2013-08-27 Marc Glisse <marc.glisse@inria.fr>
[official-gcc.git] / gcc / ada / sem_ch5.adb
blob2f8eced6fc9b7c28b9d1ac92061cc3a254a04bf0
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Ch6; use Exp_Ch6;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Lib; use Lib;
36 with Lib.Xref; use Lib.Xref;
37 with Namet; use Namet;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Restrict; use Restrict;
42 with Rident; use Rident;
43 with Rtsfind; use Rtsfind;
44 with Sem; use Sem;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Case; use Sem_Case;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch6; use Sem_Ch6;
49 with Sem_Ch8; use Sem_Ch8;
50 with Sem_Dim; use Sem_Dim;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Elab; use Sem_Elab;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Type; use Sem_Type;
56 with Sem_Util; use Sem_Util;
57 with Sem_Warn; use Sem_Warn;
58 with Snames; use Snames;
59 with Stand; use Stand;
60 with Sinfo; use Sinfo;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Uintp; use Uintp;
65 package body Sem_Ch5 is
67 Unblocked_Exit_Count : Nat := 0;
68 -- This variable is used when processing if statements, case statements,
69 -- and block statements. It counts the number of exit points that are not
70 -- blocked by unconditional transfer instructions: for IF and CASE, these
71 -- are the branches of the conditional; for a block, they are the statement
72 -- sequence of the block, and the statement sequences of any exception
73 -- handlers that are part of the block. When processing is complete, if
74 -- this count is zero, it means that control cannot fall through the IF,
75 -- CASE or block statement. This is used for the generation of warning
76 -- messages. This variable is recursively saved on entry to processing the
77 -- construct, and restored on exit.
79 procedure Preanalyze_Range (R_Copy : Node_Id);
80 -- Determine expected type of range or domain of iteration of Ada 2012
81 -- loop by analyzing separate copy. Do the analysis and resolution of the
82 -- copy of the bound(s) with expansion disabled, to prevent the generation
83 -- of finalization actions. This prevents memory leaks when the bounds
84 -- contain calls to functions returning controlled arrays or when the
85 -- domain of iteration is a container.
87 ------------------------
88 -- Analyze_Assignment --
89 ------------------------
91 procedure Analyze_Assignment (N : Node_Id) is
92 Lhs : constant Node_Id := Name (N);
93 Rhs : constant Node_Id := Expression (N);
94 T1 : Entity_Id;
95 T2 : Entity_Id;
96 Decl : Node_Id;
98 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
99 -- N is the node for the left hand side of an assignment, and it is not
100 -- a variable. This routine issues an appropriate diagnostic.
102 procedure Kill_Lhs;
103 -- This is called to kill current value settings of a simple variable
104 -- on the left hand side. We call it if we find any error in analyzing
105 -- the assignment, and at the end of processing before setting any new
106 -- current values in place.
108 procedure Set_Assignment_Type
109 (Opnd : Node_Id;
110 Opnd_Type : in out Entity_Id);
111 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
112 -- nominal subtype. This procedure is used to deal with cases where the
113 -- nominal subtype must be replaced by the actual subtype.
115 -------------------------------
116 -- Diagnose_Non_Variable_Lhs --
117 -------------------------------
119 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
120 begin
121 -- Not worth posting another error if left hand side already flagged
122 -- as being illegal in some respect.
124 if Error_Posted (N) then
125 return;
127 -- Some special bad cases of entity names
129 elsif Is_Entity_Name (N) then
130 declare
131 Ent : constant Entity_Id := Entity (N);
133 begin
134 if Ekind (Ent) = E_In_Parameter then
135 Error_Msg_N
136 ("assignment to IN mode parameter not allowed", N);
138 -- Renamings of protected private components are turned into
139 -- constants when compiling a protected function. In the case
140 -- of single protected types, the private component appears
141 -- directly.
143 elsif (Is_Prival (Ent)
144 and then
145 (Ekind (Current_Scope) = E_Function
146 or else Ekind (Enclosing_Dynamic_Scope
147 (Current_Scope)) = E_Function))
148 or else
149 (Ekind (Ent) = E_Component
150 and then Is_Protected_Type (Scope (Ent)))
151 then
152 Error_Msg_N
153 ("protected function cannot modify protected object", N);
155 elsif Ekind (Ent) = E_Loop_Parameter then
156 Error_Msg_N
157 ("assignment to loop parameter not allowed", N);
159 else
160 Error_Msg_N
161 ("left hand side of assignment must be a variable", N);
162 end if;
163 end;
165 -- For indexed components or selected components, test prefix
167 elsif Nkind (N) = N_Indexed_Component then
168 Diagnose_Non_Variable_Lhs (Prefix (N));
170 -- Another special case for assignment to discriminant
172 elsif Nkind (N) = N_Selected_Component then
173 if Present (Entity (Selector_Name (N)))
174 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
175 then
176 Error_Msg_N
177 ("assignment to discriminant not allowed", N);
178 else
179 Diagnose_Non_Variable_Lhs (Prefix (N));
180 end if;
182 else
183 -- If we fall through, we have no special message to issue!
185 Error_Msg_N ("left hand side of assignment must be a variable", N);
186 end if;
187 end Diagnose_Non_Variable_Lhs;
189 --------------
190 -- Kill_LHS --
191 --------------
193 procedure Kill_Lhs is
194 begin
195 if Is_Entity_Name (Lhs) then
196 declare
197 Ent : constant Entity_Id := Entity (Lhs);
198 begin
199 if Present (Ent) then
200 Kill_Current_Values (Ent);
201 end if;
202 end;
203 end if;
204 end Kill_Lhs;
206 -------------------------
207 -- Set_Assignment_Type --
208 -------------------------
210 procedure Set_Assignment_Type
211 (Opnd : Node_Id;
212 Opnd_Type : in out Entity_Id)
214 begin
215 Require_Entity (Opnd);
217 -- If the assignment operand is an in-out or out parameter, then we
218 -- get the actual subtype (needed for the unconstrained case). If the
219 -- operand is the actual in an entry declaration, then within the
220 -- accept statement it is replaced with a local renaming, which may
221 -- also have an actual subtype.
223 if Is_Entity_Name (Opnd)
224 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
225 or else Ekind_In (Entity (Opnd),
226 E_In_Out_Parameter,
227 E_Generic_In_Out_Parameter)
228 or else
229 (Ekind (Entity (Opnd)) = E_Variable
230 and then Nkind (Parent (Entity (Opnd))) =
231 N_Object_Renaming_Declaration
232 and then Nkind (Parent (Parent (Entity (Opnd)))) =
233 N_Accept_Statement))
234 then
235 Opnd_Type := Get_Actual_Subtype (Opnd);
237 -- If assignment operand is a component reference, then we get the
238 -- actual subtype of the component for the unconstrained case.
240 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
241 and then not Is_Unchecked_Union (Opnd_Type)
242 then
243 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
245 if Present (Decl) then
246 Insert_Action (N, Decl);
247 Mark_Rewrite_Insertion (Decl);
248 Analyze (Decl);
249 Opnd_Type := Defining_Identifier (Decl);
250 Set_Etype (Opnd, Opnd_Type);
251 Freeze_Itype (Opnd_Type, N);
253 elsif Is_Constrained (Etype (Opnd)) then
254 Opnd_Type := Etype (Opnd);
255 end if;
257 -- For slice, use the constrained subtype created for the slice
259 elsif Nkind (Opnd) = N_Slice then
260 Opnd_Type := Etype (Opnd);
261 end if;
262 end Set_Assignment_Type;
264 -- Start of processing for Analyze_Assignment
266 begin
267 Mark_Coextensions (N, Rhs);
269 Analyze (Rhs);
270 Analyze (Lhs);
272 -- Ensure that we never do an assignment on a variable marked as
273 -- as Safe_To_Reevaluate.
275 pragma Assert (not Is_Entity_Name (Lhs)
276 or else Ekind (Entity (Lhs)) /= E_Variable
277 or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
279 -- Start type analysis for assignment
281 T1 := Etype (Lhs);
283 -- In the most general case, both Lhs and Rhs can be overloaded, and we
284 -- must compute the intersection of the possible types on each side.
286 if Is_Overloaded (Lhs) then
287 declare
288 I : Interp_Index;
289 It : Interp;
291 begin
292 T1 := Any_Type;
293 Get_First_Interp (Lhs, I, It);
295 while Present (It.Typ) loop
296 if Has_Compatible_Type (Rhs, It.Typ) then
297 if T1 /= Any_Type then
299 -- An explicit dereference is overloaded if the prefix
300 -- is. Try to remove the ambiguity on the prefix, the
301 -- error will be posted there if the ambiguity is real.
303 if Nkind (Lhs) = N_Explicit_Dereference then
304 declare
305 PI : Interp_Index;
306 PI1 : Interp_Index := 0;
307 PIt : Interp;
308 Found : Boolean;
310 begin
311 Found := False;
312 Get_First_Interp (Prefix (Lhs), PI, PIt);
314 while Present (PIt.Typ) loop
315 if Is_Access_Type (PIt.Typ)
316 and then Has_Compatible_Type
317 (Rhs, Designated_Type (PIt.Typ))
318 then
319 if Found then
320 PIt :=
321 Disambiguate (Prefix (Lhs),
322 PI1, PI, Any_Type);
324 if PIt = No_Interp then
325 Error_Msg_N
326 ("ambiguous left-hand side"
327 & " in assignment", Lhs);
328 exit;
329 else
330 Resolve (Prefix (Lhs), PIt.Typ);
331 end if;
333 exit;
334 else
335 Found := True;
336 PI1 := PI;
337 end if;
338 end if;
340 Get_Next_Interp (PI, PIt);
341 end loop;
342 end;
344 else
345 Error_Msg_N
346 ("ambiguous left-hand side in assignment", Lhs);
347 exit;
348 end if;
349 else
350 T1 := It.Typ;
351 end if;
352 end if;
354 Get_Next_Interp (I, It);
355 end loop;
356 end;
358 if T1 = Any_Type then
359 Error_Msg_N
360 ("no valid types for left-hand side for assignment", Lhs);
361 Kill_Lhs;
362 return;
363 end if;
364 end if;
366 -- The resulting assignment type is T1, so now we will resolve the left
367 -- hand side of the assignment using this determined type.
369 Resolve (Lhs, T1);
371 -- Cases where Lhs is not a variable
373 if not Is_Variable (Lhs) then
375 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
376 -- protected object.
378 declare
379 Ent : Entity_Id;
380 S : Entity_Id;
382 begin
383 if Ada_Version >= Ada_2005 then
385 -- Handle chains of renamings
387 Ent := Lhs;
388 while Nkind (Ent) in N_Has_Entity
389 and then Present (Entity (Ent))
390 and then Present (Renamed_Object (Entity (Ent)))
391 loop
392 Ent := Renamed_Object (Entity (Ent));
393 end loop;
395 if (Nkind (Ent) = N_Attribute_Reference
396 and then Attribute_Name (Ent) = Name_Priority)
398 -- Renamings of the attribute Priority applied to protected
399 -- objects have been previously expanded into calls to the
400 -- Get_Ceiling run-time subprogram.
402 or else
403 (Nkind (Ent) = N_Function_Call
404 and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
405 or else
406 Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling)))
407 then
408 -- The enclosing subprogram cannot be a protected function
410 S := Current_Scope;
411 while not (Is_Subprogram (S)
412 and then Convention (S) = Convention_Protected)
413 and then S /= Standard_Standard
414 loop
415 S := Scope (S);
416 end loop;
418 if Ekind (S) = E_Function
419 and then Convention (S) = Convention_Protected
420 then
421 Error_Msg_N
422 ("protected function cannot modify protected object",
423 Lhs);
424 end if;
426 -- Changes of the ceiling priority of the protected object
427 -- are only effective if the Ceiling_Locking policy is in
428 -- effect (AARM D.5.2 (5/2)).
430 if Locking_Policy /= 'C' then
431 Error_Msg_N ("assignment to the attribute PRIORITY has " &
432 "no effect??", Lhs);
433 Error_Msg_N ("\since no Locking_Policy has been " &
434 "specified??", Lhs);
435 end if;
437 return;
438 end if;
439 end if;
440 end;
442 Diagnose_Non_Variable_Lhs (Lhs);
443 return;
445 -- Error of assigning to limited type. We do however allow this in
446 -- certain cases where the front end generates the assignments.
