2018-05-11 Steven G. Kargl <kargl@gcc.gnu.org>
[official-gcc.git] / gcc / ada / inline.adb
blob5d4f0540e0d2c315a230d8f1ed6deef268321307
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- I N L I N E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Tss; use Exp_Tss;
36 with Exp_Util; use Exp_Util;
37 with Fname; use Fname;
38 with Fname.UF; use Fname.UF;
39 with Lib; use Lib;
40 with Namet; use Namet;
41 with Nmake; use Nmake;
42 with Nlists; use Nlists;
43 with Output; use Output;
44 with Sem_Aux; use Sem_Aux;
45 with Sem_Ch8; use Sem_Ch8;
46 with Sem_Ch10; use Sem_Ch10;
47 with Sem_Ch12; use Sem_Ch12;
48 with Sem_Prag; use Sem_Prag;
49 with Sem_Util; use Sem_Util;
50 with Sinfo; use Sinfo;
51 with Sinput; use Sinput;
52 with Snames; use Snames;
53 with Stand; use Stand;
54 with Uname; use Uname;
55 with Tbuild; use Tbuild;
57 package body Inline is
59 Check_Inlining_Restrictions : constant Boolean := True;
60 -- In the following cases the frontend rejects inlining because they
61 -- are not handled well by the backend. This variable facilitates
62 -- disabling these restrictions to evaluate future versions of the
63 -- GCC backend in which some of the restrictions may be supported.
65 -- - subprograms that have:
66 -- - nested subprograms
67 -- - instantiations
68 -- - package declarations
69 -- - task or protected object declarations
70 -- - some of the following statements:
71 -- - abort
72 -- - asynchronous-select
73 -- - conditional-entry-call
74 -- - delay-relative
75 -- - delay-until
76 -- - selective-accept
77 -- - timed-entry-call
79 Inlined_Calls : Elist_Id;
80 -- List of frontend inlined calls
82 Backend_Calls : Elist_Id;
83 -- List of inline calls passed to the backend
85 Backend_Inlined_Subps : Elist_Id;
86 -- List of subprograms inlined by the backend
88 Backend_Not_Inlined_Subps : Elist_Id;
89 -- List of subprograms that cannot be inlined by the backend
91 --------------------
92 -- Inlined Bodies --
93 --------------------
95 -- Inlined functions are actually placed in line by the backend if the
96 -- corresponding bodies are available (i.e. compiled). Whenever we find
97 -- a call to an inlined subprogram, we add the name of the enclosing
98 -- compilation unit to a worklist. After all compilation, and after
99 -- expansion of generic bodies, we traverse the list of pending bodies
100 -- and compile them as well.
102 package Inlined_Bodies is new Table.Table (
103 Table_Component_Type => Entity_Id,
104 Table_Index_Type => Int,
105 Table_Low_Bound => 0,
106 Table_Initial => Alloc.Inlined_Bodies_Initial,
107 Table_Increment => Alloc.Inlined_Bodies_Increment,
108 Table_Name => "Inlined_Bodies");
110 -----------------------
111 -- Inline Processing --
112 -----------------------
114 -- For each call to an inlined subprogram, we make entries in a table
115 -- that stores caller and callee, and indicates the call direction from
116 -- one to the other. We also record the compilation unit that contains
117 -- the callee. After analyzing the bodies of all such compilation units,
118 -- we compute the transitive closure of inlined subprograms called from
119 -- the main compilation unit and make it available to the code generator
120 -- in no particular order, thus allowing cycles in the call graph.
122 Last_Inlined : Entity_Id := Empty;
124 -- For each entry in the table we keep a list of successors in topological
125 -- order, i.e. callers of the current subprogram.
127 type Subp_Index is new Nat;
128 No_Subp : constant Subp_Index := 0;
130 -- The subprogram entities are hashed into the Inlined table
132 Num_Hash_Headers : constant := 512;
134 Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
135 of Subp_Index;
137 type Succ_Index is new Nat;
138 No_Succ : constant Succ_Index := 0;
140 type Succ_Info is record
141 Subp : Subp_Index;
142 Next : Succ_Index;
143 end record;
145 -- The following table stores list elements for the successor lists. These
146 -- lists cannot be chained directly through entries in the Inlined table,
147 -- because a given subprogram can appear in several such lists.
149 package Successors is new Table.Table (
150 Table_Component_Type => Succ_Info,
151 Table_Index_Type => Succ_Index,
152 Table_Low_Bound => 1,
153 Table_Initial => Alloc.Successors_Initial,
154 Table_Increment => Alloc.Successors_Increment,
155 Table_Name => "Successors");
157 type Subp_Info is record
158 Name : Entity_Id := Empty;
159 Next : Subp_Index := No_Subp;
160 First_Succ : Succ_Index := No_Succ;
161 Main_Call : Boolean := False;
162 Processed : Boolean := False;
163 end record;
165 package Inlined is new Table.Table (
166 Table_Component_Type => Subp_Info,
167 Table_Index_Type => Subp_Index,
168 Table_Low_Bound => 1,
169 Table_Initial => Alloc.Inlined_Initial,
170 Table_Increment => Alloc.Inlined_Increment,
171 Table_Name => "Inlined");
173 -----------------------
174 -- Local Subprograms --
175 -----------------------
177 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
178 -- Make two entries in Inlined table, for an inlined subprogram being
179 -- called, and for the inlined subprogram that contains the call. If
180 -- the call is in the main compilation unit, Caller is Empty.
182 procedure Add_Inlined_Subprogram (E : Entity_Id);
183 -- Add subprogram E to the list of inlined subprogram for the unit
185 function Add_Subp (E : Entity_Id) return Subp_Index;
186 -- Make entry in Inlined table for subprogram E, or return table index
187 -- that already holds E.
189 function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id;
190 pragma Inline (Get_Code_Unit_Entity);
191 -- Return the entity node for the unit containing E. Always return the spec
192 -- for a package.
194 function Has_Initialized_Type (E : Entity_Id) return Boolean;
195 -- If a candidate for inlining contains type declarations for types with
196 -- nontrivial initialization procedures, they are not worth inlining.
198 function Has_Single_Return (N : Node_Id) return Boolean;
199 -- In general we cannot inline functions that return unconstrained type.
200 -- However, we can handle such functions if all return statements return a
201 -- local variable that is the only declaration in the body of the function.
202 -- In that case the call can be replaced by that local variable as is done
203 -- for other inlined calls.
205 function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean;
206 -- Return True if E is in the main unit or its spec or in a subunit
208 function Is_Nested (E : Entity_Id) return Boolean;
209 -- If the function is nested inside some other function, it will always
210 -- be compiled if that function is, so don't add it to the inline list.
211 -- We cannot compile a nested function outside the scope of the containing
212 -- function anyway. This is also the case if the function is defined in a
213 -- task body or within an entry (for example, an initialization procedure).
215 procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id);
216 -- Remove all aspects and/or pragmas that have no meaning in inlined body
217 -- Body_Decl. The analysis of these items is performed on the non-inlined
218 -- body. The items currently removed are:
219 -- Contract_Cases
220 -- Global
221 -- Depends
222 -- Postcondition
223 -- Precondition
224 -- Refined_Global
225 -- Refined_Depends
226 -- Refined_Post
227 -- Test_Case
228 -- Unmodified
229 -- Unreferenced
231 ------------------------------
232 -- Deferred Cleanup Actions --
233 ------------------------------
235 -- The cleanup actions for scopes that contain instantiations is delayed
236 -- until after expansion of those instantiations, because they may contain
237 -- finalizable objects or tasks that affect the cleanup code. A scope
238 -- that contains instantiations only needs to be finalized once, even
239 -- if it contains more than one instance. We keep a list of scopes
240 -- that must still be finalized, and call cleanup_actions after all
241 -- the instantiations have been completed.
243 To_Clean : Elist_Id;
245 procedure Add_Scope_To_Clean (Inst : Entity_Id);
246 -- Build set of scopes on which cleanup actions must be performed
248 procedure Cleanup_Scopes;
249 -- Complete cleanup actions on scopes that need it
251 --------------
252 -- Add_Call --
253 --------------
255 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
256 P1 : constant Subp_Index := Add_Subp (Called);
257 P2 : Subp_Index;
258 J : Succ_Index;
260 begin
261 if Present (Caller) then
262 P2 := Add_Subp (Caller);
264 -- Add P1 to the list of successors of P2, if not already there.
265 -- Note that P2 may contain more than one call to P1, and only
266 -- one needs to be recorded.
268 J := Inlined.Table (P2).First_Succ;
269 while J /= No_Succ loop
270 if Successors.Table (J).Subp = P1 then
271 return;
272 end if;
274 J := Successors.Table (J).Next;
275 end loop;
277 -- On exit, make a successor entry for P1
279 Successors.Increment_Last;
280 Successors.Table (Successors.Last).Subp := P1;
281 Successors.Table (Successors.Last).Next :=
282 Inlined.Table (P2).First_Succ;
283 Inlined.Table (P2).First_Succ := Successors.Last;
284 else
285 Inlined.Table (P1).Main_Call := True;
286 end if;
287 end Add_Call;
289 ----------------------
290 -- Add_Inlined_Body --
291 ----------------------
293 procedure Add_Inlined_Body (E : Entity_Id; N : Node_Id) is
295 type Inline_Level_Type is (Dont_Inline, Inline_Call, Inline_Package);
296 -- Level of inlining for the call: Dont_Inline means no inlining,
297 -- Inline_Call means that only the call is considered for inlining,
298 -- Inline_Package means that the call is considered for inlining and
299 -- its package compiled and scanned for more inlining opportunities.
301 function Is_Non_Loading_Expression_Function
302 (Id : Entity_Id) return Boolean;
303 -- Determine whether arbitrary entity Id denotes a subprogram which is
304 -- either
306 -- * An expression function
308 -- * A function completed by an expression function where both the
309 -- spec and body are in the same context.
311 function Must_Inline return Inline_Level_Type;
312 -- Inlining is only done if the call statement N is in the main unit,
313 -- or within the body of another inlined subprogram.
315 ----------------------------------------
316 -- Is_Non_Loading_Expression_Function --
317 ----------------------------------------
319 function Is_Non_Loading_Expression_Function
320 (Id : Entity_Id) return Boolean
322 Body_Decl : Node_Id;
323 Body_Id : Entity_Id;
324 Spec_Decl : Node_Id;
326 begin
327 -- A stand-alone expression function is transformed into a spec-body
328 -- pair in-place. Since both the spec and body are in the same list,
329 -- the inlining of such an expression function does not need to load
330 -- anything extra.
332 if Is_Expression_Function (Id) then
333 return True;
335 -- A function may be completed by an expression function
337 elsif Ekind (Id) = E_Function then
338 Spec_Decl := Unit_Declaration_Node (Id);
340 if Nkind (Spec_Decl) = N_Subprogram_Declaration then
341 Body_Id := Corresponding_Body (Spec_Decl);
343 if Present (Body_Id) then
344 Body_Decl := Unit_Declaration_Node (Body_Id);
346 -- The inlining of a completing expression function does
347 -- not need to load anything extra when both the spec and
348 -- body are in the same context.
350 return
351 Was_Expression_Function (Body_Decl)
352 and then Parent (Spec_Decl) = Parent (Body_Decl);
353 end if;
354 end if;
355 end if;
357 return False;
358 end Is_Non_Loading_Expression_Function;
360 -----------------
361 -- Must_Inline --
362 -----------------
364 function Must_Inline return Inline_Level_Type is
365 Scop : Entity_Id;
366 Comp : Node_Id;
368 begin
369 -- Check if call is in main unit
371 Scop := Current_Scope;
373 -- Do not try to inline if scope is standard. This could happen, for
374 -- example, for a call to Add_Global_Declaration, and it causes
375 -- trouble to try to inline at this level.
377 if Scop = Standard_Standard then
378 return Dont_Inline;
379 end if;
381 -- Otherwise lookup scope stack to outer scope
383 while Scope (Scop) /= Standard_Standard
384 and then not Is_Child_Unit (Scop)
385 loop
386 Scop := Scope (Scop);
387 end loop;
389 Comp := Parent (Scop);
390 while Nkind (Comp) /= N_Compilation_Unit loop
391 Comp := Parent (Comp);
392 end loop;
394 -- If the call is in the main unit, inline the call and compile the
395 -- package of the subprogram to find more calls to be inlined.
397 if Comp = Cunit (Main_Unit)
398 or else Comp = Library_Unit (Cunit (Main_Unit))
399 then
400 Add_Call (E);
401 return Inline_Package;
402 end if;
404 -- The call is not in the main unit. See if it is in some subprogram
405 -- that can be inlined outside its unit. If so, inline the call and,
406 -- if the inlining level is set to 1, stop there; otherwise also
407 -- compile the package as above.
409 Scop := Current_Scope;
410 while Scope (Scop) /= Standard_Standard
411 and then not Is_Child_Unit (Scop)
412 loop
413 if Is_Overloadable (Scop)
414 and then Is_Inlined (Scop)
415 and then not Is_Nested (Scop)
416 then
417 Add_Call (E, Scop);
419 if Inline_Level = 1 then
420 return Inline_Call;
421 else
422 return Inline_Package;
423 end if;
424 end if;
426 Scop := Scope (Scop);
427 end loop;
429 return Dont_Inline;
430 end Must_Inline;
432 Level : Inline_Level_Type;
434 -- Start of processing for Add_Inlined_Body
436 begin
437 Append_New_Elmt (N, To => Backend_Calls);
439 -- Skip subprograms that cannot be inlined outside their unit
441 if Is_Abstract_Subprogram (E)
442 or else Convention (E) = Convention_Protected
443 or else Is_Nested (E)
444 then
445 return;
446 end if;
448 -- Find out whether the call must be inlined. Unless the result is
449 -- Dont_Inline, Must_Inline also creates an edge for the call in the
450 -- callgraph; however, it will not be activated until after Is_Called
451 -- is set on the subprogram.
453 Level := Must_Inline;
455 if Level = Dont_Inline then
456 return;
457 end if;
459 -- If the call was generated by the compiler and is to a subprogram in
460 -- a run-time unit, we need to suppress debugging information for it,
461 -- so that the code that is eventually inlined will not affect the
462 -- debugging of the program. We do not do it if the call comes from
463 -- source because, even if the call is inlined, the user may expect it
464 -- to be present in the debugging information.
466 if not Comes_From_Source (N)
467 and then In_Extended_Main_Source_Unit (N)
468 and then Is_Predefined_Unit (Get_Source_Unit (E))
469 then
470 Set_Needs_Debug_Info (E, False);
471 end if;
473 -- If the subprogram is an expression function, or is completed by one
474 -- where both the spec and body are in the same context, then there is
475 -- no need to load any package body since the body of the function is
476 -- in the spec.
478 if Is_Non_Loading_Expression_Function (E) then
479 Set_Is_Called (E);
480 return;
481 end if;
483 -- Find unit containing E, and add to list of inlined bodies if needed.
484 -- If the body is already present, no need to load any other unit. This
485 -- is the case for an initialization procedure, which appears in the
486 -- package declaration that contains the type. It is also the case if
487 -- the body has already been analyzed. Finally, if the unit enclosing
488 -- E is an instance, the instance body will be analyzed in any case,
489 -- and there is no need to add the enclosing unit (whose body might not
490 -- be available).
492 -- Library-level functions must be handled specially, because there is
493 -- no enclosing package to retrieve. In this case, it is the body of
494 -- the function that will have to be loaded.
496 declare
497 Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
499 begin
500 if Pack = E then
501 Set_Is_Called (E);
502 Inlined_Bodies.Increment_Last;
503 Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
505 elsif Ekind (Pack) = E_Package then
506 Set_Is_Called (E);
508 if Is_Generic_Instance (Pack) then
509 null;
511 -- Do not inline the package if the subprogram is an init proc
512 -- or other internally generated subprogram, because in that
513 -- case the subprogram body appears in the same unit that
514 -- declares the type, and that body is visible to the back end.
515 -- Do not inline it either if it is in the main unit.
516 -- Extend the -gnatn2 processing to -gnatn1 for Inline_Always
517 -- calls if the back-end takes care of inlining the call.
518 -- Note that Level in Inline_Package | Inline_Call here.
520 elsif ((Level = Inline_Call
521 and then Has_Pragma_Inline_Always (E)
522 and then Back_End_Inlining)
523 or else Level = Inline_Package)
524 and then not Is_Inlined (Pack)
525 and then not Is_Internal (E)
526 and then not In_Main_Unit_Or_Subunit (Pack)
527 then
528 Set_Is_Inlined (Pack);
529 Inlined_Bodies.Increment_Last;
530 Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
531 end if;
532 end if;
534 -- Ensure that Analyze_Inlined_Bodies will be invoked after
535 -- completing the analysis of the current unit.
