1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4 and Steven Bosscher <s.bosscher@student.tudelft.nl>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* trans-types.c -- gfortran backend types */
26 #include "coretypes.h"
27 #include "tm.h" /* For INTMAX_TYPE, INT8_TYPE, INT16_TYPE, INT32_TYPE,
28 INT64_TYPE, INT_LEAST8_TYPE, INT_LEAST16_TYPE,
29 INT_LEAST32_TYPE, INT_LEAST64_TYPE, INT_FAST8_TYPE,
30 INT_FAST16_TYPE, INT_FAST32_TYPE, INT_FAST64_TYPE,
31 BOOL_TYPE_SIZE, BITS_PER_UNIT, POINTER_SIZE,
32 INT_TYPE_SIZE, CHAR_TYPE_SIZE, SHORT_TYPE_SIZE,
33 LONG_TYPE_SIZE, LONG_LONG_TYPE_SIZE,
34 FLOAT_TYPE_SIZE, DOUBLE_TYPE_SIZE and
35 LONG_DOUBLE_TYPE_SIZE. */
39 #include "double-int.h"
47 #include "fold-const.h"
48 #include "stor-layout.h"
49 #include "stringpool.h"
50 #include "langhooks.h" /* For iso-c-bindings.def. */
54 #include "diagnostic-core.h" /* For fatal_error. */
55 #include "toplev.h" /* For rest_of_decl_compilation. */
57 #include "trans-types.h"
58 #include "trans-const.h"
60 #include "dwarf2out.h" /* For struct array_descr_info. */
63 #if (GFC_MAX_DIMENSIONS < 10)
64 #define GFC_RANK_DIGITS 1
65 #define GFC_RANK_PRINTF_FORMAT "%01d"
66 #elif (GFC_MAX_DIMENSIONS < 100)
67 #define GFC_RANK_DIGITS 2
68 #define GFC_RANK_PRINTF_FORMAT "%02d"
70 #error If you really need >99 dimensions, continue the sequence above...
73 /* array of structs so we don't have to worry about xmalloc or free */
74 CInteropKind_t c_interop_kinds_table
[ISOCBINDING_NUMBER
];
76 tree gfc_array_index_type
;
77 tree gfc_array_range_type
;
78 tree gfc_character1_type_node
;
80 tree prvoid_type_node
;
81 tree ppvoid_type_node
;
85 tree gfc_charlen_type_node
;
87 tree float128_type_node
= NULL_TREE
;
88 tree complex_float128_type_node
= NULL_TREE
;
90 bool gfc_real16_is_float128
= false;
92 static GTY(()) tree gfc_desc_dim_type
;
93 static GTY(()) tree gfc_max_array_element_size
;
94 static GTY(()) tree gfc_array_descriptor_base
[2 * (GFC_MAX_DIMENSIONS
+1)];
95 static GTY(()) tree gfc_array_descriptor_base_caf
[2 * (GFC_MAX_DIMENSIONS
+1)];
97 /* Arrays for all integral and real kinds. We'll fill this in at runtime
98 after the target has a chance to process command-line options. */
100 #define MAX_INT_KINDS 5
101 gfc_integer_info gfc_integer_kinds
[MAX_INT_KINDS
+ 1];
102 gfc_logical_info gfc_logical_kinds
[MAX_INT_KINDS
+ 1];
103 static GTY(()) tree gfc_integer_types
[MAX_INT_KINDS
+ 1];
104 static GTY(()) tree gfc_logical_types
[MAX_INT_KINDS
+ 1];
106 #define MAX_REAL_KINDS 5
107 gfc_real_info gfc_real_kinds
[MAX_REAL_KINDS
+ 1];
108 static GTY(()) tree gfc_real_types
[MAX_REAL_KINDS
+ 1];
109 static GTY(()) tree gfc_complex_types
[MAX_REAL_KINDS
+ 1];
111 #define MAX_CHARACTER_KINDS 2
112 gfc_character_info gfc_character_kinds
[MAX_CHARACTER_KINDS
+ 1];
113 static GTY(()) tree gfc_character_types
[MAX_CHARACTER_KINDS
+ 1];
114 static GTY(()) tree gfc_pcharacter_types
[MAX_CHARACTER_KINDS
+ 1];
116 static tree
gfc_add_field_to_struct_1 (tree
, tree
, tree
, tree
**);
118 /* The integer kind to use for array indices. This will be set to the
119 proper value based on target information from the backend. */
121 int gfc_index_integer_kind
;
123 /* The default kinds of the various types. */
125 int gfc_default_integer_kind
;
126 int gfc_max_integer_kind
;
127 int gfc_default_real_kind
;
128 int gfc_default_double_kind
;
129 int gfc_default_character_kind
;
130 int gfc_default_logical_kind
;
131 int gfc_default_complex_kind
;
133 int gfc_atomic_int_kind
;
134 int gfc_atomic_logical_kind
;
136 /* The kind size used for record offsets. If the target system supports
137 kind=8, this will be set to 8, otherwise it is set to 4. */
140 /* The integer kind used to store character lengths. */
141 int gfc_charlen_int_kind
;
143 /* The size of the numeric storage unit and character storage unit. */
144 int gfc_numeric_storage_size
;
145 int gfc_character_storage_size
;
149 gfc_check_any_c_kind (gfc_typespec
*ts
)
153 for (i
= 0; i
< ISOCBINDING_NUMBER
; i
++)
155 /* Check for any C interoperable kind for the given type/kind in ts.
156 This can be used after verify_c_interop to make sure that the
157 Fortran kind being used exists in at least some form for C. */
158 if (c_interop_kinds_table
[i
].f90_type
== ts
->type
&&
159 c_interop_kinds_table
[i
].value
== ts
->kind
)
168 get_real_kind_from_node (tree type
)
172 for (i
= 0; gfc_real_kinds
[i
].kind
!= 0; i
++)
173 if (gfc_real_kinds
[i
].mode_precision
== TYPE_PRECISION (type
))
174 return gfc_real_kinds
[i
].kind
;
180 get_int_kind_from_node (tree type
)
187 for (i
= 0; gfc_integer_kinds
[i
].kind
!= 0; i
++)
188 if (gfc_integer_kinds
[i
].bit_size
== TYPE_PRECISION (type
))
189 return gfc_integer_kinds
[i
].kind
;
194 /* Return a typenode for the "standard" C type with a given name. */
196 get_typenode_from_name (const char *name
)
198 if (name
== NULL
|| *name
== '\0')
201 if (strcmp (name
, "char") == 0)
202 return char_type_node
;
203 if (strcmp (name
, "unsigned char") == 0)
204 return unsigned_char_type_node
;
205 if (strcmp (name
, "signed char") == 0)
206 return signed_char_type_node
;
208 if (strcmp (name
, "short int") == 0)
209 return short_integer_type_node
;
210 if (strcmp (name
, "short unsigned int") == 0)
211 return short_unsigned_type_node
;
213 if (strcmp (name
, "int") == 0)
214 return integer_type_node
;
215 if (strcmp (name
, "unsigned int") == 0)
216 return unsigned_type_node
;
218 if (strcmp (name
, "long int") == 0)
219 return long_integer_type_node
;
220 if (strcmp (name
, "long unsigned int") == 0)
221 return long_unsigned_type_node
;
223 if (strcmp (name
, "long long int") == 0)
224 return long_long_integer_type_node
;
225 if (strcmp (name
, "long long unsigned int") == 0)
226 return long_long_unsigned_type_node
;
232 get_int_kind_from_name (const char *name
)
234 return get_int_kind_from_node (get_typenode_from_name (name
));
238 /* Get the kind number corresponding to an integer of given size,
239 following the required return values for ISO_FORTRAN_ENV INT* constants:
240 -2 is returned if we support a kind of larger size, -1 otherwise. */
242 gfc_get_int_kind_from_width_isofortranenv (int size
)
246 /* Look for a kind with matching storage size. */
247 for (i
= 0; gfc_integer_kinds
[i
].kind
!= 0; i
++)
248 if (gfc_integer_kinds
[i
].bit_size
== size
)
249 return gfc_integer_kinds
[i
].kind
;
251 /* Look for a kind with larger storage size. */
252 for (i
= 0; gfc_integer_kinds
[i
].kind
!= 0; i
++)
253 if (gfc_integer_kinds
[i
].bit_size
> size
)
259 /* Get the kind number corresponding to a real of given storage size,
260 following the required return values for ISO_FORTRAN_ENV REAL* constants:
261 -2 is returned if we support a kind of larger size, -1 otherwise. */
263 gfc_get_real_kind_from_width_isofortranenv (int size
)
269 /* Look for a kind with matching storage size. */
270 for (i
= 0; gfc_real_kinds
[i
].kind
!= 0; i
++)
271 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds
[i
].kind
)) == size
)
272 return gfc_real_kinds
[i
].kind
;
274 /* Look for a kind with larger storage size. */
275 for (i
= 0; gfc_real_kinds
[i
].kind
!= 0; i
++)
276 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds
[i
].kind
)) > size
)
285 get_int_kind_from_width (int size
)
289 for (i
= 0; gfc_integer_kinds
[i
].kind
!= 0; i
++)
290 if (gfc_integer_kinds
[i
].bit_size
== size
)
291 return gfc_integer_kinds
[i
].kind
;
297 get_int_kind_from_minimal_width (int size
)
301 for (i
= 0; gfc_integer_kinds
[i
].kind
!= 0; i
++)
302 if (gfc_integer_kinds
[i
].bit_size
>= size
)
303 return gfc_integer_kinds
[i
].kind
;
309 /* Generate the CInteropKind_t objects for the C interoperable
313 gfc_init_c_interop_kinds (void)
317 /* init all pointers in the list to NULL */
318 for (i
= 0; i
< ISOCBINDING_NUMBER
; i
++)
320 /* Initialize the name and value fields. */
321 c_interop_kinds_table
[i
].name
[0] = '\0';
322 c_interop_kinds_table
[i
].value
= -100;
323 c_interop_kinds_table
[i
].f90_type
= BT_UNKNOWN
;
326 #define NAMED_INTCST(a,b,c,d) \
327 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
328 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
329 c_interop_kinds_table[a].value = c;
330 #define NAMED_REALCST(a,b,c,d) \
331 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
332 c_interop_kinds_table[a].f90_type = BT_REAL; \
333 c_interop_kinds_table[a].value = c;
334 #define NAMED_CMPXCST(a,b,c,d) \
335 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
336 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
337 c_interop_kinds_table[a].value = c;
338 #define NAMED_LOGCST(a,b,c) \
339 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
340 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
341 c_interop_kinds_table[a].value = c;
342 #define NAMED_CHARKNDCST(a,b,c) \
343 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
344 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
345 c_interop_kinds_table[a].value = c;
346 #define NAMED_CHARCST(a,b,c) \
347 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
348 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
349 c_interop_kinds_table[a].value = c;
350 #define DERIVED_TYPE(a,b,c) \
351 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
352 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
353 c_interop_kinds_table[a].value = c;
354 #define NAMED_FUNCTION(a,b,c,d) \
355 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
356 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
357 c_interop_kinds_table[a].value = c;
358 #define NAMED_SUBROUTINE(a,b,c,d) \
359 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
360 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
361 c_interop_kinds_table[a].value = c;
362 #include "iso-c-binding.def"
366 /* Query the target to determine which machine modes are available for
367 computation. Choose KIND numbers for them. */
370 gfc_init_kinds (void)
373 int i_index
, r_index
, kind
;
374 bool saw_i4
= false, saw_i8
= false;
375 bool saw_r4
= false, saw_r8
= false, saw_r10
= false, saw_r16
= false;
377 for (i_index
= 0, mode
= MIN_MODE_INT
; mode
<= MAX_MODE_INT
; mode
++)
381 if (!targetm
.scalar_mode_supported_p ((machine_mode
) mode
))
384 /* The middle end doesn't support constants larger than 2*HWI.
385 Perhaps the target hook shouldn't have accepted these either,
386 but just to be safe... */
387 bitsize
= GET_MODE_BITSIZE ((machine_mode
) mode
);
388 if (bitsize
> 2*HOST_BITS_PER_WIDE_INT
)
391 gcc_assert (i_index
!= MAX_INT_KINDS
);
393 /* Let the kind equal the bit size divided by 8. This insulates the
394 programmer from the underlying byte size. */
402 gfc_integer_kinds
[i_index
].kind
= kind
;
403 gfc_integer_kinds
[i_index
].radix
= 2;
404 gfc_integer_kinds
[i_index
].digits
= bitsize
- 1;
405 gfc_integer_kinds
[i_index
].bit_size
= bitsize
;
407 gfc_logical_kinds
[i_index
].kind
= kind
;
408 gfc_logical_kinds
[i_index
].bit_size
= bitsize
;
413 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
414 used for large file access. */
421 /* If we do not at least have kind = 4, everything is pointless. */
424 /* Set the maximum integer kind. Used with at least BOZ constants. */
425 gfc_max_integer_kind
= gfc_integer_kinds
[i_index
- 1].kind
;
427 for (r_index
= 0, mode
= MIN_MODE_FLOAT
; mode
<= MAX_MODE_FLOAT
; mode
++)
429 const struct real_format
*fmt
=
430 REAL_MODE_FORMAT ((machine_mode
) mode
);
435 if (!targetm
.scalar_mode_supported_p ((machine_mode
) mode
))
438 /* Only let float, double, long double and __float128 go through.
439 Runtime support for others is not provided, so they would be
441 if (!targetm
.libgcc_floating_mode_supported_p ((machine_mode
)
444 if (mode
!= TYPE_MODE (float_type_node
)
445 && (mode
!= TYPE_MODE (double_type_node
))
446 && (mode
!= TYPE_MODE (long_double_type_node
))
447 #if defined(HAVE_TFmode) && defined(ENABLE_LIBQUADMATH_SUPPORT)
453 /* Let the kind equal the precision divided by 8, rounding up. Again,
454 this insulates the programmer from the underlying byte size.
