Update copyright.
[official-gcc.git] / gcc / stor-layout.c
blob6caaf5f70deb12a97a82a389253ab86bc313b3e2
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "toplev.h"
34 #include "ggc.h"
35 #include "target.h"
36 #include "langhooks.h"
38 /* Set to one when set_sizetype has been called. */
39 static int sizetype_set;
41 /* List of types created before set_sizetype has been called. We do not
42 make this a GGC root since we want these nodes to be reclaimed. */
43 static tree early_type_list;
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) TYPE_KIND_LAST];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment;
53 /* If nonzero, the alignment of a bitstring or (power-)set value, in bits.
54 May be overridden by front-ends. */
55 unsigned int set_alignment = 0;
57 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
58 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
59 called only by a front end. */
60 static int reference_types_internal = 0;
62 static void finalize_record_size PARAMS ((record_layout_info));
63 static void finalize_type_size PARAMS ((tree));
64 static void place_union_field PARAMS ((record_layout_info, tree));
65 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
66 static int excess_unit_span PARAMS ((HOST_WIDE_INT, HOST_WIDE_INT,
67 HOST_WIDE_INT, HOST_WIDE_INT,
68 tree));
69 #endif
70 static unsigned int update_alignment_for_field
71 PARAMS ((record_layout_info, tree,
72 unsigned int));
73 extern void debug_rli PARAMS ((record_layout_info));
75 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
77 static GTY(()) tree pending_sizes;
79 /* Nonzero means cannot safely call expand_expr now,
80 so put variable sizes onto `pending_sizes' instead. */
82 int immediate_size_expand;
84 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
85 by front end. */
87 void
88 internal_reference_types ()
90 reference_types_internal = 1;
93 /* Get a list of all the objects put on the pending sizes list. */
95 tree
96 get_pending_sizes ()
98 tree chain = pending_sizes;
99 tree t;
101 /* Put each SAVE_EXPR into the current function. */
102 for (t = chain; t; t = TREE_CHAIN (t))
103 SAVE_EXPR_CONTEXT (TREE_VALUE (t)) = current_function_decl;
105 pending_sizes = 0;
106 return chain;
109 /* Return nonzero if EXPR is present on the pending sizes list. */
112 is_pending_size (expr)
113 tree expr;
115 tree t;
117 for (t = pending_sizes; t; t = TREE_CHAIN (t))
118 if (TREE_VALUE (t) == expr)
119 return 1;
120 return 0;
123 /* Add EXPR to the pending sizes list. */
125 void
126 put_pending_size (expr)
127 tree expr;
129 /* Strip any simple arithmetic from EXPR to see if it has an underlying
130 SAVE_EXPR. */
131 while (TREE_CODE_CLASS (TREE_CODE (expr)) == '1'
132 || (TREE_CODE_CLASS (TREE_CODE (expr)) == '2'
133 && TREE_CONSTANT (TREE_OPERAND (expr, 1))))
134 expr = TREE_OPERAND (expr, 0);
136 if (TREE_CODE (expr) == SAVE_EXPR)
137 pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
140 /* Put a chain of objects into the pending sizes list, which must be
141 empty. */
143 void
144 put_pending_sizes (chain)
145 tree chain;
147 if (pending_sizes)
148 abort ();
150 pending_sizes = chain;
153 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
154 to serve as the actual size-expression for a type or decl. */
156 tree
157 variable_size (size)
158 tree size;
160 tree save;
162 /* If the language-processor is to take responsibility for variable-sized
163 items (e.g., languages which have elaboration procedures like Ada),
164 just return SIZE unchanged. Likewise for self-referential sizes and
165 constant sizes. */
166 if (TREE_CONSTANT (size)
167 || (*lang_hooks.decls.global_bindings_p) () < 0
168 || contains_placeholder_p (size))
169 return size;
171 if (TREE_CODE (size) == MINUS_EXPR && integer_onep (TREE_OPERAND (size, 1)))
172 /* If this is the upper bound of a C array, leave the minus 1 outside
173 the SAVE_EXPR so it can be folded away. */
174 TREE_OPERAND (size, 0) = save = save_expr (TREE_OPERAND (size, 0));
175 else
176 size = save = save_expr (size);
178 /* If an array with a variable number of elements is declared, and
179 the elements require destruction, we will emit a cleanup for the
180 array. That cleanup is run both on normal exit from the block
181 and in the exception-handler for the block. Normally, when code
182 is used in both ordinary code and in an exception handler it is
183 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
184 not wish to do that here; the array-size is the same in both
185 places. */
186 if (TREE_CODE (save) == SAVE_EXPR)
187 SAVE_EXPR_PERSISTENT_P (save) = 1;
189 if ((*lang_hooks.decls.global_bindings_p) ())
191 if (TREE_CONSTANT (size))
192 error ("type size can't be explicitly evaluated");
193 else
194 error ("variable-size type declared outside of any function");
196 return size_one_node;
199 if (immediate_size_expand)
200 expand_expr (save, const0_rtx, VOIDmode, 0);
201 else if (cfun != 0 && cfun->x_dont_save_pending_sizes_p)
202 /* The front-end doesn't want us to keep a list of the expressions
203 that determine sizes for variable size objects. */
205 else
206 put_pending_size (save);
208 return size;
211 #ifndef MAX_FIXED_MODE_SIZE
212 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
213 #endif
215 /* Return the machine mode to use for a nonscalar of SIZE bits.
216 The mode must be in class CLASS, and have exactly that many bits.
217 If LIMIT is nonzero, modes of wider than MAX_FIXED_MODE_SIZE will not
218 be used. */
220 enum machine_mode
221 mode_for_size (size, class, limit)
222 unsigned int size;
223 enum mode_class class;
224 int limit;
226 enum machine_mode mode;
228 if (limit && size > MAX_FIXED_MODE_SIZE)
229 return BLKmode;
231 /* Get the first mode which has this size, in the specified class. */
232 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
233 mode = GET_MODE_WIDER_MODE (mode))
234 if (GET_MODE_BITSIZE (mode) == size)
235 return mode;
237 return BLKmode;
240 /* Similar, except passed a tree node. */
242 enum machine_mode
243 mode_for_size_tree (size, class, limit)
244 tree size;
245 enum mode_class class;
246 int limit;
248 if (TREE_CODE (size) != INTEGER_CST
249 /* What we really want to say here is that the size can fit in a
250 host integer, but we know there's no way we'd find a mode for
251 this many bits, so there's no point in doing the precise test. */
252 || compare_tree_int (size, 1000) > 0)
253 return BLKmode;
254 else
255 return mode_for_size (TREE_INT_CST_LOW (size), class, limit);
258 /* Similar, but never return BLKmode; return the narrowest mode that
259 contains at least the requested number of bits. */
261 enum machine_mode
262 smallest_mode_for_size (size, class)
263 unsigned int size;
264 enum mode_class class;
266 enum machine_mode mode;
268 /* Get the first mode which has at least this size, in the
269 specified class. */
270 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
271 mode = GET_MODE_WIDER_MODE (mode))
272 if (GET_MODE_BITSIZE (mode) >= size)
273 return mode;
275 abort ();
278 /* Find an integer mode of the exact same size, or BLKmode on failure. */
280 enum machine_mode
281 int_mode_for_mode (mode)
282 enum machine_mode mode;
284 switch (GET_MODE_CLASS (mode))
286 case MODE_INT:
287 case MODE_PARTIAL_INT:
288 break;
290 case MODE_COMPLEX_INT:
291 case MODE_COMPLEX_FLOAT:
292 case MODE_FLOAT:
293 case MODE_VECTOR_INT:
294 case MODE_VECTOR_FLOAT:
295 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
296 break;
298 case MODE_RANDOM:
299 if (mode == BLKmode)
300 break;
302 /* ... fall through ... */
304 case MODE_CC:
305 default:
306 abort ();
309 return mode;
312 /* Return the alignment of MODE. This will be bounded by 1 and
313 BIGGEST_ALIGNMENT. */
315 unsigned int
316 get_mode_alignment (mode)
317 enum machine_mode mode;
319 unsigned int alignment;
321 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
322 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
323 alignment = GET_MODE_UNIT_SIZE (mode);
324 else
325 alignment = GET_MODE_SIZE (mode);
327 /* Extract the LSB of the size. */
328 alignment = alignment & -alignment;
329 alignment *= BITS_PER_UNIT;
331 alignment = MIN (BIGGEST_ALIGNMENT, MAX (1, alignment));
332 return alignment;
335 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
336 This can only be applied to objects of a sizetype. */
338 tree
339 round_up (value, divisor)
340 tree value;
341 int divisor;
343 tree arg = size_int_type (divisor, TREE_TYPE (value));
345 return size_binop (MULT_EXPR, size_binop (CEIL_DIV_EXPR, value, arg), arg);
348 /* Likewise, but round down. */
350 tree
351 round_down (value, divisor)
352 tree value;
353 int divisor;
355 tree arg = size_int_type (divisor, TREE_TYPE (value));
357 return size_binop (MULT_EXPR, size_binop (FLOOR_DIV_EXPR, value, arg), arg);
360 /* Set the size, mode and alignment of a ..._DECL node.