448 elsif Is_Limited_Type (T1)
449 and then not Assignment_OK (Lhs)
450 and then not Assignment_OK (Original_Node (Lhs))
451 and then not Is_Value_Type (T1)
452 then
453 -- CPP constructors can only be called in declarations
455 if Is_CPP_Constructor_Call (Rhs) then
456 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
457 else
458 Error_Msg_N
459 ("left hand of assignment must not be limited type", Lhs);
460 Explain_Limited_Type (T1, Lhs);
461 end if;
462 return;
464 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
465 -- abstract. This is only checked when the assignment Comes_From_Source,
466 -- because in some cases the expander generates such assignments (such
467 -- in the _assign operation for an abstract type).
469 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
470 Error_Msg_N
471 ("target of assignment operation must not be abstract", Lhs);
472 end if;
474 -- Resolution may have updated the subtype, in case the left-hand side
475 -- is a private protected component. Use the correct subtype to avoid
476 -- scoping issues in the back-end.
478 T1 := Etype (Lhs);
480 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
481 -- type. For example:
483 -- limited with P;
484 -- package Pkg is
485 -- type Acc is access P.T;
486 -- end Pkg;
488 -- with Pkg; use Acc;
489 -- procedure Example is
490 -- A, B : Acc;
491 -- begin
492 -- A.all := B.all; -- ERROR
493 -- end Example;
495 if Nkind (Lhs) = N_Explicit_Dereference
496 and then Ekind (T1) = E_Incomplete_Type
497 then
498 Error_Msg_N ("invalid use of incomplete type", Lhs);
499 Kill_Lhs;
500 return;
501 end if;
503 -- Now we can complete the resolution of the right hand side
505 Set_Assignment_Type (Lhs, T1);
506 Resolve (Rhs, T1);
508 -- This is the point at which we check for an unset reference
510 Check_Unset_Reference (Rhs);
511 Check_Unprotected_Access (Lhs, Rhs);
513 -- Remaining steps are skipped if Rhs was syntactically in error
515 if Rhs = Error then
516 Kill_Lhs;
517 return;
518 end if;
520 T2 := Etype (Rhs);
522 if not Covers (T1, T2) then
523 Wrong_Type (Rhs, Etype (Lhs));
524 Kill_Lhs;
525 return;
526 end if;
528 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
529 -- types, use the non-limited view if available
531 if Nkind (Rhs) = N_Explicit_Dereference
532 and then Ekind (T2) = E_Incomplete_Type
533 and then Is_Tagged_Type (T2)
534 and then Present (Non_Limited_View (T2))
535 then
536 T2 := Non_Limited_View (T2);
537 end if;
539 Set_Assignment_Type (Rhs, T2);
541 if Total_Errors_Detected /= 0 then
542 if No (T1) then
543 T1 := Any_Type;
544 end if;
546 if No (T2) then
547 T2 := Any_Type;
548 end if;
549 end if;
551 if T1 = Any_Type or else T2 = Any_Type then
552 Kill_Lhs;
553 return;
554 end if;
556 -- If the rhs is class-wide or dynamically tagged, then require the lhs
557 -- to be class-wide. The case where the rhs is a dynamically tagged call
558 -- to a dispatching operation with a controlling access result is
559 -- excluded from this check, since the target has an access type (and
560 -- no tag propagation occurs in that case).
562 if (Is_Class_Wide_Type (T2)
563 or else (Is_Dynamically_Tagged (Rhs)
564 and then not Is_Access_Type (T1)))
565 and then not Is_Class_Wide_Type (T1)
566 then
567 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
569 elsif Is_Class_Wide_Type (T1)
570 and then not Is_Class_Wide_Type (T2)
571 and then not Is_Tag_Indeterminate (Rhs)
572 and then not Is_Dynamically_Tagged (Rhs)
573 then
574 Error_Msg_N ("dynamically tagged expression required!", Rhs);
575 end if;
577 -- Propagate the tag from a class-wide target to the rhs when the rhs
578 -- is a tag-indeterminate call.
580 if Is_Tag_Indeterminate (Rhs) then
581 if Is_Class_Wide_Type (T1) then
582 Propagate_Tag (Lhs, Rhs);
584 elsif Nkind (Rhs) = N_Function_Call
585 and then Is_Entity_Name (Name (Rhs))
586 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
587 then
588 Error_Msg_N
589 ("call to abstract function must be dispatching", Name (Rhs));
591 elsif Nkind (Rhs) = N_Qualified_Expression
592 and then Nkind (Expression (Rhs)) = N_Function_Call
593 and then Is_Entity_Name (Name (Expression (Rhs)))
594 and then
595 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
596 then
597 Error_Msg_N
598 ("call to abstract function must be dispatching",
599 Name (Expression (Rhs)));
600 end if;
601 end if;
603 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
604 -- apply an implicit conversion of the rhs to that type to force
605 -- appropriate static and run-time accessibility checks. This applies
606 -- as well to anonymous access-to-subprogram types that are component
607 -- subtypes or formal parameters.
609 if Ada_Version >= Ada_2005 and then Is_Access_Type (T1) then
610 if Is_Local_Anonymous_Access (T1)
611 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
613 -- Handle assignment to an Ada 2012 stand-alone object
614 -- of an anonymous access type.
616 or else (Ekind (T1) = E_Anonymous_Access_Type
617 and then Nkind (Associated_Node_For_Itype (T1)) =
618 N_Object_Declaration)
620 then
621 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
622 Analyze_And_Resolve (Rhs, T1);
623 end if;
624 end if;
626 -- Ada 2005 (AI-231): Assignment to not null variable
628 if Ada_Version >= Ada_2005
629 and then Can_Never_Be_Null (T1)
630 and then not Assignment_OK (Lhs)
631 then
632 -- Case where we know the right hand side is null
634 if Known_Null (Rhs) then
635 Apply_Compile_Time_Constraint_Error
636 (N => Rhs,
637 Msg =>
638 "(Ada 2005) null not allowed in null-excluding objects??",
639 Reason => CE_Null_Not_Allowed);
641 -- We still mark this as a possible modification, that's necessary
642 -- to reset Is_True_Constant, and desirable for xref purposes.
644 Note_Possible_Modification (Lhs, Sure => True);
645 return;
647 -- If we know the right hand side is non-null, then we convert to the
648 -- target type, since we don't need a run time check in that case.
650 elsif not Can_Never_Be_Null (T2) then
651 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
652 Analyze_And_Resolve (Rhs, T1);
653 end if;
654 end if;
656 if Is_Scalar_Type (T1) then
657 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
659 -- For array types, verify that lengths match. If the right hand side
660 -- is a function call that has been inlined, the assignment has been
661 -- rewritten as a block, and the constraint check will be applied to the
662 -- assignment within the block.
664 elsif Is_Array_Type (T1)
665 and then (Nkind (Rhs) /= N_Type_Conversion
666 or else Is_Constrained (Etype (Rhs)))
667 and then (Nkind (Rhs) /= N_Function_Call
668 or else Nkind (N) /= N_Block_Statement)
669 then
670 -- Assignment verifies that the length of the Lsh and Rhs are equal,
671 -- but of course the indexes do not have to match. If the right-hand
672 -- side is a type conversion to an unconstrained type, a length check
673 -- is performed on the expression itself during expansion. In rare
674 -- cases, the redundant length check is computed on an index type
675 -- with a different representation, triggering incorrect code in the
676 -- back end.
678 Apply_Length_Check (Rhs, Etype (Lhs));
680 else
681 -- Discriminant checks are applied in the course of expansion
683 null;
684 end if;
686 -- Note: modifications of the Lhs may only be recorded after
687 -- checks have been applied.
689 Note_Possible_Modification (Lhs, Sure => True);
691 -- ??? a real accessibility check is needed when ???
693 -- Post warning for redundant assignment or variable to itself
695 if Warn_On_Redundant_Constructs
697 -- We only warn for source constructs
699 and then Comes_From_Source (N)
701 -- Where the object is the same on both sides
703 and then Same_Object (Lhs, Original_Node (Rhs))
705 -- But exclude the case where the right side was an operation that
706 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
707 -- don't want to warn in such a case, since it is reasonable to write
708 -- such expressions especially when K is defined symbolically in some
709 -- other package.
711 and then Nkind (Original_Node (Rhs)) not in N_Op
712 then
713 if Nkind (Lhs) in N_Has_Entity then
714 Error_Msg_NE -- CODEFIX
715 ("?r?useless assignment of & to itself!", N, Entity (Lhs));
716 else
717 Error_Msg_N -- CODEFIX
718 ("?r?useless assignment of object to itself!", N);
719 end if;
720 end if;
722 -- Check for non-allowed composite assignment
724 if not Support_Composite_Assign_On_Target
725 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
726 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
727 then
728 Error_Msg_CRT ("composite assignment", N);
729 end if;
731 -- Check elaboration warning for left side if not in elab code
733 if not In_Subprogram_Or_Concurrent_Unit then
734 Check_Elab_Assign (Lhs);
735 end if;
737 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
738 -- assignment is a source assignment in the extended main source unit.
739 -- We are not interested in any reference information outside this
740 -- context, or in compiler generated assignment statements.
742 if Comes_From_Source (N)
743 and then In_Extended_Main_Source_Unit (Lhs)
744 then
745 Set_Referenced_Modified (Lhs, Out_Param => False);
746 end if;
748 -- Final step. If left side is an entity, then we may be able to reset
749 -- the current tracked values to new safe values. We only have something
750 -- to do if the left side is an entity name, and expansion has not
751 -- modified the node into something other than an assignment, and of
752 -- course we only capture values if it is safe to do so.
754 if Is_Entity_Name (Lhs)
755 and then Nkind (N) = N_Assignment_Statement
756 then
757 declare
758 Ent : constant Entity_Id := Entity (Lhs);
760 begin
761 if Safe_To_Capture_Value (N, Ent) then
763 -- If simple variable on left side, warn if this assignment
764 -- blots out another one (rendering it useless). We only do
765 -- this for source assignments, otherwise we can generate bogus
766 -- warnings when an assignment is rewritten as another
767 -- assignment, and gets tied up with itself.
769 if Warn_On_Modified_Unread
770 and then Is_Assignable (Ent)
771 and then Comes_From_Source (N)
772 and then In_Extended_Main_Source_Unit (Ent)
773 then
774 Warn_On_Useless_Assignment (Ent, N);
775 end if;
777 -- If we are assigning an access type and the left side is an
778 -- entity, then make sure that the Is_Known_[Non_]Null flags
779 -- properly reflect the state of the entity after assignment.
781 if Is_Access_Type (T1) then
782 if Known_Non_Null (Rhs) then
783 Set_Is_Known_Non_Null (Ent, True);
785 elsif Known_Null (Rhs)
786 and then not Can_Never_Be_Null (Ent)
787 then
788 Set_Is_Known_Null (Ent, True);
790 else
791 Set_Is_Known_Null (Ent, False);
793 if not Can_Never_Be_Null (Ent) then
794 Set_Is_Known_Non_Null (Ent, False);
795 end if;
796 end if;
798 -- For discrete types, we may be able to set the current value
799 -- if the value is known at compile time.
801 elsif Is_Discrete_Type (T1)
802 and then Compile_Time_Known_Value (Rhs)
803 then
804 Set_Current_Value (Ent, Rhs);
805 else
806 Set_Current_Value (Ent, Empty);
807 end if;
809 -- If not safe to capture values, kill them
811 else
812 Kill_Lhs;
813 end if;
814 end;
815 end if;
817 -- If assigning to an object in whole or in part, note location of
818 -- assignment in case no one references value. We only do this for
819 -- source assignments, otherwise we can generate bogus warnings when an
820 -- assignment is rewritten as another assignment, and gets tied up with
821 -- itself.
