1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
31 #include "hard-reg-set.h"
34 #include "insn-config.h"
36 #include "basic-block.h"
47 #include "tree-pass.h"
50 /* The following code implements gcse after reload, the purpose of this
51 pass is to cleanup redundant loads generated by reload and other
52 optimizations that come after gcse. It searches for simple inter-block
53 redundancies and tries to eliminate them by adding moves and loads
56 Perform partially redundant load elimination, try to eliminate redundant
57 loads created by the reload pass. We try to look for full or partial
58 redundant loads fed by one or more loads/stores in predecessor BBs,
59 and try adding loads to make them fully redundant. We also check if
60 it's worth adding loads to be able to delete the redundant load.
63 1. Build available expressions hash table:
64 For each load/store instruction, if the loaded/stored memory didn't
65 change until the end of the basic block add this memory expression to
67 2. Perform Redundancy elimination:
68 For each load instruction do the following:
69 perform partial redundancy elimination, check if it's worth adding
70 loads to make the load fully redundant. If so add loads and
71 register copies and delete the load.
72 3. Delete instructions made redundant in step 2.
75 If the loaded register is used/defined between load and some store,
76 look for some other free register between load and all its stores,
77 and replace the load with a copy from this register to the loaded
82 /* Keep statistics of this pass. */
90 /* We need to keep a hash table of expressions. The table entries are of
91 type 'struct expr', and for each expression there is a single linked
92 list of occurrences. */
94 /* The table itself. */
95 static htab_t expr_table
;
97 /* Expression elements in the hash table. */
100 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
103 /* The same hash for this entry. */
106 /* List of available occurrence in basic blocks in the function. */
107 struct occr
*avail_occr
;
110 static struct obstack expr_obstack
;
112 /* Occurrence of an expression.
113 There is at most one occurrence per basic block. If a pattern appears
114 more than once, the last appearance is used. */
118 /* Next occurrence of this expression. */
120 /* The insn that computes the expression. */
122 /* Nonzero if this [anticipatable] occurrence has been deleted. */
126 static struct obstack occr_obstack
;
128 /* The following structure holds the information about the occurrences of
129 the redundant instructions. */
137 static struct obstack unoccr_obstack
;
139 /* Array where each element is the CUID if the insn that last set the hard
140 register with the number of the element, since the start of the current
143 This array is used during the building of the hash table (step 1) to
144 determine if a reg is killed before the end of a basic block.
146 It is also used when eliminating partial redundancies (step 2) to see
147 if a reg was modified since the start of a basic block. */
148 static int *reg_avail_info
;
150 /* A list of insns that may modify memory within the current basic block. */
154 struct modifies_mem
*next
;
156 static struct modifies_mem
*modifies_mem_list
;
158 /* The modifies_mem structs also go on an obstack, only this obstack is
159 freed each time after completing the analysis or transformations on
160 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
161 object on the obstack to keep track of the bottom of the obstack. */
162 static struct obstack modifies_mem_obstack
;
163 static struct modifies_mem
*modifies_mem_obstack_bottom
;
165 /* Mapping of insn UIDs to CUIDs.
