->vars
;
2356 shared_hash_htab (set
->vars
)
2357 ->traverse
<overlapping_mems
*, drop_overlapping_mem_locs
> (&coms
);
2358 set
->traversed_vars
= NULL
;
2361 /* Set the location of DV, OFFSET as the MEM LOC. */
2364 var_mem_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
2365 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
2366 enum insert_option iopt
)
2368 if (dv_is_decl_p (dv
))
2369 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
2371 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
2374 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2376 Adjust the address first if it is stack pointer based. */
2379 var_mem_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
2382 tree decl
= MEM_EXPR (loc
);
2383 HOST_WIDE_INT offset
= int_mem_offset (loc
);
2385 var_mem_decl_set (set
, loc
, initialized
,
2386 dv_from_decl (decl
), offset
, set_src
, INSERT
);
2389 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2390 dataflow set SET to LOC. If MODIFY is true, any other live copies
2391 of the same variable part are also deleted from the dataflow set,
2392 otherwise the variable part is assumed to be copied from another
2393 location holding the same part.
2394 Adjust the address first if it is stack pointer based. */
2397 var_mem_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
2398 enum var_init_status initialized
, rtx set_src
)
2400 tree decl
= MEM_EXPR (loc
);
2401 HOST_WIDE_INT offset
= int_mem_offset (loc
);
2403 clobber_overlapping_mems (set
, loc
);
2404 decl
= var_debug_decl (decl
);
2406 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
2407 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
2410 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, set_src
);
2411 var_mem_set (set
, loc
, initialized
, set_src
);
2414 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2415 true, also delete any other live copies of the same variable part.
2416 Adjust the address first if it is stack pointer based. */
2419 var_mem_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
2421 tree decl
= MEM_EXPR (loc
);
2422 HOST_WIDE_INT offset
= int_mem_offset (loc
);
2424 clobber_overlapping_mems (set
, loc
);
2425 decl
= var_debug_decl (decl
);
2427 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
2428 delete_variable_part (set
, loc
, dv_from_decl (decl
), offset
);
2431 /* Return true if LOC should not be expanded for location expressions,
2435 unsuitable_loc (rtx loc
)
2437 switch (GET_CODE (loc
))
2450 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2454 val_bind (dataflow_set
*set
, rtx val
, rtx loc
, bool modified
)
2459 var_regno_delete (set
, REGNO (loc
));
2460 var_reg_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2461 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2463 else if (MEM_P (loc
))
2465 struct elt_loc_list
*l
= CSELIB_VAL_PTR (val
)->locs
;
2468 clobber_overlapping_mems (set
, loc
);
2470 if (l
&& GET_CODE (l
->loc
) == VALUE
)
2471 l
= canonical_cselib_val (CSELIB_VAL_PTR (l
->loc
))->locs
;
2473 /* If this MEM is a global constant, we don't need it in the
2474 dynamic tables. ??? We should test this before emitting the
2475 micro-op in the first place. */
2477 if (GET_CODE (l
->loc
) == MEM
&& XEXP (l
->loc
, 0) == XEXP (loc
, 0))
2483 var_mem_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2484 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2488 /* Other kinds of equivalences are necessarily static, at least
2489 so long as we do not perform substitutions while merging
2492 set_variable_part (set
, loc
, dv_from_value (val
), 0,
2493 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2497 /* Bind a value to a location it was just stored in. If MODIFIED
2498 holds, assume the location was modified, detaching it from any
2499 values bound to it. */
2502 val_store (dataflow_set
*set
, rtx val
, rtx loc
, rtx_insn
*insn
,
2505 cselib_val
*v
= CSELIB_VAL_PTR (val
);
2507 gcc_assert (cselib_preserved_value_p (v
));
2511 fprintf (dump_file
, "%i: ", insn
? INSN_UID (insn
) : 0);
2512 print_inline_rtx (dump_file
, loc
, 0);
2513 fprintf (dump_file
, " evaluates to ");
2514 print_inline_rtx (dump_file
, val
, 0);
2517 struct elt_loc_list
*l
;
2518 for (l
= v
->locs
; l
; l
= l
->next
)
2520 fprintf (dump_file
, "\n%i: ", INSN_UID (l
->setting_insn
));
2521 print_inline_rtx (dump_file
, l
->loc
, 0);
2524 fprintf (dump_file
, "\n");
2527 gcc_checking_assert (!unsuitable_loc (loc
));
2529 val_bind (set
, val
, loc
, modified
);
2532 /* Clear (canonical address) slots that reference X. */
2535 local_get_addr_clear_given_value (rtx
const &, rtx
*slot
, rtx x
)
2537 if (vt_get_canonicalize_base (*slot
) == x
)
2542 /* Reset this node, detaching all its equivalences. Return the slot
2543 in the variable hash table that holds dv, if there is one. */
2546 val_reset (dataflow_set
*set
, decl_or_value dv
)
2548 variable
*var
= shared_hash_find (set
->vars
, dv
) ;
2549 location_chain
*node
;
2552 if (!var
|| !var
->n_var_parts
)
2555 gcc_assert (var
->n_var_parts
== 1);
2557 if (var
->onepart
== ONEPART_VALUE
)
2559 rtx x
= dv_as_value (dv
);
2561 /* Relationships in the global cache don't change, so reset the
2562 local cache entry only. */
2563 rtx
*slot
= local_get_addr_cache
->get (x
);
2566 /* If the value resolved back to itself, odds are that other
2567 values may have cached it too. These entries now refer
2568 to the old X, so detach them too. Entries that used the
2569 old X but resolved to something else remain ok as long as
2570 that something else isn't also reset. */
2572 local_get_addr_cache
2573 ->traverse
<rtx
, local_get_addr_clear_given_value
> (x
);
2579 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2580 if (GET_CODE (node
->loc
) == VALUE
2581 && canon_value_cmp (node
->loc
, cval
))
2584 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2585 if (GET_CODE (node
->loc
) == VALUE
&& cval
!= node
->loc
)
2587 /* Redirect the equivalence link to the new canonical
2588 value, or simply remove it if it would point at
2591 set_variable_part (set
, cval
, dv_from_value (node
->loc
),
2592 0, node
->init
, node
->set_src
, NO_INSERT
);
2593 delete_variable_part (set
, dv_as_value (dv
),
2594 dv_from_value (node
->loc
), 0);
2599 decl_or_value cdv
= dv_from_value (cval
);
2601 /* Keep the remaining values connected, accumulating links
2602 in the canonical value. */
2603 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2605 if (node
->loc
== cval
)
2607 else if (GET_CODE (node
->loc
) == REG
)
2608 var_reg_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
2609 node
->set_src
, NO_INSERT
);
2610 else if (GET_CODE (node
->loc
) == MEM
)
2611 var_mem_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
2612 node
->set_src
, NO_INSERT
);
2614 set_variable_part (set
, node
->loc
, cdv
, 0,
2615 node
->init
, node
->set_src
, NO_INSERT
);
2619 /* We remove this last, to make sure that the canonical value is not
2620 removed to the point of requiring reinsertion. */
2622 delete_variable_part (set
, dv_as_value (dv
), dv_from_value (cval
), 0);
2624 clobber_variable_part (set
, NULL
, dv
, 0, NULL
);
2627 /* Find the values in a given location and map the val to another
2628 value, if it is unique, or add the location as one holding the
2632 val_resolve (dataflow_set
*set
, rtx val
, rtx loc
, rtx_insn
*insn
)
2634 decl_or_value dv
= dv_from_value (val
);
2636 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2639 fprintf (dump_file
, "%i: ", INSN_UID (insn
));
2641 fprintf (dump_file
, "head: ");
2642 print_inline_rtx (dump_file
, val
, 0);
2643 fputs (" is at ", dump_file
);
2644 print_inline_rtx (dump_file
, loc
, 0);
2645 fputc ('\n', dump_file
);
2648 val_reset (set
, dv
);
2650 gcc_checking_assert (!unsuitable_loc (loc
));
2654 attrs
*node
, *found
= NULL
;
2656 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
2657 if (dv_is_value_p (node
->dv
)
2658 && GET_MODE (dv_as_value (node
->dv
)) == GET_MODE (loc
))
2662 /* Map incoming equivalences. ??? Wouldn't it be nice if
2663 we just started sharing the location lists? Maybe a
2664 circular list ending at the value itself or some
2666 set_variable_part (set
, dv_as_value (node
->dv
),
2667 dv_from_value (val
), node
->offset
,
2668 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2669 set_variable_part (set
, val
, node
->dv
, node
->offset
,
2670 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2673 /* If we didn't find any equivalence, we need to remember that
2674 this value is held in the named register. */
2678 /* ??? Attempt to find and merge equivalent MEMs or other
2681 val_bind (set
, val
, loc
, false);
2684 /* Initialize dataflow set SET to be empty.
2685 VARS_SIZE is the initial size of hash table VARS. */
2688 dataflow_set_init (dataflow_set
*set
)
2690 init_attrs_list_set (set
->regs
);
2691 set
->vars
= shared_hash_copy (empty_shared_hash
);
2692 set
->stack_adjust
= 0;
2693 set
->traversed_vars
= NULL
;
2696 /* Delete the contents of dataflow set SET. */
2699 dataflow_set_clear (dataflow_set
*set
)
2703 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2704 attrs_list_clear (&set
->regs
[i
]);
2706 shared_hash_destroy (set
->vars
);
2707 set
->vars
= shared_hash_copy (empty_shared_hash
);
2710 /* Copy the contents of dataflow set SRC to DST. */
2713 dataflow_set_copy (dataflow_set
*dst
, dataflow_set
*src
)
2717 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2718 attrs_list_copy (&dst
->regs
[i
], src
->regs
[i
]);
2720 shared_hash_destroy (dst
->vars
);
2721 dst
->vars
= shared_hash_copy (src
->vars
);
2722 dst
->stack_adjust
= src
->stack_adjust
;
2725 /* Information for merging lists of locations for a given offset of variable.
2727 struct variable_union_info
2729 /* Node of the location chain. */
2732 /* The sum of positions in the input chains. */
2735 /* The position in the chain of DST dataflow set. */
2739 /* Buffer for location list sorting and its allocated size. */
2740 static struct variable_union_info
*vui_vec
;
2741 static int vui_allocated
;
2743 /* Compare function for qsort, order the structures by POS element. */
2746 variable_union_info_cmp_pos (const void *n1
, const void *n2
)
2748 const struct variable_union_info
*const i1
=
2749 (const struct variable_union_info
*) n1
;
2750 const struct variable_union_info
*const i2
=
2751 ( const struct variable_union_info
*) n2
;
2753 if (i1
->pos
!= i2
->pos
)
2754 return i1
->pos
- i2
->pos
;
2756 return (i1
->pos_dst
- i2
->pos_dst
);
2759 /* Compute union of location parts of variable *SLOT and the same variable
2760 from hash table DATA. Compute "sorted" union of the location chains
2761 for common offsets, i.e. the locations of a variable part are sorted by
2762 a priority where the priority is the sum of the positions in the 2 chains
2763 (if a location is only in one list the position in the second list is
2764 defined to be larger than the length of the chains).
2765 When we are updating the location parts the newest location is in the
2766 beginning of the chain, so when we do the described "sorted" union
2767 we keep the newest locations in the beginning. */
2770 variable_union (variable
*src
, dataflow_set
*set
)
2776 dstp
= shared_hash_find_slot (set
->vars
, src
->dv
);
2777 if (!dstp
|| !*dstp
)
2781 dst_can_be_shared
= false;
2783 dstp
= shared_hash_find_slot_unshare (&set
->vars
, src
->dv
, INSERT
);
2787 /* Continue traversing the hash table. */
2793 gcc_assert (src
->n_var_parts
);
2794 gcc_checking_assert (src
->onepart
== dst
->onepart
);
2796 /* We can combine one-part variables very efficiently, because their
2797 entries are in canonical order. */
2800 location_chain
**nodep
, *dnode
, *snode
;
2802 gcc_assert (src
->n_var_parts
== 1
2803 && dst
->n_var_parts
== 1);
2805 snode
= src
->var_part
[0].loc_chain
;
2808 restart_onepart_unshared
:
2809 nodep
= &dst
->var_part
[0].loc_chain
;
2815 int r
= dnode
? loc_cmp (dnode
->loc
, snode
->loc
) : 1;
2819 location_chain
*nnode
;
2821 if (shared_var_p (dst
, set
->vars
))
2823 dstp
= unshare_variable (set
, dstp
, dst
,
2824 VAR_INIT_STATUS_INITIALIZED
);
2826 goto restart_onepart_unshared
;
2829 *nodep
= nnode
= new location_chain
;
2830 nnode
->loc
= snode
->loc
;
2831 nnode
->init
= snode
->init
;
2832 if (!snode
->set_src
|| MEM_P (snode
->set_src
))
2833 nnode
->set_src
= NULL
;
2835 nnode
->set_src
= snode
->set_src
;
2836 nnode
->next
= dnode
;
2840 gcc_checking_assert (rtx_equal_p (dnode
->loc
, snode
->loc
));
2843 snode
= snode
->next
;
2845 nodep
= &dnode
->next
;
2852 gcc_checking_assert (!src
->onepart
);
2854 /* Count the number of location parts, result is K. */
2855 for (i
= 0, j
= 0, k
= 0;
2856 i
< src
->n_var_parts
&& j
< dst
->n_var_parts
; k
++)
2858 if (VAR_PART_OFFSET (src
, i
) == VAR_PART_OFFSET (dst
, j
))
2863 else if (VAR_PART_OFFSET (src
, i
) < VAR_PART_OFFSET (dst
, j
))
2868 k
+= src
->n_var_parts
- i
;
2869 k
+= dst
->n_var_parts
- j
;
2871 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2872 thus there are at most MAX_VAR_PARTS different offsets. */
2873 gcc_checking_assert (dst
->onepart
? k
== 1 : k
<= MAX_VAR_PARTS
);
2875 if (dst
->n_var_parts
!= k
&& shared_var_p (dst
, set
->vars
))
2877 dstp
= unshare_variable (set
, dstp
, dst
, VAR_INIT_STATUS_UNKNOWN
);
2881 i
= src
->n_var_parts
- 1;
2882 j
= dst
->n_var_parts
- 1;
2883 dst
->n_var_parts
= k
;
2885 for (k
--; k
>= 0; k
--)
2887 location_chain
*node
, *node2
;
2889 if (i
>= 0 && j
>= 0
2890 && VAR_PART_OFFSET (src
, i
) == VAR_PART_OFFSET (dst
, j
))
2892 /* Compute the "sorted" union of the chains, i.e. the locations which
2893 are in both chains go first, they are sorted by the sum of
2894 positions in the chains. */
2897 struct variable_union_info
*vui
;
2899 /* If DST is shared compare the location chains.
2900 If they are different we will modify the chain in DST with
2901 high probability so make a copy of DST. */
2902 if (shared_var_p (dst
, set
->vars
))
2904 for (node
= src
->var_part
[i
].loc_chain
,
2905 node2
= dst
->var_part
[j
].loc_chain
; node
&& node2
;
2906 node
= node
->next
, node2
= node2
->next
)
2908 if (!((REG_P (node2
->loc
)
2909 && REG_P (node
->loc
)
2910 && REGNO (node2
->loc
) == REGNO (node
->loc
))
2911 || rtx_equal_p (node2
->loc
, node
->loc
)))
2913 if (node2
->init
< node
->init
)
2914 node2
->init
= node
->init
;
2920 dstp
= unshare_variable (set
, dstp
, dst
,
2921 VAR_INIT_STATUS_UNKNOWN
);
2922 dst
= (variable
*)*dstp
;
2927 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2930 for (node
= dst
->var_part
[j
].loc_chain
; node
; node
= node
->next
)
2935 /* The most common case, much simpler, no qsort is needed. */
2936 location_chain
*dstnode
= dst
->var_part
[j
].loc_chain
;
2937 dst
->var_part
[k
].loc_chain
= dstnode
;
2938 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (dst
, j
);
2940 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2941 if (!((REG_P (dstnode
->loc
)
2942 && REG_P (node
->loc
)
2943 && REGNO (dstnode
->loc
) == REGNO (node
->loc
))
2944 || rtx_equal_p (dstnode
->loc
, node
->loc
)))
2946 location_chain
*new_node
;
2948 /* Copy the location from SRC. */
2949 new_node
= new location_chain
;
2950 new_node
->loc
= node
->loc
;
2951 new_node
->init
= node
->init
;
2952 if (!node
->set_src
|| MEM_P (node
->set_src
))
2953 new_node
->set_src
= NULL
;
2955 new_node
->set_src
= node
->set_src
;
2956 node2
->next
= new_node
;
2963 if (src_l
+ dst_l
> vui_allocated
)
2965 vui_allocated
= MAX (vui_allocated
* 2, src_l
+ dst_l
);
2966 vui_vec
= XRESIZEVEC (struct variable_union_info
, vui_vec
,
2971 /* Fill in the locations from DST. */
2972 for (node
= dst
->var_part
[j
].loc_chain
, jj
= 0; node
;
2973 node
= node
->next
, jj
++)
2976 vui
[jj
].pos_dst
= jj
;
2978 /* Pos plus value larger than a sum of 2 valid positions. */
2979 vui
[jj
].pos
= jj
+ src_l
+ dst_l
;
2982 /* Fill in the locations from SRC. */
2984 for (node
= src
->var_part
[i
].loc_chain
, ii
= 0; node
;
2985 node
= node
->next
, ii
++)
2987 /* Find location from NODE. */
2988 for (jj
= 0; jj
< dst_l
; jj
++)
2990 if ((REG_P (vui
[jj
].lc
->loc
)
2991 && REG_P (node
->loc
)
2992 && REGNO (vui
[jj
].lc
->loc
) == REGNO (node
->loc
))
2993 || rtx_equal_p (vui
[jj
].lc
->loc
, node
->loc
))
2995 vui
[jj
].pos
= jj
+ ii
;
2999 if (jj
>= dst_l
) /* The location has not been found. */
3001 location_chain
*new_node
;
3003 /* Copy the location from SRC. */
3004 new_node
= new location_chain
;
3005 new_node
->loc
= node
->loc
;
3006 new_node
->init
= node
->init
;
3007 if (!node
->set_src
|| MEM_P (node
->set_src
))
3008 new_node
->set_src
= NULL
;
3010 new_node
->set_src
= node
->set_src
;
3011 vui
[n
].lc
= new_node
;
3012 vui
[n
].pos_dst
= src_l
+ dst_l
;
3013 vui
[n
].pos
= ii
+ src_l
+ dst_l
;
3020 /* Special case still very common case. For dst_l == 2
3021 all entries dst_l ... n-1 are sorted, with for i >= dst_l
3022 vui[i].pos == i + src_l + dst_l. */
3023 if (vui
[0].pos
> vui
[1].pos
)
3025 /* Order should be 1, 0, 2... */
3026 dst
->var_part
[k
].loc_chain
= vui
[1].lc
;
3027 vui
[1].lc
->next
= vui
[0].lc
;
3030 vui
[0].lc
->next
= vui
[2].lc
;
3031 vui
[n
- 1].lc
->next
= NULL
;
3034 vui
[0].lc
->next
= NULL
;
3039 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
3040 if (n
>= 3 && vui
[2].pos
< vui
[1].pos
)
3042 /* Order should be 0, 2, 1, 3... */
3043 vui
[0].lc
->next
= vui
[2].lc
;
3044 vui
[2].lc
->next
= vui
[1].lc
;
3047 vui
[1].lc
->next
= vui
[3].lc
;
3048 vui
[n
- 1].lc
->next
= NULL
;
3051 vui
[1].lc
->next
= NULL
;
3056 /* Order should be 0, 1, 2... */
3058 vui
[n
- 1].lc
->next
= NULL
;
3061 for (; ii
< n
; ii
++)
3062 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
3066 qsort (vui
, n
, sizeof (struct variable_union_info
),
3067 variable_union_info_cmp_pos
);
3069 /* Reconnect the nodes in sorted order. */
3070 for (ii
= 1; ii
< n
; ii
++)
3071 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
3072 vui
[n
- 1].lc
->next
= NULL
;
3073 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
3076 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (dst
, j
);
3081 else if ((i
>= 0 && j
>= 0
3082 && VAR_PART_OFFSET (src
, i
) < VAR_PART_OFFSET (dst
, j
))
3085 dst
->var_part
[k
] = dst
->var_part
[j
];
3088 else if ((i
>= 0 && j
>= 0
3089 && VAR_PART_OFFSET (src
, i
) > VAR_PART_OFFSET (dst
, j
))
3092 location_chain
**nextp
;
3094 /* Copy the chain from SRC. */
3095 nextp
= &dst
->var_part
[k
].loc_chain
;
3096 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
3098 location_chain
*new_lc
;
3100 new_lc
= new location_chain
;
3101 new_lc
->next
= NULL
;
3102 new_lc
->init
= node
->init
;
3103 if (!node
->set_src
|| MEM_P (node
->set_src
))
3104 new_lc
->set_src
= NULL
;
3106 new_lc
->set_src
= node
->set_src
;
3107 new_lc
->loc
= node
->loc
;
3110 nextp
= &new_lc
->next
;
3113 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (src
, i
);
3116 dst
->var_part
[k
].cur_loc
= NULL
;
3119 if (flag_var_tracking_uninit
)
3120 for (i
= 0; i
< src
->n_var_parts
&& i
< dst
->n_var_parts
; i
++)
3122 location_chain
*node
, *node2
;
3123 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
3124 for (node2
= dst
->var_part
[i
].loc_chain
; node2
; node2
= node2
->next
)
3125 if (rtx_equal_p (node
->loc
, node2
->loc
))
3127 if (node
->init
> node2
->init
)
3128 node2
->init
= node
->init
;
3132 /* Continue traversing the hash table. */
3136 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3139 dataflow_set_union (dataflow_set
*dst
, dataflow_set
*src
)
3143 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3144 attrs_list_union (&dst
->regs
[i
], src
->regs
[i
]);
3146 if (dst
->vars
== empty_shared_hash
)
3148 shared_hash_destroy (dst
->vars
);
3149 dst
->vars
= shared_hash_copy (src
->vars
);
3153 variable_iterator_type hi
;
3156 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src
->vars
),
3158 variable_union (var
, dst
);
3162 /* Whether the value is currently being expanded. */
3163 #define VALUE_RECURSED_INTO(x) \
3164 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3166 /* Whether no expansion was found, saving useless lookups.