537 Inline_Processing_Required := True;
538 end;
539 end Add_Inlined_Body;
541 ----------------------------
542 -- Add_Inlined_Subprogram --
543 ----------------------------
545 procedure Add_Inlined_Subprogram (E : Entity_Id) is
546 Decl : constant Node_Id := Parent (Declaration_Node (E));
547 Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
549 procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id);
550 -- Append Subp to the list of subprograms inlined by the backend
552 procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id);
553 -- Append Subp to the list of subprograms that cannot be inlined by
554 -- the backend.
556 -----------------------------------------
557 -- Register_Backend_Inlined_Subprogram --
558 -----------------------------------------
560 procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id) is
561 begin
562 Append_New_Elmt (Subp, To => Backend_Inlined_Subps);
563 end Register_Backend_Inlined_Subprogram;
565 ---------------------------------------------
566 -- Register_Backend_Not_Inlined_Subprogram --
567 ---------------------------------------------
569 procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id) is
570 begin
571 Append_New_Elmt (Subp, To => Backend_Not_Inlined_Subps);
572 end Register_Backend_Not_Inlined_Subprogram;
574 -- Start of processing for Add_Inlined_Subprogram
576 begin
577 -- If the subprogram is to be inlined, and if its unit is known to be
578 -- inlined or is an instance whose body will be analyzed anyway or the
579 -- subprogram was generated as a body by the compiler (for example an
580 -- initialization procedure) or its declaration was provided along with
581 -- the body (for example an expression function), and if it is declared
582 -- at the library level not in the main unit, and if it can be inlined
583 -- by the back-end, then insert it in the list of inlined subprograms.
585 if Is_Inlined (E)
586 and then (Is_Inlined (Pack)
587 or else Is_Generic_Instance (Pack)
588 or else Nkind (Decl) = N_Subprogram_Body
589 or else Present (Corresponding_Body (Decl)))
590 and then not In_Main_Unit_Or_Subunit (E)
591 and then not Is_Nested (E)
592 and then not Has_Initialized_Type (E)
593 then
594 Register_Backend_Inlined_Subprogram (E);
596 if No (Last_Inlined) then
597 Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
598 else
599 Set_Next_Inlined_Subprogram (Last_Inlined, E);
600 end if;
602 Last_Inlined := E;
604 else
605 Register_Backend_Not_Inlined_Subprogram (E);
606 end if;
607 end Add_Inlined_Subprogram;
609 ------------------------
610 -- Add_Scope_To_Clean --
611 ------------------------
613 procedure Add_Scope_To_Clean (Inst : Entity_Id) is
614 Scop : constant Entity_Id := Enclosing_Dynamic_Scope (Inst);
615 Elmt : Elmt_Id;
617 begin
618 -- If the instance appears in a library-level package declaration,
619 -- all finalization is global, and nothing needs doing here.
621 if Scop = Standard_Standard then
622 return;
623 end if;
625 -- If the instance is within a generic unit, no finalization code
626 -- can be generated. Note that at this point all bodies have been
627 -- analyzed, and the scope stack itself is not present, and the flag
628 -- Inside_A_Generic is not set.
630 declare
631 S : Entity_Id;
633 begin
634 S := Scope (Inst);
635 while Present (S) and then S /= Standard_Standard loop
636 if Is_Generic_Unit (S) then
637 return;
638 end if;
640 S := Scope (S);
641 end loop;
642 end;
644 Elmt := First_Elmt (To_Clean);
645 while Present (Elmt) loop
646 if Node (Elmt) = Scop then
647 return;
648 end if;
650 Elmt := Next_Elmt (Elmt);
651 end loop;
653 Append_Elmt (Scop, To_Clean);
654 end Add_Scope_To_Clean;
656 --------------
657 -- Add_Subp --
658 --------------
660 function Add_Subp (E : Entity_Id) return Subp_Index is
661 Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
662 J : Subp_Index;
664 procedure New_Entry;
665 -- Initialize entry in Inlined table
667 procedure New_Entry is
668 begin
669 Inlined.Increment_Last;
670 Inlined.Table (Inlined.Last).Name := E;
671 Inlined.Table (Inlined.Last).Next := No_Subp;
672 Inlined.Table (Inlined.Last).First_Succ := No_Succ;
673 Inlined.Table (Inlined.Last).Main_Call := False;
674 Inlined.Table (Inlined.Last).Processed := False;
675 end New_Entry;
677 -- Start of processing for Add_Subp
679 begin
680 if Hash_Headers (Index) = No_Subp then
681 New_Entry;
682 Hash_Headers (Index) := Inlined.Last;
683 return Inlined.Last;
685 else
686 J := Hash_Headers (Index);
687 while J /= No_Subp loop
688 if Inlined.Table (J).Name = E then
689 return J;
690 else
691 Index := J;
692 J := Inlined.Table (J).Next;
693 end if;
694 end loop;
696 -- On exit, subprogram was not found. Enter in table. Index is
697 -- the current last entry on the hash chain.
699 New_Entry;
700 Inlined.Table (Index).Next := Inlined.Last;
701 return Inlined.Last;
702 end if;
703 end Add_Subp;
705 ----------------------------
706 -- Analyze_Inlined_Bodies --
707 ----------------------------
709 procedure Analyze_Inlined_Bodies is
710 Comp_Unit : Node_Id;
711 J : Int;
712 Pack : Entity_Id;
713 Subp : Subp_Index;
714 S : Succ_Index;
716 type Pending_Index is new Nat;
718 package Pending_Inlined is new Table.Table (
719 Table_Component_Type => Subp_Index,
720 Table_Index_Type => Pending_Index,
721 Table_Low_Bound => 1,
722 Table_Initial => Alloc.Inlined_Initial,
723 Table_Increment => Alloc.Inlined_Increment,
724 Table_Name => "Pending_Inlined");
725 -- The workpile used to compute the transitive closure
727 -- Start of processing for Analyze_Inlined_Bodies
729 begin
730 if Serious_Errors_Detected = 0 then
731 Push_Scope (Standard_Standard);
733 J := 0;
734 while J <= Inlined_Bodies.Last
735 and then Serious_Errors_Detected = 0
736 loop
737 Pack := Inlined_Bodies.Table (J);
738 while Present (Pack)
739 and then Scope (Pack) /= Standard_Standard
740 and then not Is_Child_Unit (Pack)
741 loop
742 Pack := Scope (Pack);
743 end loop;
745 Comp_Unit := Parent (Pack);
746 while Present (Comp_Unit)
747 and then Nkind (Comp_Unit) /= N_Compilation_Unit
748 loop
749 Comp_Unit := Parent (Comp_Unit);
750 end loop;
752 -- Load the body if it exists and contains inlineable entities,
753 -- unless it is the main unit, or is an instance whose body has
754 -- already been analyzed.
756 if Present (Comp_Unit)
757 and then Comp_Unit /= Cunit (Main_Unit)
758 and then Body_Required (Comp_Unit)
759 and then
760 (Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
761 or else
762 (No (Corresponding_Body (Unit (Comp_Unit)))
763 and then Body_Needed_For_Inlining
764 (Defining_Entity (Unit (Comp_Unit)))))
765 then
766 declare
767 Bname : constant Unit_Name_Type :=
768 Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
770 OK : Boolean;
772 begin
773 if not Is_Loaded (Bname) then
774 Style_Check := False;
775 Load_Needed_Body (Comp_Unit, OK);
777 if not OK then
779 -- Warn that a body was not available for inlining
780 -- by the back-end.
782 Error_Msg_Unit_1 := Bname;
783 Error_Msg_N
784 ("one or more inlined subprograms accessed in $!??",
785 Comp_Unit);
786 Error_Msg_File_1 :=
787 Get_File_Name (Bname, Subunit => False);
788 Error_Msg_N ("\but file{ was not found!??", Comp_Unit);
789 end if;
790 end if;
791 end;
792 end if;
794 J := J + 1;
796 if J > Inlined_Bodies.Last then
798 -- The analysis of required bodies may have produced additional
799 -- generic instantiations. To obtain further inlining, we need
800 -- to perform another round of generic body instantiations.
802 Instantiate_Bodies;
804 -- Symmetrically, the instantiation of required generic bodies
805 -- may have caused additional bodies to be inlined. To obtain
806 -- further inlining, we keep looping over the inlined bodies.
807 end if;
808 end loop;
810 -- The list of inlined subprograms is an overestimate, because it
811 -- includes inlined functions called from functions that are compiled
812 -- as part of an inlined package, but are not themselves called. An
813 -- accurate computation of just those subprograms that are needed
814 -- requires that we perform a transitive closure over the call graph,
815 -- starting from calls in the main compilation unit.
817 for Index in Inlined.First .. Inlined.Last loop
818 if not Is_Called (Inlined.Table (Index).Name) then
820 -- This means that Add_Inlined_Body added the subprogram to the
821 -- table but wasn't able to handle its code unit. Do nothing.
823 Inlined.Table (Index).Processed := True;
825 elsif Inlined.Table (Index).Main_Call then
826 Pending_Inlined.Increment_Last;
827 Pending_Inlined.Table (Pending_Inlined.Last) := Index;
828 Inlined.Table (Index).Processed := True;
830 else
831 Set_Is_Called (Inlined.Table (Index).Name, False);
832 end if;
833 end loop;
835 -- Iterate over the workpile until it is emptied, propagating the
836 -- Is_Called flag to the successors of the processed subprogram.
838 while Pending_Inlined.Last >= Pending_Inlined.First loop
839 Subp := Pending_Inlined.Table (Pending_Inlined.Last);
840 Pending_Inlined.Decrement_Last;
842 S := Inlined.Table (Subp).First_Succ;
844 while S /= No_Succ loop
845 Subp := Successors.Table (S).Subp;
847 if not Inlined.Table (Subp).Processed then
848 Set_Is_Called (Inlined.Table (Subp).Name);
849 Pending_Inlined.Increment_Last;
850 Pending_Inlined.Table (Pending_Inlined.Last) := Subp;
851 Inlined.Table (Subp).Processed := True;
852 end if;
854 S := Successors.Table (S).Next;
855 end loop;
856 end loop;
858 -- Finally add the called subprograms to the list of inlined
859 -- subprograms for the unit.
861 for Index in Inlined.First .. Inlined.Last loop
862 if Is_Called (Inlined.Table (Index).Name) then
863 Add_Inlined_Subprogram (Inlined.Table (Index).Name);
864 end if;
865 end loop;
867 Pop_Scope;
868 end if;
869 end Analyze_Inlined_Bodies;
871 --------------------------
872 -- Build_Body_To_Inline --
873 --------------------------
875 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
876 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
877 Analysis_Status : constant Boolean := Full_Analysis;
878 Original_Body : Node_Id;
879 Body_To_Analyze : Node_Id;
880 Max_Size : constant := 10;
882 function Has_Pending_Instantiation return Boolean;
883 -- If some enclosing body contains instantiations that appear before
884 -- the corresponding generic body, the enclosing body has a freeze node
885 -- so that it can be elaborated after the generic itself. This might
886 -- conflict with subsequent inlinings, so that it is unsafe to try to
887 -- inline in such a case.
889 function Has_Single_Return_In_GNATprove_Mode return Boolean;
890 -- This function is called only in GNATprove mode, and it returns
891 -- True if the subprogram has no return statement or a single return
892 -- statement as last statement. It returns False for subprogram with
893 -- a single return as last statement inside one or more blocks, as
894 -- inlining would generate gotos in that case as well (although the
895 -- goto is useless in that case).
897 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
898 -- If the body of the subprogram includes a call that returns an
899 -- unconstrained type, the secondary stack is involved, and it
900 -- is not worth inlining.
902 -------------------------------
903 -- Has_Pending_Instantiation --
904 -------------------------------
906 function Has_Pending_Instantiation return Boolean is
907 S : Entity_Id;
909 begin
910 S := Current_Scope;
911 while Present (S) loop
912 if Is_Compilation_Unit (S)
913 or else Is_Child_Unit (S)
914 then
915 return False;
917 elsif Ekind (S) = E_Package
918 and then Has_Forward_Instantiation (S)
919 then
920 return True;
921 end if;
923 S := Scope (S);
924 end loop;
926 return False;
927 end Has_Pending_Instantiation;
929 -----------------------------------------
930 -- Has_Single_Return_In_GNATprove_Mode --
931 -----------------------------------------
933 function Has_Single_Return_In_GNATprove_Mode return Boolean is
934 Body_To_Inline : constant Node_Id := N;
935 Last_Statement : Node_Id := Empty;
937 function Check_Return (N : Node_Id) return Traverse_Result;
938 -- Returns OK on node N if this is not a return statement different
939 -- from the last statement in the subprogram.
941 ------------------
942 -- Check_Return --
943 ------------------
945 function Check_Return (N : Node_Id) return Traverse_Result is
946 begin
947 case Nkind (N) is
948 when N_Extended_Return_Statement
949 | N_Simple_Return_Statement
951 if N = Last_Statement then
952 return OK;
953 else
954 return Abandon;
955 end if;
957 -- Skip locally declared subprogram bodies inside the body to
958 -- inline, as the return statements inside those do not count.
960 when N_Subprogram_Body =>
961 if N = Body_To_Inline then
962 return OK;
963 else
964 return Skip;
965 end if;
967 when others =>
968 return OK;
969 end case;
970 end Check_Return;
972 function Check_All_Returns is new Traverse_Func (Check_Return);
974 -- Start of processing for Has_Single_Return_In_GNATprove_Mode
976 begin
977 -- Retrieve the last statement
979 Last_Statement := Last (Statements (Handled_Statement_Sequence (N)));
981 -- Check that the last statement is the only possible return
982 -- statement in the subprogram.
984 return Check_All_Returns (N) = OK;
985 end Has_Single_Return_In_GNATprove_Mode;
987 --------------------------
988 -- Uses_Secondary_Stack --
989 --------------------------
991 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
992 function Check_Call (N : Node_Id) return Traverse_Result;
993 -- Look for function calls that return an unconstrained type
995 ----------------
996 -- Check_Call --
997 ----------------
999 function Check_Call (N : Node_Id) return Traverse_Result is
1000 begin
1001 if Nkind (N) = N_Function_Call
1002 and then Is_Entity_Name (Name (N))
1003 and then Is_Composite_Type (Etype (Entity (Name (N))))
1004 and then not Is_Constrained (Etype (Entity (Name (N))))
1005 then
1006 Cannot_Inline
1007 ("cannot inline & (call returns unconstrained type)?",
1008 N, Spec_Id);
1009 return Abandon;
1010 else
1011 return OK;
1012 end if;
1013 end Check_Call;
1015 function Check_Calls is new Traverse_Func (Check_Call);
1017 begin
1018 return Check_Calls (Bod) = Abandon;
1019 end Uses_Secondary_Stack;
1021 -- Start of processing for Build_Body_To_Inline
1023 begin
1024 -- Return immediately if done already
1026 if Nkind (Decl) = N_Subprogram_Declaration
1027 and then Present (Body_To_Inline (Decl))
1028 then
1029 return;
1031 -- Subprograms that have return statements in the middle of the body are
1032 -- inlined with gotos. GNATprove does not currently support gotos, so
1033 -- we prevent such inlining.
1035 elsif GNATprove_Mode
1036 and then not Has_Single_Return_In_GNATprove_Mode
1037 then
1038 Cannot_Inline ("cannot inline & (multiple returns)?", N, Spec_Id);
1039 return;
1041 -- Functions that return unconstrained composite types require
1042 -- secondary stack handling, and cannot currently be inlined, unless
1043 -- all return statements return a local variable that is the first
1044 -- local declaration in the body.
1046 elsif Ekind (Spec_Id) = E_Function
1047 and then not Is_Scalar_Type (Etype (Spec_Id))
1048 and then not Is_Access_Type (Etype (Spec_Id))
1049 and then not Is_Constrained (Etype (Spec_Id))
1050 then
1051 if not Has_Single_Return (N) then
1052 Cannot_Inline
1053 ("cannot inline & (unconstrained return type)?", N, Spec_Id);
1054 return;
1055 end if;
1057 -- Ditto for functions that return controlled types, where controlled
1058 -- actions interfere in complex ways with inlining.
1060 elsif Ekind (Spec_Id) = E_Function
1061 and then Needs_Finalization (Etype (Spec_Id))
1062 then
1063 Cannot_Inline
1064 ("cannot inline & (controlled return type)?", N, Spec_Id);
1065 return;
1066 end if;
1068 if Present (Declarations (N))
1069 and then Has_Excluded_Declaration (Spec_Id, Declarations (N))
1070 then
1071 return;
1072 end if;
1074 if Present (Handled_Statement_Sequence (N)) then
1075 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
1076 Cannot_Inline
1077 ("cannot inline& (exception handler)?",
1078 First (Exception_Handlers (Handled_Statement_Sequence (N))),
1079 Spec_Id);
1080 return;
1082 elsif Has_Excluded_Statement
1083 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
1084 then
1085 return;
1086 end if;
1087 end if;
1089 -- We do not inline a subprogram that is too large, unless it is marked
1090 -- Inline_Always or we are in GNATprove mode. This pragma does not
1091 -- suppress the other checks on inlining (forbidden declarations,
1092 -- handlers, etc).