361 TYPE_DECL does need this for C++.
362 Note that LABEL_DECL and CONST_DECL nodes do not need this,
363 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
364 Don't call layout_decl for them.
366 KNOWN_ALIGN is the amount of alignment we can assume this
367 decl has with no special effort. It is relevant only for FIELD_DECLs
368 and depends on the previous fields.
369 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
370 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
371 the record will be aligned to suit. */
373 void
374 layout_decl (decl, known_align)
375 tree decl;
376 unsigned int known_align;
378 tree type = TREE_TYPE (decl);
379 enum tree_code code = TREE_CODE (decl);
381 if (code == CONST_DECL)
382 return;
383 else if (code != VAR_DECL && code != PARM_DECL && code != RESULT_DECL
384 && code != TYPE_DECL && code != FIELD_DECL)
385 abort ();
387 if (type == error_mark_node)
388 type = void_type_node;
390 /* Usually the size and mode come from the data type without change,
391 however, the front-end may set the explicit width of the field, so its
392 size may not be the same as the size of its type. This happens with
393 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
394 also happens with other fields. For example, the C++ front-end creates
395 zero-sized fields corresponding to empty base classes, and depends on
396 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
397 size in bytes from the size in bits. If we have already set the mode,
398 don't set it again since we can be called twice for FIELD_DECLs. */
400 TREE_UNSIGNED (decl) = TREE_UNSIGNED (type);
401 if (DECL_MODE (decl) == VOIDmode)
402 DECL_MODE (decl) = TYPE_MODE (type);
404 if (DECL_SIZE (decl) == 0)
406 DECL_SIZE (decl) = TYPE_SIZE (type);
407 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
409 else
410 DECL_SIZE_UNIT (decl)
411 = convert (sizetype, size_binop (CEIL_DIV_EXPR, DECL_SIZE (decl),
412 bitsize_unit_node));
414 /* Force alignment required for the data type.
415 But if the decl itself wants greater alignment, don't override that.
416 Likewise, if the decl is packed, don't override it. */
417 if (! (code == FIELD_DECL && DECL_BIT_FIELD (decl))
418 && (DECL_ALIGN (decl) == 0
419 || (! (code == FIELD_DECL && DECL_PACKED (decl))
420 && TYPE_ALIGN (type) > DECL_ALIGN (decl))))
422 DECL_ALIGN (decl) = TYPE_ALIGN (type);
423 DECL_USER_ALIGN (decl) = 0;
426 /* For fields, set the bit field type and update the alignment. */
427 if (code == FIELD_DECL)
429 DECL_BIT_FIELD_TYPE (decl) = DECL_BIT_FIELD (decl) ? type : 0;
430 if (maximum_field_alignment != 0)
431 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), maximum_field_alignment);
433 /* If the field is of variable size, we can't misalign it since we
434 have no way to make a temporary to align the result. But this
435 isn't an issue if the decl is not addressable. Likewise if it
436 is of unknown size. */
437 else if (DECL_PACKED (decl)
438 && (DECL_NONADDRESSABLE_P (decl)
439 || DECL_SIZE_UNIT (decl) == 0
440 || TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST))
442 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
443 DECL_USER_ALIGN (decl) = 0;
447 /* See if we can use an ordinary integer mode for a bit-field.
448 Conditions are: a fixed size that is correct for another mode
449 and occupying a complete byte or bytes on proper boundary. */
450 if (code == FIELD_DECL && DECL_BIT_FIELD (decl)
451 && TYPE_SIZE (type) != 0
452 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
453 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
455 enum machine_mode xmode
456 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
458 if (xmode != BLKmode && known_align >= GET_MODE_ALIGNMENT (xmode))
460 DECL_ALIGN (decl) = MAX (GET_MODE_ALIGNMENT (xmode),
461 DECL_ALIGN (decl));
462 DECL_MODE (decl) = xmode;
463 DECL_BIT_FIELD (decl) = 0;
467 /* Turn off DECL_BIT_FIELD if we won't need it set. */
468 if (code == FIELD_DECL && DECL_BIT_FIELD (decl)
469 && TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
470 && known_align >= TYPE_ALIGN (type)
471 && DECL_ALIGN (decl) >= TYPE_ALIGN (type)
472 && DECL_SIZE_UNIT (decl) != 0)
473 DECL_BIT_FIELD (decl) = 0;
475 /* Evaluate nonconstant size only once, either now or as soon as safe. */
476 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
477 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
478 if (DECL_SIZE_UNIT (decl) != 0
479 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
480 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
482 /* If requested, warn about definitions of large data objects. */
483 if (warn_larger_than
484 && (code == VAR_DECL || code == PARM_DECL)
485 && ! DECL_EXTERNAL (decl))
487 tree size = DECL_SIZE_UNIT (decl);
489 if (size != 0 && TREE_CODE (size) == INTEGER_CST
490 && compare_tree_int (size, larger_than_size) > 0)
492 unsigned int size_as_int = TREE_INT_CST_LOW (size);
494 if (compare_tree_int (size, size_as_int) == 0)
495 warning_with_decl (decl, "size of `%s' is %d bytes", size_as_int);
496 else
497 warning_with_decl (decl, "size of `%s' is larger than %d bytes",
498 larger_than_size);
503 /* Hook for a front-end function that can modify the record layout as needed
504 immediately before it is finalized. */
506 void (*lang_adjust_rli) PARAMS ((record_layout_info)) = 0;
508 void
509 set_lang_adjust_rli (f)
510 void (*f) PARAMS ((record_layout_info));
512 lang_adjust_rli = f;
515 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
516 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
517 is to be passed to all other layout functions for this record. It is the
518 responsibility of the caller to call `free' for the storage returned.
519 Note that garbage collection is not permitted until we finish laying
520 out the record. */
522 record_layout_info
523 start_record_layout (t)
524 tree t;
526 record_layout_info rli
527 = (record_layout_info) xmalloc (sizeof (struct record_layout_info_s));
529 rli->t = t;
531 /* If the type has a minimum specified alignment (via an attribute
532 declaration, for example) use it -- otherwise, start with a
533 one-byte alignment. */
534 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
535 rli->unpacked_align = rli->unpadded_align = rli->record_align;
536 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
538 #ifdef STRUCTURE_SIZE_BOUNDARY
539 /* Packed structures don't need to have minimum size. */
540 if (! TYPE_PACKED (t))
541 rli->record_align = MAX (rli->record_align, (unsigned) STRUCTURE_SIZE_BOUNDARY);
542 #endif
544 rli->offset = size_zero_node;
545 rli->bitpos = bitsize_zero_node;
546 rli->prev_field = 0;
547 rli->pending_statics = 0;
548 rli->packed_maybe_necessary = 0;
550 return rli;
553 /* These four routines perform computations that convert between
554 the offset/bitpos forms and byte and bit offsets. */
556 tree
557 bit_from_pos (offset, bitpos)
558 tree offset, bitpos;
560 return size_binop (PLUS_EXPR, bitpos,
561 size_binop (MULT_EXPR, convert (bitsizetype, offset),
562 bitsize_unit_node));
565 tree
566 byte_from_pos (offset, bitpos)
567 tree offset, bitpos;
569 return size_binop (PLUS_EXPR, offset,
570 convert (sizetype,
571 size_binop (TRUNC_DIV_EXPR, bitpos,
572 bitsize_unit_node)));
575 void
576 pos_from_bit (poffset, pbitpos, off_align, pos)
577 tree *poffset, *pbitpos;
578 unsigned int off_align;
579 tree pos;
581 *poffset = size_binop (MULT_EXPR,
582 convert (sizetype,
583 size_binop (FLOOR_DIV_EXPR, pos,
584 bitsize_int (off_align))),
585 size_int (off_align / BITS_PER_UNIT));
586 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
589 /* Given a pointer to bit and byte offsets and an offset alignment,
590 normalize the offsets so they are within the alignment. */
592 void
593 normalize_offset (poffset, pbitpos, off_align)
594 tree *poffset, *pbitpos;
595 unsigned int off_align;
597 /* If the bit position is now larger than it should be, adjust it
598 downwards. */
599 if (compare_tree_int (*pbitpos, off_align) >= 0)
601 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
602 bitsize_int (off_align));
604 *poffset
605 = size_binop (PLUS_EXPR, *poffset,
606 size_binop (MULT_EXPR, convert (sizetype, extra_aligns),
607 size_int (off_align / BITS_PER_UNIT)));
609 *pbitpos
610 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
614 /* Print debugging information about the information in RLI. */
616 void
617 debug_rli (rli)
618 record_layout_info rli;
620 print_node_brief (stderr, "type", rli->t, 0);
621 print_node_brief (stderr, "\noffset", rli->offset, 0);
622 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
624 fprintf (stderr, "\naligns: rec = %u, unpack = %u, unpad = %u, off = %u\n",
625 rli->record_align, rli->unpacked_align, rli->unpadded_align,
626 rli->offset_align);
627 if (rli->packed_maybe_necessary)
628 fprintf (stderr, "packed may be necessary\n");
630 if (rli->pending_statics)
632 fprintf (stderr, "pending statics:\n");
633 debug_tree (rli->pending_statics);
637 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
638 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
640 void
641 normalize_rli (rli)
642 record_layout_info rli;
644 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