3167 It must only be set when VALUE_CHANGED is clear. */
3168 #define NO_LOC_P(x) \
3169 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3171 /* Whether cur_loc in the value needs to be (re)computed. */
3172 #define VALUE_CHANGED(x) \
3173 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3174 /* Whether cur_loc in the decl needs to be (re)computed. */
3175 #define DECL_CHANGED(x) TREE_VISITED (x)
3177 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3178 user DECLs, this means they're in changed_variables. Values and
3179 debug exprs may be left with this flag set if no user variable
3180 requires them to be evaluated. */
3183 set_dv_changed (decl_or_value dv
, bool newv
)
3185 switch (dv_onepart_p (dv
))
3189 NO_LOC_P (dv_as_value (dv
)) = false;
3190 VALUE_CHANGED (dv_as_value (dv
)) = newv
;
3195 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv
))) = false;
3199 DECL_CHANGED (dv_as_decl (dv
)) = newv
;
3204 /* Return true if DV needs to have its cur_loc recomputed. */
3207 dv_changed_p (decl_or_value dv
)
3209 return (dv_is_value_p (dv
)
3210 ? VALUE_CHANGED (dv_as_value (dv
))
3211 : DECL_CHANGED (dv_as_decl (dv
)));
3214 /* Return a location list node whose loc is rtx_equal to LOC, in the
3215 location list of a one-part variable or value VAR, or in that of
3216 any values recursively mentioned in the location lists. VARS must
3217 be in star-canonical form. */
3219 static location_chain
*
3220 find_loc_in_1pdv (rtx loc
, variable
*var
, variable_table_type
*vars
)
3222 location_chain
*node
;
3223 enum rtx_code loc_code
;
3228 gcc_checking_assert (var
->onepart
);
3230 if (!var
->n_var_parts
)
3233 gcc_checking_assert (var
->dv
!= loc
);
3235 loc_code
= GET_CODE (loc
);
3236 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3241 if (GET_CODE (node
->loc
) != loc_code
)
3243 if (GET_CODE (node
->loc
) != VALUE
)
3246 else if (loc
== node
->loc
)
3248 else if (loc_code
!= VALUE
)
3250 if (rtx_equal_p (loc
, node
->loc
))
3255 /* Since we're in star-canonical form, we don't need to visit
3256 non-canonical nodes: one-part variables and non-canonical
3257 values would only point back to the canonical node. */
3258 if (dv_is_value_p (var
->dv
)
3259 && !canon_value_cmp (node
->loc
, dv_as_value (var
->dv
)))
3261 /* Skip all subsequent VALUEs. */
3262 while (node
->next
&& GET_CODE (node
->next
->loc
) == VALUE
)
3265 gcc_checking_assert (!canon_value_cmp (node
->loc
,
3266 dv_as_value (var
->dv
)));
3267 if (loc
== node
->loc
)
3273 gcc_checking_assert (node
== var
->var_part
[0].loc_chain
);
3274 gcc_checking_assert (!node
->next
);
3276 dv
= dv_from_value (node
->loc
);
3277 rvar
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
3278 return find_loc_in_1pdv (loc
, rvar
, vars
);
3281 /* ??? Gotta look in cselib_val locations too. */
3286 /* Hash table iteration argument passed to variable_merge. */
3289 /* The set in which the merge is to be inserted. */
3291 /* The set that we're iterating in. */
3293 /* The set that may contain the other dv we are to merge with. */
3295 /* Number of onepart dvs in src. */
3296 int src_onepart_cnt
;
3299 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3300 loc_cmp order, and it is maintained as such. */
3303 insert_into_intersection (location_chain
**nodep
, rtx loc
,
3304 enum var_init_status status
)
3306 location_chain
*node
;
3309 for (node
= *nodep
; node
; nodep
= &node
->next
, node
= *nodep
)
3310 if ((r
= loc_cmp (node
->loc
, loc
)) == 0)
3312 node
->init
= MIN (node
->init
, status
);
3318 node
= new location_chain
;
3321 node
->set_src
= NULL
;
3322 node
->init
= status
;
3323 node
->next
= *nodep
;
3327 /* Insert in DEST the intersection of the locations present in both
3328 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3329 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3333 intersect_loc_chains (rtx val
, location_chain
**dest
, struct dfset_merge
*dsm
,
3334 location_chain
*s1node
, variable
*s2var
)
3336 dataflow_set
*s1set
= dsm
->cur
;
3337 dataflow_set
*s2set
= dsm
->src
;
3338 location_chain
*found
;
3342 location_chain
*s2node
;
3344 gcc_checking_assert (s2var
->onepart
);
3346 if (s2var
->n_var_parts
)
3348 s2node
= s2var
->var_part
[0].loc_chain
;
3350 for (; s1node
&& s2node
;
3351 s1node
= s1node
->next
, s2node
= s2node
->next
)
3352 if (s1node
->loc
!= s2node
->loc
)
3354 else if (s1node
->loc
== val
)
3357 insert_into_intersection (dest
, s1node
->loc
,
3358 MIN (s1node
->init
, s2node
->init
));
3362 for (; s1node
; s1node
= s1node
->next
)
3364 if (s1node
->loc
== val
)
3367 if ((found
= find_loc_in_1pdv (s1node
->loc
, s2var
,
3368 shared_hash_htab (s2set
->vars
))))
3370 insert_into_intersection (dest
, s1node
->loc
,
3371 MIN (s1node
->init
, found
->init
));
3375 if (GET_CODE (s1node
->loc
) == VALUE
3376 && !VALUE_RECURSED_INTO (s1node
->loc
))
3378 decl_or_value dv
= dv_from_value (s1node
->loc
);
3379 variable
*svar
= shared_hash_find (s1set
->vars
, dv
);
3382 if (svar
->n_var_parts
== 1)
3384 VALUE_RECURSED_INTO (s1node
->loc
) = true;
3385 intersect_loc_chains (val
, dest
, dsm
,
3386 svar
->var_part
[0].loc_chain
,
3388 VALUE_RECURSED_INTO (s1node
->loc
) = false;
3393 /* ??? gotta look in cselib_val locations too. */
3395 /* ??? if the location is equivalent to any location in src,
3396 searched recursively
3398 add to dst the values needed to represent the equivalence
3400 telling whether locations S is equivalent to another dv's
3403 for each location D in the list
3405 if S and D satisfy rtx_equal_p, then it is present
3407 else if D is a value, recurse without cycles
3409 else if S and D have the same CODE and MODE
3411 for each operand oS and the corresponding oD
3413 if oS and oD are not equivalent, then S an D are not equivalent
3415 else if they are RTX vectors
3417 if any vector oS element is not equivalent to its respective oD,
3418 then S and D are not equivalent
3426 /* Return -1 if X should be before Y in a location list for a 1-part
3427 variable, 1 if Y should be before X, and 0 if they're equivalent
3428 and should not appear in the list. */
3431 loc_cmp (rtx x
, rtx y
)
3434 RTX_CODE code
= GET_CODE (x
);
3444 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3445 if (REGNO (x
) == REGNO (y
))
3447 else if (REGNO (x
) < REGNO (y
))
3460 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3461 return loc_cmp (XEXP (x
, 0), XEXP (y
, 0));
3467 if (GET_CODE (x
) == VALUE
)
3469 if (GET_CODE (y
) != VALUE
)
3471 /* Don't assert the modes are the same, that is true only
3472 when not recursing. (subreg:QI (value:SI 1:1) 0)
3473 and (subreg:QI (value:DI 2:2) 0) can be compared,
3474 even when the modes are different. */
3475 if (canon_value_cmp (x
, y
))
3481 if (GET_CODE (y
) == VALUE
)
3484 /* Entry value is the least preferable kind of expression. */
3485 if (GET_CODE (x
) == ENTRY_VALUE
)
3487 if (GET_CODE (y
) != ENTRY_VALUE
)
3489 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3490 return loc_cmp (ENTRY_VALUE_EXP (x
), ENTRY_VALUE_EXP (y
));
3493 if (GET_CODE (y
) == ENTRY_VALUE
)
3496 if (GET_CODE (x
) == GET_CODE (y
))
3497 /* Compare operands below. */;
3498 else if (GET_CODE (x
) < GET_CODE (y
))
3503 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3505 if (GET_CODE (x
) == DEBUG_EXPR
)
3507 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
3508 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)))
3510 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
3511 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)));
3515 fmt
= GET_RTX_FORMAT (code
);
3516 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
3520 if (XWINT (x
, i
) == XWINT (y
, i
))
3522 else if (XWINT (x
, i
) < XWINT (y
, i
))
3529 if (XINT (x
, i
) == XINT (y
, i
))
3531 else if (XINT (x
, i
) < XINT (y
, i
))
3537 r
= compare_sizes_for_sort (SUBREG_BYTE (x
), SUBREG_BYTE (y
));
3544 /* Compare the vector length first. */
3545 if (XVECLEN (x
, i
) == XVECLEN (y
, i
))
3546 /* Compare the vectors elements. */;
3547 else if (XVECLEN (x
, i
) < XVECLEN (y
, i
))
3552 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3553 if ((r
= loc_cmp (XVECEXP (x
, i
, j
),
3554 XVECEXP (y
, i
, j
))))
3559 if ((r
= loc_cmp (XEXP (x
, i
), XEXP (y
, i
))))
3565 if (XSTR (x
, i
) == XSTR (y
, i
))
3571 if ((r
= strcmp (XSTR (x
, i
), XSTR (y
, i
))) == 0)
3579 /* These are just backpointers, so they don't matter. */
3586 /* It is believed that rtx's at this level will never
3587 contain anything but integers and other rtx's,
3588 except for within LABEL_REFs and SYMBOL_REFs. */
3592 if (CONST_WIDE_INT_P (x
))
3594 /* Compare the vector length first. */
3595 if (CONST_WIDE_INT_NUNITS (x
) >= CONST_WIDE_INT_NUNITS (y
))
3597 else if (CONST_WIDE_INT_NUNITS (x
) < CONST_WIDE_INT_NUNITS (y
))
3600 /* Compare the vectors elements. */;
3601 for (j
= CONST_WIDE_INT_NUNITS (x
) - 1; j
>= 0 ; j
--)
3603 if (CONST_WIDE_INT_ELT (x
, j
) < CONST_WIDE_INT_ELT (y
, j
))
3605 if (CONST_WIDE_INT_ELT (x
, j
) > CONST_WIDE_INT_ELT (y
, j
))
3613 /* Check the order of entries in one-part variables. */
3616 canonicalize_loc_order_check (variable
**slot
,
3617 dataflow_set
*data ATTRIBUTE_UNUSED
)
3619 variable
*var
= *slot
;
3620 location_chain
*node
, *next
;
3622 #ifdef ENABLE_RTL_CHECKING
3624 for (i
= 0; i
< var
->n_var_parts
; i
++)
3625 gcc_assert (var
->var_part
[0].cur_loc
== NULL
);
3626 gcc_assert (!var
->in_changed_variables
);
3632 gcc_assert (var
->n_var_parts
== 1);
3633 node
= var
->var_part
[0].loc_chain
;
3636 while ((next
= node
->next
))
3638 gcc_assert (loc_cmp (node
->loc
, next
->loc
) < 0);
3645 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3646 more likely to be chosen as canonical for an equivalence set.
3647 Ensure less likely values can reach more likely neighbors, making
3648 the connections bidirectional. */
3651 canonicalize_values_mark (variable
**slot
, dataflow_set
*set
)
3653 variable
*var
= *slot
;
3654 decl_or_value dv
= var
->dv
;
3656 location_chain
*node
;
3658 if (!dv_is_value_p (dv
))
3661 gcc_checking_assert (var
->n_var_parts
== 1);
3663 val
= dv_as_value (dv
);
3665 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3666 if (GET_CODE (node
->loc
) == VALUE
)
3668 if (canon_value_cmp (node
->loc
, val
))
3669 VALUE_RECURSED_INTO (val
) = true;
3672 decl_or_value odv
= dv_from_value (node
->loc
);
3674 oslot
= shared_hash_find_slot_noinsert (set
->vars
, odv
);
3676 set_slot_part (set
, val
, oslot
, odv
, 0,
3677 node
->init
, NULL_RTX
);
3679 VALUE_RECURSED_INTO (node
->loc
) = true;
3686 /* Remove redundant entries from equivalence lists in onepart
3687 variables, canonicalizing equivalence sets into star shapes. */
3690 canonicalize_values_star (variable
**slot
, dataflow_set
*set
)
3692 variable
*var
= *slot
;
3693 decl_or_value dv
= var
->dv
;
3694 location_chain
*node
;
3704 gcc_checking_assert (var
->n_var_parts
== 1);
3706 if (dv_is_value_p (dv
))
3708 cval
= dv_as_value (dv
);
3709 if (!VALUE_RECURSED_INTO (cval
))
3711 VALUE_RECURSED_INTO (cval
) = false;
3721 gcc_assert (var
->n_var_parts
== 1);
3723 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3724 if (GET_CODE (node
->loc
) == VALUE
)
3727 if (VALUE_RECURSED_INTO (node
->loc
))
3729 if (canon_value_cmp (node
->loc
, cval
))
3738 if (!has_marks
|| dv_is_decl_p (dv
))
3741 /* Keep it marked so that we revisit it, either after visiting a
3742 child node, or after visiting a new parent that might be
3744 VALUE_RECURSED_INTO (val
) = true;
3746 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3747 if (GET_CODE (node
->loc
) == VALUE
3748 && VALUE_RECURSED_INTO (node
->loc
))
3752 VALUE_RECURSED_INTO (cval
) = false;
3753 dv
= dv_from_value (cval
);
3754 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
3757 gcc_assert (dv_is_decl_p (var
->dv
));
3758 /* The canonical value was reset and dropped.
3760 clobber_variable_part (set
, NULL
, var
->dv
, 0, NULL
);
3764 gcc_assert (dv_is_value_p (var
->dv
));
3765 if (var
->n_var_parts
== 0)
3767 gcc_assert (var
->n_var_parts
== 1);
3771 VALUE_RECURSED_INTO (val
) = false;
3776 /* Push values to the canonical one. */
3777 cdv
= dv_from_value (cval
);
3778 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3780 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3781 if (node
->loc
!= cval
)
3783 cslot
= set_slot_part (set
, node
->loc
, cslot
, cdv
, 0,
3784 node
->init
, NULL_RTX
);
3785 if (GET_CODE (node
->loc
) == VALUE
)
3787 decl_or_value ndv
= dv_from_value (node
->loc
);
3789 set_variable_part (set
, cval
, ndv
, 0, node
->init
, NULL_RTX
,
3792 if (canon_value_cmp (node
->loc
, val
))
3794 /* If it could have been a local minimum, it's not any more,
3795 since it's now neighbor to cval, so it may have to push
3796 to it. Conversely, if it wouldn't have prevailed over
3797 val, then whatever mark it has is fine: if it was to
3798 push, it will now push to a more canonical node, but if
3799 it wasn't, then it has already pushed any values it might
3801 VALUE_RECURSED_INTO (node
->loc
) = true;
3802 /* Make sure we visit node->loc by ensuring we cval is
3804 VALUE_RECURSED_INTO (cval
) = true;
3806 else if (!VALUE_RECURSED_INTO (node
->loc
))
3807 /* If we have no need to "recurse" into this node, it's
3808 already "canonicalized", so drop the link to the old
3810 clobber_variable_part (set
, cval
, ndv
, 0, NULL
);
3812 else if (GET_CODE (node
->loc
) == REG
)
3814 attrs
*list
= set
->regs
[REGNO (node
->loc
)], **listp
;
3816 /* Change an existing attribute referring to dv so that it
3817 refers to cdv, removing any duplicate this might
3818 introduce, and checking that no previous duplicates
3819 existed, all in a single pass. */
3823 if (list
->offset
== 0 && (list
->dv
== dv
|| list
->dv
== cdv
))
3833 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3838 if (list
->dv
== cdv
)
3840 *listp
= list
->next
;
3846 gcc_assert (list
->dv
!= dv
);
3849 else if (list
->dv
== cdv
)
3851 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3858 *listp
= list
->next
;
3864 gcc_assert (list
->dv
!= cdv
);
3873 if (list
->offset
== 0 && (list
->dv
== dv
|| list
->dv
== cdv
))
3882 set_slot_part (set
, val
, cslot
, cdv
, 0,
3883 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
);
3885 slot
= clobber_slot_part (set
, cval
, slot
, 0, NULL
);
3887 /* Variable may have been unshared. */
3889 gcc_checking_assert (var
->n_var_parts
&& var
->var_part
[0].loc_chain
->loc
== cval
3890 && var
->var_part
[0].loc_chain
->next
== NULL
);
3892 if (VALUE_RECURSED_INTO (cval
))
3893 goto restart_with_cval
;
3898 /* Bind one-part variables to the canonical value in an equivalence
3899 set. Not doing this causes dataflow convergence failure in rare
3900 circumstances, see PR42873. Unfortunately we can't do this
3901 efficiently as part of canonicalize_values_star, since we may not
3902 have determined or even seen the canonical value of a set when we
3903 get to a variable that references another member of the set. */
3906 canonicalize_vars_star (variable
**slot
, dataflow_set
*set
)
3908 variable
*var
= *slot
;
3909 decl_or_value dv
= var
->dv
;
3910 location_chain
*node
;
3915 location_chain
*cnode
;
3917 if (!var
->onepart
|| var
->onepart
== ONEPART_VALUE
)
3920 gcc_assert (var
->n_var_parts
== 1);
3922 node
= var
->var_part
[0].loc_chain
;
3924 if (GET_CODE (node
->loc
) != VALUE
)
3927 gcc_assert (!node
->next
);
3930 /* Push values to the canonical one. */
3931 cdv
= dv_from_value (cval
);
3932 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3936 gcc_assert (cvar
->n_var_parts
== 1);
3938 cnode
= cvar
->var_part
[0].loc_chain
;
3940 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3941 that are not “more canonical” than it. */
3942 if (GET_CODE (cnode
->loc
) != VALUE
3943 || !canon_value_cmp (cnode
->loc
, cval
))
3946 /* CVAL was found to be non-canonical. Change the variable to point
3947 to the canonical VALUE. */
3948 gcc_assert (!cnode
->next
);
3951 slot
= set_slot_part (set
, cval
, slot
, dv
, 0,
3952 node
->init
, node
->set_src
);
3953 clobber_slot_part (set
, cval
, slot
, 0, node
->set_src
);
3958 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3959 corresponding entry in DSM->src. Multi-part variables are combined
3960 with variable_union, whereas onepart dvs are combined with
3964 variable_merge_over_cur (variable
*s1var
, struct dfset_merge
*dsm
)
3966 dataflow_set
*dst
= dsm
->dst
;
3968 variable
*s2var
, *dvar
= NULL
;
3969 decl_or_value dv
= s1var
->dv
;
3970 onepart_enum onepart
= s1var
->onepart
;
3973 location_chain
*node
, **nodep
;
3975 /* If the incoming onepart variable has an empty location list, then
3976 the intersection will be just as empty. For other variables,
3977 it's always union. */
3978 gcc_checking_assert (s1var
->n_var_parts
3979 && s1var
->var_part
[0].loc_chain
);
3982 return variable_union (s1var
, dst
);
3984 gcc_checking_assert (s1var
->n_var_parts
== 1);
3986 dvhash
= dv_htab_hash (dv
);
3987 if (dv_is_value_p (dv
))
3988 val
= dv_as_value (dv
);
3992 s2var
= shared_hash_find_1 (dsm
->src
->vars
, dv
, dvhash
);
3995 dst_can_be_shared
= false;
3999 dsm
->src_onepart_cnt
--;
4000 gcc_assert (s2var
->var_part
[0].loc_chain
4001 && s2var
->onepart
== onepart
4002 && s2var
->n_var_parts
== 1);
4004 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4008 gcc_assert (dvar
->refcount
== 1
4009 && dvar
->onepart
== onepart
4010 && dvar
->n_var_parts
== 1);
4011 nodep
= &dvar
->var_part
[0].loc_chain
;
4019 if (!dstslot
&& !onepart_variable_different_p (s1var
, s2var
))
4021 dstslot
= shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
,
4023 *dstslot
= dvar
= s2var
;
4028 dst_can_be_shared
= false;
4030 intersect_loc_chains (val
, nodep
, dsm
,
4031 s1var
->var_part
[0].loc_chain
, s2var
);
4037 dvar
= onepart_pool_allocate (onepart
);
4040 dvar
->n_var_parts
= 1;
4041 dvar
->onepart
= onepart
;
4042 dvar
->in_changed_variables
= false;
4043 dvar
->var_part
[0].loc_chain
= node
;
4044 dvar
->var_part
[0].cur_loc
= NULL
;
4046 VAR_LOC_1PAUX (dvar
) = NULL
;
4048 VAR_PART_OFFSET (dvar
, 0) = 0;
4051 = shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
, dvhash
,
4053 gcc_assert (!*dstslot
);
4061 nodep
= &dvar
->var_part
[0].loc_chain
;
4062 while ((node
= *nodep
))
4064 location_chain
**nextp
= &node
->next
;
4066 if (GET_CODE (node
->loc
) == REG
)
4070 for (list
= dst
->regs
[REGNO (node
->loc
)]; list
; list
= list
->next
)
4071 if (GET_MODE (node
->loc
) == GET_MODE (list
->loc
)
4072 && dv_is_value_p (list
->dv
))
4076 attrs_list_insert (&dst
->regs
[REGNO (node
->loc
)],
4078 /* If this value became canonical for another value that had
4079 this register, we want to leave it alone. */
4080 else if (dv_as_value (list
->dv
) != val
)
4082 dstslot
= set_slot_part (dst
, dv_as_value (list
->dv
),
4084 node
->init
, NULL_RTX
);
4085 dstslot
= delete_slot_part (dst
, node
->loc
, dstslot
, 0);
4087 /* Since nextp points into the removed node, we can't
4088 use it. The pointer to the next node moved to nodep.
4089 However, if the variable we're walking is unshared
4090 during our walk, we'll keep walking the location list
4091 of the previously-shared variable, in which case the
4092 node won't have been removed, and we'll want to skip
4093 it. That's why we test *nodep here. */
4099 /* Canonicalization puts registers first, so we don't have to
4105 if (dvar
!= *dstslot
)
4107 nodep
= &dvar
->var_part
[0].loc_chain
;
4111 /* Mark all referenced nodes for canonicalization, and make sure
4112 we have mutual equivalence links. */
4113 VALUE_RECURSED_INTO (val
) = true;
4114 for (node
= *nodep
; node
; node
= node
->next
)
4115 if (GET_CODE (node
->loc
) == VALUE
)
4117 VALUE_RECURSED_INTO (node
->loc
) = true;
4118 set_variable_part (dst
, val
, dv_from_value (node
->loc
), 0,
4119 node
->init
, NULL
, INSERT
);
4122 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4123 gcc_assert (*dstslot
== dvar
);
4124 canonicalize_values_star (dstslot
, dst
);
4125 gcc_checking_assert (dstslot
4126 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
4132 bool has_value
= false, has_other
= false;
4134 /* If we have one value and anything else, we're going to
4135 canonicalize this, so make sure all values have an entry in
4136 the table and are marked for canonicalization. */
4137 for (node
= *nodep
; node
; node
= node
->next
)
4139 if (GET_CODE (node
->loc
) == VALUE
)
4141 /* If this was marked during register canonicalization,
4142 we know we have to canonicalize values. */
4157 if (has_value
&& has_other
)
4159 for (node
= *nodep
; node
; node
= node
->next
)
4161 if (GET_CODE (node
->loc
) == VALUE
)
4163 decl_or_value dv
= dv_from_value (node
->loc
);
4164 variable
**slot
= NULL
;
4166 if (shared_hash_shared (dst
->vars
))
4167 slot
= shared_hash_find_slot_noinsert (dst
->vars
, dv
);
4169 slot
= shared_hash_find_slot_unshare (&dst
->vars
, dv
,
4173 variable
*var
= onepart_pool_allocate (ONEPART_VALUE
);
4176 var
->n_var_parts
= 1;
4177 var
->onepart
= ONEPART_VALUE
;
4178 var
->in_changed_variables
= false;
4179 var
->var_part
[0].loc_chain
= NULL
;
4180 var
->var_part
[0].cur_loc
= NULL
;
4181 VAR_LOC_1PAUX (var
) = NULL
;
4185 VALUE_RECURSED_INTO (node
->loc
) = true;
4189 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4190 gcc_assert (*dstslot
== dvar
);
4191 canonicalize_values_star (dstslot
, dst
);
4192 gcc_checking_assert (dstslot
4193 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
4199 if (!onepart_variable_different_p (dvar
, s2var
))
4201 variable_htab_free (dvar
);
4202 *dstslot
= dvar
= s2var
;
4205 else if (s2var
!= s1var
&& !onepart_variable_different_p (dvar
, s1var
))
4207 variable_htab_free (dvar
);
4208 *dstslot
= dvar
= s1var
;
4210 dst_can_be_shared
= false;
4213 dst_can_be_shared
= false;
4218 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4219 multi-part variable. Unions of multi-part variables and
4220 intersections of one-part ones will be handled in
4221 variable_merge_over_cur(). */
4224 variable_merge_over_src (variable
*s2var
, struct dfset_merge
*dsm
)
4226 dataflow_set
*dst
= dsm
->dst
;
4227 decl_or_value dv
= s2var
->dv
;
4229 if (!s2var
->onepart
)
4231 variable
**dstp
= shared_hash_find_slot (dst
->vars
, dv
);
4237 dsm
->src_onepart_cnt
++;
4241 /* Combine dataflow set information from SRC2 into DST, using PDST
4242 to carry over information across passes. */
4245 dataflow_set_merge (dataflow_set
*dst
, dataflow_set
*src2
)
4247 dataflow_set cur
= *dst
;
4248 dataflow_set
*src1
= &cur
;
4249 struct dfset_merge dsm
;
4251 size_t src1_elems
, src2_elems
;
4252 variable_iterator_type hi
;
4255 src1_elems
= shared_hash_htab (src1
->vars
)->elements ();
4256 src2_elems
= shared_hash_htab (src2
->vars
)->elements ();
4257 dataflow_set_init (dst
);
4258 dst
->stack_adjust
= cur
.stack_adjust
;
4259 shared_hash_destroy (dst
->vars
);
4260 dst
->vars
= new shared_hash
;
4261 dst
->vars
->refcount
= 1;
4262 dst
->vars
->htab
= new variable_table_type (MAX (src1_elems
, src2_elems
));
4264 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4265 attrs_list_mpdv_union (&dst
->regs
[i
], src1
->regs
[i
], src2
->regs
[i
]);
4270 dsm
.src_onepart_cnt
= 0;
4272 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm
.src
->vars
),
4274 variable_merge_over_src (var
, &dsm
);
4275 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm
.cur
->vars
),
4277 variable_merge_over_cur (var
, &dsm
);
4279 if (dsm
.src_onepart_cnt
)
4280 dst_can_be_shared
= false;
4282 dataflow_set_destroy (src1
);
4285 /* Mark register equivalences. */
4288 dataflow_set_equiv_regs (dataflow_set
*set
)
4291 attrs
*list
, **listp
;
4293 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4295 rtx canon
[NUM_MACHINE_MODES
];
4297 /* If the list is empty or one entry, no need to canonicalize
4299 if (set
->regs
[i
] == NULL
|| set
->regs
[i
]->next
== NULL
)
4302 memset (canon
, 0, sizeof (canon
));
4304 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
4305 if (list
->offset
== 0 && dv_is_value_p (list
->dv
))
4307 rtx val
= dv_as_value (list
->dv
);
4308 rtx
*cvalp
= &canon
[(int)GET_MODE (val
)];
4311 if (canon_value_cmp (val
, cval
))
4315 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
4316 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
4318 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
4323 if (dv_is_value_p (list
->dv
))
4325 rtx val
= dv_as_value (list
->dv
);
4330 VALUE_RECURSED_INTO (val
) = true;
4331 set_variable_part (set
, val
, dv_from_value (cval
), 0,
4332 VAR_INIT_STATUS_INITIALIZED
,
4336 VALUE_RECURSED_INTO (cval
) = true;
4337 set_variable_part (set
, cval
, list
->dv
, 0,
4338 VAR_INIT_STATUS_INITIALIZED
, NULL
, NO_INSERT
);
4341 for (listp
= &set
->regs
[i
]; (list
= *listp
);
4342 listp
= list
? &list
->next
: listp
)
4343 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
4345 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
4351 if (dv_is_value_p (list
->dv
))
4353 rtx val
= dv_as_value (list
->dv
);
4354 if (!VALUE_RECURSED_INTO (val
))
4358 slot
= shared_hash_find_slot_noinsert (set
->vars
, list
->dv
);
4359 canonicalize_values_star (slot
, set
);
4366 /* Remove any redundant values in the location list of VAR, which must
4367 be unshared and 1-part. */
4370 remove_duplicate_values (variable
*var
)
4372 location_chain
*node
, **nodep
;
4374 gcc_assert (var
->onepart
);
4375 gcc_assert (var
->n_var_parts
== 1);
4376 gcc_assert (var
->refcount
== 1);
4378 for (nodep
= &var
->var_part
[0].loc_chain
; (node
= *nodep
); )
4380 if (GET_CODE (node
->loc
) == VALUE
)
4382 if (VALUE_RECURSED_INTO (node
->loc
))
4384 /* Remove duplicate value node. */
4385 *nodep
= node
->next
;
4390 VALUE_RECURSED_INTO (node
->loc
) = true;
4392 nodep
= &node
->next
;
4395 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4396 if (GET_CODE (node
->loc
) == VALUE
)
4398 gcc_assert (VALUE_RECURSED_INTO (node
->loc
));
4399 VALUE_RECURSED_INTO (node
->loc
) = false;
4404 /* Hash table iteration argument passed to variable_post_merge. */
4405 struct dfset_post_merge
4407 /* The new input set for the current block. */
4409 /* Pointer to the permanent input set for the current block, or
4411 dataflow_set
**permp
;
4414 /* Create values for incoming expressions associated with one-part
4415 variables that don't have value numbers for them. */
4418 variable_post_merge_new_vals (variable
**slot
, dfset_post_merge
*dfpm
)
4420 dataflow_set
*set
= dfpm
->set
;
4421 variable
*var
= *slot
;
4422 location_chain
*node
;
4424 if (!var
->onepart
|| !var
->n_var_parts
)
4427 gcc_assert (var
->n_var_parts
== 1);
4429 if (dv_is_decl_p (var
->dv
))
4431 bool check_dupes
= false;
4434 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4436 if (GET_CODE (node
->loc
) == VALUE
)
4437 gcc_assert (!VALUE_RECURSED_INTO (node
->loc
));
4438 else if (GET_CODE (node
->loc
) == REG
)
4440 attrs
*att
, **attp
, **curp
= NULL
;
4442 if (var
->refcount
!= 1)
4444 slot
= unshare_variable (set
, slot
, var
,
4445 VAR_INIT_STATUS_INITIALIZED
);
4450 for (attp
= &set
->regs
[REGNO (node
->loc
)]; (att
= *attp
);
4452 if (att
->offset
== 0
4453 && GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
4455 if (dv_is_value_p (att
->dv
))
4457 rtx cval
= dv_as_value (att
->dv
);
4462 else if (att
->dv
== var
->dv
)
4470 if ((*curp
)->offset
== 0
4471 && GET_MODE ((*curp
)->loc
) == GET_MODE (node
->loc
)
4472 && (*curp
)->dv
== var
->dv
)
4475 curp
= &(*curp
)->next
;
4486 *dfpm
->permp