1094 if not (Has_Pragma_Inline_Always (Spec_Id) or else GNATprove_Mode)
1095 and then List_Length
1096 (Statements (Handled_Statement_Sequence (N))) > Max_Size
1097 then
1098 Cannot_Inline ("cannot inline& (body too large)?", N, Spec_Id);
1099 return;
1100 end if;
1102 if Has_Pending_Instantiation then
1103 Cannot_Inline
1104 ("cannot inline& (forward instance within enclosing body)?",
1105 N, Spec_Id);
1106 return;
1107 end if;
1109 -- Within an instance, the body to inline must be treated as a nested
1110 -- generic, so that the proper global references are preserved.
1112 -- Note that we do not do this at the library level, because it is not
1113 -- needed, and furthermore this causes trouble if front-end inlining
1114 -- is activated (-gnatN).
1116 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1117 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
1118 Original_Body := Copy_Generic_Node (N, Empty, Instantiating => True);
1119 else
1120 Original_Body := Copy_Separate_Tree (N);
1121 end if;
1123 -- We need to capture references to the formals in order to substitute
1124 -- the actuals at the point of inlining, i.e. instantiation. To treat
1125 -- the formals as globals to the body to inline, we nest it within a
1126 -- dummy parameterless subprogram, declared within the real one. To
1127 -- avoid generating an internal name (which is never public, and which
1128 -- affects serial numbers of other generated names), we use an internal
1129 -- symbol that cannot conflict with user declarations.
1131 Set_Parameter_Specifications (Specification (Original_Body), No_List);
1132 Set_Defining_Unit_Name
1133 (Specification (Original_Body),
1134 Make_Defining_Identifier (Sloc (N), Name_uParent));
1135 Set_Corresponding_Spec (Original_Body, Empty);
1137 -- Remove all aspects/pragmas that have no meaning in an inlined body
1139 Remove_Aspects_And_Pragmas (Original_Body);
1141 Body_To_Analyze :=
1142 Copy_Generic_Node (Original_Body, Empty, Instantiating => False);
1144 -- Set return type of function, which is also global and does not need
1145 -- to be resolved.
1147 if Ekind (Spec_Id) = E_Function then
1148 Set_Result_Definition
1149 (Specification (Body_To_Analyze),
1150 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
1151 end if;
1153 if No (Declarations (N)) then
1154 Set_Declarations (N, New_List (Body_To_Analyze));
1155 else
1156 Append (Body_To_Analyze, Declarations (N));
1157 end if;
1159 -- The body to inline is pre-analyzed. In GNATprove mode we must disable
1160 -- full analysis as well so that light expansion does not take place
1161 -- either, and name resolution is unaffected.
1163 Expander_Mode_Save_And_Set (False);
1164 Full_Analysis := False;
1166 Analyze (Body_To_Analyze);
1167 Push_Scope (Defining_Entity (Body_To_Analyze));
1168 Save_Global_References (Original_Body);
1169 End_Scope;
1170 Remove (Body_To_Analyze);
1172 Expander_Mode_Restore;
1173 Full_Analysis := Analysis_Status;
1175 -- Restore environment if previously saved
1177 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1178 Restore_Env;
1179 end if;
1181 -- If secondary stack is used, there is no point in inlining. We have
1182 -- already issued the warning in this case, so nothing to do.
1184 if Uses_Secondary_Stack (Body_To_Analyze) then
1185 return;
1186 end if;
1188 Set_Body_To_Inline (Decl, Original_Body);
1189 Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
1190 Set_Is_Inlined (Spec_Id);
1191 end Build_Body_To_Inline;
1193 -------------------------------------------
1194 -- Call_Can_Be_Inlined_In_GNATprove_Mode --
1195 -------------------------------------------
1197 function Call_Can_Be_Inlined_In_GNATprove_Mode
1198 (N : Node_Id;
1199 Subp : Entity_Id) return Boolean
1201 F : Entity_Id;
1202 A : Node_Id;
1204 begin
1205 F := First_Formal (Subp);
1206 A := First_Actual (N);
1207 while Present (F) loop
1208 if Ekind (F) /= E_Out_Parameter
1209 and then not Same_Type (Etype (F), Etype (A))
1210 and then
1211 (Is_By_Reference_Type (Etype (A))
1212 or else Is_Limited_Type (Etype (A)))
1213 then
1214 return False;
1215 end if;
1217 Next_Formal (F);
1218 Next_Actual (A);
1219 end loop;
1221 return True;
1222 end Call_Can_Be_Inlined_In_GNATprove_Mode;
1224 --------------------------------------
1225 -- Can_Be_Inlined_In_GNATprove_Mode --
1226 --------------------------------------
1228 function Can_Be_Inlined_In_GNATprove_Mode
1229 (Spec_Id : Entity_Id;
1230 Body_Id : Entity_Id) return Boolean
1232 function Has_Formal_With_Discriminant_Dependent_Fields
1233 (Id : Entity_Id) return Boolean;
1234 -- Returns true if the subprogram has at least one formal parameter of
1235 -- an unconstrained record type with per-object constraints on component
1236 -- types.
1238 function Has_Some_Contract (Id : Entity_Id) return Boolean;
1239 -- Return True if subprogram Id has any contract. The presence of
1240 -- Extensions_Visible or Volatile_Function is also considered as a
1241 -- contract here.
1243 function Is_Unit_Subprogram (Id : Entity_Id) return Boolean;
1244 -- Return True if subprogram Id defines a compilation unit
1245 -- Shouldn't this be in Sem_Aux???
1247 function In_Package_Spec (Id : Entity_Id) return Boolean;
1248 -- Return True if subprogram Id is defined in the package specification,
1249 -- either its visible or private part.
1251 ---------------------------------------------------
1252 -- Has_Formal_With_Discriminant_Dependent_Fields --
1253 ---------------------------------------------------
1255 function Has_Formal_With_Discriminant_Dependent_Fields
1256 (Id : Entity_Id) return Boolean
1258 function Has_Discriminant_Dependent_Component
1259 (Typ : Entity_Id) return Boolean;
1260 -- Determine whether unconstrained record type Typ has at least one
1261 -- component that depends on a discriminant.
1263 ------------------------------------------
1264 -- Has_Discriminant_Dependent_Component --
1265 ------------------------------------------
1267 function Has_Discriminant_Dependent_Component
1268 (Typ : Entity_Id) return Boolean
1270 Comp : Entity_Id;
1272 begin
1273 -- Inspect all components of the record type looking for one that
1274 -- depends on a discriminant.
1276 Comp := First_Component (Typ);
1277 while Present (Comp) loop
1278 if Has_Discriminant_Dependent_Constraint (Comp) then
1279 return True;
1280 end if;
1282 Next_Component (Comp);
1283 end loop;
1285 return False;
1286 end Has_Discriminant_Dependent_Component;
1288 -- Local variables
1290 Subp_Id : constant Entity_Id := Ultimate_Alias (Id);
1291 Formal : Entity_Id;
1292 Formal_Typ : Entity_Id;
1294 -- Start of processing for
1295 -- Has_Formal_With_Discriminant_Dependent_Fields
1297 begin
1298 -- Inspect all parameters of the subprogram looking for a formal
1299 -- of an unconstrained record type with at least one discriminant
1300 -- dependent component.
1302 Formal := First_Formal (Subp_Id);
1303 while Present (Formal) loop
1304 Formal_Typ := Etype (Formal);
1306 if Is_Record_Type (Formal_Typ)
1307 and then not Is_Constrained (Formal_Typ)
1308 and then Has_Discriminant_Dependent_Component (Formal_Typ)
1309 then
1310 return True;
1311 end if;
1313 Next_Formal (Formal);
1314 end loop;
1316 return False;
1317 end Has_Formal_With_Discriminant_Dependent_Fields;
1319 -----------------------
1320 -- Has_Some_Contract --
1321 -----------------------
1323 function Has_Some_Contract (Id : Entity_Id) return Boolean is
1324 Items : Node_Id;
1326 begin
1327 -- A call to an expression function may precede the actual body which
1328 -- is inserted at the end of the enclosing declarations. Ensure that
1329 -- the related entity is decorated before inspecting the contract.
1331 if Is_Subprogram_Or_Generic_Subprogram (Id) then
1332 Items := Contract (Id);
1334 -- Note that Classifications is not Empty when Extensions_Visible
1335 -- or Volatile_Function is present, which causes such subprograms
1336 -- to be considered to have a contract here. This is fine as we
1337 -- want to avoid inlining these too.
1339 return Present (Items)
1340 and then (Present (Pre_Post_Conditions (Items)) or else
1341 Present (Contract_Test_Cases (Items)) or else
1342 Present (Classifications (Items)));
1343 end if;
1345 return False;
1346 end Has_Some_Contract;
1348 ---------------------
1349 -- In_Package_Spec --
1350 ---------------------
1352 function In_Package_Spec (Id : Entity_Id) return Boolean is
1353 P : constant Node_Id := Parent (Subprogram_Spec (Id));
1354 -- Parent of the subprogram's declaration
1356 begin
1357 return Nkind (Enclosing_Declaration (P)) = N_Package_Declaration;
1358 end In_Package_Spec;
1360 ------------------------
1361 -- Is_Unit_Subprogram --
1362 ------------------------
1364 function Is_Unit_Subprogram (Id : Entity_Id) return Boolean is
1365 Decl : Node_Id := Parent (Parent (Id));
1366 begin
1367 if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
1368 Decl := Parent (Decl);
1369 end if;
1371 return Nkind (Parent (Decl)) = N_Compilation_Unit;
1372 end Is_Unit_Subprogram;
1374 -- Local declarations
1376 Id : Entity_Id;
1377 -- Procedure or function entity for the subprogram
1379 -- Start of processing for Can_Be_Inlined_In_GNATprove_Mode
1381 begin
1382 pragma Assert (Present (Spec_Id) or else Present (Body_Id));
1384 if Present (Spec_Id) then
1385 Id := Spec_Id;
1386 else
1387 Id := Body_Id;
1388 end if;
1390 -- Only local subprograms without contracts are inlined in GNATprove
1391 -- mode, as these are the subprograms which a user is not interested in
1392 -- analyzing in isolation, but rather in the context of their call. This
1393 -- is a convenient convention, that could be changed for an explicit
1394 -- pragma/aspect one day.
1396 -- In a number of special cases, inlining is not desirable or not
1397 -- possible, see below.
1399 -- Do not inline unit-level subprograms
1401 if Is_Unit_Subprogram (Id) then
1402 return False;
1404 -- Do not inline subprograms declared in package specs, because they are
1405 -- not local, i.e. can be called either from anywhere (if declared in
1406 -- visible part) or from the child units (if declared in private part).
1408 elsif In_Package_Spec (Id) then
1409 return False;
1411 -- Do not inline subprograms declared in other units. This is important
1412 -- in particular for subprograms defined in the private part of a
1413 -- package spec, when analyzing one of its child packages, as otherwise
1414 -- we issue spurious messages about the impossibility to inline such
1415 -- calls.
1417 elsif not In_Extended_Main_Code_Unit (Id) then
1418 return False;
1420 -- Do not inline subprograms marked No_Return, possibly used for
1421 -- signaling errors, which GNATprove handles specially.
1423 elsif No_Return (Id) then
1424 return False;
1426 -- Do not inline subprograms that have a contract on the spec or the
1427 -- body. Use the contract(s) instead in GNATprove. This also prevents
1428 -- inlining of subprograms with Extensions_Visible or Volatile_Function.
1430 elsif (Present (Spec_Id) and then Has_Some_Contract (Spec_Id))
1431 or else
1432 (Present (Body_Id) and then Has_Some_Contract (Body_Id))
1433 then
1434 return False;
1436 -- Do not inline expression functions, which are directly inlined at the
1437 -- prover level.
1439 elsif (Present (Spec_Id) and then Is_Expression_Function (Spec_Id))
1440 or else
1441 (Present (Body_Id) and then Is_Expression_Function (Body_Id))
1442 then
1443 return False;
1445 -- Do not inline generic subprogram instances. The visibility rules of
1446 -- generic instances plays badly with inlining.
1448 elsif Is_Generic_Instance (Spec_Id) then
1449 return False;
1451 -- Only inline subprograms whose spec is marked SPARK_Mode On. For
1452 -- the subprogram body, a similar check is performed after the body
1453 -- is analyzed, as this is where a pragma SPARK_Mode might be inserted.
1455 elsif Present (Spec_Id)
1456 and then
1457 (No (SPARK_Pragma (Spec_Id))
1458 or else
1459 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) /= On)
1460 then
1461 return False;
1463 -- Subprograms in generic instances are currently not inlined, to avoid
1464 -- problems with inlining of standard library subprograms.
1466 elsif Instantiation_Location (Sloc (Id)) /= No_Location then
1467 return False;
1469 -- Do not inline subprograms and entries defined inside protected types,
1470 -- which typically are not helper subprograms, which also avoids getting
1471 -- spurious messages on calls that cannot be inlined.
1473 elsif Within_Protected_Type (Id) then
1474 return False;
1476 -- Do not inline predicate functions (treated specially by GNATprove)
1478 elsif Is_Predicate_Function (Id) then
1479 return False;
1481 -- Do not inline subprograms with a parameter of an unconstrained
1482 -- record type if it has discrimiant dependent fields. Indeed, with
1483 -- such parameters, the frontend cannot always ensure type compliance
1484 -- in record component accesses (in particular with records containing
1485 -- packed arrays).
1487 elsif Has_Formal_With_Discriminant_Dependent_Fields (Id) then
1488 return False;
1490 -- Otherwise, this is a subprogram declared inside the private part of a
1491 -- package, or inside a package body, or locally in a subprogram, and it
1492 -- does not have any contract. Inline it.
1494 else
1495 return True;
1496 end if;
1497 end Can_Be_Inlined_In_GNATprove_Mode;
1499 -------------------
1500 -- Cannot_Inline --
1501 -------------------
1503 procedure Cannot_Inline
1504 (Msg : String;
1505 N : Node_Id;
1506 Subp : Entity_Id;
1507 Is_Serious : Boolean := False)
1509 begin
1510 -- In GNATprove mode, inlining is the technical means by which the
1511 -- higher-level goal of contextual analysis is reached, so issue
1512 -- messages about failure to apply contextual analysis to a
1513 -- subprogram, rather than failure to inline it.
1515 if GNATprove_Mode
1516 and then Msg (Msg'First .. Msg'First + 12) = "cannot inline"
1517 then
1518 declare
1519 Len1 : constant Positive :=
1520 String (String'("cannot inline"))'Length;
1521 Len2 : constant Positive :=
1522 String (String'("info: no contextual analysis of"))'Length;
1524 New_Msg : String (1 .. Msg'Length + Len2 - Len1);
1526 begin
1527 New_Msg (1 .. Len2) := "info: no contextual analysis of";
1528 New_Msg (Len2 + 1 .. Msg'Length + Len2 - Len1) :=
1529 Msg (Msg'First + Len1 .. Msg'Last);
1530 Cannot_Inline (New_Msg, N, Subp, Is_Serious);
1531 return;
1532 end;
1533 end if;
1535 pragma Assert (Msg (Msg'Last) = '?');
1537 -- Legacy front-end inlining model
1539 if not Back_End_Inlining then
1541 -- Do not emit warning if this is a predefined unit which is not
1542 -- the main unit. With validity checks enabled, some predefined
1543 -- subprograms may contain nested subprograms and become ineligible
1544 -- for inlining.
1546 if Is_Predefined_Unit (Get_Source_Unit (Subp))
1547 and then not In_Extended_Main_Source_Unit (Subp)
1548 then
1549 null;
1551 -- In GNATprove mode, issue a warning, and indicate that the
1552 -- subprogram is not always inlined by setting flag Is_Inlined_Always
1553 -- to False.
1555 elsif GNATprove_Mode then
1556 Set_Is_Inlined_Always (Subp, False);
1557 Error_Msg_NE (Msg & "p?", N, Subp);
1559 elsif Has_Pragma_Inline_Always (Subp) then
1561 -- Remove last character (question mark) to make this into an
1562 -- error, because the Inline_Always pragma cannot be obeyed.
1564 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1566 elsif Ineffective_Inline_Warnings then
1567 Error_Msg_NE (Msg & "p?", N, Subp);
1568 end if;
1570 -- New semantics relying on back-end inlining
1572 elsif Is_Serious then
1574 -- Remove last character (question mark) to make this into an error.
1576 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1578 -- In GNATprove mode, issue a warning, and indicate that the subprogram
1579 -- is not always inlined by setting flag Is_Inlined_Always to False.
1581 elsif GNATprove_Mode then
1582 Set_Is_Inlined_Always (Subp, False);
1583 Error_Msg_NE (Msg & "p?", N, Subp);
1585 else
1587 -- Do not emit warning if this is a predefined unit which is not
1588 -- the main unit. This behavior is currently provided for backward
1589 -- compatibility but it will be removed when we enforce the
1590 -- strictness of the new rules.