456 Also, it effectively deals with IEEE extended formats. There, the
457 total size of the type may equal 16, but it's got 6 bytes of padding
458 and the increased size can get in the way of a real IEEE quad format
459 which may also be supported by the target.
461 We round up so as to handle IA-64 __floatreg (RFmode), which is an
462 82 bit type. Not to be confused with __float80 (XFmode), which is
463 an 80 bit type also supported by IA-64. So XFmode should come out
464 to be kind=10, and RFmode should come out to be kind=11. Egads. */
466 kind
= (GET_MODE_PRECISION (mode
) + 7) / 8;
477 /* Careful we don't stumble a weird internal mode. */
478 gcc_assert (r_index
<= 0 || gfc_real_kinds
[r_index
-1].kind
!= kind
);
479 /* Or have too many modes for the allocated space. */
480 gcc_assert (r_index
!= MAX_REAL_KINDS
);
482 gfc_real_kinds
[r_index
].kind
= kind
;
483 gfc_real_kinds
[r_index
].radix
= fmt
->b
;
484 gfc_real_kinds
[r_index
].digits
= fmt
->p
;
485 gfc_real_kinds
[r_index
].min_exponent
= fmt
->emin
;
486 gfc_real_kinds
[r_index
].max_exponent
= fmt
->emax
;
487 if (fmt
->pnan
< fmt
->p
)
488 /* This is an IBM extended double format (or the MIPS variant)
489 made up of two IEEE doubles. The value of the long double is
490 the sum of the values of the two parts. The most significant
491 part is required to be the value of the long double rounded
492 to the nearest double. If we use emax of 1024 then we can't
493 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
494 rounding will make the most significant part overflow. */
495 gfc_real_kinds
[r_index
].max_exponent
= fmt
->emax
- 1;
496 gfc_real_kinds
[r_index
].mode_precision
= GET_MODE_PRECISION (mode
);
500 /* Choose the default integer kind. We choose 4 unless the user directs us
501 otherwise. Even if the user specified that the default integer kind is 8,
502 the numeric storage size is not 64 bits. In this case, a warning will be
503 issued when NUMERIC_STORAGE_SIZE is used. Set NUMERIC_STORAGE_SIZE to 32. */
505 gfc_numeric_storage_size
= 4 * 8;
507 if (flag_default_integer
)
510 gfc_fatal_error ("INTEGER(KIND=8) is not available for "
511 "%<-fdefault-integer-8%> option");
513 gfc_default_integer_kind
= 8;
516 else if (flag_integer4_kind
== 8)
519 gfc_fatal_error ("INTEGER(KIND=8) is not available for "
520 "%<-finteger-4-integer-8%> option");
522 gfc_default_integer_kind
= 8;
526 gfc_default_integer_kind
= 4;
530 gfc_default_integer_kind
= gfc_integer_kinds
[i_index
- 1].kind
;
531 gfc_numeric_storage_size
= gfc_integer_kinds
[i_index
- 1].bit_size
;
534 /* Choose the default real kind. Again, we choose 4 when possible. */
535 if (flag_default_real
)
538 gfc_fatal_error ("REAL(KIND=8) is not available for "
539 "%<-fdefault-real-8%> option");
541 gfc_default_real_kind
= 8;
543 else if (flag_real4_kind
== 8)
546 gfc_fatal_error ("REAL(KIND=8) is not available for %<-freal-4-real-8%> "
549 gfc_default_real_kind
= 8;
551 else if (flag_real4_kind
== 10)
554 gfc_fatal_error ("REAL(KIND=10) is not available for "
555 "%<-freal-4-real-10%> option");
557 gfc_default_real_kind
= 10;
559 else if (flag_real4_kind
== 16)
562 gfc_fatal_error ("REAL(KIND=16) is not available for "
563 "%<-freal-4-real-16%> option");
565 gfc_default_real_kind
= 16;
568 gfc_default_real_kind
= 4;
570 gfc_default_real_kind
= gfc_real_kinds
[0].kind
;
572 /* Choose the default double kind. If -fdefault-real and -fdefault-double
573 are specified, we use kind=8, if it's available. If -fdefault-real is
574 specified without -fdefault-double, we use kind=16, if it's available.
575 Otherwise we do not change anything. */
576 if (flag_default_double
&& !flag_default_real
)
577 gfc_fatal_error ("Use of %<-fdefault-double-8%> requires "
578 "%<-fdefault-real-8%>");
580 if (flag_default_real
&& flag_default_double
&& saw_r8
)
581 gfc_default_double_kind
= 8;
582 else if (flag_default_real
&& saw_r16
)
583 gfc_default_double_kind
= 16;
584 else if (flag_real8_kind
== 4)
587 gfc_fatal_error ("REAL(KIND=4) is not available for "
588 "%<-freal-8-real-4%> option");
590 gfc_default_double_kind
= 4;
592 else if (flag_real8_kind
== 10 )
595 gfc_fatal_error ("REAL(KIND=10) is not available for "
596 "%<-freal-8-real-10%> option");
598 gfc_default_double_kind
= 10;
600 else if (flag_real8_kind
== 16 )
603 gfc_fatal_error ("REAL(KIND=10) is not available for "
604 "%<-freal-8-real-16%> option");
606 gfc_default_double_kind
= 16;
608 else if (saw_r4
&& saw_r8
)
609 gfc_default_double_kind
= 8;
612 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
613 real ... occupies two contiguous numeric storage units.
615 Therefore we must be supplied a kind twice as large as we chose
616 for single precision. There are loopholes, in that double
617 precision must *occupy* two storage units, though it doesn't have
618 to *use* two storage units. Which means that you can make this
619 kind artificially wide by padding it. But at present there are
620 no GCC targets for which a two-word type does not exist, so we
621 just let gfc_validate_kind abort and tell us if something breaks. */
623 gfc_default_double_kind
624 = gfc_validate_kind (BT_REAL
, gfc_default_real_kind
* 2, false);
627 /* The default logical kind is constrained to be the same as the
628 default integer kind. Similarly with complex and real. */
629 gfc_default_logical_kind
= gfc_default_integer_kind
;
630 gfc_default_complex_kind
= gfc_default_real_kind
;
632 /* We only have two character kinds: ASCII and UCS-4.
633 ASCII corresponds to a 8-bit integer type, if one is available.
634 UCS-4 corresponds to a 32-bit integer type, if one is available. */
636 if ((kind
= get_int_kind_from_width (8)) > 0)
638 gfc_character_kinds
[i_index
].kind
= kind
;
639 gfc_character_kinds
[i_index
].bit_size
= 8;
640 gfc_character_kinds
[i_index
].name
= "ascii";
643 if ((kind
= get_int_kind_from_width (32)) > 0)
645 gfc_character_kinds
[i_index
].kind
= kind
;
646 gfc_character_kinds
[i_index
].bit_size
= 32;
647 gfc_character_kinds
[i_index
].name
= "iso_10646";
651 /* Choose the smallest integer kind for our default character. */
652 gfc_default_character_kind
= gfc_character_kinds
[0].kind
;
653 gfc_character_storage_size
= gfc_default_character_kind
* 8;
655 gfc_index_integer_kind
= get_int_kind_from_name (PTRDIFF_TYPE
);
657 /* Pick a kind the same size as the C "int" type. */
658 gfc_c_int_kind
= INT_TYPE_SIZE
/ 8;
660 /* Choose atomic kinds to match C's int. */
661 gfc_atomic_int_kind
= gfc_c_int_kind
;
662 gfc_atomic_logical_kind
= gfc_c_int_kind
;
666 /* Make sure that a valid kind is present. Returns an index into the
667 associated kinds array, -1 if the kind is not present. */
670 validate_integer (int kind
)
674 for (i
= 0; gfc_integer_kinds
[i
].kind
!= 0; i
++)
675 if (gfc_integer_kinds
[i
].kind
== kind
)
682 validate_real (int kind
)
686 for (i
= 0; gfc_real_kinds
[i
].kind
!= 0; i
++)
687 if (gfc_real_kinds
[i
].kind
== kind
)
694 validate_logical (int kind
)
698 for (i
= 0; gfc_logical_kinds
[i
].kind
; i
++)
699 if (gfc_logical_kinds
[i
].kind
== kind
)
706 validate_character (int kind
)
710 for (i
= 0; gfc_character_kinds
[i
].kind
; i
++)
711 if (gfc_character_kinds
[i
].kind
== kind
)
717 /* Validate a kind given a basic type. The return value is the same
718 for the child functions, with -1 indicating nonexistence of the
719 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
722 gfc_validate_kind (bt type
, int kind
, bool may_fail
)
728 case BT_REAL
: /* Fall through */
730 rc
= validate_real (kind
);
733 rc
= validate_integer (kind
);
736 rc
= validate_logical (kind
);
739 rc
= validate_character (kind
);
743 gfc_internal_error ("gfc_validate_kind(): Got bad type");
746 if (rc
< 0 && !may_fail
)
747 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
753 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
754 Reuse common type nodes where possible. Recognize if the kind matches up
755 with a C type. This will be used later in determining which routines may
756 be scarfed from libm. */
759 gfc_build_int_type (gfc_integer_info
*info
)
761 int mode_precision
= info
->bit_size
;
763 if (mode_precision
== CHAR_TYPE_SIZE
)
765 if (mode_precision
== SHORT_TYPE_SIZE
)
767 if (mode_precision
== INT_TYPE_SIZE
)
769 if (mode_precision
== LONG_TYPE_SIZE
)
771 if (mode_precision
== LONG_LONG_TYPE_SIZE
)
772 info
->c_long_long
= 1;
774 if (TYPE_PRECISION (intQI_type_node
) == mode_precision
)
775 return intQI_type_node
;
776 if (TYPE_PRECISION (intHI_type_node
) == mode_precision
)
777 return intHI_type_node
;
778 if (TYPE_PRECISION (intSI_type_node
) == mode_precision
)
779 return intSI_type_node
;
780 if (TYPE_PRECISION (intDI_type_node
) == mode_precision
)
781 return intDI_type_node
;
782 if (TYPE_PRECISION (intTI_type_node
) == mode_precision
)
783 return intTI_type_node
;
785 return make_signed_type (mode_precision
);
789 gfc_build_uint_type (int size
)
791 if (size
== CHAR_TYPE_SIZE
)
792 return unsigned_char_type_node
;
793 if (size
== SHORT_TYPE_SIZE
)
794 return short_unsigned_type_node
;
795 if (size
== INT_TYPE_SIZE
)
796 return unsigned_type_node
;
797 if (size
== LONG_TYPE_SIZE
)
798 return long_unsigned_type_node
;
799 if (size
== LONG_LONG_TYPE_SIZE
)
800 return long_long_unsigned_type_node
;
802 return make_unsigned_type (size
);
807 gfc_build_real_type (gfc_real_info
*info
)
809 int mode_precision
= info
->mode_precision
;
812 if (mode_precision
== FLOAT_TYPE_SIZE
)
814 if (mode_precision
== DOUBLE_TYPE_SIZE
)
816 if (mode_precision
== LONG_DOUBLE_TYPE_SIZE
)
817 info
->c_long_double
= 1;
818 if (mode_precision
!= LONG_DOUBLE_TYPE_SIZE
&& mode_precision
== 128)
820 info
->c_float128
= 1;
821 gfc_real16_is_float128
= true;
824 if (TYPE_PRECISION (float_type_node
) == mode_precision
)
825 return float_type_node
;
826 if (TYPE_PRECISION (double_type_node
) == mode_precision
)
827 return double_type_node
;
828 if (TYPE_PRECISION (long_double_type_node
) == mode_precision
)
829 return long_double_type_node
;
831 new_type
= make_node (REAL_TYPE
);
832 TYPE_PRECISION (new_type
) = mode_precision
;
833 layout_type (new_type
);
838 gfc_build_complex_type (tree scalar_type
)
842 if (scalar_type
== NULL
)
844 if (scalar_type
== float_type_node
)
845 return complex_float_type_node
;
846 if (scalar_type
== double_type_node
)
847 return complex_double_type_node
;
848 if (scalar_type
== long_double_type_node
)
849 return complex_long_double_type_node
;
851 new_type
= make_node (COMPLEX_TYPE
);
852 TREE_TYPE (new_type
) = scalar_type
;
853 layout_type (new_type
);
858 gfc_build_logical_type (gfc_logical_info
*info
)
860 int bit_size
= info
->bit_size
;
863 if (bit_size
== BOOL_TYPE_SIZE
)
866 return boolean_type_node
;
869 new_type
= make_unsigned_type (bit_size
);
870 TREE_SET_CODE (new_type
, BOOLEAN_TYPE
);
871 TYPE_MAX_VALUE (new_type
) = build_int_cst (new_type
, 1);
872 TYPE_PRECISION (new_type
) = 1;
878 /* Create the backend type nodes. We map them to their
879 equivalent C type, at least for now. We also give
880 names to the types here, and we push them in the
881 global binding level context.*/
884 gfc_init_types (void)