823 declare
824 Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
825 begin
826 if Present (Ent)
827 and then Safe_To_Capture_Value (N, Ent)
828 and then Nkind (N) = N_Assignment_Statement
829 and then Warn_On_Modified_Unread
830 and then Is_Assignable (Ent)
831 and then Comes_From_Source (N)
832 and then In_Extended_Main_Source_Unit (Ent)
833 then
834 Set_Last_Assignment (Ent, Lhs);
835 end if;
836 end;
838 Analyze_Dimension (N);
839 end Analyze_Assignment;
841 -----------------------------
842 -- Analyze_Block_Statement --
843 -----------------------------
845 procedure Analyze_Block_Statement (N : Node_Id) is
846 procedure Install_Return_Entities (Scop : Entity_Id);
847 -- Install all entities of return statement scope Scop in the visibility
848 -- chain except for the return object since its entity is reused in a
849 -- renaming.
851 -----------------------------
852 -- Install_Return_Entities --
853 -----------------------------
855 procedure Install_Return_Entities (Scop : Entity_Id) is
856 Id : Entity_Id;
858 begin
859 Id := First_Entity (Scop);
860 while Present (Id) loop
862 -- Do not install the return object
864 if not Ekind_In (Id, E_Constant, E_Variable)
865 or else not Is_Return_Object (Id)
866 then
867 Install_Entity (Id);
868 end if;
870 Next_Entity (Id);
871 end loop;
872 end Install_Return_Entities;
874 -- Local constants and variables
876 Decls : constant List_Id := Declarations (N);
877 Id : constant Node_Id := Identifier (N);
878 HSS : constant Node_Id := Handled_Statement_Sequence (N);
880 Is_BIP_Return_Statement : Boolean;
882 -- Start of processing for Analyze_Block_Statement
884 begin
885 -- In SPARK mode, we reject block statements. Note that the case of
886 -- block statements generated by the expander is fine.
888 if Nkind (Original_Node (N)) = N_Block_Statement then
889 Check_SPARK_Restriction ("block statement is not allowed", N);
890 end if;
892 -- If no handled statement sequence is present, things are really messed
893 -- up, and we just return immediately (defence against previous errors).
895 if No (HSS) then
896 Check_Error_Detected;
897 return;
898 end if;
900 -- Detect whether the block is actually a rewritten return statement of
901 -- a build-in-place function.
903 Is_BIP_Return_Statement :=
904 Present (Id)
905 and then Present (Entity (Id))
906 and then Ekind (Entity (Id)) = E_Return_Statement
907 and then Is_Build_In_Place_Function
908 (Return_Applies_To (Entity (Id)));
910 -- Normal processing with HSS present
912 declare
913 EH : constant List_Id := Exception_Handlers (HSS);
914 Ent : Entity_Id := Empty;
915 S : Entity_Id;
917 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
918 -- Recursively save value of this global, will be restored on exit
920 begin
921 -- Initialize unblocked exit count for statements of begin block
922 -- plus one for each exception handler that is present.
924 Unblocked_Exit_Count := 1;
926 if Present (EH) then
927 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
928 end if;
930 -- If a label is present analyze it and mark it as referenced
932 if Present (Id) then
933 Analyze (Id);
934 Ent := Entity (Id);
936 -- An error defense. If we have an identifier, but no entity, then
937 -- something is wrong. If previous errors, then just remove the
938 -- identifier and continue, otherwise raise an exception.
940 if No (Ent) then
941 Check_Error_Detected;
942 Set_Identifier (N, Empty);
944 else
945 Set_Ekind (Ent, E_Block);
946 Generate_Reference (Ent, N, ' ');
947 Generate_Definition (Ent);
949 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
950 Set_Label_Construct (Parent (Ent), N);
951 end if;
952 end if;
953 end if;
955 -- If no entity set, create a label entity
957 if No (Ent) then
958 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
959 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
960 Set_Parent (Ent, N);
961 end if;
963 Set_Etype (Ent, Standard_Void_Type);
964 Set_Block_Node (Ent, Identifier (N));
965 Push_Scope (Ent);
967 -- The block served as an extended return statement. Ensure that any
968 -- entities created during the analysis and expansion of the return
969 -- object declaration are once again visible.
971 if Is_BIP_Return_Statement then
972 Install_Return_Entities (Ent);
973 end if;
975 if Present (Decls) then
976 Analyze_Declarations (Decls);
977 Check_Completion;
978 Inspect_Deferred_Constant_Completion (Decls);
979 end if;
981 Analyze (HSS);
982 Process_End_Label (HSS, 'e', Ent);
984 -- If exception handlers are present, then we indicate that enclosing
985 -- scopes contain a block with handlers. We only need to mark non-
986 -- generic scopes.
988 if Present (EH) then
989 S := Scope (Ent);
990 loop
991 Set_Has_Nested_Block_With_Handler (S);
992 exit when Is_Overloadable (S)
993 or else Ekind (S) = E_Package
994 or else Is_Generic_Unit (S);
995 S := Scope (S);
996 end loop;
997 end if;
999 Check_References (Ent);
1000 Warn_On_Useless_Assignments (Ent);
1001 End_Scope;
1003 if Unblocked_Exit_Count = 0 then
1004 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1005 Check_Unreachable_Code (N);
1006 else
1007 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1008 end if;
1009 end;
1010 end Analyze_Block_Statement;
1012 ----------------------------
1013 -- Analyze_Case_Statement --
1014 ----------------------------
1016 procedure Analyze_Case_Statement (N : Node_Id) is
1017 Exp : Node_Id;
1018 Exp_Type : Entity_Id;
1019 Exp_Btype : Entity_Id;
1020 Last_Choice : Nat;
1021 Dont_Care : Boolean;
1022 Others_Present : Boolean;
1024 pragma Warnings (Off, Last_Choice);
1025 pragma Warnings (Off, Dont_Care);
1026 -- Don't care about assigned values
1028 Statements_Analyzed : Boolean := False;
1029 -- Set True if at least some statement sequences get analyzed. If False
1030 -- on exit, means we had a serious error that prevented full analysis of
1031 -- the case statement, and as a result it is not a good idea to output
1032 -- warning messages about unreachable code.
1034 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1035 -- Recursively save value of this global, will be restored on exit
1037 procedure Non_Static_Choice_Error (Choice : Node_Id);
1038 -- Error routine invoked by the generic instantiation below when the
1039 -- case statement has a non static choice.
1041 procedure Process_Statements (Alternative : Node_Id);
1042 -- Analyzes all the statements associated with a case alternative.
1043 -- Needed by the generic instantiation below.
1045 package Case_Choices_Processing is new
1046 Generic_Choices_Processing
1047 (Get_Alternatives => Alternatives,
1048 Get_Choices => Discrete_Choices,
1049 Process_Empty_Choice => No_OP,
1050 Process_Non_Static_Choice => Non_Static_Choice_Error,
1051 Process_Associated_Node => Process_Statements);
1052 use Case_Choices_Processing;
1053 -- Instantiation of the generic choice processing package
1055 -----------------------------
1056 -- Non_Static_Choice_Error --
1057 -----------------------------
1059 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1060 begin
1061 Flag_Non_Static_Expr
1062 ("choice given in case statement is not static!", Choice);
1063 end Non_Static_Choice_Error;
1065 ------------------------
1066 -- Process_Statements --
1067 ------------------------
1069 procedure Process_Statements (Alternative : Node_Id) is
1070 Choices : constant List_Id := Discrete_Choices (Alternative);
1071 Ent : Entity_Id;
1073 begin
1074 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1075 Statements_Analyzed := True;
1077 -- An interesting optimization. If the case statement expression
1078 -- is a simple entity, then we can set the current value within an
1079 -- alternative if the alternative has one possible value.
1081 -- case N is
1082 -- when 1 => alpha
1083 -- when 2 | 3 => beta
1084 -- when others => gamma
1086 -- Here we know that N is initially 1 within alpha, but for beta and
1087 -- gamma, we do not know anything more about the initial value.
1089 if Is_Entity_Name (Exp) then
1090 Ent := Entity (Exp);
1092 if Ekind_In (Ent, E_Variable,
1093 E_In_Out_Parameter,
1094 E_Out_Parameter)
1095 then
1096 if List_Length (Choices) = 1
1097 and then Nkind (First (Choices)) in N_Subexpr
1098 and then Compile_Time_Known_Value (First (Choices))
1099 then
1100 Set_Current_Value (Entity (Exp), First (Choices));
1101 end if;
1103 Analyze_Statements (Statements (Alternative));
1105 -- After analyzing the case, set the current value to empty
1106 -- since we won't know what it is for the next alternative
1107 -- (unless reset by this same circuit), or after the case.
1109 Set_Current_Value (Entity (Exp), Empty);
1110 return;
1111 end if;
1112 end if;
1114 -- Case where expression is not an entity name of a variable
1116 Analyze_Statements (Statements (Alternative));
1117 end Process_Statements;
1119 -- Start of processing for Analyze_Case_Statement
1121 begin
1122 Unblocked_Exit_Count := 0;
1123 Exp := Expression (N);
1124 Analyze (Exp);
1126 -- The expression must be of any discrete type. In rare cases, the
1127 -- expander constructs a case statement whose expression has a private
1128 -- type whose full view is discrete. This can happen when generating
1129 -- a stream operation for a variant type after the type is frozen,
1130 -- when the partial of view of the type of the discriminant is private.
1131 -- In that case, use the full view to analyze case alternatives.
1133 if not Is_Overloaded (Exp)
1134 and then not Comes_From_Source (N)
1135 and then Is_Private_Type (Etype (Exp))
1136 and then Present (Full_View (Etype (Exp)))
1137 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1138 then
1139 Resolve (Exp, Etype (Exp));
1140 Exp_Type := Full_View (Etype (Exp));
1142 else
1143 Analyze_And_Resolve (Exp, Any_Discrete);
1144 Exp_Type := Etype (Exp);
1145 end if;
1147 Check_Unset_Reference (Exp);
1148 Exp_Btype := Base_Type (Exp_Type);
1150 -- The expression must be of a discrete type which must be determinable
1151 -- independently of the context in which the expression occurs, but
1152 -- using the fact that the expression must be of a discrete type.
1153 -- Moreover, the type this expression must not be a character literal
1154 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1156 -- If error already reported by Resolve, nothing more to do
1158 if Exp_Btype = Any_Discrete
1159 or else Exp_Btype = Any_Type
1160 then
1161 return;
1163 elsif Exp_Btype = Any_Character then
1164 Error_Msg_N
1165 ("character literal as case expression is ambiguous", Exp);
1166 return;
1168 elsif Ada_Version = Ada_83
1169 and then (Is_Generic_Type (Exp_Btype)
1170 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1171 then
1172 Error_Msg_N
1173 ("(Ada 83) case expression cannot be of a generic type", Exp);
1174 return;
1175 end if;
1177 -- If the case expression is a formal object of mode in out, then treat
1178 -- it as having a nonstatic subtype by forcing use of the base type
1179 -- (which has to get passed to Check_Case_Choices below). Also use base
1180 -- type when the case expression is parenthesized.
1182 if Paren_Count (Exp) > 0
1183 or else (Is_Entity_Name (Exp)
1184 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1185 then
1186 Exp_Type := Exp_Btype;
1187 end if;
1189 -- Call instantiated Analyze_Choices which does the rest of the work
1191 Analyze_Choices (N, Exp_Type, Dont_Care, Others_Present);
1193 -- A case statement with a single OTHERS alternative is not allowed
1194 -- in SPARK.
1196 if Others_Present and then List_Length (Alternatives (N)) = 1 then
1197 Check_SPARK_Restriction
1198 ("OTHERS as unique case alternative is not allowed", N);
1199 end if;
1201 if Exp_Type = Universal_Integer and then not Others_Present then
1202 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1203 end if;
1205 -- If all our exits were blocked by unconditional transfers of control,
1206 -- then the entire CASE statement acts as an unconditional transfer of
1207 -- control, so treat it like one, and check unreachable code. Skip this
1208 -- test if we had serious errors preventing any statement analysis.