647 /* Returns the size in bytes allocated so far. */
649 tree
650 rli_size_unit_so_far (rli)
651 record_layout_info rli;
653 return byte_from_pos (rli->offset, rli->bitpos);
656 /* Returns the size in bits allocated so far. */
658 tree
659 rli_size_so_far (rli)
660 record_layout_info rli;
662 return bit_from_pos (rli->offset, rli->bitpos);
665 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
666 the next available location is given by KNOWN_ALIGN. Update the
667 variable alignment fields in RLI, and return the alignment to give
668 the FIELD. */
670 static unsigned int
671 update_alignment_for_field (rli, field, known_align)
672 record_layout_info rli;
673 tree field;
674 unsigned int known_align;
676 /* The alignment required for FIELD. */
677 unsigned int desired_align;
678 /* The type of this field. */
679 tree type = TREE_TYPE (field);
680 /* True if the field was explicitly aligned by the user. */
681 bool user_align;
683 /* Lay out the field so we know what alignment it needs. For a
684 packed field, use the alignment as specified, disregarding what
685 the type would want. */
686 desired_align = DECL_ALIGN (field);
687 user_align = DECL_USER_ALIGN (field);
688 layout_decl (field, known_align);
689 if (! DECL_PACKED (field))
691 desired_align = DECL_ALIGN (field);
692 user_align = DECL_USER_ALIGN (field);
695 /* Some targets (i.e. i386, VMS) limit struct field alignment
696 to a lower boundary than alignment of variables unless
697 it was overridden by attribute aligned. */
698 #ifdef BIGGEST_FIELD_ALIGNMENT
699 if (!user_align)
700 desired_align
701 = MIN (desired_align, (unsigned) BIGGEST_FIELD_ALIGNMENT);
702 #endif
704 #ifdef ADJUST_FIELD_ALIGN
705 if (!user_align)
706 desired_align = ADJUST_FIELD_ALIGN (field, desired_align);
707 #endif
709 /* Record must have at least as much alignment as any field.
710 Otherwise, the alignment of the field within the record is
711 meaningless. */
712 if ((* targetm.ms_bitfield_layout_p) (rli->t)
713 && type != error_mark_node
714 && DECL_BIT_FIELD_TYPE (field)
715 && ! integer_zerop (TYPE_SIZE (type)))
717 /* Here, the alignment of the underlying type of a bitfield can
718 affect the alignment of a record; even a zero-sized field
719 can do this. The alignment should be to the alignment of
720 the type, except that for zero-size bitfields this only
721 applies if there was an immediately prior, nonzero-size
722 bitfield. (That's the way it is, experimentally.) */
723 if (! integer_zerop (DECL_SIZE (field))
724 ? ! DECL_PACKED (field)
725 : (rli->prev_field
726 && DECL_BIT_FIELD_TYPE (rli->prev_field)
727 && ! integer_zerop (DECL_SIZE (rli->prev_field))))
729 unsigned int type_align = TYPE_ALIGN (type);
730 type_align = MAX (type_align, desired_align);
731 if (maximum_field_alignment != 0)
732 type_align = MIN (type_align, maximum_field_alignment);
733 rli->record_align = MAX (rli->record_align, type_align);
734 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
735 rli->unpadded_align = MAX (rli->unpadded_align, DECL_ALIGN (field));
737 else
738 desired_align = 1;
740 else
741 #ifdef PCC_BITFIELD_TYPE_MATTERS
742 if (PCC_BITFIELD_TYPE_MATTERS && type != error_mark_node
743 && ! (* targetm.ms_bitfield_layout_p) (rli->t)
744 && DECL_BIT_FIELD_TYPE (field)
745 && ! integer_zerop (TYPE_SIZE (type)))
747 /* A zero-length bit-field affects the alignment of the next
748 field. */
749 if (!DECL_PACKED (field) && integer_zerop (DECL_SIZE (field)))
751 desired_align = TYPE_ALIGN (type);
752 #ifdef ADJUST_FIELD_ALIGN
753 desired_align = ADJUST_FIELD_ALIGN (field, desired_align);
754 #endif
757 /* Named bit-fields cause the entire structure to have the
758 alignment implied by their type. */
759 if (DECL_NAME (field) != 0)
761 unsigned int type_align = TYPE_ALIGN (type);
763 #ifdef ADJUST_FIELD_ALIGN
764 if (! TYPE_USER_ALIGN (type))
765 type_align = ADJUST_FIELD_ALIGN (field, type_align);
766 #endif
768 if (maximum_field_alignment != 0)
769 type_align = MIN (type_align, maximum_field_alignment);
770 else if (DECL_PACKED (field))
771 type_align = MIN (type_align, BITS_PER_UNIT);
773 /* The alignment of the record is increased to the maximum
774 of the current alignment, the alignment indicated on the
775 field (i.e., the alignment specified by an __aligned__
776 attribute), and the alignment indicated by the type of
777 the field. */
778 rli->record_align = MAX (rli->record_align, desired_align);
779 rli->record_align = MAX (rli->record_align, type_align);
781 rli->unpadded_align = MAX (rli->unpadded_align, DECL_ALIGN (field));
782 if (warn_packed)
783 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
784 user_align |= TYPE_USER_ALIGN (type);
787 else
788 #endif
790 rli->record_align = MAX (rli->record_align, desired_align);
791 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
792 rli->unpadded_align = MAX (rli->unpadded_align, DECL_ALIGN (field));
795 TYPE_USER_ALIGN (rli->t) |= user_align;
797 return desired_align;
800 /* Called from place_field to handle unions. */
802 static void
803 place_union_field (rli, field)
804 record_layout_info rli;
805 tree field;
807 update_alignment_for_field (rli, field, /*known_align=*/0);
809 DECL_FIELD_OFFSET (field) = size_zero_node;
810 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
811 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
813 /* We assume the union's size will be a multiple of a byte so we don't
814 bother with BITPOS. */
815 if (TREE_CODE (rli->t) == UNION_TYPE)
816 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
817 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
818 rli->offset = fold (build (COND_EXPR, sizetype,
819 DECL_QUALIFIER (field),
820 DECL_SIZE_UNIT (field), rli->offset));
823 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
824 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
825 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
826 units of alignment than the underlying TYPE. */
827 static int
828 excess_unit_span (byte_offset, bit_offset, size, align, type)
829 HOST_WIDE_INT byte_offset, bit_offset, size, align;
830 tree type;
832 /* Note that the calculation of OFFSET might overflow; we calculate it so
833 that we still get the right result as long as ALIGN is a power of two. */
834 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
836 offset = offset % align;
837 return ((offset + size + align - 1) / align
838 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
839 / align));
841 #endif
843 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
844 is a FIELD_DECL to be added after those fields already present in
845 T. (FIELD is not actually added to the TYPE_FIELDS list here;
846 callers that desire that behavior must manually perform that step.) */
848 void
849 place_field (rli, field)
850 record_layout_info rli;
851 tree field;
853 /* The alignment required for FIELD. */
854 unsigned int desired_align;
855 /* The alignment FIELD would have if we just dropped it into the
856 record as it presently stands. */
857 unsigned int known_align;
858 unsigned int actual_align;
859 /* The type of this field. */
860 tree type = TREE_TYPE (field);
862 if (TREE_CODE (field) == ERROR_MARK || TREE_CODE (type) == ERROR_MARK)
863 return;
865 /* If FIELD is static, then treat it like a separate variable, not
866 really like a structure field. If it is a FUNCTION_DECL, it's a
867 method. In both cases, all we do is lay out the decl, and we do
868 it *after* the record is laid out. */
869 if (TREE_CODE (field) == VAR_DECL)
871 rli->pending_statics = tree_cons (NULL_TREE, field,
872 rli->pending_statics);
873 return;
876 /* Enumerators and enum types which are local to this class need not
877 be laid out. Likewise for initialized constant fields. */
878 else if (TREE_CODE (field) != FIELD_DECL)
879 return;
881 /* Unions are laid out very differently than records, so split
882 that code off to another function. */
883 else if (TREE_CODE (rli->t) != RECORD_TYPE)
885 place_union_field (rli, field);
886 return;
889 /* Work out the known alignment so far. Note that A & (-A) is the
890 value of the least-significant bit in A that is one. */
891 if (! integer_zerop (rli->bitpos))
892 known_align = (tree_low_cst (rli->bitpos, 1)
893 & - tree_low_cst (rli->bitpos, 1));
894 else if (integer_zerop (rli->offset))
895 known_align = BIGGEST_ALIGNMENT;
896 else if (host_integerp (rli->offset, 1))
897 known_align = (BITS_PER_UNIT
898 * (tree_low_cst (rli->offset, 1)
899 & - tree_low_cst (rli->offset, 1)));
900 else
901 known_align = rli->offset_align;
903 desired_align = update_alignment_for_field (rli, field, known_align);
905 if (warn_packed && DECL_PACKED (field))
907 if (known_align > TYPE_ALIGN (type))
909 if (TYPE_ALIGN (type) > desired_align)
911 if (STRICT_ALIGNMENT)
912 warning_with_decl (field, "packed attribute causes inefficient alignment for `%s'");
913 else
914 warning_with_decl (field, "packed attribute is unnecessary for `%s'");
917 else
918 rli->packed_maybe_necessary = 1;
921 /* Does this field automatically have alignment it needs by virtue
922 of the fields that precede it and the record's own alignment? */
923 if (known_align < desired_align)
925 /* No, we need to skip space before this field.