166 CUIDs are like UIDs except they increase monotonically in each basic
167 block, have no gaps, and only apply to real insns. */
168 static int *uid_cuid
;
169 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
172 /* Helpers for memory allocation/freeing. */
173 static void alloc_mem (void);
174 static void free_mem (void);
176 /* Support for hash table construction and transformations. */
177 static bool oprs_unchanged_p (rtx
, rtx
, bool);
178 static void record_last_reg_set_info (rtx
, int);
179 static void record_last_mem_set_info (rtx
);
180 static void record_last_set_info (rtx
, const_rtx
, void *);
181 static void record_opr_changes (rtx
);
183 static void find_mem_conflicts (rtx
, const_rtx
, void *);
184 static int load_killed_in_block_p (int, rtx
, bool);
185 static void reset_opr_set_tables (void);
187 /* Hash table support. */
188 static hashval_t
hash_expr (rtx
, int *);
189 static hashval_t
hash_expr_for_htab (const void *);
190 static int expr_equiv_p (const void *, const void *);
191 static void insert_expr_in_table (rtx
, rtx
);
192 static struct expr
*lookup_expr_in_table (rtx
);
193 static int dump_hash_table_entry (void **, void *);
194 static void dump_hash_table (FILE *);
196 /* Helpers for eliminate_partially_redundant_load. */
197 static bool reg_killed_on_edge (rtx
, edge
);
198 static bool reg_used_on_edge (rtx
, edge
);
200 static rtx
get_avail_load_store_reg (rtx
);
202 static bool bb_has_well_behaved_predecessors (basic_block
);
203 static struct occr
* get_bb_avail_insn (basic_block
, struct occr
*);
204 static void hash_scan_set (rtx
);
205 static void compute_hash_table (void);
207 /* The work horses of this pass. */
208 static void eliminate_partially_redundant_load (basic_block
,
211 static void eliminate_partially_redundant_loads (void);
214 /* Allocate memory for the CUID mapping array and register/memory
224 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
225 uid_cuid
= XCNEWVEC (int, get_max_uid () + 1);
228 FOR_BB_INSNS (bb
, insn
)
231 uid_cuid
[INSN_UID (insn
)] = i
++;
233 uid_cuid
[INSN_UID (insn
)] = i
;
236 /* Allocate the available expressions hash table. We don't want to
237 make the hash table too small, but unnecessarily making it too large
238 also doesn't help. The i/4 is a gcse.c relic, and seems like a
239 reasonable choice. */
240 expr_table
= htab_create (MAX (i
/ 4, 13),
241 hash_expr_for_htab
, expr_equiv_p
, NULL
);
243 /* We allocate everything on obstacks because we often can roll back
244 the whole obstack to some point. Freeing obstacks is very fast. */
245 gcc_obstack_init (&expr_obstack
);
246 gcc_obstack_init (&occr_obstack
);
247 gcc_obstack_init (&unoccr_obstack
);
248 gcc_obstack_init (&modifies_mem_obstack
);
250 /* Working array used to track the last set for each register
251 in the current block. */
252 reg_avail_info
= (int *) xmalloc (FIRST_PSEUDO_REGISTER
* sizeof (int));
254 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
255 can roll it back in reset_opr_set_tables. */
256 modifies_mem_obstack_bottom
=
257 (struct modifies_mem
*) obstack_alloc (&modifies_mem_obstack
,
258 sizeof (struct modifies_mem
));
261 /* Free memory allocated by alloc_mem. */
268 htab_delete (expr_table
);
270 obstack_free (&expr_obstack
, NULL
);
271 obstack_free (&occr_obstack
, NULL
);
272 obstack_free (&unoccr_obstack
, NULL
);
273 obstack_free (&modifies_mem_obstack
, NULL
);
275 free (reg_avail_info
);
279 /* Hash expression X.
280 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
281 or if the expression contains something we don't want to insert in the
285 hash_expr (rtx x
, int *do_not_record_p
)
287 *do_not_record_p
= 0;
288 return hash_rtx (x
, GET_MODE (x
), do_not_record_p
,
289 NULL
, /*have_reg_qty=*/false);
292 /* Callback for hashtab.
293 Return the hash value for expression EXP. We don't actually hash
294 here, we just return the cached hash value. */
297 hash_expr_for_htab (const void *expp
)
299 const struct expr
*const exp
= (const struct expr
*) expp
;
303 /* Callback for hashtab.
304 Return nonzero if exp1 is equivalent to exp2. */
307 expr_equiv_p (const void *exp1p
, const void *exp2p
)
309 const struct expr
*const exp1
= (const struct expr
*) exp1p
;
310 const struct expr
*const exp2
= (const struct expr
*) exp2p
;
311 int equiv_p
= exp_equiv_p (exp1
->expr
, exp2
->expr
, 0, true);
313 gcc_assert (!equiv_p
|| exp1
->hash
== exp2
->hash
);
318 /* Insert expression X in INSN in the hash TABLE.
319 If it is already present, record it as the last occurrence in INSN's
323 insert_expr_in_table (rtx x
, rtx insn
)
327 struct expr
*cur_expr
, **slot
;
328 struct occr
*avail_occr
, *last_occr
= NULL
;
330 hash
= hash_expr (x
, &do_not_record_p
);
332 /* Do not insert expression in the table if it contains volatile operands,
333 or if hash_expr determines the expression is something we don't want
334 to or can't handle. */
338 /* We anticipate that redundant expressions are rare, so for convenience
339 allocate a new hash table element here already and set its fields.