1592 if Is_Predefined_Unit (Get_Source_Unit (Subp))
1593 and then not In_Extended_Main_Source_Unit (Subp)
1594 then
1595 null;
1597 elsif Has_Pragma_Inline_Always (Subp) then
1599 -- Emit a warning if this is a call to a runtime subprogram
1600 -- which is located inside a generic. Previously this call
1601 -- was silently skipped.
1603 if Is_Generic_Instance (Subp) then
1604 declare
1605 Gen_P : constant Entity_Id := Generic_Parent (Parent (Subp));
1606 begin
1607 if Is_Predefined_Unit (Get_Source_Unit (Gen_P)) then
1608 Set_Is_Inlined (Subp, False);
1609 Error_Msg_NE (Msg & "p?", N, Subp);
1610 return;
1611 end if;
1612 end;
1613 end if;
1615 -- Remove last character (question mark) to make this into an
1616 -- error, because the Inline_Always pragma cannot be obeyed.
1618 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1620 else
1621 Set_Is_Inlined (Subp, False);
1623 if Ineffective_Inline_Warnings then
1624 Error_Msg_NE (Msg & "p?", N, Subp);
1625 end if;
1626 end if;
1627 end if;
1628 end Cannot_Inline;
1630 --------------------------------------------
1631 -- Check_And_Split_Unconstrained_Function --
1632 --------------------------------------------
1634 procedure Check_And_Split_Unconstrained_Function
1635 (N : Node_Id;
1636 Spec_Id : Entity_Id;
1637 Body_Id : Entity_Id)
1639 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
1640 -- Use generic machinery to build an unexpanded body for the subprogram.
1641 -- This body is subsequently used for inline expansions at call sites.
1643 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean;
1644 -- Return true if we generate code for the function body N, the function
1645 -- body N has no local declarations and its unique statement is a single
1646 -- extended return statement with a handled statements sequence.
1648 procedure Split_Unconstrained_Function
1649 (N : Node_Id;
1650 Spec_Id : Entity_Id);
1651 -- N is an inlined function body that returns an unconstrained type and
1652 -- has a single extended return statement. Split N in two subprograms:
1653 -- a procedure P' and a function F'. The formals of P' duplicate the
1654 -- formals of N plus an extra formal which is used to return a value;
1655 -- its body is composed by the declarations and list of statements
1656 -- of the extended return statement of N.
1658 --------------------------
1659 -- Build_Body_To_Inline --
1660 --------------------------
1662 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
1663 procedure Generate_Subprogram_Body
1664 (N : Node_Id;
1665 Body_To_Inline : out Node_Id);
1666 -- Generate a parameterless duplicate of subprogram body N. Note that
1667 -- occurrences of pragmas referencing the formals are removed since
1668 -- they have no meaning when the body is inlined and the formals are
1669 -- rewritten (the analysis of the non-inlined body will handle these
1670 -- pragmas). A new internal name is associated with Body_To_Inline.
1672 -----------------------------
1673 -- Generate_Body_To_Inline --
1674 -----------------------------
1676 procedure Generate_Subprogram_Body
1677 (N : Node_Id;
1678 Body_To_Inline : out Node_Id)
1680 begin
1681 -- Within an instance, the body to inline must be treated as a
1682 -- nested generic so that proper global references are preserved.
1684 -- Note that we do not do this at the library level, because it
1685 -- is not needed, and furthermore this causes trouble if front
1686 -- end inlining is activated (-gnatN).
1688 if In_Instance
1689 and then Scope (Current_Scope) /= Standard_Standard
1690 then
1691 Body_To_Inline :=
1692 Copy_Generic_Node (N, Empty, Instantiating => True);
1693 else
1694 Body_To_Inline := Copy_Separate_Tree (N);
1695 end if;
1697 -- Remove aspects/pragmas that have no meaning in an inlined body
1699 Remove_Aspects_And_Pragmas (Body_To_Inline);
1701 -- We need to capture references to the formals in order
1702 -- to substitute the actuals at the point of inlining, i.e.
1703 -- instantiation. To treat the formals as globals to the body to
1704 -- inline, we nest it within a dummy parameterless subprogram,
1705 -- declared within the real one.
1707 Set_Parameter_Specifications
1708 (Specification (Body_To_Inline), No_List);
1710 -- A new internal name is associated with Body_To_Inline to avoid
1711 -- conflicts when the non-inlined body N is analyzed.
1713 Set_Defining_Unit_Name (Specification (Body_To_Inline),
1714 Make_Defining_Identifier (Sloc (N), New_Internal_Name ('P')));
1715 Set_Corresponding_Spec (Body_To_Inline, Empty);
1716 end Generate_Subprogram_Body;
1718 -- Local variables
1720 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
1721 Original_Body : Node_Id;
1722 Body_To_Analyze : Node_Id;
1724 begin
1725 pragma Assert (Current_Scope = Spec_Id);
1727 -- Within an instance, the body to inline must be treated as a nested
1728 -- generic, so that the proper global references are preserved. We
1729 -- do not do this at the library level, because it is not needed, and
1730 -- furthermore this causes trouble if front-end inlining is activated
1731 -- (-gnatN).
1733 if In_Instance
1734 and then Scope (Current_Scope) /= Standard_Standard
1735 then
1736 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
1737 end if;
1739 -- Capture references to formals in order to substitute the actuals
1740 -- at the point of inlining or instantiation. To treat the formals
1741 -- as globals to the body to inline, nest the body within a dummy
1742 -- parameterless subprogram, declared within the real one.
1744 Generate_Subprogram_Body (N, Original_Body);
1745 Body_To_Analyze :=
1746 Copy_Generic_Node (Original_Body, Empty, Instantiating => False);
1748 -- Set return type of function, which is also global and does not
1749 -- need to be resolved.
1751 if Ekind (Spec_Id) = E_Function then
1752 Set_Result_Definition (Specification (Body_To_Analyze),
1753 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
1754 end if;
1756 if No (Declarations (N)) then
1757 Set_Declarations (N, New_List (Body_To_Analyze));
1758 else
1759 Append_To (Declarations (N), Body_To_Analyze);
1760 end if;
1762 Preanalyze (Body_To_Analyze);
1764 Push_Scope (Defining_Entity (Body_To_Analyze));
1765 Save_Global_References (Original_Body);
1766 End_Scope;
1767 Remove (Body_To_Analyze);
1769 -- Restore environment if previously saved
1771 if In_Instance
1772 and then Scope (Current_Scope) /= Standard_Standard
1773 then
1774 Restore_Env;
1775 end if;
1777 pragma Assert (No (Body_To_Inline (Decl)));
1778 Set_Body_To_Inline (Decl, Original_Body);
1779 Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
1780 end Build_Body_To_Inline;
1782 --------------------------------------
1783 -- Can_Split_Unconstrained_Function --
1784 --------------------------------------
1786 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean is
1787 Ret_Node : constant Node_Id :=
1788 First (Statements (Handled_Statement_Sequence (N)));
1789 D : Node_Id;
1791 begin
1792 -- No user defined declarations allowed in the function except inside
1793 -- the unique return statement; implicit labels are the only allowed
1794 -- declarations.
1796 if not Is_Empty_List (Declarations (N)) then
1797 D := First (Declarations (N));
1798 while Present (D) loop
1799 if Nkind (D) /= N_Implicit_Label_Declaration then
1800 return False;
1801 end if;
1803 Next (D);
1804 end loop;
1805 end if;
1807 -- We only split the inlined function when we are generating the code
1808 -- of its body; otherwise we leave duplicated split subprograms in
1809 -- the tree which (if referenced) generate wrong references at link
1810 -- time.
1812 return In_Extended_Main_Code_Unit (N)
1813 and then Present (Ret_Node)
1814 and then Nkind (Ret_Node) = N_Extended_Return_Statement
1815 and then No (Next (Ret_Node))
1816 and then Present (Handled_Statement_Sequence (Ret_Node));
1817 end Can_Split_Unconstrained_Function;
1819 ----------------------------------
1820 -- Split_Unconstrained_Function --
1821 ----------------------------------
1823 procedure Split_Unconstrained_Function
1824 (N : Node_Id;
1825 Spec_Id : Entity_Id)
1827 Loc : constant Source_Ptr := Sloc (N);
1828 Ret_Node : constant Node_Id :=
1829 First (Statements (Handled_Statement_Sequence (N)));
1830 Ret_Obj : constant Node_Id :=
1831 First (Return_Object_Declarations (Ret_Node));
1833 procedure Build_Procedure
1834 (Proc_Id : out Entity_Id;
1835 Decl_List : out List_Id);
1836 -- Build a procedure containing the statements found in the extended
1837 -- return statement of the unconstrained function body N.
1839 ---------------------
1840 -- Build_Procedure --
1841 ---------------------
1843 procedure Build_Procedure
1844 (Proc_Id : out Entity_Id;
1845 Decl_List : out List_Id)
1847 Formal : Entity_Id;
1848 Formal_List : constant List_Id := New_List;
1849 Proc_Spec : Node_Id;
1850 Proc_Body : Node_Id;
1851 Subp_Name : constant Name_Id := New_Internal_Name ('F');
1852 Body_Decl_List : List_Id := No_List;
1853 Param_Type : Node_Id;
1855 begin
1856 if Nkind (Object_Definition (Ret_Obj)) = N_Identifier then
1857 Param_Type :=
1858 New_Copy (Object_Definition (Ret_Obj));
1859 else
1860 Param_Type :=
1861 New_Copy (Subtype_Mark (Object_Definition (Ret_Obj)));
1862 end if;
1864 Append_To (Formal_List,
1865 Make_Parameter_Specification (Loc,
1866 Defining_Identifier =>
1867 Make_Defining_Identifier (Loc,
1868 Chars => Chars (Defining_Identifier (Ret_Obj))),
1869 In_Present => False,
1870 Out_Present => True,
1871 Null_Exclusion_Present => False,
1872 Parameter_Type => Param_Type));
1874 Formal := First_Formal (Spec_Id);
1876 -- Note that we copy the parameter type rather than creating
1877 -- a reference to it, because it may be a class-wide entity
1878 -- that will not be retrieved by name.
1880 while Present (Formal) loop
1881 Append_To (Formal_List,
1882 Make_Parameter_Specification (Loc,
1883 Defining_Identifier =>
1884 Make_Defining_Identifier (Sloc (Formal),
1885 Chars => Chars (Formal)),
1886 In_Present => In_Present (Parent (Formal)),
1887 Out_Present => Out_Present (Parent (Formal)),
1888 Null_Exclusion_Present =>
1889 Null_Exclusion_Present (Parent (Formal)),
1890 Parameter_Type =>
1891 New_Copy_Tree (Parameter_Type (Parent (Formal))),
1892 Expression =>
1893 Copy_Separate_Tree (Expression (Parent (Formal)))));
1895 Next_Formal (Formal);
1896 end loop;
1898 Proc_Id := Make_Defining_Identifier (Loc, Chars => Subp_Name);
1900 Proc_Spec :=
1901 Make_Procedure_Specification (Loc,
1902 Defining_Unit_Name => Proc_Id,
1903 Parameter_Specifications => Formal_List);
1905 Decl_List := New_List;
1907 Append_To (Decl_List,
1908 Make_Subprogram_Declaration (Loc, Proc_Spec));
1910 -- Can_Convert_Unconstrained_Function checked that the function
1911 -- has no local declarations except implicit label declarations.
1912 -- Copy these declarations to the built procedure.
1914 if Present (Declarations (N)) then
1915 Body_Decl_List := New_List;
1917 declare
1918 D : Node_Id;
1919 New_D : Node_Id;
1921 begin
1922 D := First (Declarations (N));
1923 while Present (D) loop
1924 pragma Assert (Nkind (D) = N_Implicit_Label_Declaration);
1926 New_D :=
1927 Make_Implicit_Label_Declaration (Loc,
1928 Make_Defining_Identifier (Loc,
1929 Chars => Chars (Defining_Identifier (D))),
1930 Label_Construct => Empty);
1931 Append_To (Body_Decl_List, New_D);
1933 Next (D);
1934 end loop;
1935 end;
1936 end if;
1938 pragma Assert (Present (Handled_Statement_Sequence (Ret_Node)));
1940 Proc_Body :=
1941 Make_Subprogram_Body (Loc,
1942 Specification => Copy_Separate_Tree (Proc_Spec),
1943 Declarations => Body_Decl_List,
1944 Handled_Statement_Sequence =>
1945 Copy_Separate_Tree (Handled_Statement_Sequence (Ret_Node)));
1947 Set_Defining_Unit_Name (Specification (Proc_Body),
1948 Make_Defining_Identifier (Loc, Subp_Name));
1950 Append_To (Decl_List, Proc_Body);
1951 end Build_Procedure;
1953 -- Local variables
1955 New_Obj : constant Node_Id := Copy_Separate_Tree (Ret_Obj);
1956 Blk_Stmt : Node_Id;
1957 Proc_Id : Entity_Id;
1958 Proc_Call : Node_Id;
1960 -- Start of processing for Split_Unconstrained_Function
1962 begin
1963 -- Build the associated procedure, analyze it and insert it before
1964 -- the function body N.
1966 declare
1967 Scope : constant Entity_Id := Current_Scope;
1968 Decl_List : List_Id;
1969 begin
1970 Pop_Scope;
1971 Build_Procedure (Proc_Id, Decl_List);
1972 Insert_Actions (N, Decl_List);
1973 Set_Is_Inlined (Proc_Id);
1974 Push_Scope (Scope);
1975 end;
1977 -- Build the call to the generated procedure
1979 declare
1980 Actual_List : constant List_Id := New_List;
1981 Formal : Entity_Id;
1983 begin
1984 Append_To (Actual_List,
1985 New_Occurrence_Of (Defining_Identifier (New_Obj), Loc));
1987 Formal := First_Formal (Spec_Id);
1988 while Present (Formal) loop
1989 Append_To (Actual_List, New_Occurrence_Of (Formal, Loc));
1991 -- Avoid spurious warning on unreferenced formals
1993 Set_Referenced (Formal);
1994 Next_Formal (Formal);
1995 end loop;
1997 Proc_Call :=
1998 Make_Procedure_Call_Statement (Loc,
1999 Name => New_Occurrence_Of (Proc_Id, Loc),
2000 Parameter_Associations => Actual_List);
2001 end;
2003 -- Generate:
2005 -- declare
2006 -- New_Obj : ...
2007 -- begin
2008 -- Proc (New_Obj, ...);
2009 -- return New_Obj;
2010 -- end;
2012 Blk_Stmt :=
2013 Make_Block_Statement (Loc,
2014 Declarations => New_List (New_Obj),
2015 Handled_Statement_Sequence =>
2016 Make_Handled_Sequence_Of_Statements (Loc,
2017 Statements => New_List (
2019 Proc_Call,
2021 Make_Simple_Return_Statement (Loc,
2022 Expression =>
2023 New_Occurrence_Of
2024 (Defining_Identifier (New_Obj), Loc)))));
2026 Rewrite (Ret_Node, Blk_Stmt);
2027 end Split_Unconstrained_Function;
2029 -- Local variables
2031 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
2033 -- Start of processing for Check_And_Split_Unconstrained_Function
2035 begin
2036 pragma Assert (Back_End_Inlining
2037 and then Ekind (Spec_Id) = E_Function
2038 and then Returns_Unconstrained_Type (Spec_Id)
2039 and then Comes_From_Source (Body_Id)
2040 and then (Has_Pragma_Inline_Always (Spec_Id)
2041 or else Optimization_Level > 0));
2043 -- This routine must not be used in GNATprove mode since GNATprove
2044 -- relies on frontend inlining
2046 pragma Assert (not GNATprove_Mode);
2048 -- No need to split the function if we cannot generate the code
2050 if Serious_Errors_Detected /= 0 then
2051 return;
2052 end if;
2054 -- No action needed in stubs since the attribute Body_To_Inline
2055 -- is not available
2057 if Nkind (Decl) = N_Subprogram_Body_Stub then
2058 return;
2060 -- Cannot build the body to inline if the attribute is already set.
2061 -- This attribute may have been set if this is a subprogram renaming
2062 -- declarations (see Freeze.Build_Renamed_Body).
2064 elsif Present (Body_To_Inline (Decl)) then
2065 return;
2067 -- Check excluded declarations
2069 elsif Present (Declarations (N))
2070 and then Has_Excluded_Declaration (Spec_Id, Declarations (N))
2071 then
2072 return;
2074 -- Check excluded statements. There is no need to protect us against
2075 -- exception handlers since they are supported by the GCC backend.