926 Bump the cumulative size to multiple of field alignment. */
928 if (warn_padded)
929 warning_with_decl (field, "padding struct to align `%s'");
931 /* If the alignment is still within offset_align, just align
932 the bit position. */
933 if (desired_align < rli->offset_align)
934 rli->bitpos = round_up (rli->bitpos, desired_align);
935 else
937 /* First adjust OFFSET by the partial bits, then align. */
938 rli->offset
939 = size_binop (PLUS_EXPR, rli->offset,
940 convert (sizetype,
941 size_binop (CEIL_DIV_EXPR, rli->bitpos,
942 bitsize_unit_node)));
943 rli->bitpos = bitsize_zero_node;
945 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
948 if (! TREE_CONSTANT (rli->offset))
949 rli->offset_align = desired_align;
953 /* Handle compatibility with PCC. Note that if the record has any
954 variable-sized fields, we need not worry about compatibility. */
955 #ifdef PCC_BITFIELD_TYPE_MATTERS
956 if (PCC_BITFIELD_TYPE_MATTERS
957 && ! (* targetm.ms_bitfield_layout_p) (rli->t)
958 && TREE_CODE (field) == FIELD_DECL
959 && type != error_mark_node
960 && DECL_BIT_FIELD (field)
961 && ! DECL_PACKED (field)
962 && maximum_field_alignment == 0
963 && ! integer_zerop (DECL_SIZE (field))
964 && host_integerp (DECL_SIZE (field), 1)
965 && host_integerp (rli->offset, 1)
966 && host_integerp (TYPE_SIZE (type), 1))
968 unsigned int type_align = TYPE_ALIGN (type);
969 tree dsize = DECL_SIZE (field);
970 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
971 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
972 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
974 #ifdef ADJUST_FIELD_ALIGN
975 if (! TYPE_USER_ALIGN (type))
976 type_align = ADJUST_FIELD_ALIGN (field, type_align);
977 #endif
979 /* A bit field may not span more units of alignment of its type
980 than its type itself. Advance to next boundary if necessary. */
981 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
982 rli->bitpos = round_up (rli->bitpos, type_align);
984 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
986 #endif
988 #ifdef BITFIELD_NBYTES_LIMITED
989 if (BITFIELD_NBYTES_LIMITED
990 && ! (* targetm.ms_bitfield_layout_p) (rli->t)
991 && TREE_CODE (field) == FIELD_DECL
992 && type != error_mark_node
993 && DECL_BIT_FIELD_TYPE (field)
994 && ! DECL_PACKED (field)
995 && ! integer_zerop (DECL_SIZE (field))
996 && host_integerp (DECL_SIZE (field), 1)
997 && host_integerp (rli->offset, 1)
998 && host_integerp (TYPE_SIZE (type), 1))
1000 unsigned int type_align = TYPE_ALIGN (type);
1001 tree dsize = DECL_SIZE (field);
1002 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1003 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1004 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1006 #ifdef ADJUST_FIELD_ALIGN
1007 if (! TYPE_USER_ALIGN (type))
1008 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1009 #endif
1011 if (maximum_field_alignment != 0)
1012 type_align = MIN (type_align, maximum_field_alignment);
1013 /* ??? This test is opposite the test in the containing if
1014 statement, so this code is unreachable currently. */
1015 else if (DECL_PACKED (field))
1016 type_align = MIN (type_align, BITS_PER_UNIT);
1018 /* A bit field may not span the unit of alignment of its type.
1019 Advance to next boundary if necessary. */
1020 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1021 rli->bitpos = round_up (rli->bitpos, type_align);
1023 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1025 #endif
1027 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1028 A subtlety:
1029 When a bit field is inserted into a packed record, the whole
1030 size of the underlying type is used by one or more same-size
1031 adjacent bitfields. (That is, if its long:3, 32 bits is
1032 used in the record, and any additional adjacent long bitfields are
1033 packed into the same chunk of 32 bits. However, if the size
1034 changes, a new field of that size is allocated.) In an unpacked
1035 record, this is the same as using alignment, but not equivalent
1036 when packing.
1038 Note: for compatibility, we use the type size, not the type alignment
1039 to determine alignment, since that matches the documentation */
1041 if ((* targetm.ms_bitfield_layout_p) (rli->t)
1042 && ((DECL_BIT_FIELD_TYPE (field) && ! DECL_PACKED (field))
1043 || (rli->prev_field && ! DECL_PACKED (rli->prev_field))))
1045 /* At this point, either the prior or current are bitfields,
1046 (possibly both), and we're dealing with MS packing. */
1047 tree prev_saved = rli->prev_field;
1049 /* Is the prior field a bitfield? If so, handle "runs" of same
1050 type size fields. */
1051 if (rli->prev_field /* necessarily a bitfield if it exists. */)
1053 /* If both are bitfields, nonzero, and the same size, this is
1054 the middle of a run. Zero declared size fields are special
1055 and handled as "end of run". (Note: it's nonzero declared
1056 size, but equal type sizes!) (Since we know that both
1057 the current and previous fields are bitfields by the
1058 time we check it, DECL_SIZE must be present for both.) */
1059 if (DECL_BIT_FIELD_TYPE (field)
1060 && !integer_zerop (DECL_SIZE (field))
1061 && !integer_zerop (DECL_SIZE (rli->prev_field))
1062 && simple_cst_equal (TYPE_SIZE (type),
1063 TYPE_SIZE (TREE_TYPE (rli->prev_field))) )
1065 /* We're in the middle of a run of equal type size fields; make
1066 sure we realign if we run out of bits. (Not decl size,
1067 type size!) */
1068 int bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
1069 tree type_size = TYPE_SIZE(TREE_TYPE(rli->prev_field));
1071 if (rli->remaining_in_alignment < bitsize)
1073 /* out of bits; bump up to next 'word'. */
1074 rli->offset = DECL_FIELD_OFFSET (rli->prev_field);
1075 rli->bitpos = size_binop (PLUS_EXPR,
1076 type_size,
1077 DECL_FIELD_BIT_OFFSET(rli->prev_field));
1078 rli->prev_field = field;
1079 rli->remaining_in_alignment = TREE_INT_CST_LOW (type_size);
1081 rli->remaining_in_alignment -= bitsize;
1083 else
1085 /* End of a run: if leaving a run of bitfields of the same type
1086 size, we have to "use up" the rest of the bits of the type
1087 size.
1089 Compute the new position as the sum of the size for the prior
1090 type and where we first started working on that type.
1091 Note: since the beginning of the field was aligned then
1092 of course the end will be too. No round needed. */
1094 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1096 tree type_size = TYPE_SIZE(TREE_TYPE(rli->prev_field));
1097 rli->bitpos = size_binop (PLUS_EXPR,
1098 type_size,
1099 DECL_FIELD_BIT_OFFSET(rli->prev_field));
1101 else
1103 /* We "use up" size zero fields; the code below should behave
1104 as if the prior field was not a bitfield. */
1105 prev_saved = NULL;
1108 /* Cause a new bitfield to be captured, either this time (if
1109 currently a bitfield) or next time we see one. */
1110 if (!DECL_BIT_FIELD_TYPE(field)
1111 || integer_zerop (DECL_SIZE (field)))
1113 rli->prev_field = NULL;
1116 normalize_rli (rli);
1119 /* If we're starting a new run of same size type bitfields
1120 (or a run of non-bitfields), set up the "first of the run"
1121 fields.