340 If we don't do this, we need a hack with a static struct expr. Anyway,
341 obstack_free is really fast and one more obstack_alloc doesn't hurt if
342 we're going to see more expressions later on. */
343 cur_expr
= (struct expr
*) obstack_alloc (&expr_obstack
,
344 sizeof (struct expr
));
346 cur_expr
->hash
= hash
;
347 cur_expr
->avail_occr
= NULL
;
349 slot
= (struct expr
**) htab_find_slot_with_hash (expr_table
, cur_expr
,
353 /* The expression isn't found, so insert it. */
357 /* The expression is already in the table, so roll back the
358 obstack and use the existing table entry. */
359 obstack_free (&expr_obstack
, cur_expr
);
363 /* Search for another occurrence in the same basic block. */
364 avail_occr
= cur_expr
->avail_occr
;
365 while (avail_occr
&& BLOCK_NUM (avail_occr
->insn
) != BLOCK_NUM (insn
))
367 /* If an occurrence isn't found, save a pointer to the end of
369 last_occr
= avail_occr
;
370 avail_occr
= avail_occr
->next
;
374 /* Found another instance of the expression in the same basic block.
375 Prefer this occurrence to the currently recorded one. We want
376 the last one in the block and the block is scanned from start
378 avail_occr
->insn
= insn
;
381 /* First occurrence of this expression in this basic block. */
382 avail_occr
= (struct occr
*) obstack_alloc (&occr_obstack
,
383 sizeof (struct occr
));
385 /* First occurrence of this expression in any block? */
386 if (cur_expr
->avail_occr
== NULL
)
387 cur_expr
->avail_occr
= avail_occr
;
389 last_occr
->next
= avail_occr
;
391 avail_occr
->insn
= insn
;
392 avail_occr
->next
= NULL
;
393 avail_occr
->deleted_p
= 0;
398 /* Lookup pattern PAT in the expression hash table.
399 The result is a pointer to the table entry, or NULL if not found. */
402 lookup_expr_in_table (rtx pat
)
405 struct expr
**slot
, *tmp_expr
;
406 hashval_t hash
= hash_expr (pat
, &do_not_record_p
);
411 tmp_expr
= (struct expr
*) obstack_alloc (&expr_obstack
,
412 sizeof (struct expr
));
413 tmp_expr
->expr
= pat
;
414 tmp_expr
->hash
= hash
;
415 tmp_expr
->avail_occr
= NULL
;
417 slot
= (struct expr
**) htab_find_slot_with_hash (expr_table
, tmp_expr
,
419 obstack_free (&expr_obstack
, tmp_expr
);
428 /* Dump all expressions and occurrences that are currently in the
429 expression hash table to FILE. */
431 /* This helper is called via htab_traverse. */
433 dump_hash_table_entry (void **slot
, void *filep
)
435 struct expr
*expr
= (struct expr
*) *slot
;
436 FILE *file
= (FILE *) filep
;
439 fprintf (file
, "expr: ");
440 print_rtl (file
, expr
->expr
);
441 fprintf (file
,"\nhashcode: %u\n", expr
->hash
);
442 fprintf (file
,"list of occurrences:\n");
443 occr
= expr
->avail_occr
;
446 rtx insn
= occr
->insn
;
447 print_rtl_single (file
, insn
);
448 fprintf (file
, "\n");
451 fprintf (file
, "\n");
456 dump_hash_table (FILE *file
)
458 fprintf (file
, "\n\nexpression hash table\n");
459 fprintf (file
, "size %ld, %ld elements, %f collision/search ratio\n",
460 (long) htab_size (expr_table
),
461 (long) htab_elements (expr_table
),
462 htab_collisions (expr_table
));
463 if (htab_elements (expr_table
) > 0)
465 fprintf (file
, "\n\ntable entries:\n");
466 htab_traverse (expr_table
, dump_hash_table_entry
, file
);
468 fprintf (file
, "\n");
471 /* Return true if register X is recorded as being set by an instruction
472 whose CUID is greater than the one given. */
475 reg_changed_after_insn_p (rtx x
, int cuid
)
477 unsigned int regno
, end_regno
;
480 end_regno
= END_HARD_REGNO (x
);
482 if (reg_avail_info
[regno
] > cuid
)
484 while (++regno
< end_regno
);
488 /* Return nonzero if the operands of expression X are unchanged
489 1) from the start of INSN's basic block up to but not including INSN
490 if AFTER_INSN is false, or
491 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
494 oprs_unchanged_p (rtx x
, rtx insn
, bool after_insn
)
507 /* We are called after register allocation. */
508 gcc_assert (REGNO (x
) < FIRST_PSEUDO_REGISTER
);
510 return !reg_changed_after_insn_p (x
, INSN_CUID (insn
) - 1);
512 return !reg_changed_after_insn_p (x
, 0);
515 if (load_killed_in_block_p (INSN_CUID (insn
), x
, after_insn
))
518 return oprs_unchanged_p (XEXP (x
, 0), insn
, after_insn
);
547 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
551 if (! oprs_unchanged_p (XEXP (x
, i
), insn
, after_insn
))
554 else if (fmt
[i
] == 'E')
555 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
556 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, after_insn
))
564 /* Used for communication between find_mem_conflicts and
565 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
566 conflict between two memory references.
