Update copyright.
[official-gcc.git] / gcc / tree.c
blob013085955212ec0ede1e9b5c35790d8dc75fb808
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
49 /* obstack.[ch] explicitly declined to prototype this. */
50 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
52 #ifdef GATHER_STATISTICS
53 /* Statistics-gathering stuff. */
54 typedef enum
56 d_kind,
57 t_kind,
58 b_kind,
59 s_kind,
60 r_kind,
61 e_kind,
62 c_kind,
63 id_kind,
64 perm_list_kind,
65 temp_list_kind,
66 vec_kind,
67 x_kind,
68 lang_decl,
69 lang_type,
70 all_kinds
71 } tree_node_kind;
73 int tree_node_counts[(int) all_kinds];
74 int tree_node_sizes[(int) all_kinds];
76 static const char * const tree_node_kind_names[] = {
77 "decls",
78 "types",
79 "blocks",
80 "stmts",
81 "refs",
82 "exprs",
83 "constants",
84 "identifiers",
85 "perm_tree_lists",
86 "temp_tree_lists",
87 "vecs",
88 "random kinds",
89 "lang_decl kinds",
90 "lang_type kinds"
92 #endif /* GATHER_STATISTICS */
94 /* Unique id for next decl created. */
95 static int next_decl_uid;
96 /* Unique id for next type created. */
97 static int next_type_uid = 1;
99 /* Since we cannot rehash a type after it is in the table, we have to
100 keep the hash code. */
102 struct type_hash GTY(())
104 unsigned long hash;
105 tree type;
108 /* Initial size of the hash table (rounded to next prime). */
109 #define TYPE_HASH_INITIAL_SIZE 1000
111 /* Now here is the hash table. When recording a type, it is added to
112 the slot whose index is the hash code. Note that the hash table is
113 used for several kinds of types (function types, array types and
114 array index range types, for now). While all these live in the
115 same table, they are completely independent, and the hash code is
116 computed differently for each of these. */
118 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
119 htab_t type_hash_table;
121 static void set_type_quals PARAMS ((tree, int));
122 static void append_random_chars PARAMS ((char *));
123 static int type_hash_eq PARAMS ((const void *, const void *));
124 static hashval_t type_hash_hash PARAMS ((const void *));
125 static void print_type_hash_statistics PARAMS((void));
126 static void finish_vector_type PARAMS((tree));
127 static tree make_vector PARAMS ((enum machine_mode, tree, int));
128 static int type_hash_marked_p PARAMS ((const void *));
130 tree global_trees[TI_MAX];
131 tree integer_types[itk_none];
133 /* Init tree.c. */
135 void
136 init_ttree ()
138 /* Initialize the hash table of types. */
139 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
140 type_hash_eq, 0);
144 /* The name of the object as the assembler will see it (but before any
145 translations made by ASM_OUTPUT_LABELREF). Often this is the same
146 as DECL_NAME. It is an IDENTIFIER_NODE. */
147 tree
148 decl_assembler_name (decl)
149 tree decl;
151 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
152 (*lang_hooks.set_decl_assembler_name) (decl);
153 return DECL_CHECK (decl)->decl.assembler_name;
156 /* Compute the number of bytes occupied by 'node'. This routine only
157 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
158 size_t
159 tree_size (node)
160 tree node;
162 enum tree_code code = TREE_CODE (node);
164 switch (TREE_CODE_CLASS (code))
166 case 'd': /* A decl node */
167 return sizeof (struct tree_decl);
169 case 't': /* a type node */
170 return sizeof (struct tree_type);
172 case 'b': /* a lexical block node */
173 return sizeof (struct tree_block);
175 case 'r': /* a reference */
176 case 'e': /* an expression */
177 case 's': /* an expression with side effects */
178 case '<': /* a comparison expression */
179 case '1': /* a unary arithmetic expression */
180 case '2': /* a binary arithmetic expression */
181 return (sizeof (struct tree_exp)
182 + TREE_CODE_LENGTH (code) * sizeof (char *) - sizeof (char *));
184 case 'c': /* a constant */
185 /* We can't use TREE_CODE_LENGTH for INTEGER_CST, since the number of
186 words is machine-dependent due to varying length of HOST_WIDE_INT,
187 which might be wider than a pointer (e.g., long long). Similarly
188 for REAL_CST, since the number of words is machine-dependent due
189 to varying size and alignment of `double'. */
190 if (code == INTEGER_CST)
191 return sizeof (struct tree_int_cst);
192 else if (code == REAL_CST)
193 return sizeof (struct tree_real_cst);
194 else
195 return (sizeof (struct tree_common)
196 + TREE_CODE_LENGTH (code) * sizeof (char *));
198 case 'x': /* something random, like an identifier. */
200 size_t length;
201 length = (sizeof (struct tree_common)
202 + TREE_CODE_LENGTH (code) * sizeof (char *));
203 if (code == TREE_VEC)
204 length += TREE_VEC_LENGTH (node) * sizeof (char *) - sizeof (char *);
205 return length;
208 default:
209 abort ();
213 /* Return a newly allocated node of code CODE.
214 For decl and type nodes, some other fields are initialized.
215 The rest of the node is initialized to zero.
217 Achoo! I got a code in the node. */
219 tree
220 make_node (code)
221 enum tree_code code;
223 tree t;
224 int type = TREE_CODE_CLASS (code);
225 size_t length;
226 #ifdef GATHER_STATISTICS
227 tree_node_kind kind;
228 #endif
229 struct tree_common ttmp;
231 /* We can't allocate a TREE_VEC without knowing how many elements
232 it will have. */
233 if (code == TREE_VEC)
234 abort ();
236 TREE_SET_CODE ((tree)&ttmp, code);
237 length = tree_size ((tree)&ttmp);
239 #ifdef GATHER_STATISTICS
240 switch (type)
242 case 'd': /* A decl node */
243 kind = d_kind;
244 break;
246 case 't': /* a type node */
247 kind = t_kind;
248 break;
250 case 'b': /* a lexical block */
251 kind = b_kind;
252 break;
254 case 's': /* an expression with side effects */
255 kind = s_kind;
256 break;
258 case 'r': /* a reference */
259 kind = r_kind;
260 break;
262 case 'e': /* an expression */
263 case '<': /* a comparison expression */
264 case '1': /* a unary arithmetic expression */
265 case '2': /* a binary arithmetic expression */
266 kind = e_kind;
267 break;
269 case 'c': /* a constant */
270 kind = c_kind;
271 break;
273 case 'x': /* something random, like an identifier. */
274 if (code == IDENTIFIER_NODE)
275 kind = id_kind;
276 else if (code == TREE_VEC)
277 kind = vec_kind;
278 else
279 kind = x_kind;
280 break;
282 default:
283 abort ();
286 tree_node_counts[(int) kind]++;
287 tree_node_sizes[(int) kind] += length;
288 #endif
290 t = ggc_alloc_tree (length);
292 memset ((PTR) t, 0, length);
294 TREE_SET_CODE (t, code);
296 switch (type)
298 case 's':
299 TREE_SIDE_EFFECTS (t) = 1;
300 break;
302 case 'd':
303 if (code != FUNCTION_DECL)
304 DECL_ALIGN (t) = 1;
305 DECL_USER_ALIGN (t) = 0;
306 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
307 DECL_SOURCE_LINE (t) = lineno;
308 DECL_SOURCE_FILE (t) =
309 (input_filename) ? input_filename : "<built-in>";
310 DECL_UID (t) = next_decl_uid++;
312 /* We have not yet computed the alias set for this declaration. */
313 DECL_POINTER_ALIAS_SET (t) = -1;
314 break;
316 case 't':
317 TYPE_UID (t) = next_type_uid++;
318 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
319 TYPE_USER_ALIGN (t) = 0;
320 TYPE_MAIN_VARIANT (t) = t;
322 /* Default to no attributes for type, but let target change that. */
323 TYPE_ATTRIBUTES (t) = NULL_TREE;
324 (*targetm.set_default_type_attributes) (t);
326 /* We have not yet computed the alias set for this type. */
327 TYPE_ALIAS_SET (t) = -1;
328 break;
330 case 'c':
331 TREE_CONSTANT (t) = 1;
332 break;
334 case 'e':
335 switch (code)
337 case INIT_EXPR:
338 case MODIFY_EXPR:
339 case VA_ARG_EXPR:
340 case RTL_EXPR:
341 case PREDECREMENT_EXPR:
342 case PREINCREMENT_EXPR:
343 case POSTDECREMENT_EXPR:
344 case POSTINCREMENT_EXPR:
345 /* All of these have side-effects, no matter what their
346 operands are. */
347 TREE_SIDE_EFFECTS (t) = 1;
348 break;
350 default:
351 break;
353 break;
356 return t;
359 /* Return a new node with the same contents as NODE except that its
360 TREE_CHAIN is zero and it has a fresh uid. */
362 tree
363 copy_node (node)
364 tree node;
366 tree t;
367 enum tree_code code = TREE_CODE (node);
368 size_t length;
370 length = tree_size (node);
371 t = ggc_alloc_tree (length);
372 memcpy (t, node, length);
374 TREE_CHAIN (t) = 0;
375 TREE_ASM_WRITTEN (t) = 0;
377 if (TREE_CODE_CLASS (code) == 'd')
378 DECL_UID (t) = next_decl_uid++;
379 else if (TREE_CODE_CLASS (code) == 't')
381 TYPE_UID (t) = next_type_uid++;
382 /* The following is so that the debug code for
383 the copy is different from the original type.
384 The two statements usually duplicate each other
385 (because they clear fields of the same union),
386 but the optimizer should catch that. */
387 TYPE_SYMTAB_POINTER (t) = 0;
388 TYPE_SYMTAB_ADDRESS (t) = 0;
391 return t;
394 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
395 For example, this can copy a list made of TREE_LIST nodes. */
397 tree
398 copy_list (list)
399 tree list;
401 tree head;
402 tree prev, next;
404 if (list == 0)
405 return 0;
407 head = prev = copy_node (list);
408 next = TREE_CHAIN (list);
409 while (next)
411 TREE_CHAIN (prev) = copy_node (next);
412 prev = TREE_CHAIN (prev);
413 next = TREE_CHAIN (next);
415 return head;
419 /* Return a newly constructed INTEGER_CST node whose constant value
420 is specified by the two ints LOW and HI.
421 The TREE_TYPE is set to `int'.
423 This function should be used via the `build_int_2' macro. */
425 tree
426 build_int_2_wide (low, hi)
427 unsigned HOST_WIDE_INT low;
428 HOST_WIDE_INT hi;
430 tree t = make_node (INTEGER_CST);
432 TREE_INT_CST_LOW (t) = low;
433 TREE_INT_CST_HIGH (t) = hi;
434 TREE_TYPE (t) = integer_type_node;
435 return t;
438 /* Return a new VECTOR_CST node whose type is TYPE and whose values
439 are in a list pointed by VALS. */
441 tree
442 build_vector (type, vals)
443 tree type, vals;
445 tree v = make_node (VECTOR_CST);
446 int over1 = 0, over2 = 0;
447 tree link;
449 TREE_VECTOR_CST_ELTS (v) = vals;
450 TREE_TYPE (v) = type;
452 /* Iterate through elements and check for overflow. */
453 for (link = vals; link; link = TREE_CHAIN (link))
455 tree value = TREE_VALUE (link);
457 over1 |= TREE_OVERFLOW (value);
458 over2 |= TREE_CONSTANT_OVERFLOW (value);
461 TREE_OVERFLOW (v) = over1;
462 TREE_CONSTANT_OVERFLOW (v) = over2;
464 return v;
467 /* Return a new REAL_CST node whose type is TYPE and value is D. */
469 tree
470 build_real (type, d)
471 tree type;
472 REAL_VALUE_TYPE d;
474 tree v;
475 REAL_VALUE_TYPE *dp;
476 int overflow = 0;
478 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
479 Consider doing it via real_convert now. */
481 v = make_node (REAL_CST);
482 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
483 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
485 TREE_TYPE (v) = type;
486 TREE_REAL_CST_PTR (v) = dp;
487 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
488 return v;
491 /* Return a new REAL_CST node whose type is TYPE
492 and whose value is the integer value of the INTEGER_CST node I. */
494 REAL_VALUE_TYPE
495 real_value_from_int_cst (type, i)
496 tree type ATTRIBUTE_UNUSED, i;
498 REAL_VALUE_TYPE d;
500 /* Clear all bits of the real value type so that we can later do
501 bitwise comparisons to see if two values are the same. */
502 memset ((char *) &d, 0, sizeof d);
504 if (! TREE_UNSIGNED (TREE_TYPE (i)))
505 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
506 TYPE_MODE (type));
507 else
508 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
509 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
510 return d;
513 /* Given a tree representing an integer constant I, return a tree
514 representing the same value as a floating-point constant of type TYPE. */
516 tree
517 build_real_from_int_cst (type, i)
518 tree type;
519 tree i;
521 tree v;
522 int overflow = TREE_OVERFLOW (i);
524 v = build_real (type, real_value_from_int_cst (type, i));
526 TREE_OVERFLOW (v) |= overflow;
527 TREE_CONSTANT_OVERFLOW (v) |= overflow;
528 return v;
531 /* Return a newly constructed STRING_CST node whose value is
532 the LEN characters at STR.
533 The TREE_TYPE is not initialized. */
535 tree
536 build_string (len, str)
537 int len;
538 const char *str;
540 tree s = make_node (STRING_CST);
542 TREE_STRING_LENGTH (s) = len;
543 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
545 return s;
548 /* Return a newly constructed COMPLEX_CST node whose value is
549 specified by the real and imaginary parts REAL and IMAG.