1123 That is, if the current field is not a bitfield, or if there
1124 was a prior bitfield the type sizes differ, or if there wasn't
1125 a prior bitfield the size of the current field is nonzero.
1127 Note: we must be sure to test ONLY the type size if there was
1128 a prior bitfield and ONLY for the current field being zero if
1129 there wasn't. */
1131 if (!DECL_BIT_FIELD_TYPE (field)
1132 || ( prev_saved != NULL
1133 ? !simple_cst_equal (TYPE_SIZE (type),
1134 TYPE_SIZE (TREE_TYPE (prev_saved)))
1135 : !integer_zerop (DECL_SIZE (field)) ))
1137 unsigned int type_align = 8; /* Never below 8 for compatibility */
1139 /* (When not a bitfield), we could be seeing a flex array (with
1140 no DECL_SIZE). Since we won't be using remaining_in_alignment
1141 until we see a bitfield (and come by here again) we just skip
1142 calculating it. */
1144 if (DECL_SIZE (field) != NULL)
1145 rli->remaining_in_alignment
1146 = TREE_INT_CST_LOW (TYPE_SIZE(TREE_TYPE(field)))
1147 - TREE_INT_CST_LOW (DECL_SIZE (field));
1149 /* Now align (conventionally) for the new type. */
1150 if (!DECL_PACKED(field))
1151 type_align = MAX(TYPE_ALIGN (type), type_align);
1153 if (prev_saved
1154 && DECL_BIT_FIELD_TYPE (prev_saved)
1155 /* If the previous bit-field is zero-sized, we've already
1156 accounted for its alignment needs (or ignored it, if
1157 appropriate) while placing it. */
1158 && ! integer_zerop (DECL_SIZE (prev_saved)))
1159 type_align = MAX (type_align,
1160 TYPE_ALIGN (TREE_TYPE (prev_saved)));
1162 if (maximum_field_alignment != 0)
1163 type_align = MIN (type_align, maximum_field_alignment);
1165 rli->bitpos = round_up (rli->bitpos, type_align);
1166 /* If we really aligned, don't allow subsequent bitfields
1167 to undo that. */
1168 rli->prev_field = NULL;
1172 /* Offset so far becomes the position of this field after normalizing. */
1173 normalize_rli (rli);
1174 DECL_FIELD_OFFSET (field) = rli->offset;
1175 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1176 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1178 /* If this field ended up more aligned than we thought it would be (we
1179 approximate this by seeing if its position changed), lay out the field
1180 again; perhaps we can use an integral mode for it now. */
1181 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1182 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1183 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1184 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1185 actual_align = BIGGEST_ALIGNMENT;
1186 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1187 actual_align = (BITS_PER_UNIT
1188 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1189 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1190 else
1191 actual_align = DECL_OFFSET_ALIGN (field);
1193 if (known_align != actual_align)
1194 layout_decl (field, actual_align);
1196 /* Only the MS bitfields use this. */
1197 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE(field))
1198 rli->prev_field = field;
1200 /* Now add size of this field to the size of the record. If the size is
1201 not constant, treat the field as being a multiple of bytes and just
1202 adjust the offset, resetting the bit position. Otherwise, apportion the
1203 size amongst the bit position and offset. First handle the case of an
1204 unspecified size, which can happen when we have an invalid nested struct
1205 definition, such as struct j { struct j { int i; } }. The error message
1206 is printed in finish_struct. */
1207 if (DECL_SIZE (field) == 0)
1208 /* Do nothing. */;
1209 else if (TREE_CODE (DECL_SIZE_UNIT (field)) != INTEGER_CST
1210 || TREE_CONSTANT_OVERFLOW (DECL_SIZE_UNIT (field)))
1212 rli->offset
1213 = size_binop (PLUS_EXPR, rli->offset,
1214 convert (sizetype,
1215 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1216 bitsize_unit_node)));
1217 rli->offset
1218 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1219 rli->bitpos = bitsize_zero_node;
1220 rli->offset_align = MIN (rli->offset_align, DECL_ALIGN (field));
1222 else
1224 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1225 normalize_rli (rli);
1229 /* Assuming that all the fields have been laid out, this function uses
1230 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1231 indicated by RLI. */
1233 static void
1234 finalize_record_size (rli)
1235 record_layout_info rli;
1237 tree unpadded_size, unpadded_size_unit;
1239 /* Now we want just byte and bit offsets, so set the offset alignment
1240 to be a byte and then normalize. */
1241 rli->offset_align = BITS_PER_UNIT;
1242 normalize_rli (rli);
1244 /* Determine the desired alignment. */
1245 #ifdef ROUND_TYPE_ALIGN
1246 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1247 rli->record_align);
1248 #else
1249 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1250 #endif
1252 /* Compute the size so far. Be sure to allow for extra bits in the
1253 size in bytes. We have guaranteed above that it will be no more
1254 than a single byte. */
1255 unpadded_size = rli_size_so_far (rli);
1256 unpadded_size_unit = rli_size_unit_so_far (rli);
1257 if (! integer_zerop (rli->bitpos))
1258 unpadded_size_unit
1259 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1261 /* Round the size up to be a multiple of the required alignment */
1262 #ifdef ROUND_TYPE_SIZE
1263 TYPE_SIZE (rli->t) = ROUND_TYPE_SIZE (rli->t, unpadded_size,
1264 TYPE_ALIGN (rli->t));
1265 TYPE_SIZE_UNIT (rli->t)
1266 = ROUND_TYPE_SIZE_UNIT (rli->t, unpadded_size_unit,
1267 TYPE_ALIGN (rli->t) / BITS_PER_UNIT);
1268 #else
1269 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1270 TYPE_SIZE_UNIT (rli->t) = round_up (unpadded_size_unit,
1271 TYPE_ALIGN (rli->t) / BITS_PER_UNIT);
1272 #endif
1274 if (warn_padded && TREE_CONSTANT (unpadded_size)
1275 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0)
1276 warning ("padding struct size to alignment boundary");
1278 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1279 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1280 && TREE_CONSTANT (unpadded_size))
1282 tree unpacked_size;
1284 #ifdef ROUND_TYPE_ALIGN
1285 rli->unpacked_align
1286 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1287 #else
1288 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1289 #endif
1291 #ifdef ROUND_TYPE_SIZE
1292 unpacked_size = ROUND_TYPE_SIZE (rli->t, TYPE_SIZE (rli->t),
1293 rli->unpacked_align);
1294 #else
1295 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1296 #endif
1298 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1300 TYPE_PACKED (rli->t) = 0;
1302 if (TYPE_NAME (rli->t))
1304 const char *name;
1306 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1307 name = IDENTIFIER_POINTER (TYPE_NAME (rli->t));
1308 else
1309 name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli->t)));
1311 if (STRICT_ALIGNMENT)
1312 warning ("packed attribute causes inefficient alignment for `%s'", name);
1313 else
1314 warning ("packed attribute is unnecessary for `%s'", name);
1316 else
1318 if (STRICT_ALIGNMENT)
1319 warning ("packed attribute causes inefficient alignment");
1320 else
1321 warning ("packed attribute is unnecessary");
1327 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1329 void
1330 compute_record_mode (type)
1331 tree type;
1333 tree field;
1334 enum machine_mode mode = VOIDmode;
1336 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1337 However, if possible, we use a mode that fits in a register
1338 instead, in order to allow for better optimization down the
1339 line. */
1340 TYPE_MODE (type) = BLKmode;
1342 if (! host_integerp (TYPE_SIZE (type), 1))
1343 return;
1345 /* A record which has any BLKmode members must itself be
1346 BLKmode; it can't go in a register. Unless the member is
1347 BLKmode only because it isn't aligned. */
1348 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1350 unsigned HOST_WIDE_INT bitpos;
1352 if (TREE_CODE (field) != FIELD_DECL)
1353 continue;
1355 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1356 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1357 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field)))
1358 || ! host_integerp (bit_position (field), 1)
1359 || DECL_SIZE (field) == 0
1360 || ! host_integerp (DECL_SIZE (field), 1))
1361 return;
1363 bitpos = int_bit_position (field);
1365 /* Must be BLKmode if any field crosses a word boundary,
1366 since extract_bit_field can't handle that in registers. */
1367 if (bitpos / BITS_PER_WORD
1368 != ((tree_low_cst (DECL_SIZE (field), 1) + bitpos - 1)
1369 / BITS_PER_WORD)
1370 /* But there is no problem if the field is entire words. */
1371 && tree_low_cst (DECL_SIZE (field), 1) % BITS_PER_WORD != 0)
1372 return;
1374 /* If this field is the whole struct, remember its mode so
1375 that, say, we can put a double in a class into a DF
1376 register instead of forcing it to live in the stack. */
1377 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1378 mode = DECL_MODE (field);
1380 #ifdef MEMBER_TYPE_FORCES_BLK
1381 /* With some targets, eg. c4x, it is sub-optimal
1382 to access an aligned BLKmode structure as a scalar. */
1384 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1385 return;
1386 #endif /* MEMBER_TYPE_FORCES_BLK */
1389 /* If we only have one real field; use its mode. This only applies to
1390 RECORD_TYPE. This does not apply to unions. */
1391 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode)
1392 TYPE_MODE (type) = mode;
1393 else
1394 TYPE_MODE (type) = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1396 /* If structure's known alignment is less than what the scalar
1397 mode would need, and it matters, then stick with BLKmode. */
1398 if (TYPE_MODE (type) != BLKmode
1399 && STRICT_ALIGNMENT
1400 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1401 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1403 /* If this is the only reason this type is BLKmode, then
1404 don't force containing types to be BLKmode. */
1405 TYPE_NO_FORCE_BLK (type) = 1;
1406 TYPE_MODE (type) = BLKmode;
1410 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1411 out. */
1413 static void
1414 finalize_type_size (type)
1415 tree type;
1417 /* Normally, use the alignment corresponding to the mode chosen.