1210 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1211 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1212 Check_Unreachable_Code (N);
1213 else
1214 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1215 end if;
1217 if not Expander_Active
1218 and then Compile_Time_Known_Value (Expression (N))
1219 and then Serious_Errors_Detected = 0
1220 then
1221 declare
1222 Chosen : constant Node_Id := Find_Static_Alternative (N);
1223 Alt : Node_Id;
1225 begin
1226 Alt := First (Alternatives (N));
1227 while Present (Alt) loop
1228 if Alt /= Chosen then
1229 Remove_Warning_Messages (Statements (Alt));
1230 end if;
1232 Next (Alt);
1233 end loop;
1234 end;
1235 end if;
1236 end Analyze_Case_Statement;
1238 ----------------------------
1239 -- Analyze_Exit_Statement --
1240 ----------------------------
1242 -- If the exit includes a name, it must be the name of a currently open
1243 -- loop. Otherwise there must be an innermost open loop on the stack, to
1244 -- which the statement implicitly refers.
1246 -- Additionally, in SPARK mode:
1248 -- The exit can only name the closest enclosing loop;
1250 -- An exit with a when clause must be directly contained in a loop;
1252 -- An exit without a when clause must be directly contained in an
1253 -- if-statement with no elsif or else, which is itself directly contained
1254 -- in a loop. The exit must be the last statement in the if-statement.
1256 procedure Analyze_Exit_Statement (N : Node_Id) is
1257 Target : constant Node_Id := Name (N);
1258 Cond : constant Node_Id := Condition (N);
1259 Scope_Id : Entity_Id;
1260 U_Name : Entity_Id;
1261 Kind : Entity_Kind;
1263 begin
1264 if No (Cond) then
1265 Check_Unreachable_Code (N);
1266 end if;
1268 if Present (Target) then
1269 Analyze (Target);
1270 U_Name := Entity (Target);
1272 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1273 Error_Msg_N ("invalid loop name in exit statement", N);
1274 return;
1276 else
1277 if Has_Loop_In_Inner_Open_Scopes (U_Name) then
1278 Check_SPARK_Restriction
1279 ("exit label must name the closest enclosing loop", N);
1280 end if;
1282 Set_Has_Exit (U_Name);
1283 end if;
1285 else
1286 U_Name := Empty;
1287 end if;
1289 for J in reverse 0 .. Scope_Stack.Last loop
1290 Scope_Id := Scope_Stack.Table (J).Entity;
1291 Kind := Ekind (Scope_Id);
1293 if Kind = E_Loop and then (No (Target) or else Scope_Id = U_Name) then
1294 Set_Has_Exit (Scope_Id);
1295 exit;
1297 elsif Kind = E_Block
1298 or else Kind = E_Loop
1299 or else Kind = E_Return_Statement
1300 then
1301 null;
1303 else
1304 Error_Msg_N
1305 ("cannot exit from program unit or accept statement", N);
1306 return;
1307 end if;
1308 end loop;
1310 -- Verify that if present the condition is a Boolean expression
1312 if Present (Cond) then
1313 Analyze_And_Resolve (Cond, Any_Boolean);
1314 Check_Unset_Reference (Cond);
1315 end if;
1317 -- In SPARK mode, verify that the exit statement respects the SPARK
1318 -- restrictions.
1320 if Present (Cond) then
1321 if Nkind (Parent (N)) /= N_Loop_Statement then
1322 Check_SPARK_Restriction
1323 ("exit with when clause must be directly in loop", N);
1324 end if;
1326 else
1327 if Nkind (Parent (N)) /= N_If_Statement then
1328 if Nkind (Parent (N)) = N_Elsif_Part then
1329 Check_SPARK_Restriction
1330 ("exit must be in IF without ELSIF", N);
1331 else
1332 Check_SPARK_Restriction ("exit must be directly in IF", N);
1333 end if;
1335 elsif Nkind (Parent (Parent (N))) /= N_Loop_Statement then
1336 Check_SPARK_Restriction
1337 ("exit must be in IF directly in loop", N);
1339 -- First test the presence of ELSE, so that an exit in an ELSE leads
1340 -- to an error mentioning the ELSE.
1342 elsif Present (Else_Statements (Parent (N))) then
1343 Check_SPARK_Restriction ("exit must be in IF without ELSE", N);
1345 -- An exit in an ELSIF does not reach here, as it would have been
1346 -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
1348 elsif Present (Elsif_Parts (Parent (N))) then
1349 Check_SPARK_Restriction ("exit must be in IF without ELSIF", N);
1350 end if;
1351 end if;
1353 -- Chain exit statement to associated loop entity
1355 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1356 Set_First_Exit_Statement (Scope_Id, N);
1358 -- Since the exit may take us out of a loop, any previous assignment
1359 -- statement is not useless, so clear last assignment indications. It
1360 -- is OK to keep other current values, since if the exit statement
1361 -- does not exit, then the current values are still valid.
1363 Kill_Current_Values (Last_Assignment_Only => True);
1364 end Analyze_Exit_Statement;
1366 ----------------------------
1367 -- Analyze_Goto_Statement --
1368 ----------------------------
1370 procedure Analyze_Goto_Statement (N : Node_Id) is
1371 Label : constant Node_Id := Name (N);
1372 Scope_Id : Entity_Id;
1373 Label_Scope : Entity_Id;
1374 Label_Ent : Entity_Id;
1376 begin
1377 Check_SPARK_Restriction ("goto statement is not allowed", N);
1379 -- Actual semantic checks
1381 Check_Unreachable_Code (N);
1382 Kill_Current_Values (Last_Assignment_Only => True);
1384 Analyze (Label);
1385 Label_Ent := Entity (Label);
1387 -- Ignore previous error
1389 if Label_Ent = Any_Id then
1390 Check_Error_Detected;
1391 return;
1393 -- We just have a label as the target of a goto
1395 elsif Ekind (Label_Ent) /= E_Label then
1396 Error_Msg_N ("target of goto statement must be a label", Label);
1397 return;
1399 -- Check that the target of the goto is reachable according to Ada
1400 -- scoping rules. Note: the special gotos we generate for optimizing
1401 -- local handling of exceptions would violate these rules, but we mark
1402 -- such gotos as analyzed when built, so this code is never entered.
1404 elsif not Reachable (Label_Ent) then
1405 Error_Msg_N ("target of goto statement is not reachable", Label);
1406 return;
1407 end if;
1409 -- Here if goto passes initial validity checks
1411 Label_Scope := Enclosing_Scope (Label_Ent);
1413 for J in reverse 0 .. Scope_Stack.Last loop
1414 Scope_Id := Scope_Stack.Table (J).Entity;
1416 if Label_Scope = Scope_Id
1417 or else not Ekind_In (Scope_Id, E_Block, E_Loop, E_Return_Statement)
1418 then
1419 if Scope_Id /= Label_Scope then
1420 Error_Msg_N
1421 ("cannot exit from program unit or accept statement", N);
1422 end if;
1424 return;
1425 end if;
1426 end loop;
1428 raise Program_Error;
1429 end Analyze_Goto_Statement;
1431 --------------------------
1432 -- Analyze_If_Statement --
1433 --------------------------
1435 -- A special complication arises in the analysis of if statements
1437 -- The expander has circuitry to completely delete code that it can tell
1438 -- will not be executed (as a result of compile time known conditions). In
1439 -- the analyzer, we ensure that code that will be deleted in this manner
1440 -- is analyzed but not expanded. This is obviously more efficient, but
1441 -- more significantly, difficulties arise if code is expanded and then
1442 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1443 -- generated in deleted code must be frozen from start, because the nodes
1444 -- on which they depend will not be available at the freeze point.
1446 procedure Analyze_If_Statement (N : Node_Id) is
1447 E : Node_Id;
1449 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1450 -- Recursively save value of this global, will be restored on exit
1452 Save_In_Deleted_Code : Boolean;
1454 Del : Boolean := False;
1455 -- This flag gets set True if a True condition has been found, which
1456 -- means that remaining ELSE/ELSIF parts are deleted.
1458 procedure Analyze_Cond_Then (Cnode : Node_Id);
1459 -- This is applied to either the N_If_Statement node itself or to an
1460 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1461 -- statements associated with it.
1463 -----------------------
1464 -- Analyze_Cond_Then --
1465 -----------------------
1467 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1468 Cond : constant Node_Id := Condition (Cnode);
1469 Tstm : constant List_Id := Then_Statements (Cnode);
1471 begin
1472 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1473 Analyze_And_Resolve (Cond, Any_Boolean);
1474 Check_Unset_Reference (Cond);
1475 Set_Current_Value_Condition (Cnode);
1477 -- If already deleting, then just analyze then statements
1479 if Del then
1480 Analyze_Statements (Tstm);
1482 -- Compile time known value, not deleting yet
1484 elsif Compile_Time_Known_Value (Cond) then
1485 Save_In_Deleted_Code := In_Deleted_Code;
1487 -- If condition is True, then analyze the THEN statements and set
1488 -- no expansion for ELSE and ELSIF parts.
1490 if Is_True (Expr_Value (Cond)) then
1491 Analyze_Statements (Tstm);
1492 Del := True;
1493 Expander_Mode_Save_And_Set (False);
1494 In_Deleted_Code := True;
1496 -- If condition is False, analyze THEN with expansion off
1498 else -- Is_False (Expr_Value (Cond))
1499 Expander_Mode_Save_And_Set (False);
1500 In_Deleted_Code := True;
1501 Analyze_Statements (Tstm);
1502 Expander_Mode_Restore;
1503 In_Deleted_Code := Save_In_Deleted_Code;
1504 end if;
1506 -- Not known at compile time, not deleting, normal analysis
1508 else
1509 Analyze_Statements (Tstm);
1510 end if;
1511 end Analyze_Cond_Then;
1513 -- Start of Analyze_If_Statement
1515 begin
1516 -- Initialize exit count for else statements. If there is no else part,
1517 -- this count will stay non-zero reflecting the fact that the uncovered
1518 -- else case is an unblocked exit.
1520 Unblocked_Exit_Count := 1;
1521 Analyze_Cond_Then (N);
1523 -- Now to analyze the elsif parts if any are present
1525 if Present (Elsif_Parts (N)) then
1526 E := First (Elsif_Parts (N));
1527 while Present (E) loop
1528 Analyze_Cond_Then (E);
1529 Next (E);
1530 end loop;
1531 end if;
1533 if Present (Else_Statements (N)) then
1534 Analyze_Statements (Else_Statements (N));
1535 end if;
1537 -- If all our exits were blocked by unconditional transfers of control,
1538 -- then the entire IF statement acts as an unconditional transfer of
1539 -- control, so treat it like one, and check unreachable code.
1541 if Unblocked_Exit_Count = 0 then
1542 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1543 Check_Unreachable_Code (N);
1544 else
1545 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1546 end if;
1548 if Del then
1549 Expander_Mode_Restore;
1550 In_Deleted_Code := Save_In_Deleted_Code;
1551 end if;
1553 if not Expander_Active
1554 and then Compile_Time_Known_Value (Condition (N))
1555 and then Serious_Errors_Detected = 0
1556 then
1557 if Is_True (Expr_Value (Condition (N))) then
1558 Remove_Warning_Messages (Else_Statements (N));
1560 if Present (Elsif_Parts (N)) then
1561 E := First (Elsif_Parts (N));
1562 while Present (E) loop
1563 Remove_Warning_Messages (Then_Statements (E));
1564 Next (E);
1565 end loop;
1566 end if;
1568 else
1569 Remove_Warning_Messages (Then_Statements (N));
1570 end if;
1571 end if;
1572 end Analyze_If_Statement;
1574 ----------------------------------------
1575 -- Analyze_Implicit_Label_Declaration --
1576 ----------------------------------------
1578 -- An implicit label declaration is generated in the innermost enclosing
1579 -- declarative part. This is done for labels, and block and loop names.
1581 -- Note: any changes in this routine may need to be reflected in
1582 -- Analyze_Label_Entity.