2077 elsif Present (Handled_Statement_Sequence (N))
2078 and then Has_Excluded_Statement
2079 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
2080 then
2081 return;
2082 end if;
2084 -- Build the body to inline only if really needed
2086 if Can_Split_Unconstrained_Function (N) then
2087 Split_Unconstrained_Function (N, Spec_Id);
2088 Build_Body_To_Inline (N, Spec_Id);
2089 Set_Is_Inlined (Spec_Id);
2090 end if;
2091 end Check_And_Split_Unconstrained_Function;
2093 -------------------------------------
2094 -- Check_Package_Body_For_Inlining --
2095 -------------------------------------
2097 procedure Check_Package_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
2098 Bname : Unit_Name_Type;
2099 E : Entity_Id;
2100 OK : Boolean;
2102 begin
2103 -- Legacy implementation (relying on frontend inlining)
2105 if not Back_End_Inlining
2106 and then Is_Compilation_Unit (P)
2107 and then not Is_Generic_Instance (P)
2108 then
2109 Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
2111 E := First_Entity (P);
2112 while Present (E) loop
2113 if Has_Pragma_Inline_Always (E)
2114 or else (Has_Pragma_Inline (E) and Front_End_Inlining)
2115 then
2116 if not Is_Loaded (Bname) then
2117 Load_Needed_Body (N, OK);
2119 if OK then
2121 -- Check we are not trying to inline a parent whose body
2122 -- depends on a child, when we are compiling the body of
2123 -- the child. Otherwise we have a potential elaboration
2124 -- circularity with inlined subprograms and with
2125 -- Taft-Amendment types.
2127 declare
2128 Comp : Node_Id; -- Body just compiled
2129 Child_Spec : Entity_Id; -- Spec of main unit
2130 Ent : Entity_Id; -- For iteration
2131 With_Clause : Node_Id; -- Context of body.
2133 begin
2134 if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
2135 and then Present (Body_Entity (P))
2136 then
2137 Child_Spec :=
2138 Defining_Entity
2139 ((Unit (Library_Unit (Cunit (Main_Unit)))));
2141 Comp :=
2142 Parent (Unit_Declaration_Node (Body_Entity (P)));
2144 -- Check whether the context of the body just
2145 -- compiled includes a child of itself, and that
2146 -- child is the spec of the main compilation.
2148 With_Clause := First (Context_Items (Comp));
2149 while Present (With_Clause) loop
2150 if Nkind (With_Clause) = N_With_Clause
2151 and then
2152 Scope (Entity (Name (With_Clause))) = P
2153 and then
2154 Entity (Name (With_Clause)) = Child_Spec
2155 then
2156 Error_Msg_Node_2 := Child_Spec;
2157 Error_Msg_NE
2158 ("body of & depends on child unit&??",
2159 With_Clause, P);
2160 Error_Msg_N
2161 ("\subprograms in body cannot be inlined??",
2162 With_Clause);
2164 -- Disable further inlining from this unit,
2165 -- and keep Taft-amendment types incomplete.
2167 Ent := First_Entity (P);
2168 while Present (Ent) loop
2169 if Is_Type (Ent)
2170 and then Has_Completion_In_Body (Ent)
2171 then
2172 Set_Full_View (Ent, Empty);
2174 elsif Is_Subprogram (Ent) then
2175 Set_Is_Inlined (Ent, False);
2176 end if;
2178 Next_Entity (Ent);
2179 end loop;
2181 return;
2182 end if;
2184 Next (With_Clause);
2185 end loop;
2186 end if;
2187 end;
2189 elsif Ineffective_Inline_Warnings then
2190 Error_Msg_Unit_1 := Bname;
2191 Error_Msg_N
2192 ("unable to inline subprograms defined in $??", P);
2193 Error_Msg_N ("\body not found??", P);
2194 return;
2195 end if;
2196 end if;
2198 return;
2199 end if;
2201 Next_Entity (E);
2202 end loop;
2203 end if;
2204 end Check_Package_Body_For_Inlining;
2206 --------------------
2207 -- Cleanup_Scopes --
2208 --------------------
2210 procedure Cleanup_Scopes is
2211 Elmt : Elmt_Id;
2212 Decl : Node_Id;
2213 Scop : Entity_Id;
2215 begin
2216 Elmt := First_Elmt (To_Clean);
2217 while Present (Elmt) loop
2218 Scop := Node (Elmt);
2220 if Ekind (Scop) = E_Entry then
2221 Scop := Protected_Body_Subprogram (Scop);
2223 elsif Is_Subprogram (Scop)
2224 and then Is_Protected_Type (Scope (Scop))
2225 and then Present (Protected_Body_Subprogram (Scop))
2226 then
2227 -- If a protected operation contains an instance, its cleanup
2228 -- operations have been delayed, and the subprogram has been
2229 -- rewritten in the expansion of the enclosing protected body. It
2230 -- is the corresponding subprogram that may require the cleanup
2231 -- operations, so propagate the information that triggers cleanup
2232 -- activity.
2234 Set_Uses_Sec_Stack
2235 (Protected_Body_Subprogram (Scop),
2236 Uses_Sec_Stack (Scop));
2238 Scop := Protected_Body_Subprogram (Scop);
2239 end if;
2241 if Ekind (Scop) = E_Block then
2242 Decl := Parent (Block_Node (Scop));
2244 else
2245 Decl := Unit_Declaration_Node (Scop);
2247 if Nkind_In (Decl, N_Subprogram_Declaration,
2248 N_Task_Type_Declaration,
2249 N_Subprogram_Body_Stub)
2250 then
2251 Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
2252 end if;
2253 end if;
2255 Push_Scope (Scop);
2256 Expand_Cleanup_Actions (Decl);
2257 End_Scope;
2259 Elmt := Next_Elmt (Elmt);
2260 end loop;
2261 end Cleanup_Scopes;
2263 -------------------------
2264 -- Expand_Inlined_Call --
2265 -------------------------
2267 procedure Expand_Inlined_Call
2268 (N : Node_Id;
2269 Subp : Entity_Id;
2270 Orig_Subp : Entity_Id)
2272 Loc : constant Source_Ptr := Sloc (N);
2273 Is_Predef : constant Boolean :=
2274 Is_Predefined_Unit (Get_Source_Unit (Subp));
2275 Orig_Bod : constant Node_Id :=
2276 Body_To_Inline (Unit_Declaration_Node (Subp));
2278 Blk : Node_Id;
2279 Decl : Node_Id;
2280 Decls : constant List_Id := New_List;
2281 Exit_Lab : Entity_Id := Empty;
2282 F : Entity_Id;
2283 A : Node_Id;
2284 Lab_Decl : Node_Id := Empty;
2285 Lab_Id : Node_Id;
2286 New_A : Node_Id;
2287 Num_Ret : Nat := 0;
2288 Ret_Type : Entity_Id;
2290 Targ : Node_Id := Empty;
2291 -- The target of the call. If context is an assignment statement then
2292 -- this is the left-hand side of the assignment, else it is a temporary
2293 -- to which the return value is assigned prior to rewriting the call.
2295 Targ1 : Node_Id := Empty;
2296 -- A separate target used when the return type is unconstrained
2298 Temp : Entity_Id;
2299 Temp_Typ : Entity_Id;
2301 Return_Object : Entity_Id := Empty;
2302 -- Entity in declaration in an extended_return_statement
2304 Is_Unc : Boolean;
2305 Is_Unc_Decl : Boolean;
2306 -- If the type returned by the function is unconstrained and the call
2307 -- can be inlined, special processing is required.
2309 procedure Declare_Postconditions_Result;
2310 -- When generating C code, declare _Result, which may be used in the
2311 -- inlined _Postconditions procedure to verify the return value.
2313 procedure Make_Exit_Label;
2314 -- Build declaration for exit label to be used in Return statements,
2315 -- sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
2316 -- declaration). Does nothing if Exit_Lab already set.
2318 function Process_Formals (N : Node_Id) return Traverse_Result;
2319 -- Replace occurrence of a formal with the corresponding actual, or the
2320 -- thunk generated for it. Replace a return statement with an assignment
2321 -- to the target of the call, with appropriate conversions if needed.
2323 function Process_Sloc (Nod : Node_Id) return Traverse_Result;
2324 -- If the call being expanded is that of an internal subprogram, set the
2325 -- sloc of the generated block to that of the call itself, so that the
2326 -- expansion is skipped by the "next" command in gdb. Same processing
2327 -- for a subprogram in a predefined file, e.g. Ada.Tags. If
2328 -- Debug_Generated_Code is true, suppress this change to simplify our
2329 -- own development. Same in GNATprove mode, to ensure that warnings and
2330 -- diagnostics point to the proper location.
2332 procedure Reset_Dispatching_Calls (N : Node_Id);
2333 -- In subtree N search for occurrences of dispatching calls that use the
2334 -- Ada 2005 Object.Operation notation and the object is a formal of the
2335 -- inlined subprogram. Reset the entity associated with Operation in all
2336 -- the found occurrences.
2338 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
2339 -- If the function body is a single expression, replace call with
2340 -- expression, else insert block appropriately.
2342 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
2343 -- If procedure body has no local variables, inline body without
2344 -- creating block, otherwise rewrite call with block.
2346 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
2347 -- Determine whether a formal parameter is used only once in Orig_Bod
2349 -----------------------------------
2350 -- Declare_Postconditions_Result --
2351 -----------------------------------
2353 procedure Declare_Postconditions_Result is
2354 Enclosing_Subp : constant Entity_Id := Scope (Subp);
2356 begin
2357 pragma Assert
2358 (Modify_Tree_For_C
2359 and then Is_Subprogram (Enclosing_Subp)
2360 and then Present (Postconditions_Proc (Enclosing_Subp)));
2362 if Ekind (Enclosing_Subp) = E_Function then
2363 if Nkind (First (Parameter_Associations (N))) in
2364 N_Numeric_Or_String_Literal
2365 then
2366 Append_To (Declarations (Blk),
2367 Make_Object_Declaration (Loc,
2368 Defining_Identifier =>
2369 Make_Defining_Identifier (Loc, Name_uResult),
2370 Constant_Present => True,
2371 Object_Definition =>
2372 New_Occurrence_Of (Etype (Enclosing_Subp), Loc),
2373 Expression =>
2374 New_Copy_Tree (First (Parameter_Associations (N)))));
2375 else
2376 Append_To (Declarations (Blk),
2377 Make_Object_Renaming_Declaration (Loc,
2378 Defining_Identifier =>
2379 Make_Defining_Identifier (Loc, Name_uResult),
2380 Subtype_Mark =>
2381 New_Occurrence_Of (Etype (Enclosing_Subp), Loc),
2382 Name =>
2383 New_Copy_Tree (First (Parameter_Associations (N)))));
2384 end if;
2385 end if;
2386 end Declare_Postconditions_Result;
2388 ---------------------
2389 -- Make_Exit_Label --
2390 ---------------------
2392 procedure Make_Exit_Label is
2393 Lab_Ent : Entity_Id;
2394 begin
2395 if No (Exit_Lab) then
2396 Lab_Ent := Make_Temporary (Loc, 'L');
2397 Lab_Id := New_Occurrence_Of (Lab_Ent, Loc);
2398 Exit_Lab := Make_Label (Loc, Lab_Id);
2399 Lab_Decl :=
2400 Make_Implicit_Label_Declaration (Loc,
2401 Defining_Identifier => Lab_Ent,
2402 Label_Construct => Exit_Lab);
2403 end if;
2404 end Make_Exit_Label;
2406 ---------------------
2407 -- Process_Formals --
2408 ---------------------
2410 function Process_Formals (N : Node_Id) return Traverse_Result is
2411 A : Entity_Id;
2412 E : Entity_Id;
2413 Ret : Node_Id;
2415 begin
2416 if Is_Entity_Name (N) and then Present (Entity (N)) then
2417 E := Entity (N);
2419 if Is_Formal (E) and then Scope (E) = Subp then
2420 A := Renamed_Object (E);
2422 -- Rewrite the occurrence of the formal into an occurrence of
2423 -- the actual. Also establish visibility on the proper view of
2424 -- the actual's subtype for the body's context (if the actual's
2425 -- subtype is private at the call point but its full view is
2426 -- visible to the body, then the inlined tree here must be
2427 -- analyzed with the full view).
2429 if Is_Entity_Name (A) then
2430 Rewrite (N, New_Occurrence_Of (Entity (A), Sloc (N)));
2431 Check_Private_View (N);
2433 elsif Nkind (A) = N_Defining_Identifier then
2434 Rewrite (N, New_Occurrence_Of (A, Sloc (N)));
2435 Check_Private_View (N);
2437 -- Numeric literal
2439 else
2440 Rewrite (N, New_Copy (A));
2441 end if;
2442 end if;
2444 return Skip;
2446 elsif Is_Entity_Name (N)
2447 and then Present (Return_Object)
2448 and then Chars (N) = Chars (Return_Object)
2449 then
2450 -- Occurrence within an extended return statement. The return
2451 -- object is local to the body been inlined, and thus the generic
2452 -- copy is not analyzed yet, so we match by name, and replace it
2453 -- with target of call.
2455 if Nkind (Targ) = N_Defining_Identifier then
2456 Rewrite (N, New_Occurrence_Of (Targ, Loc));
2457 else
2458 Rewrite (N, New_Copy_Tree (Targ));
2459 end if;
2461 return Skip;
2463 elsif Nkind (N) = N_Simple_Return_Statement then
2464 if No (Expression (N)) then
2465 Num_Ret := Num_Ret + 1;
2466 Make_Exit_Label;
2467 Rewrite (N,
2468 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
2470 else
2471 if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
2472 and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
2473 then
2474 -- Function body is a single expression. No need for
2475 -- exit label.
2477 null;
2479 else
2480 Num_Ret := Num_Ret + 1;
2481 Make_Exit_Label;
2482 end if;
2484 -- Because of the presence of private types, the views of the
2485 -- expression and the context may be different, so place an
2486 -- unchecked conversion to the context type to avoid spurious
2487 -- errors, e.g. when the expression is a numeric literal and
2488 -- the context is private. If the expression is an aggregate,
2489 -- use a qualified expression, because an aggregate is not a
2490 -- legal argument of a conversion. Ditto for numeric literals
2491 -- and attributes that yield a universal type, because those
2492 -- must be resolved to a specific type.
2494 if Nkind_In (Expression (N), N_Aggregate, N_Null)
2495 or else Yields_Universal_Type (Expression (N))
2496 then
2497 Ret :=
2498 Make_Qualified_Expression (Sloc (N),
2499 Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
2500 Expression => Relocate_Node (Expression (N)));
2501 else
2502 Ret :=
2503 Unchecked_Convert_To
2504 (Ret_Type, Relocate_Node (Expression (N)));
2505 end if;
2507 if Nkind (Targ) = N_Defining_Identifier then
2508 Rewrite (N,
2509 Make_Assignment_Statement (Loc,
2510 Name => New_Occurrence_Of (Targ, Loc),
2511 Expression => Ret));
2512 else
2513 Rewrite (N,
2514 Make_Assignment_Statement (Loc,
2515 Name => New_Copy (Targ),
2516 Expression => Ret));
2517 end if;
2519 Set_Assignment_OK (Name (N));
2521 if Present (Exit_Lab) then
2522 Insert_After (N,
2523 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
2524 end if;
2525 end if;
2527 return OK;
2529 -- An extended return becomes a block whose first statement is the
2530 -- assignment of the initial expression of the return object to the
2531 -- target of the call itself.
2533 elsif Nkind (N) = N_Extended_Return_Statement then
2534 declare
2535 Return_Decl : constant Entity_Id :=
2536 First (Return_Object_Declarations (N));
2537 Assign : Node_Id;
2539 begin
2540 Return_Object := Defining_Identifier (Return_Decl);
2542 if Present (Expression (Return_Decl)) then
2543 if Nkind (Targ) = N_Defining_Identifier then
2544 Assign :=
2545 Make_Assignment_Statement (Loc,
2546 Name => New_Occurrence_Of (Targ, Loc),
2547 Expression => Expression (Return_Decl));
2548 else
2549 Assign :=
2550 Make_Assignment_Statement (Loc,
2551 Name => New_Copy (Targ),
2552 Expression => Expression (Return_Decl));
2553 end if;
2555 Set_Assignment_OK (Name (Assign));
2557 if No (Handled_Statement_Sequence (N)) then
2558 Set_Handled_Statement_Sequence (N,
2559 Make_Handled_Sequence_Of_Statements (Loc,
2560 Statements => New_List));
2561 end if;
2563 Prepend (Assign,
2564 Statements (Handled_Statement_Sequence (N)));
2565 end if;
2567 Rewrite (N,
2568 Make_Block_Statement (Loc,
2569 Handled_Statement_Sequence =>
2570 Handled_Statement_Sequence (N)));
2572 return OK;
2573 end;
2575 -- Remove pragma Unreferenced since it may refer to formals that
2576 -- are not visible in the inlined body, and in any case we will
2577 -- not be posting warnings on the inlined body so it is unneeded.
2579 elsif Nkind (N) = N_Pragma
2580 and then Pragma_Name (N) = Name_Unreferenced
2581 then
2582 Rewrite (N, Make_Null_Statement (Sloc (N)));
2583 return OK;
2585 else
2586 return OK;
2587 end if;
2588 end Process_Formals;
2590 procedure Replace_Formals is new Traverse_Proc (Process_Formals);
2592 ------------------
2593 -- Process_Sloc --
2594 ------------------
2596 function Process_Sloc (Nod : Node_Id) return Traverse_Result is
2597 begin
2598 if not Debug_Generated_Code then
2599 Set_Sloc (Nod, Sloc (N));
2600 Set_Comes_From_Source (Nod, False);
2601 end if;
2603 return OK;
2604 end Process_Sloc;
2606 procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
2608 ------------------------------
2609 -- Reset_Dispatching_Calls --
2610 ------------------------------
2612 procedure Reset_Dispatching_Calls (N : Node_Id) is
2614 function Do_Reset (N : Node_Id) return Traverse_Result;
2615 -- Comment required ???