1418 However, where strict alignment is not required, avoid
1419 over-aligning structures, since most compilers do not do this
1420 alignment. */
1422 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1423 && (STRICT_ALIGNMENT
1424 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1425 && TREE_CODE (type) != QUAL_UNION_TYPE
1426 && TREE_CODE (type) != ARRAY_TYPE)))
1428 TYPE_ALIGN (type) = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1429 TYPE_USER_ALIGN (type) = 0;
1432 /* Do machine-dependent extra alignment. */
1433 #ifdef ROUND_TYPE_ALIGN
1434 TYPE_ALIGN (type)
1435 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1436 #endif
1438 /* If we failed to find a simple way to calculate the unit size
1439 of the type, find it by division. */
1440 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1441 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1442 result will fit in sizetype. We will get more efficient code using
1443 sizetype, so we force a conversion. */
1444 TYPE_SIZE_UNIT (type)
1445 = convert (sizetype,
1446 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1447 bitsize_unit_node));
1449 if (TYPE_SIZE (type) != 0)
1451 #ifdef ROUND_TYPE_SIZE
1452 TYPE_SIZE (type)
1453 = ROUND_TYPE_SIZE (type, TYPE_SIZE (type), TYPE_ALIGN (type));
1454 TYPE_SIZE_UNIT (type)
1455 = ROUND_TYPE_SIZE_UNIT (type, TYPE_SIZE_UNIT (type),
1456 TYPE_ALIGN (type) / BITS_PER_UNIT);
1457 #else
1458 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1459 TYPE_SIZE_UNIT (type)
1460 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN (type) / BITS_PER_UNIT);
1461 #endif
1464 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1465 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1466 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1467 if (TYPE_SIZE_UNIT (type) != 0
1468 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1469 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1471 /* Also layout any other variants of the type. */
1472 if (TYPE_NEXT_VARIANT (type)
1473 || type != TYPE_MAIN_VARIANT (type))
1475 tree variant;
1476 /* Record layout info of this variant. */
1477 tree size = TYPE_SIZE (type);
1478 tree size_unit = TYPE_SIZE_UNIT (type);
1479 unsigned int align = TYPE_ALIGN (type);
1480 unsigned int user_align = TYPE_USER_ALIGN (type);
1481 enum machine_mode mode = TYPE_MODE (type);
1483 /* Copy it into all variants. */
1484 for (variant = TYPE_MAIN_VARIANT (type);
1485 variant != 0;
1486 variant = TYPE_NEXT_VARIANT (variant))
1488 TYPE_SIZE (variant) = size;
1489 TYPE_SIZE_UNIT (variant) = size_unit;
1490 TYPE_ALIGN (variant) = align;
1491 TYPE_USER_ALIGN (variant) = user_align;
1492 TYPE_MODE (variant) = mode;
1497 /* Do all of the work required to layout the type indicated by RLI,
1498 once the fields have been laid out. This function will call `free'
1499 for RLI, unless FREE_P is false. Passing a value other than false
1500 for FREE_P is bad practice; this option only exists to support the
1501 G++ 3.2 ABI. */
1503 void
1504 finish_record_layout (rli, free_p)
1505 record_layout_info rli;
1506 int free_p;
1508 /* Compute the final size. */
1509 finalize_record_size (rli);
1511 /* Compute the TYPE_MODE for the record. */
1512 compute_record_mode (rli->t);
1514 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1515 finalize_type_size (rli->t);
1517 /* Lay out any static members. This is done now because their type
1518 may use the record's type. */
1519 while (rli->pending_statics)
1521 layout_decl (TREE_VALUE (rli->pending_statics), 0);
1522 rli->pending_statics = TREE_CHAIN (rli->pending_statics);
1525 /* Clean up. */
1526 if (free_p)
1527 free (rli);
1531 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1532 NAME, its fields are chained in reverse on FIELDS.
1534 If ALIGN_TYPE is non-null, it is given the same alignment as
1535 ALIGN_TYPE. */
1537 void
1538 finish_builtin_struct (type, name, fields, align_type)
1539 tree type;
1540 const char *name;
1541 tree fields;
1542 tree align_type;
1544 tree tail, next;
1546 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1548 DECL_FIELD_CONTEXT (fields) = type;
1549 next = TREE_CHAIN (fields);
1550 TREE_CHAIN (fields) = tail;
1552 TYPE_FIELDS (type) = tail;
1554 if (align_type)
1556 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
1557 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
1560 layout_type (type);
1561 #if 0 /* not yet, should get fixed properly later */
1562 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
1563 #else
1564 TYPE_NAME (type) = build_decl (TYPE_DECL, get_identifier (name), type);
1565 #endif
1566 TYPE_STUB_DECL (type) = TYPE_NAME (type);
1567 layout_decl (TYPE_NAME (type), 0);
1570 /* Calculate the mode, size, and alignment for TYPE.
1571 For an array type, calculate the element separation as well.
1572 Record TYPE on the chain of permanent or temporary types
1573 so that dbxout will find out about it.
1575 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1576 layout_type does nothing on such a type.
1578 If the type is incomplete, its TYPE_SIZE remains zero. */
1580 void
1581 layout_type (type)
1582 tree type;
1584 if (type == 0)
1585 abort ();
1587 /* Do nothing if type has been laid out before. */
1588 if (TYPE_SIZE (type))
1589 return;
1591 switch (TREE_CODE (type))
1593 case LANG_TYPE:
1594 /* This kind of type is the responsibility
1595 of the language-specific code. */
1596 abort ();
1598 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1599 if (TYPE_PRECISION (type) == 0)
1600 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1602 /* ... fall through ... */
1604 case INTEGER_TYPE:
1605 case ENUMERAL_TYPE:
1606 case CHAR_TYPE:
1607 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1608 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1609 TREE_UNSIGNED (type) = 1;
1611 TYPE_MODE (type) = smallest_mode_for_size (TYPE_PRECISION (type),
1612 MODE_INT);
1613 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1614 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1615 break;
1617 case REAL_TYPE:
1618 TYPE_MODE (type) = mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0);
1619 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1620 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1621 break;
1623 case COMPLEX_TYPE:
1624 TREE_UNSIGNED (type) = TREE_UNSIGNED (TREE_TYPE (type));
1625 TYPE_MODE (type)
1626 = mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1627 (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
1628 ? MODE_COMPLEX_INT : MODE_COMPLEX_FLOAT),
1630 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1631 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1632 break;
1634 case VECTOR_TYPE:
1636 tree subtype;
1638 subtype = TREE_TYPE (type);
1639 TREE_UNSIGNED (type) = TREE_UNSIGNED (subtype);
1640 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1641 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1643 break;
1645 case VOID_TYPE:
1646 /* This is an incomplete type and so doesn't have a size. */
1647 TYPE_ALIGN (type) = 1;
1648 TYPE_USER_ALIGN (type) = 0;
1649 TYPE_MODE (type) = VOIDmode;
1650 break;
1652 case OFFSET_TYPE:
1653 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1654 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1655 /* A pointer might be MODE_PARTIAL_INT,
1656 but ptrdiff_t must be integral. */
1657 TYPE_MODE (type) = mode_for_size (POINTER_SIZE, MODE_INT, 0);
1658 break;
1660 case FUNCTION_TYPE:
1661 case METHOD_TYPE:
1662 TYPE_MODE (type) = mode_for_size (2 * POINTER_SIZE, MODE_INT, 0);
1663 TYPE_SIZE (type) = bitsize_int (2 * POINTER_SIZE);
1664 TYPE_SIZE_UNIT (type) = size_int ((2 * POINTER_SIZE) / BITS_PER_UNIT);
1665 break;
1667 case POINTER_TYPE:
1668 case REFERENCE_TYPE:
1671 enum machine_mode mode = ((TREE_CODE (type) == REFERENCE_TYPE
1672 && reference_types_internal)
1673 ? Pmode : TYPE_MODE (type));
1675 int nbits = GET_MODE_BITSIZE (mode);
1677 TYPE_SIZE (type) = bitsize_int (nbits);
1678 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
1679 TREE_UNSIGNED (type) = 1;
1680 TYPE_PRECISION (type) = nbits;
1682 break;
1684 case ARRAY_TYPE:
1686 tree index = TYPE_DOMAIN (type);
1687 tree element = TREE_TYPE (type);
1689 build_pointer_type (element);
1691 /* We need to know both bounds in order to compute the size. */
1692 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1693 && TYPE_SIZE (element))
1695 tree ub = TYPE_MAX_VALUE (index);
1696 tree lb = TYPE_MIN_VALUE (index);
1697 tree length;
1698 tree element_size;
1700 /* The initial subtraction should happen in the original type so
1701 that (possible) negative values are handled appropriately. */
1702 length = size_binop (PLUS_EXPR, size_one_node,
1703 convert (sizetype,
1704 fold (build (MINUS_EXPR,
1705 TREE_TYPE (lb),
1706 ub, lb))));
1708 /* Special handling for arrays of bits (for Chill). */
1709 element_size = TYPE_SIZE (element);
1710 if (TYPE_PACKED (type) && INTEGRAL_TYPE_P (element)
1711 && (integer_zerop (TYPE_MAX_VALUE (element))
1712 || integer_onep (TYPE_MAX_VALUE (element)))
1713 && host_integerp (TYPE_MIN_VALUE (element), 1))
1715 HOST_WIDE_INT maxvalue
1716 = tree_low_cst (TYPE_MAX_VALUE (element), 1);
1717 HOST_WIDE_INT minvalue
1718 = tree_low_cst (TYPE_MIN_VALUE (element), 1);
1720 if (maxvalue - minvalue == 1
1721 && (maxvalue == 1 || maxvalue == 0))
1722 element_size = integer_one_node;
1725 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1726 convert (bitsizetype, length));
1728 /* If we know the size of the element, calculate the total
1729 size directly, rather than do some division thing below.