1584 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1585 Id : constant Node_Id := Defining_Identifier (N);
1586 begin
1587 Enter_Name (Id);
1588 Set_Ekind (Id, E_Label);
1589 Set_Etype (Id, Standard_Void_Type);
1590 Set_Enclosing_Scope (Id, Current_Scope);
1591 end Analyze_Implicit_Label_Declaration;
1593 ------------------------------
1594 -- Analyze_Iteration_Scheme --
1595 ------------------------------
1597 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1598 Cond : Node_Id;
1599 Iter_Spec : Node_Id;
1600 Loop_Spec : Node_Id;
1602 begin
1603 -- For an infinite loop, there is no iteration scheme
1605 if No (N) then
1606 return;
1607 end if;
1609 Cond := Condition (N);
1610 Iter_Spec := Iterator_Specification (N);
1611 Loop_Spec := Loop_Parameter_Specification (N);
1613 if Present (Cond) then
1614 Analyze_And_Resolve (Cond, Any_Boolean);
1615 Check_Unset_Reference (Cond);
1616 Set_Current_Value_Condition (N);
1618 elsif Present (Iter_Spec) then
1619 Analyze_Iterator_Specification (Iter_Spec);
1621 else
1622 Analyze_Loop_Parameter_Specification (Loop_Spec);
1623 end if;
1624 end Analyze_Iteration_Scheme;
1626 ------------------------------------
1627 -- Analyze_Iterator_Specification --
1628 ------------------------------------
1630 procedure Analyze_Iterator_Specification (N : Node_Id) is
1631 Loc : constant Source_Ptr := Sloc (N);
1632 Def_Id : constant Node_Id := Defining_Identifier (N);
1633 Subt : constant Node_Id := Subtype_Indication (N);
1634 Iter_Name : constant Node_Id := Name (N);
1636 Ent : Entity_Id;
1637 Typ : Entity_Id;
1639 begin
1640 Enter_Name (Def_Id);
1642 if Present (Subt) then
1643 Analyze (Subt);
1644 end if;
1646 Preanalyze_Range (Iter_Name);
1648 -- Set the kind of the loop variable, which is not visible within
1649 -- the iterator name.
1651 Set_Ekind (Def_Id, E_Variable);
1653 -- If the domain of iteration is an expression, create a declaration for
1654 -- it, so that finalization actions are introduced outside of the loop.
1655 -- The declaration must be a renaming because the body of the loop may
1656 -- assign to elements.
1658 if not Is_Entity_Name (Iter_Name)
1660 -- When the context is a quantified expression, the renaming
1661 -- declaration is delayed until the expansion phase if we are
1662 -- doing expansion.
1664 and then (Nkind (Parent (N)) /= N_Quantified_Expression
1665 or else Operating_Mode = Check_Semantics)
1667 -- Do not perform this expansion in SPARK mode, since the formal
1668 -- verification directly deals with the source form of the iterator.
1670 and then not SPARK_Mode
1671 then
1672 declare
1673 Id : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
1674 Decl : Node_Id;
1676 begin
1677 Typ := Etype (Iter_Name);
1679 -- Protect against malformed iterator
1681 if Typ = Any_Type then
1682 Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
1683 return;
1684 end if;
1686 -- The name in the renaming declaration may be a function call.
1687 -- Indicate that it does not come from source, to suppress
1688 -- spurious warnings on renamings of parameterless functions,
1689 -- a common enough idiom in user-defined iterators.
1691 Decl :=
1692 Make_Object_Renaming_Declaration (Loc,
1693 Defining_Identifier => Id,
1694 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
1695 Name =>
1696 New_Copy_Tree (Iter_Name, New_Sloc => Loc));
1698 Insert_Actions (Parent (Parent (N)), New_List (Decl));
1699 Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
1700 Set_Etype (Id, Typ);
1701 Set_Etype (Name (N), Typ);
1702 end;
1704 -- Container is an entity or an array with uncontrolled components, or
1705 -- else it is a container iterator given by a function call, typically
1706 -- called Iterate in the case of predefined containers, even though
1707 -- Iterate is not a reserved name. What matters is that the return type
1708 -- of the function is an iterator type.
1710 elsif Is_Entity_Name (Iter_Name) then
1711 Analyze (Iter_Name);
1713 if Nkind (Iter_Name) = N_Function_Call then
1714 declare
1715 C : constant Node_Id := Name (Iter_Name);
1716 I : Interp_Index;
1717 It : Interp;
1719 begin
1720 if not Is_Overloaded (Iter_Name) then
1721 Resolve (Iter_Name, Etype (C));
1723 else
1724 Get_First_Interp (C, I, It);
1725 while It.Typ /= Empty loop
1726 if Reverse_Present (N) then
1727 if Is_Reversible_Iterator (It.Typ) then
1728 Resolve (Iter_Name, It.Typ);
1729 exit;
1730 end if;
1732 elsif Is_Iterator (It.Typ) then
1733 Resolve (Iter_Name, It.Typ);
1734 exit;
1735 end if;
1737 Get_Next_Interp (I, It);
1738 end loop;
1739 end if;
1740 end;
1742 -- Domain of iteration is not overloaded
1744 else
1745 Resolve (Iter_Name, Etype (Iter_Name));
1746 end if;
1747 end if;
1749 Typ := Etype (Iter_Name);
1751 if Is_Array_Type (Typ) then
1752 if Of_Present (N) then
1753 Set_Etype (Def_Id, Component_Type (Typ));
1755 -- Here we have a missing Range attribute
1757 else
1758 Error_Msg_N
1759 ("missing Range attribute in iteration over an array", N);
1761 -- In Ada 2012 mode, this may be an attempt at an iterator
1763 if Ada_Version >= Ada_2012 then
1764 Error_Msg_NE
1765 ("\if& is meant to designate an element of the array, use OF",
1766 N, Def_Id);
1767 end if;
1769 -- Prevent cascaded errors
1771 Set_Ekind (Def_Id, E_Loop_Parameter);
1772 Set_Etype (Def_Id, Etype (First_Index (Typ)));
1773 end if;
1775 -- Check for type error in iterator
1777 elsif Typ = Any_Type then
1778 return;
1780 -- Iteration over a container
1782 else
1783 Set_Ekind (Def_Id, E_Loop_Parameter);
1785 if Of_Present (N) then
1787 -- The type of the loop variable is the Iterator_Element aspect of
1788 -- the container type.
1790 declare
1791 Element : constant Entity_Id :=
1792 Find_Value_Of_Aspect (Typ, Aspect_Iterator_Element);
1793 begin
1794 if No (Element) then
1795 Error_Msg_NE ("cannot iterate over&", N, Typ);
1796 return;
1797 else
1798 Set_Etype (Def_Id, Entity (Element));
1800 -- If the container has a variable indexing aspect, the
1801 -- element is a variable and is modifiable in the loop.
1803 if Has_Aspect (Typ, Aspect_Variable_Indexing) then
1804 Set_Ekind (Def_Id, E_Variable);
1805 end if;
1806 end if;
1807 end;
1809 else
1810 -- For an iteration of the form IN, the name must denote an
1811 -- iterator, typically the result of a call to Iterate. Give a
1812 -- useful error message when the name is a container by itself.
1814 if Is_Entity_Name (Original_Node (Name (N)))
1815 and then not Is_Iterator (Typ)
1816 then
1817 if not Has_Aspect (Typ, Aspect_Iterator_Element) then
1818 Error_Msg_NE
1819 ("cannot iterate over&", Name (N), Typ);
1820 else
1821 Error_Msg_N
1822 ("name must be an iterator, not a container", Name (N));
1823 end if;
1825 Error_Msg_NE
1826 ("\to iterate directly over the elements of a container, " &
1827 "write `of &`", Name (N), Original_Node (Name (N)));
1828 end if;
1830 -- The result type of Iterate function is the classwide type of
1831 -- the interface parent. We need the specific Cursor type defined
1832 -- in the container package.
1834 Ent := First_Entity (Scope (Typ));
1835 while Present (Ent) loop
1836 if Chars (Ent) = Name_Cursor then
1837 Set_Etype (Def_Id, Etype (Ent));
1838 exit;
1839 end if;
1841 Next_Entity (Ent);
1842 end loop;
1843 end if;
1844 end if;
1845 end Analyze_Iterator_Specification;
1847 -------------------
1848 -- Analyze_Label --
1849 -------------------
1851 -- Note: the semantic work required for analyzing labels (setting them as
1852 -- reachable) was done in a prepass through the statements in the block,
1853 -- so that forward gotos would be properly handled. See Analyze_Statements
1854 -- for further details. The only processing required here is to deal with
1855 -- optimizations that depend on an assumption of sequential control flow,
1856 -- since of course the occurrence of a label breaks this assumption.
1858 procedure Analyze_Label (N : Node_Id) is
1859 pragma Warnings (Off, N);
1860 begin
1861 Kill_Current_Values;
1862 end Analyze_Label;
1864 --------------------------
1865 -- Analyze_Label_Entity --
1866 --------------------------
1868 procedure Analyze_Label_Entity (E : Entity_Id) is
1869 begin
1870 Set_Ekind (E, E_Label);
1871 Set_Etype (E, Standard_Void_Type);
1872 Set_Enclosing_Scope (E, Current_Scope);
1873 Set_Reachable (E, True);
1874 end Analyze_Label_Entity;
1876 ------------------------------------------
1877 -- Analyze_Loop_Parameter_Specification --
1878 ------------------------------------------
1880 procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
1881 Loop_Nod : constant Node_Id := Parent (Parent (N));
1883 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
1884 -- If the bounds are given by a 'Range reference on a function call
1885 -- that returns a controlled array, introduce an explicit declaration
1886 -- to capture the bounds, so that the function result can be finalized
1887 -- in timely fashion.
1889 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean;
1890 -- N is the node for an arbitrary construct. This function searches the
1891 -- construct N to see if any expressions within it contain function
1892 -- calls that use the secondary stack, returning True if any such call
1893 -- is found, and False otherwise.
1895 procedure Process_Bounds (R : Node_Id);
1896 -- If the iteration is given by a range, create temporaries and
1897 -- assignment statements block to capture the bounds and perform
1898 -- required finalization actions in case a bound includes a function
1899 -- call that uses the temporary stack. We first pre-analyze a copy of
1900 -- the range in order to determine the expected type, and analyze and
1901 -- resolve the original bounds.
1903 --------------------------------------
1904 -- Check_Controlled_Array_Attribute --
1905 --------------------------------------
1907 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
1908 begin
1909 if Nkind (DS) = N_Attribute_Reference
1910 and then Is_Entity_Name (Prefix (DS))
1911 and then Ekind (Entity (Prefix (DS))) = E_Function
1912 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
1913 and then
1914 Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
1915 and then Expander_Active
1916 then
1917 declare
1918 Loc : constant Source_Ptr := Sloc (N);
1919 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
1920 Indx : constant Entity_Id :=
1921 Base_Type (Etype (First_Index (Arr)));
1922 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
1923 Decl : Node_Id;
1925 begin
1926 Decl :=
1927 Make_Subtype_Declaration (Loc,
1928 Defining_Identifier => Subt,
1929 Subtype_Indication =>
1930 Make_Subtype_Indication (Loc,
1931 Subtype_Mark => New_Reference_To (Indx, Loc),
1932 Constraint =>
1933 Make_Range_Constraint (Loc, Relocate_Node (DS))));
1934 Insert_Before (Loop_Nod, Decl);
1935 Analyze (Decl);
1937 Rewrite (DS,
1938 Make_Attribute_Reference (Loc,
1939 Prefix => New_Reference_To (Subt, Loc),
1940 Attribute_Name => Attribute_Name (DS)));
1942 Analyze (DS);
1943 end;
1944 end if;
1945 end Check_Controlled_Array_Attribute;
1947 ------------------------------------
1948 -- Has_Call_Using_Secondary_Stack --
1949 ------------------------------------
1951 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean is
1953 function Check_Call (N : Node_Id) return Traverse_Result;
1954 -- Check if N is a function call which uses the secondary stack
1956 ----------------
1957 -- Check_Call --
1958 ----------------
1960 function Check_Call (N : Node_Id) return Traverse_Result is
1961 Nam : Node_Id;
1962 Subp : Entity_Id;
1963 Return_Typ : Entity_Id;
1965 begin
1966 if Nkind (N) = N_Function_Call then
1967 Nam := Name (N);
1969 -- Call using access to subprogram with explicit dereference
1971 if Nkind (Nam) = N_Explicit_Dereference then
1972 Subp := Etype (Nam);
1974 -- Call using a selected component notation or Ada 2005 object
1975 -- operation notation
1977 elsif Nkind (Nam) = N_Selected_Component then
1978 Subp := Entity (Selector_Name (Nam));
1980 -- Common case
1982 else
1983 Subp := Entity (Nam);
1984 end if;
1986 Return_Typ := Etype (Subp);
1988 if Is_Composite_Type (Return_Typ)
1989 and then not Is_Constrained (Return_Typ)
1990 then
1991 return Abandon;
1993 elsif Sec_Stack_Needed_For_Return (Subp) then
1994 return Abandon;
1995 end if;
1996 end if;
1998 -- Continue traversing the tree
2000 return OK;
2001 end Check_Call;
2003 function Check_Calls is new Traverse_Func (Check_Call);
2005 -- Start of processing for Has_Call_Using_Secondary_Stack
2007 begin
2008 return Check_Calls (N) = Abandon;
2009 end Has_Call_Using_Secondary_Stack;
2011 --------------------
2012 -- Process_Bounds --
2013 --------------------
2015 procedure Process_Bounds (R : Node_Id) is
2016 Loc : constant Source_Ptr := Sloc (N);
2018 function One_Bound
2019 (Original_Bound : Node_Id;
2020 Analyzed_Bound : Node_Id;
2021 Typ : Entity_Id) return Node_Id;
2022 -- Capture value of bound and return captured value
2024 ---------------
2025 -- One_Bound --
2026 ---------------
2028 function One_Bound
2029 (Original_Bound : Node_Id;
2030 Analyzed_Bound : Node_Id;
2031 Typ : Entity_Id) return Node_Id
2033 Assign : Node_Id;
2034 Decl : Node_Id;
2035 Id : Entity_Id;
2037 begin
2038 -- If the bound is a constant or an object, no need for a separate
2039 -- declaration. If the bound is the result of previous expansion
2040 -- it is already analyzed and should not be modified. Note that
2041 -- the Bound will be resolved later, if needed, as part of the
2042 -- call to Make_Index (literal bounds may need to be resolved to
2043 -- type Integer).