550 Both REAL and IMAG should be constant nodes. TYPE, if specified,
551 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
553 tree
554 build_complex (type, real, imag)
555 tree type;
556 tree real, imag;
558 tree t = make_node (COMPLEX_CST);
560 TREE_REALPART (t) = real;
561 TREE_IMAGPART (t) = imag;
562 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
563 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
564 TREE_CONSTANT_OVERFLOW (t)
565 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
566 return t;
569 /* Build a newly constructed TREE_VEC node of length LEN. */
571 tree
572 make_tree_vec (len)
573 int len;
575 tree t;
576 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
578 #ifdef GATHER_STATISTICS
579 tree_node_counts[(int) vec_kind]++;
580 tree_node_sizes[(int) vec_kind] += length;
581 #endif
583 t = ggc_alloc_tree (length);
585 memset ((PTR) t, 0, length);
586 TREE_SET_CODE (t, TREE_VEC);
587 TREE_VEC_LENGTH (t) = len;
589 return t;
592 /* Return 1 if EXPR is the integer constant zero or a complex constant
593 of zero. */
596 integer_zerop (expr)
597 tree expr;
599 STRIP_NOPS (expr);
601 return ((TREE_CODE (expr) == INTEGER_CST
602 && ! TREE_CONSTANT_OVERFLOW (expr)
603 && TREE_INT_CST_LOW (expr) == 0
604 && TREE_INT_CST_HIGH (expr) == 0)
605 || (TREE_CODE (expr) == COMPLEX_CST
606 && integer_zerop (TREE_REALPART (expr))
607 && integer_zerop (TREE_IMAGPART (expr))));
610 /* Return 1 if EXPR is the integer constant one or the corresponding
611 complex constant. */
614 integer_onep (expr)
615 tree expr;
617 STRIP_NOPS (expr);
619 return ((TREE_CODE (expr) == INTEGER_CST
620 && ! TREE_CONSTANT_OVERFLOW (expr)
621 && TREE_INT_CST_LOW (expr) == 1
622 && TREE_INT_CST_HIGH (expr) == 0)
623 || (TREE_CODE (expr) == COMPLEX_CST
624 && integer_onep (TREE_REALPART (expr))
625 && integer_zerop (TREE_IMAGPART (expr))));
628 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
629 it contains. Likewise for the corresponding complex constant. */
632 integer_all_onesp (expr)
633 tree expr;
635 int prec;
636 int uns;
638 STRIP_NOPS (expr);
640 if (TREE_CODE (expr) == COMPLEX_CST
641 && integer_all_onesp (TREE_REALPART (expr))
642 && integer_zerop (TREE_IMAGPART (expr)))
643 return 1;
645 else if (TREE_CODE (expr) != INTEGER_CST
646 || TREE_CONSTANT_OVERFLOW (expr))
647 return 0;
649 uns = TREE_UNSIGNED (TREE_TYPE (expr));
650 if (!uns)
651 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
652 && TREE_INT_CST_HIGH (expr) == -1);
654 /* Note that using TYPE_PRECISION here is wrong. We care about the
655 actual bits, not the (arbitrary) range of the type. */
656 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
657 if (prec >= HOST_BITS_PER_WIDE_INT)
659 HOST_WIDE_INT high_value;
660 int shift_amount;
662 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
664 if (shift_amount > HOST_BITS_PER_WIDE_INT)
665 /* Can not handle precisions greater than twice the host int size. */
666 abort ();
667 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
668 /* Shifting by the host word size is undefined according to the ANSI
669 standard, so we must handle this as a special case. */
670 high_value = -1;
671 else
672 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
674 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
675 && TREE_INT_CST_HIGH (expr) == high_value);
677 else
678 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
681 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
682 one bit on). */
685 integer_pow2p (expr)
686 tree expr;
688 int prec;
689 HOST_WIDE_INT high, low;
691 STRIP_NOPS (expr);
693 if (TREE_CODE (expr) == COMPLEX_CST
694 && integer_pow2p (TREE_REALPART (expr))
695 && integer_zerop (TREE_IMAGPART (expr)))
696 return 1;
698 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
699 return 0;
701 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
702 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
703 high = TREE_INT_CST_HIGH (expr);
704 low = TREE_INT_CST_LOW (expr);
706 /* First clear all bits that are beyond the type's precision in case
707 we've been sign extended. */
709 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
711 else if (prec > HOST_BITS_PER_WIDE_INT)
712 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
713 else
715 high = 0;
716 if (prec < HOST_BITS_PER_WIDE_INT)
717 low &= ~((HOST_WIDE_INT) (-1) << prec);
720 if (high == 0 && low == 0)
721 return 0;
723 return ((high == 0 && (low & (low - 1)) == 0)
724 || (low == 0 && (high & (high - 1)) == 0));
727 /* Return 1 if EXPR is an integer constant other than zero or a
728 complex constant other than zero. */
731 integer_nonzerop (expr)
732 tree expr;
734 STRIP_NOPS (expr);
736 return ((TREE_CODE (expr) == INTEGER_CST
737 && ! TREE_CONSTANT_OVERFLOW (expr)
738 && (TREE_INT_CST_LOW (expr) != 0
739 || TREE_INT_CST_HIGH (expr) != 0))
740 || (TREE_CODE (expr) == COMPLEX_CST
741 && (integer_nonzerop (TREE_REALPART (expr))
742 || integer_nonzerop (TREE_IMAGPART (expr)))));
745 /* Return the power of two represented by a tree node known to be a
746 power of two. */
749 tree_log2 (expr)
750 tree expr;
752 int prec;
753 HOST_WIDE_INT high, low;
755 STRIP_NOPS (expr);
757 if (TREE_CODE (expr) == COMPLEX_CST)
758 return tree_log2 (TREE_REALPART (expr));
760 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
761 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
763 high = TREE_INT_CST_HIGH (expr);
764 low = TREE_INT_CST_LOW (expr);
766 /* First clear all bits that are beyond the type's precision in case
767 we've been sign extended. */
769 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
771 else if (prec > HOST_BITS_PER_WIDE_INT)
772 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
773 else
775 high = 0;
776 if (prec < HOST_BITS_PER_WIDE_INT)
777 low &= ~((HOST_WIDE_INT) (-1) << prec);
780 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
781 : exact_log2 (low));
784 /* Similar, but return the largest integer Y such that 2 ** Y is less
785 than or equal to EXPR. */
788 tree_floor_log2 (expr)
789 tree expr;
791 int prec;
792 HOST_WIDE_INT high, low;
794 STRIP_NOPS (expr);
796 if (TREE_CODE (expr) == COMPLEX_CST)
797 return tree_log2 (TREE_REALPART (expr));
799 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
800 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
802 high = TREE_INT_CST_HIGH (expr);
803 low = TREE_INT_CST_LOW (expr);
805 /* First clear all bits that are beyond the type's precision in case
806 we've been sign extended. Ignore if type's precision hasn't been set
807 since what we are doing is setting it. */
809 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
811 else if (prec > HOST_BITS_PER_WIDE_INT)
812 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
813 else
815 high = 0;
816 if (prec < HOST_BITS_PER_WIDE_INT)
817 low &= ~((HOST_WIDE_INT) (-1) << prec);
820 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
821 : floor_log2 (low));
824 /* Return 1 if EXPR is the real constant zero. */
827 real_zerop (expr)
828 tree expr;
830 STRIP_NOPS (expr);
832 return ((TREE_CODE (expr) == REAL_CST
833 && ! TREE_CONSTANT_OVERFLOW (expr)
834 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
835 || (TREE_CODE (expr) == COMPLEX_CST
836 && real_zerop (TREE_REALPART (expr))
837 && real_zerop (TREE_IMAGPART (expr))));
840 /* Return 1 if EXPR is the real constant one in real or complex form. */
843 real_onep (expr)
844 tree expr;
846 STRIP_NOPS (expr);
848 return ((TREE_CODE (expr) == REAL_CST
849 && ! TREE_CONSTANT_OVERFLOW (expr)
850 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
851 || (TREE_CODE (expr) == COMPLEX_CST
852 && real_onep (TREE_REALPART (expr))
853 && real_zerop (TREE_IMAGPART (expr))));
856 /* Return 1 if EXPR is the real constant two. */
859 real_twop (expr)
860 tree expr;
862 STRIP_NOPS (expr);
864 return ((TREE_CODE (expr) == REAL_CST
865 && ! TREE_CONSTANT_OVERFLOW (expr)
866 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
867 || (TREE_CODE (expr) == COMPLEX_CST
868 && real_twop (TREE_REALPART (expr))
869 && real_zerop (TREE_IMAGPART (expr))));
872 /* Return 1 if EXPR is the real constant minus one. */
875 real_minus_onep (expr)
876 tree expr;
878 STRIP_NOPS (expr);
880 return ((TREE_CODE (expr) == REAL_CST
881 && ! TREE_CONSTANT_OVERFLOW (expr)
882 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
883 || (TREE_CODE (expr) == COMPLEX_CST
884 && real_minus_onep (TREE_REALPART (expr))
885 && real_zerop (TREE_IMAGPART (expr))));
888 /* Nonzero if EXP is a constant or a cast of a constant. */
891 really_constant_p (exp)
892 tree exp;
894 /* This is not quite the same as STRIP_NOPS. It does more. */
895 while (TREE_CODE (exp) == NOP_EXPR
896 || TREE_CODE (exp) == CONVERT_EXPR
897 || TREE_CODE (exp) == NON_LVALUE_EXPR)
898 exp = TREE_OPERAND (exp, 0);
899 return TREE_CONSTANT (exp);
902 /* Return first list element whose TREE_VALUE is ELEM.
903 Return 0 if ELEM is not in LIST. */
905 tree
906 value_member (elem, list)
907 tree elem, list;
909 while (list)
911 if (elem == TREE_VALUE (list))
912 return list;
913 list = TREE_CHAIN (list);
915 return NULL_TREE;
918 /* Return first list element whose TREE_PURPOSE is ELEM.
919 Return 0 if ELEM is not in LIST. */
921 tree
922 purpose_member (elem, list)
923 tree elem, list;
925 while (list)
927 if (elem == TREE_PURPOSE (list))
928 return list;
929 list = TREE_CHAIN (list);
931 return NULL_TREE;
934 /* Return first list element whose BINFO_TYPE is ELEM.
935 Return 0 if ELEM is not in LIST. */
937 tree
938 binfo_member (elem, list)
939 tree elem, list;
941 while (list)
943 if (elem == BINFO_TYPE (list))
944 return list;
945 list = TREE_CHAIN (list);
947 return NULL_TREE;
950 /* Return nonzero if ELEM is part of the chain CHAIN. */
953 chain_member (elem, chain)
954 tree elem, chain;
956 while (chain)
958 if (elem == chain)
959 return 1;
960 chain = TREE_CHAIN (chain);
963 return 0;
966 /* Return the length of a chain of nodes chained through TREE_CHAIN.
967 We expect a null pointer to mark the end of the chain.
968 This is the Lisp primitive `length'. */
971 list_length (t)
972 tree t;
974 tree tail;
975 int len = 0;
977 for (tail = t; tail; tail = TREE_CHAIN (tail))
978 len++;
980 return len;
983 /* Returns the number of FIELD_DECLs in TYPE. */
986 fields_length (type)
987 tree type;
989 tree t = TYPE_FIELDS (type);
990 int count = 0;
992 for (; t; t = TREE_CHAIN (t))
993 if (TREE_CODE (t) == FIELD_DECL)
994 ++count;
996 return count;
999 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1000 by modifying the last node in chain 1 to point to chain 2.
1001 This is the Lisp primitive `nconc'. */
1003 tree
1004 chainon (op1, op2)
1005 tree op1, op2;
1008 if (op1)
1010 tree t1;
1011 #ifdef ENABLE_TREE_CHECKING
1012 tree t2;
1013 #endif
1015 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1017 TREE_CHAIN (t1) = op2;
1018 #ifdef ENABLE_TREE_CHECKING
1019 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1020 if (t2 == t1)
1021 abort (); /* Circularity created. */
1022 #endif
1023 return op1;
1025 else
1026 return op2;
1029 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1031 tree
1032 tree_last (chain)
1033 tree chain;
1035 tree next;
1036 if (chain)
1037 while ((next = TREE_CHAIN (chain)))
1038 chain = next;
1039 return chain;
1042 /* Reverse the order of elements in the chain T,
1043 and return the new head of the chain (old last element). */
1045 tree
1046 nreverse (t)
1047 tree t;
1049 tree prev = 0, decl, next;
1050 for (decl = t; decl; decl = next)
1052 next = TREE_CHAIN (decl);
1053 TREE_CHAIN (decl) = prev;
1054 prev = decl;
1056 return prev;
1059 /* Return a newly created TREE_LIST node whose
1060 purpose and value fields are PARM and VALUE. */
1062 tree
1063 build_tree_list (parm, value)
1064 tree parm, value;
1066 tree t = make_node (TREE_LIST);
1067 TREE_PURPOSE (t) = parm;
1068 TREE_VALUE (t) = value;
1069 return t;
1072 /* Return a newly created TREE_LIST node whose
1073 purpose and value fields are PURPOSE and VALUE
1074 and whose TREE_CHAIN is CHAIN. */
1076 tree
1077 tree_cons (purpose, value, chain)
1078 tree purpose, value, chain;
1080 tree node;
1082 node = ggc_alloc_tree (sizeof (struct tree_list));
1084 memset (node, 0, sizeof (struct tree_common));
1086 #ifdef GATHER_STATISTICS
1087 tree_node_counts[(int) x_kind]++;
1088 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1089 #endif
1091 TREE_SET_CODE (node, TREE_LIST);
1092 TREE_CHAIN (node) = chain;
1093 TREE_PURPOSE (node) = purpose;
1094 TREE_VALUE (node) = value;
1095 return node;
1099 /* Return the size nominally occupied by an object of type TYPE
1100 when it resides in memory. The value is measured in units of bytes,
1101 and its data type is that normally used for type sizes
1102 (which is the first type created by make_signed_type or
1103 make_unsigned_type). */
1105 tree
1106 size_in_bytes (type)
1107 tree type;
1109 tree t;
1111 if (type == error_mark_node)
1112 return integer_zero_node;
1114 type = TYPE_MAIN_VARIANT (type);
1115 t = TYPE_SIZE_UNIT (type);
1117 if (t == 0)
1119 (*lang_hooks.types.incomplete_type_error) (NULL_TREE, type);
1120 return size_zero_node;
1123 if (TREE_CODE (t) == INTEGER_CST)
1124 force_fit_type (t, 0);
1126 return t;
1129 /* Return the size of TYPE (in bytes) as a wide integer
1130 or return -1 if the size can vary or is larger than an integer. */
1132 HOST_WIDE_INT
1133 int_size_in_bytes (type)
1134 tree type;
1136 tree t;
1138 if (type == error_mark_node)
1139 return 0;
1141 type = TYPE_MAIN_VARIANT (type);
1142 t = TYPE_SIZE_UNIT (type);
1143 if (t == 0
1144 || TREE_CODE (t) != INTEGER_CST
1145 || TREE_OVERFLOW (t)
1146 || TREE_INT_CST_HIGH (t) != 0
1147 /* If the result would appear negative, it's too big to represent. */
1148 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1149 return -1;
1151 return TREE_INT_CST_LOW (t);
1154 /* Return the bit position of FIELD, in bits from the start of the record.
1155 This is a tree of type bitsizetype. */
1157 tree
1158 bit_position (field)
1159 tree field;
1162 return bit_from_pos (DECL_FIELD_OFFSET (field),
1163 DECL_FIELD_BIT_OFFSET (field));
1166 /* Likewise, but return as an integer. Abort if it cannot be represented
1167 in that way (since it could be a signed value, we don't have the option
1168 of returning -1 like int_size_in_byte can. */
1170 HOST_WIDE_INT
1171 int_bit_position (field)
1172 tree field;
1174 return tree_low_cst (bit_position (field), 0);
1177 /* Return the byte position of FIELD, in bytes from the start of the record.