891 /* Create and name the types. */
892 #define PUSH_TYPE(name, node) \
893 pushdecl (build_decl (input_location, \
894 TYPE_DECL, get_identifier (name), node))
896 for (index
= 0; gfc_integer_kinds
[index
].kind
!= 0; ++index
)
898 type
= gfc_build_int_type (&gfc_integer_kinds
[index
]);
899 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
900 if (TYPE_STRING_FLAG (type
))
901 type
= make_signed_type (gfc_integer_kinds
[index
].bit_size
);
902 gfc_integer_types
[index
] = type
;
903 snprintf (name_buf
, sizeof(name_buf
), "integer(kind=%d)",
904 gfc_integer_kinds
[index
].kind
);
905 PUSH_TYPE (name_buf
, type
);
908 for (index
= 0; gfc_logical_kinds
[index
].kind
!= 0; ++index
)
910 type
= gfc_build_logical_type (&gfc_logical_kinds
[index
]);
911 gfc_logical_types
[index
] = type
;
912 snprintf (name_buf
, sizeof(name_buf
), "logical(kind=%d)",
913 gfc_logical_kinds
[index
].kind
);
914 PUSH_TYPE (name_buf
, type
);
917 for (index
= 0; gfc_real_kinds
[index
].kind
!= 0; index
++)
919 type
= gfc_build_real_type (&gfc_real_kinds
[index
]);
920 gfc_real_types
[index
] = type
;
921 snprintf (name_buf
, sizeof(name_buf
), "real(kind=%d)",
922 gfc_real_kinds
[index
].kind
);
923 PUSH_TYPE (name_buf
, type
);
925 if (gfc_real_kinds
[index
].c_float128
)
926 float128_type_node
= type
;
928 type
= gfc_build_complex_type (type
);
929 gfc_complex_types
[index
] = type
;
930 snprintf (name_buf
, sizeof(name_buf
), "complex(kind=%d)",
931 gfc_real_kinds
[index
].kind
);
932 PUSH_TYPE (name_buf
, type
);
934 if (gfc_real_kinds
[index
].c_float128
)
935 complex_float128_type_node
= type
;
938 for (index
= 0; gfc_character_kinds
[index
].kind
!= 0; ++index
)
940 type
= gfc_build_uint_type (gfc_character_kinds
[index
].bit_size
);
941 type
= build_qualified_type (type
, TYPE_UNQUALIFIED
);
942 snprintf (name_buf
, sizeof(name_buf
), "character(kind=%d)",
943 gfc_character_kinds
[index
].kind
);
944 PUSH_TYPE (name_buf
, type
);
945 gfc_character_types
[index
] = type
;
946 gfc_pcharacter_types
[index
] = build_pointer_type (type
);
948 gfc_character1_type_node
= gfc_character_types
[0];
950 PUSH_TYPE ("byte", unsigned_char_type_node
);
951 PUSH_TYPE ("void", void_type_node
);
953 /* DBX debugging output gets upset if these aren't set. */
954 if (!TYPE_NAME (integer_type_node
))
955 PUSH_TYPE ("c_integer", integer_type_node
);
956 if (!TYPE_NAME (char_type_node
))
957 PUSH_TYPE ("c_char", char_type_node
);
961 pvoid_type_node
= build_pointer_type (void_type_node
);
962 prvoid_type_node
= build_qualified_type (pvoid_type_node
, TYPE_QUAL_RESTRICT
);
963 ppvoid_type_node
= build_pointer_type (pvoid_type_node
);
964 pchar_type_node
= build_pointer_type (gfc_character1_type_node
);
966 = build_pointer_type (build_function_type_list (void_type_node
, NULL_TREE
));
968 gfc_array_index_type
= gfc_get_int_type (gfc_index_integer_kind
);
969 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
970 since this function is called before gfc_init_constants. */
972 = build_range_type (gfc_array_index_type
,
973 build_int_cst (gfc_array_index_type
, 0),
976 /* The maximum array element size that can be handled is determined
977 by the number of bits available to store this field in the array
980 n
= TYPE_PRECISION (gfc_array_index_type
) - GFC_DTYPE_SIZE_SHIFT
;
981 gfc_max_array_element_size
982 = wide_int_to_tree (size_type_node
,
983 wi::mask (n
, UNSIGNED
,
984 TYPE_PRECISION (size_type_node
)));
986 boolean_type_node
= gfc_get_logical_type (gfc_default_logical_kind
);
987 boolean_true_node
= build_int_cst (boolean_type_node
, 1);
988 boolean_false_node
= build_int_cst (boolean_type_node
, 0);
990 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
991 gfc_charlen_int_kind
= 4;
992 gfc_charlen_type_node
= gfc_get_int_type (gfc_charlen_int_kind
);
995 /* Get the type node for the given type and kind. */
998 gfc_get_int_type (int kind
)
1000 int index
= gfc_validate_kind (BT_INTEGER
, kind
, true);
1001 return index
< 0 ? 0 : gfc_integer_types
[index
];
1005 gfc_get_real_type (int kind
)
1007 int index
= gfc_validate_kind (BT_REAL
, kind
, true);
1008 return index
< 0 ? 0 : gfc_real_types
[index
];
1012 gfc_get_complex_type (int kind
)
1014 int index
= gfc_validate_kind (BT_COMPLEX
, kind
, true);
1015 return index
< 0 ? 0 : gfc_complex_types
[index
];
1019 gfc_get_logical_type (int kind
)
1021 int index
= gfc_validate_kind (BT_LOGICAL
, kind
, true);
1022 return index
< 0 ? 0 : gfc_logical_types
[index
];
1026 gfc_get_char_type (int kind
)
1028 int index
= gfc_validate_kind (BT_CHARACTER
, kind
, true);
1029 return index
< 0 ? 0 : gfc_character_types
[index
];
1033 gfc_get_pchar_type (int kind
)
1035 int index
= gfc_validate_kind (BT_CHARACTER
, kind
, true);
1036 return index
< 0 ? 0 : gfc_pcharacter_types
[index
];
1040 /* Create a character type with the given kind and length. */
1043 gfc_get_character_type_len_for_eltype (tree eltype
, tree len
)
1047 bounds
= build_range_type (gfc_charlen_type_node
, gfc_index_one_node
, len
);
1048 type
= build_array_type (eltype
, bounds
);
1049 TYPE_STRING_FLAG (type
) = 1;
1055 gfc_get_character_type_len (int kind
, tree len
)
1057 gfc_validate_kind (BT_CHARACTER
, kind
, false);
1058 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind
), len
);
1062 /* Get a type node for a character kind. */
1065 gfc_get_character_type (int kind
, gfc_charlen
* cl
)
1069 len
= (cl
== NULL
) ? NULL_TREE
: cl
->backend_decl
;
1071 return gfc_get_character_type_len (kind
, len
);
1074 /* Covert a basic type. This will be an array for character types. */
1077 gfc_typenode_for_spec (gfc_typespec
* spec
)
1087 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1088 has been resolved. This is done so we can convert C_PTR and
1089 C_FUNPTR to simple variables that get translated to (void *). */
1090 if (spec
->f90_type
== BT_VOID
)
1093 && spec
->u
.derived
->intmod_sym_id
== ISOCBINDING_PTR
)
1094 basetype
= ptr_type_node
;
1096 basetype
= pfunc_type_node
;
1099 basetype
= gfc_get_int_type (spec
->kind
);
1103 basetype
= gfc_get_real_type (spec
->kind
);
1107 basetype
= gfc_get_complex_type (spec
->kind
);
1111 basetype
= gfc_get_logical_type (spec
->kind
);
1115 basetype
= gfc_get_character_type (spec
->kind
, spec
->u
.cl
);
1119 /* Since this cannot be used, return a length one character. */
1120 basetype
= gfc_get_character_type_len (gfc_default_character_kind
,
1121 gfc_index_one_node
);
1126 basetype
= gfc_get_derived_type (spec
->u
.derived
);
1128 if (spec
->type
== BT_CLASS
)
1129 GFC_CLASS_TYPE_P (basetype
) = 1;
1131 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1132 type and kind to fit a (void *) and the basetype returned was a
1133 ptr_type_node. We need to pass up this new information to the
1134 symbol that was declared of type C_PTR or C_FUNPTR. */
1135 if (spec
->u
.derived
->ts
.f90_type
== BT_VOID
)
1137 spec
->type
= BT_INTEGER
;
1138 spec
->kind
= gfc_index_integer_kind
;
1139 spec
->f90_type
= BT_VOID
;
1144 /* This is for the second arg to c_f_pointer and c_f_procpointer
1145 of the iso_c_binding module, to accept any ptr type. */
1146 basetype
= ptr_type_node
;
1147 if (spec
->f90_type
== BT_VOID
)
1150 && spec
->u
.derived
->intmod_sym_id
== ISOCBINDING_PTR
)
1151 basetype
= ptr_type_node
;
1153 basetype
= pfunc_type_node
;
1162 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1165 gfc_conv_array_bound (gfc_expr
* expr
)
1167 /* If expr is an integer constant, return that. */
1168 if (expr
!= NULL
&& expr
->expr_type
== EXPR_CONSTANT
)
1169 return gfc_conv_mpz_to_tree (expr
->value
.integer
, gfc_index_integer_kind
);
1171 /* Otherwise return NULL. */
1175 /* Return the type of an element of the array. Note that scalar coarrays
1176 are special. In particular, for GFC_ARRAY_TYPE_P, the original argument
1177 (with POINTER_TYPE stripped) is returned. */
1180 gfc_get_element_type (tree type
)
1184 if (GFC_ARRAY_TYPE_P (type
))
1186 if (TREE_CODE (type
) == POINTER_TYPE
)
1187 type
= TREE_TYPE (type
);
1188 if (GFC_TYPE_ARRAY_RANK (type
) == 0)
1190 gcc_assert (GFC_TYPE_ARRAY_CORANK (type
) > 0);
1195 gcc_assert (TREE_CODE (type
) == ARRAY_TYPE
);
1196 element
= TREE_TYPE (type
);
1201 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type
));
1202 element
= GFC_TYPE_ARRAY_DATAPTR_TYPE (type
);
1204 gcc_assert (TREE_CODE (element
) == POINTER_TYPE
);
1205 element
= TREE_TYPE (element
);
1207 /* For arrays, which are not scalar coarrays. */
1208 if (TREE_CODE (element
) == ARRAY_TYPE
&& !TYPE_STRING_FLAG (element
))
1209 element
= TREE_TYPE (element
);
1215 /* Build an array. This function is called from gfc_sym_type().
1216 Actually returns array descriptor type.
1218 Format of array descriptors is as follows:
1220 struct gfc_array_descriptor
1225 struct descriptor_dimension dimension[N_DIM];
1228 struct descriptor_dimension
1235 Translation code should use gfc_conv_descriptor_* rather than
1236 accessing the descriptor directly. Any changes to the array
1237 descriptor type will require changes in gfc_conv_descriptor_* and
1238 gfc_build_array_initializer.
1240 This is represented internally as a RECORD_TYPE. The index nodes
1241 are gfc_array_index_type and the data node is a pointer to the
1242 data. See below for the handling of character types.
1244 The dtype member is formatted as follows:
1245 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1246 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1247 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1249 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1250 this generated poor code for assumed/deferred size arrays. These
1251 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1252 of the GENERIC grammar. Also, there is no way to explicitly set
1253 the array stride, so all data must be packed(1). I've tried to
1254 mark all the functions which would require modification with a GCC
1257 The data component points to the first element in the array. The
1258 offset field is the position of the origin of the array (i.e. element
1259 (0, 0 ...)). This may be outside the bounds of the array.
1261 An element is accessed by
1262 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1263 This gives good performance as the computation does not involve the
1264 bounds of the array. For packed arrays, this is optimized further
1265 by substituting the known strides.
1267 This system has one problem: all array bounds must be within 2^31
1268 elements of the origin (2^63 on 64-bit machines). For example
1269 integer, dimension (80000:90000, 80000:90000, 2) :: array
1270 may not work properly on 32-bit machines because 80000*80000 >
1271 2^31, so the calculation for stride2 would overflow. This may
1272 still work, but I haven't checked, and it relies on the overflow
1273 doing the right thing.
1275 The way to fix this problem is to access elements as follows:
1276 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1277 Obviously this is much slower. I will make this a compile time
1278 option, something like -fsmall-array-offsets. Mixing code compiled
1279 with and without this switch will work.