2045 if Analyzed (Original_Bound) then
2046 return Original_Bound;
2048 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
2049 N_Character_Literal)
2050 or else Is_Entity_Name (Analyzed_Bound)
2051 then
2052 Analyze_And_Resolve (Original_Bound, Typ);
2053 return Original_Bound;
2054 end if;
2056 -- Normally, the best approach is simply to generate a constant
2057 -- declaration that captures the bound. However, there is a nasty
2058 -- case where this is wrong. If the bound is complex, and has a
2059 -- possible use of the secondary stack, we need to generate a
2060 -- separate assignment statement to ensure the creation of a block
2061 -- which will release the secondary stack.
2063 -- We prefer the constant declaration, since it leaves us with a
2064 -- proper trace of the value, useful in optimizations that get rid
2065 -- of junk range checks.
2067 if not Has_Call_Using_Secondary_Stack (Analyzed_Bound) then
2068 Analyze_And_Resolve (Original_Bound, Typ);
2069 Force_Evaluation (Original_Bound);
2070 return Original_Bound;
2071 end if;
2073 Id := Make_Temporary (Loc, 'R', Original_Bound);
2075 -- Here we make a declaration with a separate assignment
2076 -- statement, and insert before loop header.
2078 Decl :=
2079 Make_Object_Declaration (Loc,
2080 Defining_Identifier => Id,
2081 Object_Definition => New_Occurrence_Of (Typ, Loc));
2083 Assign :=
2084 Make_Assignment_Statement (Loc,
2085 Name => New_Occurrence_Of (Id, Loc),
2086 Expression => Relocate_Node (Original_Bound));
2088 Insert_Actions (Loop_Nod, New_List (Decl, Assign));
2090 -- Now that this temporary variable is initialized we decorate it
2091 -- as safe-to-reevaluate to inform to the backend that no further
2092 -- asignment will be issued and hence it can be handled as side
2093 -- effect free. Note that this decoration must be done when the
2094 -- assignment has been analyzed because otherwise it will be
2095 -- rejected (see Analyze_Assignment).
2097 Set_Is_Safe_To_Reevaluate (Id);
2099 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
2101 if Nkind (Assign) = N_Assignment_Statement then
2102 return Expression (Assign);
2103 else
2104 return Original_Bound;
2105 end if;
2106 end One_Bound;
2108 Hi : constant Node_Id := High_Bound (R);
2109 Lo : constant Node_Id := Low_Bound (R);
2110 R_Copy : constant Node_Id := New_Copy_Tree (R);
2111 New_Hi : Node_Id;
2112 New_Lo : Node_Id;
2113 Typ : Entity_Id;
2115 -- Start of processing for Process_Bounds
2117 begin
2118 Set_Parent (R_Copy, Parent (R));
2119 Preanalyze_Range (R_Copy);
2120 Typ := Etype (R_Copy);
2122 -- If the type of the discrete range is Universal_Integer, then the
2123 -- bound's type must be resolved to Integer, and any object used to
2124 -- hold the bound must also have type Integer, unless the literal
2125 -- bounds are constant-folded expressions with a user-defined type.
2127 if Typ = Universal_Integer then
2128 if Nkind (Lo) = N_Integer_Literal
2129 and then Present (Etype (Lo))
2130 and then Scope (Etype (Lo)) /= Standard_Standard
2131 then
2132 Typ := Etype (Lo);
2134 elsif Nkind (Hi) = N_Integer_Literal
2135 and then Present (Etype (Hi))
2136 and then Scope (Etype (Hi)) /= Standard_Standard
2137 then
2138 Typ := Etype (Hi);
2140 else
2141 Typ := Standard_Integer;
2142 end if;
2143 end if;
2145 Set_Etype (R, Typ);
2147 New_Lo := One_Bound (Lo, Low_Bound (R_Copy), Typ);
2148 New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);
2150 -- Propagate staticness to loop range itself, in case the
2151 -- corresponding subtype is static.
2153 if New_Lo /= Lo and then Is_Static_Expression (New_Lo) then
2154 Rewrite (Low_Bound (R), New_Copy (New_Lo));
2155 end if;
2157 if New_Hi /= Hi and then Is_Static_Expression (New_Hi) then
2158 Rewrite (High_Bound (R), New_Copy (New_Hi));
2159 end if;
2160 end Process_Bounds;
2162 -- Local variables
2164 DS : constant Node_Id := Discrete_Subtype_Definition (N);
2165 Id : constant Entity_Id := Defining_Identifier (N);
2167 DS_Copy : Node_Id;
2169 -- Start of processing for Analyze_Loop_Parameter_Specification
2171 begin
2172 Enter_Name (Id);
2174 -- We always consider the loop variable to be referenced, since the loop
2175 -- may be used just for counting purposes.
2177 Generate_Reference (Id, N, ' ');
2179 -- Check for the case of loop variable hiding a local variable (used
2180 -- later on to give a nice warning if the hidden variable is never
2181 -- assigned).
2183 declare
2184 H : constant Entity_Id := Homonym (Id);
2185 begin
2186 if Present (H)
2187 and then Ekind (H) = E_Variable
2188 and then Is_Discrete_Type (Etype (H))
2189 and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
2190 then
2191 Set_Hiding_Loop_Variable (H, Id);
2192 end if;
2193 end;
2195 -- Loop parameter specification must include subtype mark in SPARK
2197 if Nkind (DS) = N_Range then
2198 Check_SPARK_Restriction
2199 ("loop parameter specification must include subtype mark", N);
2200 end if;
2202 -- Analyze the subtype definition and create temporaries for the bounds.
2203 -- Do not evaluate the range when preanalyzing a quantified expression
2204 -- because bounds expressed as function calls with side effects will be
2205 -- erroneously replicated.
2207 if Nkind (DS) = N_Range
2208 and then Expander_Active
2209 and then Nkind (Parent (N)) /= N_Quantified_Expression
2210 then
2211 Process_Bounds (DS);
2213 -- Either the expander not active or the range of iteration is a subtype
2214 -- indication, an entity, or a function call that yields an aggregate or
2215 -- a container.
2217 else
2218 DS_Copy := New_Copy_Tree (DS);
2219 Set_Parent (DS_Copy, Parent (DS));
2220 Preanalyze_Range (DS_Copy);
2222 -- Ada 2012: If the domain of iteration is a function call, it is the
2223 -- new iterator form.
2225 if Nkind (DS_Copy) = N_Function_Call
2226 or else (Is_Entity_Name (DS_Copy)
2227 and then not Is_Type (Entity (DS_Copy)))
2228 then
2229 -- This is an iterator specification. Rewrite it as such and
2230 -- analyze it to capture function calls that may require
2231 -- finalization actions.
2233 declare
2234 I_Spec : constant Node_Id :=
2235 Make_Iterator_Specification (Sloc (N),
2236 Defining_Identifier => Relocate_Node (Id),
2237 Name => DS_Copy,
2238 Subtype_Indication => Empty,
2239 Reverse_Present => Reverse_Present (N));
2240 Scheme : constant Node_Id := Parent (N);
2242 begin
2243 Set_Iterator_Specification (Scheme, I_Spec);
2244 Set_Loop_Parameter_Specification (Scheme, Empty);
2245 Analyze_Iterator_Specification (I_Spec);
2247 -- In a generic context, analyze the original domain of
2248 -- iteration, for name capture.
2250 if not Expander_Active then
2251 Analyze (DS);
2252 end if;
2254 -- Set kind of loop parameter, which may be used in the
2255 -- subsequent analysis of the condition in a quantified
2256 -- expression.
2258 Set_Ekind (Id, E_Loop_Parameter);
2259 return;
2260 end;
2262 -- Domain of iteration is not a function call, and is side-effect
2263 -- free.
2265 else
2266 -- A quantified expression that appears in a pre/post condition
2267 -- is pre-analyzed several times. If the range is given by an
2268 -- attribute reference it is rewritten as a range, and this is
2269 -- done even with expansion disabled. If the type is already set
2270 -- do not reanalyze, because a range with static bounds may be
2271 -- typed Integer by default.
2273 if Nkind (Parent (N)) = N_Quantified_Expression
2274 and then Present (Etype (DS))
2275 then
2276 null;
2277 else
2278 Analyze (DS);
2279 end if;
2280 end if;
2281 end if;
2283 if DS = Error then
2284 return;
2285 end if;
2287 -- Some additional checks if we are iterating through a type
2289 if Is_Entity_Name (DS)
2290 and then Present (Entity (DS))
2291 and then Is_Type (Entity (DS))
2292 then
2293 -- The subtype indication may denote the completion of an incomplete
2294 -- type declaration.
2296 if Ekind (Entity (DS)) = E_Incomplete_Type then
2297 Set_Entity (DS, Get_Full_View (Entity (DS)));
2298 Set_Etype (DS, Entity (DS));
2299 end if;
2301 -- Attempt to iterate through non-static predicate. Note that a type
2302 -- with inherited predicates may have both static and dynamic forms.
2303 -- In this case it is not sufficent to check the static predicate
2304 -- function only, look for a dynamic predicate aspect as well.
2306 if Is_Discrete_Type (Entity (DS))
2307 and then Present (Predicate_Function (Entity (DS)))
2308 and then (No (Static_Predicate (Entity (DS)))
2309 or else Has_Dynamic_Predicate_Aspect (Entity (DS)))
2310 then
2311 Bad_Predicated_Subtype_Use
2312 ("cannot use subtype& with non-static predicate for loop " &
2313 "iteration", DS, Entity (DS), Suggest_Static => True);
2314 end if;
2315 end if;
2317 -- Error if not discrete type
2319 if not Is_Discrete_Type (Etype (DS)) then
2320 Wrong_Type (DS, Any_Discrete);
2321 Set_Etype (DS, Any_Type);
2322 end if;
2324 Check_Controlled_Array_Attribute (DS);
2326 Make_Index (DS, N, In_Iter_Schm => True);
2327 Set_Ekind (Id, E_Loop_Parameter);
2329 -- A quantified expression which appears in a pre- or post-condition may
2330 -- be analyzed multiple times. The analysis of the range creates several
2331 -- itypes which reside in different scopes depending on whether the pre-
2332 -- or post-condition has been expanded. Update the type of the loop
2333 -- variable to reflect the proper itype at each stage of analysis.
2335 if No (Etype (Id))
2336 or else Etype (Id) = Any_Type
2337 or else
2338 (Present (Etype (Id))
2339 and then Is_Itype (Etype (Id))
2340 and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
2341 and then Nkind (Original_Node (Parent (Loop_Nod))) =
2342 N_Quantified_Expression)
2343 then
2344 Set_Etype (Id, Etype (DS));
2345 end if;
2347 -- Treat a range as an implicit reference to the type, to inhibit
2348 -- spurious warnings.