567 This is a bit of a hack to work around the limitations of note_stores. */
568 static int mems_conflict_p
;
570 /* DEST is the output of an instruction. If it is a memory reference, and
571 possibly conflicts with the load found in DATA, then set mems_conflict_p
572 to a nonzero value. */
575 find_mem_conflicts (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
,
578 rtx mem_op
= (rtx
) data
;
580 while (GET_CODE (dest
) == SUBREG
581 || GET_CODE (dest
) == ZERO_EXTRACT
582 || GET_CODE (dest
) == STRICT_LOW_PART
)
583 dest
= XEXP (dest
, 0);
585 /* If DEST is not a MEM, then it will not conflict with the load. Note
586 that function calls are assumed to clobber memory, but are handled
591 if (true_dependence (dest
, GET_MODE (dest
), mem_op
,
597 /* Return nonzero if the expression in X (a memory reference) is killed
598 in the current basic block before (if AFTER_INSN is false) or after
599 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
601 This function assumes that the modifies_mem table is flushed when
602 the hash table construction or redundancy elimination phases start
603 processing a new basic block. */
606 load_killed_in_block_p (int uid_limit
, rtx x
, bool after_insn
)
608 struct modifies_mem
*list_entry
= modifies_mem_list
;
612 rtx setter
= list_entry
->insn
;
614 /* Ignore entries in the list that do not apply. */
616 && INSN_CUID (setter
) < uid_limit
)
618 && INSN_CUID (setter
) > uid_limit
))
620 list_entry
= list_entry
->next
;
624 /* If SETTER is a call everything is clobbered. Note that calls
625 to pure functions are never put on the list, so we need not
630 /* SETTER must be an insn of some kind that sets memory. Call
631 note_stores to examine each hunk of memory that is modified.
632 It will set mems_conflict_p to nonzero if there may be a
633 conflict between X and SETTER. */
635 note_stores (PATTERN (setter
), find_mem_conflicts
, x
);
639 list_entry
= list_entry
->next
;
645 /* Record register first/last/block set information for REGNO in INSN. */
648 record_last_reg_set_info (rtx insn
, int regno
)
650 reg_avail_info
[regno
] = INSN_CUID (insn
);
654 /* Record memory modification information for INSN. We do not actually care
655 about the memory location(s) that are set, or even how they are set (consider
656 a CALL_INSN). We merely need to record which insns modify memory. */
659 record_last_mem_set_info (rtx insn
)
661 struct modifies_mem
*list_entry
;
663 list_entry
= (struct modifies_mem
*) obstack_alloc (&modifies_mem_obstack
,
664 sizeof (struct modifies_mem
));
665 list_entry
->insn
= insn
;
666 list_entry
->next
= modifies_mem_list
;
667 modifies_mem_list
= list_entry
;
670 /* Called from compute_hash_table via note_stores to handle one
671 SET or CLOBBER in an insn. DATA is really the instruction in which
672 the SET is taking place. */
675 record_last_set_info (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
, void *data
)
677 rtx last_set_insn
= (rtx
) data
;
679 if (GET_CODE (dest
) == SUBREG
)
680 dest
= SUBREG_REG (dest
);
683 record_last_reg_set_info (last_set_insn
, REGNO (dest
));
684 else if (MEM_P (dest
))
686 /* Ignore pushes, they don't clobber memory. They may still
687 clobber the stack pointer though. Some targets do argument
688 pushes without adding REG_INC notes. See e.g. PR25196,
689 where a pushsi2 on i386 doesn't have REG_INC notes. Note
690 such changes here too. */
691 if (! push_operand (dest
, GET_MODE (dest
)))
692 record_last_mem_set_info (last_set_insn
);
694 record_last_reg_set_info (last_set_insn
, STACK_POINTER_REGNUM
);
699 /* Reset tables used to keep track of what's still available since the
700 start of the block. */
703 reset_opr_set_tables (void)
705 memset (reg_avail_info
, 0, FIRST_PSEUDO_REGISTER
* sizeof (int));
706 obstack_free (&modifies_mem_obstack
, modifies_mem_obstack_bottom
);
707 modifies_mem_list
= NULL
;
711 /* Record things set by INSN.