1178 This is a tree of type sizetype. */
1180 tree
1181 byte_position (field)
1182 tree field;
1184 return byte_from_pos (DECL_FIELD_OFFSET (field),
1185 DECL_FIELD_BIT_OFFSET (field));
1188 /* Likewise, but return as an integer. Abort if it cannot be represented
1189 in that way (since it could be a signed value, we don't have the option
1190 of returning -1 like int_size_in_byte can. */
1192 HOST_WIDE_INT
1193 int_byte_position (field)
1194 tree field;
1196 return tree_low_cst (byte_position (field), 0);
1199 /* Return the strictest alignment, in bits, that T is known to have. */
1201 unsigned int
1202 expr_align (t)
1203 tree t;
1205 unsigned int align0, align1;
1207 switch (TREE_CODE (t))
1209 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1210 /* If we have conversions, we know that the alignment of the
1211 object must meet each of the alignments of the types. */
1212 align0 = expr_align (TREE_OPERAND (t, 0));
1213 align1 = TYPE_ALIGN (TREE_TYPE (t));
1214 return MAX (align0, align1);
1216 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1217 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1218 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1219 /* These don't change the alignment of an object. */
1220 return expr_align (TREE_OPERAND (t, 0));
1222 case COND_EXPR:
1223 /* The best we can do is say that the alignment is the least aligned
1224 of the two arms. */
1225 align0 = expr_align (TREE_OPERAND (t, 1));
1226 align1 = expr_align (TREE_OPERAND (t, 2));
1227 return MIN (align0, align1);
1229 case LABEL_DECL: case CONST_DECL:
1230 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1231 if (DECL_ALIGN (t) != 0)
1232 return DECL_ALIGN (t);
1233 break;
1235 case FUNCTION_DECL:
1236 return FUNCTION_BOUNDARY;
1238 default:
1239 break;
1242 /* Otherwise take the alignment from that of the type. */
1243 return TYPE_ALIGN (TREE_TYPE (t));
1246 /* Return, as a tree node, the number of elements for TYPE (which is an
1247 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1249 tree
1250 array_type_nelts (type)
1251 tree type;
1253 tree index_type, min, max;
1255 /* If they did it with unspecified bounds, then we should have already
1256 given an error about it before we got here. */
1257 if (! TYPE_DOMAIN (type))
1258 return error_mark_node;
1260 index_type = TYPE_DOMAIN (type);
1261 min = TYPE_MIN_VALUE (index_type);
1262 max = TYPE_MAX_VALUE (index_type);
1264 return (integer_zerop (min)
1265 ? max
1266 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1269 /* Return nonzero if arg is static -- a reference to an object in
1270 static storage. This is not the same as the C meaning of `static'. */
1273 staticp (arg)
1274 tree arg;
1276 switch (TREE_CODE (arg))
1278 case FUNCTION_DECL:
1279 /* Nested functions aren't static, since taking their address
1280 involves a trampoline. */
1281 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1282 && ! DECL_NON_ADDR_CONST_P (arg));
1284 case VAR_DECL:
1285 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1286 && ! DECL_THREAD_LOCAL (arg)
1287 && ! DECL_NON_ADDR_CONST_P (arg));
1289 case CONSTRUCTOR:
1290 return TREE_STATIC (arg);
1292 case LABEL_DECL:
1293 case STRING_CST:
1294 return 1;
1296 /* If we are referencing a bitfield, we can't evaluate an
1297 ADDR_EXPR at compile time and so it isn't a constant. */
1298 case COMPONENT_REF:
1299 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1300 && staticp (TREE_OPERAND (arg, 0)));
1302 case BIT_FIELD_REF:
1303 return 0;
1305 #if 0
1306 /* This case is technically correct, but results in setting
1307 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1308 compile time. */
1309 case INDIRECT_REF:
1310 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1311 #endif
1313 case ARRAY_REF:
1314 case ARRAY_RANGE_REF:
1315 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1316 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1317 return staticp (TREE_OPERAND (arg, 0));
1319 default:
1320 if ((unsigned int) TREE_CODE (arg)
1321 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1322 return (*lang_hooks.staticp) (arg);
1323 else
1324 return 0;
1328 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1329 Do this to any expression which may be used in more than one place,
1330 but must be evaluated only once.
1332 Normally, expand_expr would reevaluate the expression each time.
1333 Calling save_expr produces something that is evaluated and recorded
1334 the first time expand_expr is called on it. Subsequent calls to
1335 expand_expr just reuse the recorded value.
1337 The call to expand_expr that generates code that actually computes
1338 the value is the first call *at compile time*. Subsequent calls
1339 *at compile time* generate code to use the saved value.
1340 This produces correct result provided that *at run time* control
1341 always flows through the insns made by the first expand_expr
1342 before reaching the other places where the save_expr was evaluated.
1343 You, the caller of save_expr, must make sure this is so.
1345 Constants, and certain read-only nodes, are returned with no
1346 SAVE_EXPR because that is safe. Expressions containing placeholders
1347 are not touched; see tree.def for an explanation of what these
1348 are used for. */
1350 tree
1351 save_expr (expr)
1352 tree expr;
1354 tree t = fold (expr);
1355 tree inner;
1357 /* We don't care about whether this can be used as an lvalue in this
1358 context. */
1359 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1360 t = TREE_OPERAND (t, 0);
1362 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1363 a constant, it will be more efficient to not make another SAVE_EXPR since
1364 it will allow better simplification and GCSE will be able to merge the
1365 computations if they actually occur. */
1366 inner = t;
1367 while (1)
1369 if (TREE_CODE_CLASS (TREE_CODE (inner)) == '1')
1370 inner = TREE_OPERAND (inner, 0);
1371 else if (TREE_CODE_CLASS (TREE_CODE (inner)) == '2')
1373 if (TREE_CONSTANT (TREE_OPERAND (inner, 1)))
1374 inner = TREE_OPERAND (inner, 0);
1375 else if (TREE_CONSTANT (TREE_OPERAND (inner, 0)))
1376 inner = TREE_OPERAND (inner, 1);
1377 else
1378 break;
1380 else
1381 break;
1384 /* If the tree evaluates to a constant, then we don't want to hide that
1385 fact (i.e. this allows further folding, and direct checks for constants).
1386 However, a read-only object that has side effects cannot be bypassed.
1387 Since it is no problem to reevaluate literals, we just return the
1388 literal node. */
1389 if (TREE_CONSTANT (inner)
1390 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1391 || TREE_CODE (inner) == SAVE_EXPR
1392 || TREE_CODE (inner) == ERROR_MARK)
1393 return t;
1395 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1396 it means that the size or offset of some field of an object depends on
1397 the value within another field.
1399 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1400 and some variable since it would then need to be both evaluated once and
1401 evaluated more than once. Front-ends must assure this case cannot
1402 happen by surrounding any such subexpressions in their own SAVE_EXPR
1403 and forcing evaluation at the proper time. */
1404 if (contains_placeholder_p (t))
1405 return t;
1407 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1409 /* This expression might be placed ahead of a jump to ensure that the
1410 value was computed on both sides of the jump. So make sure it isn't
1411 eliminated as dead. */
1412 TREE_SIDE_EFFECTS (t) = 1;
1413 TREE_READONLY (t) = 1;
1414 return t;
1417 /* Arrange for an expression to be expanded multiple independent
1418 times. This is useful for cleanup actions, as the backend can
1419 expand them multiple times in different places. */
1421 tree
1422 unsave_expr (expr)
1423 tree expr;
1425 tree t;
1427 /* If this is already protected, no sense in protecting it again. */
1428 if (TREE_CODE (expr) == UNSAVE_EXPR)
1429 return expr;
1431 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1432 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1433 return t;
1436 /* Returns the index of the first non-tree operand for CODE, or the number
1437 of operands if all are trees. */
1440 first_rtl_op (code)
1441 enum tree_code code;
1443 switch (code)
1445 case SAVE_EXPR:
1446 return 2;
1447 case GOTO_SUBROUTINE_EXPR:
1448 case RTL_EXPR:
1449 return 0;
1450 case WITH_CLEANUP_EXPR:
1451 return 2;
1452 case METHOD_CALL_EXPR:
1453 return 3;
1454 default:
1455 return TREE_CODE_LENGTH (code);
1459 /* Return which tree structure is used by T. */
1461 enum tree_node_structure_enum
1462 tree_node_structure (t)
1463 tree t;
1465 enum tree_code code = TREE_CODE (t);
1467 switch (TREE_CODE_CLASS (code))
1469 case 'd': return TS_DECL;
1470 case 't': return TS_TYPE;
1471 case 'b': return TS_BLOCK;
1472 case 'r': case '<': case '1': case '2': case 'e': case 's':
1473 return TS_EXP;
1474 default: /* 'c' and 'x' */
1475 break;
1477 switch (code)
1479 /* 'c' cases. */
1480 case INTEGER_CST: return TS_INT_CST;
1481 case REAL_CST: return TS_REAL_CST;
1482 case COMPLEX_CST: return TS_COMPLEX;
1483 case VECTOR_CST: return TS_VECTOR;
1484 case STRING_CST: return TS_STRING;
1485 /* 'x' cases. */
1486 case ERROR_MARK: return TS_COMMON;
1487 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1488 case TREE_LIST: return TS_LIST;
1489 case TREE_VEC: return TS_VEC;
1490 case PLACEHOLDER_EXPR: return TS_COMMON;
1492 default:
1493 abort ();
1497 /* Perform any modifications to EXPR required when it is unsaved. Does
1498 not recurse into EXPR's subtrees. */
1500 void
1501 unsave_expr_1 (expr)
1502 tree expr;
1504 switch (TREE_CODE (expr))
1506 case SAVE_EXPR:
1507 if (! SAVE_EXPR_PERSISTENT_P (expr))
1508 SAVE_EXPR_RTL (expr) = 0;
1509 break;
1511 case TARGET_EXPR:
1512 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1513 It's OK for this to happen if it was part of a subtree that
1514 isn't immediately expanded, such as operand 2 of another
1515 TARGET_EXPR. */
1516 if (TREE_OPERAND (expr, 1))
1517 break;
1519 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1520 TREE_OPERAND (expr, 3) = NULL_TREE;
1521 break;
1523 case RTL_EXPR:
1524 /* I don't yet know how to emit a sequence multiple times. */
1525 if (RTL_EXPR_SEQUENCE (expr) != 0)
1526 abort ();
1527 break;
1529 default:
1530 break;
1534 /* Default lang hook for "unsave_expr_now". */
1536 tree
1537 lhd_unsave_expr_now (expr)
1538 tree expr;
1540 enum tree_code code;
1542 /* There's nothing to do for NULL_TREE. */
1543 if (expr == 0)
1544 return expr;
1546 unsave_expr_1 (expr);
1548 code = TREE_CODE (expr);
1549 switch (TREE_CODE_CLASS (code))
1551 case 'c': /* a constant */
1552 case 't': /* a type node */
1553 case 'd': /* A decl node */
1554 case 'b': /* A block node */
1555 break;
1557 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1558 if (code == TREE_LIST)
1560 lhd_unsave_expr_now (TREE_VALUE (expr));
1561 lhd_unsave_expr_now (TREE_CHAIN (expr));
1563 break;
1565 case 'e': /* an expression */
1566 case 'r': /* a reference */
1567 case 's': /* an expression with side effects */
1568 case '<': /* a comparison expression */
1569 case '2': /* a binary arithmetic expression */
1570 case '1': /* a unary arithmetic expression */
1572 int i;
1574 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1575 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1577 break;
1579 default:
1580 abort ();
1583 return expr;
1586 /* Return 0 if it is safe to evaluate EXPR multiple times,
1587 return 1 if it is safe if EXPR is unsaved afterward, or
1588 return 2 if it is completely unsafe.
1590 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1591 an expression tree, so that it safe to unsave them and the surrounding
1592 context will be correct.
1594 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1595 occasionally across the whole of a function. It is therefore only
1596 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1597 below the UNSAVE_EXPR.
1599 RTL_EXPRs consume their rtl during evaluation. It is therefore
1600 never possible to unsave them. */
1603 unsafe_for_reeval (expr)
1604 tree expr;
1606 int unsafeness = 0;
1607 enum tree_code code;
1608 int i, tmp, tmp2;
1609 tree exp;
1610 int first_rtl;
1612 if (expr == NULL_TREE)
1613 return 1;
1615 code = TREE_CODE (expr);
1616 first_rtl = first_rtl_op (code);
1618 switch (code)
1620 case SAVE_EXPR:
1621 case RTL_EXPR:
1622 return 2;
1624 case TREE_LIST:
1625 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1627 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1628 unsafeness = MAX (tmp, unsafeness);
1631 return unsafeness;
1633 case CALL_EXPR:
1634 tmp2 = unsafe_for_reeval (TREE_OPERAND (expr, 0));
1635 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1636 return MAX (MAX (tmp, 1), tmp2);
1638 case TARGET_EXPR:
1639 unsafeness = 1;
1640 break;
1642 default:
1643 tmp = (*lang_hooks.unsafe_for_reeval) (expr);
1644 if (tmp >= 0)
1645 return tmp;
1646 break;
1649 switch (TREE_CODE_CLASS (code))
1651 case 'c': /* a constant */
1652 case 't': /* a type node */
1653 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1654 case 'd': /* A decl node */
1655 case 'b': /* A block node */
1656 return 0;
1658 case 'e': /* an expression */
1659 case 'r': /* a reference */
1660 case 's': /* an expression with side effects */
1661 case '<': /* a comparison expression */
1662 case '2': /* a binary arithmetic expression */
1663 case '1': /* a unary arithmetic expression */
1664 for (i = first_rtl - 1; i >= 0; i--)
1666 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1667 unsafeness = MAX (tmp, unsafeness);
1670 return unsafeness;
1672 default:
1673 return 2;
1677 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1678 or offset that depends on a field within a record. */
1681 contains_placeholder_p (exp)
1682 tree exp;
1684 enum tree_code code;
1685 int result;
1687 if (!exp)
1688 return 0;
1690 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1691 in it since it is supplying a value for it. */
1692 code = TREE_CODE (exp);
1693 if (code == WITH_RECORD_EXPR)
1694 return 0;
1695 else if (code == PLACEHOLDER_EXPR)
1696 return 1;
1698 switch (TREE_CODE_CLASS (code))
1700 case 'r':
1701 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1702 position computations since they will be converted into a
1703 WITH_RECORD_EXPR involving the reference, which will assume
1704 here will be valid. */
1705 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1707 case 'x':
1708 if (code == TREE_LIST)
1709 return (contains_placeholder_p (TREE_VALUE (exp))
1710 || (TREE_CHAIN (exp) != 0
1711 && contains_placeholder_p (TREE_CHAIN (exp))));
1712 break;
1714 case '1':
1715 case '2': case '<':
1716 case 'e':
1717 switch (code)
1719 case COMPOUND_EXPR:
1720 /* Ignoring the first operand isn't quite right, but works best. */
1721 return contains_placeholder_p (TREE_OPERAND (exp, 1));
1723 case RTL_EXPR:
1724 case CONSTRUCTOR:
1725 return 0;
1727 case COND_EXPR:
1728 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1729 || contains_placeholder_p (TREE_OPERAND (exp, 1))
1730 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
1732 case SAVE_EXPR:
1733 /* If we already know this doesn't have a placeholder, don't
1734 check again. */
1735 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1736 return 0;
1738 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1739 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
1740 if (result)
1741 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1743 return result;
1745 case CALL_EXPR:
1746 return (TREE_OPERAND (exp, 1) != 0
1747 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
1749 default:
1750 break;
1753 switch (TREE_CODE_LENGTH (code))
1755 case 1:
1756 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1757 case 2:
1758 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1759 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
1760 default:
1761 return 0;
1764 default:
1765 return 0;
1767 return 0;
1770 /* Return 1 if EXP contains any expressions that produce cleanups for an
1771 outer scope to deal with. Used by fold. */
1774 has_cleanups (exp)
1775 tree exp;
1777 int i, nops, cmp;
1779 if (! TREE_SIDE_EFFECTS (exp))
1780 return 0;
1782 switch (TREE_CODE (exp))
1784 case TARGET_EXPR:
1785 case GOTO_SUBROUTINE_EXPR:
1786 case WITH_CLEANUP_EXPR:
1787 return 1;
1789 case CLEANUP_POINT_EXPR:
1790 return 0;
1792 case CALL_EXPR:
1793 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1795 cmp = has_cleanups (TREE_VALUE (exp));
1796 if (cmp)
1797 return cmp;
1799 return 0;
1801 default:
1802 break;
1805 /* This general rule works for most tree codes. All exceptions should be
1806 handled above. If this is a language-specific tree code, we can't
1807 trust what might be in the operand, so say we don't know
1808 the situation. */
1809 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1810 return -1;
1812 nops = first_rtl_op (TREE_CODE (exp));
1813 for (i = 0; i < nops; i++)
1814 if (TREE_OPERAND (exp, i) != 0)
1816 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1817 if (type == 'e' || type == '<' || type == '1' || type == '2'
1818 || type == 'r' || type == 's')
1820 cmp = has_cleanups (TREE_OPERAND (exp, i));
1821 if (cmp)
1822 return cmp;
1826 return 0;
1829 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1830 return a tree with all occurrences of references to F in a
1831 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1832 contains only arithmetic expressions or a CALL_EXPR with a
1833 PLACEHOLDER_EXPR occurring only in its arglist. */
1835 tree
1836 substitute_in_expr (exp, f, r)
1837 tree exp;
1838 tree f;
1839 tree r;
1841 enum tree_code code = TREE_CODE (exp);
1842 tree op0, op1, op2;
1843 tree new;
1844 tree inner;
1846 switch (TREE_CODE_CLASS (code))
1848 case 'c':
1849 case 'd':
1850 return exp;
1852 case 'x':
1853 if (code == PLACEHOLDER_EXPR)
1854 return exp;
1855 else if (code == TREE_LIST)
1857 op0 = (TREE_CHAIN (exp) == 0
1858 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1859 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1860 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1861 return exp;
1863 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1866 abort ();
1868 case '1':
1869 case '2':
1870 case '<':
1871 case 'e':
1872 switch (TREE_CODE_LENGTH (code))
1874 case 1:
1875 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1876 if (op0 == TREE_OPERAND (exp, 0))
1877 return exp;
1879 if (code == NON_LVALUE_EXPR)
1880 return op0;
1882 new = fold (build1 (code, TREE_TYPE (exp), op0));
1883 break;
1885 case 2:
1886 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1887 could, but we don't support it. */
1888 if (code == RTL_EXPR)
1889 return exp;
1890 else if (code == CONSTRUCTOR)
1891 abort ();
1893 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1894 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1895 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
1896 return exp;
1898 new = fold (build (code, TREE_TYPE (exp), op0, op1));
1899 break;
1901 case 3:
1902 /* It cannot be that anything inside a SAVE_EXPR contains a
1903 PLACEHOLDER_EXPR. */
1904 if (code == SAVE_EXPR)
1905 return exp;
1907 else if (code == CALL_EXPR)
1909 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1910 if (op1 == TREE_OPERAND (exp, 1))
1911 return exp;
1913 return build (code, TREE_TYPE (exp),
1914 TREE_OPERAND (exp, 0), op1, NULL_TREE);
1917 else if (code != COND_EXPR)
1918 abort ();
1920 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1921 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1922 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
1923 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1924 && op2 == TREE_OPERAND (exp, 2))
1925 return exp;
1927 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
1928 break;
1930 default:
1931 abort ();
1934 break;
1936 case 'r':
1937 switch (code)
1939 case COMPONENT_REF:
1940 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1941 and it is the right field, replace it with R. */
1942 for (inner = TREE_OPERAND (exp, 0);
1943 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
1944 inner = TREE_OPERAND (inner, 0))
1946 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1947 && TREE_OPERAND (exp, 1) == f)
1948 return r;
1950 /* If this expression hasn't been completed let, leave it
1951 alone. */
1952 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1953 && TREE_TYPE (inner) == 0)
1954 return exp;
1956 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1957 if (op0 == TREE_OPERAND (exp, 0))
1958 return exp;
1960 new = fold (build (code, TREE_TYPE (exp), op0,
1961 TREE_OPERAND (exp, 1)));
1962 break;
1964 case BIT_FIELD_REF:
1965 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1966 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1967 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
1968 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1969 && op2 == TREE_OPERAND (exp, 2))
1970 return exp;
1972 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
1973 break;
1975 case INDIRECT_REF:
1976 case BUFFER_REF:
1977 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1978 if (op0 == TREE_OPERAND (exp, 0))
1979 return exp;
1981 new = fold (build1 (code, TREE_TYPE (exp), op0));
1982 break;
1984 default:
1985 abort ();
1987 break;
1989 default:
1990 abort ();
1993 TREE_READONLY (new) = TREE_READONLY (exp);
1994 return new;
1997 /* Stabilize a reference so that we can use it any number of times
1998 without causing its operands to be evaluated more than once.