2350 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
2351 Set_Is_Known_Valid (Id, True);
2353 -- The loop is not a declarative part, so the loop variable must be
2354 -- frozen explicitly. Do not freeze while preanalyzing a quantified
2355 -- expression because the freeze node will not be inserted into the
2356 -- tree due to flag Is_Spec_Expression being set.
2358 if Nkind (Parent (N)) /= N_Quantified_Expression then
2359 declare
2360 Flist : constant List_Id := Freeze_Entity (Id, N);
2361 begin
2362 if Is_Non_Empty_List (Flist) then
2363 Insert_Actions (N, Flist);
2364 end if;
2365 end;
2366 end if;
2368 -- Check for null or possibly null range and issue warning. We suppress
2369 -- such messages in generic templates and instances, because in practice
2370 -- they tend to be dubious in these cases.
2372 if Nkind (DS) = N_Range and then Comes_From_Source (N) then
2373 declare
2374 L : constant Node_Id := Low_Bound (DS);
2375 H : constant Node_Id := High_Bound (DS);
2377 begin
2378 -- If range of loop is null, issue warning
2380 if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
2382 -- Suppress the warning if inside a generic template or
2383 -- instance, since in practice they tend to be dubious in these
2384 -- cases since they can result from intended parametrization.
2386 if not Inside_A_Generic and then not In_Instance then
2388 -- Specialize msg if invalid values could make the loop
2389 -- non-null after all.
2391 if Compile_Time_Compare
2392 (L, H, Assume_Valid => False) = GT
2393 then
2394 Error_Msg_N
2395 ("??loop range is null, loop will not execute", DS);
2397 -- Since we know the range of the loop is null, set the
2398 -- appropriate flag to remove the loop entirely during
2399 -- expansion.
2401 Set_Is_Null_Loop (Loop_Nod);
2403 -- Here is where the loop could execute because of invalid
2404 -- values, so issue appropriate message and in this case we
2405 -- do not set the Is_Null_Loop flag since the loop may
2406 -- execute.
2408 else
2409 Error_Msg_N
2410 ("??loop range may be null, loop may not execute",
2411 DS);
2412 Error_Msg_N
2413 ("??can only execute if invalid values are present",
2414 DS);
2415 end if;
2416 end if;
2418 -- In either case, suppress warnings in the body of the loop,
2419 -- since it is likely that these warnings will be inappropriate
2420 -- if the loop never actually executes, which is likely.
2422 Set_Suppress_Loop_Warnings (Loop_Nod);
2424 -- The other case for a warning is a reverse loop where the
2425 -- upper bound is the integer literal zero or one, and the
2426 -- lower bound may exceed this value.
2428 -- For example, we have
2430 -- for J in reverse N .. 1 loop
2432 -- In practice, this is very likely to be a case of reversing
2433 -- the bounds incorrectly in the range.
2435 elsif Reverse_Present (N)
2436 and then Nkind (Original_Node (H)) = N_Integer_Literal
2437 and then
2438 (Intval (Original_Node (H)) = Uint_0
2439 or else
2440 Intval (Original_Node (H)) = Uint_1)
2441 then
2442 -- Lower bound may in fact be known and known not to exceed
2443 -- upper bound (e.g. reverse 0 .. 1) and that's OK.
2445 if Compile_Time_Known_Value (L)
2446 and then Expr_Value (L) <= Expr_Value (H)
2447 then
2448 null;
2450 -- Otherwise warning is warranted
2452 else
2453 Error_Msg_N ("??loop range may be null", DS);
2454 Error_Msg_N ("\??bounds may be wrong way round", DS);
2455 end if;
2456 end if;
2457 end;
2458 end if;
2459 end Analyze_Loop_Parameter_Specification;
2461 ----------------------------
2462 -- Analyze_Loop_Statement --
2463 ----------------------------
2465 procedure Analyze_Loop_Statement (N : Node_Id) is
2467 function Is_Container_Iterator (Iter : Node_Id) return Boolean;
2468 -- Given a loop iteration scheme, determine whether it is an Ada 2012
2469 -- container iteration.
2471 function Is_Wrapped_In_Block (N : Node_Id) return Boolean;
2472 -- Determine whether node N is the sole statement of a block
2474 ---------------------------
2475 -- Is_Container_Iterator --
2476 ---------------------------
2478 function Is_Container_Iterator (Iter : Node_Id) return Boolean is
2479 begin
2480 -- Infinite loop
2482 if No (Iter) then
2483 return False;
2485 -- While loop
2487 elsif Present (Condition (Iter)) then
2488 return False;
2490 -- for Def_Id in [reverse] Name loop
2491 -- for Def_Id [: Subtype_Indication] of [reverse] Name loop
2493 elsif Present (Iterator_Specification (Iter)) then
2494 declare
2495 Nam : constant Node_Id := Name (Iterator_Specification (Iter));
2496 Nam_Copy : Node_Id;
2498 begin
2499 Nam_Copy := New_Copy_Tree (Nam);
2500 Set_Parent (Nam_Copy, Parent (Nam));
2501 Preanalyze_Range (Nam_Copy);
2503 -- The only two options here are iteration over a container or
2504 -- an array.
2506 return not Is_Array_Type (Etype (Nam_Copy));
2507 end;
2509 -- for Def_Id in [reverse] Discrete_Subtype_Definition loop
2511 else
2512 declare
2513 LP : constant Node_Id := Loop_Parameter_Specification (Iter);
2514 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
2515 DS_Copy : Node_Id;
2517 begin
2518 DS_Copy := New_Copy_Tree (DS);
2519 Set_Parent (DS_Copy, Parent (DS));
2520 Preanalyze_Range (DS_Copy);
2522 -- Check for a call to Iterate ()
2524 return
2525 Nkind (DS_Copy) = N_Function_Call
2526 and then Needs_Finalization (Etype (DS_Copy));
2527 end;
2528 end if;
2529 end Is_Container_Iterator;
2531 -------------------------
2532 -- Is_Wrapped_In_Block --
2533 -------------------------
2535 function Is_Wrapped_In_Block (N : Node_Id) return Boolean is
2536 HSS : constant Node_Id := Parent (N);
2538 begin
2539 return
2540 Nkind (HSS) = N_Handled_Sequence_Of_Statements
2541 and then Nkind (Parent (HSS)) = N_Block_Statement
2542 and then First (Statements (HSS)) = N
2543 and then No (Next (First (Statements (HSS))));
2544 end Is_Wrapped_In_Block;
2546 -- Local declarations
2548 Id : constant Node_Id := Identifier (N);
2549 Iter : constant Node_Id := Iteration_Scheme (N);
2550 Loc : constant Source_Ptr := Sloc (N);
2551 Ent : Entity_Id;
2552 Stmt : Node_Id;
2554 -- Start of processing for Analyze_Loop_Statement
2556 begin
2557 if Present (Id) then
2559 -- Make name visible, e.g. for use in exit statements. Loop labels
2560 -- are always considered to be referenced.
2562 Analyze (Id);
2563 Ent := Entity (Id);
2565 -- Guard against serious error (typically, a scope mismatch when
2566 -- semantic analysis is requested) by creating loop entity to
2567 -- continue analysis.
2569 if No (Ent) then
2570 if Total_Errors_Detected /= 0 then
2571 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
2572 else
2573 raise Program_Error;
2574 end if;
2576 else
2577 Generate_Reference (Ent, N, ' ');
2578 Generate_Definition (Ent);
2580 -- If we found a label, mark its type. If not, ignore it, since it
2581 -- means we have a conflicting declaration, which would already
2582 -- have been diagnosed at declaration time. Set Label_Construct
2583 -- of the implicit label declaration, which is not created by the
2584 -- parser for generic units.
2586 if Ekind (Ent) = E_Label then
2587 Set_Ekind (Ent, E_Loop);
2589 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
2590 Set_Label_Construct (Parent (Ent), N);
2591 end if;
2592 end if;
2593 end if;
2595 -- Case of no identifier present
2597 else
2598 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
2599 Set_Etype (Ent, Standard_Void_Type);
2600 Set_Parent (Ent, N);
2601 end if;
2603 -- Iteration over a container in Ada 2012 involves the creation of a
2604 -- controlled iterator object. Wrap the loop in a block to ensure the
2605 -- timely finalization of the iterator and release of container locks.
2607 if Ada_Version >= Ada_2012
2608 and then Is_Container_Iterator (Iter)
2609 and then not Is_Wrapped_In_Block (N)
2610 then
2611 Rewrite (N,
2612 Make_Block_Statement (Loc,
2613 Declarations => New_List,
2614 Handled_Statement_Sequence =>
2615 Make_Handled_Sequence_Of_Statements (Loc,
2616 Statements => New_List (Relocate_Node (N)))));
2618 Analyze (N);
2619 return;
2620 end if;
2622 -- Kill current values on entry to loop, since statements in the body of
2623 -- the loop may have been executed before the loop is entered. Similarly
2624 -- we kill values after the loop, since we do not know that the body of
2625 -- the loop was executed.
2627 Kill_Current_Values;
2628 Push_Scope (Ent);
2629 Analyze_Iteration_Scheme (Iter);
2631 -- Check for following case which merits a warning if the type E of is
2632 -- a multi-dimensional array (and no explicit subscript ranges present).
2634 -- for J in E'Range
2635 -- for K in E'Range
2637 if Present (Iter)
2638 and then Present (Loop_Parameter_Specification (Iter))
2639 then
2640 declare
2641 LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
2642 DSD : constant Node_Id :=
2643 Original_Node (Discrete_Subtype_Definition (LPS));
2644 begin
2645 if Nkind (DSD) = N_Attribute_Reference
2646 and then Attribute_Name (DSD) = Name_Range
2647 and then No (Expressions (DSD))
2648 then
2649 declare
2650 Typ : constant Entity_Id := Etype (Prefix (DSD));
2651 begin
2652 if Is_Array_Type (Typ)
2653 and then Number_Dimensions (Typ) > 1
2654 and then Nkind (Parent (N)) = N_Loop_Statement
2655 and then Present (Iteration_Scheme (Parent (N)))
2656 then
2657 declare
2658 OIter : constant Node_Id :=
2659 Iteration_Scheme (Parent (N));
2660 OLPS : constant Node_Id :=
2661 Loop_Parameter_Specification (OIter);
2662 ODSD : constant Node_Id :=
2663 Original_Node (Discrete_Subtype_Definition (OLPS));
2664 begin
2665 if Nkind (ODSD) = N_Attribute_Reference
2666 and then Attribute_Name (ODSD) = Name_Range
2667 and then No (Expressions (ODSD))
2668 and then Etype (Prefix (ODSD)) = Typ
2669 then
2670 Error_Msg_Sloc := Sloc (ODSD);
2671 Error_Msg_N
2672 ("inner range same as outer range#??", DSD);
2673 end if;
2674 end;
2675 end if;
2676 end;
2677 end if;
2678 end;
2679 end if;
2681 -- Analyze the statements of the body except in the case of an Ada 2012
2682 -- iterator with the expander active. In this case the expander will do
2683 -- a rewrite of the loop into a while loop. We will then analyze the
2684 -- loop body when we analyze this while loop.
2686 -- We need to do this delay because if the container is for indefinite
2687 -- types the actual subtype of the components will only be determined
2688 -- when the cursor declaration is analyzed.
2690 -- If the expander is not active, or in SPARK mode, then we want to
2691 -- analyze the loop body now even in the Ada 2012 iterator case, since
2692 -- the rewriting will not be done. Insert the loop variable in the
2693 -- current scope, if not done when analysing the iteration scheme.
2695 if No (Iter)
2696 or else No (Iterator_Specification (Iter))
2697 or else not Full_Expander_Active
2698 then
2699 if Present (Iter)
2700 and then Present (Iterator_Specification (Iter))
2701 then
2702 declare
2703 Id : constant Entity_Id :=
2704 Defining_Identifier (Iterator_Specification (Iter));
2705 begin
2706 if Scope (Id) /= Current_Scope then
2707 Enter_Name (Id);
2708 end if;
2709 end;
2710 end if;
2712 Analyze_Statements (Statements (N));
2713 end if;
2715 -- When the iteration scheme of a loop contains attribute 'Loop_Entry,
2716 -- the loop is transformed into a conditional block. Retrieve the loop.