1281 (1) This can be worked around by modifying the upper bound of the
1282 previous dimension. This requires extra fields in the descriptor
1283 (both real_ubound and fake_ubound). */
1286 /* Returns true if the array sym does not require a descriptor. */
1289 gfc_is_nodesc_array (gfc_symbol
* sym
)
1291 gcc_assert (sym
->attr
.dimension
|| sym
->attr
.codimension
);
1293 /* We only want local arrays. */
1294 if (sym
->attr
.pointer
|| sym
->attr
.allocatable
)
1297 /* We want a descriptor for associate-name arrays that do not have an
1298 explicitly known shape already. */
1299 if (sym
->assoc
&& sym
->as
->type
!= AS_EXPLICIT
)
1302 if (sym
->attr
.dummy
)
1303 return sym
->as
->type
!= AS_ASSUMED_SHAPE
1304 && sym
->as
->type
!= AS_ASSUMED_RANK
;
1306 if (sym
->attr
.result
|| sym
->attr
.function
)
1309 gcc_assert (sym
->as
->type
== AS_EXPLICIT
|| sym
->as
->cp_was_assumed
);
1315 /* Create an array descriptor type. */
1318 gfc_build_array_type (tree type
, gfc_array_spec
* as
,
1319 enum gfc_array_kind akind
, bool restricted
,
1322 tree lbound
[GFC_MAX_DIMENSIONS
];
1323 tree ubound
[GFC_MAX_DIMENSIONS
];
1326 /* Assumed-shape arrays do not have codimension information stored in the
1328 corank
= as
->corank
;
1329 if (as
->type
== AS_ASSUMED_SHAPE
||
1330 (as
->type
== AS_ASSUMED_RANK
&& akind
== GFC_ARRAY_ALLOCATABLE
))
1333 if (as
->type
== AS_ASSUMED_RANK
)
1334 for (n
= 0; n
< GFC_MAX_DIMENSIONS
; n
++)
1336 lbound
[n
] = NULL_TREE
;
1337 ubound
[n
] = NULL_TREE
;
1340 for (n
= 0; n
< as
->rank
; n
++)
1342 /* Create expressions for the known bounds of the array. */
1343 if (as
->type
== AS_ASSUMED_SHAPE
&& as
->lower
[n
] == NULL
)
1344 lbound
[n
] = gfc_index_one_node
;
1346 lbound
[n
] = gfc_conv_array_bound (as
->lower
[n
]);
1347 ubound
[n
] = gfc_conv_array_bound (as
->upper
[n
]);
1350 for (n
= as
->rank
; n
< as
->rank
+ corank
; n
++)
1352 if (as
->type
!= AS_DEFERRED
&& as
->lower
[n
] == NULL
)
1353 lbound
[n
] = gfc_index_one_node
;
1355 lbound
[n
] = gfc_conv_array_bound (as
->lower
[n
]);
1357 if (n
< as
->rank
+ corank
- 1)
1358 ubound
[n
] = gfc_conv_array_bound (as
->upper
[n
]);
1361 if (as
->type
== AS_ASSUMED_SHAPE
)
1362 akind
= contiguous
? GFC_ARRAY_ASSUMED_SHAPE_CONT
1363 : GFC_ARRAY_ASSUMED_SHAPE
;
1364 else if (as
->type
== AS_ASSUMED_RANK
)
1365 akind
= contiguous
? GFC_ARRAY_ASSUMED_RANK_CONT
1366 : GFC_ARRAY_ASSUMED_RANK
;
1367 return gfc_get_array_type_bounds (type
, as
->rank
== -1
1368 ? GFC_MAX_DIMENSIONS
: as
->rank
,
1370 ubound
, 0, akind
, restricted
);
1373 /* Returns the struct descriptor_dimension type. */
1376 gfc_get_desc_dim_type (void)
1379 tree decl
, *chain
= NULL
;
1381 if (gfc_desc_dim_type
)
1382 return gfc_desc_dim_type
;
1384 /* Build the type node. */
1385 type
= make_node (RECORD_TYPE
);
1387 TYPE_NAME (type
) = get_identifier ("descriptor_dimension");
1388 TYPE_PACKED (type
) = 1;
1390 /* Consists of the stride, lbound and ubound members. */
1391 decl
= gfc_add_field_to_struct_1 (type
,
1392 get_identifier ("stride"),
1393 gfc_array_index_type
, &chain
);
1394 TREE_NO_WARNING (decl
) = 1;
1396 decl
= gfc_add_field_to_struct_1 (type
,
1397 get_identifier ("lbound"),
1398 gfc_array_index_type
, &chain
);
1399 TREE_NO_WARNING (decl
) = 1;
1401 decl
= gfc_add_field_to_struct_1 (type
,
1402 get_identifier ("ubound"),
1403 gfc_array_index_type
, &chain
);
1404 TREE_NO_WARNING (decl
) = 1;
1406 /* Finish off the type. */
1407 gfc_finish_type (type
);
1408 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
)) = 1;
1410 gfc_desc_dim_type
= type
;
1415 /* Return the DTYPE for an array. This describes the type and type parameters
1417 /* TODO: Only call this when the value is actually used, and make all the
1418 unknown cases abort. */
1421 gfc_get_dtype_rank_type (int rank
, tree etype
)
1429 switch (TREE_CODE (etype
))
1447 /* We will never have arrays of arrays. */
1461 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1462 /* We can strange array types for temporary arrays. */
1463 return gfc_index_zero_node
;
1466 gcc_assert (rank
<= GFC_DTYPE_RANK_MASK
);
1467 size
= TYPE_SIZE_UNIT (etype
);
1469 i
= rank
| (n
<< GFC_DTYPE_TYPE_SHIFT
);
1470 if (size
&& INTEGER_CST_P (size
))
1472 if (tree_int_cst_lt (gfc_max_array_element_size
, size
))
1473 gfc_fatal_error ("Array element size too big at %C");
1475 i
+= TREE_INT_CST_LOW (size
) << GFC_DTYPE_SIZE_SHIFT
;
1477 dtype
= build_int_cst (gfc_array_index_type
, i
);
1479 if (size
&& !INTEGER_CST_P (size
))
1481 tmp
= build_int_cst (gfc_array_index_type
, GFC_DTYPE_SIZE_SHIFT
);
1482 tmp
= fold_build2_loc (input_location
, LSHIFT_EXPR
,
1483 gfc_array_index_type
,
1484 fold_convert (gfc_array_index_type
, size
), tmp
);
1485 dtype
= fold_build2_loc (input_location
, PLUS_EXPR
, gfc_array_index_type
,
1488 /* If we don't know the size we leave it as zero. This should never happen
1489 for anything that is actually used. */
1490 /* TODO: Check this is actually true, particularly when repacking
1491 assumed size parameters. */
1498 gfc_get_dtype (tree type
)
1504 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type
) || GFC_ARRAY_TYPE_P (type
));
1506 if (GFC_TYPE_ARRAY_DTYPE (type
))
1507 return GFC_TYPE_ARRAY_DTYPE (type
);
1509 rank
= GFC_TYPE_ARRAY_RANK (type
);
1510 etype
= gfc_get_element_type (type
);
1511 dtype
= gfc_get_dtype_rank_type (rank
, etype
);
1513 GFC_TYPE_ARRAY_DTYPE (type
) = dtype
;
1518 /* Build an array type for use without a descriptor, packed according
1519 to the value of PACKED. */
1522 gfc_get_nodesc_array_type (tree etype
, gfc_array_spec
* as
, gfc_packed packed
,
1536 mpz_init_set_ui (offset
, 0);
1537 mpz_init_set_ui (stride
, 1);
1540 /* We don't use build_array_type because this does not include include
1541 lang-specific information (i.e. the bounds of the array) when checking
1544 type
= make_node (ARRAY_TYPE
);
1546 type
= build_variant_type_copy (etype
);
1548 GFC_ARRAY_TYPE_P (type
) = 1;
1549 TYPE_LANG_SPECIFIC (type
) = ggc_cleared_alloc
<struct lang_type
> ();
1551 known_stride
= (packed
!= PACKED_NO
);
1553 for (n
= 0; n
< as
->rank
; n
++)
1555 /* Fill in the stride and bound components of the type. */
1557 tmp
= gfc_conv_mpz_to_tree (stride
, gfc_index_integer_kind
);
1560 GFC_TYPE_ARRAY_STRIDE (type
, n
) = tmp
;
1562 expr
= as
->lower
[n
];
1563 if (expr
->expr_type
== EXPR_CONSTANT
)
1565 tmp
= gfc_conv_mpz_to_tree (expr
->value
.integer
,
1566 gfc_index_integer_kind
);
1573 GFC_TYPE_ARRAY_LBOUND (type
, n
) = tmp
;
1577 /* Calculate the offset. */
1578 mpz_mul (delta
, stride
, as
->lower
[n
]->value
.integer
);
1579 mpz_sub (offset
, offset
, delta
);
1584 expr
= as
->upper
[n
];
1585 if (expr
&& expr
->expr_type
== EXPR_CONSTANT
)
1587 tmp
= gfc_conv_mpz_to_tree (expr
->value
.integer
,
1588 gfc_index_integer_kind
);
1595 GFC_TYPE_ARRAY_UBOUND (type
, n
) = tmp
;
1599 /* Calculate the stride. */
1600 mpz_sub (delta
, as
->upper
[n
]->value
.integer
,
1601 as
->lower
[n
]->value
.integer
);
1602 mpz_add_ui (delta
, delta
, 1);
1603 mpz_mul (stride
, stride
, delta
);
1606 /* Only the first stride is known for partial packed arrays. */
1607 if (packed
== PACKED_NO
|| packed
== PACKED_PARTIAL
)
1610 for (n
= as
->rank
; n
< as
->rank
+ as
->corank
; n
++)
1612 expr
= as
->lower
[n
];
1613 if (expr
->expr_type
== EXPR_CONSTANT
)
1614 tmp
= gfc_conv_mpz_to_tree (expr
->value
.integer
,
1615 gfc_index_integer_kind
);
1618 GFC_TYPE_ARRAY_LBOUND (type
, n
) = tmp
;
1620 expr
= as
->upper
[n
];
1621 if (expr
&& expr
->expr_type
== EXPR_CONSTANT
)
1622 tmp
= gfc_conv_mpz_to_tree (expr
->value
.integer
,
1623 gfc_index_integer_kind
);
1626 if (n
< as
->rank
+ as
->corank
- 1)
1627 GFC_TYPE_ARRAY_UBOUND (type
, n
) = tmp
;
1632 GFC_TYPE_ARRAY_OFFSET (type
) =
1633 gfc_conv_mpz_to_tree (offset
, gfc_index_integer_kind
);
1636 GFC_TYPE_ARRAY_OFFSET (type
) = NULL_TREE
;
1640 GFC_TYPE_ARRAY_SIZE (type
) =
1641 gfc_conv_mpz_to_tree (stride
, gfc_index_integer_kind
);
1644 GFC_TYPE_ARRAY_SIZE (type
) = NULL_TREE
;
1646 GFC_TYPE_ARRAY_RANK (type
) = as
->rank
;
1647 GFC_TYPE_ARRAY_CORANK (type
) = as
->corank
;
1648 GFC_TYPE_ARRAY_DTYPE (type
) = NULL_TREE
;
1649 range
= build_range_type (gfc_array_index_type
, gfc_index_zero_node
,
1651 /* TODO: use main type if it is unbounded. */
1652 GFC_TYPE_ARRAY_DATAPTR_TYPE (type
) =
1653 build_pointer_type (build_array_type (etype
, range
));
1655 GFC_TYPE_ARRAY_DATAPTR_TYPE (type
) =
1656 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type
),
1657 TYPE_QUAL_RESTRICT
);
1661 if (packed
!= PACKED_STATIC
|| flag_coarray
== GFC_FCOARRAY_LIB
)
1663 type
= build_pointer_type (type
);
1666 type
= build_qualified_type (type
, TYPE_QUAL_RESTRICT
);
1668 GFC_ARRAY_TYPE_P (type
) = 1;
1669 TYPE_LANG_SPECIFIC (type
) = TYPE_LANG_SPECIFIC (TREE_TYPE (type
));
1677 mpz_sub_ui (stride
, stride
, 1);
1678 range
= gfc_conv_mpz_to_tree (stride
, gfc_index_integer_kind
);
1683 range
= build_range_type (gfc_array_index_type
, gfc_index_zero_node
, range
);
1684 TYPE_DOMAIN (type
) = range
;
1686 build_pointer_type (etype
);
1687 TREE_TYPE (type
) = etype
;
1695 /* Represent packed arrays as multi-dimensional if they have rank >
1696 1 and with proper bounds, instead of flat arrays. This makes for
1697 better debug info. */
1700 tree gtype
= etype
, rtype
, type_decl
;
1702 for (n
= as
->rank
- 1; n
>= 0; n
--)
1704 rtype
= build_range_type (gfc_array_index_type
,
1705 GFC_TYPE_ARRAY_LBOUND (type
, n
),
1706 GFC_TYPE_ARRAY_UBOUND (type
, n
));
1707 gtype
= build_array_type (gtype
, rtype
);
1709 TYPE_NAME (type
) = type_decl
= build_decl (input_location
,
1710 TYPE_DECL
, NULL
, gtype
);
1711 DECL_ORIGINAL_TYPE (type_decl
) = gtype
;
1714 if (packed
!= PACKED_STATIC
|| !known_stride
1715 || (as
->corank
&& flag_coarray
== GFC_FCOARRAY_LIB
))
1717 /* For dummy arrays and automatic (heap allocated) arrays we
1718 want a pointer to the array. */
1719 type
= build_pointer_type (type
);
1721 type
= build_qualified_type (type
, TYPE_QUAL_RESTRICT
);
1722 GFC_ARRAY_TYPE_P (type
) = 1;
1723 TYPE_LANG_SPECIFIC (type
) = TYPE_LANG_SPECIFIC (TREE_TYPE (type
));
1729 /* Return or create the base type for an array descriptor. */
1732 gfc_get_array_descriptor_base (int dimen
, int codimen
, bool restricted
,
1733 enum gfc_array_kind akind
)
1735 tree fat_type
, decl
, arraytype
, *chain
= NULL
;
1736 char name
[16 + 2*GFC_RANK_DIGITS
+ 1 + 1];
1739 /* Assumed-rank array. */
1741 dimen
= GFC_MAX_DIMENSIONS
;
1743 idx
= 2 * (codimen
+ dimen
) + restricted
;
1745 gcc_assert (codimen
+ dimen
>= 0 && codimen
+ dimen
<= GFC_MAX_DIMENSIONS
);
1747 if (flag_coarray
== GFC_FCOARRAY_LIB
&& codimen
)
1749 if (gfc_array_descriptor_base_caf
[idx
])