= XNEW (dataflow_set
);
4487 dataflow_set_init (*dfpm
->permp
);
4490 for (att
= (*dfpm
->permp
)->regs
[REGNO (node
->loc
)];
4491 att
; att
= att
->next
)
4492 if (GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
4494 gcc_assert (att
->offset
== 0
4495 && dv_is_value_p (att
->dv
));
4496 val_reset (set
, att
->dv
);
4503 cval
= dv_as_value (cdv
);
4507 /* Create a unique value to hold this register,
4508 that ought to be found and reused in
4509 subsequent rounds. */
4511 gcc_assert (!cselib_lookup (node
->loc
,
4512 GET_MODE (node
->loc
), 0,
4514 v
= cselib_lookup (node
->loc
, GET_MODE (node
->loc
), 1,
4516 cselib_preserve_value (v
);
4517 cselib_invalidate_rtx (node
->loc
);
4519 cdv
= dv_from_value (cval
);
4522 "Created new value %u:%u for reg %i\n",
4523 v
->uid
, v
->hash
, REGNO (node
->loc
));
4526 var_reg_decl_set (*dfpm
->permp
, node
->loc
,
4527 VAR_INIT_STATUS_INITIALIZED
,
4528 cdv
, 0, NULL
, INSERT
);
4534 /* Remove attribute referring to the decl, which now
4535 uses the value for the register, already existing or
4536 to be added when we bring perm in. */
4544 remove_duplicate_values (var
);
4550 /* Reset values in the permanent set that are not associated with the
4551 chosen expression. */
4554 variable_post_merge_perm_vals (variable
**pslot
, dfset_post_merge
*dfpm
)
4556 dataflow_set
*set
= dfpm
->set
;
4557 variable
*pvar
= *pslot
, *var
;
4558 location_chain
*pnode
;
4562 gcc_assert (dv_is_value_p (pvar
->dv
)
4563 && pvar
->n_var_parts
== 1);
4564 pnode
= pvar
->var_part
[0].loc_chain
;
4567 && REG_P (pnode
->loc
));
4571 var
= shared_hash_find (set
->vars
, dv
);
4574 /* Although variable_post_merge_new_vals may have made decls
4575 non-star-canonical, values that pre-existed in canonical form
4576 remain canonical, and newly-created values reference a single
4577 REG, so they are canonical as well. Since VAR has the
4578 location list for a VALUE, using find_loc_in_1pdv for it is
4579 fine, since VALUEs don't map back to DECLs. */
4580 if (find_loc_in_1pdv (pnode
->loc
, var
, shared_hash_htab (set
->vars
)))
4582 val_reset (set
, dv
);
4585 for (att
= set
->regs
[REGNO (pnode
->loc
)]; att
; att
= att
->next
)
4586 if (att
->offset
== 0
4587 && GET_MODE (att
->loc
) == GET_MODE (pnode
->loc
)
4588 && dv_is_value_p (att
->dv
))
4591 /* If there is a value associated with this register already, create
4593 if (att
&& dv_as_value (att
->dv
) != dv_as_value (dv
))
4595 rtx cval
= dv_as_value (att
->dv
);
4596 set_variable_part (set
, cval
, dv
, 0, pnode
->init
, NULL
, INSERT
);
4597 set_variable_part (set
, dv_as_value (dv
), att
->dv
, 0, pnode
->init
,
4602 attrs_list_insert (&set
->regs
[REGNO (pnode
->loc
)],
4604 variable_union (pvar
, set
);
4610 /* Just checking stuff and registering register attributes for
4614 dataflow_post_merge_adjust (dataflow_set
*set
, dataflow_set
**permp
)
4616 struct dfset_post_merge dfpm
;
4621 shared_hash_htab (set
->vars
)
4622 ->traverse
<dfset_post_merge
*, variable_post_merge_new_vals
> (&dfpm
);
4624 shared_hash_htab ((*permp
)->vars
)
4625 ->traverse
<dfset_post_merge
*, variable_post_merge_perm_vals
> (&dfpm
);
4626 shared_hash_htab (set
->vars
)
4627 ->traverse
<dataflow_set
*, canonicalize_values_star
> (set
);
4628 shared_hash_htab (set
->vars
)
4629 ->traverse
<dataflow_set
*, canonicalize_vars_star
> (set
);
4632 /* Return a node whose loc is a MEM that refers to EXPR in the
4633 location list of a one-part variable or value VAR, or in that of
4634 any values recursively mentioned in the location lists. */
4636 static location_chain
*
4637 find_mem_expr_in_1pdv (tree expr
, rtx val
, variable_table_type
*vars
)
4639 location_chain
*node
;
4642 location_chain
*where
= NULL
;
4647 gcc_assert (GET_CODE (val
) == VALUE
4648 && !VALUE_RECURSED_INTO (val
));
4650 dv
= dv_from_value (val
);
4651 var
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
4656 gcc_assert (var
->onepart
);
4658 if (!var
->n_var_parts
)
4661 VALUE_RECURSED_INTO (val
) = true;
4663 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4664 if (MEM_P (node
->loc
)
4665 && MEM_EXPR (node
->loc
) == expr
4666 && int_mem_offset (node
->loc
) == 0)
4671 else if (GET_CODE (node
->loc
) == VALUE
4672 && !VALUE_RECURSED_INTO (node
->loc
)
4673 && (where
= find_mem_expr_in_1pdv (expr
, node
->loc
, vars
)))
4676 VALUE_RECURSED_INTO (val
) = false;
4681 /* Return TRUE if the value of MEM may vary across a call. */
4684 mem_dies_at_call (rtx mem
)
4686 tree expr
= MEM_EXPR (mem
);
4692 decl
= get_base_address (expr
);
4700 return (may_be_aliased (decl
)
4701 || (!TREE_READONLY (decl
) && is_global_var (decl
)));
4704 /* Remove all MEMs from the location list of a hash table entry for a
4705 one-part variable, except those whose MEM attributes map back to
4706 the variable itself, directly or within a VALUE. */
4709 dataflow_set_preserve_mem_locs (variable
**slot
, dataflow_set
*set
)
4711 variable
*var
= *slot
;
4713 if (var
->onepart
== ONEPART_VDECL
|| var
->onepart
== ONEPART_DEXPR
)
4715 tree decl
= dv_as_decl (var
->dv
);
4716 location_chain
*loc
, **locp
;
4717 bool changed
= false;
4719 if (!var
->n_var_parts
)
4722 gcc_assert (var
->n_var_parts
== 1);
4724 if (shared_var_p (var
, set
->vars
))
4726 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4728 /* We want to remove dying MEMs that don't refer to DECL. */
4729 if (GET_CODE (loc
->loc
) == MEM
4730 && (MEM_EXPR (loc
->loc
) != decl
4731 || int_mem_offset (loc
->loc
) != 0)
4732 && mem_dies_at_call (loc
->loc
))
4734 /* We want to move here MEMs that do refer to DECL. */
4735 else if (GET_CODE (loc
->loc
) == VALUE
4736 && find_mem_expr_in_1pdv (decl
, loc
->loc
,
4737 shared_hash_htab (set
->vars
)))
4744 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4746 gcc_assert (var
->n_var_parts
== 1);
4749 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4752 rtx old_loc
= loc
->loc
;
4753 if (GET_CODE (old_loc
) == VALUE
)
4755 location_chain
*mem_node
4756 = find_mem_expr_in_1pdv (decl
, loc
->loc
,
4757 shared_hash_htab (set
->vars
));
4759 /* ??? This picks up only one out of multiple MEMs that
4760 refer to the same variable. Do we ever need to be
4761 concerned about dealing with more than one, or, given
4762 that they should all map to the same variable
4763 location, their addresses will have been merged and
4764 they will be regarded as equivalent? */
4767 loc
->loc
= mem_node
->loc
;
4768 loc
->set_src
= mem_node
->set_src
;
4769 loc
->init
= MIN (loc
->init
, mem_node
->init
);
4773 if (GET_CODE (loc
->loc
) != MEM
4774 || (MEM_EXPR (loc
->loc
) == decl
4775 && int_mem_offset (loc
->loc
) == 0)
4776 || !mem_dies_at_call (loc
->loc
))
4778 if (old_loc
!= loc
->loc
&& emit_notes
)
4780 if (old_loc
== var
->var_part
[0].cur_loc
)
4783 var
->var_part
[0].cur_loc
= NULL
;
4792 if (old_loc
== var
->var_part
[0].cur_loc
)
4795 var
->var_part
[0].cur_loc
= NULL
;
4802 if (!var
->var_part
[0].loc_chain
)
4808 variable_was_changed (var
, set
);
4814 /* Remove all MEMs from the location list of a hash table entry for a
4815 onepart variable. */
4818 dataflow_set_remove_mem_locs (variable
**slot
, dataflow_set
*set
)
4820 variable
*var
= *slot
;
4822 if (var
->onepart
!= NOT_ONEPART
)
4824 location_chain
*loc
, **locp
;
4825 bool changed
= false;
4828 gcc_assert (var
->n_var_parts
== 1);
4830 if (shared_var_p (var
, set
->vars
))
4832 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4833 if (GET_CODE (loc
->loc
) == MEM
4834 && mem_dies_at_call (loc
->loc
))
4840 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4842 gcc_assert (var
->n_var_parts
== 1);
4845 if (VAR_LOC_1PAUX (var
))
4846 cur_loc
= VAR_LOC_FROM (var
);
4848 cur_loc
= var
->var_part
[0].cur_loc
;
4850 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4853 if (GET_CODE (loc
->loc
) != MEM
4854 || !mem_dies_at_call (loc
->loc
))
4861 /* If we have deleted the location which was last emitted
4862 we have to emit new location so add the variable to set
4863 of changed variables. */
4864 if (cur_loc
== loc
->loc
)
4867 var
->var_part
[0].cur_loc
= NULL
;
4868 if (VAR_LOC_1PAUX (var
))
4869 VAR_LOC_FROM (var
) = NULL
;
4874 if (!var
->var_part
[0].loc_chain
)
4880 variable_was_changed (var
, set
);
4886 /* Remove all variable-location information about call-clobbered
4887 registers, as well as associations between MEMs and VALUEs. */
4890 dataflow_set_clear_at_call (dataflow_set
*set
, rtx_insn
*call_insn
)
4893 hard_reg_set_iterator hrsi
;
4895 HARD_REG_SET callee_clobbers
4896 = insn_callee_abi (call_insn
).full_reg_clobbers ();
4898 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers
, 0, r
, hrsi
)
4899 var_regno_delete (set
, r
);
4901 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4903 set
->traversed_vars
= set
->vars
;
4904 shared_hash_htab (set
->vars
)
4905 ->traverse
<dataflow_set
*, dataflow_set_preserve_mem_locs
> (set
);
4906 set
->traversed_vars
= set
->vars
;
4907 shared_hash_htab (set
->vars
)
4908 ->traverse
<dataflow_set
*, dataflow_set_remove_mem_locs
> (set
);
4909 set
->traversed_vars
= NULL
;
4914 variable_part_different_p (variable_part
*vp1
, variable_part
*vp2
)
4916 location_chain
*lc1
, *lc2
;
4918 for (lc1
= vp1
->loc_chain
; lc1
; lc1
= lc1
->next
)
4920 for (lc2
= vp2
->loc_chain
; lc2
; lc2
= lc2
->next
)
4922 if (REG_P (lc1
->loc
) && REG_P (lc2
->loc
))
4924 if (REGNO (lc1
->loc
) == REGNO (lc2
->loc
))
4927 if (rtx_equal_p (lc1
->loc
, lc2
->loc
))
4936 /* Return true if one-part variables VAR1 and VAR2 are different.
4937 They must be in canonical order. */
4940 onepart_variable_different_p (variable
*var1
, variable
*var2
)
4942 location_chain
*lc1
, *lc2
;
4947 gcc_assert (var1
->n_var_parts
== 1
4948 && var2
->n_var_parts
== 1);
4950 lc1
= var1
->var_part
[0].loc_chain
;
4951 lc2
= var2
->var_part
[0].loc_chain
;
4953 gcc_assert (lc1
&& lc2
);
4957 if (loc_cmp (lc1
->loc
, lc2
->loc
))
4966 /* Return true if one-part variables VAR1 and VAR2 are different.
4967 They must be in canonical order. */
4970 dump_onepart_variable_differences (variable
*var1
, variable
*var2
)
4972 location_chain
*lc1
, *lc2
;
4974 gcc_assert (var1
!= var2
);
4975 gcc_assert (dump_file
);
4976 gcc_assert (var1
->dv
== var2
->dv
);
4977 gcc_assert (var1
->n_var_parts
== 1
4978 && var2
->n_var_parts
== 1);
4980 lc1
= var1
->var_part
[0].loc_chain
;
4981 lc2
= var2
->var_part
[0].loc_chain
;
4983 gcc_assert (lc1
&& lc2
);
4987 switch (loc_cmp (lc1
->loc
, lc2
->loc
))
4990 fprintf (dump_file
, "removed: ");
4991 print_rtl_single (dump_file
, lc1
->loc
);
4997 fprintf (dump_file
, "added: ");
4998 print_rtl_single (dump_file
, lc2
->loc
);
5010 fprintf (dump_file
, "removed: ");
5011 print_rtl_single (dump_file
, lc1
->loc
);
5017 fprintf (dump_file
, "added: ");
5018 print_rtl_single (dump_file
, lc2
->loc
);
5023 /* Return true if variables VAR1 and VAR2 are different. */
5026 variable_different_p (variable
*var1
, variable
*var2
)
5033 if (var1
->onepart
!= var2
->onepart
)
5036 if (var1
->n_var_parts
!= var2
->n_var_parts
)
5039 if (var1
->onepart
&& var1
->n_var_parts
)
5041 gcc_checking_assert (var1
->dv
== var2
->dv
&& var1
->n_var_parts
== 1);
5042 /* One-part values have locations in a canonical order. */
5043 return onepart_variable_different_p (var1
, var2
);
5046 for (i
= 0; i
< var1
->n_var_parts
; i
++)
5048 if (VAR_PART_OFFSET (var1
, i
) != VAR_PART_OFFSET (var2
, i
))
5050 if (variable_part_different_p (&var1
->var_part
[i
], &var2
->var_part
[i
]))
5052 if (variable_part_different_p (&var2
->var_part
[i
], &var1
->var_part
[i
]))
5058 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5061 dataflow_set_different (dataflow_set
*old_set
, dataflow_set
*new_set
)
5063 variable_iterator_type hi
;
5065 bool diffound
= false;
5066 bool details
= (dump_file
&& (dump_flags
& TDF_DETAILS
));
5078 if (old_set
->vars
== new_set
->vars
)
5081 if (shared_hash_htab (old_set
->vars
)->elements ()
5082 != shared_hash_htab (new_set
->vars
)->elements ())
5085 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set
->vars
),
5088 variable_table_type
*htab
= shared_hash_htab (new_set
->vars
);
5089 variable
*var2
= htab
->find_with_hash (var1
->dv
, dv_htab_hash (var1
->dv
));
5093 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5095 fprintf (dump_file
, "dataflow difference found: removal of:\n");
5100 else if (variable_different_p (var1
, var2
))
5104 fprintf (dump_file
, "dataflow difference found: "
5105 "old and new follow:\n");
5107 if (dv_onepart_p (var1
->dv
))
5108 dump_onepart_variable_differences (var1
, var2
);
5115 /* There's no need to traverse the second hashtab unless we want to
5116 print the details. If both have the same number of elements and
5117 the second one had all entries found in the first one, then the
5118 second can't have any extra entries. */
5122 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (new_set
->vars
),
5125 variable_table_type
*htab
= shared_hash_htab (old_set
->vars
);
5126 variable
*var2
= htab
->find_with_hash (var1
->dv
, dv_htab_hash (var1
->dv
));
5131 fprintf (dump_file
, "dataflow difference found: addition of:\n");
5143 /* Free the contents of dataflow set SET. */
5146 dataflow_set_destroy (dataflow_set
*set
)
5150 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5151 attrs_list_clear (&set
->regs
[i
]);
5153 shared_hash_destroy (set
->vars
);
5157 /* Return true if T is a tracked parameter with non-degenerate record type. */
5160 tracked_record_parameter_p (tree t
)
5162 if (TREE_CODE (t
) != PARM_DECL
)
5165 if (DECL_MODE (t
) == BLKmode
)
5168 tree type
= TREE_TYPE (t
);
5169 if (TREE_CODE (type
) != RECORD_TYPE
)
5172 if (TYPE_FIELDS (type
) == NULL_TREE
5173 || DECL_CHAIN (TYPE_FIELDS (type
)) == NULL_TREE
)
5179 /* Shall EXPR be tracked? */
5182 track_expr_p (tree expr
, bool need_rtl
)
5187 if (TREE_CODE (expr
) == DEBUG_EXPR_DECL
)
5188 return DECL_RTL_SET_P (expr
);
5190 /* If EXPR is not a parameter or a variable do not track it. */
5191 if (!VAR_P (expr
) && TREE_CODE (expr
) != PARM_DECL
)
5194 /* It also must have a name... */
5195 if (!DECL_NAME (expr
) && need_rtl
)
5198 /* ... and a RTL assigned to it. */
5199 decl_rtl
= DECL_RTL_IF_SET (expr
);
5200 if (!decl_rtl
&& need_rtl
)
5203 /* If this expression is really a debug alias of some other declaration, we
5204 don't need to track this expression if the ultimate declaration is
5207 if (VAR_P (realdecl
) && DECL_HAS_DEBUG_EXPR_P (realdecl
))
5209 realdecl
= DECL_DEBUG_EXPR (realdecl
);
5210 if (!DECL_P (realdecl
))
5212 if (handled_component_p (realdecl
)
5213 || (TREE_CODE (realdecl
) == MEM_REF
5214 && TREE_CODE (TREE_OPERAND (realdecl
, 0)) == ADDR_EXPR
))
5216 HOST_WIDE_INT bitsize
, bitpos
;
5219 = get_ref_base_and_extent_hwi (realdecl
, &bitpos
,
5220 &bitsize
, &reverse
);
5222 || !DECL_P (innerdecl
)
5223 || DECL_IGNORED_P (innerdecl
)
5224 /* Do not track declarations for parts of tracked record
5225 parameters since we want to track them as a whole. */
5226 || tracked_record_parameter_p (innerdecl
)
5227 || TREE_STATIC (innerdecl
)
5229 || bitpos
+ bitsize
> 256)
5239 /* Do not track EXPR if REALDECL it should be ignored for debugging
5241 if (DECL_IGNORED_P (realdecl
))
5244 /* Do not track global variables until we are able to emit correct location
5246 if (TREE_STATIC (realdecl
))
5249 /* When the EXPR is a DECL for alias of some variable (see example)
5250 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5251 DECL_RTL contains SYMBOL_REF.
5254 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5257 if (decl_rtl
&& MEM_P (decl_rtl
)
5258 && contains_symbol_ref_p (XEXP (decl_rtl
, 0)))
5261 /* If RTX is a memory it should not be very large (because it would be
5262 an array or struct). */
5263 if (decl_rtl
&& MEM_P (decl_rtl
))
5265 /* Do not track structures and arrays. */
5266 if ((GET_MODE (decl_rtl
) == BLKmode
5267 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl
)))
5268 && !tracked_record_parameter_p (realdecl
))
5270 if (MEM_SIZE_KNOWN_P (decl_rtl
)
5271 && maybe_gt (MEM_SIZE (decl_rtl
), MAX_VAR_PARTS
))
5275 DECL_CHANGED (expr
) = 0;
5276 DECL_CHANGED (realdecl
) = 0;
5280 /* Determine whether a given LOC refers to the same variable part as
5284 same_variable_part_p (rtx loc
, tree expr
, poly_int64 offset
)
5289 if (! DECL_P (expr
))
5294 expr2
= REG_EXPR (loc
);
5295 offset2
= REG_OFFSET (loc
);
5297 else if (MEM_P (loc
))
5299 expr2
= MEM_EXPR (loc
);
5300 offset2
= int_mem_offset (loc
);
5305 if (! expr2
|| ! DECL_P (expr2
))
5308 expr
= var_debug_decl (expr
);
5309 expr2
= var_debug_decl (expr2
);
5311 return (expr
== expr2
&& known_eq (offset
, offset2
));
5314 /* LOC is a REG or MEM that we would like to track if possible.
5315 If EXPR is null, we don't know what expression LOC refers to,
5316 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5317 LOC is an lvalue register.
5319 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5320 is something we can track. When returning true, store the mode of
5321 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5322 from EXPR in *OFFSET_OUT (if nonnull). */
5325 track_loc_p (rtx loc
, tree expr
, poly_int64 offset
, bool store_reg_p
,
5326 machine_mode
*mode_out
, HOST_WIDE_INT
*offset_out
)
5330 if (expr
== NULL
|| !track_expr_p (expr
, true))
5333 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5334 whole subreg, but only the old inner part is really relevant. */
5335 mode
= GET_MODE (loc
);
5336 if (REG_P (loc
) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc
)))
5338 machine_mode pseudo_mode
;
5340 pseudo_mode
= PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc
));
5341 if (paradoxical_subreg_p (mode
, pseudo_mode
))
5343 offset
+= byte_lowpart_offset (pseudo_mode
, mode
);
5348 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5349 Do the same if we are storing to a register and EXPR occupies
5350 the whole of register LOC; in that case, the whole of EXPR is
5351 being changed. We exclude complex modes from the second case
5352 because the real and imaginary parts are represented as separate
5353 pseudo registers, even if the whole complex value fits into one
5355 if ((paradoxical_subreg_p (mode
, DECL_MODE (expr
))
5357 && !COMPLEX_MODE_P (DECL_MODE (expr
))
5358 && hard_regno_nregs (REGNO (loc
), DECL_MODE (expr
)) == 1))
5359 && known_eq (offset
+ byte_lowpart_offset (DECL_MODE (expr
), mode
), 0))
5361 mode
= DECL_MODE (expr
);
5365 HOST_WIDE_INT const_offset
;
5366 if (!track_offset_p (offset
, &const_offset
))
5372 *offset_out
= const_offset
;
5376 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5377 want to track. When returning nonnull, make sure that the attributes
5378 on the returned value are updated. */
5381 var_lowpart (machine_mode mode
, rtx loc
)
5385 if (GET_MODE (loc
) == mode
)
5388 if (!REG_P (loc
) && !MEM_P (loc
))
5391 poly_uint64 offset
= byte_lowpart_offset (mode
, GET_MODE (loc
));
5394 return adjust_address_nv (loc
, mode
, offset
);
5396 poly_uint64 reg_offset
= subreg_lowpart_offset (mode
, GET_MODE (loc
));
5397 regno
= REGNO (loc
) + subreg_regno_offset (REGNO (loc
), GET_MODE (loc
),
5399 return gen_rtx_REG_offset (loc
, mode
, regno
, offset
);
5402 /* Carry information about uses and stores while walking rtx. */
5404 struct count_use_info
5406 /* The insn where the RTX is. */
5409 /* The basic block where insn is. */
5412 /* The array of n_sets sets in the insn, as determined by cselib. */
5413 struct cselib_set
*sets
;
5416 /* True if we're counting stores, false otherwise. */
5420 /* Find a VALUE corresponding to X. */
5422 static inline cselib_val
*
5423 find_use_val (rtx x
, machine_mode mode
, struct count_use_info
*cui
)
5429 /* This is called after uses are set up and before stores are
5430 processed by cselib, so it's safe to look up srcs, but not
5431 dsts. So we look up expressions that appear in srcs or in
5432 dest expressions, but we search the sets array for dests of
5436 /* Some targets represent memset and memcpy patterns
5437 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5438 (set (mem:BLK ...) (const_int ...)) or
5439 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5440 in that case, otherwise we end up with mode mismatches. */
5441 if (mode
== BLKmode
&& MEM_P (x
))
5443 for (i
= 0; i
< cui
->n_sets
; i
++)
5444 if (cui
->sets
[i
].dest
== x
)
5445 return cui
->sets
[i
].src_elt
;
5448 return cselib_lookup (x
, mode
, 0, VOIDmode
);
5454 /* Replace all registers and addresses in an expression with VALUE
5455 expressions that map back to them, unless the expression is a
5456 register. If no mapping is or can be performed, returns NULL. */
5459 replace_expr_with_values (rtx loc
)
5461 if (REG_P (loc
) || GET_CODE (loc
) == ENTRY_VALUE
)
5463 else if (MEM_P (loc
))
5465 cselib_val
*addr
= cselib_lookup (XEXP (loc
, 0),
5466 get_address_mode (loc
), 0,
5469 return replace_equiv_address_nv (loc
, addr
->val_rtx
);
5474 return cselib_subst_to_values (loc
, VOIDmode
);
5477 /* Return true if X contains a DEBUG_EXPR. */
5480 rtx_debug_expr_p (const_rtx x
)
5482 subrtx_iterator::array_type array
;
5483 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
5484 if (GET_CODE (*iter
) == DEBUG_EXPR
)
5489 /* Determine what kind of micro operation to choose for a USE. Return
5490 MO_CLOBBER if no micro operation is to be generated. */
5492 static enum micro_operation_type
5493 use_type (rtx loc
, struct count_use_info
*cui
, machine_mode
*modep
)
5497 if (cui
&& cui
->sets
)
5499 if (GET_CODE (loc
) == VAR_LOCATION
)
5501 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc
), false))
5503 rtx ploc
= PAT_VAR_LOCATION_LOC (loc
);
5504 if (! VAR_LOC_UNKNOWN_P (ploc
))
5506 cselib_val
*val
= cselib_lookup (ploc
, GET_MODE (loc
), 1,
5509 /* ??? flag_float_store and volatile mems are never
5510 given values, but we could in theory use them for
5512 gcc_assert (val
|| 1);
5520 if (REG_P (loc
) || MEM_P (loc
))
5523 *modep
= GET_MODE (loc
);
5527 || (find_use_val (loc
, GET_MODE (loc
), cui
)
5528 && cselib_lookup (XEXP (loc
, 0),
5529 get_address_mode (loc
), 0,
5535 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5537 if (val
&& !cselib_preserved_value_p (val
))
5545 gcc_assert (REGNO (loc
) < FIRST_PSEUDO_REGISTER
);
5547 if (loc
== cfa_base_rtx
)
5549 expr
= REG_EXPR (loc
);
5552 return MO_USE_NO_VAR
;
5553 else if (target_for_debug_bind (var_debug_decl (expr
)))
5555 else if (track_loc_p (loc
, expr
, REG_OFFSET (loc
),
5556 false, modep
, NULL
))
5559 return MO_USE_NO_VAR
;
5561 else if (MEM_P (loc
))
5563 expr
= MEM_EXPR (loc
);
5567 else if (target_for_debug_bind (var_debug_decl (expr
)))
5569 else if (track_loc_p (loc
, expr
, int_mem_offset (loc
),
5571 /* Multi-part variables shouldn't refer to one-part
5572 variable names such as VALUEs (never happens) or
5573 DEBUG_EXPRs (only happens in the presence of debug
5575 && (!MAY_HAVE_DEBUG_BIND_INSNS
5576 || !rtx_debug_expr_p (XEXP (loc
, 0))))
5585 /* Log to OUT information about micro-operation MOPT involving X in
5589 log_op_type (rtx x
, basic_block bb
, rtx_insn
*insn
,
5590 enum micro_operation_type mopt
, FILE *out
)
5592 fprintf (out
, "bb %i op %i insn %i %s ",
5593 bb
->index
, VTI (bb
)->mos
.length (),
5594 INSN_UID (insn
), micro_operation_type_name
[mopt
]);
5595 print_inline_rtx (out
, x
, 2);
5599 /* Tell whether the CONCAT used to holds a VALUE and its location
5600 needs value resolution, i.e., an attempt of mapping the location
5601 back to other incoming values. */
5602 #define VAL_NEEDS_RESOLUTION(x) \
5603 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5604 /* Whether the location in the CONCAT is a tracked expression, that
5605 should also be handled like a MO_USE. */
5606 #define VAL_HOLDS_TRACK_EXPR(x) \
5607 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5608 /* Whether the location in the CONCAT should be handled like a MO_COPY
5610 #define VAL_EXPR_IS_COPIED(x) \
5611 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5612 /* Whether the location in the CONCAT should be handled like a
5613 MO_CLOBBER as well. */
5614 #define VAL_EXPR_IS_CLOBBERED(x) \
5615 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5617 /* All preserved VALUEs. */
5618 static vec
<rtx
> preserved_values
;
5620 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5623 preserve_value (cselib_val
*val
)
5625 cselib_preserve_value (val
);
5626 preserved_values
.safe_push (val
->val_rtx
);
5629 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5630 any rtxes not suitable for CONST use not replaced by VALUEs
5634 non_suitable_const (const_rtx x
)
5636 subrtx_iterator::array_type array
;
5637 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
5639 const_rtx x
= *iter
;
5640 switch (GET_CODE (x
))
5650 if (!MEM_READONLY_P (x
))
5660 /* Add uses (register and memory references) LOC which will be tracked
5661 to VTI (bb)->mos. */
5664 add_uses (rtx loc
, struct count_use_info
*cui
)
5666 machine_mode mode
= VOIDmode
;
5667 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5669 if (type
!= MO_CLOBBER
)
5671 basic_block bb
= cui
->bb
;
5675 mo
.u
.loc
= type
== MO_USE
? var_lowpart (mode
, loc
) : loc
;
5676 mo
.insn
= cui
->insn
;
5678 if (type
== MO_VAL_LOC
)
5681 rtx vloc
= PAT_VAR_LOCATION_LOC (oloc
);
5684 gcc_assert (cui
->sets
);
5687 && !REG_P (XEXP (vloc
, 0))
5688 && !MEM_P (XEXP (vloc
, 0)))
5691 machine_mode address_mode
= get_address_mode (mloc
);
5693 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0,
5696 if (val
&& !cselib_preserved_value_p (val
))
5697 preserve_value (val
);
5700 if (CONSTANT_P (vloc
)
5701 && (GET_CODE (vloc
) != CONST
|| non_suitable_const (vloc
)))
5702 /* For constants don't look up any value. */;
5703 else if (!VAR_LOC_UNKNOWN_P (vloc
) && !unsuitable_loc (vloc
)
5704 && (val
= find_use_val (vloc
, GET_MODE (oloc
), cui
)))
5707 enum micro_operation_type type2
;
5709 bool resolvable
= REG_P (vloc
) || MEM_P (vloc
);
5712 nloc
= replace_expr_with_values (vloc
);
5716 oloc
= shallow_copy_rtx (oloc
);
5717 PAT_VAR_LOCATION_LOC (oloc
) = nloc
;
5720 oloc
= gen_rtx_CONCAT (mode
, val
->val_rtx
, oloc
);
5722 type2
= use_type (vloc
, 0, &mode2
);
5724 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5725 || type2
== MO_CLOBBER
);
5727 if (type2
== MO_CLOBBER
5728 && !cselib_preserved_value_p (val
))
5730 VAL_NEEDS_RESOLUTION (oloc
) = resolvable
;
5731 preserve_value (val
);
5734 else if (!VAR_LOC_UNKNOWN_P (vloc
))
5736 oloc
= shallow_copy_rtx (oloc
);
5737 PAT_VAR_LOCATION_LOC (oloc
) = gen_rtx_UNKNOWN_VAR_LOC ();
5742 else if (type
== MO_VAL_USE
)
5744 machine_mode mode2
= VOIDmode
;
5745 enum micro_operation_type type2
;
5746 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5747 rtx vloc
, oloc
= loc
, nloc
;
5749 gcc_assert (cui
->sets
);
5752 && !REG_P (XEXP (oloc
, 0))
5753 && !MEM_P (XEXP (oloc
, 0)))
5756 machine_mode address_mode
= get_address_mode (mloc
);
5758 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0,
5761 if (val
&& !cselib_preserved_value_p (val
))
5762 preserve_value (val
);
5765 type2
= use_type (loc
, 0, &mode2
);
5767 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5768 || type2
== MO_CLOBBER
);
5770 if (type2
== MO_USE
)
5771 vloc
= var_lowpart (mode2
, loc
);
5775 /* The loc of a MO_VAL_USE may have two forms:
5777 (concat val src): val is at src, a value-based
5780 (concat (concat val use) src): same as above, with use as
5781 the MO_USE tracked value, if it differs from src.