1999 Returns the stabilized reference. This works by means of save_expr,
2000 so see the caveats in the comments about save_expr.
2002 Also allows conversion expressions whose operands are references.
2003 Any other kind of expression is returned unchanged. */
2005 tree
2006 stabilize_reference (ref)
2007 tree ref;
2009 tree result;
2010 enum tree_code code = TREE_CODE (ref);
2012 switch (code)
2014 case VAR_DECL:
2015 case PARM_DECL:
2016 case RESULT_DECL:
2017 /* No action is needed in this case. */
2018 return ref;
2020 case NOP_EXPR:
2021 case CONVERT_EXPR:
2022 case FLOAT_EXPR:
2023 case FIX_TRUNC_EXPR:
2024 case FIX_FLOOR_EXPR:
2025 case FIX_ROUND_EXPR:
2026 case FIX_CEIL_EXPR:
2027 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2028 break;
2030 case INDIRECT_REF:
2031 result = build_nt (INDIRECT_REF,
2032 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2033 break;
2035 case COMPONENT_REF:
2036 result = build_nt (COMPONENT_REF,
2037 stabilize_reference (TREE_OPERAND (ref, 0)),
2038 TREE_OPERAND (ref, 1));
2039 break;
2041 case BIT_FIELD_REF:
2042 result = build_nt (BIT_FIELD_REF,
2043 stabilize_reference (TREE_OPERAND (ref, 0)),
2044 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2045 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2046 break;
2048 case ARRAY_REF:
2049 result = build_nt (ARRAY_REF,
2050 stabilize_reference (TREE_OPERAND (ref, 0)),
2051 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2052 break;
2054 case ARRAY_RANGE_REF:
2055 result = build_nt (ARRAY_RANGE_REF,
2056 stabilize_reference (TREE_OPERAND (ref, 0)),
2057 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2058 break;
2060 case COMPOUND_EXPR:
2061 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2062 it wouldn't be ignored. This matters when dealing with
2063 volatiles. */
2064 return stabilize_reference_1 (ref);
2066 case RTL_EXPR:
2067 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2068 save_expr (build1 (ADDR_EXPR,
2069 build_pointer_type (TREE_TYPE (ref)),
2070 ref)));
2071 break;
2073 /* If arg isn't a kind of lvalue we recognize, make no change.
2074 Caller should recognize the error for an invalid lvalue. */
2075 default:
2076 return ref;
2078 case ERROR_MARK:
2079 return error_mark_node;
2082 TREE_TYPE (result) = TREE_TYPE (ref);
2083 TREE_READONLY (result) = TREE_READONLY (ref);
2084 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2085 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2087 return result;
2090 /* Subroutine of stabilize_reference; this is called for subtrees of
2091 references. Any expression with side-effects must be put in a SAVE_EXPR
2092 to ensure that it is only evaluated once.
2094 We don't put SAVE_EXPR nodes around everything, because assigning very
2095 simple expressions to temporaries causes us to miss good opportunities
2096 for optimizations. Among other things, the opportunity to fold in the
2097 addition of a constant into an addressing mode often gets lost, e.g.
2098 "y[i+1] += x;". In general, we take the approach that we should not make
2099 an assignment unless we are forced into it - i.e., that any non-side effect
2100 operator should be allowed, and that cse should take care of coalescing
2101 multiple utterances of the same expression should that prove fruitful. */
2103 tree
2104 stabilize_reference_1 (e)
2105 tree e;
2107 tree result;
2108 enum tree_code code = TREE_CODE (e);
2110 /* We cannot ignore const expressions because it might be a reference
2111 to a const array but whose index contains side-effects. But we can
2112 ignore things that are actual constant or that already have been
2113 handled by this function. */
2115 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2116 return e;
2118 switch (TREE_CODE_CLASS (code))
2120 case 'x':
2121 case 't':
2122 case 'd':
2123 case 'b':
2124 case '<':
2125 case 's':
2126 case 'e':
2127 case 'r':
2128 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2129 so that it will only be evaluated once. */
2130 /* The reference (r) and comparison (<) classes could be handled as
2131 below, but it is generally faster to only evaluate them once. */
2132 if (TREE_SIDE_EFFECTS (e))
2133 return save_expr (e);
2134 return e;
2136 case 'c':
2137 /* Constants need no processing. In fact, we should never reach
2138 here. */
2139 return e;
2141 case '2':
2142 /* Division is slow and tends to be compiled with jumps,
2143 especially the division by powers of 2 that is often
2144 found inside of an array reference. So do it just once. */
2145 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2146 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2147 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2148 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2149 return save_expr (e);
2150 /* Recursively stabilize each operand. */
2151 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2152 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2153 break;
2155 case '1':
2156 /* Recursively stabilize each operand. */
2157 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2158 break;
2160 default:
2161 abort ();
2164 TREE_TYPE (result) = TREE_TYPE (e);
2165 TREE_READONLY (result) = TREE_READONLY (e);
2166 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2167 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2169 return result;
2172 /* Low-level constructors for expressions. */
2174 /* Build an expression of code CODE, data type TYPE,
2175 and operands as specified by the arguments ARG1 and following arguments.
2176 Expressions and reference nodes can be created this way.
2177 Constants, decls, types and misc nodes cannot be. */
2179 tree
2180 build VPARAMS ((enum tree_code code, tree tt, ...))
2182 tree t;
2183 int length;
2184 int i;
2185 int fro;
2186 int constant;
2188 VA_OPEN (p, tt);
2189 VA_FIXEDARG (p, enum tree_code, code);
2190 VA_FIXEDARG (p, tree, tt);
2192 t = make_node (code);
2193 length = TREE_CODE_LENGTH (code);
2194 TREE_TYPE (t) = tt;
2196 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2197 result based on those same flags for the arguments. But if the
2198 arguments aren't really even `tree' expressions, we shouldn't be trying
2199 to do this. */
2200 fro = first_rtl_op (code);
2202 /* Expressions without side effects may be constant if their
2203 arguments are as well. */
2204 constant = (TREE_CODE_CLASS (code) == '<'
2205 || TREE_CODE_CLASS (code) == '1'
2206 || TREE_CODE_CLASS (code) == '2'
2207 || TREE_CODE_CLASS (code) == 'c');
2209 if (length == 2)
2211 /* This is equivalent to the loop below, but faster. */
2212 tree arg0 = va_arg (p, tree);
2213 tree arg1 = va_arg (p, tree);
2215 TREE_OPERAND (t, 0) = arg0;
2216 TREE_OPERAND (t, 1) = arg1;
2217 TREE_READONLY (t) = 1;
2218 if (arg0 && fro > 0)
2220 if (TREE_SIDE_EFFECTS (arg0))
2221 TREE_SIDE_EFFECTS (t) = 1;
2222 if (!TREE_READONLY (arg0))
2223 TREE_READONLY (t) = 0;
2224 if (!TREE_CONSTANT (arg0))
2225 constant = 0;
2228 if (arg1 && fro > 1)
2230 if (TREE_SIDE_EFFECTS (arg1))
2231 TREE_SIDE_EFFECTS (t) = 1;
2232 if (!TREE_READONLY (arg1))
2233 TREE_READONLY (t) = 0;
2234 if (!TREE_CONSTANT (arg1))
2235 constant = 0;
2238 else if (length == 1)
2240 tree arg0 = va_arg (p, tree);
2242 /* The only one-operand cases we handle here are those with side-effects.
2243 Others are handled with build1. So don't bother checked if the
2244 arg has side-effects since we'll already have set it.
2246 ??? This really should use build1 too. */
2247 if (TREE_CODE_CLASS (code) != 's')
2248 abort ();
2249 TREE_OPERAND (t, 0) = arg0;
2251 else
2253 for (i = 0; i < length; i++)
2255 tree operand = va_arg (p, tree);
2257 TREE_OPERAND (t, i) = operand;
2258 if (operand && fro > i)
2260 if (TREE_SIDE_EFFECTS (operand))
2261 TREE_SIDE_EFFECTS (t) = 1;
2262 if (!TREE_CONSTANT (operand))
2263 constant = 0;
2267 VA_CLOSE (p);
2269 TREE_CONSTANT (t) = constant;
2270 return t;
2273 /* Same as above, but only builds for unary operators.
2274 Saves lions share of calls to `build'; cuts down use
2275 of varargs, which is expensive for RISC machines. */
2277 tree
2278 build1 (code, type, node)
2279 enum tree_code code;
2280 tree type;
2281 tree node;
2283 int length = sizeof (struct tree_exp);
2284 #ifdef GATHER_STATISTICS
2285 tree_node_kind kind;
2286 #endif
2287 tree t;
2289 #ifdef GATHER_STATISTICS
2290 switch (TREE_CODE_CLASS (code))
2292 case 's': /* an expression with side effects */
2293 kind = s_kind;
2294 break;
2295 case 'r': /* a reference */
2296 kind = r_kind;
2297 break;
2298 default:
2299 kind = e_kind;
2300 break;
2303 tree_node_counts[(int) kind]++;
2304 tree_node_sizes[(int) kind] += length;
2305 #endif
2307 #ifdef ENABLE_CHECKING
2308 if (TREE_CODE_CLASS (code) == '2'
2309 || TREE_CODE_CLASS (code) == '<'
2310 || TREE_CODE_LENGTH (code) != 1)
2311 abort ();
2312 #endif /* ENABLE_CHECKING */
2314 t = ggc_alloc_tree (length);
2316 memset ((PTR) t, 0, sizeof (struct tree_common));
2318 TREE_SET_CODE (t, code);
2320 TREE_TYPE (t) = type;
2321 TREE_COMPLEXITY (t) = 0;
2322 TREE_OPERAND (t, 0) = node;
2323 if (node && first_rtl_op (code) != 0)
2325 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2326 TREE_READONLY (t) = TREE_READONLY (node);
2329 if (TREE_CODE_CLASS (code) == 's')
2330 TREE_SIDE_EFFECTS (t) = 1;
2331 else switch (code)
2333 case INIT_EXPR:
2334 case MODIFY_EXPR:
2335 case VA_ARG_EXPR:
2336 case RTL_EXPR:
2337 case PREDECREMENT_EXPR:
2338 case PREINCREMENT_EXPR:
2339 case POSTDECREMENT_EXPR:
2340 case POSTINCREMENT_EXPR:
2341 /* All of these have side-effects, no matter what their
2342 operands are. */
2343 TREE_SIDE_EFFECTS (t) = 1;
2344 TREE_READONLY (t) = 0;
2345 break;
2347 case INDIRECT_REF:
2348 /* Whether a dereference is readonly has nothing to do with whether
2349 its operand is readonly. */
2350 TREE_READONLY (t) = 0;
2351 break;
2353 default:
2354 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2355 TREE_CONSTANT (t) = 1;
2356 break;
2359 return t;
2362 /* Similar except don't specify the TREE_TYPE
2363 and leave the TREE_SIDE_EFFECTS as 0.
2364 It is permissible for arguments to be null,
2365 or even garbage if their values do not matter. */
2367 tree
2368 build_nt VPARAMS ((enum tree_code code, ...))
2370 tree t;
2371 int length;
2372 int i;
2374 VA_OPEN (p, code);
2375 VA_FIXEDARG (p, enum tree_code, code);
2377 t = make_node (code);
2378 length = TREE_CODE_LENGTH (code);
2380 for (i = 0; i < length; i++)
2381 TREE_OPERAND (t, i) = va_arg (p, tree);
2383 VA_CLOSE (p);
2384 return t;
2387 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2388 We do NOT enter this node in any sort of symbol table.
2390 layout_decl is used to set up the decl's storage layout.