712 This data is used by oprs_unchanged_p. */
715 record_opr_changes (rtx insn
)
719 /* Find all stores and record them. */
720 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
722 /* Also record autoincremented REGs for this insn as changed. */
723 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
724 if (REG_NOTE_KIND (note
) == REG_INC
)
725 record_last_reg_set_info (insn
, REGNO (XEXP (note
, 0)));
727 /* Finally, if this is a call, record all call clobbers. */
730 unsigned int regno
, end_regno
;
733 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
734 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
735 record_last_reg_set_info (insn
, regno
);
737 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
738 if (GET_CODE (XEXP (link
, 0)) == CLOBBER
)
740 x
= XEXP (XEXP (link
, 0), 0);
743 gcc_assert (HARD_REGISTER_P (x
));
745 end_regno
= END_HARD_REGNO (x
);
747 record_last_reg_set_info (insn
, regno
);
748 while (++regno
< end_regno
);
752 if (! CONST_OR_PURE_CALL_P (insn
))
753 record_last_mem_set_info (insn
);
758 /* Scan the pattern of INSN and add an entry to the hash TABLE.
759 After reload we are interested in loads/stores only. */
762 hash_scan_set (rtx insn
)
764 rtx pat
= PATTERN (insn
);
765 rtx src
= SET_SRC (pat
);
766 rtx dest
= SET_DEST (pat
);
768 /* We are only interested in loads and stores. */
769 if (! MEM_P (src
) && ! MEM_P (dest
))
772 /* Don't mess with jumps and nops. */
773 if (JUMP_P (insn
) || set_noop_p (pat
))
778 if (/* Don't CSE something if we can't do a reg/reg copy. */
779 can_copy_p (GET_MODE (dest
))
780 /* Is SET_SRC something we want to gcse? */
781 && general_operand (src
, GET_MODE (src
))
783 /* Never consider insns touching the register stack. It may
784 create situations that reg-stack cannot handle (e.g. a stack
785 register live across an abnormal edge). */
786 && (REGNO (dest
) < FIRST_STACK_REG
|| REGNO (dest
) > LAST_STACK_REG
)
788 /* An expression is not available if its operands are
789 subsequently modified, including this insn. */
790 && oprs_unchanged_p (src
, insn
, true))
792 insert_expr_in_table (src
, insn
);
795 else if (REG_P (src
))
797 /* Only record sets of pseudo-regs in the hash table. */
798 if (/* Don't CSE something if we can't do a reg/reg copy. */
799 can_copy_p (GET_MODE (src
))
800 /* Is SET_DEST something we want to gcse? */
801 && general_operand (dest
, GET_MODE (dest
))
803 /* As above for STACK_REGS. */
804 && (REGNO (src
) < FIRST_STACK_REG
|| REGNO (src
) > LAST_STACK_REG
)
806 && ! (flag_float_store
&& FLOAT_MODE_P (GET_MODE (dest
)))
807 /* Check if the memory expression is killed after insn. */
808 && ! load_killed_in_block_p (INSN_CUID (insn
) + 1, dest
, true)
809 && oprs_unchanged_p (XEXP (dest
, 0), insn
, true))
811 insert_expr_in_table (dest
, insn
);
817 /* Create hash table of memory expressions available at end of basic
818 blocks. Basically you should think of this hash table as the
819 representation of AVAIL_OUT. This is the set of expressions that
820 is generated in a basic block and not killed before the end of the
821 same basic block. Notice that this is really a local computation. */
824 compute_hash_table (void)
832 /* First pass over the instructions records information used to
833 determine when registers and memory are last set.