1750 return gfc_array_descriptor_base_caf
[idx
];
1752 else if (gfc_array_descriptor_base
[idx
])
1753 return gfc_array_descriptor_base
[idx
];
1755 /* Build the type node. */
1756 fat_type
= make_node (RECORD_TYPE
);
1758 sprintf (name
, "array_descriptor" GFC_RANK_PRINTF_FORMAT
, dimen
+ codimen
);
1759 TYPE_NAME (fat_type
) = get_identifier (name
);
1760 TYPE_NAMELESS (fat_type
) = 1;
1762 /* Add the data member as the first element of the descriptor. */
1763 decl
= gfc_add_field_to_struct_1 (fat_type
,
1764 get_identifier ("data"),
1767 : ptr_type_node
), &chain
);
1769 /* Add the base component. */
1770 decl
= gfc_add_field_to_struct_1 (fat_type
,
1771 get_identifier ("offset"),
1772 gfc_array_index_type
, &chain
);
1773 TREE_NO_WARNING (decl
) = 1;
1775 /* Add the dtype component. */
1776 decl
= gfc_add_field_to_struct_1 (fat_type
,
1777 get_identifier ("dtype"),
1778 gfc_array_index_type
, &chain
);
1779 TREE_NO_WARNING (decl
) = 1;
1781 /* Build the array type for the stride and bound components. */
1782 if (dimen
+ codimen
> 0)
1785 build_array_type (gfc_get_desc_dim_type (),
1786 build_range_type (gfc_array_index_type
,
1787 gfc_index_zero_node
,
1788 gfc_rank_cst
[codimen
+ dimen
- 1]));
1790 decl
= gfc_add_field_to_struct_1 (fat_type
, get_identifier ("dim"),
1792 TREE_NO_WARNING (decl
) = 1;
1795 if (flag_coarray
== GFC_FCOARRAY_LIB
&& codimen
1796 && akind
== GFC_ARRAY_ALLOCATABLE
)
1798 decl
= gfc_add_field_to_struct_1 (fat_type
,
1799 get_identifier ("token"),
1800 prvoid_type_node
, &chain
);
1801 TREE_NO_WARNING (decl
) = 1;
1804 /* Finish off the type. */
1805 gfc_finish_type (fat_type
);
1806 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type
)) = 1;
1808 if (flag_coarray
== GFC_FCOARRAY_LIB
&& codimen
1809 && akind
== GFC_ARRAY_ALLOCATABLE
)
1810 gfc_array_descriptor_base_caf
[idx
] = fat_type
;
1812 gfc_array_descriptor_base
[idx
] = fat_type
;
1818 /* Build an array (descriptor) type with given bounds. */
1821 gfc_get_array_type_bounds (tree etype
, int dimen
, int codimen
, tree
* lbound
,
1822 tree
* ubound
, int packed
,
1823 enum gfc_array_kind akind
, bool restricted
)
1825 char name
[8 + 2*GFC_RANK_DIGITS
+ 1 + GFC_MAX_SYMBOL_LEN
];
1826 tree fat_type
, base_type
, arraytype
, lower
, upper
, stride
, tmp
, rtype
;
1827 const char *type_name
;
1830 base_type
= gfc_get_array_descriptor_base (dimen
, codimen
, restricted
, akind
);
1831 fat_type
= build_distinct_type_copy (base_type
);
1832 /* Make sure that nontarget and target array type have the same canonical
1833 type (and same stub decl for debug info). */
1834 base_type
= gfc_get_array_descriptor_base (dimen
, codimen
, false, akind
);
1835 TYPE_CANONICAL (fat_type
) = base_type
;
1836 TYPE_STUB_DECL (fat_type
) = TYPE_STUB_DECL (base_type
);
1838 tmp
= TYPE_NAME (etype
);
1839 if (tmp
&& TREE_CODE (tmp
) == TYPE_DECL
)
1840 tmp
= DECL_NAME (tmp
);
1842 type_name
= IDENTIFIER_POINTER (tmp
);
1844 type_name
= "unknown";
1845 sprintf (name
, "array" GFC_RANK_PRINTF_FORMAT
"_%.*s", dimen
+ codimen
,
1846 GFC_MAX_SYMBOL_LEN
, type_name
);
1847 TYPE_NAME (fat_type
) = get_identifier (name
);
1848 TYPE_NAMELESS (fat_type
) = 1;
1850 GFC_DESCRIPTOR_TYPE_P (fat_type
) = 1;
1851 TYPE_LANG_SPECIFIC (fat_type
) = ggc_cleared_alloc
<struct lang_type
> ();
1853 GFC_TYPE_ARRAY_RANK (fat_type
) = dimen
;
1854 GFC_TYPE_ARRAY_CORANK (fat_type
) = codimen
;
1855 GFC_TYPE_ARRAY_DTYPE (fat_type
) = NULL_TREE
;
1856 GFC_TYPE_ARRAY_AKIND (fat_type
) = akind
;
1858 /* Build an array descriptor record type. */
1860 stride
= gfc_index_one_node
;
1863 for (n
= 0; n
< dimen
+ codimen
; n
++)
1866 GFC_TYPE_ARRAY_STRIDE (fat_type
, n
) = stride
;
1873 if (lower
!= NULL_TREE
)
1875 if (INTEGER_CST_P (lower
))
1876 GFC_TYPE_ARRAY_LBOUND (fat_type
, n
) = lower
;
1881 if (codimen
&& n
== dimen
+ codimen
- 1)
1885 if (upper
!= NULL_TREE
)
1887 if (INTEGER_CST_P (upper
))
1888 GFC_TYPE_ARRAY_UBOUND (fat_type
, n
) = upper
;
1896 if (upper
!= NULL_TREE
&& lower
!= NULL_TREE
&& stride
!= NULL_TREE
)
1898 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
1899 gfc_array_index_type
, upper
, lower
);
1900 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
,
1901 gfc_array_index_type
, tmp
,
1902 gfc_index_one_node
);
1903 stride
= fold_build2_loc (input_location
, MULT_EXPR
,
1904 gfc_array_index_type
, tmp
, stride
);
1905 /* Check the folding worked. */
1906 gcc_assert (INTEGER_CST_P (stride
));
1911 GFC_TYPE_ARRAY_SIZE (fat_type
) = stride
;
1913 /* TODO: known offsets for descriptors. */
1914 GFC_TYPE_ARRAY_OFFSET (fat_type
) = NULL_TREE
;
1918 arraytype
= build_pointer_type (etype
);
1920 arraytype
= build_qualified_type (arraytype
, TYPE_QUAL_RESTRICT
);
1922 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type
) = arraytype
;
1926 /* We define data as an array with the correct size if possible.
1927 Much better than doing pointer arithmetic. */
1929 rtype
= build_range_type (gfc_array_index_type
, gfc_index_zero_node
,
1930 int_const_binop (MINUS_EXPR
, stride
,
1931 build_int_cst (TREE_TYPE (stride
), 1)));
1933 rtype
= gfc_array_range_type
;
1934 arraytype
= build_array_type (etype
, rtype
);
1935 arraytype
= build_pointer_type (arraytype
);
1937 arraytype
= build_qualified_type (arraytype
, TYPE_QUAL_RESTRICT
);
1938 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type
) = arraytype
;
1940 /* This will generate the base declarations we need to emit debug
1941 information for this type. FIXME: there must be a better way to
1942 avoid divergence between compilations with and without debug
1945 struct array_descr_info info
;
1946 gfc_get_array_descr_info (fat_type
, &info
);
1947 gfc_get_array_descr_info (build_pointer_type (fat_type
), &info
);
1953 /* Build a pointer type. This function is called from gfc_sym_type(). */
1956 gfc_build_pointer_type (gfc_symbol
* sym
, tree type
)
1958 /* Array pointer types aren't actually pointers. */
1959 if (sym
->attr
.dimension
)
1962 return build_pointer_type (type
);
1965 static tree
gfc_nonrestricted_type (tree t
);
1966 /* Given two record or union type nodes TO and FROM, ensure
1967 that all fields in FROM have a corresponding field in TO,
1968 their type being nonrestrict variants. This accepts a TO
1969 node that already has a prefix of the fields in FROM. */
1971 mirror_fields (tree to
, tree from
)
1976 /* Forward to the end of TOs fields. */
1977 fto
= TYPE_FIELDS (to
);
1978 ffrom
= TYPE_FIELDS (from
);
1979 chain
= &TYPE_FIELDS (to
);
1982 gcc_assert (ffrom
&& DECL_NAME (fto
) == DECL_NAME (ffrom
));
1983 chain
= &DECL_CHAIN (fto
);
1984 fto
= DECL_CHAIN (fto
);
1985 ffrom
= DECL_CHAIN (ffrom
);
1988 /* Now add all fields remaining in FROM (starting with ffrom). */
1989 for (; ffrom
; ffrom
= DECL_CHAIN (ffrom
))
1991 tree newfield
= copy_node (ffrom
);
1992 DECL_CONTEXT (newfield
) = to
;
1993 /* The store to DECL_CHAIN might seem redundant with the
1994 stores to *chain, but not clearing it here would mean
1995 leaving a chain into the old fields. If ever
1996 our called functions would look at them confusion
1998 DECL_CHAIN (newfield
) = NULL_TREE
;
2000 chain
= &DECL_CHAIN (newfield
);
2002 if (TREE_CODE (ffrom
) == FIELD_DECL
)
2004 tree elemtype
= gfc_nonrestricted_type (TREE_TYPE (ffrom
));
2005 TREE_TYPE (newfield
) = elemtype
;
2011 /* Given a type T, returns a different type of the same structure,
2012 except that all types it refers to (recursively) are always
2013 non-restrict qualified types. */
2015 gfc_nonrestricted_type (tree t
)
2019 /* If the type isn't laid out yet, don't copy it. If something
2020 needs it for real it should wait until the type got finished. */
2024 if (!TYPE_LANG_SPECIFIC (t
))
2025 TYPE_LANG_SPECIFIC (t
) = ggc_cleared_alloc
<struct lang_type
> ();
2026 /* If we're dealing with this very node already further up
2027 the call chain (recursion via pointers and struct members)
2028 we haven't yet determined if we really need a new type node.
2029 Assume we don't, return T itself. */
2030 if (TYPE_LANG_SPECIFIC (t
)->nonrestricted_type
== error_mark_node
)
2033 /* If we have calculated this all already, just return it. */
2034 if (TYPE_LANG_SPECIFIC (t
)->nonrestricted_type
)
2035 return TYPE_LANG_SPECIFIC (t
)->nonrestricted_type
;
2037 /* Mark this type. */
2038 TYPE_LANG_SPECIFIC (t
)->nonrestricted_type
= error_mark_node
;
2040 switch (TREE_CODE (t
))
2046 case REFERENCE_TYPE
:
2048 tree totype
= gfc_nonrestricted_type (TREE_TYPE (t
));
2049 if (totype
== TREE_TYPE (t
))
2051 else if (TREE_CODE (t
) == POINTER_TYPE
)
2052 ret
= build_pointer_type (totype
);
2054 ret
= build_reference_type (totype
);
2055 ret
= build_qualified_type (ret
,
2056 TYPE_QUALS (t
) & ~TYPE_QUAL_RESTRICT
);
2062 tree elemtype
= gfc_nonrestricted_type (TREE_TYPE (t
));
2063 if (elemtype
== TREE_TYPE (t
))
2067 ret
= build_variant_type_copy (t
);
2068 TREE_TYPE (ret
) = elemtype
;
2069 if (TYPE_LANG_SPECIFIC (t
)
2070 && GFC_TYPE_ARRAY_DATAPTR_TYPE (t
))
2072 tree dataptr_type
= GFC_TYPE_ARRAY_DATAPTR_TYPE (t
);
2073 dataptr_type
= gfc_nonrestricted_type (dataptr_type
);
2074 if (dataptr_type
!= GFC_TYPE_ARRAY_DATAPTR_TYPE (t
))
2076 TYPE_LANG_SPECIFIC (ret
)
2077 = ggc_cleared_alloc
<struct lang_type
> ();
2078 *TYPE_LANG_SPECIFIC (ret
) = *TYPE_LANG_SPECIFIC (t
);
2079 GFC_TYPE_ARRAY_DATAPTR_TYPE (ret
) = dataptr_type
;
2088 case QUAL_UNION_TYPE
:
2091 /* First determine if we need a new type at all.
2092 Careful, the two calls to gfc_nonrestricted_type per field
2093 might return different values. That happens exactly when
2094 one of the fields reaches back to this very record type
2095 (via pointers). The first calls will assume that we don't
2096 need to copy T (see the error_mark_node marking). If there
2097 are any reasons for copying T apart from having to copy T,
2098 we'll indeed copy it, and the second calls to
2099 gfc_nonrestricted_type will use that new node if they
2101 for (field
= TYPE_FIELDS (t
); field
; field
= DECL_CHAIN (field
))
2102 if (TREE_CODE (field
) == FIELD_DECL
)
2104 tree elemtype
= gfc_nonrestricted_type (TREE_TYPE (field
));
2105 if (elemtype
!= TREE_TYPE (field
))
2110 ret
= build_variant_type_copy (t
);
2111 TYPE_FIELDS (ret
) = NULL_TREE
;
2113 /* Here we make sure that as soon as we know we have to copy
2114 T, that also fields reaching back to us will use the new
2115 copy. It's okay if that copy still contains the old fields,
2116 we won't look at them. */
2117 TYPE_LANG_SPECIFIC (t
)->nonrestricted_type
= ret
;
2118 mirror_fields (ret
, t
);
2123 TYPE_LANG_SPECIFIC (t
)->nonrestricted_type
= ret
;
2128 /* Return the type for a symbol. Special handling is required for character
2129 types to get the correct level of indirection.