2391 Other slots are initialized to 0 or null pointers. */
2393 tree
2394 build_decl (code, name, type)
2395 enum tree_code code;
2396 tree name, type;
2398 tree t;
2400 t = make_node (code);
2402 /* if (type == error_mark_node)
2403 type = integer_type_node; */
2404 /* That is not done, deliberately, so that having error_mark_node
2405 as the type can suppress useless errors in the use of this variable. */
2407 DECL_NAME (t) = name;
2408 TREE_TYPE (t) = type;
2410 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2411 layout_decl (t, 0);
2412 else if (code == FUNCTION_DECL)
2413 DECL_MODE (t) = FUNCTION_MODE;
2415 return t;
2418 /* BLOCK nodes are used to represent the structure of binding contours
2419 and declarations, once those contours have been exited and their contents
2420 compiled. This information is used for outputting debugging info. */
2422 tree
2423 build_block (vars, tags, subblocks, supercontext, chain)
2424 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
2426 tree block = make_node (BLOCK);
2428 BLOCK_VARS (block) = vars;
2429 BLOCK_SUBBLOCKS (block) = subblocks;
2430 BLOCK_SUPERCONTEXT (block) = supercontext;
2431 BLOCK_CHAIN (block) = chain;
2432 return block;
2435 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2436 location where an expression or an identifier were encountered. It
2437 is necessary for languages where the frontend parser will handle
2438 recursively more than one file (Java is one of them). */
2440 tree
2441 build_expr_wfl (node, file, line, col)
2442 tree node;
2443 const char *file;
2444 int line, col;
2446 static const char *last_file = 0;
2447 static tree last_filenode = NULL_TREE;
2448 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2450 EXPR_WFL_NODE (wfl) = node;
2451 EXPR_WFL_SET_LINECOL (wfl, line, col);
2452 if (file != last_file)
2454 last_file = file;
2455 last_filenode = file ? get_identifier (file) : NULL_TREE;
2458 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2459 if (node)
2461 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2462 TREE_TYPE (wfl) = TREE_TYPE (node);
2465 return wfl;
2468 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2469 is ATTRIBUTE. */
2471 tree
2472 build_decl_attribute_variant (ddecl, attribute)
2473 tree ddecl, attribute;
2475 DECL_ATTRIBUTES (ddecl) = attribute;
2476 return ddecl;
2479 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2480 is ATTRIBUTE.
2482 Record such modified types already made so we don't make duplicates. */
2484 tree
2485 build_type_attribute_variant (ttype, attribute)
2486 tree ttype, attribute;
2488 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2490 unsigned int hashcode;
2491 tree ntype;
2493 ntype = copy_node (ttype);
2495 TYPE_POINTER_TO (ntype) = 0;
2496 TYPE_REFERENCE_TO (ntype) = 0;
2497 TYPE_ATTRIBUTES (ntype) = attribute;
2499 /* Create a new main variant of TYPE. */
2500 TYPE_MAIN_VARIANT (ntype) = ntype;
2501 TYPE_NEXT_VARIANT (ntype) = 0;
2502 set_type_quals (ntype, TYPE_UNQUALIFIED);
2504 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2505 + TYPE_HASH (TREE_TYPE (ntype))
2506 + attribute_hash_list (attribute));
2508 switch (TREE_CODE (ntype))
2510 case FUNCTION_TYPE:
2511 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2512 break;
2513 case ARRAY_TYPE:
2514 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2515 break;
2516 case INTEGER_TYPE:
2517 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2518 break;
2519 case REAL_TYPE:
2520 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2521 break;
2522 default:
2523 break;
2526 ntype = type_hash_canon (hashcode, ntype);
2527 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2530 return ttype;
2533 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2534 or zero if not.
2536 We try both `text' and `__text__', ATTR may be either one. */
2537 /* ??? It might be a reasonable simplification to require ATTR to be only
2538 `text'. One might then also require attribute lists to be stored in
2539 their canonicalized form. */
2542 is_attribute_p (attr, ident)
2543 const char *attr;
2544 tree ident;
2546 int ident_len, attr_len;
2547 const char *p;
2549 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2550 return 0;
2552 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2553 return 1;
2555 p = IDENTIFIER_POINTER (ident);
2556 ident_len = strlen (p);
2557 attr_len = strlen (attr);
2559 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2560 if (attr[0] == '_')
2562 if (attr[1] != '_'
2563 || attr[attr_len - 2] != '_'
2564 || attr[attr_len - 1] != '_')
2565 abort ();
2566 if (ident_len == attr_len - 4
2567 && strncmp (attr + 2, p, attr_len - 4) == 0)
2568 return 1;
2570 else
2572 if (ident_len == attr_len + 4
2573 && p[0] == '_' && p[1] == '_'
2574 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2575 && strncmp (attr, p + 2, attr_len) == 0)
2576 return 1;
2579 return 0;
2582 /* Given an attribute name and a list of attributes, return a pointer to the
2583 attribute's list element if the attribute is part of the list, or NULL_TREE
2584 if not found. If the attribute appears more than once, this only
2585 returns the first occurrence; the TREE_CHAIN of the return value should
2586 be passed back in if further occurrences are wanted. */
2588 tree
2589 lookup_attribute (attr_name, list)
2590 const char *attr_name;
2591 tree list;
2593 tree l;
2595 for (l = list; l; l = TREE_CHAIN (l))
2597 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2598 abort ();
2599 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2600 return l;
2603 return NULL_TREE;
2606 /* Return an attribute list that is the union of a1 and a2. */
2608 tree
2609 merge_attributes (a1, a2)
2610 tree a1, a2;
2612 tree attributes;
2614 /* Either one unset? Take the set one. */
2616 if ((attributes = a1) == 0)
2617 attributes = a2;
2619 /* One that completely contains the other? Take it. */
2621 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2623 if (attribute_list_contained (a2, a1))
2624 attributes = a2;
2625 else
2627 /* Pick the longest list, and hang on the other list. */
2629 if (list_length (a1) < list_length (a2))
2630 attributes = a2, a2 = a1;
2632 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2634 tree a;
2635 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2636 attributes);
2637 a != NULL_TREE;
2638 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2639 TREE_CHAIN (a)))
2641 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2642 break;
2644 if (a == NULL_TREE)
2646 a1 = copy_node (a2);
2647 TREE_CHAIN (a1) = attributes;
2648 attributes = a1;
2653 return attributes;
2656 /* Given types T1 and T2, merge their attributes and return
2657 the result. */
2659 tree
2660 merge_type_attributes (t1, t2)
2661 tree t1, t2;
2663 return merge_attributes (TYPE_ATTRIBUTES (t1),
2664 TYPE_ATTRIBUTES (t2));
2667 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2668 the result. */
2670 tree
2671 merge_decl_attributes (olddecl, newdecl)
2672 tree olddecl, newdecl;
2674 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2675 DECL_ATTRIBUTES (newdecl));
2678 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2680 /* Specialization of merge_decl_attributes for various Windows targets.
2682 This handles the following situation:
2684 __declspec (dllimport) int foo;
2685 int foo;
2687 The second instance of `foo' nullifies the dllimport. */
2689 tree
2690 merge_dllimport_decl_attributes (old, new)
2691 tree old;
2692 tree new;
2694 tree a;
2695 int delete_dllimport_p;
2697 old = DECL_ATTRIBUTES (old);
2698 new = DECL_ATTRIBUTES (new);
2700 /* What we need to do here is remove from `old' dllimport if it doesn't
2701 appear in `new'. dllimport behaves like extern: if a declaration is
2702 marked dllimport and a definition appears later, then the object
2703 is not dllimport'd. */
2704 if (lookup_attribute ("dllimport", old) != NULL_TREE
2705 && lookup_attribute ("dllimport", new) == NULL_TREE)
2706 delete_dllimport_p = 1;
2707 else
2708 delete_dllimport_p = 0;
2710 a = merge_attributes (old, new);
2712 if (delete_dllimport_p)
2714 tree prev, t;
2716 /* Scan the list for dllimport and delete it. */
2717 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2719 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2721 if (prev == NULL_TREE)
2722 a = TREE_CHAIN (a);
2723 else
2724 TREE_CHAIN (prev) = TREE_CHAIN (t);
2725 break;
2730 return a;
2733 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2735 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2736 of the various TYPE_QUAL values. */
2738 static void
2739 set_type_quals (type, type_quals)
2740 tree type;
2741 int type_quals;
2743 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2744 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2745 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2748 /* Return a version of the TYPE, qualified as indicated by the
2749 TYPE_QUALS, if one exists. If no qualified version exists yet,
2750 return NULL_TREE. */
2752 tree
2753 get_qualified_type (type, type_quals)
2754 tree type;
2755 int type_quals;
2757 tree t;
2759 /* Search the chain of variants to see if there is already one there just
2760 like the one we need to have. If so, use that existing one. We must
2761 preserve the TYPE_NAME, since there is code that depends on this. */
2762 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2763 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type)
2764 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type))
2765 return t;
2767 return NULL_TREE;
2770 /* Like get_qualified_type, but creates the type if it does not
2771 exist. This function never returns NULL_TREE. */
2773 tree
2774 build_qualified_type (type, type_quals)
2775 tree type;
2776 int type_quals;
2778 tree t;
2780 /* See if we already have the appropriate qualified variant. */
2781 t = get_qualified_type (type, type_quals);
2783 /* If not, build it. */
2784 if (!t)
2786 t = build_type_copy (type);
2787 set_type_quals (t, type_quals);
2790 return t;
2793 /* Create a new variant of TYPE, equivalent but distinct.
2794 This is so the caller can modify it. */
2796 tree
2797 build_type_copy (type)
2798 tree type;
2800 tree t, m = TYPE_MAIN_VARIANT (type);
2802 t = copy_node (type);
2804 TYPE_POINTER_TO (t) = 0;
2805 TYPE_REFERENCE_TO (t) = 0;
2807 /* Add this type to the chain of variants of TYPE. */
2808 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2809 TYPE_NEXT_VARIANT (m) = t;
2811 return t;
2814 /* Hashing of types so that we don't make duplicates.
2815 The entry point is `type_hash_canon'. */
2817 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2818 with types in the TREE_VALUE slots), by adding the hash codes
2819 of the individual types. */
2821 unsigned int
2822 type_hash_list (list)
2823 tree list;
2825 unsigned int hashcode;
2826 tree tail;
2828 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2829 hashcode += TYPE_HASH (TREE_VALUE (tail));
2831 return hashcode;
2834 /* These are the Hashtable callback functions. */
2836 /* Returns true if the types are equal. */
2838 static int
2839 type_hash_eq (va, vb)
2840 const void *va;
2841 const void *vb;
2843 const struct type_hash *a = va, *b = vb;
2844 if (a->hash == b->hash
2845 && TREE_CODE (a->type) == TREE_CODE (b->type)
2846 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
2847 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
2848 TYPE_ATTRIBUTES (b->type))
2849 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
2850 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
2851 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
2852 TYPE_MAX_VALUE (b->type)))
2853 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
2854 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
2855 TYPE_MIN_VALUE (b->type)))
2856 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2857 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
2858 || (TYPE_DOMAIN (a->type)
2859 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
2860 && TYPE_DOMAIN (b->type)
2861 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
2862 && type_list_equal (TYPE_DOMAIN (a->type),
2863 TYPE_DOMAIN (b->type)))))
2864 return 1;
2865 return 0;
2868 /* Return the cached hash value. */
2870 static hashval_t
2871 type_hash_hash (item)
2872 const void *item;
2874 return ((const struct type_hash *) item)->hash;
2877 /* Look in the type hash table for a type isomorphic to TYPE.
2878 If one is found, return it. Otherwise return 0. */
2880 tree
2881 type_hash_lookup (hashcode, type)
2882 unsigned int hashcode;
2883 tree type;
2885 struct type_hash *h, in;
2887 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
2888 must call that routine before comparing TYPE_ALIGNs. */
2889 layout_type (type);
2891 in.hash = hashcode;
2892 in.type = type;
2894 h = htab_find_with_hash (type_hash_table, &in, hashcode);
2895 if (h)
2896 return h->type;
2897 return NULL_TREE;
2900 /* Add an entry to the type-hash-table
2901 for a type TYPE whose hash code is HASHCODE. */
2903 void
2904 type_hash_add (hashcode, type)
2905 unsigned int hashcode;
2906 tree type;
2908 struct type_hash *h;
2909 void **loc;
2911 h = (struct type_hash *) ggc_alloc (sizeof (struct type_hash));
2912 h->hash = hashcode;
2913 h->type = type;
2914 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
2915 *(struct type_hash **) loc = h;
2918 /* Given TYPE, and HASHCODE its hash code, return the canonical
2919 object for an identical type if one already exists.
2920 Otherwise, return TYPE, and record it as the canonical object
2921 if it is a permanent object.
2923 To use this function, first create a type of the sort you want.
2924 Then compute its hash code from the fields of the type that
2925 make it different from other similar types.
2926 Then call this function and use the value.
2927 This function frees the type you pass in if it is a duplicate. */
2929 /* Set to 1 to debug without canonicalization. Never set by program. */
2930 int debug_no_type_hash = 0;
2932 tree
2933 type_hash_canon (hashcode, type)
2934 unsigned int hashcode;
2935 tree type;
2937 tree t1;
2939 if (debug_no_type_hash)
2940 return type;
2942 /* See if the type is in the hash table already. If so, return it.
2943 Otherwise, add the type. */
2944 t1 = type_hash_lookup (hashcode, type);
2945 if (t1 != 0)
2947 #ifdef GATHER_STATISTICS
2948 tree_node_counts[(int) t_kind]--;
2949 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
2950 #endif
2951 return t1;
2953 else
2955 type_hash_add (hashcode, type);
2956 return type;
2960 /* See if the data pointed to by the type hash table is marked. We consider
2961 it marked if the type is marked or if a debug type number or symbol
2962 table entry has been made for the type. This reduces the amount of
2963 debugging output and eliminates that dependency of the debug output on
2964 the number of garbage collections. */
2966 static int
2967 type_hash_marked_p (p)
2968 const void *p;
2970 tree type = ((struct type_hash *) p)->type;
2972 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
2975 static void
2976 print_type_hash_statistics ()
2978 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
2979 (long) htab_size (type_hash_table),
2980 (long) htab_elements (type_hash_table),
2981 htab_collisions (type_hash_table));
2984 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
2985 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
2986 by adding the hash codes of the individual attributes. */
2988 unsigned int
2989 attribute_hash_list (list)
2990 tree list;
2992 unsigned int hashcode;
2993 tree tail;
2995 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2996 /* ??? Do we want to add in TREE_VALUE too? */
2997 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
2998 return hashcode;
3001 /* Given two lists of attributes, return true if list l2 is
3002 equivalent to l1. */
3005 attribute_list_equal (l1, l2)
3006 tree l1, l2;
3008 return attribute_list_contained (l1, l2)
3009 && attribute_list_contained (l2, l1);
3012 /* Given two lists of attributes, return true if list L2 is
3013 completely contained within L1. */
3014 /* ??? This would be faster if attribute names were stored in a canonicalized
3015 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3016 must be used to show these elements are equivalent (which they are). */
3017 /* ??? It's not clear that attributes with arguments will always be handled
3018 correctly. */
3021 attribute_list_contained (l1, l2)
3022 tree l1, l2;
3024 tree t1, t2;
3026 /* First check the obvious, maybe the lists are identical. */
3027 if (l1 == l2)
3028 return 1;
3030 /* Maybe the lists are similar. */
3031 for (t1 = l1, t2 = l2;
3032 t1 != 0 && t2 != 0
3033 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3034 && TREE_VALUE (t1) == TREE_VALUE (t2);
3035 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3037 /* Maybe the lists are equal. */
3038 if (t1 == 0 && t2 == 0)
3039 return 1;
3041 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3043 tree attr;
3044 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3045 attr != NULL_TREE;
3046 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3047 TREE_CHAIN (attr)))
3049 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3050 break;
3053 if (attr == 0)
3054 return 0;
3056 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3057 return 0;
3060 return 1;
3063 /* Given two lists of types
3064 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3065 return 1 if the lists contain the same types in the same order.