834 Since we compute a "local" AVAIL_OUT, reset the tables that
835 help us keep track of what has been modified since the start
837 reset_opr_set_tables ();
838 FOR_BB_INSNS (bb
, insn
)
841 record_opr_changes (insn
);
844 /* The next pass actually builds the hash table. */
845 FOR_BB_INSNS (bb
, insn
)
846 if (INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SET
)
847 hash_scan_set (insn
);
852 /* Check if register REG is killed in any insn waiting to be inserted on
853 edge E. This function is required to check that our data flow analysis
854 is still valid prior to commit_edge_insertions. */
857 reg_killed_on_edge (rtx reg
, edge e
)
861 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
862 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
868 /* Similar to above - check if register REG is used in any insn waiting
869 to be inserted on edge E.
870 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
871 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
874 reg_used_on_edge (rtx reg
, edge e
)
878 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
879 if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
885 /* Return the loaded/stored register of a load/store instruction. */
888 get_avail_load_store_reg (rtx insn
)
890 if (REG_P (SET_DEST (PATTERN (insn
))))
892 return SET_DEST(PATTERN(insn
));
896 gcc_assert (REG_P (SET_SRC (PATTERN (insn
))));
897 return SET_SRC (PATTERN (insn
));
901 /* Return nonzero if the predecessors of BB are "well behaved". */
904 bb_has_well_behaved_predecessors (basic_block bb
)
909 if (EDGE_COUNT (bb
->preds
) == 0)
912 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
914 if ((pred
->flags
& EDGE_ABNORMAL
) && EDGE_CRITICAL_P (pred
))
917 if (JUMP_TABLE_DATA_P (BB_END (pred
->src
)))
924 /* Search for the occurrences of expression in BB. */
927 get_bb_avail_insn (basic_block bb
, struct occr
*occr
)
929 for (; occr
!= NULL
; occr
= occr
->next
)
930 if (BLOCK_FOR_INSN (occr
->insn
) == bb
)
936 /* This handles the case where several stores feed a partially redundant
937 load. It checks if the redundancy elimination is possible and if it's
940 Redundancy elimination is possible if,
941 1) None of the operands of an insn have been modified since the start
942 of the current basic block.
943 2) In any predecessor of the current basic block, the same expression
946 See the function body for the heuristics that determine if eliminating
947 a redundancy is also worth doing, assuming it is possible. */
950 eliminate_partially_redundant_load (basic_block bb
, rtx insn
,
954 rtx avail_insn
= NULL_RTX
;
958 struct unoccr
*occr
, *avail_occrs
= NULL
;
959 struct unoccr
*unoccr
, *unavail_occrs
= NULL
, *rollback_unoccr
= NULL
;
961 gcov_type ok_count
= 0; /* Redundant load execution count. */
962 gcov_type critical_count
= 0; /* Execution count of critical edges. */
964 bool critical_edge_split
= false;
966 /* The execution count of the loads to be added to make the
967 load fully redundant. */
968 gcov_type not_ok_count
= 0;
971 pat
= PATTERN (insn
);
972 dest
= SET_DEST (pat
);
974 /* Check that the loaded register is not used, set, or killed from the
975 beginning of the block. */
976 if (reg_changed_after_insn_p (dest
, 0)
977 || reg_used_between_p (dest
, PREV_INSN (BB_HEAD (bb
)), insn
))
980 /* Check potential for replacing load with copy for predecessors. */
981 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
983 rtx next_pred_bb_end
;
985 avail_insn
= NULL_RTX
;
986 avail_reg
= NULL_RTX
;
988 next_pred_bb_end
= NEXT_INSN (BB_END (pred_bb
));
989 for (a_occr
= get_bb_avail_insn (pred_bb
, expr
->avail_occr
); a_occr
;
990 a_occr
= get_bb_avail_insn (pred_bb
, a_occr
->next
))
992 /* Check if the loaded register is not used. */
993 avail_insn
= a_occr
->insn
;
994 avail_reg
= get_avail_load_store_reg (avail_insn
);