5785 gcc_checking_assert (REG_P (loc
) || MEM_P (loc
));
5786 nloc
= replace_expr_with_values (loc
);
5791 oloc
= gen_rtx_CONCAT (mode2
, val
->val_rtx
, vloc
);
5793 oloc
= val
->val_rtx
;
5795 mo
.u
.loc
= gen_rtx_CONCAT (mode
, oloc
, nloc
);
5797 if (type2
== MO_USE
)
5798 VAL_HOLDS_TRACK_EXPR (mo
.u
.loc
) = 1;
5799 if (!cselib_preserved_value_p (val
))
5801 VAL_NEEDS_RESOLUTION (mo
.u
.loc
) = 1;
5802 preserve_value (val
);
5806 gcc_assert (type
== MO_USE
|| type
== MO_USE_NO_VAR
);
5808 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5809 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
5810 VTI (bb
)->mos
.safe_push (mo
);
5814 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5817 add_uses_1 (rtx
*x
, void *cui
)
5819 subrtx_var_iterator::array_type array
;
5820 FOR_EACH_SUBRTX_VAR (iter
, array
, *x
, NONCONST
)
5821 add_uses (*iter
, (struct count_use_info
*) cui
);
5824 /* This is the value used during expansion of locations. We want it
5825 to be unbounded, so that variables expanded deep in a recursion
5826 nest are fully evaluated, so that their values are cached
5827 correctly. We avoid recursion cycles through other means, and we
5828 don't unshare RTL, so excess complexity is not a problem. */
5829 #define EXPR_DEPTH (INT_MAX)
5830 /* We use this to keep too-complex expressions from being emitted as
5831 location notes, and then to debug information. Users can trade
5832 compile time for ridiculously complex expressions, although they're
5833 seldom useful, and they may often have to be discarded as not
5834 representable anyway. */
5835 #define EXPR_USE_DEPTH (param_max_vartrack_expr_depth)
5837 /* Attempt to reverse the EXPR operation in the debug info and record
5838 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5839 no longer live we can express its value as VAL - 6. */
5842 reverse_op (rtx val
, const_rtx expr
, rtx_insn
*insn
)
5846 struct elt_loc_list
*l
;
5850 if (GET_CODE (expr
) != SET
)
5853 if (!REG_P (SET_DEST (expr
)) || GET_MODE (val
) != GET_MODE (SET_DEST (expr
)))
5856 src
= SET_SRC (expr
);
5857 switch (GET_CODE (src
))
5864 if (!REG_P (XEXP (src
, 0)))
5869 if (!REG_P (XEXP (src
, 0)) && !MEM_P (XEXP (src
, 0)))
5876 if (!SCALAR_INT_MODE_P (GET_MODE (src
)) || XEXP (src
, 0) == cfa_base_rtx
)
5879 v
= cselib_lookup (XEXP (src
, 0), GET_MODE (XEXP (src
, 0)), 0, VOIDmode
);
5880 if (!v
|| !cselib_preserved_value_p (v
))
5883 /* Use canonical V to avoid creating multiple redundant expressions
5884 for different VALUES equivalent to V. */
5885 v
= canonical_cselib_val (v
);
5887 /* Adding a reverse op isn't useful if V already has an always valid
5888 location. Ignore ENTRY_VALUE, while it is always constant, we should
5889 prefer non-ENTRY_VALUE locations whenever possible. */
5890 for (l
= v
->locs
, count
= 0; l
; l
= l
->next
, count
++)
5891 if (CONSTANT_P (l
->loc
)
5892 && (GET_CODE (l
->loc
) != CONST
|| !references_value_p (l
->loc
, 0)))
5894 /* Avoid creating too large locs lists. */
5895 else if (count
== param_max_vartrack_reverse_op_size
)
5898 switch (GET_CODE (src
))
5902 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5904 ret
= gen_rtx_fmt_e (GET_CODE (src
), GET_MODE (val
), val
);
5908 ret
= gen_lowpart_SUBREG (GET_MODE (v
->val_rtx
), val
);
5920 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5922 arg
= XEXP (src
, 1);
5923 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5925 arg
= cselib_expand_value_rtx (arg
, scratch_regs
, 5);
5926 if (arg
== NULL_RTX
)
5928 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5931 ret
= simplify_gen_binary (code
, GET_MODE (val
), val
, arg
);
5937 cselib_add_permanent_equiv (v
, ret
, insn
);
5940 /* Add stores (register and memory references) LOC which will be tracked
5941 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5942 CUIP->insn is instruction which the LOC is part of. */
5945 add_stores (rtx loc
, const_rtx expr
, void *cuip
)
5947 machine_mode mode
= VOIDmode
, mode2
;
5948 struct count_use_info
*cui
= (struct count_use_info
*)cuip
;
5949 basic_block bb
= cui
->bb
;
5951 rtx oloc
= loc
, nloc
, src
= NULL
;
5952 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5953 bool track_p
= false;
5955 bool resolve
, preserve
;
5957 if (type
== MO_CLOBBER
)
5964 gcc_assert (loc
!= cfa_base_rtx
);
5965 if ((GET_CODE (expr
) == CLOBBER
&& type
!= MO_VAL_SET
)
5966 || !(track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
5967 || GET_CODE (expr
) == CLOBBER
)
5969 mo
.type
= MO_CLOBBER
;
5971 if (GET_CODE (expr
) == SET
5972 && (SET_DEST (expr
) == loc
5973 || (GET_CODE (SET_DEST (expr
)) == STRICT_LOW_PART
5974 && XEXP (SET_DEST (expr
), 0) == loc
))
5975 && !unsuitable_loc (SET_SRC (expr
))
5976 && find_use_val (loc
, mode
, cui
))
5978 gcc_checking_assert (type
== MO_VAL_SET
);
5979 mo
.u
.loc
= gen_rtx_SET (loc
, SET_SRC (expr
));
5984 if (GET_CODE (expr
) == SET
5985 && SET_DEST (expr
) == loc
5986 && GET_CODE (SET_SRC (expr
)) != ASM_OPERANDS
)
5987 src
= var_lowpart (mode2
, SET_SRC (expr
));
5988 loc
= var_lowpart (mode2
, loc
);
5997 rtx xexpr
= gen_rtx_SET (loc
, src
);
5998 if (same_variable_part_p (src
, REG_EXPR (loc
), REG_OFFSET (loc
)))
6000 /* If this is an instruction copying (part of) a parameter
6001 passed by invisible reference to its register location,
6002 pretend it's a SET so that the initial memory location
6003 is discarded, as the parameter register can be reused
6004 for other purposes and we do not track locations based
6005 on generic registers. */
6008 && TREE_CODE (REG_EXPR (loc
)) == PARM_DECL
6009 && DECL_MODE (REG_EXPR (loc
)) != BLKmode
6010 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc
)))
6011 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc
)), 0)
6022 mo
.insn
= cui
->insn
;
6024 else if (MEM_P (loc
)
6025 && ((track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
6028 if (MEM_P (loc
) && type
== MO_VAL_SET
6029 && !REG_P (XEXP (loc
, 0))
6030 && !MEM_P (XEXP (loc
, 0)))
6033 machine_mode address_mode
= get_address_mode (mloc
);
6034 cselib_val
*val
= cselib_lookup (XEXP (mloc
, 0),
6038 if (val
&& !cselib_preserved_value_p (val
))
6039 preserve_value (val
);
6042 if (GET_CODE (expr
) == CLOBBER
|| !track_p
)
6044 mo
.type
= MO_CLOBBER
;
6045 mo
.u
.loc
= track_p
? var_lowpart (mode2
, loc
) : loc
;
6049 if (GET_CODE (expr
) == SET
6050 && SET_DEST (expr
) == loc
6051 && GET_CODE (SET_SRC (expr
)) != ASM_OPERANDS
)
6052 src
= var_lowpart (mode2
, SET_SRC (expr
));
6053 loc
= var_lowpart (mode2
, loc
);
6062 rtx xexpr
= gen_rtx_SET (loc
, src
);
6063 if (same_variable_part_p (SET_SRC (xexpr
),
6065 int_mem_offset (loc
)))
6072 mo
.insn
= cui
->insn
;
6077 if (type
!= MO_VAL_SET
)
6078 goto log_and_return
;
6080 v
= find_use_val (oloc
, mode
, cui
);
6083 goto log_and_return
;
6085 resolve
= preserve
= !cselib_preserved_value_p (v
);
6087 /* We cannot track values for multiple-part variables, so we track only
6088 locations for tracked record parameters. */
6092 && tracked_record_parameter_p (REG_EXPR (loc
)))
6094 /* Although we don't use the value here, it could be used later by the
6095 mere virtue of its existence as the operand of the reverse operation
6096 that gave rise to it (typically extension/truncation). Make sure it
6097 is preserved as required by vt_expand_var_loc_chain. */
6100 goto log_and_return
;
6103 if (loc
== stack_pointer_rtx
6104 && (maybe_ne (hard_frame_pointer_adjustment
, -1)
6105 || (!frame_pointer_needed
&& !ACCUMULATE_OUTGOING_ARGS
))
6107 cselib_set_value_sp_based (v
);
6109 /* Don't record MO_VAL_SET for VALUEs that can be described using
6110 cfa_base_rtx or cfa_base_rtx + CONST_INT, cselib already knows
6111 all the needed equivalences and they shouldn't change depending
6112 on which register holds that VALUE in some instruction. */
6113 if (!frame_pointer_needed
6115 && cselib_sp_derived_value_p (v
)
6116 && loc
== stack_pointer_rtx
)
6123 nloc
= replace_expr_with_values (oloc
);
6127 if (GET_CODE (PATTERN (cui
->insn
)) == COND_EXEC
)
6129 cselib_val
*oval
= cselib_lookup (oloc
, GET_MODE (oloc
), 0, VOIDmode
);
6133 gcc_assert (REG_P (oloc
) || MEM_P (oloc
));
6135 if (oval
&& !cselib_preserved_value_p (oval
))
6137 micro_operation moa
;
6139 preserve_value (oval
);
6141 moa
.type
= MO_VAL_USE
;
6142 moa
.u
.loc
= gen_rtx_CONCAT (mode
, oval
->val_rtx
, oloc
);
6143 VAL_NEEDS_RESOLUTION (moa
.u
.loc
) = 1;
6144 moa
.insn
= cui
->insn
;
6146 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6147 log_op_type (moa
.u
.loc
, cui
->bb
, cui
->insn
,
6148 moa
.type
, dump_file
);
6149 VTI (bb
)->mos
.safe_push (moa
);
6154 else if (resolve
&& GET_CODE (mo
.u
.loc
) == SET
)
6156 if (REG_P (SET_SRC (expr
)) || MEM_P (SET_SRC (expr
)))
6157 nloc
= replace_expr_with_values (SET_SRC (expr
));
6161 /* Avoid the mode mismatch between oexpr and expr. */
6162 if (!nloc
&& mode
!= mode2
)
6164 nloc
= SET_SRC (expr
);
6165 gcc_assert (oloc
== SET_DEST (expr
));
6168 if (nloc
&& nloc
!= SET_SRC (mo
.u
.loc
))
6169 oloc
= gen_rtx_SET (oloc
, nloc
);
6172 if (oloc
== SET_DEST (mo
.u
.loc
))
6173 /* No point in duplicating. */
6175 if (!REG_P (SET_SRC (mo
.u
.loc
)))
6181 if (GET_CODE (mo
.u
.loc
) == SET
6182 && oloc
== SET_DEST (mo
.u
.loc
))
6183 /* No point in duplicating. */
6189 loc
= gen_rtx_CONCAT (mode
, v
->val_rtx
, oloc
);
6191 if (mo
.u
.loc
!= oloc
)
6192 loc
= gen_rtx_CONCAT (GET_MODE (mo
.u
.loc
), loc
, mo
.u
.loc
);
6194 /* The loc of a MO_VAL_SET may have various forms:
6196 (concat val dst): dst now holds val
6198 (concat val (set dst src)): dst now holds val, copied from src
6200 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6201 after replacing mems and non-top-level regs with values.
6203 (concat (concat val dstv) (set dst src)): dst now holds val,
6204 copied from src. dstv is a value-based representation of dst, if
6205 it differs from dst. If resolution is needed, src is a REG, and
6206 its mode is the same as that of val.
6208 (concat (concat val (set dstv srcv)) (set dst src)): src
6209 copied to dst, holding val. dstv and srcv are value-based
6210 representations of dst and src, respectively.
6214 if (GET_CODE (PATTERN (cui
->insn
)) != COND_EXEC
)
6215 reverse_op (v
->val_rtx
, expr
, cui
->insn
);
6220 VAL_HOLDS_TRACK_EXPR (loc
) = 1;
6223 VAL_NEEDS_RESOLUTION (loc
) = resolve
;
6226 if (mo
.type
== MO_CLOBBER
)
6227 VAL_EXPR_IS_CLOBBERED (loc
) = 1;
6228 if (mo
.type
== MO_COPY
)
6229 VAL_EXPR_IS_COPIED (loc
) = 1;
6231 mo
.type
= MO_VAL_SET
;
6234 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6235 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
6236 VTI (bb
)->mos
.safe_push (mo
);
6239 /* Arguments to the call. */
6240 static rtx call_arguments
;
6242 /* Compute call_arguments. */
6245 prepare_call_arguments (basic_block bb
, rtx_insn
*insn
)
6248 rtx prev
, cur
, next
;
6249 rtx this_arg
= NULL_RTX
;
6250 tree type
= NULL_TREE
, t
, fndecl
= NULL_TREE
;
6251 tree obj_type_ref
= NULL_TREE
;
6252 CUMULATIVE_ARGS args_so_far_v
;
6253 cumulative_args_t args_so_far
;
6255 memset (&args_so_far_v
, 0, sizeof (args_so_far_v
));
6256 args_so_far
= pack_cumulative_args (&args_so_far_v
);
6257 call
= get_call_rtx_from (insn
);
6260 if (GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
6262 rtx symbol
= XEXP (XEXP (call
, 0), 0);
6263 if (SYMBOL_REF_DECL (symbol
))
6264 fndecl
= SYMBOL_REF_DECL (symbol
);
6266 if (fndecl
== NULL_TREE
)
6267 fndecl
= MEM_EXPR (XEXP (call
, 0));
6269 && TREE_CODE (TREE_TYPE (fndecl
)) != FUNCTION_TYPE
6270 && TREE_CODE (TREE_TYPE (fndecl
)) != METHOD_TYPE
)
6272 if (fndecl
&& TYPE_ARG_TYPES (TREE_TYPE (fndecl
)))
6273 type
= TREE_TYPE (fndecl
);
6274 if (fndecl
&& TREE_CODE (fndecl
) != FUNCTION_DECL
)
6276 if (INDIRECT_REF_P (fndecl
)
6277 && TREE_CODE (TREE_OPERAND (fndecl
, 0)) == OBJ_TYPE_REF
)
6278 obj_type_ref
= TREE_OPERAND (fndecl
, 0);
6283 for (t
= TYPE_ARG_TYPES (type
); t
&& t
!= void_list_node
;
6285 if (TREE_CODE (TREE_VALUE (t
)) == REFERENCE_TYPE
6286 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t
))))
6288 if ((t
== NULL
|| t
== void_list_node
) && obj_type_ref
== NULL_TREE
)
6292 int nargs ATTRIBUTE_UNUSED
= list_length (TYPE_ARG_TYPES (type
));
6293 link
= CALL_INSN_FUNCTION_USAGE (insn
);
6294 #ifndef PCC_STATIC_STRUCT_RETURN
6295 if (aggregate_value_p (TREE_TYPE (type
), type
)
6296 && targetm
.calls
.struct_value_rtx (type
, 0) == 0)
6298 tree struct_addr
= build_pointer_type (TREE_TYPE (type
));
6299 function_arg_info
arg (struct_addr
, /*named=*/true);
6301 INIT_CUMULATIVE_ARGS (args_so_far_v
, type
, NULL_RTX
, fndecl
,
6303 reg
= targetm
.calls
.function_arg (args_so_far
, arg
);
6304 targetm
.calls
.function_arg_advance (args_so_far
, arg
);
6305 if (reg
== NULL_RTX
)
6307 for (; link
; link
= XEXP (link
, 1))
6308 if (GET_CODE (XEXP (link
, 0)) == USE
6309 && MEM_P (XEXP (XEXP (link
, 0), 0)))
6311 link
= XEXP (link
, 1);
6318 INIT_CUMULATIVE_ARGS (args_so_far_v
, type
, NULL_RTX
, fndecl
,
6320 if (obj_type_ref
&& TYPE_ARG_TYPES (type
) != void_list_node
)
6322 t
= TYPE_ARG_TYPES (type
);
6323 function_arg_info
arg (TREE_VALUE (t
), /*named=*/true);
6324 this_arg
= targetm
.calls
.function_arg (args_so_far
, arg
);
6325 if (this_arg
&& !REG_P (this_arg
))
6326 this_arg
= NULL_RTX
;
6327 else if (this_arg
== NULL_RTX
)
6329 for (; link
; link
= XEXP (link
, 1))
6330 if (GET_CODE (XEXP (link
, 0)) == USE
6331 && MEM_P (XEXP (XEXP (link
, 0), 0)))
6333 this_arg
= XEXP (XEXP (link
, 0), 0);
6341 t
= type
? TYPE_ARG_TYPES (type
) : NULL_TREE
;
6343 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
6344 if (GET_CODE (XEXP (link
, 0)) == USE
)
6346 rtx item
= NULL_RTX
;
6347 x
= XEXP (XEXP (link
, 0), 0);
6348 if (GET_MODE (link
) == VOIDmode
6349 || GET_MODE (link
) == BLKmode
6350 || (GET_MODE (link
) != GET_MODE (x
)
6351 && ((GET_MODE_CLASS (GET_MODE (link
)) != MODE_INT
6352 && GET_MODE_CLASS (GET_MODE (link
)) != MODE_PARTIAL_INT
)
6353 || (GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
6354 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_PARTIAL_INT
))))
6355 /* Can't do anything for these, if the original type mode
6356 isn't known or can't be converted. */;
6359 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
6360 scalar_int_mode mode
;
6361 if (val
&& cselib_preserved_value_p (val
))
6362 item
= val
->val_rtx
;
6363 else if (is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
))
6365 opt_scalar_int_mode mode_iter
;
6366 FOR_EACH_WIDER_MODE (mode_iter
, mode
)
6368 mode
= mode_iter
.require ();
6369 if (GET_MODE_BITSIZE (mode
) > BITS_PER_WORD
)
6372 rtx reg
= simplify_subreg (mode
, x
, GET_MODE (x
), 0);
6373 if (reg
== NULL_RTX
|| !REG_P (reg
))
6375 val
= cselib_lookup (reg
, mode
, 0, VOIDmode
);
6376 if (val
&& cselib_preserved_value_p (val
))
6378 item
= val
->val_rtx
;
6389 if (!frame_pointer_needed
)
6391 class adjust_mem_data amd
;
6392 amd
.mem_mode
= VOIDmode
;
6393 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
6395 mem
= simplify_replace_fn_rtx (mem
, NULL_RTX
, adjust_mems
,
6397 gcc_assert (amd
.side_effects
.is_empty ());
6399 val
= cselib_lookup (mem
, GET_MODE (mem
), 0, VOIDmode
);
6400 if (val
&& cselib_preserved_value_p (val
))
6401 item
= val
->val_rtx
;
6402 else if (GET_MODE_CLASS (GET_MODE (mem
)) != MODE_INT
6403 && GET_MODE_CLASS (GET_MODE (mem
)) != MODE_PARTIAL_INT
)
6405 /* For non-integer stack argument see also if they weren't
6406 initialized by integers. */
6407 scalar_int_mode imode
;
6408 if (int_mode_for_mode (GET_MODE (mem
)).exists (&imode
)
6409 && imode
!= GET_MODE (mem
))
6411 val
= cselib_lookup (adjust_address_nv (mem
, imode
, 0),
6412 imode
, 0, VOIDmode
);
6413 if (val
&& cselib_preserved_value_p (val
))
6414 item
= lowpart_subreg (GET_MODE (x
), val
->val_rtx
,
6422 if (GET_MODE (item
) != GET_MODE (link
))
6423 item
= lowpart_subreg (GET_MODE (link
), item
, GET_MODE (item
));
6424 if (GET_MODE (x2
) != GET_MODE (link
))
6425 x2
= lowpart_subreg (GET_MODE (link
), x2
, GET_MODE (x2
));
6426 item
= gen_rtx_CONCAT (GET_MODE (link
), x2
, item
);
6428 = gen_rtx_EXPR_LIST (VOIDmode
, item
, call_arguments
);
6430 if (t
&& t
!= void_list_node
)
6433 function_arg_info
arg (TREE_VALUE (t
), /*named=*/true);
6434 apply_pass_by_reference_rules (&args_so_far_v
, arg
);
6435 reg
= targetm
.calls
.function_arg (args_so_far
, arg
);
6436 if (TREE_CODE (arg
.type
) == REFERENCE_TYPE
6437 && INTEGRAL_TYPE_P (TREE_TYPE (arg
.type
))
6440 && GET_MODE (reg
) == arg
.mode
6441 && (GET_MODE_CLASS (arg
.mode
) == MODE_INT
6442 || GET_MODE_CLASS (arg
.mode
) == MODE_PARTIAL_INT
)
6444 && REGNO (x
) == REGNO (reg
)
6445 && GET_MODE (x
) == arg
.mode
6448 machine_mode indmode
6449 = TYPE_MODE (TREE_TYPE (arg
.type
));
6450 rtx mem
= gen_rtx_MEM (indmode
, x
);
6451 cselib_val
*val
= cselib_lookup (mem
, indmode
, 0, VOIDmode
);
6452 if (val
&& cselib_preserved_value_p (val
))
6454 item
= gen_rtx_CONCAT (indmode
, mem
, val
->val_rtx
);
6455 call_arguments
= gen_rtx_EXPR_LIST (VOIDmode
, item
,
6460 struct elt_loc_list
*l
;
6463 /* Try harder, when passing address of a constant
6464 pool integer it can be easily read back. */
6465 item
= XEXP (item
, 1);
6466 if (GET_CODE (item
) == SUBREG
)
6467 item
= SUBREG_REG (item
);
6468 gcc_assert (GET_CODE (item
) == VALUE
);
6469 val
= CSELIB_VAL_PTR (item
);
6470 for (l
= val
->locs
; l
; l
= l
->next
)
6471 if (GET_CODE (l
->loc
) == SYMBOL_REF
6472 && TREE_CONSTANT_POOL_ADDRESS_P (l
->loc
)
6473 && SYMBOL_REF_DECL (l
->loc
)
6474 && DECL_INITIAL (SYMBOL_REF_DECL (l
->loc
)))
6476 initial
= DECL_INITIAL (SYMBOL_REF_DECL (l
->loc
));
6477 if (tree_fits_shwi_p (initial
))
6479 item
= GEN_INT (tree_to_shwi (initial
));
6480 item
= gen_rtx_CONCAT (indmode
, mem
, item
);
6482 = gen_rtx_EXPR_LIST (VOIDmode
, item
,
6489 targetm
.calls
.function_arg_advance (args_so_far
, arg
);
6494 /* Add debug arguments. */
6496 && TREE_CODE (fndecl
) == FUNCTION_DECL
6497 && DECL_HAS_DEBUG_ARGS_P (fndecl
))
6499 vec
<tree
, va_gc
> **debug_args
= decl_debug_args_lookup (fndecl
);
6504 for (ix
= 0; vec_safe_iterate (*debug_args
, ix
, ¶m
); ix
+= 2)
6507 tree dtemp
= (**debug_args
)[ix
+ 1];
6508 machine_mode mode
= DECL_MODE (dtemp
);
6509 item
= gen_rtx_DEBUG_PARAMETER_REF (mode
, param
);
6510 item
= gen_rtx_CONCAT (mode
, item
, DECL_RTL_KNOWN_SET (dtemp
));
6511 call_arguments
= gen_rtx_EXPR_LIST (VOIDmode
, item
,
6517 /* Reverse call_arguments chain. */
6519 for (cur
= call_arguments
; cur
; cur
= next
)
6521 next
= XEXP (cur
, 1);
6522 XEXP (cur
, 1) = prev
;
6525 call_arguments
= prev
;
6527 x
= get_call_rtx_from (insn
);
6530 x
= XEXP (XEXP (x
, 0), 0);
6531 if (GET_CODE (x
) == SYMBOL_REF
)
6532 /* Don't record anything. */;
6533 else if (CONSTANT_P (x
))
6535 x
= gen_rtx_CONCAT (GET_MODE (x
) == VOIDmode
? Pmode
: GET_MODE (x
),
6538 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6542 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
6543 if (val
&& cselib_preserved_value_p (val
))
6545 x
= gen_rtx_CONCAT (GET_MODE (x
), pc_rtx
, val
->val_rtx
);
6547 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6554 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref
)));
6555 rtx clobbered
= gen_rtx_MEM (mode
, this_arg
);
6557 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref
));
6559 clobbered
= plus_constant (mode
, clobbered
,
6560 token
* GET_MODE_SIZE (mode
));
6561 clobbered
= gen_rtx_MEM (mode
, clobbered
);
6562 x
= gen_rtx_CONCAT (mode
, gen_rtx_CLOBBER (VOIDmode
, pc_rtx
), clobbered
);
6564 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6568 /* Callback for cselib_record_sets_hook, that records as micro
6569 operations uses and stores in an insn after cselib_record_sets has
6570 analyzed the sets in an insn, but before it modifies the stored
6571 values in the internal tables, unless cselib_record_sets doesn't
6572 call it directly (perhaps because we're not doing cselib in the
6573 first place, in which case sets and n_sets will be 0). */
6576 add_with_sets (rtx_insn
*insn
, struct cselib_set
*sets
, int n_sets
)
6578 basic_block bb
= BLOCK_FOR_INSN (insn
);
6580 struct count_use_info cui
;
6581 micro_operation
*mos
;
6583 cselib_hook_called
= true;
6588 cui
.n_sets
= n_sets
;
6590 n1
= VTI (bb
)->mos
.length ();
6591 cui
.store_p
= false;
6592 note_uses (&PATTERN (insn
), add_uses_1
, &cui
);
6593 n2
= VTI (bb
)->mos
.length () - 1;
6594 mos
= VTI (bb
)->mos
.address ();
6596 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6600 while (n1
< n2
&& mos
[n1
].type
== MO_USE
)
6602 while (n1
< n2
&& mos
[n2
].type
!= MO_USE
)
6605 std::swap (mos
[n1
], mos
[n2
]);
6608 n2
= VTI (bb
)->mos
.length () - 1;
6611 while (n1
< n2
&& mos
[n1
].type
!= MO_VAL_LOC
)
6613 while (n1
< n2
&& mos
[n2
].type
== MO_VAL_LOC
)
6616 std::swap (mos
[n1
], mos
[n2
]);
6625 mo