3066 Also, the TREE_PURPOSEs must match. */
3069 type_list_equal (l1, l2)
3070 tree l1, l2;
3072 tree t1, t2;
3074 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3075 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3076 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3077 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3078 && (TREE_TYPE (TREE_PURPOSE (t1))
3079 == TREE_TYPE (TREE_PURPOSE (t2))))))
3080 return 0;
3082 return t1 == t2;
3085 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3086 given by TYPE. If the argument list accepts variable arguments,
3087 then this function counts only the ordinary arguments. */
3090 type_num_arguments (type)
3091 tree type;
3093 int i = 0;
3094 tree t;
3096 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3097 /* If the function does not take a variable number of arguments,
3098 the last element in the list will have type `void'. */
3099 if (VOID_TYPE_P (TREE_VALUE (t)))
3100 break;
3101 else
3102 ++i;
3104 return i;
3107 /* Nonzero if integer constants T1 and T2
3108 represent the same constant value. */
3111 tree_int_cst_equal (t1, t2)
3112 tree t1, t2;
3114 if (t1 == t2)
3115 return 1;
3117 if (t1 == 0 || t2 == 0)
3118 return 0;
3120 if (TREE_CODE (t1) == INTEGER_CST
3121 && TREE_CODE (t2) == INTEGER_CST
3122 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3123 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3124 return 1;
3126 return 0;
3129 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3130 The precise way of comparison depends on their data type. */
3133 tree_int_cst_lt (t1, t2)
3134 tree t1, t2;
3136 if (t1 == t2)
3137 return 0;
3139 if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
3141 int t1_sgn = tree_int_cst_sgn (t1);
3142 int t2_sgn = tree_int_cst_sgn (t2);
3144 if (t1_sgn < t2_sgn)
3145 return 1;
3146 else if (t1_sgn > t2_sgn)
3147 return 0;
3148 /* Otherwise, both are non-negative, so we compare them as
3149 unsigned just in case one of them would overflow a signed
3150 type. */
3152 else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3153 return INT_CST_LT (t1, t2);
3155 return INT_CST_LT_UNSIGNED (t1, t2);
3158 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3161 tree_int_cst_compare (t1, t2)
3162 tree t1;
3163 tree t2;
3165 if (tree_int_cst_lt (t1, t2))
3166 return -1;
3167 else if (tree_int_cst_lt (t2, t1))
3168 return 1;
3169 else
3170 return 0;
3173 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3174 the host. If POS is zero, the value can be represented in a single
3175 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3176 be represented in a single unsigned HOST_WIDE_INT. */
3179 host_integerp (t, pos)
3180 tree t;
3181 int pos;
3183 return (TREE_CODE (t) == INTEGER_CST
3184 && ! TREE_OVERFLOW (t)
3185 && ((TREE_INT_CST_HIGH (t) == 0
3186 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3187 || (! pos && TREE_INT_CST_HIGH (t) == -1
3188 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3189 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3190 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3193 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3194 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3195 be positive. Abort if we cannot satisfy the above conditions. */
3197 HOST_WIDE_INT
3198 tree_low_cst (t, pos)
3199 tree t;
3200 int pos;
3202 if (host_integerp (t, pos))
3203 return TREE_INT_CST_LOW (t);
3204 else
3205 abort ();
3208 /* Return an indication of the sign of the integer constant T.
3209 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3210 Note that -1 will never be returned it T's type is unsigned. */
3213 tree_int_cst_sgn (t)
3214 tree t;
3216 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3217 return 0;
3218 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3219 return 1;
3220 else if (TREE_INT_CST_HIGH (t) < 0)
3221 return -1;
3222 else
3223 return 1;
3226 /* Compare two constructor-element-type constants. Return 1 if the lists
3227 are known to be equal; otherwise return 0. */
3230 simple_cst_list_equal (l1, l2)
3231 tree l1, l2;
3233 while (l1 != NULL_TREE && l2 != NULL_TREE)
3235 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3236 return 0;
3238 l1 = TREE_CHAIN (l1);
3239 l2 = TREE_CHAIN (l2);
3242 return l1 == l2;
3245 /* Return truthvalue of whether T1 is the same tree structure as T2.
3246 Return 1 if they are the same.
3247 Return 0 if they are understandably different.
3248 Return -1 if either contains tree structure not understood by
3249 this function. */
3252 simple_cst_equal (t1, t2)
3253 tree t1, t2;
3255 enum tree_code code1, code2;
3256 int cmp;
3257 int i;
3259 if (t1 == t2)
3260 return 1;
3261 if (t1 == 0 || t2 == 0)
3262 return 0;
3264 code1 = TREE_CODE (t1);
3265 code2 = TREE_CODE (t2);
3267 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3269 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3270 || code2 == NON_LVALUE_EXPR)
3271 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3272 else
3273 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3276 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3277 || code2 == NON_LVALUE_EXPR)
3278 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3280 if (code1 != code2)
3281 return 0;
3283 switch (code1)
3285 case INTEGER_CST:
3286 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3287 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3289 case REAL_CST:
3290 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3292 case STRING_CST:
3293 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3294 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3295 TREE_STRING_LENGTH (t1)));
3297 case CONSTRUCTOR:
3298 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3299 return 1;
3300 else
3301 abort ();
3303 case SAVE_EXPR:
3304 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3306 case CALL_EXPR:
3307 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3308 if (cmp <= 0)
3309 return cmp;
3310 return
3311 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3313 case TARGET_EXPR:
3314 /* Special case: if either target is an unallocated VAR_DECL,
3315 it means that it's going to be unified with whatever the
3316 TARGET_EXPR is really supposed to initialize, so treat it
3317 as being equivalent to anything. */
3318 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3319 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3320 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3321 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3322 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3323 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3324 cmp = 1;
3325 else
3326 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3328 if (cmp <= 0)
3329 return cmp;
3331 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3333 case WITH_CLEANUP_EXPR:
3334 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3335 if (cmp <= 0)
3336 return cmp;
3338 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3340 case COMPONENT_REF:
3341 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3342 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3344 return 0;
3346 case VAR_DECL:
3347 case PARM_DECL:
3348 case CONST_DECL:
3349 case FUNCTION_DECL:
3350 return 0;
3352 default:
3353 break;
3356 /* This general rule works for most tree codes. All exceptions should be
3357 handled above. If this is a language-specific tree code, we can't
3358 trust what might be in the operand, so say we don't know
3359 the situation. */
3360 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3361 return -1;
3363 switch (TREE_CODE_CLASS (code1))
3365 case '1':
3366 case '2':
3367 case '<':
3368 case 'e':
3369 case 'r':
3370 case 's':
3371 cmp = 1;
3372 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3374 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3375 if (cmp <= 0)
3376 return cmp;
3379 return cmp;
3381 default:
3382 return -1;
3386 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3387 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3388 than U, respectively. */
3391 compare_tree_int (t, u)
3392 tree t;
3393 unsigned HOST_WIDE_INT u;
3395 if (tree_int_cst_sgn (t) < 0)
3396 return -1;
3397 else if (TREE_INT_CST_HIGH (t) != 0)
3398 return 1;
3399 else if (TREE_INT_CST_LOW (t) == u)
3400 return 0;
3401 else if (TREE_INT_CST_LOW (t) < u)
3402 return -1;
3403 else
3404 return 1;
3407 /* Constructors for pointer, array and function types.
3408 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3409 constructed by language-dependent code, not here.) */
3411 /* Construct, lay out and return the type of pointers to TO_TYPE
3412 with mode MODE. If such a type has already been constructed,
3413 reuse it. */
3415 tree
3416 build_pointer_type_for_mode (to_type, mode)
3417 tree to_type;
3418 enum machine_mode mode;
3420 tree t = TYPE_POINTER_TO (to_type);
3422 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3423 if (t != 0 && mode == ptr_mode)
3424 return t;
3426 t = make_node (POINTER_TYPE);
3428 TREE_TYPE (t) = to_type;
3429 TYPE_MODE (t) = mode;
3431 /* Record this type as the pointer to TO_TYPE. */
3432 if (mode == ptr_mode)
3433 TYPE_POINTER_TO (to_type) = t;
3435 /* Lay out the type. This function has many callers that are concerned
3436 with expression-construction, and this simplifies them all.
3437 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3438 layout_type (t);
3440 return t;
3443 /* By default build pointers in ptr_mode. */
3445 tree
3446 build_pointer_type (to_type)
3447 tree to_type;
3449 return build_pointer_type_for_mode (to_type, ptr_mode);
3452 /* Construct, lay out and return the type of references to TO_TYPE
3453 with mode MODE. If such a type has already been constructed,
3454 reuse it. */
3456 tree
3457 build_reference_type_for_mode (to_type, mode)
3458 tree to_type;
3459 enum machine_mode mode;
3461 tree t = TYPE_REFERENCE_TO (to_type);
3463 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3464 if (t != 0 && mode == ptr_mode)
3465 return t;
3467 t = make_node (REFERENCE_TYPE);
3469 TREE_TYPE (t) = to_type;
3470 TYPE_MODE (t) = mode;
3472 /* Record this type as the pointer to TO_TYPE. */
3473 if (mode == ptr_mode)
3474 TYPE_REFERENCE_TO (to_type) = t;
3476 layout_type (t);
3478 return t;
3482 /* Build the node for the type of references-to-TO_TYPE by default
3483 in ptr_mode. */
3485 tree
3486 build_reference_type (to_type)
3487 tree to_type;
3489 return build_reference_type_for_mode (to_type, ptr_mode);
3492 /* Build a type that is compatible with t but has no cv quals anywhere
3493 in its type, thus
3495 const char *const *const * -> char ***. */
3497 tree
3498 build_type_no_quals (t)
3499 tree t;
3501 switch (TREE_CODE (t))
3503 case POINTER_TYPE:
3504 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3505 case REFERENCE_TYPE:
3506 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3507 default:
3508 return TYPE_MAIN_VARIANT (t);
3512 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3513 MAXVAL should be the maximum value in the domain
3514 (one less than the length of the array).
3516 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3517 We don't enforce this limit, that is up to caller (e.g. language front end).
3518 The limit exists because the result is a signed type and we don't handle
3519 sizes that use more than one HOST_WIDE_INT. */
3521 tree
3522 build_index_type (maxval)
3523 tree maxval;
3525 tree itype = make_node (INTEGER_TYPE);
3527 TREE_TYPE (itype) = sizetype;
3528 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3529 TYPE_MIN_VALUE (itype) = size_zero_node;
3530 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3531 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3532 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3533 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3534 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3535 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3537 if (host_integerp (maxval, 1))
3538 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3539 else
3540 return itype;
3543 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3544 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3545 low bound LOWVAL and high bound HIGHVAL.
3546 if TYPE==NULL_TREE, sizetype is used. */
3548 tree
3549 build_range_type (type, lowval, highval)
3550 tree type, lowval, highval;
3552 tree itype = make_node (INTEGER_TYPE);
3554 TREE_TYPE (itype) = type;
3555 if (type == NULL_TREE)
3556 type = sizetype;
3558 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3559 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3561 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3562 TYPE_MODE (itype) = TYPE_MODE (type);
3563 TYPE_SIZE (itype) = TYPE_SIZE (type);
3564 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3565 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3566 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3568 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3569 return type_hash_canon (tree_low_cst (highval, 0)
3570 - tree_low_cst (lowval, 0),
3571 itype);
3572 else
3573 return itype;
3576 /* Just like build_index_type, but takes lowval and highval instead
3577 of just highval (maxval). */
3579 tree
3580 build_index_2_type (lowval, highval)
3581 tree lowval, highval;
3583 return build_range_type (sizetype, lowval, highval);
3586 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3587 and number of elements specified by the range of values of INDEX_TYPE.
3588 If such a type has already been constructed, reuse it. */
3590 tree
3591 build_array_type (elt_type, index_type)
3592 tree elt_type, index_type;
3594 tree t;
3595 unsigned int hashcode;
3597 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3599 error ("arrays of functions are not meaningful");
3600 elt_type = integer_type_node;
3603 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3604 build_pointer_type (elt_type);
3606 /* Allocate the array after the pointer type,
3607 in case we free it in type_hash_canon. */
3608 t = make_node (ARRAY_TYPE);
3609 TREE_TYPE (t) = elt_type;
3610 TYPE_DOMAIN (t) = index_type;
3612 if (index_type == 0)
3614 return t;
3617 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3618 t = type_hash_canon (hashcode, t);
3620 if (!COMPLETE_TYPE_P (t))
3621 layout_type (t);
3622 return t;
3625 /* Return the TYPE of the elements comprising
3626 the innermost dimension of ARRAY. */
3628 tree
3629 get_inner_array_type (array)
3630 tree array;
3632 tree type = TREE_TYPE (array);
3634 while (TREE_CODE (type) == ARRAY_TYPE)
3635 type = TREE_TYPE (type);
3637 return type;
3640 /* Construct, lay out and return
3641 the type of functions returning type VALUE_TYPE
3642 given arguments of types ARG_TYPES.
3643 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3644 are data type nodes for the arguments of the function.
3645 If such a type has already been constructed, reuse it. */
3647 tree
3648 build_function_type (value_type, arg_types)
3649 tree value_type, arg_types;
3651 tree t;
3652 unsigned int hashcode;
3654 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3656 error ("function return type cannot be function");
3657 value_type = integer_type_node;
3660 /* Make a node of the sort we want. */
3661 t = make_node (FUNCTION_TYPE);
3662 TREE_TYPE (t) = value_type;
3663 TYPE_ARG_TYPES (t) = arg_types;
3665 /* If we already have such a type, use the old one and free this one. */
3666 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3667 t = type_hash_canon (hashcode, t);
3669 if (!COMPLETE_TYPE_P (t))
3670 layout_type (t);
3671 return t;
3674 /* Build a function type. The RETURN_TYPE is the type retured by the
3675 function. If additional arguments are provided, they are
3676 additional argument types. The list of argument types must always
3677 be terminated by NULL_TREE. */
3679 tree
3680 build_function_type_list VPARAMS ((tree return_type, ...))
3682 tree t, args, last;
3684 VA_OPEN (p, return_type);
3685 VA_FIXEDARG (p, tree, return_type);
3687 t = va_arg (p, tree);
3688 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
3689 args = tree_cons (NULL_TREE, t, args);
3691 last = args;
3692 args = nreverse (args);
3693 TREE_CHAIN (last) = void_list_node;
3694 args = build_function_type (return_type, args);
3696 VA_CLOSE (p);
3697 return args;
3700 /* Construct, lay out and return the type of methods belonging to class
3701 BASETYPE and whose arguments and values are described by TYPE.
3702 If that type exists already, reuse it.
3703 TYPE must be a FUNCTION_TYPE node. */
3705 tree
3706 build_method_type (basetype, type)
3707 tree basetype, type;
3709 tree t;
3710 unsigned int hashcode;
3712 /* Make a node of the sort we want. */
3713 t = make_node (METHOD_TYPE);
3715 if (TREE_CODE (type) != FUNCTION_TYPE)
3716 abort ();
3718 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3719 TREE_TYPE (t) = TREE_TYPE (type);
3721 /* The actual arglist for this function includes a "hidden" argument
3722 which is "this". Put it into the list of argument types. */
3724 TYPE_ARG_TYPES (t)
3725 = tree_cons (NULL_TREE,
3726 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3728 /* If we already have such a type, use the old one and free this one. */
3729 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3730 t = type_hash_canon (hashcode, t);
3732 if (!COMPLETE_TYPE_P (t))
3733 layout_type (t);
3735 return t;
3738 /* Construct, lay out and return the type of offsets to a value
3739 of type TYPE, within an object of type BASETYPE.