1730 This optimization helps Fortran assumed-size arrays
1731 (where the size of the array is determined at runtime)
1732 substantially.
1733 Note that we can't do this in the case where the size of
1734 the elements is one bit since TYPE_SIZE_UNIT cannot be
1735 set correctly in that case. */
1736 if (TYPE_SIZE_UNIT (element) != 0 && ! integer_onep (element_size))
1737 TYPE_SIZE_UNIT (type)
1738 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
1741 /* Now round the alignment and size,
1742 using machine-dependent criteria if any. */
1744 #ifdef ROUND_TYPE_ALIGN
1745 TYPE_ALIGN (type)
1746 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
1747 #else
1748 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
1749 #endif
1750 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
1752 #ifdef ROUND_TYPE_SIZE
1753 if (TYPE_SIZE (type) != 0)
1755 tree tmp
1756 = ROUND_TYPE_SIZE (type, TYPE_SIZE (type), TYPE_ALIGN (type));
1758 /* If the rounding changed the size of the type, remove any
1759 pre-calculated TYPE_SIZE_UNIT. */
1760 if (simple_cst_equal (TYPE_SIZE (type), tmp) != 1)
1761 TYPE_SIZE_UNIT (type) = NULL;
1763 TYPE_SIZE (type) = tmp;
1765 #endif
1767 TYPE_MODE (type) = BLKmode;
1768 if (TYPE_SIZE (type) != 0
1769 #ifdef MEMBER_TYPE_FORCES_BLK
1770 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
1771 #endif
1772 /* BLKmode elements force BLKmode aggregate;
1773 else extract/store fields may lose. */
1774 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
1775 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
1777 /* One-element arrays get the component type's mode. */
1778 if (simple_cst_equal (TYPE_SIZE (type),
1779 TYPE_SIZE (TREE_TYPE (type))))
1780 TYPE_MODE (type) = TYPE_MODE (TREE_TYPE (type));
1781 else
1782 TYPE_MODE (type)
1783 = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1785 if (TYPE_MODE (type) != BLKmode
1786 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
1787 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type))
1788 && TYPE_MODE (type) != BLKmode)
1790 TYPE_NO_FORCE_BLK (type) = 1;
1791 TYPE_MODE (type) = BLKmode;
1794 break;
1797 case RECORD_TYPE:
1798 case UNION_TYPE:
1799 case QUAL_UNION_TYPE:
1801 tree field;
1802 record_layout_info rli;
1804 /* Initialize the layout information. */
1805 rli = start_record_layout (type);
1807 /* If this is a QUAL_UNION_TYPE, we want to process the fields
1808 in the reverse order in building the COND_EXPR that denotes
1809 its size. We reverse them again later. */
1810 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1811 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1813 /* Place all the fields. */
1814 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1815 place_field (rli, field);
1817 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1818 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1820 if (lang_adjust_rli)
1821 (*lang_adjust_rli) (rli);
1823 /* Finish laying out the record. */
1824 finish_record_layout (rli, /*free_p=*/true);
1826 break;
1828 case SET_TYPE: /* Used by Chill and Pascal. */
1829 if (TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST
1830 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST)
1831 abort ();
1832 else
1834 #ifndef SET_WORD_SIZE
1835 #define SET_WORD_SIZE BITS_PER_WORD
1836 #endif
1837 unsigned int alignment
1838 = set_alignment ? set_alignment : SET_WORD_SIZE;
1839 int size_in_bits
1840 = (TREE_INT_CST_LOW (TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
1841 - TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) + 1);
1842 int rounded_size
1843 = ((size_in_bits + alignment - 1) / alignment) * alignment;
1845 if (rounded_size > (int) alignment)
1846 TYPE_MODE (type) = BLKmode;
1847 else
1848 TYPE_MODE (type) = mode_for_size (alignment, MODE_INT, 1);
1850 TYPE_SIZE (type) = bitsize_int (rounded_size);
1851 TYPE_SIZE_UNIT (type) = size_int (rounded_size / BITS_PER_UNIT);
1852 TYPE_ALIGN (type) = alignment;
1853 TYPE_USER_ALIGN (type) = 0;
1854 TYPE_PRECISION (type) = size_in_bits;
1856 break;
1858 case FILE_TYPE:
1859 /* The size may vary in different languages, so the language front end
1860 should fill in the size. */
1861 TYPE_ALIGN (type) = BIGGEST_ALIGNMENT;
1862 TYPE_USER_ALIGN (type) = 0;
1863 TYPE_MODE (type) = BLKmode;
1864 break;
1866 default:
1867 abort ();
1870 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
1871 records and unions, finish_record_layout already called this
1872 function. */
1873 if (TREE_CODE (type) != RECORD_TYPE
1874 && TREE_CODE (type) != UNION_TYPE
1875 && TREE_CODE (type) != QUAL_UNION_TYPE)
1876 finalize_type_size (type);
1878 /* If this type is created before sizetype has been permanently set,
1879 record it so set_sizetype can fix it up. */
1880 if (! sizetype_set)
1881 early_type_list = tree_cons (NULL_TREE, type, early_type_list);
1883 /* If an alias set has been set for this aggregate when it was incomplete,
1884 force it into alias set 0.
1885 This is too conservative, but we cannot call record_component_aliases
1886 here because some frontends still change the aggregates after
1887 layout_type. */
1888 if (AGGREGATE_TYPE_P (type) && TYPE_ALIAS_SET_KNOWN_P (type))
1889 TYPE_ALIAS_SET (type) = 0;
1892 /* Create and return a type for signed integers of PRECISION bits. */
1894 tree
1895 make_signed_type (precision)
1896 int precision;
1898 tree type = make_node (INTEGER_TYPE);
1900 TYPE_PRECISION (type) = precision;
1902 fixup_signed_type (type);
1903 return type;
1906 /* Create and return a type for unsigned integers of PRECISION bits. */
1908 tree
1909 make_unsigned_type (precision)
1910 int precision;
1912 tree type = make_node (INTEGER_TYPE);
1914 TYPE_PRECISION (type) = precision;
1916 fixup_unsigned_type (type);
1917 return type;
1920 /* Initialize sizetype and bitsizetype to a reasonable and temporary
1921 value to enable integer types to be created. */
1923 void
1924 initialize_sizetypes ()
1926 tree t = make_node (INTEGER_TYPE);
1928 /* Set this so we do something reasonable for the build_int_2 calls
1929 below. */
1930 integer_type_node = t;
1932 TYPE_MODE (t) = SImode;
1933 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
1934 TYPE_USER_ALIGN (t) = 0;
1935 TYPE_SIZE (t) = build_int_2 (GET_MODE_BITSIZE (SImode), 0);
1936 TYPE_SIZE_UNIT (t) = build_int_2 (GET_MODE_SIZE (SImode), 0);
1937 TREE_UNSIGNED (t) = 1;
1938 TYPE_PRECISION (t) = GET_MODE_BITSIZE (SImode);
1939 TYPE_MIN_VALUE (t) = build_int_2 (0, 0);
1940 TYPE_IS_SIZETYPE (t) = 1;
1942 /* 1000 avoids problems with possible overflow and is certainly
1943 larger than any size value we'd want to be storing. */
1944 TYPE_MAX_VALUE (t) = build_int_2 (1000, 0);
1946 /* These two must be different nodes because of the caching done in
1947 size_int_wide. */
1948 sizetype = t;
1949 bitsizetype = copy_node (t);
1950 integer_type_node = 0;
1953 /* Set sizetype to TYPE, and initialize *sizetype accordingly.