2617 --------------
2618 -- Do_Reset --
2619 --------------
2621 function Do_Reset (N : Node_Id) return Traverse_Result is
2622 begin
2623 if Nkind (N) = N_Procedure_Call_Statement
2624 and then Nkind (Name (N)) = N_Selected_Component
2625 and then Nkind (Prefix (Name (N))) = N_Identifier
2626 and then Is_Formal (Entity (Prefix (Name (N))))
2627 and then Is_Dispatching_Operation
2628 (Entity (Selector_Name (Name (N))))
2629 then
2630 Set_Entity (Selector_Name (Name (N)), Empty);
2631 end if;
2633 return OK;
2634 end Do_Reset;
2636 function Do_Reset_Calls is new Traverse_Func (Do_Reset);
2638 -- Local variables
2640 Dummy : constant Traverse_Result := Do_Reset_Calls (N);
2641 pragma Unreferenced (Dummy);
2643 -- Start of processing for Reset_Dispatching_Calls
2645 begin
2646 null;
2647 end Reset_Dispatching_Calls;
2649 ---------------------------
2650 -- Rewrite_Function_Call --
2651 ---------------------------
2653 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
2654 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
2655 Fst : constant Node_Id := First (Statements (HSS));
2657 begin
2658 -- Optimize simple case: function body is a single return statement,
2659 -- which has been expanded into an assignment.
2661 if Is_Empty_List (Declarations (Blk))
2662 and then Nkind (Fst) = N_Assignment_Statement
2663 and then No (Next (Fst))
2664 then
2665 -- The function call may have been rewritten as the temporary
2666 -- that holds the result of the call, in which case remove the
2667 -- now useless declaration.
2669 if Nkind (N) = N_Identifier
2670 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
2671 then
2672 Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
2673 end if;
2675 Rewrite (N, Expression (Fst));
2677 elsif Nkind (N) = N_Identifier
2678 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
2679 then
2680 -- The block assigns the result of the call to the temporary
2682 Insert_After (Parent (Entity (N)), Blk);
2684 -- If the context is an assignment, and the left-hand side is free of
2685 -- side-effects, the replacement is also safe.
2686 -- Can this be generalized further???
2688 elsif Nkind (Parent (N)) = N_Assignment_Statement
2689 and then
2690 (Is_Entity_Name (Name (Parent (N)))
2691 or else
2692 (Nkind (Name (Parent (N))) = N_Explicit_Dereference
2693 and then Is_Entity_Name (Prefix (Name (Parent (N)))))
2695 or else
2696 (Nkind (Name (Parent (N))) = N_Selected_Component
2697 and then Is_Entity_Name (Prefix (Name (Parent (N))))))
2698 then
2699 -- Replace assignment with the block
2701 declare
2702 Original_Assignment : constant Node_Id := Parent (N);
2704 begin
2705 -- Preserve the original assignment node to keep the complete
2706 -- assignment subtree consistent enough for Analyze_Assignment
2707 -- to proceed (specifically, the original Lhs node must still
2708 -- have an assignment statement as its parent).
2710 -- We cannot rely on Original_Node to go back from the block
2711 -- node to the assignment node, because the assignment might
2712 -- already be a rewrite substitution.
2714 Discard_Node (Relocate_Node (Original_Assignment));
2715 Rewrite (Original_Assignment, Blk);
2716 end;
2718 elsif Nkind (Parent (N)) = N_Object_Declaration then
2720 -- A call to a function which returns an unconstrained type
2721 -- found in the expression initializing an object-declaration is
2722 -- expanded into a procedure call which must be added after the
2723 -- object declaration.
2725 if Is_Unc_Decl and Back_End_Inlining then
2726 Insert_Action_After (Parent (N), Blk);
2727 else
2728 Set_Expression (Parent (N), Empty);
2729 Insert_After (Parent (N), Blk);
2730 end if;
2732 elsif Is_Unc and then not Back_End_Inlining then
2733 Insert_Before (Parent (N), Blk);
2734 end if;
2735 end Rewrite_Function_Call;
2737 ----------------------------
2738 -- Rewrite_Procedure_Call --
2739 ----------------------------
2741 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
2742 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
2744 begin
2745 -- If there is a transient scope for N, this will be the scope of the
2746 -- actions for N, and the statements in Blk need to be within this
2747 -- scope. For example, they need to have visibility on the constant
2748 -- declarations created for the formals.
2750 -- If N needs no transient scope, and if there are no declarations in
2751 -- the inlined body, we can do a little optimization and insert the
2752 -- statements for the body directly after N, and rewrite N to a
2753 -- null statement, instead of rewriting N into a full-blown block
2754 -- statement.
2756 if not Scope_Is_Transient
2757 and then Is_Empty_List (Declarations (Blk))
2758 then
2759 Insert_List_After (N, Statements (HSS));
2760 Rewrite (N, Make_Null_Statement (Loc));
2761 else
2762 Rewrite (N, Blk);
2763 end if;
2764 end Rewrite_Procedure_Call;
2766 -------------------------
2767 -- Formal_Is_Used_Once --
2768 -------------------------
2770 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
2771 Use_Counter : Int := 0;
2773 function Count_Uses (N : Node_Id) return Traverse_Result;
2774 -- Traverse the tree and count the uses of the formal parameter.
2775 -- In this case, for optimization purposes, we do not need to
2776 -- continue the traversal once more than one use is encountered.
2778 ----------------
2779 -- Count_Uses --
2780 ----------------
2782 function Count_Uses (N : Node_Id) return Traverse_Result is
2783 begin
2784 -- The original node is an identifier
2786 if Nkind (N) = N_Identifier
2787 and then Present (Entity (N))
2789 -- Original node's entity points to the one in the copied body
2791 and then Nkind (Entity (N)) = N_Identifier
2792 and then Present (Entity (Entity (N)))
2794 -- The entity of the copied node is the formal parameter
2796 and then Entity (Entity (N)) = Formal
2797 then
2798 Use_Counter := Use_Counter + 1;
2800 if Use_Counter > 1 then
2802 -- Denote more than one use and abandon the traversal
2804 Use_Counter := 2;
2805 return Abandon;
2807 end if;
2808 end if;
2810 return OK;
2811 end Count_Uses;
2813 procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
2815 -- Start of processing for Formal_Is_Used_Once
2817 begin
2818 Count_Formal_Uses (Orig_Bod);
2819 return Use_Counter = 1;
2820 end Formal_Is_Used_Once;
2822 -- Start of processing for Expand_Inlined_Call
2824 begin
2825 -- Initializations for old/new semantics
2827 if not Back_End_Inlining then
2828 Is_Unc := Is_Array_Type (Etype (Subp))
2829 and then not Is_Constrained (Etype (Subp));
2830 Is_Unc_Decl := False;
2831 else
2832 Is_Unc := Returns_Unconstrained_Type (Subp)
2833 and then Optimization_Level > 0;
2834 Is_Unc_Decl := Nkind (Parent (N)) = N_Object_Declaration
2835 and then Is_Unc;
2836 end if;
2838 -- Check for an illegal attempt to inline a recursive procedure. If the
2839 -- subprogram has parameters this is detected when trying to supply a
2840 -- binding for parameters that already have one. For parameterless
2841 -- subprograms this must be done explicitly.
2843 if In_Open_Scopes (Subp) then
2844 Cannot_Inline
2845 ("cannot inline call to recursive subprogram?", N, Subp);
2846 Set_Is_Inlined (Subp, False);
2847 return;
2849 -- Skip inlining if this is not a true inlining since the attribute
2850 -- Body_To_Inline is also set for renamings (see sinfo.ads). For a
2851 -- true inlining, Orig_Bod has code rather than being an entity.
2853 elsif Nkind (Orig_Bod) in N_Entity then
2854 return;
2856 -- Skip inlining if the function returns an unconstrained type using
2857 -- an extended return statement since this part of the new inlining
2858 -- model which is not yet supported by the current implementation. ???
2860 elsif Is_Unc
2861 and then
2862 Nkind (First (Statements (Handled_Statement_Sequence (Orig_Bod)))) =
2863 N_Extended_Return_Statement
2864 and then not Back_End_Inlining
2865 then
2866 return;
2867 end if;
2869 if Nkind (Orig_Bod) = N_Defining_Identifier
2870 or else Nkind (Orig_Bod) = N_Defining_Operator_Symbol
2871 then
2872 -- Subprogram is renaming_as_body. Calls occurring after the renaming
2873 -- can be replaced with calls to the renamed entity directly, because
2874 -- the subprograms are subtype conformant. If the renamed subprogram
2875 -- is an inherited operation, we must redo the expansion because
2876 -- implicit conversions may be needed. Similarly, if the renamed
2877 -- entity is inlined, expand the call for further optimizations.
2879 Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
2881 if Present (Alias (Orig_Bod)) or else Is_Inlined (Orig_Bod) then
2882 Expand_Call (N);
2883 end if;
2885 return;
2886 end if;
2888 -- Register the call in the list of inlined calls
2890 Append_New_Elmt (N, To => Inlined_Calls);
2892 -- Use generic machinery to copy body of inlined subprogram, as if it
2893 -- were an instantiation, resetting source locations appropriately, so
2894 -- that nested inlined calls appear in the main unit.
2896 Save_Env (Subp, Empty);
2897 Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
2899 -- Old semantics
2901 if not Back_End_Inlining then
2902 declare
2903 Bod : Node_Id;
2905 begin
2906 Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
2907 Blk :=
2908 Make_Block_Statement (Loc,
2909 Declarations => Declarations (Bod),
2910 Handled_Statement_Sequence =>
2911 Handled_Statement_Sequence (Bod));
2913 if No (Declarations (Bod)) then
2914 Set_Declarations (Blk, New_List);
2915 end if;
2917 -- When generating C code, declare _Result, which may be used to
2918 -- verify the return value.
2920 if Modify_Tree_For_C
2921 and then Nkind (N) = N_Procedure_Call_Statement
2922 and then Chars (Name (N)) = Name_uPostconditions
2923 then
2924 Declare_Postconditions_Result;
2925 end if;
2927 -- For the unconstrained case, capture the name of the local
2928 -- variable that holds the result. This must be the first
2929 -- declaration in the block, because its bounds cannot depend
2930 -- on local variables. Otherwise there is no way to declare the
2931 -- result outside of the block. Needless to say, in general the
2932 -- bounds will depend on the actuals in the call.
2934 -- If the context is an assignment statement, as is the case
2935 -- for the expansion of an extended return, the left-hand side
2936 -- provides bounds even if the return type is unconstrained.
2938 if Is_Unc then
2939 declare
2940 First_Decl : Node_Id;
2942 begin
2943 First_Decl := First (Declarations (Blk));
2945 if Nkind (First_Decl) /= N_Object_Declaration then
2946 return;
2947 end if;
2949 if Nkind (Parent (N)) /= N_Assignment_Statement then
2950 Targ1 := Defining_Identifier (First_Decl);
2951 else
2952 Targ1 := Name (Parent (N));
2953 end if;
2954 end;
2955 end if;
2956 end;
2958 -- New semantics
2960 else
2961 declare
2962 Bod : Node_Id;
2964 begin
2965 -- General case
2967 if not Is_Unc then
2968 Bod :=
2969 Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
2970 Blk :=
2971 Make_Block_Statement (Loc,
2972 Declarations => Declarations (Bod),
2973 Handled_Statement_Sequence =>
2974 Handled_Statement_Sequence (Bod));
2976 -- Inline a call to a function that returns an unconstrained type.
2977 -- The semantic analyzer checked that frontend-inlined functions
2978 -- returning unconstrained types have no declarations and have
2979 -- a single extended return statement. As part of its processing
2980 -- the function was split into two subprograms: a procedure P' and
2981 -- a function F' that has a block with a call to procedure P' (see
2982 -- Split_Unconstrained_Function).
2984 else
2985 pragma Assert
2986 (Nkind
2987 (First
2988 (Statements (Handled_Statement_Sequence (Orig_Bod)))) =
2989 N_Block_Statement);
2991 declare
2992 Blk_Stmt : constant Node_Id :=
2993 First (Statements (Handled_Statement_Sequence (Orig_Bod)));
2994 First_Stmt : constant Node_Id :=
2995 First (Statements (Handled_Statement_Sequence (Blk_Stmt)));
2996 Second_Stmt : constant Node_Id := Next (First_Stmt);
2998 begin
2999 pragma Assert
3000 (Nkind (First_Stmt) = N_Procedure_Call_Statement
3001 and then Nkind (Second_Stmt) = N_Simple_Return_Statement
3002 and then No (Next (Second_Stmt)));
3004 Bod :=
3005 Copy_Generic_Node
3006 (First
3007 (Statements (Handled_Statement_Sequence (Orig_Bod))),
3008 Empty, Instantiating => True);
3009 Blk := Bod;
3011 -- Capture the name of the local variable that holds the
3012 -- result. This must be the first declaration in the block,
3013 -- because its bounds cannot depend on local variables.
3014 -- Otherwise there is no way to declare the result outside
3015 -- of the block. Needless to say, in general the bounds will
3016 -- depend on the actuals in the call.
3018 if Nkind (Parent (N)) /= N_Assignment_Statement then
3019 Targ1 := Defining_Identifier (First (Declarations (Blk)));
3021 -- If the context is an assignment statement, as is the case
3022 -- for the expansion of an extended return, the left-hand
3023 -- side provides bounds even if the return type is
3024 -- unconstrained.
3026 else
3027 Targ1 := Name (Parent (N));
3028 end if;
3029 end;
3030 end if;
3032 if No (Declarations (Bod)) then
3033 Set_Declarations (Blk, New_List);
3034 end if;
3035 end;
3036 end if;
3038 -- If this is a derived function, establish the proper return type
3040 if Present (Orig_Subp) and then Orig_Subp /= Subp then
3041 Ret_Type := Etype (Orig_Subp);
3042 else
3043 Ret_Type := Etype (Subp);
3044 end if;
3046 -- Create temporaries for the actuals that are expressions, or that are
3047 -- scalars and require copying to preserve semantics.
3049 F := First_Formal (Subp);
3050 A := First_Actual (N);
3051 while Present (F) loop
3052 if Present (Renamed_Object (F)) then
3054 -- If expander is active, it is an error to try to inline a
3055 -- recursive program. In GNATprove mode, just indicate that the
3056 -- inlining will not happen, and mark the subprogram as not always
3057 -- inlined.
3059 if GNATprove_Mode then
3060 Cannot_Inline
3061 ("cannot inline call to recursive subprogram?", N, Subp);
3062 Set_Is_Inlined_Always (Subp, False);
3063 else
3064 Error_Msg_N
3065 ("cannot inline call to recursive subprogram", N);
3066 end if;
3068 return;
3069 end if;
3071 -- Reset Last_Assignment for any parameters of mode out or in out, to
3072 -- prevent spurious warnings about overwriting for assignments to the
3073 -- formal in the inlined code.
3075 if Is_Entity_Name (A) and then Ekind (F) /= E_In_Parameter then
3076 Set_Last_Assignment (Entity (A), Empty);
3077 end if;
3079 -- If the argument may be a controlling argument in a call within
3080 -- the inlined body, we must preserve its classwide nature to insure
3081 -- that dynamic dispatching take place subsequently. If the formal
3082 -- has a constraint it must be preserved to retain the semantics of
3083 -- the body.
3085 if Is_Class_Wide_Type (Etype (F))
3086 or else (Is_Access_Type (Etype (F))
3087 and then Is_Class_Wide_Type (Designated_Type (Etype (F))))
3088 then
3089 Temp_Typ := Etype (F);
3091 elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
3092 and then Etype (F) /= Base_Type (Etype (F))
3093 and then Is_Constrained (Etype (F))
3094 then
3095 Temp_Typ := Etype (F);
3097 else
3098 Temp_Typ := Etype (A);
3099 end if;
3101 -- If the actual is a simple name or a literal, no need to
3102 -- create a temporary, object can be used directly.
3104 -- If the actual is a literal and the formal has its address taken,
3105 -- we cannot pass the literal itself as an argument, so its value
3106 -- must be captured in a temporary. Skip this optimization in
3107 -- GNATprove mode, to make sure any check on a type conversion
3108 -- will be issued.
3110 if (Is_Entity_Name (A)
3111 and then
3112 (not Is_Scalar_Type (Etype (A))
3113 or else Ekind (Entity (A)) = E_Enumeration_Literal)
3114 and then not GNATprove_Mode)
3116 -- When the actual is an identifier and the corresponding formal is
3117 -- used only once in the original body, the formal can be substituted
3118 -- directly with the actual parameter. Skip this optimization in
3119 -- GNATprove mode, to make sure any check on a type conversion
3120 -- will be issued.