2130 For functions return the return type.
2131 For subroutines return void_type_node.
2132 Calling this multiple times for the same symbol should be avoided,
2133 especially for character and array types. */
2136 gfc_sym_type (gfc_symbol
* sym
)
2142 /* Procedure Pointers inside COMMON blocks. */
2143 if (sym
->attr
.proc_pointer
&& sym
->attr
.in_common
)
2145 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
2146 sym
->attr
.proc_pointer
= 0;
2147 type
= build_pointer_type (gfc_get_function_type (sym
));
2148 sym
->attr
.proc_pointer
= 1;
2152 if (sym
->attr
.flavor
== FL_PROCEDURE
&& !sym
->attr
.function
)
2153 return void_type_node
;
2155 /* In the case of a function the fake result variable may have a
2156 type different from the function type, so don't return early in
2158 if (sym
->backend_decl
&& !sym
->attr
.function
)
2159 return TREE_TYPE (sym
->backend_decl
);
2161 if (sym
->ts
.type
== BT_CHARACTER
2162 && ((sym
->attr
.function
&& sym
->attr
.is_bind_c
)
2163 || (sym
->attr
.result
2164 && sym
->ns
->proc_name
2165 && sym
->ns
->proc_name
->attr
.is_bind_c
)
2166 || (sym
->ts
.deferred
&& (!sym
->ts
.u
.cl
2167 || !sym
->ts
.u
.cl
->backend_decl
))))
2168 type
= gfc_character1_type_node
;
2170 type
= gfc_typenode_for_spec (&sym
->ts
);
2172 if (sym
->attr
.dummy
&& !sym
->attr
.function
&& !sym
->attr
.value
)
2177 restricted
= !sym
->attr
.target
&& !sym
->attr
.pointer
2178 && !sym
->attr
.proc_pointer
&& !sym
->attr
.cray_pointee
;
2180 type
= gfc_nonrestricted_type (type
);
2182 if (sym
->attr
.dimension
|| sym
->attr
.codimension
)
2184 if (gfc_is_nodesc_array (sym
))
2186 /* If this is a character argument of unknown length, just use the
2188 if (sym
->ts
.type
!= BT_CHARACTER
2189 || !(sym
->attr
.dummy
|| sym
->attr
.function
)
2190 || sym
->ts
.u
.cl
->backend_decl
)
2192 type
= gfc_get_nodesc_array_type (type
, sym
->as
,
2201 enum gfc_array_kind akind
= GFC_ARRAY_UNKNOWN
;
2202 if (sym
->attr
.pointer
)
2203 akind
= sym
->attr
.contiguous
? GFC_ARRAY_POINTER_CONT
2204 : GFC_ARRAY_POINTER
;
2205 else if (sym
->attr
.allocatable
)
2206 akind
= GFC_ARRAY_ALLOCATABLE
;
2207 type
= gfc_build_array_type (type
, sym
->as
, akind
, restricted
,
2208 sym
->attr
.contiguous
);
2213 if (sym
->attr
.allocatable
|| sym
->attr
.pointer
2214 || gfc_is_associate_pointer (sym
))
2215 type
= gfc_build_pointer_type (sym
, type
);
2218 /* We currently pass all parameters by reference.
2219 See f95_get_function_decl. For dummy function parameters return the
2223 /* We must use pointer types for potentially absent variables. The
2224 optimizers assume a reference type argument is never NULL. */
2225 if (sym
->attr
.optional
2226 || (sym
->ns
->proc_name
&& sym
->ns
->proc_name
->attr
.entry_master
))
2227 type
= build_pointer_type (type
);
2230 type
= build_reference_type (type
);
2232 type
= build_qualified_type (type
, TYPE_QUAL_RESTRICT
);
2239 /* Layout and output debug info for a record type. */
2242 gfc_finish_type (tree type
)
2246 decl
= build_decl (input_location
,
2247 TYPE_DECL
, NULL_TREE
, type
);
2248 TYPE_STUB_DECL (type
) = decl
;
2250 rest_of_type_compilation (type
, 1);
2251 rest_of_decl_compilation (decl
, 1, 0);
2254 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2255 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
2256 to the end of the field list pointed to by *CHAIN.
2258 Returns a pointer to the new field. */
2261 gfc_add_field_to_struct_1 (tree context
, tree name
, tree type
, tree
**chain
)
2263 tree decl
= build_decl (input_location
, FIELD_DECL
, name
, type
);
2265 DECL_CONTEXT (decl
) = context
;
2266 DECL_CHAIN (decl
) = NULL_TREE
;
2267 if (TYPE_FIELDS (context
) == NULL_TREE
)
2268 TYPE_FIELDS (context
) = decl
;
2273 *chain
= &DECL_CHAIN (decl
);
2279 /* Like `gfc_add_field_to_struct_1', but adds alignment
2283 gfc_add_field_to_struct (tree context
, tree name
, tree type
, tree
**chain
)
2285 tree decl
= gfc_add_field_to_struct_1 (context
, name
, type
, chain
);
2287 DECL_INITIAL (decl
) = 0;
2288 DECL_ALIGN (decl
) = 0;
2289 DECL_USER_ALIGN (decl
) = 0;
2295 /* Copy the backend_decl and component backend_decls if
2296 the two derived type symbols are "equal", as described
2297 in 4.4.2 and resolved by gfc_compare_derived_types. */
2300 gfc_copy_dt_decls_ifequal (gfc_symbol
*from
, gfc_symbol
*to
,
2303 gfc_component
*to_cm
;
2304 gfc_component
*from_cm
;
2309 if (from
->backend_decl
== NULL
2310 || !gfc_compare_derived_types (from
, to
))
2313 to
->backend_decl
= from
->backend_decl
;
2315 to_cm
= to
->components
;
2316 from_cm
= from
->components
;
2318 /* Copy the component declarations. If a component is itself
2319 a derived type, we need a copy of its component declarations.
2320 This is done by recursing into gfc_get_derived_type and
2321 ensures that the component's component declarations have
2322 been built. If it is a character, we need the character
2324 for (; to_cm
; to_cm
= to_cm
->next
, from_cm
= from_cm
->next
)
2326 to_cm
->backend_decl
= from_cm
->backend_decl
;
2327 if (from_cm
->ts
.type
== BT_DERIVED
2328 && (!from_cm
->attr
.pointer
|| from_gsym
))
2329 gfc_get_derived_type (to_cm
->ts
.u
.derived
);
2330 else if (from_cm
->ts
.type
== BT_CLASS
2331 && (!CLASS_DATA (from_cm
)->attr
.class_pointer
|| from_gsym
))
2332 gfc_get_derived_type (to_cm
->ts
.u
.derived
);
2333 else if (from_cm
->ts
.type
== BT_CHARACTER
)
2334 to_cm
->ts
.u
.cl
->backend_decl
= from_cm
->ts
.u
.cl
->backend_decl
;
2341 /* Build a tree node for a procedure pointer component. */
2344 gfc_get_ppc_type (gfc_component
* c
)
2348 /* Explicit interface. */
2349 if (c
->attr
.if_source
!= IFSRC_UNKNOWN
&& c
->ts
.interface
)
2350 return build_pointer_type (gfc_get_function_type (c
->ts
.interface
));
2352 /* Implicit interface (only return value may be known). */
2353 if (c
->attr
.function
&& !c
->attr
.dimension
&& c
->ts
.type
!= BT_CHARACTER
)
2354 t
= gfc_typenode_for_spec (&c
->ts
);
2358 return build_pointer_type (build_function_type_list (t
, NULL_TREE
));
2362 /* Build a tree node for a derived type. If there are equal
2363 derived types, with different local names, these are built
2364 at the same time. If an equal derived type has been built
2365 in a parent namespace, this is used. */
2368 gfc_get_derived_type (gfc_symbol
* derived
)
2370 tree typenode
= NULL
, field
= NULL
, field_type
= NULL
;
2371 tree canonical
= NULL_TREE
;
2373 bool got_canonical
= false;
2374 bool unlimited_entity
= false;
2379 if (derived
->attr
.unlimited_polymorphic
)
2380 return ptr_type_node
;
2382 if (derived
&& derived
->attr
.flavor
== FL_PROCEDURE
2383 && derived
->attr
.generic
)
2384 derived
= gfc_find_dt_in_generic (derived
);
2386 /* See if it's one of the iso_c_binding derived types. */
2387 if (derived
->attr
.is_iso_c
== 1 || derived
->ts
.f90_type
== BT_VOID
)
2389 if (derived
->backend_decl
)
2390 return derived
->backend_decl
;
2392 if (derived
->intmod_sym_id
== ISOCBINDING_PTR
)
2393 derived
->backend_decl
= ptr_type_node
;
2395 derived
->backend_decl
= pfunc_type_node
;
2397 derived
->ts
.kind
= gfc_index_integer_kind
;
2398 derived
->ts
.type
= BT_INTEGER
;
2399 /* Set the f90_type to BT_VOID as a way to recognize something of type
2400 BT_INTEGER that needs to fit a void * for the purpose of the
2401 iso_c_binding derived types. */
2402 derived
->ts
.f90_type
= BT_VOID
;
2404 return derived
->backend_decl
;
2407 /* If use associated, use the module type for this one. */
2408 if (derived
->backend_decl
== NULL
2409 && derived
->attr
.use_assoc
2411 && gfc_get_module_backend_decl (derived
))
2412 goto copy_derived_types
;
2414 /* The derived types from an earlier namespace can be used as the
2416 if (derived
->backend_decl
== NULL
&& !derived
->attr
.use_assoc
2417 && gfc_global_ns_list
)
2419 for (ns
= gfc_global_ns_list
;
2420 ns
->translated
&& !got_canonical
;
2423 dt
= ns
->derived_types
;
2424 for (; dt
&& !canonical
; dt
= dt
->next
)
2426 gfc_copy_dt_decls_ifequal (dt
->derived
, derived
, true);
2427 if (derived
->backend_decl
)
2428 got_canonical
= true;
2433 /* Store up the canonical type to be added to this one. */
2436 if (TYPE_CANONICAL (derived
->backend_decl
))
2437 canonical
= TYPE_CANONICAL (derived
->backend_decl
);
2439 canonical
= derived
->backend_decl
;
2441 derived
->backend_decl
= NULL_TREE
;
2444 /* derived->backend_decl != 0 means we saw it before, but its
2445 components' backend_decl may have not been built. */
2446 if (derived
->backend_decl
)
2448 /* Its components' backend_decl have been built or we are
2449 seeing recursion through the formal arglist of a procedure
2450 pointer component. */
2451 if (TYPE_FIELDS (derived
->backend_decl
))
2452 return derived
->backend_decl
;
2453 else if (derived
->attr
.abstract
2454 && derived
->attr
.proc_pointer_comp
)
2456 /* If an abstract derived type with procedure pointer
2457 components has no other type of component, return the
2458 backend_decl. Otherwise build the components if any of the
2459 non-procedure pointer components have no backend_decl. */
2460 for (c
= derived
->components
; c
; c
= c
->next
)
2462 if (!c
->attr
.proc_pointer
&& c
->backend_decl
== NULL
)
2464 else if (c
->next
== NULL
)
2465 return derived
->backend_decl
;
2467 typenode
= derived
->backend_decl
;
2470 typenode
= derived
->backend_decl
;
2474 /* We see this derived type first time, so build the type node. */
2475 typenode
= make_node (RECORD_TYPE
);
2476 TYPE_NAME (typenode
) = get_identifier (derived
->name
);
2477 TYPE_PACKED (typenode
) = flag_pack_derived
;
2478 derived
->backend_decl
= typenode
;
2481 if (derived
->components
2482 && derived
->components
->ts
.type
== BT_DERIVED
2483 && strcmp (derived
->components
->name
, "_data") == 0
2484 && derived
->components
->ts
.u
.derived
->attr
.unlimited_polymorphic
)
2485 unlimited_entity
= true;
2487 /* Go through the derived type components, building them as
2488 necessary. The reason for doing this now is that it is
2489 possible to recurse back to this derived type through a
2490 pointer component (PR24092). If this happens, the fields
2491 will be built and so we can return the type. */
2492 for (c
= derived
->components
; c
; c
= c
->next
)
2494 if (c
->ts
.type
!= BT_DERIVED
&& c
->ts
.type
!= BT_CLASS
)
2497 if ((!c
->attr
.pointer
&& !c
->attr
.proc_pointer
)
2498 || c
->ts
.u
.derived
->backend_decl
== NULL
)
2499 c
->ts
.u
.derived
->backend_decl
= gfc_get_derived_type (c
->ts
.u
.derived
);
2501 if (c
->ts
.u
.derived
->attr
.is_iso_c
)
2503 /* Need to copy the modified ts from the derived type. The
2504 typespec was modified because C_PTR/C_FUNPTR are translated
2505 into (void *) from derived types. */
2506 c
->ts
.type
= c
->ts
.u
.derived
->ts
.type
;
2507 c
->ts
.kind
= c
->ts
.u
.derived
->ts
.kind
;
2508 c
->ts
.f90_type
= c
->ts
.u
.derived
->ts
.f90_type
;
2511 c
->initializer
->ts
.type
= c
->ts
.type
;
2512 c
->initializer
->ts
.kind
= c
->ts
.kind
;
2513 c
->initializer
->ts
.f90_type
= c
->ts
.f90_type
;
2514 c
->initializer
->expr_type
= EXPR_NULL
;
2519 if (TYPE_FIELDS (derived
->backend_decl
))
2520 return derived
->backend_decl
;
2522 /* Build the type member list. Install the newly created RECORD_TYPE
2523 node as DECL_CONTEXT of each FIELD_DECL. */
2524 for (c
= derived
->components
; c
; c
= c
->next
)
2526 if (c
->attr
.proc_pointer
)
2527 field_type
= gfc_get_ppc_type (c
);
2528 else if (c
->ts
.type
== BT_DERIVED
|| c
->ts
.type
== BT_CLASS
)
2529 field_type
= c
->ts
.u
.derived
->backend_decl
;
2532 if (c
->ts
.type
== BT_CHARACTER
&& !c
->ts
.deferred
)
2534 /* Evaluate the string length. */
2535 gfc_conv_const_charlen (c
->ts
.u
.cl
);
2536 gcc_assert (c
->ts
.u
.cl
->backend_decl
);
2538 else if (c
->ts
.type
== BT_CHARACTER
)
2539 c
->ts
.u
.cl
->backend_decl
2540 = build_int_cst (gfc_charlen_type_node
, 0);
2542 field_type
= gfc_typenode_for_spec (&c
->ts
);
2545 /* This returns an array descriptor type. Initialization may be
2547 if ((c
->attr
.dimension
|| c
->attr
.codimension
) && !c
->attr
.proc_pointer
)
2549 if (c
->attr
.pointer
|| c
->attr
.allocatable
)
2551 enum gfc_array_kind akind
;
2552 if (c
->attr
.pointer
)
2553 akind
= c
->attr
.contiguous
? GFC_ARRAY_POINTER_CONT
2554 : GFC_ARRAY_POINTER
;
2556 akind
= GFC_ARRAY_ALLOCATABLE
;
2557 /* Pointers to arrays aren't actually pointer types. The
2558 descriptors are separate, but the data is common. */
2559 field_type
= gfc_build_array_type (field_type
, c
->as
, akind
,
2561 && !c
->attr
.pointer
,
2562 c
->attr
.contiguous
);
2565 field_type
= gfc_get_nodesc_array_type (field_type
, c
->as
,
2569 else if ((c
->attr
.pointer
|| c
->attr
.allocatable
)
2570 && !c
->attr
.proc_pointer
2571 && !(unlimited_entity
&& c
== derived
->components
))
2572 field_type
= build_pointer_type (field_type
);
2574 if (c
->attr
.pointer
)
2575 field_type
= gfc_nonrestricted_type (field_type
);
2577 /* vtype fields can point to different types to the base type. */
2578 if (c
->ts
.type
== BT_DERIVED
2579 && c
->ts
.u
.derived
&& c
->ts
.u
.derived
->attr
.vtype
)
2580 field_type
= build_pointer_type_for_mode (TREE_TYPE (field_type
),
2583 /* Ensure that the CLASS language specific flag is set. */
2584 if (c
->ts
.type
== BT_CLASS
)
2586 if (POINTER_TYPE_P (field_type
))
2587 GFC_CLASS_TYPE_P (TREE_TYPE (field_type
)) = 1;
2589 GFC_CLASS_TYPE_P (field_type
) = 1;
2592 field
= gfc_add_field_to_struct (typenode
,
2593 get_identifier (c
->name
),
2594 field_type
, &chain
);
2596 gfc_set_decl_location (field
, &c
->loc
);
2597 else if (derived
->declared_at
.lb
)
2598 gfc_set_decl_location (field
, &derived
->declared_at
);
2600 gfc_finish_decl_attrs (field
, &c
->attr
);
2602 DECL_PACKED (field
) |= TYPE_PACKED (typenode
);
2605 if (!c
->backend_decl
)
2606 c
->backend_decl
= field
;
2609 /* Now lay out the derived type, including the fields. */
2611 TYPE_CANONICAL (typenode
) = canonical
;
2613 gfc_finish_type (typenode
);
2614 gfc_set_decl_location (TYPE_STUB_DECL (typenode
), &derived
->declared_at
);
2615 if (derived
->module
&& derived
->ns
->proc_name
2616 && derived
->ns
->proc_name
->attr
.flavor
== FL_MODULE
)
2618 if (derived
->ns
->proc_name
->backend_decl
2619 && TREE_CODE (derived
->ns
->proc_name
->backend_decl
)
2622 TYPE_CONTEXT (typenode
) = derived
->ns
->proc_name
->backend_decl
;
2623 DECL_CONTEXT (TYPE_STUB_DECL (typenode
))
2624 = derived
->ns
->proc_name
->backend_decl
;
2628 derived
->backend_decl
= typenode
;
2632 for (dt
= gfc_derived_types
; dt
; dt
= dt
->next
)
2633 gfc_copy_dt_decls_ifequal (derived
, dt
->derived
, false);
2635 return derived
->backend_decl
;
2640 gfc_return_by_reference (gfc_symbol
* sym
)
2642 if (!sym
->attr
.function
)
2645 if (sym
->attr
.dimension
)
2648 if (sym
->ts
.type
== BT_CHARACTER
2649 && !sym
->attr
.is_bind_c
2650 && (!sym
->attr
.result
2651 || !sym
->ns
->proc_name
2652 || !sym
->ns
->proc_name
->attr
.is_bind_c
))
2655 /* Possibly return complex numbers by reference for g77 compatibility.