.u
.loc
= call_arguments
;
6626 call_arguments
= NULL_RTX
;
6628 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6629 log_op_type (PATTERN (insn
), bb
, insn
, mo
.type
, dump_file
);
6630 VTI (bb
)->mos
.safe_push (mo
);
6633 n1
= VTI (bb
)->mos
.length ();
6634 /* This will record NEXT_INSN (insn), such that we can
6635 insert notes before it without worrying about any
6636 notes that MO_USEs might emit after the insn. */
6638 note_stores (insn
, add_stores
, &cui
);
6639 n2
= VTI (bb
)->mos
.length () - 1;
6640 mos
= VTI (bb
)->mos
.address ();
6642 /* Order the MO_VAL_USEs first (note_stores does nothing
6643 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6644 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6647 while (n1
< n2
&& mos
[n1
].type
== MO_VAL_USE
)
6649 while (n1
< n2
&& mos
[n2
].type
!= MO_VAL_USE
)
6652 std::swap (mos
[n1
], mos
[n2
]);
6655 n2
= VTI (bb
)->mos
.length () - 1;
6658 while (n1
< n2
&& mos
[n1
].type
== MO_CLOBBER
)
6660 while (n1
< n2
&& mos
[n2
].type
!= MO_CLOBBER
)
6663 std::swap (mos
[n1
], mos
[n2
]);
6667 static enum var_init_status
6668 find_src_status (dataflow_set
*in
, rtx src
)
6670 tree decl
= NULL_TREE
;
6671 enum var_init_status status
= VAR_INIT_STATUS_UNINITIALIZED
;
6673 if (! flag_var_tracking_uninit
)
6674 status
= VAR_INIT_STATUS_INITIALIZED
;
6676 if (src
&& REG_P (src
))
6677 decl
= var_debug_decl (REG_EXPR (src
));
6678 else if (src
&& MEM_P (src
))
6679 decl
= var_debug_decl (MEM_EXPR (src
));
6682 status
= get_init_value (in
, src
, dv_from_decl (decl
));
6687 /* SRC is the source of an assignment. Use SET to try to find what
6688 was ultimately assigned to SRC. Return that value if known,
6689 otherwise return SRC itself. */
6692 find_src_set_src (dataflow_set
*set
, rtx src
)
6694 tree decl
= NULL_TREE
; /* The variable being copied around. */
6695 rtx set_src
= NULL_RTX
; /* The value for "decl" stored in "src". */
6697 location_chain
*nextp
;
6701 if (src
&& REG_P (src
))
6702 decl
= var_debug_decl (REG_EXPR (src
));
6703 else if (src
&& MEM_P (src
))
6704 decl
= var_debug_decl (MEM_EXPR (src
));
6708 decl_or_value dv
= dv_from_decl (decl
);
6710 var
= shared_hash_find (set
->vars
, dv
);
6714 for (i
= 0; i
< var
->n_var_parts
&& !found
; i
++)
6715 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
&& !found
;
6716 nextp
= nextp
->next
)
6717 if (rtx_equal_p (nextp
->loc
, src
))
6719 set_src
= nextp
->set_src
;
6729 /* Compute the changes of variable locations in the basic block BB. */
6732 compute_bb_dataflow (basic_block bb
)
6735 micro_operation
*mo
;
6737 dataflow_set old_out
;
6738 dataflow_set
*in
= &VTI (bb
)->in
;
6739 dataflow_set
*out
= &VTI (bb
)->out
;
6741 dataflow_set_init (&old_out
);
6742 dataflow_set_copy (&old_out
, out
);
6743 dataflow_set_copy (out
, in
);
6745 if (MAY_HAVE_DEBUG_BIND_INSNS
)
6746 local_get_addr_cache
= new hash_map
<rtx
, rtx
>;
6748 FOR_EACH_VEC_ELT (VTI (bb
)->mos
, i
, mo
)
6750 rtx_insn
*insn
= mo
->insn
;
6755 dataflow_set_clear_at_call (out
, insn
);
6760 rtx loc
= mo
->u
.loc
;
6763 var_reg_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
6764 else if (MEM_P (loc
))
6765 var_mem_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
6771 rtx loc
= mo
->u
.loc
;
6775 if (GET_CODE (loc
) == CONCAT
)
6777 val
= XEXP (loc
, 0);
6778 vloc
= XEXP (loc
, 1);
6786 var
= PAT_VAR_LOCATION_DECL (vloc
);
6788 clobber_variable_part (out
, NULL_RTX
,
6789 dv_from_decl (var
), 0, NULL_RTX
);
6792 if (VAL_NEEDS_RESOLUTION (loc
))
6793 val_resolve (out
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
6794 set_variable_part (out
, val
, dv_from_decl (var
), 0,
6795 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
6798 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
6799 set_variable_part (out
, PAT_VAR_LOCATION_LOC (vloc
),
6800 dv_from_decl (var
), 0,
6801 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
6808 rtx loc
= mo
->u
.loc
;
6809 rtx val
, vloc
, uloc
;
6811 vloc
= uloc
= XEXP (loc
, 1);
6812 val
= XEXP (loc
, 0);
6814 if (GET_CODE (val
) == CONCAT
)
6816 uloc
= XEXP (val
, 1);
6817 val
= XEXP (val
, 0);
6820 if (VAL_NEEDS_RESOLUTION (loc
))
6821 val_resolve (out
, val
, vloc
, insn
);
6823 val_store (out
, val
, uloc
, insn
, false);
6825 if (VAL_HOLDS_TRACK_EXPR (loc
))
6827 if (GET_CODE (uloc
) == REG
)
6828 var_reg_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
6830 else if (GET_CODE (uloc
) == MEM
)
6831 var_mem_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
6839 rtx loc
= mo
->u
.loc
;
6840 rtx val
, vloc
, uloc
;
6844 uloc
= XEXP (vloc
, 1);
6845 val
= XEXP (vloc
, 0);
6848 if (GET_CODE (uloc
) == SET
)
6850 dstv
= SET_DEST (uloc
);
6851 srcv
= SET_SRC (uloc
);
6859 if (GET_CODE (val
) == CONCAT
)
6861 dstv
= vloc
= XEXP (val
, 1);
6862 val
= XEXP (val
, 0);
6865 if (GET_CODE (vloc
) == SET
)
6867 srcv
= SET_SRC (vloc
);
6869 gcc_assert (val
!= srcv
);
6870 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
6872 dstv
= vloc
= SET_DEST (vloc
);
6874 if (VAL_NEEDS_RESOLUTION (loc
))
6875 val_resolve (out
, val
, srcv
, insn
);
6877 else if (VAL_NEEDS_RESOLUTION (loc
))
6879 gcc_assert (GET_CODE (uloc
) == SET
6880 && GET_CODE (SET_SRC (uloc
)) == REG
);
6881 val_resolve (out
, val
, SET_SRC (uloc
), insn
);
6884 if (VAL_HOLDS_TRACK_EXPR (loc
))
6886 if (VAL_EXPR_IS_CLOBBERED (loc
))
6889 var_reg_delete (out
, uloc
, true);
6890 else if (MEM_P (uloc
))
6892 gcc_assert (MEM_P (dstv
));
6893 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (uloc
));
6894 var_mem_delete (out
, dstv
, true);
6899 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
6900 rtx src
= NULL
, dst
= uloc
;
6901 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
6903 if (GET_CODE (uloc
) == SET
)
6905 src
= SET_SRC (uloc
);
6906 dst
= SET_DEST (uloc
);
6911 if (flag_var_tracking_uninit
)
6913 status
= find_src_status (in
, src
);
6915 if (status
== VAR_INIT_STATUS_UNKNOWN
)
6916 status
= find_src_status (out
, src
);
6919 src
= find_src_set_src (in
, src
);
6923 var_reg_delete_and_set (out
, dst
, !copied_p
,
6925 else if (MEM_P (dst
))
6927 gcc_assert (MEM_P (dstv
));
6928 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (dst
));
6929 var_mem_delete_and_set (out
, dstv
, !copied_p
,
6934 else if (REG_P (uloc
))
6935 var_regno_delete (out
, REGNO (uloc
));
6936 else if (MEM_P (uloc
))
6938 gcc_checking_assert (GET_CODE (vloc
) == MEM
);
6939 gcc_checking_assert (dstv
== vloc
);
6941 clobber_overlapping_mems (out
, vloc
);
6944 val_store (out
, val
, dstv
, insn
, true);
6950 rtx loc
= mo
->u
.loc
;
6953 if (GET_CODE (loc
) == SET
)
6955 set_src
= SET_SRC (loc
);
6956 loc
= SET_DEST (loc
);
6960 var_reg_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
6962 else if (MEM_P (loc
))
6963 var_mem_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
6970 rtx loc
= mo
->u
.loc
;
6971 enum var_init_status src_status
;
6974 if (GET_CODE (loc
) == SET
)
6976 set_src
= SET_SRC (loc
);
6977 loc
= SET_DEST (loc
);
6980 if (! flag_var_tracking_uninit
)
6981 src_status
= VAR_INIT_STATUS_INITIALIZED
;
6984 src_status
= find_src_status (in
, set_src
);
6986 if (src_status
== VAR_INIT_STATUS_UNKNOWN
)
6987 src_status
= find_src_status (out
, set_src
);
6990 set_src
= find_src_set_src (in
, set_src
);
6993 var_reg_delete_and_set (out
, loc
, false, src_status
, set_src
);
6994 else if (MEM_P (loc
))
6995 var_mem_delete_and_set (out
, loc
, false, src_status
, set_src
);
7001 rtx loc
= mo
->u
.loc
;
7004 var_reg_delete (out
, loc
, false);
7005 else if (MEM_P (loc
))
7006 var_mem_delete (out
, loc
, false);
7012 rtx loc
= mo
->u
.loc
;
7015 var_reg_delete (out
, loc
, true);
7016 else if (MEM_P (loc
))
7017 var_mem_delete (out
, loc
, true);
7022 out
->stack_adjust
+= mo
->u
.adjust
;
7027 if (MAY_HAVE_DEBUG_BIND_INSNS
)
7029 delete local_get_addr_cache
;
7030 local_get_addr_cache
= NULL
;
7032 dataflow_set_equiv_regs (out
);
7033 shared_hash_htab (out
->vars
)
7034 ->traverse
<dataflow_set
*, canonicalize_values_mark
> (out
);
7035 shared_hash_htab (out
->vars
)
7036 ->traverse
<dataflow_set
*, canonicalize_values_star
> (out
);
7038 shared_hash_htab (out
->vars
)
7039 ->traverse
<dataflow_set
*, canonicalize_loc_order_check
> (out
);
7041 changed
= dataflow_set_different (&old_out
, out
);
7042 dataflow_set_destroy (&old_out
);
7046 /* Find the locations of variables in the whole function. */
7049 vt_find_locations (void)
7051 bb_heap_t
*worklist
= new bb_heap_t (LONG_MIN
);
7052 bb_heap_t
*pending
= new bb_heap_t (LONG_MIN
);
7053 sbitmap in_worklist
, in_pending
;
7060 int htabmax
= param_max_vartrack_size
;
7061 bool success
= true;
7062 unsigned int n_blocks_processed
= 0;
7064 timevar_push (TV_VAR_TRACKING_DATAFLOW
);
7065 /* Compute reverse completion order of depth first search of the CFG
7066 so that the data-flow runs faster. */
7067 rc_order
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
);
7068 bb_order
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
7069 auto_bitmap exit_bbs
;
7070 bitmap_set_bit (exit_bbs
, EXIT_BLOCK
);
7071 auto_vec
<std::pair
<int, int> > toplevel_scc_extents
;
7072 int n
= rev_post_order_and_mark_dfs_back_seme
7073 (cfun
, single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
)), exit_bbs
, true,
7074 rc_order
, &toplevel_scc_extents
);
7075 for (i
= 0; i
< n
; i
++)
7076 bb_order
[rc_order
[i
]] = i
;
7078 in_worklist
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
7079 in_pending
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
7080 bitmap_clear (in_worklist
);
7081 bitmap_clear (in_pending
);
7083 /* We're performing the dataflow iteration independently over the
7084 toplevel SCCs plus leading non-cyclic entry blocks and separately
7085 over the tail. That ensures best memory locality and the least
7086 number of visited blocks. */
7087 unsigned extent
= 0;
7088 int curr_start
= -1;
7092 curr_start
= curr_end
+ 1;
7093 if (toplevel_scc_extents
.length () <= extent
)
7096 curr_end
= toplevel_scc_extents
[extent
++].second
;
7098 for (int i
= curr_start
; i
<= curr_end
; ++i
)
7100 pending
->insert (i
, BASIC_BLOCK_FOR_FN (cfun
, rc_order
[i
]));
7101 bitmap_set_bit (in_pending
, rc_order
[i
]);
7104 while (success
&& !pending
->empty ())
7106 std::swap (worklist
, pending
);
7107 std::swap (in_worklist
, in_pending
);
7109 while (!worklist
->empty ())
7113 int oldinsz
, oldoutsz
;
7115 bb
= worklist
->extract_min ();
7116 bitmap_clear_bit (in_worklist
, bb
->index
);
7118 if (VTI (bb
)->in
.vars
)
7120 htabsz
-= (shared_hash_htab (VTI (bb
)->in
.vars
)->size ()
7121 + shared_hash_htab (VTI (bb
)->out
.vars
)->size ());
7122 oldinsz
= shared_hash_htab (VTI (bb
)->in
.vars
)->elements ();
7123 oldoutsz
= shared_hash_htab (VTI (bb
)->out
.vars
)->elements ();
7126 oldinsz
= oldoutsz
= 0;
7128 if (MAY_HAVE_DEBUG_BIND_INSNS
)
7130 dataflow_set
*in
= &VTI (bb
)->in
, *first_out
= NULL
;
7131 bool first
= true, adjust
= false;
7133 /* Calculate the IN set as the intersection of
7134 predecessor OUT sets. */
7136 dataflow_set_clear (in
);
7137 dst_can_be_shared
= true;
7139 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7140 if (!VTI (e
->src
)->flooded
)
7141 gcc_assert (bb_order
[bb
->index
]
7142 <= bb_order
[e
->src
->index
]);
7145 dataflow_set_copy (in
, &VTI (e
->src
)->out
);
7146 first_out
= &VTI (e
->src
)->out
;
7151 dataflow_set_merge (in
, &VTI (e
->src
)->out
);
7157 dataflow_post_merge_adjust (in
, &VTI (bb
)->permp
);
7160 /* Merge and merge_adjust should keep entries in
7162 shared_hash_htab (in
->vars
)
7163 ->traverse
<dataflow_set
*,
7164 canonicalize_loc_order_check
> (in
);
7166 if (dst_can_be_shared
)
7168 shared_hash_destroy (in
->vars
);
7169 in
->vars
= shared_hash_copy (first_out
->vars
);
7173 VTI (bb
)->flooded
= true;
7177 /* Calculate the IN set as union of predecessor OUT sets. */
7178 dataflow_set_clear (&VTI (bb
)->in
);
7179 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7180 dataflow_set_union (&VTI (bb
)->in
, &VTI (e
->src
)->out
);
7183 changed
= compute_bb_dataflow (bb
);
7184 n_blocks_processed
++;
7185 htabsz
+= (shared_hash_htab (VTI (bb
)->in
.vars
)->size ()
7186 + shared_hash_htab (VTI (bb
)->out
.vars
)->size ());
7188 if (htabmax
&& htabsz
> htabmax
)
7190 if (MAY_HAVE_DEBUG_BIND_INSNS
)
7191 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
7192 "variable tracking size limit exceeded with "
7193 "%<-fvar-tracking-assignments%>, retrying without");
7195 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
7196 "variable tracking size limit exceeded");
7203 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7205 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
7208 /* Iterate to an earlier block in RPO in the next
7209 round, iterate to the same block immediately. */
7210 if (bb_order
[e
->dest
->index
] < bb_order
[bb
->index
])
7212 gcc_assert (bb_order
[e
->dest
->index
] >= curr_start
);
7213 if (!bitmap_bit_p (in_pending
, e
->dest
->index
))
7215 /* Send E->DEST to next round. */
7216 bitmap_set_bit (in_pending
, e
->dest
->index
);
7217 pending
->insert (bb_order
[e
->dest
->index
],
7221 else if (bb_order
[e
->dest
->index
] <= curr_end
7222 && !bitmap_bit_p (in_worklist
, e
->dest
->index
))
7224 /* Add E->DEST to current round or delay
7225 processing if it is in the next SCC. */
7226 bitmap_set_bit (in_worklist
, e
->dest
->index
);
7227 worklist
->insert (bb_order
[e
->dest
->index
],
7235 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, "
7236 "tsz %i\n", bb
->index
,
7237 (int)shared_hash_htab (VTI (bb
)->in
.vars
)->size (),
7239 (int)shared_hash_htab (VTI (bb
)->out
.vars
)->size (),
7241 (int)worklist
->nodes (), (int)pending
->nodes (),
7244 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7246 fprintf (dump_file
, "BB %i IN:\n", bb
->index
);
7247 dump_dataflow_set (&VTI (bb
)->in
);
7248 fprintf (dump_file
, "BB %i OUT:\n", bb
->index
);
7249 dump_dataflow_set (&VTI (bb
)->out
);
7254 while (curr_end
!= n
- 1);
7256 statistics_counter_event (cfun
, "compute_bb_dataflow times",
7257 n_blocks_processed
);
7259 if (success
&& MAY_HAVE_DEBUG_BIND_INSNS
)
7260 FOR_EACH_BB_FN (bb
, cfun
)
7261 gcc_assert (VTI (bb
)->flooded
);
7267 sbitmap_free (in_worklist
);
7268 sbitmap_free (in_pending
);
7270 timevar_pop (TV_VAR_TRACKING_DATAFLOW
);
7274 /* Print the content of the LIST to dump file. */
7277 dump_attrs_list (attrs
*list
)
7279 for (; list
; list
= list
->next
)
7281 if (dv_is_decl_p (list
->dv
))
7282 print_mem_expr (dump_file
, dv_as_decl (list
->dv
));
7284 print_rtl_single (dump_file
, dv_as_value (list
->dv
));
7285 fprintf (dump_file
, "+" HOST_WIDE_INT_PRINT_DEC
, list
->offset
);
7287 fprintf (dump_file
, "\n");
7290 /* Print the information about variable *SLOT to dump file. */
7293 dump_var_tracking_slot (variable
**slot
, void *data ATTRIBUTE_UNUSED
)
7295 variable
*var
= *slot
;
7299 /* Continue traversing the hash table. */
7303 /* Print the information about variable VAR to dump file. */
7306 dump_var (variable
*var
)
7309 location_chain
*node
;
7311 if (dv_is_decl_p (var
->dv
))
7313 const_tree decl
= dv_as_decl (var
->dv
);
7315 if (DECL_NAME (decl
))
7317 fprintf (dump_file
, " name: %s",
7318 IDENTIFIER_POINTER (DECL_NAME (decl
)));
7319 if (dump_flags
& TDF_UID
)
7320 fprintf (dump_file
, "D.%u", DECL_UID (decl
));
7322 else if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
7323 fprintf (dump_file
, " name: D#%u", DEBUG_TEMP_UID (decl
));
7325 fprintf (dump_file
, " name: D.%u", DECL_UID (decl
));
7326 fprintf (dump_file
, "\n");
7330 fputc (' ', dump_file
);
7331 print_rtl_single (dump_file
, dv_as_value (var
->dv
));
7334 for (i
= 0; i
< var
->n_var_parts
; i
++)
7336 fprintf (dump_file
, " offset %ld\n",
7337 (long)(var
->onepart
? 0 : VAR_PART_OFFSET (var
, i
)));
7338 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
7340 fprintf (dump_file
, " ");
7341 if (node
->init
== VAR_INIT_STATUS_UNINITIALIZED
)
7342 fprintf (dump_file
, "[uninit]");
7343 print_rtl_single (dump_file
, node
->loc
);
7348 /* Print the information about variables from hash table VARS to dump file. */
7351 dump_vars (variable_table_type
*vars
)
7353 if (!vars
->is_empty ())
7355 fprintf (dump_file
, "Variables:\n");
7356 vars
->traverse
<void *, dump_var_tracking_slot
> (NULL
);
7360 /* Print the dataflow set SET to dump file. */
7363 dump_dataflow_set (dataflow_set
*set
)
7367 fprintf (dump_file
, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC
"\n",
7369 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
7373 fprintf (dump_file
, "Reg %d:", i
);
7374 dump_attrs_list (set
->regs
[i
]);
7377 dump_vars (shared_hash_htab (set
->vars
));
7378 fprintf (dump_file
, "\n");
7381 /* Print the IN and OUT sets for each basic block to dump file. */
7384 dump_dataflow_sets (void)
7388 FOR_EACH_BB_FN (bb
, cfun
)
7390 fprintf (dump_file
, "\nBasic block %d:\n", bb
->index
);
7391 fprintf (dump_file
, "IN:\n");
7392 dump_dataflow_set (&VTI (bb
)->in
);
7393 fprintf (dump_file
, "OUT:\n");
7394 dump_dataflow_set (&VTI (bb
)->out
);
7398 /* Return the variable for DV in dropped_values, inserting one if
7399 requested with INSERT. */
7401 static inline variable
*
7402 variable_from_dropped (decl_or_value dv
, enum insert_option insert
)
7405 variable
*empty_var
;
7406 onepart_enum onepart
;
7408 slot
= dropped_values
->find_slot_with_hash (dv
, dv_htab_hash (dv
), insert
);
7416 gcc_checking_assert (insert
== INSERT
);
7418 onepart
= dv_onepart_p (dv
);
7420 gcc_checking_assert (onepart
== ONEPART_VALUE
|| onepart
== ONEPART_DEXPR
);
7422 empty_var
= onepart_pool_allocate (onepart
);
7424 empty_var
->refcount
= 1;
7425 empty_var
->n_var_parts
= 0;
7426 empty_var
->onepart
= onepart
;
7427 empty_var
->in_changed_variables
= false;
7428 empty_var
->var_part
[0].loc_chain
= NULL
;
7429 empty_var
->var_part
[0].cur_loc
= NULL
;
7430 VAR_LOC_1PAUX (empty_var
) = NULL
;
7431 set_dv_changed (dv
, true);
7438 /* Recover the one-part aux from dropped_values. */
7440 static struct onepart_aux
*
7441 recover_dropped_1paux (variable
*var
)
7445 gcc_checking_assert (var
->onepart
);
7447 if (VAR_LOC_1PAUX (var
))
7448 return VAR_LOC_1PAUX (var
);
7450 if (var
->onepart
== ONEPART_VDECL
)
7453 dvar
= variable_from_dropped (var
->dv
, NO_INSERT
);
7458 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (dvar
);
7459 VAR_LOC_1PAUX (dvar
) = NULL
;
7461 return VAR_LOC_1PAUX (var
);
7464 /* Add variable VAR to the hash table of changed variables and
7465 if it has no locations delete it from SET's hash table. */
7468 variable_was_changed (variable
*var
, dataflow_set
*set
)
7470 hashval_t hash
= dv_htab_hash (var
->dv
);
7476 /* Remember this decl or VALUE has been added to changed_variables. */
7477 set_dv_changed (var
->dv
, true);
7479 slot
= changed_variables
->find_slot_with_hash (var
->dv
, hash
, INSERT
);
7483 variable
*old_var
= *slot
;
7484 gcc_assert (old_var
->in_changed_variables
);
7485 old_var
->in_changed_variables
= false;
7486 if (var
!= old_var
&& var
->onepart
)
7488 /* Restore the auxiliary info from an empty variable
7489 previously created for changed_variables, so it is
7491 gcc_checking_assert (!VAR_LOC_1PAUX (var
));
7492 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (old_var
);
7493 VAR_LOC_1PAUX (old_var
) = NULL
;
7495 variable_htab_free (*slot
);
7498 if (set
&& var
->n_var_parts
== 0)
7500 onepart_enum onepart
= var
->onepart
;
7501 variable
*empty_var
= NULL
;
7502 variable
**dslot
= NULL
;
7504 if (onepart
== ONEPART_VALUE
|| onepart
== ONEPART_DEXPR
)
7506 dslot
= dropped_values
->find_slot_with_hash (var
->dv
,
7507 dv_htab_hash (var
->dv
),
7513 gcc_checking_assert (!empty_var
->in_changed_variables
);
7514 if (!VAR_LOC_1PAUX (var
))
7516 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (empty_var
);
7517 VAR_LOC_1PAUX (empty_var
) = NULL
;
7520 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var
));
7526 empty_var
= onepart_pool_allocate (onepart
);
7527 empty_var
->dv
= var
->dv
;
7528 empty_var
->refcount
= 1;
7529 empty_var
->n_var_parts
= 0;
7530 empty_var
->onepart
= onepart
;
7533 empty_var
->refcount
++;
7538 empty_var
->refcount
++;
7539 empty_var
->in_changed_variables
= true;
7543 empty_var
->var_part
[0].loc_chain
= NULL
;
7544 empty_var
->var_part
[0].cur_loc
= NULL
;
7545 VAR_LOC_1PAUX (empty_var
) = VAR_LOC_1PAUX (var
);
7546 VAR_LOC_1PAUX (var
) = NULL
;
7552 if (var
->onepart
&& !VAR_LOC_1PAUX (var
))
7553 recover_dropped_1paux (var
);
7555 var
->in_changed_variables
= true;
7562 if (var
->n_var_parts
== 0)
7567 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
7570 if (shared_hash_shared (set
->vars
))
7571 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
,
7573 shared_hash_htab (set
->vars
)->clear_slot (slot
);
7579 /* Look for the index in VAR->var_part corresponding to OFFSET.