3122 or else
3123 (Nkind (A) = N_Identifier
3124 and then Formal_Is_Used_Once (F)
3125 and then not GNATprove_Mode)
3127 or else
3128 (Nkind_In (A, N_Real_Literal,
3129 N_Integer_Literal,
3130 N_Character_Literal)
3131 and then not Address_Taken (F))
3132 then
3133 if Etype (F) /= Etype (A) then
3134 Set_Renamed_Object
3135 (F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
3136 else
3137 Set_Renamed_Object (F, A);
3138 end if;
3140 else
3141 Temp := Make_Temporary (Loc, 'C');
3143 -- If the actual for an in/in-out parameter is a view conversion,
3144 -- make it into an unchecked conversion, given that an untagged
3145 -- type conversion is not a proper object for a renaming.
3147 -- In-out conversions that involve real conversions have already
3148 -- been transformed in Expand_Actuals.
3150 if Nkind (A) = N_Type_Conversion
3151 and then Ekind (F) /= E_In_Parameter
3152 then
3153 New_A :=
3154 Make_Unchecked_Type_Conversion (Loc,
3155 Subtype_Mark => New_Occurrence_Of (Etype (F), Loc),
3156 Expression => Relocate_Node (Expression (A)));
3158 -- In GNATprove mode, keep the most precise type of the actual for
3159 -- the temporary variable, when the formal type is unconstrained.
3160 -- Otherwise, the AST may contain unexpected assignment statements
3161 -- to a temporary variable of unconstrained type renaming a local
3162 -- variable of constrained type, which is not expected by
3163 -- GNATprove.
3165 elsif Etype (F) /= Etype (A)
3166 and then (not GNATprove_Mode or else Is_Constrained (Etype (F)))
3167 then
3168 New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
3169 Temp_Typ := Etype (F);
3171 else
3172 New_A := Relocate_Node (A);
3173 end if;
3175 Set_Sloc (New_A, Sloc (N));
3177 -- If the actual has a by-reference type, it cannot be copied,
3178 -- so its value is captured in a renaming declaration. Otherwise
3179 -- declare a local constant initialized with the actual.
3181 -- We also use a renaming declaration for expressions of an array
3182 -- type that is not bit-packed, both for efficiency reasons and to
3183 -- respect the semantics of the call: in most cases the original
3184 -- call will pass the parameter by reference, and thus the inlined
3185 -- code will have the same semantics.
3187 -- Finally, we need a renaming declaration in the case of limited
3188 -- types for which initialization cannot be by copy either.
3190 if Ekind (F) = E_In_Parameter
3191 and then not Is_By_Reference_Type (Etype (A))
3192 and then not Is_Limited_Type (Etype (A))
3193 and then
3194 (not Is_Array_Type (Etype (A))
3195 or else not Is_Object_Reference (A)
3196 or else Is_Bit_Packed_Array (Etype (A)))
3197 then
3198 Decl :=
3199 Make_Object_Declaration (Loc,
3200 Defining_Identifier => Temp,
3201 Constant_Present => True,
3202 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3203 Expression => New_A);
3205 else
3206 -- In GNATprove mode, make an explicit copy of input
3207 -- parameters when formal and actual types differ, to make
3208 -- sure any check on the type conversion will be issued.
3209 -- The legality of the copy is ensured by calling first
3210 -- Call_Can_Be_Inlined_In_GNATprove_Mode.
3212 if GNATprove_Mode
3213 and then Ekind (F) /= E_Out_Parameter
3214 and then not Same_Type (Etype (F), Etype (A))
3215 then
3216 pragma Assert (not (Is_By_Reference_Type (Etype (A))));
3217 pragma Assert (not (Is_Limited_Type (Etype (A))));
3219 Append_To (Decls,
3220 Make_Object_Declaration (Loc,
3221 Defining_Identifier => Make_Temporary (Loc, 'C'),
3222 Constant_Present => True,
3223 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3224 Expression => New_Copy_Tree (New_A)));
3225 end if;
3227 Decl :=
3228 Make_Object_Renaming_Declaration (Loc,
3229 Defining_Identifier => Temp,
3230 Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
3231 Name => New_A);
3232 end if;
3234 Append (Decl, Decls);
3235 Set_Renamed_Object (F, Temp);
3236 end if;
3238 Next_Formal (F);
3239 Next_Actual (A);
3240 end loop;
3242 -- Establish target of function call. If context is not assignment or
3243 -- declaration, create a temporary as a target. The declaration for the
3244 -- temporary may be subsequently optimized away if the body is a single
3245 -- expression, or if the left-hand side of the assignment is simple
3246 -- enough, i.e. an entity or an explicit dereference of one.
3248 if Ekind (Subp) = E_Function then
3249 if Nkind (Parent (N)) = N_Assignment_Statement
3250 and then Is_Entity_Name (Name (Parent (N)))
3251 then
3252 Targ := Name (Parent (N));
3254 elsif Nkind (Parent (N)) = N_Assignment_Statement
3255 and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
3256 and then Is_Entity_Name (Prefix (Name (Parent (N))))
3257 then
3258 Targ := Name (Parent (N));
3260 elsif Nkind (Parent (N)) = N_Assignment_Statement
3261 and then Nkind (Name (Parent (N))) = N_Selected_Component
3262 and then Is_Entity_Name (Prefix (Name (Parent (N))))
3263 then
3264 Targ := New_Copy_Tree (Name (Parent (N)));
3266 elsif Nkind (Parent (N)) = N_Object_Declaration
3267 and then Is_Limited_Type (Etype (Subp))
3268 then
3269 Targ := Defining_Identifier (Parent (N));
3271 -- New semantics: In an object declaration avoid an extra copy
3272 -- of the result of a call to an inlined function that returns
3273 -- an unconstrained type
3275 elsif Back_End_Inlining
3276 and then Nkind (Parent (N)) = N_Object_Declaration
3277 and then Is_Unc
3278 then
3279 Targ := Defining_Identifier (Parent (N));
3281 else
3282 -- Replace call with temporary and create its declaration
3284 Temp := Make_Temporary (Loc, 'C');
3285 Set_Is_Internal (Temp);
3287 -- For the unconstrained case, the generated temporary has the
3288 -- same constrained declaration as the result variable. It may
3289 -- eventually be possible to remove that temporary and use the
3290 -- result variable directly.
3292 if Is_Unc and then Nkind (Parent (N)) /= N_Assignment_Statement
3293 then
3294 Decl :=
3295 Make_Object_Declaration (Loc,
3296 Defining_Identifier => Temp,
3297 Object_Definition =>
3298 New_Copy_Tree (Object_Definition (Parent (Targ1))));
3300 Replace_Formals (Decl);
3302 else
3303 Decl :=
3304 Make_Object_Declaration (Loc,
3305 Defining_Identifier => Temp,
3306 Object_Definition => New_Occurrence_Of (Ret_Type, Loc));
3308 Set_Etype (Temp, Ret_Type);
3309 end if;
3311 Set_No_Initialization (Decl);
3312 Append (Decl, Decls);
3313 Rewrite (N, New_Occurrence_Of (Temp, Loc));
3314 Targ := Temp;
3315 end if;
3316 end if;
3318 Insert_Actions (N, Decls);
3320 if Is_Unc_Decl then
3322 -- Special management for inlining a call to a function that returns
3323 -- an unconstrained type and initializes an object declaration: we
3324 -- avoid generating undesired extra calls and goto statements.
3326 -- Given:
3327 -- function Func (...) return String is
3328 -- begin
3329 -- declare
3330 -- Result : String (1 .. 4);
3331 -- begin
3332 -- Proc (Result, ...);
3333 -- return Result;
3334 -- end;
3335 -- end Func;
3337 -- Result : String := Func (...);
3339 -- Replace this object declaration by:
3341 -- Result : String (1 .. 4);
3342 -- Proc (Result, ...);
3344 Remove_Homonym (Targ);
3346 Decl :=
3347 Make_Object_Declaration
3348 (Loc,
3349 Defining_Identifier => Targ,
3350 Object_Definition =>
3351 New_Copy_Tree (Object_Definition (Parent (Targ1))));
3352 Replace_Formals (Decl);
3353 Rewrite (Parent (N), Decl);
3354 Analyze (Parent (N));
3356 -- Avoid spurious warnings since we know that this declaration is
3357 -- referenced by the procedure call.
3359 Set_Never_Set_In_Source (Targ, False);
3361 -- Remove the local declaration of the extended return stmt from the
3362 -- inlined code
3364 Remove (Parent (Targ1));
3366 -- Update the reference to the result (since we have rewriten the
3367 -- object declaration)
3369 declare
3370 Blk_Call_Stmt : Node_Id;
3372 begin
3373 -- Capture the call to the procedure
3375 Blk_Call_Stmt :=
3376 First (Statements (Handled_Statement_Sequence (Blk)));
3377 pragma Assert
3378 (Nkind (Blk_Call_Stmt) = N_Procedure_Call_Statement);
3380 Remove (First (Parameter_Associations (Blk_Call_Stmt)));
3381 Prepend_To (Parameter_Associations (Blk_Call_Stmt),
3382 New_Occurrence_Of (Targ, Loc));
3383 end;
3385 -- Remove the return statement
3387 pragma Assert
3388 (Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
3389 N_Simple_Return_Statement);
3391 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
3392 end if;
3394 -- Traverse the tree and replace formals with actuals or their thunks.
3395 -- Attach block to tree before analysis and rewriting.
3397 Replace_Formals (Blk);
3398 Set_Parent (Blk, N);
3400 if GNATprove_Mode then
3401 null;
3403 elsif not Comes_From_Source (Subp) or else Is_Predef then
3404 Reset_Slocs (Blk);
3405 end if;
3407 if Is_Unc_Decl then
3409 -- No action needed since return statement has been already removed
3411 null;
3413 elsif Present (Exit_Lab) then
3415 -- If there's a single return statement at the end of the subprogram,
3416 -- the corresponding goto statement and the corresponding label are
3417 -- useless.
3419 if Num_Ret = 1
3420 and then
3421 Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
3422 N_Goto_Statement
3423 then
3424 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
3425 else
3426 Append (Lab_Decl, (Declarations (Blk)));
3427 Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
3428 end if;
3429 end if;
3431 -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors
3432 -- on conflicting private views that Gigi would ignore. If this is a
3433 -- predefined unit, analyze with checks off, as is done in the non-
3434 -- inlined run-time units.
3436 declare
3437 I_Flag : constant Boolean := In_Inlined_Body;
3439 begin
3440 In_Inlined_Body := True;
3442 if Is_Predef then
3443 declare
3444 Style : constant Boolean := Style_Check;
3446 begin
3447 Style_Check := False;
3449 -- Search for dispatching calls that use the Object.Operation
3450 -- notation using an Object that is a parameter of the inlined
3451 -- function. We reset the decoration of Operation to force
3452 -- the reanalysis of the inlined dispatching call because
3453 -- the actual object has been inlined.
3455 Reset_Dispatching_Calls (Blk);
3457 Analyze (Blk, Suppress => All_Checks);
3458 Style_Check := Style;
3459 end;
3461 else
3462 Analyze (Blk);
3463 end if;
3465 In_Inlined_Body := I_Flag;
3466 end;
3468 if Ekind (Subp) = E_Procedure then
3469 Rewrite_Procedure_Call (N, Blk);
3471 else
3472 Rewrite_Function_Call (N, Blk);
3474 if Is_Unc_Decl then
3475 null;
3477 -- For the unconstrained case, the replacement of the call has been
3478 -- made prior to the complete analysis of the generated declarations.
3479 -- Propagate the proper type now.
3481 elsif Is_Unc then
3482 if Nkind (N) = N_Identifier then
3483 Set_Etype (N, Etype (Entity (N)));
3484 else
3485 Set_Etype (N, Etype (Targ1));
3486 end if;
3487 end if;
3488 end if;
3490 Restore_Env;
3492 -- Cleanup mapping between formals and actuals for other expansions
3494 F := First_Formal (Subp);
3495 while Present (F) loop
3496 Set_Renamed_Object (F, Empty);
3497 Next_Formal (F);
3498 end loop;
3499 end Expand_Inlined_Call;
3501 --------------------------
3502 -- Get_Code_Unit_Entity --
3503 --------------------------
3505 function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id is
3506 Unit : Entity_Id := Cunit_Entity (Get_Code_Unit (E));
3508 begin
3509 if Ekind (Unit) = E_Package_Body then
3510 Unit := Spec_Entity (Unit);
3511 end if;
3513 return Unit;
3514 end Get_Code_Unit_Entity;
3516 ------------------------------
3517 -- Has_Excluded_Declaration --
3518 ------------------------------
3520 function Has_Excluded_Declaration
3521 (Subp : Entity_Id;
3522 Decls : List_Id) return Boolean
3524 D : Node_Id;
3526 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
3527 -- Nested subprograms make a given body ineligible for inlining, but
3528 -- we make an exception for instantiations of unchecked conversion.
3529 -- The body has not been analyzed yet, so check the name, and verify
3530 -- that the visible entity with that name is the predefined unit.
3532 -----------------------------
3533 -- Is_Unchecked_Conversion --
3534 -----------------------------
3536 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
3537 Id : constant Node_Id := Name (D);
3538 Conv : Entity_Id;
3540 begin
3541 if Nkind (Id) = N_Identifier
3542 and then Chars (Id) = Name_Unchecked_Conversion
3543 then
3544 Conv := Current_Entity (Id);
3546 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
3547 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
3548 then
3549 Conv := Current_Entity (Selector_Name (Id));
3550 else
3551 return False;
3552 end if;
3554 return Present (Conv)
3555 and then Is_Predefined_Unit (Get_Source_Unit (Conv))
3556 and then Is_Intrinsic_Subprogram (Conv);
3557 end Is_Unchecked_Conversion;
3559 -- Start of processing for Has_Excluded_Declaration
3561 begin
3562 -- No action needed if the check is not needed
3564 if not Check_Inlining_Restrictions then
3565 return False;
3566 end if;
3568 D := First (Decls);
3569 while Present (D) loop
3571 -- First declarations universally excluded
3573 if Nkind (D) = N_Package_Declaration then
3574 Cannot_Inline
3575 ("cannot inline & (nested package declaration)?", D, Subp);
3576 return True;
3578 elsif Nkind (D) = N_Package_Instantiation then
3579 Cannot_Inline
3580 ("cannot inline & (nested package instantiation)?", D, Subp);
3581 return True;
3582 end if;
3584 -- Then declarations excluded only for front-end inlining
3586 if Back_End_Inlining then
3587 null;
3589 elsif Nkind (D) = N_Task_Type_Declaration
3590 or else Nkind (D) = N_Single_Task_Declaration
3591 then
3592 Cannot_Inline
3593 ("cannot inline & (nested task type declaration)?", D, Subp);
3594 return True;
3596 elsif Nkind (D) = N_Protected_Type_Declaration
3597 or else Nkind (D) = N_Single_Protected_Declaration
3598 then
3599 Cannot_Inline
3600 ("cannot inline & (nested protected type declaration)?",
3601 D, Subp);
3602 return True;
3604 elsif Nkind (D) = N_Subprogram_Body then
3605 Cannot_Inline
3606 ("cannot inline & (nested subprogram)?", D, Subp);
3607 return True;
3609 elsif Nkind (D) = N_Function_Instantiation
3610 and then not Is_Unchecked_Conversion (D)
3611 then
3612 Cannot_Inline
3613 ("cannot inline & (nested function instantiation)?", D, Subp);
3614 return True;
3616 elsif Nkind (D) = N_Procedure_Instantiation then
3617 Cannot_Inline
3618 ("cannot inline & (nested procedure instantiation)?", D, Subp);
3619 return True;
3621 -- Subtype declarations with predicates will generate predicate
3622 -- functions, i.e. nested subprogram bodies, so inlining is not
3623 -- possible.