995 gcc_assert (avail_reg
);
997 /* Make sure we can generate a move from register avail_reg to
999 extract_insn (gen_move_insn (copy_rtx (dest
),
1000 copy_rtx (avail_reg
)));
1001 if (! constrain_operands (1)
1002 || reg_killed_on_edge (avail_reg
, pred
)
1003 || reg_used_on_edge (dest
, pred
))
1008 if (!reg_set_between_p (avail_reg
, avail_insn
, next_pred_bb_end
))
1009 /* AVAIL_INSN remains non-null. */
1015 if (EDGE_CRITICAL_P (pred
))
1016 critical_count
+= pred
->count
;
1018 if (avail_insn
!= NULL_RTX
)
1021 ok_count
+= pred
->count
;
1022 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest
),
1023 copy_rtx (avail_reg
)))))
1025 /* Check if there is going to be a split. */
1026 if (EDGE_CRITICAL_P (pred
))
1027 critical_edge_split
= true;
1029 else /* Its a dead move no need to generate. */
1031 occr
= (struct unoccr
*) obstack_alloc (&unoccr_obstack
,
1032 sizeof (struct unoccr
));
1033 occr
->insn
= avail_insn
;
1035 occr
->next
= avail_occrs
;
1037 if (! rollback_unoccr
)
1038 rollback_unoccr
= occr
;
1042 /* Adding a load on a critical edge will cause a split. */
1043 if (EDGE_CRITICAL_P (pred
))
1044 critical_edge_split
= true;
1045 not_ok_count
+= pred
->count
;
1046 unoccr
= (struct unoccr
*) obstack_alloc (&unoccr_obstack
,
1047 sizeof (struct unoccr
));
1048 unoccr
->insn
= NULL_RTX
;
1049 unoccr
->pred
= pred
;
1050 unoccr
->next
= unavail_occrs
;
1051 unavail_occrs
= unoccr
;
1052 if (! rollback_unoccr
)
1053 rollback_unoccr
= unoccr
;
1057 if (/* No load can be replaced by copy. */
1059 /* Prevent exploding the code. */
1060 || (optimize_size
&& npred_ok
> 1)
1061 /* If we don't have profile information we cannot tell if splitting
1062 a critical edge is profitable or not so don't do it. */
1063 || ((! profile_info
|| ! flag_branch_probabilities
1064 || targetm
.cannot_modify_jumps_p ())
1065 && critical_edge_split
))
1068 /* Check if it's worth applying the partial redundancy elimination. */
1069 if (ok_count
< GCSE_AFTER_RELOAD_PARTIAL_FRACTION
* not_ok_count
)
1071 if (ok_count
< GCSE_AFTER_RELOAD_CRITICAL_FRACTION
* critical_count
)
1074 /* Generate moves to the loaded register from where
1075 the memory is available. */
1076 for (occr
= avail_occrs
; occr
; occr
= occr
->next
)
1078 avail_insn
= occr
->insn
;
1080 /* Set avail_reg to be the register having the value of the
1082 avail_reg
= get_avail_load_store_reg (avail_insn
);
1083 gcc_assert (avail_reg
);
1085 insert_insn_on_edge (gen_move_insn (copy_rtx (dest
),
1086 copy_rtx (avail_reg
)),
1088 stats
.moves_inserted
++;
1092 "generating move from %d to %d on edge from %d to %d\n",
1099 /* Regenerate loads where the memory is unavailable. */
1100 for (unoccr
= unavail_occrs
; unoccr
; unoccr
= unoccr
->next
)
1102 pred
= unoccr
->pred
;
1103 insert_insn_on_edge (copy_insn (PATTERN (insn
)), pred
);
1104 stats
.copies_inserted
++;
1109 "generating on edge from %d to %d a copy of load: ",
1112 print_rtl (dump_file
, PATTERN (insn
));
1113 fprintf (dump_file
, "\n");
1117 /* Delete the insn if it is not available in this block and mark it
1118 for deletion if it is available. If insn is available it may help
1119 discover additional redundancies, so mark it for later deletion. */
1120 for (a_occr
= get_bb_avail_insn (bb
, expr
->avail_occr
);
1121 a_occr
&& (a_occr
->insn
!= insn
);
1122 a_occr
= get_bb_avail_insn (bb
, a_occr
->next
));
1126 stats
.insns_deleted
++;
1130 fprintf (dump_file
, "deleting insn:\n");
1131 print_rtl_single (dump_file
, insn
);
1132 fprintf (dump_file
, "\n");
1137 a_occr
->deleted_p
= 1;
1140 if (rollback_unoccr
)
1141 obstack_free (&unoccr_obstack
, rollback_unoccr
);
1144 /* Performing the redundancy elimination as described before. */
1147 eliminate_partially_redundant_loads (void)
1152 /* Note we start at block 1. */
1154 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