2656 We don't do this for calls to intrinsics (as the library uses the
2657 -fno-f2c calling convention), nor for calls to functions which always
2658 require an explicit interface, as no compatibility problems can
2660 if (flag_f2c
&& sym
->ts
.type
== BT_COMPLEX
2661 && !sym
->attr
.intrinsic
&& !sym
->attr
.always_explicit
)
2668 gfc_get_mixed_entry_union (gfc_namespace
*ns
)
2672 char name
[GFC_MAX_SYMBOL_LEN
+ 1];
2673 gfc_entry_list
*el
, *el2
;
2675 gcc_assert (ns
->proc_name
->attr
.mixed_entry_master
);
2676 gcc_assert (memcmp (ns
->proc_name
->name
, "master.", 7) == 0);
2678 snprintf (name
, GFC_MAX_SYMBOL_LEN
, "munion.%s", ns
->proc_name
->name
+ 7);
2680 /* Build the type node. */
2681 type
= make_node (UNION_TYPE
);
2683 TYPE_NAME (type
) = get_identifier (name
);
2685 for (el
= ns
->entries
; el
; el
= el
->next
)
2687 /* Search for duplicates. */
2688 for (el2
= ns
->entries
; el2
!= el
; el2
= el2
->next
)
2689 if (el2
->sym
->result
== el
->sym
->result
)
2693 gfc_add_field_to_struct_1 (type
,
2694 get_identifier (el
->sym
->result
->name
),
2695 gfc_sym_type (el
->sym
->result
), &chain
);
2698 /* Finish off the type. */
2699 gfc_finish_type (type
);
2700 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
)) = 1;
2704 /* Create a "fn spec" based on the formal arguments;
2705 cf. create_function_arglist. */
2708 create_fn_spec (gfc_symbol
*sym
, tree fntype
)
2712 gfc_formal_arglist
*f
;
2715 memset (&spec
, 0, sizeof (spec
));
2719 if (sym
->attr
.entry_master
)
2720 spec
[spec_len
++] = 'R';
2721 if (gfc_return_by_reference (sym
))
2723 gfc_symbol
*result
= sym
->result
? sym
->result
: sym
;
2725 if (result
->attr
.pointer
|| sym
->attr
.proc_pointer
)
2726 spec
[spec_len
++] = '.';
2728 spec
[spec_len
++] = 'w';
2729 if (sym
->ts
.type
== BT_CHARACTER
)
2730 spec
[spec_len
++] = 'R';
2733 for (f
= gfc_sym_get_dummy_args (sym
); f
; f
= f
->next
)
2734 if (spec_len
< sizeof (spec
))
2736 if (!f
->sym
|| f
->sym
->attr
.pointer
|| f
->sym
->attr
.target
2737 || f
->sym
->attr
.external
|| f
->sym
->attr
.cray_pointer
2738 || (f
->sym
->ts
.type
== BT_DERIVED
2739 && (f
->sym
->ts
.u
.derived
->attr
.proc_pointer_comp
2740 || f
->sym
->ts
.u
.derived
->attr
.pointer_comp
))
2741 || (f
->sym
->ts
.type
== BT_CLASS
2742 && (CLASS_DATA (f
->sym
)->ts
.u
.derived
->attr
.proc_pointer_comp
2743 || CLASS_DATA (f
->sym
)->ts
.u
.derived
->attr
.pointer_comp
)))
2744 spec
[spec_len
++] = '.';
2745 else if (f
->sym
->attr
.intent
== INTENT_IN
)
2746 spec
[spec_len
++] = 'r';
2748 spec
[spec_len
++] = 'w';
2751 tmp
= build_tree_list (NULL_TREE
, build_string (spec_len
, spec
));
2752 tmp
= tree_cons (get_identifier ("fn spec"), tmp
, TYPE_ATTRIBUTES (fntype
));
2753 return build_type_attribute_variant (fntype
, tmp
);
2758 gfc_get_function_type (gfc_symbol
* sym
)
2761 vec
<tree
, va_gc
> *typelist
= NULL
;
2762 gfc_formal_arglist
*f
;
2764 int alternate_return
= 0;
2765 bool is_varargs
= true;
2767 /* Make sure this symbol is a function, a subroutine or the main
2769 gcc_assert (sym
->attr
.flavor
== FL_PROCEDURE
2770 || sym
->attr
.flavor
== FL_PROGRAM
);
2772 /* To avoid recursing infinitely on recursive types, we use error_mark_node
2773 so that they can be detected here and handled further down. */
2774 if (sym
->backend_decl
== NULL
)
2775 sym
->backend_decl
= error_mark_node
;
2776 else if (sym
->backend_decl
== error_mark_node
)
2777 goto arg_type_list_done
;
2778 else if (sym
->attr
.proc_pointer
)
2779 return TREE_TYPE (TREE_TYPE (sym
->backend_decl
));
2781 return TREE_TYPE (sym
->backend_decl
);
2783 if (sym
->attr
.entry_master
)
2784 /* Additional parameter for selecting an entry point. */
2785 vec_safe_push (typelist
, gfc_array_index_type
);
2792 if (arg
->ts
.type
== BT_CHARACTER
)
2793 gfc_conv_const_charlen (arg
->ts
.u
.cl
);
2795 /* Some functions we use an extra parameter for the return value. */
2796 if (gfc_return_by_reference (sym
))
2798 type
= gfc_sym_type (arg
);
2799 if (arg
->ts
.type
== BT_COMPLEX
2800 || arg
->attr
.dimension
2801 || arg
->ts
.type
== BT_CHARACTER
)
2802 type
= build_reference_type (type
);
2804 vec_safe_push (typelist
, type
);
2805 if (arg
->ts
.type
== BT_CHARACTER
)
2807 if (!arg
->ts
.deferred
)
2808 /* Transfer by value. */
2809 vec_safe_push (typelist
, gfc_charlen_type_node
);
2811 /* Deferred character lengths are transferred by reference
2812 so that the value can be returned. */
2813 vec_safe_push (typelist
, build_pointer_type(gfc_charlen_type_node
));
2817 /* Build the argument types for the function. */
2818 for (f
= gfc_sym_get_dummy_args (sym
); f
; f
= f
->next
)
2823 /* Evaluate constant character lengths here so that they can be
2824 included in the type. */
2825 if (arg
->ts
.type
== BT_CHARACTER
)
2826 gfc_conv_const_charlen (arg
->ts
.u
.cl
);
2828 if (arg
->attr
.flavor
== FL_PROCEDURE
)
2830 type
= gfc_get_function_type (arg
);
2831 type
= build_pointer_type (type
);
2834 type
= gfc_sym_type (arg
);
2836 /* Parameter Passing Convention
2838 We currently pass all parameters by reference.
2839 Parameters with INTENT(IN) could be passed by value.
2840 The problem arises if a function is called via an implicit
2841 prototype. In this situation the INTENT is not known.
2842 For this reason all parameters to global functions must be
2843 passed by reference. Passing by value would potentially
2844 generate bad code. Worse there would be no way of telling that
2845 this code was bad, except that it would give incorrect results.