7580 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7581 referenced int will be set to the index that the part has or should
7582 have, if it should be inserted. */
7585 find_variable_location_part (variable
*var
, HOST_WIDE_INT offset
,
7586 int *insertion_point
)
7595 if (insertion_point
)
7596 *insertion_point
= 0;
7598 return var
->n_var_parts
- 1;
7601 /* Find the location part. */
7603 high
= var
->n_var_parts
;
7606 pos
= (low
+ high
) / 2;
7607 if (VAR_PART_OFFSET (var
, pos
) < offset
)
7614 if (insertion_point
)
7615 *insertion_point
= pos
;
7617 if (pos
< var
->n_var_parts
&& VAR_PART_OFFSET (var
, pos
) == offset
)
7624 set_slot_part (dataflow_set
*set
, rtx loc
, variable
**slot
,
7625 decl_or_value dv
, HOST_WIDE_INT offset
,
7626 enum var_init_status initialized
, rtx set_src
)
7629 location_chain
*node
, *next
;
7630 location_chain
**nextp
;
7632 onepart_enum onepart
;
7637 onepart
= var
->onepart
;
7639 onepart
= dv_onepart_p (dv
);
7641 gcc_checking_assert (offset
== 0 || !onepart
);
7642 gcc_checking_assert (dv
!= loc
);
7644 if (! flag_var_tracking_uninit
)
7645 initialized
= VAR_INIT_STATUS_INITIALIZED
;
7649 /* Create new variable information. */
7650 var
= onepart_pool_allocate (onepart
);
7653 var
->n_var_parts
= 1;
7654 var
->onepart
= onepart
;
7655 var
->in_changed_variables
= false;
7657 VAR_LOC_1PAUX (var
) = NULL
;
7659 VAR_PART_OFFSET (var
, 0) = offset
;
7660 var
->var_part
[0].loc_chain
= NULL
;
7661 var
->var_part
[0].cur_loc
= NULL
;
7664 nextp
= &var
->var_part
[0].loc_chain
;
7670 gcc_assert (var
->dv
== dv
);
7674 if (GET_CODE (loc
) == VALUE
)
7676 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7677 nextp
= &node
->next
)
7678 if (GET_CODE (node
->loc
) == VALUE
)
7680 if (node
->loc
== loc
)
7685 if (canon_value_cmp (node
->loc
, loc
))
7693 else if (REG_P (node
->loc
) || MEM_P (node
->loc
))
7701 else if (REG_P (loc
))
7703 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7704 nextp
= &node
->next
)
7705 if (REG_P (node
->loc
))
7707 if (REGNO (node
->loc
) < REGNO (loc
))
7711 if (REGNO (node
->loc
) == REGNO (loc
))
7724 else if (MEM_P (loc
))
7726 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7727 nextp
= &node
->next
)
7728 if (REG_P (node
->loc
))
7730 else if (MEM_P (node
->loc
))
7732 if ((r
= loc_cmp (XEXP (node
->loc
, 0), XEXP (loc
, 0))) >= 0)
7744 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7745 nextp
= &node
->next
)
7746 if ((r
= loc_cmp (node
->loc
, loc
)) >= 0)
7754 if (shared_var_p (var
, set
->vars
))
7756 slot
= unshare_variable (set
, slot
, var
, initialized
);
7758 for (nextp
= &var
->var_part
[0].loc_chain
; c
;
7759 nextp
= &(*nextp
)->next
)
7761 gcc_assert ((!node
&& !*nextp
) || node
->loc
== (*nextp
)->loc
);
7768 gcc_assert (dv_as_decl (var
->dv
) == dv_as_decl (dv
));
7770 pos
= find_variable_location_part (var
, offset
, &inspos
);
7774 node
= var
->var_part
[pos
].loc_chain
;
7777 && ((REG_P (node
->loc
) && REG_P (loc
)
7778 && REGNO (node
->loc
) == REGNO (loc
))
7779 || rtx_equal_p (node
->loc
, loc
)))
7781 /* LOC is in the beginning of the chain so we have nothing
7783 if (node
->init
< initialized
)
7784 node
->init
= initialized
;
7785 if (set_src
!= NULL
)
7786 node
->set_src
= set_src
;
7792 /* We have to make a copy of a shared variable. */
7793 if (shared_var_p (var
, set
->vars
))
7795 slot
= unshare_variable (set
, slot
, var
, initialized
);
7802 /* We have not found the location part, new one will be created. */
7804 /* We have to make a copy of the shared variable. */
7805 if (shared_var_p (var
, set
->vars
))
7807 slot
= unshare_variable (set
, slot
, var
, initialized
);
7811 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7812 thus there are at most MAX_VAR_PARTS different offsets. */
7813 gcc_assert (var
->n_var_parts
< MAX_VAR_PARTS
7814 && (!var
->n_var_parts
|| !onepart
));
7816 /* We have to move the elements of array starting at index
7817 inspos to the next position. */
7818 for (pos
= var
->n_var_parts
; pos
> inspos
; pos
--)
7819 var
->var_part
[pos
] = var
->var_part
[pos
- 1];
7822 gcc_checking_assert (!onepart
);
7823 VAR_PART_OFFSET (var
, pos
) = offset
;
7824 var
->var_part
[pos
].loc_chain
= NULL
;
7825 var
->var_part
[pos
].cur_loc
= NULL
;
7828 /* Delete the location from the list. */
7829 nextp
= &var
->var_part
[pos
].loc_chain
;
7830 for (node
= var
->var_part
[pos
].loc_chain
; node
; node
= next
)
7833 if ((REG_P (node
->loc
) && REG_P (loc
)
7834 && REGNO (node
->loc
) == REGNO (loc
))
7835 || rtx_equal_p (node
->loc
, loc
))
7837 /* Save these values, to assign to the new node, before
7838 deleting this one. */
7839 if (node
->init
> initialized
)
7840 initialized
= node
->init
;
7841 if (node
->set_src
!= NULL
&& set_src
== NULL
)
7842 set_src
= node
->set_src
;
7843 if (var
->var_part
[pos
].cur_loc
== node
->loc
)
7844 var
->var_part
[pos
].cur_loc
= NULL
;
7850 nextp
= &node
->next
;
7853 nextp
= &var
->var_part
[pos
].loc_chain
;
7856 /* Add the location to the beginning. */
7857 node
= new location_chain
;
7859 node
->init
= initialized
;
7860 node
->set_src
= set_src
;
7861 node
->next
= *nextp
;
7864 /* If no location was emitted do so. */
7865 if (var
->var_part
[pos
].cur_loc
== NULL
)
7866 variable_was_changed (var
, set
);
7871 /* Set the part of variable's location in the dataflow set SET. The
7872 variable part is specified by variable's declaration in DV and
7873 offset OFFSET and the part's location by LOC. IOPT should be
7874 NO_INSERT if the variable is known to be in SET already and the
7875 variable hash table must not be resized, and INSERT otherwise. */
7878 set_variable_part (dataflow_set
*set
, rtx loc
,
7879 decl_or_value dv
, HOST_WIDE_INT offset
,
7880 enum var_init_status initialized
, rtx set_src
,
7881 enum insert_option iopt
)
7885 if (iopt
== NO_INSERT
)
7886 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7889 slot
= shared_hash_find_slot (set
->vars
, dv
);
7891 slot
= shared_hash_find_slot_unshare (&set
->vars
, dv
, iopt
);
7893 set_slot_part (set
, loc
, slot
, dv
, offset
, initialized
, set_src
);
7896 /* Remove all recorded register locations for the given variable part
7897 from dataflow set SET, except for those that are identical to loc.
7898 The variable part is specified by variable's declaration or value
7899 DV and offset OFFSET. */
7902 clobber_slot_part (dataflow_set
*set
, rtx loc
, variable
**slot
,
7903 HOST_WIDE_INT offset
, rtx set_src
)
7905 variable
*var
= *slot
;
7906 int pos
= find_variable_location_part (var
, offset
, NULL
);
7910 location_chain
*node
, *next
;
7912 /* Remove the register locations from the dataflow set. */
7913 next
= var
->var_part
[pos
].loc_chain
;
7914 for (node
= next
; node
; node
= next
)
7917 if (node
->loc
!= loc
7918 && (!flag_var_tracking_uninit
7921 || !rtx_equal_p (set_src
, node
->set_src
)))
7923 if (REG_P (node
->loc
))
7925 attrs
*anode
, *anext
;
7928 /* Remove the variable part from the register's
7929 list, but preserve any other variable parts
7930 that might be regarded as live in that same
7932 anextp
= &set
->regs
[REGNO (node
->loc
)];
7933 for (anode
= *anextp
; anode
; anode
= anext
)
7935 anext
= anode
->next
;
7936 if (anode
->dv
== var
->dv
&& anode
->offset
== offset
)
7942 anextp
= &anode
->next
;
7946 slot
= delete_slot_part (set
, node
->loc
, slot
, offset
);
7954 /* Remove all recorded register locations for the given variable part
7955 from dataflow set SET, except for those that are identical to loc.
7956 The variable part is specified by variable's declaration or value
7957 DV and offset OFFSET. */
7960 clobber_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
7961 HOST_WIDE_INT offset
, rtx set_src
)
7965 if (!dv
|| (!dv_is_value_p (dv
) && ! DECL_P (dv_as_decl (dv
))))
7968 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7972 clobber_slot_part (set
, loc
, slot
, offset
, set_src
);
7975 /* Delete the part of variable's location from dataflow set SET. The
7976 variable part is specified by its SET->vars slot SLOT and offset
7977 OFFSET and the part's location by LOC. */
7980 delete_slot_part (dataflow_set
*set
, rtx loc
, variable
**slot
,
7981 HOST_WIDE_INT offset
)
7983 variable
*var
= *slot
;
7984 int pos
= find_variable_location_part (var
, offset
, NULL
);
7988 location_chain
*node
, *next
;
7989 location_chain
**nextp
;
7993 if (shared_var_p (var
, set
->vars
))
7995 /* If the variable contains the location part we have to
7996 make a copy of the variable. */
7997 for (node
= var
->var_part
[pos
].loc_chain
; node
;
8000 if ((REG_P (node
->loc
) && REG_P (loc
)
8001 && REGNO (node
->loc
) == REGNO (loc
))
8002 || rtx_equal_p (node
->loc
, loc
))
8004 slot
= unshare_variable (set
, slot
, var
,
8005 VAR_INIT_STATUS_UNKNOWN
);
8012 if (pos
== 0 && var
->onepart
&& VAR_LOC_1PAUX (var
))
8013 cur_loc
= VAR_LOC_FROM (var
);
8015 cur_loc
= var
->var_part
[pos
].cur_loc
;
8017 /* Delete the location part. */
8019 nextp
= &var
->var_part
[pos
].loc_chain
;
8020 for (node
= *nextp
; node
; node
= next
)
8023 if ((REG_P (node
->loc
) && REG_P (loc
)
8024 && REGNO (node
->loc
) == REGNO (loc
))
8025 || rtx_equal_p (node
->loc
, loc
))
8027 /* If we have deleted the location which was last emitted
8028 we have to emit new location so add the variable to set
8029 of changed variables. */
8030 if (cur_loc
== node
->loc
)
8033 var
->var_part
[pos
].cur_loc
= NULL
;
8034 if (pos
== 0 && var
->onepart
&& VAR_LOC_1PAUX (var
))
8035 VAR_LOC_FROM (var
) = NULL
;
8042 nextp
= &node
->next
;
8045 if (var
->var_part
[pos
].loc_chain
== NULL
)
8049 while (pos
< var
->n_var_parts
)
8051 var
->var_part
[pos
] = var
->var_part
[pos
+ 1];
8056 variable_was_changed (var
, set
);
8062 /* Delete the part of variable's location from dataflow set SET. The
8063 variable part is specified by variable's declaration or value DV
8064 and offset OFFSET and the part's location by LOC. */
8067 delete_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
8068 HOST_WIDE_INT offset
)
8070 variable
**slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
8074 delete_slot_part (set
, loc
, slot
, offset
);
8078 /* Structure for passing some other parameters to function
8079 vt_expand_loc_callback. */
8080 class expand_loc_callback_data
8083 /* The variables and values active at this point. */
8084 variable_table_type
*vars
;
8086 /* Stack of values and debug_exprs under expansion, and their
8088 auto_vec
<rtx
, 4> expanding
;
8090 /* Stack of values and debug_exprs whose expansion hit recursion
8091 cycles. They will have VALUE_RECURSED_INTO marked when added to
8092 this list. This flag will be cleared if any of its dependencies
8093 resolves to a valid location. So, if the flag remains set at the
8094 end of the search, we know no valid location for this one can
8096 auto_vec
<rtx
, 4> pending
;
8098 /* The maximum depth among the sub-expressions under expansion.
8099 Zero indicates no expansion so far. */
8103 /* Allocate the one-part auxiliary data structure for VAR, with enough
8104 room for COUNT dependencies. */
8107 loc_exp_dep_alloc (variable
*var
, int count
)
8111 gcc_checking_assert (var
->onepart
);
8113 /* We can be called with COUNT == 0 to allocate the data structure
8114 without any dependencies, e.g. for the backlinks only. However,
8115 if we are specifying a COUNT, then the dependency list must have
8116 been emptied before. It would be possible to adjust pointers or
8117 force it empty here, but this is better done at an earlier point
8118 in the algorithm, so we instead leave an assertion to catch
8120 gcc_checking_assert (!count
8121 || VAR_LOC_DEP_VEC (var
) == NULL
8122 || VAR_LOC_DEP_VEC (var
)->is_empty ());
8124 if (VAR_LOC_1PAUX (var
) && VAR_LOC_DEP_VEC (var
)->space (count
))
8127 allocsize
= offsetof (struct onepart_aux
, deps
)
8128 + deps_vec::embedded_size (count
);
8130 if (VAR_LOC_1PAUX (var
))
8132 VAR_LOC_1PAUX (var
) = XRESIZEVAR (struct onepart_aux
,
8133 VAR_LOC_1PAUX (var
), allocsize
);
8134 /* If the reallocation moves the onepaux structure, the
8135 back-pointer to BACKLINKS in the first list member will still
8136 point to its old location. Adjust it. */
8137 if (VAR_LOC_DEP_LST (var
))
8138 VAR_LOC_DEP_LST (var
)->pprev
= VAR_LOC_DEP_LSTP (var
);
8142 VAR_LOC_1PAUX (var
) = XNEWVAR (struct onepart_aux
, allocsize
);
8143 *VAR_LOC_DEP_LSTP (var
) = NULL
;
8144 VAR_LOC_FROM (var
) = NULL
;
8145 VAR_LOC_DEPTH (var
).complexity
= 0;
8146 VAR_LOC_DEPTH (var
).entryvals
= 0;
8148 VAR_LOC_DEP_VEC (var
)->embedded_init (count
);
8151 /* Remove all entries from the vector of active dependencies of VAR,
8152 removing them from the back-links lists too. */
8155 loc_exp_dep_clear (variable
*var
)
8157 while (VAR_LOC_DEP_VEC (var
) && !VAR_LOC_DEP_VEC (var
)->is_empty ())
8159 loc_exp_dep
*led
= &VAR_LOC_DEP_VEC (var
)->last ();
8161 led
->next
->pprev
= led
->pprev
;
8163 *led
->pprev
= led
->next
;
8164 VAR_LOC_DEP_VEC (var
)->pop ();
8168 /* Insert an active dependency from VAR on X to the vector of
8169 dependencies, and add the corresponding back-link to X's list of
8170 back-links in VARS. */
8173 loc_exp_insert_dep (variable
*var
, rtx x
, variable_table_type
*vars
)
8179 dv
= dv_from_rtx (x
);
8181 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8182 an additional look up? */
8183 xvar
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8187 xvar
= variable_from_dropped (dv
, NO_INSERT
);
8188 gcc_checking_assert (xvar
);
8191 /* No point in adding the same backlink more than once. This may
8192 arise if say the same value appears in two complex expressions in
8193 the same loc_list, or even more than once in a single
8195 if (VAR_LOC_DEP_LST (xvar
) && VAR_LOC_DEP_LST (xvar
)->dv
== var
->dv
)
8198 if (var
->onepart
== NOT_ONEPART
)
8199 led
= new loc_exp_dep
;
8203 memset (&empty
, 0, sizeof (empty
));
8204 VAR_LOC_DEP_VEC (var
)->quick_push (empty
);
8205 led
= &VAR_LOC_DEP_VEC (var
)->last ();
8210 loc_exp_dep_alloc (xvar
, 0);
8211 led
->pprev
= VAR_LOC_DEP_LSTP (xvar
);
8212 led
->next
= *led
->pprev
;
8214 led
->next
->pprev
= &led
->next
;
8218 /* Create active dependencies of VAR on COUNT values starting at
8219 VALUE, and corresponding back-links to the entries in VARS. Return
8220 true if we found any pending-recursion results. */
8223 loc_exp_dep_set (variable
*var
, rtx result
, rtx
*value
, int count
,
8224 variable_table_type
*vars
)
8226 bool pending_recursion
= false;
8228 gcc_checking_assert (VAR_LOC_DEP_VEC (var
) == NULL
8229 || VAR_LOC_DEP_VEC (var
)->is_empty ());
8231 /* Set up all dependencies from last_child (as set up at the end of
8232 the loop above) to the end. */
8233 loc_exp_dep_alloc (var
, count
);
8239 if (!pending_recursion
)
8240 pending_recursion
= !result
&& VALUE_RECURSED_INTO (x
);
8242 loc_exp_insert_dep (var
, x
, vars
);
8245 return pending_recursion
;
8248 /* Notify the back-links of IVAR that are pending recursion that we
8249 have found a non-NIL value for it, so they are cleared for another
8250 attempt to compute a current location. */
8253 notify_dependents_of_resolved_value (variable
*ivar
, variable_table_type
*vars
)
8255 loc_exp_dep
*led
, *next
;
8257 for (led
= VAR_LOC_DEP_LST (ivar
); led
; led
= next
)
8259 decl_or_value dv
= led
->dv
;
8264 if (dv_is_value_p (dv
))
8266 rtx value
= dv_as_value (dv
);
8268 /* If we have already resolved it, leave it alone. */
8269 if (!VALUE_RECURSED_INTO (value
))
8272 /* Check that VALUE_RECURSED_INTO, true from the test above,
8273 implies NO_LOC_P. */
8274 gcc_checking_assert (NO_LOC_P (value
));
8276 /* We won't notify variables that are being expanded,
8277 because their dependency list is cleared before
8279 NO_LOC_P (value
) = false;
8280 VALUE_RECURSED_INTO (value
) = false;
8282 gcc_checking_assert (dv_changed_p (dv
));
8286 gcc_checking_assert (dv_onepart_p (dv
) != NOT_ONEPART
);
8287 if (!dv_changed_p (dv
))
8291 var
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8294 var
= variable_from_dropped (dv
, NO_INSERT
);
8297 notify_dependents_of_resolved_value (var
, vars
);
8300 next
->pprev
= led
->pprev
;
8308 static rtx
vt_expand_loc_callback (rtx x
, bitmap regs
,
8309 int max_depth
, void *data
);
8311 /* Return the combined depth, when one sub-expression evaluated to
8312 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8314 static inline expand_depth
8315 update_depth (expand_depth saved_depth
, expand_depth best_depth
)
8317 /* If we didn't find anything, stick with what we had. */
8318 if (!best_depth
.complexity
)
8321 /* If we found hadn't found anything, use the depth of the current
8322 expression. Do NOT add one extra level, we want to compute the
8323 maximum depth among sub-expressions. We'll increment it later,
8325 if (!saved_depth
.complexity
)
8328 /* Combine the entryval count so that regardless of which one we
8329 return, the entryval count is accurate. */
8330 best_depth
.entryvals
= saved_depth
.entryvals
8331 = best_depth
.entryvals
+ saved_depth
.entryvals
;
8333 if (saved_depth
.complexity
< best_depth
.complexity
)
8339 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8340 DATA for cselib expand callback. If PENDRECP is given, indicate in
8341 it whether any sub-expression couldn't be fully evaluated because
8342 it is pending recursion resolution. */
8345 vt_expand_var_loc_chain (variable
*var
, bitmap regs
, void *data
,
8348 class expand_loc_callback_data
*elcd
8349 = (class expand_loc_callback_data
*) data
;
8350 location_chain
*loc
, *next
;
8352 int first_child
, result_first_child
, last_child
;
8353 bool pending_recursion
;
8354 rtx loc_from
= NULL
;
8355 struct elt_loc_list
*cloc
= NULL
;
8356 expand_depth depth
= { 0, 0 }, saved_depth
= elcd
->depth
;
8357 int wanted_entryvals
, found_entryvals
= 0;
8359 /* Clear all backlinks pointing at this, so that we're not notified
8360 while we're active. */
8361 loc_exp_dep_clear (var
);
8364 if (var
->onepart
== ONEPART_VALUE
)
8366 cselib_val
*val
= CSELIB_VAL_PTR (dv_as_value (var
->dv
));
8368 gcc_checking_assert (cselib_preserved_value_p (val
));
8373 first_child
= result_first_child
= last_child
8374 = elcd
->expanding
.length ();
8376 wanted_entryvals
= found_entryvals
;
8378 /* Attempt to expand each available location in turn. */
8379 for (next
= loc
= var
->n_var_parts
? var
->var_part
[0].loc_chain
: NULL
;
8380 loc
|| cloc
; loc
= next
)
8382 result_first_child
= last_child
;
8386 loc_from
= cloc
->loc
;
8389 if (unsuitable_loc (loc_from
))
8394 loc_from
= loc
->loc
;
8398 gcc_checking_assert (!unsuitable_loc (loc_from
));
8400 elcd
->depth
.complexity
= elcd
->depth
.entryvals
= 0;
8401 result
= cselib_expand_value_rtx_cb (loc_from
, regs
, EXPR_DEPTH
,
8402 vt_expand_loc_callback
, data
);
8403 last_child
= elcd
->expanding
.length ();
8407 depth
= elcd
->depth
;
8409 gcc_checking_assert (depth
.complexity
8410 || result_first_child
== last_child
);
8412 if (last_child
- result_first_child
!= 1)
8414 if (!depth
.complexity
&& GET_CODE (result
) == ENTRY_VALUE
)
8419 if (depth
.complexity
<= EXPR_USE_DEPTH
)
8421 if (depth
.entryvals
<= wanted_entryvals
)
8423 else if (!found_entryvals
|| depth
.entryvals
< found_entryvals
)
8424 found_entryvals
= depth
.entryvals
;
8430 /* Set it up in case we leave the loop. */
8431 depth
.complexity
= depth
.entryvals
= 0;
8433 result_first_child
= first_child
;
8436 if (!loc_from
&& wanted_entryvals
< found_entryvals
)
8438 /* We found entries with ENTRY_VALUEs and skipped them. Since
8439 we could not find any expansions without ENTRY_VALUEs, but we
8440 found at least one with them, go back and get an entry with
8441 the minimum number ENTRY_VALUE count that we found. We could
8442 avoid looping, but since each sub-loc is already resolved,
8443 the re-expansion should be trivial. ??? Should we record all
8444 attempted locs as dependencies, so that we retry the
8445 expansion should any of them change, in the hope it can give
8446 us a new entry without an ENTRY_VALUE? */
8447 elcd
->expanding
.truncate (first_child
);
8451 /* Register all encountered dependencies as active. */
8452 pending_recursion
= loc_exp_dep_set
8453 (var
, result
, elcd
->expanding
.address () + result_first_child
,
8454 last_child
- result_first_child
, elcd
->vars
);
8456 elcd
->expanding
.truncate (first_child
);
8458 /* Record where the expansion came from. */
8459 gcc_checking_assert (!result
|| !pending_recursion
);
8460 VAR_LOC_FROM (var
) = loc_from
;
8461 VAR_LOC_DEPTH (var
) = depth
;
8463 gcc_checking_assert (!depth
.complexity
== !result
);
8465 elcd
->depth
= update_depth (saved_depth
, depth
);
8467 /* Indicate whether any of the dependencies are pending recursion
8470 *pendrecp
= pending_recursion
;
8472 if (!pendrecp
|| !pending_recursion
)
8473 var
->var_part
[0].cur_loc
= result
;
8478 /* Callback for cselib_expand_value, that looks for expressions
8479 holding the value in the var-tracking hash tables. Return X for
8480 standard processing, anything else is to be used as-is. */
8483 vt_expand_loc_callback (rtx x
, bitmap regs
,
8484 int max_depth ATTRIBUTE_UNUSED
,
8487 class expand_loc_callback_data
*elcd
8488 = (class expand_loc_callback_data
*) data
;
8492 bool pending_recursion
= false;
8493 bool from_empty
= false;
8495 switch (GET_CODE (x
))
8498 subreg
= cselib_expand_value_rtx_cb (SUBREG_REG (x
), regs
,
8500 vt_expand_loc_callback
, data
);
8505 result
= simplify_gen_subreg (GET_MODE (x
), subreg
,
8506 GET_MODE (SUBREG_REG (x
)),
8509 /* Invalid SUBREGs are ok in debug info. ??? We could try
8510 alternate expansions for the VALUE as well. */
8511 if (!result
&& GET_MODE (subreg
) != VOIDmode
)
8512 result
= gen_rtx_raw_SUBREG (GET_MODE (x
), subreg
, SUBREG_BYTE (x
));
8518 dv
= dv_from_rtx (x
);
8525 elcd
->expanding
.safe_push (x
);
8527 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8528 gcc_checking_assert (!VALUE_RECURSED_INTO (x
) || NO_LOC_P (x
));
8532 gcc_checking_assert (VALUE_RECURSED_INTO (x
) || !dv_changed_p (dv
));
8536 var
= elcd
->vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8541 var
= variable_from_dropped (dv
, INSERT
);
8544 gcc_checking_assert (var
);
8546 if (!dv_changed_p (dv
))
8548 gcc_checking_assert (!NO_LOC_P (x
));
8549 gcc_checking_assert (var
->var_part
[0].cur_loc
);
8550 gcc_checking_assert (VAR_LOC_1PAUX (var
));
8551 gcc_checking_assert (VAR_LOC_1PAUX (var
)->depth
.complexity
);
8553 elcd
->depth
= update_depth (elcd
->depth
, VAR_LOC_1PAUX (var
)->depth
);
8555 return var
->var_part
[0].cur_loc
;
8558 VALUE_RECURSED_INTO (x
) = true;
8559 /* This is tentative, but it makes some tests simpler. */
8560 NO_LOC_P (x
) = true;
8562 gcc_checking_assert (var
->n_var_parts
== 1 || from_empty
);
8564 result
= vt_expand_var_loc_chain (var
, regs
, data
, &pending_recursion
);
8566 if (pending_recursion
)
8568 gcc_checking_assert (!result
);
8569 elcd
->pending
.safe_push (x
);
8573 NO_LOC_P (x
) = !result
;
8574 VALUE_RECURSED_INTO (x
) = false;
8575 set_dv_changed (dv
, false);
8578 notify_dependents_of_resolved_value (var
, elcd
->vars
);
8584 /* While expanding variables, we may encounter recursion cycles
8585 because of mutual (possibly indirect) dependencies between two
8586 particular variables (or values), say A and B. If we're trying to
8587 expand A when we get to B, which in turn attempts to expand A, if
8588 we can't find any other expansion for B, we'll add B to this
8589 pending-recursion stack, and tentatively return NULL for its
8590 location. This tentative value will be used for any other
8591 occurrences of B, unless A gets some other location, in which case
8592 it will notify B that it is worth another try at computing a
8593 location for it, and it will use the location computed for A then.
8594 At the end of the expansion, the tentative NULL locations become
8595 final for all members of PENDING that didn't get a notification.
8596 This function performs this finalization of NULL locations. */
8599 resolve_expansions_pending_recursion (vec
<rtx
, va_heap
> *pending
)
8601 while (!pending
->is_empty ())
8603 rtx x
= pending
->pop ();
8606 if (!VALUE_RECURSED_INTO (x
))
8609 gcc_checking_assert (NO_LOC_P (x
));
8610 VALUE_RECURSED_INTO (x
) = false;
8611 dv
= dv_from_rtx (x
);
8612 gcc_checking_assert (dv_changed_p (dv
));
8613 set_dv_changed (dv
, false);
8617 /* Initialize expand_loc_callback_data D with variable hash table V.