3740 If a suitable offset type exists already, reuse it. */
3742 tree
3743 build_offset_type (basetype, type)
3744 tree basetype, type;
3746 tree t;
3747 unsigned int hashcode;
3749 /* Make a node of the sort we want. */
3750 t = make_node (OFFSET_TYPE);
3752 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3753 TREE_TYPE (t) = type;
3755 /* If we already have such a type, use the old one and free this one. */
3756 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3757 t = type_hash_canon (hashcode, t);
3759 if (!COMPLETE_TYPE_P (t))
3760 layout_type (t);
3762 return t;
3765 /* Create a complex type whose components are COMPONENT_TYPE. */
3767 tree
3768 build_complex_type (component_type)
3769 tree component_type;
3771 tree t;
3772 unsigned int hashcode;
3774 /* Make a node of the sort we want. */
3775 t = make_node (COMPLEX_TYPE);
3777 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3778 set_type_quals (t, TYPE_QUALS (component_type));
3780 /* If we already have such a type, use the old one and free this one. */
3781 hashcode = TYPE_HASH (component_type);
3782 t = type_hash_canon (hashcode, t);
3784 if (!COMPLETE_TYPE_P (t))
3785 layout_type (t);
3787 /* If we are writing Dwarf2 output we need to create a name,
3788 since complex is a fundamental type. */
3789 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3790 && ! TYPE_NAME (t))
3792 const char *name;
3793 if (component_type == char_type_node)
3794 name = "complex char";
3795 else if (component_type == signed_char_type_node)
3796 name = "complex signed char";
3797 else if (component_type == unsigned_char_type_node)
3798 name = "complex unsigned char";
3799 else if (component_type == short_integer_type_node)
3800 name = "complex short int";
3801 else if (component_type == short_unsigned_type_node)
3802 name = "complex short unsigned int";
3803 else if (component_type == integer_type_node)
3804 name = "complex int";
3805 else if (component_type == unsigned_type_node)
3806 name = "complex unsigned int";
3807 else if (component_type == long_integer_type_node)
3808 name = "complex long int";
3809 else if (component_type == long_unsigned_type_node)
3810 name = "complex long unsigned int";
3811 else if (component_type == long_long_integer_type_node)
3812 name = "complex long long int";
3813 else if (component_type == long_long_unsigned_type_node)
3814 name = "complex long long unsigned int";
3815 else
3816 name = 0;
3818 if (name != 0)
3819 TYPE_NAME (t) = get_identifier (name);
3822 return t;
3825 /* Return OP, stripped of any conversions to wider types as much as is safe.
3826 Converting the value back to OP's type makes a value equivalent to OP.
3828 If FOR_TYPE is nonzero, we return a value which, if converted to
3829 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
3831 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
3832 narrowest type that can hold the value, even if they don't exactly fit.
3833 Otherwise, bit-field references are changed to a narrower type
3834 only if they can be fetched directly from memory in that type.
3836 OP must have integer, real or enumeral type. Pointers are not allowed!
3838 There are some cases where the obvious value we could return
3839 would regenerate to OP if converted to OP's type,
3840 but would not extend like OP to wider types.
3841 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
3842 For example, if OP is (unsigned short)(signed char)-1,
3843 we avoid returning (signed char)-1 if FOR_TYPE is int,
3844 even though extending that to an unsigned short would regenerate OP,
3845 since the result of extending (signed char)-1 to (int)
3846 is different from (int) OP. */
3848 tree
3849 get_unwidened (op, for_type)
3850 tree op;
3851 tree for_type;
3853 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
3854 tree type = TREE_TYPE (op);
3855 unsigned final_prec
3856 = TYPE_PRECISION (for_type != 0 ? for_type : type);
3857 int uns
3858 = (for_type != 0 && for_type != type
3859 && final_prec > TYPE_PRECISION (type)
3860 && TREE_UNSIGNED (type));
3861 tree win = op;
3863 while (TREE_CODE (op) == NOP_EXPR)
3865 int bitschange
3866 = TYPE_PRECISION (TREE_TYPE (op))
3867 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
3869 /* Truncations are many-one so cannot be removed.
3870 Unless we are later going to truncate down even farther. */
3871 if (bitschange < 0
3872 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
3873 break;
3875 /* See what's inside this conversion. If we decide to strip it,
3876 we will set WIN. */
3877 op = TREE_OPERAND (op, 0);
3879 /* If we have not stripped any zero-extensions (uns is 0),
3880 we can strip any kind of extension.
3881 If we have previously stripped a zero-extension,
3882 only zero-extensions can safely be stripped.
3883 Any extension can be stripped if the bits it would produce
3884 are all going to be discarded later by truncating to FOR_TYPE. */
3886 if (bitschange > 0)
3888 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
3889 win = op;
3890 /* TREE_UNSIGNED says whether this is a zero-extension.
3891 Let's avoid computing it if it does not affect WIN
3892 and if UNS will not be needed again. */
3893 if ((uns || TREE_CODE (op) == NOP_EXPR)
3894 && TREE_UNSIGNED (TREE_TYPE (op)))
3896 uns = 1;
3897 win = op;
3902 if (TREE_CODE (op) == COMPONENT_REF
3903 /* Since type_for_size always gives an integer type. */
3904 && TREE_CODE (type) != REAL_TYPE
3905 /* Don't crash if field not laid out yet. */
3906 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
3907 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
3909 unsigned int innerprec
3910 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
3911 int unsignedp = TREE_UNSIGNED (TREE_OPERAND (op, 1));
3912 type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
3914 /* We can get this structure field in the narrowest type it fits in.
3915 If FOR_TYPE is 0, do this only for a field that matches the
3916 narrower type exactly and is aligned for it
3917 The resulting extension to its nominal type (a fullword type)
3918 must fit the same conditions as for other extensions. */
3920 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
3921 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
3922 && (! uns || final_prec <= innerprec || unsignedp)
3923 && type != 0)
3925 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
3926 TREE_OPERAND (op, 1));
3927 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
3928 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
3932 return win;
3935 /* Return OP or a simpler expression for a narrower value
3936 which can be sign-extended or zero-extended to give back OP.
3937 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
3938 or 0 if the value should be sign-extended. */
3940 tree
3941 get_narrower (op, unsignedp_ptr)
3942 tree op;
3943 int *unsignedp_ptr;
3945 int uns = 0;
3946 int first = 1;
3947 tree win = op;
3949 while (TREE_CODE (op) == NOP_EXPR)
3951 int bitschange
3952 = (TYPE_PRECISION (TREE_TYPE (op))
3953 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
3955 /* Truncations are many-one so cannot be removed. */
3956 if (bitschange < 0)
3957 break;
3959 /* See what's inside this conversion. If we decide to strip it,
3960 we will set WIN. */
3961 op = TREE_OPERAND (op, 0);
3963 if (bitschange > 0)
3965 /* An extension: the outermost one can be stripped,
3966 but remember whether it is zero or sign extension. */
3967 if (first)
3968 uns = TREE_UNSIGNED (TREE_TYPE (op));
3969 /* Otherwise, if a sign extension has been stripped,
3970 only sign extensions can now be stripped;
3971 if a zero extension has been stripped, only zero-extensions. */
3972 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
3973 break;
3974 first = 0;
3976 else /* bitschange == 0 */
3978 /* A change in nominal type can always be stripped, but we must
3979 preserve the unsignedness. */
3980 if (first)
3981 uns = TREE_UNSIGNED (TREE_TYPE (op));
3982 first = 0;
3985 win = op;
3988 if (TREE_CODE (op) == COMPONENT_REF
3989 /* Since type_for_size always gives an integer type. */
3990 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
3991 /* Ensure field is laid out already. */
3992 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
3994 unsigned HOST_WIDE_INT innerprec
3995 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
3996 tree type = (*lang_hooks.types.type_for_size) (innerprec,
3997 TREE_UNSIGNED (op));
3999 /* We can get this structure field in a narrower type that fits it,
4000 but the resulting extension to its nominal type (a fullword type)
4001 must satisfy the same conditions as for other extensions.
4003 Do this only for fields that are aligned (not bit-fields),
4004 because when bit-field insns will be used there is no
4005 advantage in doing this. */
4007 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4008 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4009 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4010 && type != 0)
4012 if (first)
4013 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4014 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4015 TREE_OPERAND (op, 1));
4016 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4017 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4020 *unsignedp_ptr = uns;
4021 return win;
4024 /* Nonzero if integer constant C has a value that is permissible
4025 for type TYPE (an INTEGER_TYPE). */
4028 int_fits_type_p (c, type)
4029 tree c, type;
4031 /* If the bounds of the type are integers, we can check ourselves.
4032 If not, but this type is a subtype, try checking against that.
4033 Otherwise, use force_fit_type, which checks against the precision. */
4034 if (TYPE_MAX_VALUE (type) != NULL_TREE
4035 && TYPE_MIN_VALUE (type) != NULL_TREE
4036 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4037 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
4039 if (TREE_UNSIGNED (type))
4040 return (! INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
4041 && ! INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
4042 /* Negative ints never fit unsigned types. */
4043 && ! (TREE_INT_CST_HIGH (c) < 0
4044 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4045 else
4046 return (! INT_CST_LT (TYPE_MAX_VALUE (type), c)
4047 && ! INT_CST_LT (c, TYPE_MIN_VALUE (type))
4048 /* Unsigned ints with top bit set never fit signed types. */
4049 && ! (TREE_INT_CST_HIGH (c) < 0
4050 && TREE_UNSIGNED (TREE_TYPE (c))));
4052 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4053 return int_fits_type_p (c, TREE_TYPE (type));
4054 else
4056 c = copy_node (c);
4057 TREE_TYPE (c) = type;
4058 return !force_fit_type (c, 0);
4062 /* Returns true if T is, contains, or refers to a type with variable
4063 size. This concept is more general than that of C99 'variably
4064 modified types': in C99, a struct type is never variably modified
4065 because a VLA may not appear as a structure member. However, in
4066 GNU C code like:
4068 struct S { int i[f()]; };
4070 is valid, and other languages may define similar constructs. */
4072 bool
4073 variably_modified_type_p (type)
4074 tree type;
4076 if (type == error_mark_node)
4077 return false;
4079 /* If TYPE itself has variable size, it is variably modified.
4081 We do not yet have a representation of the C99 '[*]' syntax.
4082 When a representation is chosen, this function should be modified
4083 to test for that case as well. */
4084 if (TYPE_SIZE (type)
4085 && TYPE_SIZE (type) != error_mark_node
4086 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4087 return true;
4089 /* If TYPE is a pointer or reference, it is variably modified if
4090 the type pointed to is variably modified. */
4091 if ((TREE_CODE (type) == POINTER_TYPE
4092 || TREE_CODE (type) == REFERENCE_TYPE)
4093 && variably_modified_type_p (TREE_TYPE (type)))
4094 return true;
4096 /* If TYPE is an array, it is variably modified if the array
4097 elements are. (Note that the VLA case has already been checked
4098 above.) */
4099 if (TREE_CODE (type) == ARRAY_TYPE
4100 && variably_modified_type_p (TREE_TYPE (type)))
4101 return true;
4103 /* If TYPE is a function type, it is variably modified if any of the
4104 parameters or the return type are variably modified. */
4105 if (TREE_CODE (type) == FUNCTION_TYPE
4106 || TREE_CODE (type) == METHOD_TYPE)
4108 tree parm;
4110 if (variably_modified_type_p (TREE_TYPE (type)))
4111 return true;
4112 for (parm = TYPE_ARG_TYPES (type);
4113 parm && parm != void_list_node;
4114 parm = TREE_CHAIN (parm))
4115 if (variably_modified_type_p (TREE_VALUE (parm)))
4116 return true;
4119 /* The current language may have other cases to check, but in general,
4120 all other types are not variably modified. */
4121 return (*lang_hooks.tree_inlining.var_mod_type_p) (type);
4124 /* Given a DECL or TYPE, return the scope in which it was declared, or
4125 NULL_TREE if there is no containing scope. */
4127 tree
4128 get_containing_scope (t)
4129 tree t;
4131 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4134 /* Return the innermost context enclosing DECL that is
4135 a FUNCTION_DECL, or zero if none. */
4137 tree
4138 decl_function_context (decl)
4139 tree decl;
4141 tree context;
4143 if (TREE_CODE (decl) == ERROR_MARK)
4144 return 0;
4146 if (TREE_CODE (decl) == SAVE_EXPR)
4147 context = SAVE_EXPR_CONTEXT (decl);
4149 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4150 where we look up the function at runtime. Such functions always take
4151 a first argument of type 'pointer to real context'.
4153 C++ should really be fixed to use DECL_CONTEXT for the real context,
4154 and use something else for the "virtual context". */
4155 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4156 context
4157 = TYPE_MAIN_VARIANT
4158 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4159 else
4160 context = DECL_CONTEXT (decl);
4162 while (context && TREE_CODE (context) != FUNCTION_DECL)
4164 if (TREE_CODE (context) == BLOCK)
4165 context = BLOCK_SUPERCONTEXT (context);
4166 else
4167 context = get_containing_scope (context);
4170 return context;
4173 /* Return the innermost context enclosing DECL that is
4174 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4175 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4177 tree
4178 decl_type_context (decl)
4179 tree decl;
4181 tree context = DECL_CONTEXT (decl);
4183 while (context)
4185 if (TREE_CODE (context) == NAMESPACE_DECL)
4186 return NULL_TREE;
4188 if (TREE_CODE (context) == RECORD_TYPE
4189 || TREE_CODE (context) == UNION_TYPE
4190 || TREE_CODE (context) == QUAL_UNION_TYPE)
4191 return context;
4193 if (TREE_CODE (context) == TYPE_DECL
4194 || TREE_CODE (context) == FUNCTION_DECL)
4195 context = DECL_CONTEXT (context);
4197 else if (TREE_CODE (context) == BLOCK)
4198 context = BLOCK_SUPERCONTEXT (context);
4200 else
4201 /* Unhandled CONTEXT!? */
4202 abort ();
4204 return NULL_TREE;
4207 /* CALL is a CALL_EXPR. Return the declaration for the function
4208 called, or NULL_TREE if the called function cannot be
4209 determined. */
4211 tree
4212 get_callee_fndecl (call)
4213 tree call;
4215 tree addr;
4217 /* It's invalid to call this function with anything but a
4218 CALL_EXPR. */
4219 if (TREE_CODE (call) != CALL_EXPR)
4220 abort ();
4222 /* The first operand to the CALL is the address of the function
4223 called. */
4224 addr = TREE_OPERAND (call, 0);
4226 STRIP_NOPS (addr);
4228 /* If this is a readonly function pointer, extract its initial value. */
4229 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4230 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4231 && DECL_INITIAL (addr))
4232 addr = DECL_INITIAL (addr);
4234 /* If the address is just `&f' for some function `f', then we know
4235 that `f' is being called. */
4236 if (TREE_CODE (addr) == ADDR_EXPR
4237 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4238 return TREE_OPERAND (addr, 0);
4240 /* We couldn't figure out what was being called. */
4241 return NULL_TREE;
4244 /* Print debugging information about the obstack O, named STR. */
4246 void
4247 print_obstack_statistics (str, o)
4248 const char *str;
4249 struct obstack *o;
4251 struct _obstack_chunk *chunk = o->chunk;
4252 int n_chunks = 1;
4253 int n_alloc = 0;
4255 n_alloc += o->next_free - chunk->contents;
4256 chunk = chunk->prev;
4257 while (chunk)
4259 n_chunks += 1;
4260 n_alloc += chunk->limit - &chunk->contents[0];
4261 chunk = chunk->prev;
4263 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4264 str, n_alloc, n_chunks);
4267 /* Print debugging information about tree nodes generated during the compile,
4268 and any language-specific information. */
4270 void
4271 dump_tree_statistics ()
4273 #ifdef GATHER_STATISTICS
4274 int i;
4275 int total_nodes, total_bytes;
4276 #endif
4278 fprintf (stderr, "\n??? tree nodes created\n\n");
4279 #ifdef GATHER_STATISTICS
4280 fprintf (stderr, "Kind Nodes Bytes\n");
4281 fprintf (stderr, "-------------------------------------\n");
4282 total_nodes = total_bytes = 0;
4283 for (i = 0; i < (int) all_kinds; i++)
4285 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4286 tree_node_counts[i], tree_node_sizes[i]);
4287 total_nodes += tree_node_counts[i];
4288 total_bytes += tree_node_sizes[i];
4290 fprintf (stderr, "-------------------------------------\n");
4291 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4292 fprintf (stderr, "-------------------------------------\n");
4293 #else
4294 fprintf (stderr, "(No per-node statistics)\n");
4295 #endif
4296 print_type_hash_statistics ();
4297 (*lang_hooks.print_statistics) ();
4300 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4302 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4303 clashes in cases where we can't reliably choose a unique name.