2847 Contained procedures could pass by value as these are never
2848 used without an explicit interface, and cannot be passed as
2849 actual parameters for a dummy procedure. */
2851 vec_safe_push (typelist
, type
);
2855 if (sym
->attr
.subroutine
)
2856 alternate_return
= 1;
2860 /* Add hidden string length parameters. */
2861 for (f
= gfc_sym_get_dummy_args (sym
); f
; f
= f
->next
)
2864 if (arg
&& arg
->ts
.type
== BT_CHARACTER
&& !sym
->attr
.is_bind_c
)
2866 if (!arg
->ts
.deferred
)
2867 /* Transfer by value. */
2868 type
= gfc_charlen_type_node
;
2870 /* Deferred character lengths are transferred by reference
2871 so that the value can be returned. */
2872 type
= build_pointer_type (gfc_charlen_type_node
);
2874 vec_safe_push (typelist
, type
);
2878 if (!vec_safe_is_empty (typelist
)
2879 || sym
->attr
.is_main_program
2880 || sym
->attr
.if_source
!= IFSRC_UNKNOWN
)
2883 if (sym
->backend_decl
== error_mark_node
)
2884 sym
->backend_decl
= NULL_TREE
;
2888 if (alternate_return
)
2889 type
= integer_type_node
;
2890 else if (!sym
->attr
.function
|| gfc_return_by_reference (sym
))
2891 type
= void_type_node
;
2892 else if (sym
->attr
.mixed_entry_master
)
2893 type
= gfc_get_mixed_entry_union (sym
->ns
);
2894 else if (flag_f2c
&& sym
->ts
.type
== BT_REAL
2895 && sym
->ts
.kind
== gfc_default_real_kind
2896 && !sym
->attr
.always_explicit
)
2898 /* Special case: f2c calling conventions require that (scalar)
2899 default REAL functions return the C type double instead. f2c
2900 compatibility is only an issue with functions that don't
2901 require an explicit interface, as only these could be
2902 implemented in Fortran 77. */
2903 sym
->ts
.kind
= gfc_default_double_kind
;
2904 type
= gfc_typenode_for_spec (&sym
->ts
);
2905 sym
->ts
.kind
= gfc_default_real_kind
;
2907 else if (sym
->result
&& sym
->result
->attr
.proc_pointer
)
2908 /* Procedure pointer return values. */
2910 if (sym
->result
->attr
.result
&& strcmp (sym
->name
,"ppr@") != 0)
2912 /* Unset proc_pointer as gfc_get_function_type
2913 is called recursively. */
2914 sym
->result
->attr
.proc_pointer
= 0;
2915 type
= build_pointer_type (gfc_get_function_type (sym
->result
));
2916 sym
->result
->attr
.proc_pointer
= 1;
2919 type
= gfc_sym_type (sym
->result
);
2922 type
= gfc_sym_type (sym
);
2925 type
= build_varargs_function_type_vec (type
, typelist
);
2927 type
= build_function_type_vec (type
, typelist
);
2928 type
= create_fn_spec (sym
, type
);
2933 /* Language hooks for middle-end access to type nodes. */
2935 /* Return an integer type with BITS bits of precision,
2936 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2939 gfc_type_for_size (unsigned bits
, int unsignedp
)
2944 for (i
= 0; i
<= MAX_INT_KINDS
; ++i
)
2946 tree type
= gfc_integer_types
[i
];
2947 if (type
&& bits
== TYPE_PRECISION (type
))
2951 /* Handle TImode as a special case because it is used by some backends
2952 (e.g. ARM) even though it is not available for normal use. */
2953 #if HOST_BITS_PER_WIDE_INT >= 64
2954 if (bits
== TYPE_PRECISION (intTI_type_node
))
2955 return intTI_type_node
;
2958 if (bits
<= TYPE_PRECISION (intQI_type_node
))
2959 return intQI_type_node
;
2960 if (bits
<= TYPE_PRECISION (intHI_type_node
))
2961 return intHI_type_node
;
2962 if (bits
<= TYPE_PRECISION (intSI_type_node
))
2963 return intSI_type_node
;
2964 if (bits
<= TYPE_PRECISION (intDI_type_node
))
2965 return intDI_type_node
;
2966 if (bits
<= TYPE_PRECISION (intTI_type_node
))
2967 return intTI_type_node
;
2971 if (bits
<= TYPE_PRECISION (unsigned_intQI_type_node
))
2972 return unsigned_intQI_type_node
;
2973 if (bits
<= TYPE_PRECISION (unsigned_intHI_type_node
))
2974 return unsigned_intHI_type_node
;
2975 if (bits
<= TYPE_PRECISION (unsigned_intSI_type_node
))
2976 return unsigned_intSI_type_node
;
2977 if (bits
<= TYPE_PRECISION (unsigned_intDI_type_node
))
2978 return unsigned_intDI_type_node
;
2979 if (bits
<= TYPE_PRECISION (unsigned_intTI_type_node
))
2980 return unsigned_intTI_type_node
;
2986 /* Return a data type that has machine mode MODE. If the mode is an
2987 integer, then UNSIGNEDP selects between signed and unsigned types. */
2990 gfc_type_for_mode (machine_mode mode
, int unsignedp
)
2995 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
2996 base
= gfc_real_types
;
2997 else if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
)
2998 base
= gfc_complex_types
;
2999 else if (SCALAR_INT_MODE_P (mode
))
3001 tree type
= gfc_type_for_size (GET_MODE_PRECISION (mode
), unsignedp
);
3002 return type
!= NULL_TREE
&& mode
== TYPE_MODE (type
) ? type
: NULL_TREE
;
3004 else if (VECTOR_MODE_P (mode
))
3006 machine_mode inner_mode
= GET_MODE_INNER (mode
);
3007 tree inner_type
= gfc_type_for_mode (inner_mode
, unsignedp
);
3008 if (inner_type
!= NULL_TREE
)
3009 return build_vector_type_for_mode (inner_type
, mode
);
3015 for (i
= 0; i
<= MAX_REAL_KINDS
; ++i
)
3017 tree type
= base
[i
];
3018 if (type
&& mode
== TYPE_MODE (type
))
3025 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
3029 gfc_get_array_descr_info (const_tree type
, struct array_descr_info
*info
)
3032 bool indirect
= false;
3033 tree etype
, ptype
, field
, t
, base_decl
;
3034 tree data_off
, dim_off
, dim_size
, elem_size
;
3035 tree lower_suboff
, upper_suboff
, stride_suboff
;
3037 if (! GFC_DESCRIPTOR_TYPE_P (type
))
3039 if (! POINTER_TYPE_P (type
))
3041 type
= TREE_TYPE (type
);
3042 if (! GFC_DESCRIPTOR_TYPE_P (type
))
3047 rank
= GFC_TYPE_ARRAY_RANK (type
);
3048 if (rank
>= (int) (sizeof (info
->dimen
) / sizeof (info
->dimen
[0])))
3051 etype
= GFC_TYPE_ARRAY_DATAPTR_TYPE (type
);
3052 gcc_assert (POINTER_TYPE_P (etype
));
3053 etype
= TREE_TYPE (etype
);
3055 /* If the type is not a scalar coarray. */
3056 if (TREE_CODE (etype
) == ARRAY_TYPE
)
3057 etype
= TREE_TYPE (etype
);
3059 /* Can't handle variable sized elements yet. */
3060 if (int_size_in_bytes (etype
) <= 0)
3062 /* Nor non-constant lower bounds in assumed shape arrays. */
3063 if (GFC_TYPE_ARRAY_AKIND (type
) == GFC_ARRAY_ASSUMED_SHAPE
3064 || GFC_TYPE_ARRAY_AKIND (type
) == GFC_ARRAY_ASSUMED_SHAPE_CONT
)
3066 for (dim
= 0; dim
< rank
; dim
++)
3067 if (GFC_TYPE_ARRAY_LBOUND (type
, dim
) == NULL_TREE
3068 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type
, dim
)) != INTEGER_CST
)
3072 memset (info
, '\0', sizeof (*info
));
3073 info
->ndimensions
= rank
;
3074 info
->ordering
= array_descr_ordering_column_major
;
3075 info
->element_type
= etype
;
3076 ptype
= build_pointer_type (gfc_array_index_type
);
3077 base_decl
= GFC_TYPE_ARRAY_BASE_DECL (type
, indirect
);
3080 base_decl
= make_node (DEBUG_EXPR_DECL
);
3081 DECL_ARTIFICIAL (base_decl
) = 1;
3082 TREE_TYPE (base_decl
) = indirect
? build_pointer_type (ptype
) : ptype
;
3083 DECL_MODE (base_decl
) = TYPE_MODE (TREE_TYPE (base_decl
));
3084 GFC_TYPE_ARRAY_BASE_DECL (type
, indirect
) = base_decl
;
3086 info
->base_decl
= base_decl
;
3088 base_decl
= build1 (INDIRECT_REF
, ptype
, base_decl
);
3090 if (GFC_TYPE_ARRAY_SPAN (type
))
3091 elem_size
= GFC_TYPE_ARRAY_SPAN (type
);
3093 elem_size
= fold_convert (gfc_array_index_type
, TYPE_SIZE_UNIT (etype
));
3094 field
= TYPE_FIELDS (TYPE_MAIN_VARIANT (type
));
3095 data_off
= byte_position (field
);
3096 field
= DECL_CHAIN (field
);
3097 field
= DECL_CHAIN (field
);
3098 field
= DECL_CHAIN (field
);
3099 dim_off
= byte_position (field
);
3100 dim_size
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field
)));
3101 field
= TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field
)));
3102 stride_suboff
= byte_position (field
);
3103 field
= DECL_CHAIN (field
);
3104 lower_suboff
= byte_position (field
);
3105 field
= DECL_CHAIN (field
);
3106 upper_suboff
= byte_position (field
);
3109 if (!integer_zerop (data_off
))
3110 t
= fold_build_pointer_plus (t
, data_off
);
3111 t
= build1 (NOP_EXPR
, build_pointer_type (ptr_type_node
), t
);
3112 info
->data_location
= build1 (INDIRECT_REF
, ptr_type_node
, t
);
3113 if (GFC_TYPE_ARRAY_AKIND (type
) == GFC_ARRAY_ALLOCATABLE
)
3114 info
->allocated
= build2 (NE_EXPR
, boolean_type_node
,
3115 info
->data_location
, null_pointer_node
);
3116 else if (GFC_TYPE_ARRAY_AKIND (type
) == GFC_ARRAY_POINTER
3117 || GFC_TYPE_ARRAY_AKIND (type
) == GFC_ARRAY_POINTER_CONT
)
3118 info
->associated
= build2 (NE_EXPR
, boolean_type_node
,
3119 info
->data_location
, null_pointer_node
);
3121 for (dim
= 0; dim
< rank
; dim
++)
3123 t
= fold_build_pointer_plus (base_decl
,
3124 size_binop (PLUS_EXPR
,
3125 dim_off
, lower_suboff
));
3126 t
= build1 (INDIRECT_REF
, gfc_array_index_type
, t
);
3127 info
->dimen
[dim
].lower_bound
= t
;
3128 t
= fold_build_pointer_plus (base_decl
,
3129 size_binop (PLUS_EXPR
,
3130 dim_off
, upper_suboff
));
3131 t
= build1 (INDIRECT_REF
, gfc_array_index_type
, t
);
3132 info
->dimen
[dim
].upper_bound
= t
;
3133 if (GFC_TYPE_ARRAY_AKIND (type
) == GFC_ARRAY_ASSUMED_SHAPE
3134 || GFC_TYPE_ARRAY_AKIND (type
) == GFC_ARRAY_ASSUMED_SHAPE_CONT
)
3136 /* Assumed shape arrays have known lower bounds. */
3137 info
->dimen
[dim
].upper_bound
3138 = build2 (MINUS_EXPR
, gfc_array_index_type
,
3139 info
->dimen
[dim
].upper_bound
,
3140 info
->dimen
[dim
].lower_bound
);
3141 info
->dimen
[dim
].lower_bound
3142 = fold_convert (gfc_array_index_type
,
3143 GFC_TYPE_ARRAY_LBOUND (type
, dim
));
3144 info
->dimen
[dim
].upper_bound
3145 = build2 (PLUS_EXPR
, gfc_array_index_type
,
3146 info
->dimen
[dim
].lower_bound
,
3147 info
->dimen
[dim
].upper_bound
);
3149 t
= fold_build_pointer_plus (base_decl
,
3150 size_binop (PLUS_EXPR
,
3151 dim_off
, stride_suboff
));
3152 t
= build1 (INDIRECT_REF
, gfc_array_index_type
, t
);
3153 t
= build2 (MULT_EXPR
, gfc_array_index_type
, t
, elem_size
);
3154 info
->dimen
[dim
].stride
= t
;
3155 dim_off
= size_binop (PLUS_EXPR
, dim_off
, dim_size
);
3162 /* Create a type to handle vector subscripts for coarray library calls. It
3164 struct caf_vector_t {
3165 size_t nvec; // size of the vector
3172 ptrdiff_t lower_bound;
3173 ptrdiff_t upper_bound;
3178 where nvec == 0 for DIMEN_ELEMENT or DIMEN_RANGE and nvec being the vector
3179 size in case of DIMEN_VECTOR, where kind is the integer type of the vector. */
3182 gfc_get_caf_vector_type (int dim
)
3184 static tree vector_types
[GFC_MAX_DIMENSIONS
];
3185 static tree vec_type
= NULL_TREE
;
3186 tree triplet_struct_type
, vect_struct_type
, union_type
, tmp
, *chain
;
3188 if (vector_types
[dim
-1] != NULL_TREE
)
3189 return vector_types
[dim
-1];
3191 if (vec_type
== NULL_TREE
)
3194 vect_struct_type
= make_node (RECORD_TYPE
);
3195 tmp
= gfc_add_field_to_struct_1 (vect_struct_type
,
3196 get_identifier ("vector"),
3197 pvoid_type_node
, &chain
);
3198 TREE_NO_WARNING (tmp
) = 1;
3199 tmp
= gfc_add_field_to_struct_1 (vect_struct_type
,
3200 get_identifier ("kind"),
3201 integer_type_node
, &chain
);
3202 TREE_NO_WARNING (tmp
) = 1;
3203 gfc_finish_type (vect_struct_type
);
3206 triplet_struct_type
= make_node (RECORD_TYPE
);
3207 tmp
= gfc_add_field_to_struct_1 (triplet_struct_type
,
3208 get_identifier ("lower_bound"),
3209 gfc_array_index_type
, &chain
);
3210 TREE_NO_WARNING (tmp
) = 1;
3211 tmp
= gfc_add_field_to_struct_1 (triplet_struct_type
,
3212 get_identifier ("upper_bound"),
3213 gfc_array_index_type
, &chain
);
3214 TREE_NO_WARNING (tmp
) = 1;
3215 tmp
= gfc_add_field_to_struct_1 (triplet_struct_type
, get_identifier ("stride"),
3216 gfc_array_index_type
, &chain
);
3217 TREE_NO_WARNING (tmp
) = 1;
3218 gfc_finish_type (triplet_struct_type
);
3221 union_type
= make_node (UNION_TYPE
);
3222 tmp
= gfc_add_field_to_struct_1 (union_type
, get_identifier ("v"),
3223 vect_struct_type
, &chain
);
3224 TREE_NO_WARNING (tmp
) = 1;
3225 tmp
= gfc_add_field_to_struct_1 (union_type
, get_identifier ("triplet"),
3226 triplet_struct_type
, &chain
);
3227 TREE_NO_WARNING (tmp
) = 1;
3228 gfc_finish_type (union_type
);
3231 vec_type
= make_node (RECORD_TYPE
);
3232 tmp
= gfc_add_field_to_struct_1 (vec_type
, get_identifier ("nvec"),
3233 size_type_node
, &chain
);
3234 TREE_NO_WARNING (tmp
) = 1;
3235 tmp
= gfc_add_field_to_struct_1 (vec_type
, get_identifier ("u"),
3236 union_type
, &chain
);
3237 TREE_NO_WARNING (tmp
) = 1;
3238 gfc_finish_type (vec_type
);
3239 TYPE_NAME (vec_type
) = get_identifier ("caf_vector_t");
3242 tmp
= build_range_type (gfc_array_index_type
, gfc_index_zero_node
,
3243 gfc_rank_cst
[dim
-1]);
3244 vector_types
[dim
-1] = build_array_type (vec_type
, tmp
);
3245 return vector_types
[dim
-1];
3248 #include "gt-fortran-trans-types.h"