1158 ENTRY_BLOCK_PTR
->next_bb
->next_bb
,
1162 /* Don't try anything on basic blocks with strange predecessors. */
1163 if (! bb_has_well_behaved_predecessors (bb
))
1166 /* Do not try anything on cold basic blocks. */
1167 if (probably_cold_bb_p (bb
))
1170 /* Reset the table of things changed since the start of the current
1172 reset_opr_set_tables ();
1174 /* Look at all insns in the current basic block and see if there are
1175 any loads in it that we can record. */
1176 FOR_BB_INSNS (bb
, insn
)
1178 /* Is it a load - of the form (set (reg) (mem))? */
1179 if (NONJUMP_INSN_P (insn
)
1180 && GET_CODE (PATTERN (insn
)) == SET
1181 && REG_P (SET_DEST (PATTERN (insn
)))
1182 && MEM_P (SET_SRC (PATTERN (insn
))))
1184 rtx pat
= PATTERN (insn
);
1185 rtx src
= SET_SRC (pat
);
1188 if (!MEM_VOLATILE_P (src
)
1189 && GET_MODE (src
) != BLKmode
1190 && general_operand (src
, GET_MODE (src
))
1191 /* Are the operands unchanged since the start of the
1193 && oprs_unchanged_p (src
, insn
, false)
1194 && !(flag_non_call_exceptions
&& may_trap_p (src
))
1195 && !side_effects_p (src
)
1196 /* Is the expression recorded? */
1197 && (expr
= lookup_expr_in_table (src
)) != NULL
)
1199 /* We now have a load (insn) and an available memory at
1200 its BB start (expr). Try to remove the loads if it is
1202 eliminate_partially_redundant_load (bb
, insn
, expr
);
1206 /* Keep track of everything modified by this insn, so that we
1207 know what has been modified since the start of the current
1210 record_opr_changes (insn
);
1214 commit_edge_insertions ();
1217 /* Go over the expression hash table and delete insns that were
1218 marked for later deletion. */
1220 /* This helper is called via htab_traverse. */
1222 delete_redundant_insns_1 (void **slot
, void *data ATTRIBUTE_UNUSED
)
1224 struct expr
*expr
= (struct expr
*) *slot
;
1227 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
1229 if (occr
->deleted_p
&& dbg_cnt (gcse2_delete
))
1231 delete_insn (occr
->insn
);
1232 stats
.insns_deleted
++;
1236 fprintf (dump_file
, "deleting insn:\n");
1237 print_rtl_single (dump_file
, occr
->insn
);
1238 fprintf (dump_file
, "\n");
1247 delete_redundant_insns (void)
1249 htab_traverse (expr_table
, delete_redundant_insns_1
, NULL
);
1251 fprintf (dump_file
, "\n");
1254 /* Main entry point of the GCSE after reload - clean some redundant loads
1258 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED
)
1261 memset (&stats
, 0, sizeof (stats
));
1263 /* Allocate ememory for this pass.
1264 Also computes and initializes the insns' CUIDs. */
1267 /* We need alias analysis. */
1268 init_alias_analysis ();
1270 compute_hash_table ();
1273 dump_hash_table (dump_file
);
1275 if (htab_elements (expr_table
) > 0)
1277 eliminate_partially_redundant_loads ();
1278 delete_redundant_insns ();
1282 fprintf (dump_file
, "GCSE AFTER RELOAD stats:\n");
1283 fprintf (dump_file
, "copies inserted: %d\n", stats
.copies_inserted
);
1284 fprintf (dump_file
, "moves inserted: %d\n", stats
.moves_inserted
);
1285 fprintf (dump_file
, "insns deleted: %d\n", stats
.insns_deleted
);
1286 fprintf (dump_file
, "\n\n");
1290 /* We are finished with alias. */
1291 end_alias_analysis ();
1298 gate_handle_gcse2 (void)
1300 return (optimize
> 0 && flag_gcse_after_reload
);
1305 rest_of_handle_gcse2 (void)
1307 gcse_after_reload_main (get_insns ());
1308 rebuild_jump_labels (get_insns ());
1312 struct tree_opt_pass pass_gcse2
=
1315 gate_handle_gcse2
, /* gate */
1316 rest_of_handle_gcse2
, /* execute */
1319 0, /* static_pass_number */
1320 TV_GCSE_AFTER_RELOAD
, /* tv_id */
1321 0, /* properties_required */
1322 0, /* properties_provided */
1323 0, /* properties_destroyed */
1324 0, /* todo_flags_start */
1325 TODO_dump_func
| TODO_verify_rtl_sharing
1326 | TODO_verify_flow
| TODO_ggc_collect
,/* todo_flags_finish */