8618 It must be a macro because of alloca (vec stack). */
8619 #define INIT_ELCD(d, v) \
8623 (d).depth.complexity = (d).depth.entryvals = 0; \
8626 /* Finalize expand_loc_callback_data D, resolved to location L. */
8627 #define FINI_ELCD(d, l) \
8630 resolve_expansions_pending_recursion (&(d).pending); \
8631 (d).pending.release (); \
8632 (d).expanding.release (); \
8634 if ((l) && MEM_P (l)) \
8635 (l) = targetm.delegitimize_address (l); \
8639 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8640 equivalences in VARS, updating their CUR_LOCs in the process. */
8643 vt_expand_loc (rtx loc
, variable_table_type
*vars
)
8645 class expand_loc_callback_data data
;
8648 if (!MAY_HAVE_DEBUG_BIND_INSNS
)
8651 INIT_ELCD (data
, vars
);
8653 result
= cselib_expand_value_rtx_cb (loc
, scratch_regs
, EXPR_DEPTH
,
8654 vt_expand_loc_callback
, &data
);
8656 FINI_ELCD (data
, result
);
8661 /* Expand the one-part VARiable to a location, using the equivalences
8662 in VARS, updating their CUR_LOCs in the process. */
8665 vt_expand_1pvar (variable
*var
, variable_table_type
*vars
)
8667 class expand_loc_callback_data data
;
8670 gcc_checking_assert (var
->onepart
&& var
->n_var_parts
== 1);
8672 if (!dv_changed_p (var
->dv
))
8673 return var
->var_part
[0].cur_loc
;
8675 INIT_ELCD (data
, vars
);
8677 loc
= vt_expand_var_loc_chain (var
, scratch_regs
, &data
, NULL
);
8679 gcc_checking_assert (data
.expanding
.is_empty ());
8681 FINI_ELCD (data
, loc
);
8686 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8687 additional parameters: WHERE specifies whether the note shall be emitted
8688 before or after instruction INSN. */
8691 emit_note_insn_var_location (variable
**varp
, emit_note_data
*data
)
8693 variable
*var
= *varp
;
8694 rtx_insn
*insn
= data
->insn
;
8695 enum emit_note_where where
= data
->where
;
8696 variable_table_type
*vars
= data
->vars
;
8699 int i
, j
, n_var_parts
;
8701 enum var_init_status initialized
= VAR_INIT_STATUS_UNINITIALIZED
;
8702 HOST_WIDE_INT last_limit
;
8703 HOST_WIDE_INT offsets
[MAX_VAR_PARTS
];
8704 rtx loc
[MAX_VAR_PARTS
];
8708 gcc_checking_assert (var
->onepart
== NOT_ONEPART
8709 || var
->onepart
== ONEPART_VDECL
);
8711 decl
= dv_as_decl (var
->dv
);
8717 for (i
= 0; i
< var
->n_var_parts
; i
++)
8718 if (var
->var_part
[i
].cur_loc
== NULL
&& var
->var_part
[i
].loc_chain
)
8719 var
->var_part
[i
].cur_loc
= var
->var_part
[i
].loc_chain
->loc
;
8720 for (i
= 0; i
< var
->n_var_parts
; i
++)
8722 machine_mode mode
, wider_mode
;
8724 HOST_WIDE_INT offset
, size
, wider_size
;
8726 if (i
== 0 && var
->onepart
)
8728 gcc_checking_assert (var
->n_var_parts
== 1);
8730 initialized
= VAR_INIT_STATUS_INITIALIZED
;
8731 loc2
= vt_expand_1pvar (var
, vars
);
8735 if (last_limit
< VAR_PART_OFFSET (var
, i
))
8740 else if (last_limit
> VAR_PART_OFFSET (var
, i
))
8742 offset
= VAR_PART_OFFSET (var
, i
);
8743 loc2
= var
->var_part
[i
].cur_loc
;
8744 if (loc2
&& GET_CODE (loc2
) == MEM
8745 && GET_CODE (XEXP (loc2
, 0)) == VALUE
)
8747 rtx depval
= XEXP (loc2
, 0);
8749 loc2
= vt_expand_loc (loc2
, vars
);
8752 loc_exp_insert_dep (var
, depval
, vars
);
8759 gcc_checking_assert (GET_CODE (loc2
) != VALUE
);
8760 for (lc
= var
->var_part
[i
].loc_chain
; lc
; lc
= lc
->next
)
8761 if (var
->var_part
[i
].cur_loc
== lc
->loc
)
8763 initialized
= lc
->init
;
8769 offsets
[n_var_parts
] = offset
;
8775 loc
[n_var_parts
] = loc2
;
8776 mode
= GET_MODE (var
->var_part
[i
].cur_loc
);
8777 if (mode
== VOIDmode
&& var
->onepart
)
8778 mode
= DECL_MODE (decl
);
8779 /* We ony track subparts of constant-sized objects, since at present
8780 there's no representation for polynomial pieces. */
8781 if (!GET_MODE_SIZE (mode
).is_constant (&size
))
8786 last_limit
= offsets
[n_var_parts
] + size
;
8788 /* Attempt to merge adjacent registers or memory. */
8789 for (j
= i
+ 1; j
< var
->n_var_parts
; j
++)
8790 if (last_limit
<= VAR_PART_OFFSET (var
, j
))
8792 if (j
< var
->n_var_parts
8793 && GET_MODE_WIDER_MODE (mode
).exists (&wider_mode
)
8794 && GET_MODE_SIZE (wider_mode
).is_constant (&wider_size
)
8795 && var
->var_part
[j
].cur_loc
8796 && mode
== GET_MODE (var
->var_part
[j
].cur_loc
)
8797 && (REG_P (loc
[n_var_parts
]) || MEM_P (loc
[n_var_parts
]))
8798 && last_limit
== (var
->onepart
? 0 : VAR_PART_OFFSET (var
, j
))
8799 && (loc2
= vt_expand_loc (var
->var_part
[j
].cur_loc
, vars
))
8800 && GET_CODE (loc
[n_var_parts
]) == GET_CODE (loc2
))
8805 if (REG_P (loc
[n_var_parts
])
8806 && hard_regno_nregs (REGNO (loc
[n_var_parts
]), mode
) * 2
8807 == hard_regno_nregs (REGNO (loc
[n_var_parts
]), wider_mode
)
8808 && end_hard_regno (mode
, REGNO (loc
[n_var_parts
]))
8811 if (! WORDS_BIG_ENDIAN
&& ! BYTES_BIG_ENDIAN
)
8812 new_loc
= simplify_subreg (wider_mode
, loc
[n_var_parts
],
8814 else if (WORDS_BIG_ENDIAN
&& BYTES_BIG_ENDIAN
)
8815 new_loc
= simplify_subreg (wider_mode
, loc2
, mode
, 0);
8818 if (!REG_P (new_loc
)
8819 || REGNO (new_loc
) != REGNO (loc
[n_var_parts
]))
8822 REG_ATTRS (new_loc
) = REG_ATTRS (loc
[n_var_parts
]);
8825 else if (MEM_P (loc
[n_var_parts
])
8826 && GET_CODE (XEXP (loc2
, 0)) == PLUS
8827 && REG_P (XEXP (XEXP (loc2
, 0), 0))
8828 && poly_int_rtx_p (XEXP (XEXP (loc2
, 0), 1), &offset2
))
8830 poly_int64 end1
= size
;
8831 rtx base1
= strip_offset_and_add (XEXP (loc
[n_var_parts
], 0),
8833 if (rtx_equal_p (base1
, XEXP (XEXP (loc2
, 0), 0))
8834 && known_eq (end1
, offset2
))
8835 new_loc
= adjust_address_nv (loc
[n_var_parts
],
8841 loc
[n_var_parts
] = new_loc
;
8843 last_limit
= offsets
[n_var_parts
] + wider_size
;
8849 poly_uint64 type_size_unit
8850 = tree_to_poly_uint64 (TYPE_SIZE_UNIT (TREE_TYPE (decl
)));
8851 if (maybe_lt (poly_uint64 (last_limit
), type_size_unit
))
8854 if (! flag_var_tracking_uninit
)
8855 initialized
= VAR_INIT_STATUS_INITIALIZED
;
8859 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, NULL_RTX
, initialized
);
8860 else if (n_var_parts
== 1)
8864 if (offsets
[0] || GET_CODE (loc
[0]) == PARALLEL
)
8865 expr_list
= gen_rtx_EXPR_LIST (VOIDmode
, loc
[0], GEN_INT (offsets
[0]));
8869 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, expr_list
, initialized
);
8871 else if (n_var_parts
)
8875 for (i
= 0; i
< n_var_parts
; i
++)
8877 = gen_rtx_EXPR_LIST (VOIDmode
, loc
[i
], GEN_INT (offsets
[i
]));
8879 parallel
= gen_rtx_PARALLEL (VOIDmode
,
8880 gen_rtvec_v (n_var_parts
, loc
));
8881 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
,
8882 parallel
, initialized
);
8885 if (where
!= EMIT_NOTE_BEFORE_INSN
)
8887 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
8888 if (where
== EMIT_NOTE_AFTER_CALL_INSN
)
8889 NOTE_DURING_CALL_P (note
) = true;
8893 /* Make sure that the call related notes come first. */
8894 while (NEXT_INSN (insn
)
8896 && NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
8897 && NOTE_DURING_CALL_P (insn
))
8898 insn
= NEXT_INSN (insn
);
8900 && NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
8901 && NOTE_DURING_CALL_P (insn
))
8902 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
8904 note
= emit_note_before (NOTE_INSN_VAR_LOCATION
, insn
);
8906 NOTE_VAR_LOCATION (note
) = note_vl
;
8908 set_dv_changed (var
->dv
, false);
8909 gcc_assert (var
->in_changed_variables
);
8910 var
->in_changed_variables
= false;
8911 changed_variables
->clear_slot (varp
);
8913 /* Continue traversing the hash table. */
8917 /* While traversing changed_variables, push onto DATA (a stack of RTX
8918 values) entries that aren't user variables. */
8921 var_track_values_to_stack (variable
**slot
,
8922 vec
<rtx
, va_heap
> *changed_values_stack
)
8924 variable
*var
= *slot
;
8926 if (var
->onepart
== ONEPART_VALUE
)
8927 changed_values_stack
->safe_push (dv_as_value (var
->dv
));
8928 else if (var
->onepart
== ONEPART_DEXPR
)
8929 changed_values_stack
->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var
->dv
)));
8934 /* Remove from changed_variables the entry whose DV corresponds to
8935 value or debug_expr VAL. */
8937 remove_value_from_changed_variables (rtx val
)
8939 decl_or_value dv
= dv_from_rtx (val
);
8943 slot
= changed_variables
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8946 var
->in_changed_variables
= false;
8947 changed_variables
->clear_slot (slot
);
8950 /* If VAL (a value or debug_expr) has backlinks to variables actively
8951 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8952 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8953 have dependencies of their own to notify. */
8956 notify_dependents_of_changed_value (rtx val
, variable_table_type
*htab
,
8957 vec
<rtx
, va_heap
> *changed_values_stack
)
8962 decl_or_value dv
= dv_from_rtx (val
);
8964 slot
= changed_variables
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8967 slot
= htab
->find_slot_with_hash (dv
, dv_htab_hash (dv
), NO_INSERT
);
8969 slot
= dropped_values
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8973 while ((led
= VAR_LOC_DEP_LST (var
)))
8975 decl_or_value ldv
= led
->dv
;
8978 /* Deactivate and remove the backlink, as it was “used up”. It
8979 makes no sense to attempt to notify the same entity again:
8980 either it will be recomputed and re-register an active
8981 dependency, or it will still have the changed mark. */
8983 led
->next
->pprev
= led
->pprev
;
8985 *led
->pprev
= led
->next
;
8989 if (dv_changed_p (ldv
))
8992 switch (dv_onepart_p (ldv
))
8996 set_dv_changed (ldv
, true);
8997 changed_values_stack
->safe_push (dv_as_rtx (ldv
));
9001 ivar
= htab
->find_with_hash (ldv
, dv_htab_hash (ldv
));
9002 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar
));
9003 variable_was_changed (ivar
, NULL
);
9008 ivar
= htab
->find_with_hash (ldv
, dv_htab_hash (ldv
));
9011 int i
= ivar
->n_var_parts
;
9014 rtx loc
= ivar
->var_part
[i
].cur_loc
;
9016 if (loc
&& GET_CODE (loc
) == MEM
9017 && XEXP (loc
, 0) == val
)
9019 variable_was_changed (ivar
, NULL
);
9032 /* Take out of changed_variables any entries that don't refer to use
9033 variables. Back-propagate change notifications from values and
9034 debug_exprs to their active dependencies in HTAB or in
9035 CHANGED_VARIABLES. */
9038 process_changed_values (variable_table_type
*htab
)
9042 auto_vec
<rtx
, 20> changed_values_stack
;
9044 /* Move values from changed_variables to changed_values_stack. */
9046 ->traverse
<vec
<rtx
, va_heap
>*, var_track_values_to_stack
>
9047 (&changed_values_stack
);
9049 /* Back-propagate change notifications in values while popping
9050 them from the stack. */
9051 for (n
= i
= changed_values_stack
.length ();
9052 i
> 0; i
= changed_values_stack
.length ())
9054 val
= changed_values_stack
.pop ();
9055 notify_dependents_of_changed_value (val
, htab
, &changed_values_stack
);
9057 /* This condition will hold when visiting each of the entries
9058 originally in changed_variables. We can't remove them
9059 earlier because this could drop the backlinks before we got a
9060 chance to use them. */
9063 remove_value_from_changed_variables (val
);
9069 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
9070 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
9071 the notes shall be emitted before of after instruction INSN. */
9074 emit_notes_for_changes (rtx_insn
*insn
, enum emit_note_where where
,
9077 emit_note_data data
;
9078 variable_table_type
*htab
= shared_hash_htab (vars
);
9080 if (changed_variables
->is_empty ())
9083 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9084 process_changed_values (htab
);
9091 ->traverse
<emit_note_data
*, emit_note_insn_var_location
> (&data
);
9094 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9095 same variable in hash table DATA or is not there at all. */
9098 emit_notes_for_differences_1 (variable
**slot
, variable_table_type
*new_vars
)
9100 variable
*old_var
, *new_var
;
9103 new_var
= new_vars
->find_with_hash (old_var
->dv
, dv_htab_hash (old_var
->dv
));
9107 /* Variable has disappeared. */
9108 variable
*empty_var
= NULL
;
9110 if (old_var
->onepart
== ONEPART_VALUE
9111 || old_var
->onepart
== ONEPART_DEXPR
)
9113 empty_var
= variable_from_dropped (old_var
->dv
, NO_INSERT
);
9116 gcc_checking_assert (!empty_var
->in_changed_variables
);
9117 if (!VAR_LOC_1PAUX (old_var
))
9119 VAR_LOC_1PAUX (old_var
) = VAR_LOC_1PAUX (empty_var
);
9120 VAR_LOC_1PAUX (empty_var
) = NULL
;
9123 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var
));
9129 empty_var
= onepart_pool_allocate (old_var
->onepart
);
9130 empty_var
->dv
= old_var
->dv
;
9131 empty_var
->refcount
= 0;
9132 empty_var
->n_var_parts
= 0;
9133 empty_var
->onepart
= old_var
->onepart
;
9134 empty_var
->in_changed_variables
= false;
9137 if (empty_var
->onepart
)
9139 /* Propagate the auxiliary data to (ultimately)
9140 changed_variables. */
9141 empty_var
->var_part
[0].loc_chain
= NULL
;
9142 empty_var
->var_part
[0].cur_loc
= NULL
;
9143 VAR_LOC_1PAUX (empty_var
) = VAR_LOC_1PAUX (old_var
);
9144 VAR_LOC_1PAUX (old_var
) = NULL
;
9146 variable_was_changed (empty_var
, NULL
);
9147 /* Continue traversing the hash table. */
9150 /* Update cur_loc and one-part auxiliary data, before new_var goes
9151 through variable_was_changed. */
9152 if (old_var
!= new_var
&& new_var
->onepart
)
9154 gcc_checking_assert (VAR_LOC_1PAUX (new_var
) == NULL
);
9155 VAR_LOC_1PAUX (new_var
) = VAR_LOC_1PAUX (old_var
);
9156 VAR_LOC_1PAUX (old_var
) = NULL
;
9157 new_var
->var_part
[0].cur_loc
= old_var
->var_part
[0].cur_loc
;
9159 if (variable_different_p (old_var
, new_var
))
9160 variable_was_changed (new_var
, NULL
);
9162 /* Continue traversing the hash table. */
9166 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9170 emit_notes_for_differences_2 (variable
**slot
, variable_table_type
*old_vars
)
9172 variable
*old_var
, *new_var
;
9175 old_var
= old_vars
->find_with_hash (new_var
->dv
, dv_htab_hash (new_var
->dv
));
9179 for (i
= 0; i
< new_var
->n_var_parts
; i
++)
9180 new_var
->var_part
[i
].cur_loc
= NULL
;
9181 variable_was_changed (new_var
, NULL
);
9184 /* Continue traversing the hash table. */
9188 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9192 emit_notes_for_differences (rtx_insn
*insn
, dataflow_set
*old_set
,
9193 dataflow_set
*new_set
)
9195 shared_hash_htab (old_set
->vars
)
9196 ->traverse
<variable_table_type
*, emit_notes_for_differences_1
>
9197 (shared_hash_htab (new_set
->vars
));
9198 shared_hash_htab (new_set
->vars
)
9199 ->traverse
<variable_table_type
*, emit_notes_for_differences_2
>
9200 (shared_hash_htab (old_set
->vars
));
9201 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, new_set
->vars
);
9204 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9207 next_non_note_insn_var_location (rtx_insn
*insn
)
9211 insn
= NEXT_INSN (insn
);
9214 || NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
)
9221 /* Emit the notes for changes of location parts in the basic block BB. */
9224 emit_notes_in_bb (basic_block bb
, dataflow_set
*set
)
9227 micro_operation
*mo
;
9229 dataflow_set_clear (set
);
9230 dataflow_set_copy (set
, &VTI (bb
)->in
);
9232 FOR_EACH_VEC_ELT (VTI (bb
)->mos
, i
, mo
)
9234 rtx_insn
*insn
= mo
->insn
;
9235 rtx_insn
*next_insn
= next_non_note_insn_var_location (insn
);
9240 dataflow_set_clear_at_call (set
, insn
);
9241 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_CALL_INSN
, set
->vars
);
9243 rtx arguments
= mo
->u
.loc
, *p
= &arguments
;
9246 XEXP (XEXP (*p
, 0), 1)
9247 = vt_expand_loc (XEXP (XEXP (*p
, 0), 1),
9248 shared_hash_htab (set
->vars
));
9249 /* If expansion is successful, keep it in the list. */
9250 if (XEXP (XEXP (*p
, 0), 1))
9252 XEXP (XEXP (*p
, 0), 1)
9253 = copy_rtx_if_shared (XEXP (XEXP (*p
, 0), 1));
9256 /* Otherwise, if the following item is data_value for it,
9258 else if (XEXP (*p
, 1)
9259 && REG_P (XEXP (XEXP (*p
, 0), 0))
9260 && MEM_P (XEXP (XEXP (XEXP (*p
, 1), 0), 0))
9261 && REG_P (XEXP (XEXP (XEXP (XEXP (*p
, 1), 0), 0),
9263 && REGNO (XEXP (XEXP (*p
, 0), 0))
9264 == REGNO (XEXP (XEXP (XEXP (XEXP (*p
, 1), 0),
9266 *p
= XEXP (XEXP (*p
, 1), 1);
9267 /* Just drop this item. */
9271 add_reg_note (insn
, REG_CALL_ARG_LOCATION
, arguments
);
9277 rtx loc
= mo
->u
.loc
;
9280 var_reg_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
9282 var_mem_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
9284 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
9290 rtx loc
= mo
->u
.loc
;
9294 if (GET_CODE (loc
) == CONCAT
)
9296 val
= XEXP (loc
, 0);
9297 vloc
= XEXP (loc
, 1);
9305 var
= PAT_VAR_LOCATION_DECL (vloc
);
9307 clobber_variable_part (set
, NULL_RTX
,
9308 dv_from_decl (var
), 0, NULL_RTX
);
9311 if (VAL_NEEDS_RESOLUTION (loc
))
9312 val_resolve (set
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
9313 set_variable_part (set
, val
, dv_from_decl (var
), 0,
9314 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
9317 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
9318 set_variable_part (set
, PAT_VAR_LOCATION_LOC (vloc
),
9319 dv_from_decl (var
), 0,
9320 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
9323 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
9329 rtx loc
= mo
->u
.loc
;
9330 rtx val
, vloc
, uloc
;
9332 vloc
= uloc
= XEXP (loc
, 1);
9333 val
= XEXP (loc
, 0);
9335 if (GET_CODE (val
) == CONCAT
)
9337 uloc
= XEXP (val
, 1);
9338 val
= XEXP (val
, 0);
9341 if (VAL_NEEDS_RESOLUTION (loc
))
9342 val_resolve (set
, val
, vloc
, insn
);
9344 val_store (set
, val
, uloc
, insn
, false);
9346 if (VAL_HOLDS_TRACK_EXPR (loc
))
9348 if (GET_CODE (uloc
) == REG
)
9349 var_reg_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
9351 else if (GET_CODE (uloc
) == MEM
)
9352 var_mem_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
9356 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
9362 rtx loc
= mo
->u
.loc
;
9363 rtx val
, vloc
, uloc
;
9367 uloc
= XEXP (vloc
, 1);
9368 val
= XEXP (vloc
, 0);
9371 if (GET_CODE (uloc
) == SET
)
9373 dstv
= SET_DEST (uloc
);
9374 srcv
= SET_SRC (uloc
);
9382 if (GET_CODE (val
) == CONCAT
)
9384 dstv
= vloc
= XEXP (val
, 1);
9385 val
= XEXP (val
, 0);
9388 if (GET_CODE (vloc
) == SET
)
9390 srcv
= SET_SRC (vloc
);
9392 gcc_assert (val
!= srcv
);
9393 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
9395 dstv
= vloc
= SET_DEST (vloc
);
9397 if (VAL_NEEDS_RESOLUTION (loc
))
9398 val_resolve (set
, val
, srcv
, insn
);
9400 else if (VAL_NEEDS_RESOLUTION (loc
))
9402 gcc_assert (GET_CODE (uloc
) == SET
9403 && GET_CODE (SET_SRC (uloc
)) == REG
);
9404 val_resolve (set
, val
, SET_SRC (uloc
), insn
);
9407 if (VAL_HOLDS_TRACK_EXPR (loc
))
9409 if (VAL_EXPR_IS_CLOBBERED (loc
))
9412 var_reg_delete (set
, uloc
, true);
9413 else if (MEM_P (uloc
))
9415 gcc_assert (MEM_P (dstv
));
9416 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (uloc
));
9417 var_mem_delete (set
, dstv
, true);
9422 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
9423 rtx src
= NULL
, dst
= uloc
;
9424 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
9426 if (GET_CODE (uloc
) == SET
)
9428 src
= SET_SRC (uloc
);
9429 dst
= SET_DEST (uloc
);
9434 status
= find_src_status (set
, src
);
9436 src
= find_src_set_src (set
, src
);
9440 var_reg_delete_and_set (set
, dst
, !copied_p
,
9442 else if (MEM_P (dst
))
9444 gcc_assert (MEM_P (dstv
));
9445 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (dst
));
9446 var_mem_delete_and_set (set
, dstv
, !copied_p
,
9451 else if (REG_P (uloc
))
9452 var_regno_delete (set
, REGNO (uloc
));
9453 else if (MEM_P (uloc
))
9455 gcc_checking_assert (GET_CODE (vloc
) == MEM
);
9456 gcc_checking_assert (vloc
== dstv
);
9458 clobber_overlapping_mems (set
, vloc
);
9461 val_store (set
, val
, dstv
, insn
, true);
9463 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9470 rtx loc
= mo
->u
.loc
;
9473 if (GET_CODE (loc
) == SET
)
9475 set_src
= SET_SRC (loc
);
9476 loc
= SET_DEST (loc
);
9480 var_reg_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
9483 var_mem_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
9486 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9493 rtx loc
= mo
->u
.loc
;
9494 enum var_init_status src_status
;
9497 if (GET_CODE (loc
) == SET
)
9499 set_src
= SET_SRC (loc
);
9500 loc
= SET_DEST (loc
);
9503 src_status
= find_src_status (set
, set_src
);
9504 set_src
= find_src_set_src (set
, set_src
);
9507 var_reg_delete_and_set (set
, loc
, false, src_status
, set_src
);
9509 var_mem_delete_and_set (set
, loc
, false, src_status
, set_src
);
9511 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9518 rtx loc
= mo
->u
.loc
;
9521 var_reg_delete (set
, loc
, false);
9523 var_mem_delete (set
, loc
, false);
9525 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
9531 rtx loc
= mo
->u
.loc
;
9534 var_reg_delete (set
, loc
, true);
9536 var_mem_delete (set
, loc
, true);
9538 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9544 set
->stack_adjust
+= mo
->u
.adjust
;
9550 /* Emit notes for the whole function. */
9553 vt_emit_notes (void)
9558 gcc_assert (changed_variables
->is_empty ());
9560 /* Free memory occupied by the out hash tables, as they aren't used
9562 FOR_EACH_BB_FN (bb
, cfun
)
9563 dataflow_set_clear (&VTI (bb
)->out
);
9565 /* Enable emitting notes by functions (mainly by set_variable_part and
9566 delete_variable_part). */
9569 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9570 dropped_values
= new variable_table_type (cselib_get_next_uid () * 2);
9572 dataflow_set_init (&cur
);
9574 FOR_EACH_BB_FN (bb
, cfun
)
9576 /* Emit the notes for changes of variable locations between two
9577 subsequent basic blocks. */
9578 emit_notes_for_differences (BB_HEAD (bb
), &cur
, &VTI (bb
)->in
);
9580 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9581 local_get_addr_cache
= new hash_map
<rtx
, rtx
>;
9583 /* Emit the notes for the changes in the basic block itself. */
9584 emit_notes_in_bb (bb
, &cur
);
9586 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9587 delete local_get_addr_cache
;
9588 local_get_addr_cache
= NULL
;
9590 /* Free memory occupied by the in hash table, we won't need it
9592 dataflow_set_clear (&VTI (bb
)->in
);
9596 shared_hash_htab (cur
.vars
)
9597 ->traverse
<variable_table_type
*, emit_notes_for_differences_1
>
9598 (shared_hash_htab (empty_shared_hash
));
9600 dataflow_set_destroy (&cur
);
9602 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9603 delete dropped_values
;
9604 dropped_values
= NULL
;
9609 /* If there is a declaration and offset associated with register/memory RTL
9610 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9613 vt_get_decl_and_offset (rtx rtl
, tree
*declp
, poly_int64
*offsetp
)
9617 if (REG_ATTRS (rtl
))
9619 *declp
= REG_EXPR (rtl
);
9620 *offsetp
= REG_OFFSET (rtl
);
9624 else if (GET_CODE (rtl
) == PARALLEL
)
9626 tree decl
= NULL_TREE
;
9627 HOST_WIDE_INT offset
= MAX_VAR_PARTS
;
9628 int len
= XVECLEN (rtl
, 0), i
;
9630 for (i
= 0; i
< len
; i
++)
9632 rtx reg
= XEXP (XVECEXP (rtl
, 0, i
), 0);
9633 if (!REG_P (reg
) || !REG_ATTRS (reg
))
9636 decl
= REG_EXPR (reg
);
9637 if (REG_EXPR (reg
) != decl
)
9639 HOST_WIDE_INT this_offset
;
9640 if (!track_offset_p (REG_OFFSET (reg
), &this_offset
))
9642 offset
= MIN (offset
, this_offset
);
9652 else if (MEM_P (rtl
))
9654 if (MEM_ATTRS (rtl
))
9656 *declp
= MEM_EXPR (rtl
);
9657 *offsetp