1954 Also update the type of any standard type's sizes made so far. */
1956 void
1957 set_sizetype (type)
1958 tree type;
1960 int oprecision = TYPE_PRECISION (type);
1961 /* The *bitsizetype types use a precision that avoids overflows when
1962 calculating signed sizes / offsets in bits. However, when
1963 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
1964 precision. */
1965 int precision = MIN (oprecision + BITS_PER_UNIT_LOG + 1,
1966 2 * HOST_BITS_PER_WIDE_INT);
1967 unsigned int i;
1968 tree t;
1970 if (sizetype_set)
1971 abort ();
1973 /* Make copies of nodes since we'll be setting TYPE_IS_SIZETYPE. */
1974 sizetype = copy_node (type);
1975 TYPE_DOMAIN (sizetype) = type;
1976 TYPE_IS_SIZETYPE (sizetype) = 1;
1977 bitsizetype = make_node (INTEGER_TYPE);
1978 TYPE_NAME (bitsizetype) = TYPE_NAME (type);
1979 TYPE_PRECISION (bitsizetype) = precision;
1980 TYPE_IS_SIZETYPE (bitsizetype) = 1;
1982 if (TREE_UNSIGNED (type))
1983 fixup_unsigned_type (bitsizetype);
1984 else
1985 fixup_signed_type (bitsizetype);
1987 layout_type (bitsizetype);
1989 if (TREE_UNSIGNED (type))
1991 usizetype = sizetype;
1992 ubitsizetype = bitsizetype;
1993 ssizetype = copy_node (make_signed_type (oprecision));
1994 sbitsizetype = copy_node (make_signed_type (precision));
1996 else
1998 ssizetype = sizetype;
1999 sbitsizetype = bitsizetype;
2000 usizetype = copy_node (make_unsigned_type (oprecision));
2001 ubitsizetype = copy_node (make_unsigned_type (precision));
2004 TYPE_NAME (bitsizetype) = get_identifier ("bit_size_type");
2006 /* Show is a sizetype, is a main type, and has no pointers to it. */
2007 for (i = 0; i < ARRAY_SIZE (sizetype_tab); i++)
2009 TYPE_IS_SIZETYPE (sizetype_tab[i]) = 1;
2010 TYPE_MAIN_VARIANT (sizetype_tab[i]) = sizetype_tab[i];
2011 TYPE_NEXT_VARIANT (sizetype_tab[i]) = 0;
2012 TYPE_POINTER_TO (sizetype_tab[i]) = 0;
2013 TYPE_REFERENCE_TO (sizetype_tab[i]) = 0;
2016 /* Go down each of the types we already made and set the proper type
2017 for the sizes in them. */
2018 for (t = early_type_list; t != 0; t = TREE_CHAIN (t))
2020 if (TREE_CODE (TREE_VALUE (t)) != INTEGER_TYPE)
2021 abort ();
2023 TREE_TYPE (TYPE_SIZE (TREE_VALUE (t))) = bitsizetype;
2024 TREE_TYPE (TYPE_SIZE_UNIT (TREE_VALUE (t))) = sizetype;
2027 early_type_list = 0;
2028 sizetype_set = 1;
2031 /* Set the extreme values of TYPE based on its precision in bits,
2032 then lay it out. Used when make_signed_type won't do
2033 because the tree code is not INTEGER_TYPE.
2034 E.g. for Pascal, when the -fsigned-char option is given. */
2036 void
2037 fixup_signed_type (type)
2038 tree type;
2040 int precision = TYPE_PRECISION (type);
2042 /* We can not represent properly constants greater then
2043 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2044 as they are used by i386 vector extensions and friends. */
2045 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2046 precision = HOST_BITS_PER_WIDE_INT * 2;
2048 TYPE_MIN_VALUE (type)
2049 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
2050 ? 0 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2051 (((HOST_WIDE_INT) (-1)
2052 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2053 ? precision - HOST_BITS_PER_WIDE_INT - 1
2054 : 0))));
2055 TYPE_MAX_VALUE (type)
2056 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
2057 ? -1 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2058 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2059 ? (((HOST_WIDE_INT) 1
2060 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2061 : 0));
2063 TREE_TYPE (TYPE_MIN_VALUE (type)) = type;
2064 TREE_TYPE (TYPE_MAX_VALUE (type)) = type;
2066 /* Lay out the type: set its alignment, size, etc. */
2067 layout_type (type);
2070 /* Set the extreme values of TYPE based on its precision in bits,
2071 then lay it out. This is used both in `make_unsigned_type'
2072 and for enumeral types. */
2074 void
2075 fixup_unsigned_type (type)
2076 tree type;
2078 int precision = TYPE_PRECISION (type);
2080 /* We can not represent properly constants greater then
2081 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2082 as they are used by i386 vector extensions and friends. */
2083 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2084 precision = HOST_BITS_PER_WIDE_INT * 2;
2086 TYPE_MIN_VALUE (type) = build_int_2 (0, 0);
2087 TYPE_MAX_VALUE (type)
2088 = build_int_2 (precision - HOST_BITS_PER_WIDE_INT >= 0
2089 ? -1 : ((HOST_WIDE_INT) 1 << precision) - 1,
2090 precision - HOST_BITS_PER_WIDE_INT > 0
2091 ? ((unsigned HOST_WIDE_INT) ~0
2092 >> (HOST_BITS_PER_WIDE_INT
2093 - (precision - HOST_BITS_PER_WIDE_INT)))
2094 : 0);
2095 TREE_TYPE (TYPE_MIN_VALUE (type)) = type;
2096 TREE_TYPE (TYPE_MAX_VALUE (type)) = type;
2098 /* Lay out the type: set its alignment, size, etc. */
2099 layout_type (type);
2102 /* Find the best machine mode to use when referencing a bit field of length
2103 BITSIZE bits starting at BITPOS.
2105 The underlying object is known to be aligned to a boundary of ALIGN bits.
2106 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2107 larger than LARGEST_MODE (usually SImode).
2109 If no mode meets all these conditions, we return VOIDmode. Otherwise, if
2110 VOLATILEP is true or SLOW_BYTE_ACCESS is false, we return the smallest
2111 mode meeting these conditions.
2113 Otherwise (VOLATILEP is false and SLOW_BYTE_ACCESS is true), we return
2114 the largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2115 all the conditions. */
2117 enum machine_mode
2118 get_best_mode (bitsize, bitpos, align, largest_mode, volatilep)
2119 int bitsize, bitpos;
2120 unsigned int align;
2121 enum machine_mode largest_mode;
2122 int volatilep;
2124 enum machine_mode mode;
2125 unsigned int unit = 0;
2127 /* Find the narrowest integer mode that contains the bit field. */
2128 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2129 mode = GET_MODE_WIDER_MODE (mode))
2131 unit = GET_MODE_BITSIZE (mode);
2132 if ((bitpos % unit) + bitsize <= unit)
2133 break;
2136 if (mode == VOIDmode
2137 /* It is tempting to omit the following line
2138 if STRICT_ALIGNMENT is true.
2139 But that is incorrect, since if the bitfield uses part of 3 bytes
2140 and we use a 4-byte mode, we could get a spurious segv
2141 if the extra 4th byte is past the end of memory.
2142 (Though at least one Unix compiler ignores this problem:
2143 that on the Sequent 386 machine. */
2144 || MIN (unit, BIGGEST_ALIGNMENT) > align
2145 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2146 return VOIDmode;
2148 if (SLOW_BYTE_ACCESS && ! volatilep)
2150 enum machine_mode wide_mode = VOIDmode, tmode;
2152 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2153 tmode = GET_MODE_WIDER_MODE (tmode))
2155 unit = GET_MODE_BITSIZE (tmode);
2156 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2157 && unit <= BITS_PER_WORD
2158 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2159 && (largest_mode == VOIDmode
2160 || unit <= GET_MODE_BITSIZE (largest_mode)))
2161 wide_mode = tmode;
2164 if (wide_mode != VOIDmode)
2165 return wide_mode;
2168 return mode;
2171 #include "gt-stor-layout.h"