3625 elsif Nkind (D) = N_Subtype_Declaration
3626 and then Present (Aspect_Specifications (D))
3627 then
3628 declare
3629 A : Node_Id;
3630 A_Id : Aspect_Id;
3632 begin
3633 A := First (Aspect_Specifications (D));
3634 while Present (A) loop
3635 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3637 if A_Id = Aspect_Predicate
3638 or else A_Id = Aspect_Static_Predicate
3639 or else A_Id = Aspect_Dynamic_Predicate
3640 then
3641 Cannot_Inline
3642 ("cannot inline & (subtype declaration with "
3643 & "predicate)?", D, Subp);
3644 return True;
3645 end if;
3647 Next (A);
3648 end loop;
3649 end;
3650 end if;
3652 Next (D);
3653 end loop;
3655 return False;
3656 end Has_Excluded_Declaration;
3658 ----------------------------
3659 -- Has_Excluded_Statement --
3660 ----------------------------
3662 function Has_Excluded_Statement
3663 (Subp : Entity_Id;
3664 Stats : List_Id) return Boolean
3666 S : Node_Id;
3667 E : Node_Id;
3669 begin
3670 -- No action needed if the check is not needed
3672 if not Check_Inlining_Restrictions then
3673 return False;
3674 end if;
3676 S := First (Stats);
3677 while Present (S) loop
3678 if Nkind_In (S, N_Abort_Statement,
3679 N_Asynchronous_Select,
3680 N_Conditional_Entry_Call,
3681 N_Delay_Relative_Statement,
3682 N_Delay_Until_Statement,
3683 N_Selective_Accept,
3684 N_Timed_Entry_Call)
3685 then
3686 Cannot_Inline
3687 ("cannot inline & (non-allowed statement)?", S, Subp);
3688 return True;
3690 elsif Nkind (S) = N_Block_Statement then
3691 if Present (Declarations (S))
3692 and then Has_Excluded_Declaration (Subp, Declarations (S))
3693 then
3694 return True;
3696 elsif Present (Handled_Statement_Sequence (S)) then
3697 if not Back_End_Inlining
3698 and then
3699 Present
3700 (Exception_Handlers (Handled_Statement_Sequence (S)))
3701 then
3702 Cannot_Inline
3703 ("cannot inline& (exception handler)?",
3704 First (Exception_Handlers
3705 (Handled_Statement_Sequence (S))),
3706 Subp);
3707 return True;
3709 elsif Has_Excluded_Statement
3710 (Subp, Statements (Handled_Statement_Sequence (S)))
3711 then
3712 return True;
3713 end if;
3714 end if;
3716 elsif Nkind (S) = N_Case_Statement then
3717 E := First (Alternatives (S));
3718 while Present (E) loop
3719 if Has_Excluded_Statement (Subp, Statements (E)) then
3720 return True;
3721 end if;
3723 Next (E);
3724 end loop;
3726 elsif Nkind (S) = N_If_Statement then
3727 if Has_Excluded_Statement (Subp, Then_Statements (S)) then
3728 return True;
3729 end if;
3731 if Present (Elsif_Parts (S)) then
3732 E := First (Elsif_Parts (S));
3733 while Present (E) loop
3734 if Has_Excluded_Statement (Subp, Then_Statements (E)) then
3735 return True;
3736 end if;
3738 Next (E);
3739 end loop;
3740 end if;
3742 if Present (Else_Statements (S))
3743 and then Has_Excluded_Statement (Subp, Else_Statements (S))
3744 then
3745 return True;
3746 end if;
3748 elsif Nkind (S) = N_Loop_Statement
3749 and then Has_Excluded_Statement (Subp, Statements (S))
3750 then
3751 return True;
3753 elsif Nkind (S) = N_Extended_Return_Statement then
3754 if Present (Handled_Statement_Sequence (S))
3755 and then
3756 Has_Excluded_Statement
3757 (Subp, Statements (Handled_Statement_Sequence (S)))
3758 then
3759 return True;
3761 elsif not Back_End_Inlining
3762 and then Present (Handled_Statement_Sequence (S))
3763 and then
3764 Present (Exception_Handlers
3765 (Handled_Statement_Sequence (S)))
3766 then
3767 Cannot_Inline
3768 ("cannot inline& (exception handler)?",
3769 First (Exception_Handlers (Handled_Statement_Sequence (S))),
3770 Subp);
3771 return True;
3772 end if;
3773 end if;
3775 Next (S);
3776 end loop;
3778 return False;
3779 end Has_Excluded_Statement;
3781 --------------------------
3782 -- Has_Initialized_Type --
3783 --------------------------
3785 function Has_Initialized_Type (E : Entity_Id) return Boolean is
3786 E_Body : constant Node_Id := Subprogram_Body (E);
3787 Decl : Node_Id;
3789 begin
3790 if No (E_Body) then -- imported subprogram
3791 return False;
3793 else
3794 Decl := First (Declarations (E_Body));
3795 while Present (Decl) loop
3796 if Nkind (Decl) = N_Full_Type_Declaration
3797 and then Present (Init_Proc (Defining_Identifier (Decl)))
3798 then
3799 return True;
3800 end if;
3802 Next (Decl);
3803 end loop;
3804 end if;
3806 return False;
3807 end Has_Initialized_Type;
3809 -----------------------
3810 -- Has_Single_Return --
3811 -----------------------
3813 function Has_Single_Return (N : Node_Id) return Boolean is
3814 Return_Statement : Node_Id := Empty;
3816 function Check_Return (N : Node_Id) return Traverse_Result;
3818 ------------------
3819 -- Check_Return --
3820 ------------------
3822 function Check_Return (N : Node_Id) return Traverse_Result is
3823 begin
3824 if Nkind (N) = N_Simple_Return_Statement then
3825 if Present (Expression (N))
3826 and then Is_Entity_Name (Expression (N))
3827 then
3828 if No (Return_Statement) then
3829 Return_Statement := N;
3830 return OK;
3832 elsif Chars (Expression (N)) =
3833 Chars (Expression (Return_Statement))
3834 then
3835 return OK;
3837 else
3838 return Abandon;
3839 end if;
3841 -- A return statement within an extended return is a noop
3842 -- after inlining.
3844 elsif No (Expression (N))
3845 and then
3846 Nkind (Parent (Parent (N))) = N_Extended_Return_Statement
3847 then
3848 return OK;
3850 else
3851 -- Expression has wrong form
3853 return Abandon;
3854 end if;
3856 -- We can only inline a build-in-place function if it has a single
3857 -- extended return.
3859 elsif Nkind (N) = N_Extended_Return_Statement then
3860 if No (Return_Statement) then
3861 Return_Statement := N;
3862 return OK;
3864 else
3865 return Abandon;
3866 end if;
3868 else
3869 return OK;
3870 end if;
3871 end Check_Return;
3873 function Check_All_Returns is new Traverse_Func (Check_Return);
3875 -- Start of processing for Has_Single_Return
3877 begin
3878 if Check_All_Returns (N) /= OK then
3879 return False;
3881 elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
3882 return True;
3884 else
3885 return Present (Declarations (N))
3886 and then Present (First (Declarations (N)))
3887 and then Chars (Expression (Return_Statement)) =
3888 Chars (Defining_Identifier (First (Declarations (N))));
3889 end if;
3890 end Has_Single_Return;
3892 -----------------------------
3893 -- In_Main_Unit_Or_Subunit --
3894 -----------------------------
3896 function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean is
3897 Comp : Node_Id := Cunit (Get_Code_Unit (E));
3899 begin
3900 -- Check whether the subprogram or package to inline is within the main
3901 -- unit or its spec or within a subunit. In either case there are no
3902 -- additional bodies to process. If the subprogram appears in a parent
3903 -- of the current unit, the check on whether inlining is possible is
3904 -- done in Analyze_Inlined_Bodies.
3906 while Nkind (Unit (Comp)) = N_Subunit loop
3907 Comp := Library_Unit (Comp);
3908 end loop;
3910 return Comp = Cunit (Main_Unit)
3911 or else Comp = Library_Unit (Cunit (Main_Unit));
3912 end In_Main_Unit_Or_Subunit;
3914 ----------------
3915 -- Initialize --
3916 ----------------
3918 procedure Initialize is
3919 begin
3920 Pending_Descriptor.Init;
3921 Pending_Instantiations.Init;
3922 Inlined_Bodies.Init;
3923 Successors.Init;
3924 Inlined.Init;
3926 for J in Hash_Headers'Range loop
3927 Hash_Headers (J) := No_Subp;
3928 end loop;
3930 Inlined_Calls := No_Elist;
3931 Backend_Calls := No_Elist;
3932 Backend_Inlined_Subps := No_Elist;
3933 Backend_Not_Inlined_Subps := No_Elist;
3934 end Initialize;
3936 ------------------------
3937 -- Instantiate_Bodies --
3938 ------------------------
3940 -- Generic bodies contain all the non-local references, so an
3941 -- instantiation does not need any more context than Standard
3942 -- itself, even if the instantiation appears in an inner scope.
3943 -- Generic associations have verified that the contract model is
3944 -- satisfied, so that any error that may occur in the analysis of
3945 -- the body is an internal error.
3947 procedure Instantiate_Bodies is
3948 J : Nat;
3949 Info : Pending_Body_Info;
3951 begin
3952 if Serious_Errors_Detected = 0 then
3953 Expander_Active := (Operating_Mode = Opt.Generate_Code);
3954 Push_Scope (Standard_Standard);
3955 To_Clean := New_Elmt_List;
3957 if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
3958 Start_Generic;
3959 end if;
3961 -- A body instantiation may generate additional instantiations, so
3962 -- the following loop must scan to the end of a possibly expanding
3963 -- set (that's why we can't simply use a FOR loop here).
3965 J := 0;
3966 while J <= Pending_Instantiations.Last
3967 and then Serious_Errors_Detected = 0
3968 loop
3969 Info := Pending_Instantiations.Table (J);
3971 -- If the instantiation node is absent, it has been removed
3972 -- as part of unreachable code.
3974 if No (Info.Inst_Node) then
3975 null;
3977 elsif Nkind (Info.Act_Decl) = N_Package_Declaration then
3978 Instantiate_Package_Body (Info);
3979 Add_Scope_To_Clean (Defining_Entity (Info.Act_Decl));
3981 else
3982 Instantiate_Subprogram_Body (Info);
3983 end if;
3985 J := J + 1;
3986 end loop;
3988 -- Reset the table of instantiations. Additional instantiations
3989 -- may be added through inlining, when additional bodies are
3990 -- analyzed.
3992 Pending_Instantiations.Init;
3994 -- We can now complete the cleanup actions of scopes that contain
3995 -- pending instantiations (skipped for generic units, since we
3996 -- never need any cleanups in generic units).
3998 if Expander_Active
3999 and then not Is_Generic_Unit (Main_Unit_Entity)
4000 then
4001 Cleanup_Scopes;
4002 elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
4003 End_Generic;
4004 end if;
4006 Pop_Scope;
4007 end if;
4008 end Instantiate_Bodies;
4010 ---------------
4011 -- Is_Nested --
4012 ---------------
4014 function Is_Nested (E : Entity_Id) return Boolean is
4015 Scop : Entity_Id;
4017 begin
4018 Scop := Scope (E);
4019 while Scop /= Standard_Standard loop
4020 if Ekind (Scop) in Subprogram_Kind then
4021 return True;
4023 elsif Ekind (Scop) = E_Task_Type
4024 or else Ekind (Scop) = E_Entry
4025 or else Ekind (Scop) = E_Entry_Family
4026 then
4027 return True;
4028 end if;
4030 Scop := Scope (Scop);
4031 end loop;
4033 return False;
4034 end Is_Nested;
4036 ------------------------
4037 -- List_Inlining_Info --
4038 ------------------------
4040 procedure List_Inlining_Info is
4041 Elmt : Elmt_Id;
4042 Nod : Node_Id;
4043 Count : Nat;
4045 begin
4046 if not Debug_Flag_Dot_J then
4047 return;
4048 end if;
4050 -- Generate listing of calls inlined by the frontend
4052 if Present (Inlined_Calls) then
4053 Count := 0;
4054 Elmt := First_Elmt (Inlined_Calls);
4055 while Present (Elmt) loop
4056 Nod := Node (Elmt);
4058 if In_Extended_Main_Code_Unit (Nod) then
4059 Count := Count + 1;
4061 if Count = 1 then
4062 Write_Str ("List of calls inlined by the frontend");
4063 Write_Eol;
4064 end if;
4066 Write_Str (" ");
4067 Write_Int (Count);
4068 Write_Str (":");
4069 Write_Location (Sloc (Nod));
4070 Write_Str (":");
4071 Output.Write_Eol;
4072 end if;
4074 Next_Elmt (Elmt);
4075 end loop;
4076 end if;
4078 -- Generate listing of calls passed to the backend
4080 if Present (Backend_Calls) then
4081 Count := 0;
4083 Elmt := First_Elmt (Backend_Calls);
4084 while Present (Elmt) loop
4085 Nod := Node (Elmt);
4087 if In_Extended_Main_Code_Unit (Nod) then
4088 Count := Count + 1;
4090 if Count = 1 then
4091 Write_Str ("List of inlined calls passed to the backend");
4092 Write_Eol;
4093 end if;
4095 Write_Str (" ");
4096 Write_Int (Count);
4097 Write_Str (":");
4098 Write_Location (Sloc (Nod));
4099 Output.Write_Eol;
4100 end if;
4102 Next_Elmt (Elmt);
4103 end loop;
4104 end if;
4106 -- Generate listing of subprograms passed to the backend
4108 if Present (Backend_Inlined_Subps) and then Back_End_Inlining then
4109 Count := 0;
4111 Elmt := First_Elmt (Backend_Inlined_Subps);
4112 while Present (Elmt) loop
4113 Nod := Node (Elmt);
4115 Count := Count + 1;
4117 if Count = 1 then
4118 Write_Str
4119 ("List of inlined subprograms passed to the backend");
4120 Write_Eol;
4121 end if;
4123 Write_Str (" ");
4124 Write_Int (Count);
4125 Write_Str (":");
4126 Write_Name (Chars (Nod));
4127 Write_Str (" (");
4128 Write_Location (Sloc (Nod));
4129 Write_Str (")");
4130 Output.Write_Eol;
4132 Next_Elmt (Elmt);
4133 end loop;
4134 end if;
4136 -- Generate listing of subprograms that cannot be inlined by the backend
4138 if Present (Backend_Not_Inlined_Subps) and then Back_End_Inlining then
4139 Count := 0;
4141 Elmt := First_Elmt (Backend_Not_Inlined_Subps);
4142 while Present (Elmt) loop
4143 Nod := Node (Elmt);
4145 Count := Count + 1;
4147 if Count = 1 then
4148 Write_Str
4149 ("List of subprograms that cannot be inlined by the backend");
4150 Write_Eol;
4151 end if;
4153 Write_Str (" ");
4154 Write_Int (Count);
4155 Write_Str (":");
4156 Write_Name (Chars (Nod));
4157 Write_Str (" (");
4158 Write_Location (Sloc (Nod));
4159 Write_Str (")");
4160 Output.Write_Eol;
4162 Next_Elmt (Elmt);
4163 end loop;
4164 end if;
4165 end List_Inlining_Info;
4167 ----------
4168 -- Lock --
4169 ----------
4171 procedure Lock is
4172 begin
4173 Pending_Instantiations.Release;
4174 Pending_Instantiations.Locked := True;
4175 Inlined_Bodies.Release;
4176 Inlined_Bodies.Locked := True;
4177 Successors.Release;
4178 Successors.Locked := True;
4179 Inlined.Release;
4180 Inlined.Locked := True;
4181 end Lock;
4183 --------------------------------
4184 -- Remove_Aspects_And_Pragmas --
4185 --------------------------------
4187 procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id) is
4188 procedure Remove_Items (List : List_Id);
4189 -- Remove all useless aspects/pragmas from a particular list
4191 ------------------
4192 -- Remove_Items --
4193 ------------------
4195 procedure Remove_Items (List : List_Id) is
4196 Item : Node_Id;
4197 Item_Id : Node_Id;
4198 Next_Item : Node_Id;
4200 begin
4201 -- Traverse the list looking for an aspect specification or a pragma
4203 Item := First (List);
4204 while Present (Item) loop
4205 Next_Item := Next (Item);
4207 if Nkind (Item) = N_Aspect_Specification then
4208 Item_Id := Identifier (Item);
4209 elsif Nkind (Item) = N_Pragma then
4210 Item_Id := Pragma_Identifier (Item);
4211 else
4212 Item_Id := Empty;
4213 end if;
4215 if Present (Item_Id)
4216 and then Nam_In (Chars (Item_Id), Name_Contract_Cases,
4217 Name_Global,
4218 Name_Depends,
4219 Name_Postcondition,
4220 Name_Precondition,
4221 Name_Refined_Global,
4222 Name_Refined_Depends,
4223 Name_Refined_Post,
4224 Name_Test_Case,
4225 Name_Unmodified,
4226 Name_Unreferenced,
4227 Name_Unused)
4228 then
4229 Remove (Item);
4230 end if;
4232 Item := Next_Item;
4233 end loop;
4234 end Remove_Items;
4236 -- Start of processing for Remove_Aspects_And_Pragmas
4238 begin
4239 Remove_Items (Aspect_Specifications (Body_Decl));
4240 Remove_Items (Declarations (Body_Decl));
4242 -- Pragmas Unmodified, Unreferenced, and Unused may additionally appear
4243 -- in the body of the subprogram.
4245 Remove_Items (Statements (Handled_Statement_Sequence (Body_Decl)));
4246 end Remove_Aspects_And_Pragmas;
4248 --------------------------
4249 -- Remove_Dead_Instance --
4250 --------------------------
4252 procedure Remove_Dead_Instance (N : Node_Id) is
4253 J : Int;
4255 begin
4256 J := 0;
4257 while J <= Pending_Instantiations.Last loop
4258 if Pending_Instantiations.Table (J).Inst_Node = N then
4259 Pending_Instantiations.Table (J).Inst_Node := Empty;
4260 return;
4261 end if;
4263 J := J + 1;
4264 end loop;
4265 end Remove_Dead_Instance;
4267 end Inline;