= int_mem_offset (rtl
);
9664 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9668 record_entry_value (cselib_val
*val
, rtx rtl
)
9670 rtx ev
= gen_rtx_ENTRY_VALUE (GET_MODE (rtl
));
9672 ENTRY_VALUE_EXP (ev
) = rtl
;
9674 cselib_add_permanent_equiv (val
, ev
, get_insns ());
9677 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9680 vt_add_function_parameter (tree parm
)
9682 rtx decl_rtl
= DECL_RTL_IF_SET (parm
);
9683 rtx incoming
= DECL_INCOMING_RTL (parm
);
9689 bool incoming_ok
= true;
9691 if (TREE_CODE (parm
) != PARM_DECL
)
9694 if (!decl_rtl
|| !incoming
)
9697 if (GET_MODE (decl_rtl
) == BLKmode
|| GET_MODE (incoming
) == BLKmode
)
9700 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9701 rewrite the incoming location of parameters passed on the stack
9702 into MEMs based on the argument pointer, so that incoming doesn't
9703 depend on a pseudo. */
9704 poly_int64 incoming_offset
= 0;
9705 if (MEM_P (incoming
)
9706 && (strip_offset (XEXP (incoming
, 0), &incoming_offset
)
9707 == crtl
->args
.internal_arg_pointer
))
9709 HOST_WIDE_INT off
= -FIRST_PARM_OFFSET (current_function_decl
);
9711 = replace_equiv_address_nv (incoming
,
9712 plus_constant (Pmode
,
9714 off
+ incoming_offset
));
9717 #ifdef HAVE_window_save
9718 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9719 If the target machine has an explicit window save instruction, the
9720 actual entry value is the corresponding OUTGOING_REGNO instead. */
9721 if (HAVE_window_save
&& !crtl
->uses_only_leaf_regs
)
9723 if (REG_P (incoming
)
9724 && HARD_REGISTER_P (incoming
)
9725 && OUTGOING_REGNO (REGNO (incoming
)) != REGNO (incoming
))
9728 p
.incoming
= incoming
;
9730 = gen_rtx_REG_offset (incoming
, GET_MODE (incoming
),
9731 OUTGOING_REGNO (REGNO (incoming
)), 0);
9732 p
.outgoing
= incoming
;
9733 vec_safe_push (windowed_parm_regs
, p
);
9735 else if (GET_CODE (incoming
) == PARALLEL
)
9738 = gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (XVECLEN (incoming
, 0)));
9741 for (i
= 0; i
< XVECLEN (incoming
, 0); i
++)
9743 rtx reg
= XEXP (XVECEXP (incoming
, 0, i
), 0);
9746 reg
= gen_rtx_REG_offset (reg
, GET_MODE (reg
),
9747 OUTGOING_REGNO (REGNO (reg
)), 0);
9749 XVECEXP (outgoing
, 0, i
)
9750 = gen_rtx_EXPR_LIST (VOIDmode
, reg
,
9751 XEXP (XVECEXP (incoming
, 0, i
), 1));
9752 vec_safe_push (windowed_parm_regs
, p
);
9755 incoming
= outgoing
;
9757 else if (MEM_P (incoming
)
9758 && REG_P (XEXP (incoming
, 0))
9759 && HARD_REGISTER_P (XEXP (incoming
, 0)))
9761 rtx reg
= XEXP (incoming
, 0);
9762 if (OUTGOING_REGNO (REGNO (reg
)) != REGNO (reg
))
9766 reg
= gen_raw_REG (GET_MODE (reg
), OUTGOING_REGNO (REGNO (reg
)));
9768 vec_safe_push (windowed_parm_regs
, p
);
9769 incoming
= replace_equiv_address_nv (incoming
, reg
);
9775 if (!vt_get_decl_and_offset (incoming
, &decl
, &offset
))
9777 incoming_ok
= false;
9778 if (MEM_P (incoming
))
9780 /* This means argument is passed by invisible reference. */
9786 if (!vt_get_decl_and_offset (decl_rtl
, &decl
, &offset
))
9788 offset
+= byte_lowpart_offset (GET_MODE (incoming
),
9789 GET_MODE (decl_rtl
));
9798 /* If that DECL_RTL wasn't a pseudo that got spilled to
9799 memory, bail out. Otherwise, the spill slot sharing code
9800 will force the memory to reference spill_slot_decl (%sfp),
9801 so we don't match above. That's ok, the pseudo must have
9802 referenced the entire parameter, so just reset OFFSET. */
9803 if (decl
!= get_spill_slot_decl (false))
9808 HOST_WIDE_INT const_offset
;
9809 if (!track_loc_p (incoming
, parm
, offset
, false, &mode
, &const_offset
))
9812 out
= &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->out
;
9814 dv
= dv_from_decl (parm
);
9816 if (target_for_debug_bind (parm
)
9817 /* We can't deal with these right now, because this kind of
9818 variable is single-part. ??? We could handle parallels
9819 that describe multiple locations for the same single
9820 value, but ATM we don't. */
9821 && GET_CODE (incoming
) != PARALLEL
)
9826 /* ??? We shouldn't ever hit this, but it may happen because
9827 arguments passed by invisible reference aren't dealt with
9828 above: incoming-rtl will have Pmode rather than the
9829 expected mode for the type. */
9833 lowpart
= var_lowpart (mode
, incoming
);
9837 val
= cselib_lookup_from_insn (lowpart
, mode
, true,
9838 VOIDmode
, get_insns ());
9840 /* ??? Float-typed values in memory are not handled by
9844 preserve_value (val
);
9845 set_variable_part (out
, val
->val_rtx
, dv
, const_offset
,
9846 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9847 dv
= dv_from_value (val
->val_rtx
);
9850 if (MEM_P (incoming
))
9852 val
= cselib_lookup_from_insn (XEXP (incoming
, 0), mode
, true,
9853 VOIDmode
, get_insns ());
9856 preserve_value (val
);
9857 incoming
= replace_equiv_address_nv (incoming
, val
->val_rtx
);
9862 if (REG_P (incoming
))
9864 incoming
= var_lowpart (mode
, incoming
);
9865 gcc_assert (REGNO (incoming
) < FIRST_PSEUDO_REGISTER
);
9866 attrs_list_insert (&out
->regs
[REGNO (incoming
)], dv
, const_offset
,
9868 set_variable_part (out
, incoming
, dv
, const_offset
,
9869 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9870 if (dv_is_value_p (dv
))
9872 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv
)), incoming
);
9873 if (TREE_CODE (TREE_TYPE (parm
)) == REFERENCE_TYPE
9874 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm
))))
9876 machine_mode indmode
9877 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm
)));
9878 rtx mem
= gen_rtx_MEM (indmode
, incoming
);
9879 cselib_val
*val
= cselib_lookup_from_insn (mem
, indmode
, true,
9884 preserve_value (val
);
9885 record_entry_value (val
, mem
);
9886 set_variable_part (out
, mem
, dv_from_value (val
->val_rtx
), 0,
9887 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9891 if (GET_MODE_CLASS (mode
) == MODE_INT
)
9893 machine_mode wider_mode_iter
;
9894 FOR_EACH_WIDER_MODE (wider_mode_iter
, mode
)
9896 if (!HWI_COMPUTABLE_MODE_P (wider_mode_iter
))
9899 = gen_rtx_REG (wider_mode_iter
, REGNO (incoming
));
9900 cselib_val
*wider_val
9901 = cselib_lookup_from_insn (wider_reg
, wider_mode_iter
, 1,
9902 VOIDmode
, get_insns ());
9903 preserve_value (wider_val
);
9904 record_entry_value (wider_val
, wider_reg
);
9909 else if (GET_CODE (incoming
) == PARALLEL
&& !dv_onepart_p (dv
))
9913 /* The following code relies on vt_get_decl_and_offset returning true for
9914 incoming, which might not be always the case. */
9917 for (i
= 0; i
< XVECLEN (incoming
, 0); i
++)
9919 rtx reg
= XEXP (XVECEXP (incoming
, 0, i
), 0);
9920 /* vt_get_decl_and_offset has already checked that the offset
9921 is a valid variable part. */
9922 const_offset
= get_tracked_reg_offset (reg
);
9923 gcc_assert (REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
9924 attrs_list_insert (&out
->regs
[REGNO (reg
)], dv
, const_offset
, reg
);
9925 set_variable_part (out
, reg
, dv
, const_offset
,
9926 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9929 else if (MEM_P (incoming
))
9931 incoming
= var_lowpart (mode
, incoming
);
9932 set_variable_part (out
, incoming
, dv
, const_offset
,
9933 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9937 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9940 vt_add_function_parameters (void)
9944 for (parm
= DECL_ARGUMENTS (current_function_decl
);
9945 parm
; parm
= DECL_CHAIN (parm
))
9946 vt_add_function_parameter (parm
);
9948 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl
)))
9950 tree vexpr
= DECL_VALUE_EXPR (DECL_RESULT (current_function_decl
));
9952 if (INDIRECT_REF_P (vexpr
))
9953 vexpr
= TREE_OPERAND (vexpr
, 0);
9955 if (TREE_CODE (vexpr
) == PARM_DECL
9956 && DECL_ARTIFICIAL (vexpr
)
9957 && !DECL_IGNORED_P (vexpr
)
9958 && DECL_NAMELESS (vexpr
))
9959 vt_add_function_parameter (vexpr
);
9963 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9964 ensure it isn't flushed during cselib_reset_table.
9965 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9966 has been eliminated. */
9969 vt_init_cfa_base (void)
9973 #ifdef FRAME_POINTER_CFA_OFFSET
9974 cfa_base_rtx
= frame_pointer_rtx
;
9975 cfa_base_offset
= -FRAME_POINTER_CFA_OFFSET (current_function_decl
);
9977 cfa_base_rtx
= arg_pointer_rtx
;
9978 cfa_base_offset
= -ARG_POINTER_CFA_OFFSET (current_function_decl
);
9980 if (cfa_base_rtx
== hard_frame_pointer_rtx
9981 || !fixed_regs
[REGNO (cfa_base_rtx
)])
9983 cfa_base_rtx
= NULL_RTX
;
9986 if (!MAY_HAVE_DEBUG_BIND_INSNS
)
9989 /* Tell alias analysis that cfa_base_rtx should share
9990 find_base_term value with stack pointer or hard frame pointer. */
9991 if (!frame_pointer_needed
)
9992 vt_equate_reg_base_value (cfa_base_rtx
, stack_pointer_rtx
);
9993 else if (!crtl
->stack_realign_tried
)
9994 vt_equate_reg_base_value (cfa_base_rtx
, hard_frame_pointer_rtx
);
9996 val
= cselib_lookup_from_insn (cfa_base_rtx
, GET_MODE (cfa_base_rtx
), 1,
9997 VOIDmode
, get_insns ());
9998 preserve_value (val
);
9999 cselib_preserve_cfa_base_value (val
, REGNO (cfa_base_rtx
));
10002 /* Reemit INSN, a MARKER_DEBUG_INSN, as a note. */
10005 reemit_marker_as_note (rtx_insn
*insn
)
10007 gcc_checking_assert (DEBUG_MARKER_INSN_P (insn
));
10009 enum insn_note kind
= INSN_DEBUG_MARKER_KIND (insn
);
10013 case NOTE_INSN_BEGIN_STMT
:
10014 case NOTE_INSN_INLINE_ENTRY
:
10016 rtx_insn
*note
= NULL
;
10017 if (cfun
->debug_nonbind_markers
)
10019 note
= emit_note_before (kind
, insn
);
10020 NOTE_MARKER_LOCATION (note
) = INSN_LOCATION (insn
);
10022 delete_insn (insn
);
10027 gcc_unreachable ();
10031 /* Allocate and initialize the data structures for variable tracking
10032 and parse the RTL to get the micro operations. */
10035 vt_initialize (void)
10038 poly_int64 fp_cfa_offset
= -1;
10040 alloc_aux_for_blocks (sizeof (variable_tracking_info
));
10042 empty_shared_hash
= shared_hash_pool
.allocate ();
10043 empty_shared_hash
->refcount
= 1;
10044 empty_shared_hash
->htab
= new variable_table_type (1);
10045 changed_variables
= new variable_table_type (10);
10047 /* Init the IN and OUT sets. */
10048 FOR_ALL_BB_FN (bb
, cfun
)
10050 VTI (bb
)->visited
= false;
10051 VTI (bb
)->flooded
= false;
10052 dataflow_set_init (&VTI (bb
)->in
);
10053 dataflow_set_init (&VTI (bb
)->out
);
10054 VTI (bb
)->permp
= NULL
;
10057 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10059 cselib_init (CSELIB_RECORD_MEMORY
| CSELIB_PRESERVE_CONSTANTS
);
10060 scratch_regs
= BITMAP_ALLOC (NULL
);
10061 preserved_values
.create (256);
10062 global_get_addr_cache
= new hash_map
<rtx
, rtx
>;
10066 scratch_regs
= NULL
;
10067 global_get_addr_cache
= NULL
;
10070 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10076 #ifdef FRAME_POINTER_CFA_OFFSET
10077 reg
= frame_pointer_rtx
;
10078 ofst
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
10080 reg
= arg_pointer_rtx
;
10081 ofst
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
10084 ofst
-= INCOMING_FRAME_SP_OFFSET
;
10086 val
= cselib_lookup_from_insn (reg
, GET_MODE (reg
), 1,
10087 VOIDmode
, get_insns ());
10088 preserve_value (val
);
10089 if (reg
!= hard_frame_pointer_rtx
&& fixed_regs
[REGNO (reg
)])
10090 cselib_preserve_cfa_base_value (val
, REGNO (reg
));
10094 = cselib_lookup_from_insn (stack_pointer_rtx
,
10095 GET_MODE (stack_pointer_rtx
), 1,
10096 VOIDmode
, get_insns ());
10097 preserve_value (valsp
);
10098 expr
= plus_constant (GET_MODE (reg
), reg
, ofst
);
10099 /* This cselib_add_permanent_equiv call needs to be done before
10100 the other cselib_add_permanent_equiv a few lines later,
10101 because after that one is done, cselib_lookup on this expr
10102 will due to the cselib SP_DERIVED_VALUE_P optimizations
10103 return valsp and so no permanent equivalency will be added. */
10104 cselib_add_permanent_equiv (valsp
, expr
, get_insns ());
10107 expr
= plus_constant (GET_MODE (stack_pointer_rtx
),
10108 stack_pointer_rtx
, -ofst
);
10109 cselib_add_permanent_equiv (val
, expr
, get_insns ());
10112 /* In order to factor out the adjustments made to the stack pointer or to
10113 the hard frame pointer and thus be able to use DW_OP_fbreg operations
10114 instead of individual location lists, we're going to rewrite MEMs based
10115 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
10116 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
10117 resp. arg_pointer_rtx. We can do this either when there is no frame
10118 pointer in the function and stack adjustments are consistent for all
10119 basic blocks or when there is a frame pointer and no stack realignment.
10120 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
10121 has been eliminated. */
10122 if (!frame_pointer_needed
)
10126 if (!vt_stack_adjustments ())
10129 #ifdef FRAME_POINTER_CFA_OFFSET
10130 reg
= frame_pointer_rtx
;
10132 reg
= arg_pointer_rtx
;
10134 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10137 if (GET_CODE (elim
) == PLUS
)
10138 elim
= XEXP (elim
, 0);
10139 if (elim
== stack_pointer_rtx
)
10140 vt_init_cfa_base ();
10143 else if (!crtl
->stack_realign_tried
)
10147 #ifdef FRAME_POINTER_CFA_OFFSET
10148 reg
= frame_pointer_rtx
;
10149 fp_cfa_offset
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
10151 reg
= arg_pointer_rtx
;
10152 fp_cfa_offset
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
10154 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10157 if (GET_CODE (elim
) == PLUS
)
10159 fp_cfa_offset
-= rtx_to_poly_int64 (XEXP (elim
, 1));
10160 elim
= XEXP (elim
, 0);
10162 if (elim
!= hard_frame_pointer_rtx
)
10163 fp_cfa_offset
= -1;
10166 fp_cfa_offset
= -1;
10169 /* If the stack is realigned and a DRAP register is used, we're going to
10170 rewrite MEMs based on it representing incoming locations of parameters
10171 passed on the stack into MEMs based on the argument pointer. Although
10172 we aren't going to rewrite other MEMs, we still need to initialize the
10173 virtual CFA pointer in order to ensure that the argument pointer will
10174 be seen as a constant throughout the function.
10176 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10177 else if (stack_realign_drap
)
10181 #ifdef FRAME_POINTER_CFA_OFFSET
10182 reg
= frame_pointer_rtx
;
10184 reg
= arg_pointer_rtx
;
10186 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10189 if (GET_CODE (elim
) == PLUS
)
10190 elim
= XEXP (elim
, 0);
10191 if (elim
== hard_frame_pointer_rtx
)
10192 vt_init_cfa_base ();
10196 hard_frame_pointer_adjustment
= -1;
10198 vt_add_function_parameters ();
10200 bool record_sp_value
= false;
10201 FOR_EACH_BB_FN (bb
, cfun
)
10204 basic_block first_bb
, last_bb
;
10206 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10208 cselib_record_sets_hook
= add_with_sets
;
10209 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10210 fprintf (dump_file
, "first value: %i\n",
10211 cselib_get_next_uid ());
10214 if (MAY_HAVE_DEBUG_BIND_INSNS
10216 && !frame_pointer_needed
10217 && record_sp_value
)
10218 cselib_record_sp_cfa_base_equiv (-cfa_base_offset
10219 - VTI (bb
)->in
.stack_adjust
,
10221 record_sp_value
= true;
10227 if (bb
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
10228 || ! single_pred_p (bb
->next_bb
))
10230 e
= find_edge (bb
, bb
->next_bb
);
10231 if (! e
|| (e
->flags
& EDGE_FALLTHRU
) == 0)
10237 /* Add the micro-operations to the vector. */
10238 FOR_BB_BETWEEN (bb
, first_bb
, last_bb
->next_bb
, next_bb
)
10240 HOST_WIDE_INT offset
= VTI (bb
)->out
.stack_adjust
;
10241 VTI (bb
)->out
.stack_adjust
= VTI (bb
)->in
.stack_adjust
;
10244 FOR_BB_INSNS_SAFE (bb
, insn
, next
)
10248 HOST_WIDE_INT pre
= 0, post
= 0;
10250 if (!frame_pointer_needed
)
10252 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
10255 micro_operation mo
;
10256 mo
.type
= MO_ADJUST
;
10259 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10260 log_op_type (PATTERN (insn
), bb
, insn
,
10261 MO_ADJUST
, dump_file
);
10262 VTI (bb
)->mos
.safe_push (mo
);
10266 cselib_hook_called
= false;
10267 adjust_insn (bb
, insn
);
10270 VTI (bb
)->out
.stack_adjust
+= pre
;
10272 if (DEBUG_MARKER_INSN_P (insn
))
10274 reemit_marker_as_note (insn
);
10278 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10281 prepare_call_arguments (bb
, insn
);
10282 cselib_process_insn (insn
);
10283 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10285 if (dump_flags
& TDF_SLIM
)
10286 dump_insn_slim (dump_file
, insn
);
10288 print_rtl_single (dump_file
, insn
);
10289 dump_cselib_table (dump_file
);
10292 if (!cselib_hook_called
)
10293 add_with_sets (insn
, 0, 0);
10294 cancel_changes (0);
10298 micro_operation mo
;
10299 mo
.type
= MO_ADJUST
;
10300 mo
.u
.adjust
= post
;
10302 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10303 log_op_type (PATTERN (insn
), bb
, insn
,
10304 MO_ADJUST
, dump_file
);
10305 VTI (bb
)->mos
.safe_push (mo
);
10306 VTI (bb
)->out
.stack_adjust
+= post
;
10309 if (maybe_ne (fp_cfa_offset
, -1)
10310 && known_eq (hard_frame_pointer_adjustment
, -1)
10311 && fp_setter_insn (insn
))
10313 vt_init_cfa_base ();
10314 hard_frame_pointer_adjustment
= fp_cfa_offset
;
10315 /* Disassociate sp from fp now. */
10316 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10319 cselib_invalidate_rtx (stack_pointer_rtx
);
10320 v
= cselib_lookup (stack_pointer_rtx
, Pmode
, 1,
10322 if (v
&& !cselib_preserved_value_p (v
))
10324 cselib_set_value_sp_based (v
);
10325 preserve_value (v
);
10331 gcc_assert (offset
== VTI (bb
)->out
.stack_adjust
);
10336 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10338 cselib_preserve_only_values ();
10339 cselib_reset_table (cselib_get_next_uid ());
10340 cselib_record_sets_hook
= NULL
;
10344 hard_frame_pointer_adjustment
= -1;
10345 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->flooded
= true;
10346 cfa_base_rtx
= NULL_RTX
;
10350 /* This is *not* reset after each function. It gives each
10351 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10352 a unique label number. */
10354 static int debug_label_num
= 1;
10356 /* Remove from the insn stream a single debug insn used for
10357 variable tracking at assignments. */
10360 delete_vta_debug_insn (rtx_insn
*insn
)
10362 if (DEBUG_MARKER_INSN_P (insn
))
10364 reemit_marker_as_note (insn
);
10368 tree decl
= INSN_VAR_LOCATION_DECL (insn
);
10369 if (TREE_CODE (decl
) == LABEL_DECL
10370 && DECL_NAME (decl
)
10371 && !DECL_RTL_SET_P (decl
))
10373 PUT_CODE (insn
, NOTE
);
10374 NOTE_KIND (insn
) = NOTE_INSN_DELETED_DEBUG_LABEL
;
10375 NOTE_DELETED_LABEL_NAME (insn
)
10376 = IDENTIFIER_POINTER (DECL_NAME (decl
));
10377 SET_DECL_RTL (decl
, insn
);
10378 CODE_LABEL_NUMBER (insn
) = debug_label_num
++;
10381 delete_insn (insn
);
10384 /* Remove from the insn stream all debug insns used for variable
10385 tracking at assignments. USE_CFG should be false if the cfg is no
10389 delete_vta_debug_insns (bool use_cfg
)
10392 rtx_insn
*insn
, *next
;
10394 if (!MAY_HAVE_DEBUG_INSNS
)
10398 FOR_EACH_BB_FN (bb
, cfun
)
10400 FOR_BB_INSNS_SAFE (bb
, insn
, next
)
10401 if (DEBUG_INSN_P (insn
))
10402 delete_vta_debug_insn (insn
);
10405 for (insn
= get_insns (); insn
; insn
= next
)
10407 next
= NEXT_INSN (insn
);
10408 if (DEBUG_INSN_P (insn
))
10409 delete_vta_debug_insn (insn
);
10413 /* Run a fast, BB-local only version of var tracking, to take care of
10414 information that we don't do global analysis on, such that not all
10415 information is lost. If SKIPPED holds, we're skipping the global
10416 pass entirely, so we should try to use information it would have
10417 handled as well.. */
10420 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED
)
10422 /* ??? Just skip it all for now. */
10423 delete_vta_debug_insns (true);
10426 /* Free the data structures needed for variable tracking. */
10433 FOR_EACH_BB_FN (bb
, cfun
)
10435 VTI (bb
)->mos
.release ();
10438 FOR_ALL_BB_FN (bb
, cfun
)
10440 dataflow_set_destroy (&VTI (bb
)->in
);
10441 dataflow_set_destroy (&VTI (bb
)->out
);
10442 if (VTI (bb
)->permp
)
10444 dataflow_set_destroy (VTI (bb
)->permp
);
10445 XDELETE (VTI (bb
)->permp
);
10448 free_aux_for_blocks ();
10449 delete empty_shared_hash
->htab
;
10450 empty_shared_hash
->htab
= NULL
;
10451 delete changed_variables
;
10452 changed_variables
= NULL
;
10453 attrs_pool
.release ();
10454 var_pool
.release ();
10455 location_chain_pool
.release ();
10456 shared_hash_pool
.release ();
10458 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10460 if (global_get_addr_cache
)
10461 delete global_get_addr_cache
;
10462 global_get_addr_cache
= NULL
;
10463 loc_exp_dep_pool
.release ();
10464 valvar_pool
.release ();
10465 preserved_values
.release ();
10467 BITMAP_FREE (scratch_regs
);
10468 scratch_regs
= NULL
;
10471 #ifdef HAVE_window_save
10472 vec_free (windowed_parm_regs
);
10476 XDELETEVEC (vui_vec
);
10481 /* The entry point to variable tracking pass. */
10483 static inline unsigned int
10484 variable_tracking_main_1 (void)
10488 /* We won't be called as a separate pass if flag_var_tracking is not
10489 set, but final may call us to turn debug markers into notes. */
10490 if ((!flag_var_tracking
&& MAY_HAVE_DEBUG_INSNS
)
10491 || flag_var_tracking_assignments
< 0
10492 /* Var-tracking right now assumes the IR doesn't contain
10493 any pseudos at this point. */
10494 || targetm
.no_register_allocation
)
10496 delete_vta_debug_insns (true);
10500 if (!flag_var_tracking
)
10503 if (n_basic_blocks_for_fn (cfun
) > 500
10504 && n_edges_for_fn (cfun
) / n_basic_blocks_for_fn (cfun
) >= 20)
10506 vt_debug_insns_local (true);
10510 if (!vt_initialize ())
10513 vt_debug_insns_local (true);
10517 success
= vt_find_locations ();
10519 if (!success
&& flag_var_tracking_assignments
> 0)
10523 delete_vta_debug_insns (true);
10525 /* This is later restored by our caller. */
10526 flag_var_tracking_assignments
= 0;
10528 success
= vt_initialize ();
10529 gcc_assert (success
);
10531 success
= vt_find_locations ();
10537 vt_debug_insns_local (false);
10541 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10543 dump_dataflow_sets ();
10544 dump_reg_info (dump_file
);
10545 dump_flow_info (dump_file
, dump_flags
);
10548 timevar_push (TV_VAR_TRACKING_EMIT
);
10550 timevar_pop (TV_VAR_TRACKING_EMIT
);
10553 vt_debug_insns_local (false);
10558 variable_tracking_main (void)
10561 int save
= flag_var_tracking_assignments
;
10563 ret
= variable_tracking_main_1 ();
10565 flag_var_tracking_assignments
= save
;
10572 const pass_data pass_data_variable_tracking
=
10574 RTL_PASS
, /* type */
10575 "vartrack", /* name */
10576 OPTGROUP_NONE
, /* optinfo_flags */
10577 TV_VAR_TRACKING
, /* tv_id */
10578 0, /* properties_required */
10579 0, /* properties_provided */
10580 0, /* properties_destroyed */
10581 0, /* todo_flags_start */
10582 0, /* todo_flags_finish */
10585 class pass_variable_tracking
: public rtl_opt_pass
10588 pass_variable_tracking (gcc::context
*ctxt
)
10589 : rtl_opt_pass (pass_data_variable_tracking
, ctxt
)
10592 /* opt_pass methods: */
10593 bool gate (function
*) final override
10595 return (flag_var_tracking
&& !targetm
.delay_vartrack
);
10598 unsigned int execute (function
*) final override
10600 return variable_tracking_main ();
10603 }; // class pass_variable_tracking
10605 } // anon namespace
10608 make_pass_variable_tracking (gcc::context
*ctxt
)
10610 return new pass_variable_tracking (ctxt
);