4305 Derived from mkstemp.c in libiberty. */
4307 static void
4308 append_random_chars (template)
4309 char *template;
4311 static const char letters[]
4312 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4313 static unsigned HOST_WIDE_INT value;
4314 unsigned HOST_WIDE_INT v;
4316 if (! value)
4318 struct stat st;
4320 /* VALUE should be unique for each file and must not change between
4321 compiles since this can cause bootstrap comparison errors. */
4323 if (stat (main_input_filename, &st) < 0)
4325 /* This can happen when preprocessed text is shipped between
4326 machines, e.g. with bug reports. Assume that uniqueness
4327 isn't actually an issue. */
4328 value = 1;
4330 else
4332 /* In VMS, ino is an array, so we have to use both values. We
4333 conditionalize that. */
4334 #ifdef VMS
4335 #define INO_TO_INT(INO) ((int) (INO)[1] << 16 ^ (int) (INO)[2])
4336 #else
4337 #define INO_TO_INT(INO) INO
4338 #endif
4339 value = st.st_dev ^ INO_TO_INT (st.st_ino) ^ st.st_mtime;
4343 template += strlen (template);
4345 v = value;
4347 /* Fill in the random bits. */
4348 template[0] = letters[v % 62];
4349 v /= 62;
4350 template[1] = letters[v % 62];
4351 v /= 62;
4352 template[2] = letters[v % 62];
4353 v /= 62;
4354 template[3] = letters[v % 62];
4355 v /= 62;
4356 template[4] = letters[v % 62];
4357 v /= 62;
4358 template[5] = letters[v % 62];
4360 template[6] = '\0';
4363 /* P is a string that will be used in a symbol. Mask out any characters
4364 that are not valid in that context. */
4366 void
4367 clean_symbol_name (p)
4368 char *p;
4370 for (; *p; p++)
4371 if (! (ISALNUM (*p)
4372 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4373 || *p == '$'
4374 #endif
4375 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4376 || *p == '.'
4377 #endif
4379 *p = '_';
4382 /* Generate a name for a function unique to this translation unit.
4383 TYPE is some string to identify the purpose of this function to the
4384 linker or collect2. */
4386 tree
4387 get_file_function_name_long (type)
4388 const char *type;
4390 char *buf;
4391 const char *p;
4392 char *q;
4394 if (first_global_object_name)
4395 p = first_global_object_name;
4396 else
4398 /* We don't have anything that we know to be unique to this translation
4399 unit, so use what we do have and throw in some randomness. */
4401 const char *name = weak_global_object_name;
4402 const char *file = main_input_filename;
4404 if (! name)
4405 name = "";
4406 if (! file)
4407 file = input_filename;
4409 q = (char *) alloca (7 + strlen (name) + strlen (file));
4411 sprintf (q, "%s%s", name, file);
4412 append_random_chars (q);
4413 p = q;
4416 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4417 + strlen (type));
4419 /* Set up the name of the file-level functions we may need.
4420 Use a global object (which is already required to be unique over
4421 the program) rather than the file name (which imposes extra
4422 constraints). */
4423 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4425 /* Don't need to pull weird characters out of global names. */
4426 if (p != first_global_object_name)
4427 clean_symbol_name (buf + 11);
4429 return get_identifier (buf);
4432 /* If KIND=='I', return a suitable global initializer (constructor) name.
4433 If KIND=='D', return a suitable global clean-up (destructor) name. */
4435 tree
4436 get_file_function_name (kind)
4437 int kind;
4439 char p[2];
4441 p[0] = kind;
4442 p[1] = 0;
4444 return get_file_function_name_long (p);
4447 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4448 The result is placed in BUFFER (which has length BIT_SIZE),
4449 with one bit in each char ('\000' or '\001').
4451 If the constructor is constant, NULL_TREE is returned.
4452 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4454 tree
4455 get_set_constructor_bits (init, buffer, bit_size)
4456 tree init;
4457 char *buffer;
4458 int bit_size;
4460 int i;
4461 tree vals;
4462 HOST_WIDE_INT domain_min
4463 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4464 tree non_const_bits = NULL_TREE;
4466 for (i = 0; i < bit_size; i++)
4467 buffer[i] = 0;
4469 for (vals = TREE_OPERAND (init, 1);
4470 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4472 if (!host_integerp (TREE_VALUE (vals), 0)
4473 || (TREE_PURPOSE (vals) != NULL_TREE
4474 && !host_integerp (TREE_PURPOSE (vals), 0)))
4475 non_const_bits
4476 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4477 else if (TREE_PURPOSE (vals) != NULL_TREE)
4479 /* Set a range of bits to ones. */
4480 HOST_WIDE_INT lo_index
4481 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4482 HOST_WIDE_INT hi_index
4483 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4485 if (lo_index < 0 || lo_index >= bit_size
4486 || hi_index < 0 || hi_index >= bit_size)
4487 abort ();
4488 for (; lo_index <= hi_index; lo_index++)
4489 buffer[lo_index] = 1;
4491 else
4493 /* Set a single bit to one. */
4494 HOST_WIDE_INT index
4495 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4496 if (index < 0 || index >= bit_size)
4498 error ("invalid initializer for bit string");
4499 return NULL_TREE;
4501 buffer[index] = 1;
4504 return non_const_bits;
4507 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4508 The result is placed in BUFFER (which is an array of bytes).
4509 If the constructor is constant, NULL_TREE is returned.
4510 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4512 tree
4513 get_set_constructor_bytes (init, buffer, wd_size)
4514 tree init;
4515 unsigned char *buffer;
4516 int wd_size;
4518 int i;
4519 int set_word_size = BITS_PER_UNIT;
4520 int bit_size = wd_size * set_word_size;
4521 int bit_pos = 0;
4522 unsigned char *bytep = buffer;
4523 char *bit_buffer = (char *) alloca (bit_size);
4524 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4526 for (i = 0; i < wd_size; i++)
4527 buffer[i] = 0;
4529 for (i = 0; i < bit_size; i++)
4531 if (bit_buffer[i])
4533 if (BYTES_BIG_ENDIAN)
4534 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4535 else
4536 *bytep |= 1 << bit_pos;
4538 bit_pos++;
4539 if (bit_pos >= set_word_size)
4540 bit_pos = 0, bytep++;
4542 return non_const_bits;
4545 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4546 /* Complain that the tree code of NODE does not match the expected CODE.
4547 FILE, LINE, and FUNCTION are of the caller. */
4549 void
4550 tree_check_failed (node, code, file, line, function)
4551 const tree node;
4552 enum tree_code code;
4553 const char *file;
4554 int line;
4555 const char *function;
4557 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4558 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4559 function, trim_filename (file), line);
4562 /* Similar to above, except that we check for a class of tree
4563 code, given in CL. */
4565 void
4566 tree_class_check_failed (node, cl, file, line, function)
4567 const tree node;
4568 int cl;
4569 const char *file;
4570 int line;
4571 const char *function;
4573 internal_error
4574 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4575 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4576 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4579 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
4580 (dynamically sized) vector. */
4582 void
4583 tree_vec_elt_check_failed (idx, len, file, line, function)
4584 int idx;
4585 int len;
4586 const char *file;
4587 int line;
4588 const char *function;
4590 internal_error
4591 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
4592 idx + 1, len, function, trim_filename (file), line);
4595 #endif /* ENABLE_TREE_CHECKING */
4597 /* For a new vector type node T, build the information necessary for
4598 debugging output. */
4600 static void
4601 finish_vector_type (t)
4602 tree t;
4604 layout_type (t);
4607 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4608 tree array = build_array_type (TREE_TYPE (t),
4609 build_index_type (index));
4610 tree rt = make_node (RECORD_TYPE);
4612 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4613 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4614 layout_type (rt);
4615 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4616 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4617 the representation type, and we want to find that die when looking up
4618 the vector type. This is most easily achieved by making the TYPE_UID
4619 numbers equal. */
4620 TYPE_UID (rt) = TYPE_UID (t);
4624 /* Create nodes for all integer types (and error_mark_node) using the sizes
4625 of C datatypes. The caller should call set_sizetype soon after calling
4626 this function to select one of the types as sizetype. */
4628 void
4629 build_common_tree_nodes (signed_char)
4630 int signed_char;
4632 error_mark_node = make_node (ERROR_MARK);
4633 TREE_TYPE (error_mark_node) = error_mark_node;
4635 initialize_sizetypes ();
4637 /* Define both `signed char' and `unsigned char'. */
4638 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4639 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4641 /* Define `char', which is like either `signed char' or `unsigned char'
4642 but not the same as either. */
4643 char_type_node
4644 = (signed_char
4645 ? make_signed_type (CHAR_TYPE_SIZE)
4646 : make_unsigned_type (CHAR_TYPE_SIZE));
4648 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4649 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4650 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4651 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4652 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4653 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4654 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4655 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4657 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4658 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4659 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4660 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4661 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4663 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4664 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4665 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4666 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4667 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4670 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4671 It will create several other common tree nodes. */
4673 void
4674 build_common_tree_nodes_2 (short_double)
4675 int short_double;
4677 /* Define these next since types below may used them. */
4678 integer_zero_node = build_int_2 (0, 0);
4679 integer_one_node = build_int_2 (1, 0);
4680 integer_minus_one_node = build_int_2 (-1, -1);
4682 size_zero_node = size_int (0);
4683 size_one_node = size_int (1);
4684 bitsize_zero_node = bitsize_int (0);
4685 bitsize_one_node = bitsize_int (1);
4686 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4688 void_type_node = make_node (VOID_TYPE);
4689 layout_type (void_type_node);
4691 /* We are not going to have real types in C with less than byte alignment,
4692 so we might as well not have any types that claim to have it. */
4693 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4694 TYPE_USER_ALIGN (void_type_node) = 0;
4696 null_pointer_node = build_int_2 (0, 0);
4697 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4698 layout_type (TREE_TYPE (null_pointer_node));
4700 ptr_type_node = build_pointer_type (void_type_node);
4701 const_ptr_type_node
4702 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4704 float_type_node = make_node (REAL_TYPE);
4705 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4706 layout_type (float_type_node);
4708 double_type_node = make_node (REAL_TYPE);
4709 if (short_double)
4710 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4711 else
4712 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4713 layout_type (double_type_node);
4715 long_double_type_node = make_node (REAL_TYPE);
4716 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4717 layout_type (long_double_type_node);
4719 complex_integer_type_node = make_node (COMPLEX_TYPE);
4720 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4721 layout_type (complex_integer_type_node);
4723 complex_float_type_node = make_node (COMPLEX_TYPE);
4724 TREE_TYPE (complex_float_type_node) = float_type_node;
4725 layout_type (complex_float_type_node);
4727 complex_double_type_node = make_node (COMPLEX_TYPE);
4728 TREE_TYPE (complex_double_type_node) = double_type_node;
4729 layout_type (complex_double_type_node);
4731 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4732 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4733 layout_type (complex_long_double_type_node);
4736 tree t;
4737 BUILD_VA_LIST_TYPE (t);
4739 /* Many back-ends define record types without seting TYPE_NAME.
4740 If we copied the record type here, we'd keep the original
4741 record type without a name. This breaks name mangling. So,
4742 don't copy record types and let c_common_nodes_and_builtins()
4743 declare the type to be __builtin_va_list. */
4744 if (TREE_CODE (t) != RECORD_TYPE)
4745 t = build_type_copy (t);
4747 va_list_type_node = t;
4750 unsigned_V4SI_type_node
4751 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
4752 unsigned_V2HI_type_node
4753 = make_vector (V2HImode, unsigned_intHI_type_node, 1);
4754 unsigned_V2SI_type_node
4755 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
4756 unsigned_V2DI_type_node
4757 = make_vector (V2DImode, unsigned_intDI_type_node, 1);
4758 unsigned_V4HI_type_node
4759 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
4760 unsigned_V8QI_type_node
4761 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
4762 unsigned_V8HI_type_node
4763 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
4764 unsigned_V16QI_type_node
4765 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
4766 unsigned_V1DI_type_node
4767 = make_vector (V1DImode, unsigned_intDI_type_node, 1);
4769 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
4770 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
4771 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
4772 V2HI_type_node = make_vector (V2HImode, intHI_type_node, 0);
4773 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
4774 V2DI_type_node = make_vector (V2DImode, intDI_type_node, 0);
4775 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
4776 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
4777 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
4778 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
4779 V2DF_type_node = make_vector (V2DFmode, double_type_node, 0);
4780 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
4781 V1DI_type_node = make_vector (V1DImode, intDI_type_node, 0);
4784 /* Returns a vector tree node given a vector mode, the inner type, and
4785 the signness. */
4787 static tree
4788 make_vector (mode, innertype, unsignedp)
4789 enum machine_mode mode;
4790 tree innertype;
4791 int unsignedp;
4793 tree t;
4795 t = make_node (VECTOR_TYPE);
4796 TREE_TYPE (t) = innertype;
4797 TYPE_MODE (t) = mode;
4798 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
4799 finish_vector_type (t);
4801 return t;
4804 /* Given an initializer INIT, return TRUE if INIT is zero or some
4805 aggregate of zeros. Otherwise return FALSE. */
4807 bool
4808 initializer_zerop (init)
4809 tree init;
4811 STRIP_NOPS (init);
4813 switch (TREE_CODE (init))
4815 case INTEGER_CST:
4816 return integer_zerop (init);
4817 case REAL_CST:
4818 return real_zerop (init)
4819 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
4820 case COMPLEX_CST:
4821 return integer_zerop (init)
4822 || (real_zerop (init)
4823 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
4824 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
4825 case CONSTRUCTOR:
4827 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
4829 tree aggr_init = TREE_OPERAND (init, 1);
4831 while (aggr_init)
4833 if (! initializer_zerop (TREE_VALUE (aggr_init)))
4834 return false;
4835 aggr_init = TREE_CHAIN (aggr_init);
4837 return true;
4839 return false;
4841 default:
4842 return false;
4846 #include "gt-tree.h"