2718 Stmt := N;
2720 if Subject_To_Loop_Entry_Attributes (Stmt) then
2721 Stmt := Find_Loop_In_Conditional_Block (Stmt);
2722 end if;
2724 -- Finish up processing for the loop. We kill all current values, since
2725 -- in general we don't know if the statements in the loop have been
2726 -- executed. We could do a bit better than this with a loop that we
2727 -- know will execute at least once, but it's not worth the trouble and
2728 -- the front end is not in the business of flow tracing.
2730 Process_End_Label (Stmt, 'e', Ent);
2731 End_Scope;
2732 Kill_Current_Values;
2734 -- Check for infinite loop. Skip check for generated code, since it
2735 -- justs waste time and makes debugging the routine called harder.
2737 -- Note that we have to wait till the body of the loop is fully analyzed
2738 -- before making this call, since Check_Infinite_Loop_Warning relies on
2739 -- being able to use semantic visibility information to find references.
2741 if Comes_From_Source (Stmt) then
2742 Check_Infinite_Loop_Warning (Stmt);
2743 end if;
2745 -- Code after loop is unreachable if the loop has no WHILE or FOR and
2746 -- contains no EXIT statements within the body of the loop.
2748 if No (Iter) and then not Has_Exit (Ent) then
2749 Check_Unreachable_Code (Stmt);
2750 end if;
2751 end Analyze_Loop_Statement;
2753 ----------------------------
2754 -- Analyze_Null_Statement --
2755 ----------------------------
2757 -- Note: the semantics of the null statement is implemented by a single
2758 -- null statement, too bad everything isn't as simple as this!
2760 procedure Analyze_Null_Statement (N : Node_Id) is
2761 pragma Warnings (Off, N);
2762 begin
2763 null;
2764 end Analyze_Null_Statement;
2766 ------------------------
2767 -- Analyze_Statements --
2768 ------------------------
2770 procedure Analyze_Statements (L : List_Id) is
2771 S : Node_Id;
2772 Lab : Entity_Id;
2774 begin
2775 -- The labels declared in the statement list are reachable from
2776 -- statements in the list. We do this as a prepass so that any goto
2777 -- statement will be properly flagged if its target is not reachable.
2778 -- This is not required, but is nice behavior!
2780 S := First (L);
2781 while Present (S) loop
2782 if Nkind (S) = N_Label then
2783 Analyze (Identifier (S));
2784 Lab := Entity (Identifier (S));
2786 -- If we found a label mark it as reachable
2788 if Ekind (Lab) = E_Label then
2789 Generate_Definition (Lab);
2790 Set_Reachable (Lab);
2792 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
2793 Set_Label_Construct (Parent (Lab), S);
2794 end if;
2796 -- If we failed to find a label, it means the implicit declaration
2797 -- of the label was hidden. A for-loop parameter can do this to
2798 -- a label with the same name inside the loop, since the implicit
2799 -- label declaration is in the innermost enclosing body or block
2800 -- statement.
2802 else
2803 Error_Msg_Sloc := Sloc (Lab);
2804 Error_Msg_N
2805 ("implicit label declaration for & is hidden#",
2806 Identifier (S));
2807 end if;
2808 end if;
2810 Next (S);
2811 end loop;
2813 -- Perform semantic analysis on all statements
2815 Conditional_Statements_Begin;
2817 S := First (L);
2818 while Present (S) loop
2819 Analyze (S);
2821 -- Remove dimension in all statements
2823 Remove_Dimension_In_Statement (S);
2824 Next (S);
2825 end loop;
2827 Conditional_Statements_End;
2829 -- Make labels unreachable. Visibility is not sufficient, because labels
2830 -- in one if-branch for example are not reachable from the other branch,
2831 -- even though their declarations are in the enclosing declarative part.
2833 S := First (L);
2834 while Present (S) loop
2835 if Nkind (S) = N_Label then
2836 Set_Reachable (Entity (Identifier (S)), False);
2837 end if;
2839 Next (S);
2840 end loop;
2841 end Analyze_Statements;
2843 ----------------------------
2844 -- Check_Unreachable_Code --
2845 ----------------------------
2847 procedure Check_Unreachable_Code (N : Node_Id) is
2848 Error_Node : Node_Id;
2849 P : Node_Id;
2851 begin
2852 if Is_List_Member (N) and then Comes_From_Source (N) then
2853 declare
2854 Nxt : Node_Id;
2856 begin
2857 Nxt := Original_Node (Next (N));
2859 -- Skip past pragmas
2861 while Nkind (Nxt) = N_Pragma loop
2862 Nxt := Original_Node (Next (Nxt));
2863 end loop;
2865 -- If a label follows us, then we never have dead code, since
2866 -- someone could branch to the label, so we just ignore it, unless
2867 -- we are in formal mode where goto statements are not allowed.
2869 if Nkind (Nxt) = N_Label
2870 and then not Restriction_Check_Required (SPARK_05)
2871 then
2872 return;
2874 -- Otherwise see if we have a real statement following us
2876 elsif Present (Nxt)
2877 and then Comes_From_Source (Nxt)
2878 and then Is_Statement (Nxt)
2879 then
2880 -- Special very annoying exception. If we have a return that
2881 -- follows a raise, then we allow it without a warning, since
2882 -- the Ada RM annoyingly requires a useless return here!
2884 if Nkind (Original_Node (N)) /= N_Raise_Statement
2885 or else Nkind (Nxt) /= N_Simple_Return_Statement
2886 then
2887 -- The rather strange shenanigans with the warning message
2888 -- here reflects the fact that Kill_Dead_Code is very good
2889 -- at removing warnings in deleted code, and this is one
2890 -- warning we would prefer NOT to have removed.
2892 Error_Node := Nxt;
2894 -- If we have unreachable code, analyze and remove the
2895 -- unreachable code, since it is useless and we don't
2896 -- want to generate junk warnings.
2898 -- We skip this step if we are not in code generation mode.
2899 -- This is the one case where we remove dead code in the
2900 -- semantics as opposed to the expander, and we do not want
2901 -- to remove code if we are not in code generation mode,
2902 -- since this messes up the ASIS trees.
2904 -- Note that one might react by moving the whole circuit to
2905 -- exp_ch5, but then we lose the warning in -gnatc mode.
2907 if Operating_Mode = Generate_Code then
2908 loop
2909 Nxt := Next (N);
2911 -- Quit deleting when we have nothing more to delete
2912 -- or if we hit a label (since someone could transfer
2913 -- control to a label, so we should not delete it).
2915 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
2917 -- Statement/declaration is to be deleted
2919 Analyze (Nxt);
2920 Remove (Nxt);
2921 Kill_Dead_Code (Nxt);
2922 end loop;
2923 end if;
2925 -- Now issue the warning (or error in formal mode)
2927 if Restriction_Check_Required (SPARK_05) then
2928 Check_SPARK_Restriction
2929 ("unreachable code is not allowed", Error_Node);
2930 else
2931 Error_Msg ("??unreachable code!", Sloc (Error_Node));
2932 end if;
2933 end if;
2935 -- If the unconditional transfer of control instruction is the
2936 -- last statement of a sequence, then see if our parent is one of
2937 -- the constructs for which we count unblocked exits, and if so,
2938 -- adjust the count.
2940 else
2941 P := Parent (N);
2943 -- Statements in THEN part or ELSE part of IF statement
2945 if Nkind (P) = N_If_Statement then
2946 null;
2948 -- Statements in ELSIF part of an IF statement
2950 elsif Nkind (P) = N_Elsif_Part then
2951 P := Parent (P);
2952 pragma Assert (Nkind (P) = N_If_Statement);
2954 -- Statements in CASE statement alternative
2956 elsif Nkind (P) = N_Case_Statement_Alternative then
2957 P := Parent (P);
2958 pragma Assert (Nkind (P) = N_Case_Statement);
2960 -- Statements in body of block
2962 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
2963 and then Nkind (Parent (P)) = N_Block_Statement
2964 then
2965 -- The original loop is now placed inside a block statement
2966 -- due to the expansion of attribute 'Loop_Entry. Return as
2967 -- this is not a "real" block for the purposes of exit
2968 -- counting.
2970 if Nkind (N) = N_Loop_Statement
2971 and then Subject_To_Loop_Entry_Attributes (N)
2972 then
2973 return;
2974 end if;
2976 -- Statements in exception handler in a block
2978 elsif Nkind (P) = N_Exception_Handler
2979 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
2980 and then Nkind (Parent (Parent (P))) = N_Block_Statement
2981 then
2982 null;
2984 -- None of these cases, so return
2986 else
2987 return;
2988 end if;
2990 -- This was one of the cases we are looking for (i.e. the
2991 -- parent construct was IF, CASE or block) so decrement count.
2993 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
2994 end if;
2995 end;
2996 end if;
2997 end Check_Unreachable_Code;
2999 ----------------------
3000 -- Preanalyze_Range --
3001 ----------------------
3003 procedure Preanalyze_Range (R_Copy : Node_Id) is
3004 Save_Analysis : constant Boolean := Full_Analysis;
3005 Typ : Entity_Id;
3007 begin
3008 Full_Analysis := False;
3009 Expander_Mode_Save_And_Set (False);
3011 Analyze (R_Copy);
3013 if Nkind (R_Copy) in N_Subexpr and then Is_Overloaded (R_Copy) then
3015 -- Apply preference rules for range of predefined integer types, or
3016 -- diagnose true ambiguity.
3018 declare
3019 I : Interp_Index;
3020 It : Interp;
3021 Found : Entity_Id := Empty;
3023 begin
3024 Get_First_Interp (R_Copy, I, It);
3025 while Present (It.Typ) loop
3026 if Is_Discrete_Type (It.Typ) then
3027 if No (Found) then
3028 Found := It.Typ;
3029 else
3030 if Scope (Found) = Standard_Standard then
3031 null;
3033 elsif Scope (It.Typ) = Standard_Standard then
3034 Found := It.Typ;
3036 else
3037 -- Both of them are user-defined
3039 Error_Msg_N
3040 ("ambiguous bounds in range of iteration", R_Copy);
3041 Error_Msg_N ("\possible interpretations:", R_Copy);
3042 Error_Msg_NE ("\\} ", R_Copy, Found);
3043 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
3044 exit;
3045 end if;
3046 end if;
3047 end if;
3049 Get_Next_Interp (I, It);
3050 end loop;
3051 end;
3052 end if;
3054 -- Subtype mark in iteration scheme
3056 if Is_Entity_Name (R_Copy) and then Is_Type (Entity (R_Copy)) then
3057 null;
3059 -- Expression in range, or Ada 2012 iterator
3061 elsif Nkind (R_Copy) in N_Subexpr then
3062 Resolve (R_Copy);
3063 Typ := Etype (R_Copy);
3065 if Is_Discrete_Type (Typ) then
3066 null;
3068 -- Check that the resulting object is an iterable container
3070 elsif Has_Aspect (Typ, Aspect_Iterator_Element)
3071 or else Has_Aspect (Typ, Aspect_Constant_Indexing)
3072 or else Has_Aspect (Typ, Aspect_Variable_Indexing)
3073 then
3074 null;
3076 -- The expression may yield an implicit reference to an iterable
3077 -- container. Insert explicit dereference so that proper type is
3078 -- visible in the loop.
3080 elsif Has_Implicit_Dereference (Etype (R_Copy)) then
3081 declare
3082 Disc : Entity_Id;
3084 begin
3085 Disc := First_Discriminant (Typ);
3086 while Present (Disc) loop
3087 if Has_Implicit_Dereference (Disc) then
3088 Build_Explicit_Dereference (R_Copy, Disc);
3089 exit;
3090 end if;
3092 Next_Discriminant (Disc);
3093 end loop;
3094 end;
3096 end if;
3097 end if;
3099 Expander_Mode_Restore;
3100 Full_Analysis := Save_Analysis;
3101 end Preanalyze_Range;
3103 end Sem_Ch5;