2016-04-27 Hristian Kirtchev <kirtchev@adacore.com>
[official-gcc.git] / gcc / postreload.c
blob61c1ce8028e3d8e6cab44f8f36be31fdc8a58f71
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "tm_p.h"
30 #include "optabs.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
35 #include "cfgrtl.h"
36 #include "cfgbuild.h"
37 #include "cfgcleanup.h"
38 #include "reload.h"
39 #include "cselib.h"
40 #include "tree-pass.h"
41 #include "dbgcnt.h"
43 #ifndef LOAD_EXTEND_OP
44 #define LOAD_EXTEND_OP(M) UNKNOWN
45 #endif
47 static int reload_cse_noop_set_p (rtx);
48 static bool reload_cse_simplify (rtx_insn *, rtx);
49 static void reload_cse_regs_1 (void);
50 static int reload_cse_simplify_set (rtx, rtx_insn *);
51 static int reload_cse_simplify_operands (rtx_insn *, rtx);
53 static void reload_combine (void);
54 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
55 static void reload_combine_note_store (rtx, const_rtx, void *);
57 static bool reload_cse_move2add (rtx_insn *);
58 static void move2add_note_store (rtx, const_rtx, void *);
60 /* Call cse / combine like post-reload optimization phases.
61 FIRST is the first instruction. */
63 static void
64 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
66 bool moves_converted;
67 reload_cse_regs_1 ();
68 reload_combine ();
69 moves_converted = reload_cse_move2add (first);
70 if (flag_expensive_optimizations)
72 if (moves_converted)
73 reload_combine ();
74 reload_cse_regs_1 ();
78 /* See whether a single set SET is a noop. */
79 static int
80 reload_cse_noop_set_p (rtx set)
82 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
83 return 0;
85 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
88 /* Try to simplify INSN. Return true if the CFG may have changed. */
89 static bool
90 reload_cse_simplify (rtx_insn *insn, rtx testreg)
92 rtx body = PATTERN (insn);
93 basic_block insn_bb = BLOCK_FOR_INSN (insn);
94 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
96 if (GET_CODE (body) == SET)
98 int count = 0;
100 /* Simplify even if we may think it is a no-op.
101 We may think a memory load of a value smaller than WORD_SIZE
102 is redundant because we haven't taken into account possible
103 implicit extension. reload_cse_simplify_set() will bring
104 this out, so it's safer to simplify before we delete. */
105 count += reload_cse_simplify_set (body, insn);
107 if (!count && reload_cse_noop_set_p (body))
109 if (check_for_inc_dec (insn))
110 delete_insn_and_edges (insn);
111 /* We're done with this insn. */
112 goto done;
115 if (count > 0)
116 apply_change_group ();
117 else
118 reload_cse_simplify_operands (insn, testreg);
120 else if (GET_CODE (body) == PARALLEL)
122 int i;
123 int count = 0;
124 rtx value = NULL_RTX;
126 /* Registers mentioned in the clobber list for an asm cannot be reused
127 within the body of the asm. Invalidate those registers now so that
128 we don't try to substitute values for them. */
129 if (asm_noperands (body) >= 0)
131 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
133 rtx part = XVECEXP (body, 0, i);
134 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
135 cselib_invalidate_rtx (XEXP (part, 0));
139 /* If every action in a PARALLEL is a noop, we can delete
140 the entire PARALLEL. */
141 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
143 rtx part = XVECEXP (body, 0, i);
144 if (GET_CODE (part) == SET)
146 if (! reload_cse_noop_set_p (part))
147 break;
148 if (REG_P (SET_DEST (part))
149 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
151 if (value)
152 break;
153 value = SET_DEST (part);
156 else if (GET_CODE (part) != CLOBBER)
157 break;
160 if (i < 0)
162 if (check_for_inc_dec (insn))
163 delete_insn_and_edges (insn);
164 /* We're done with this insn. */
165 goto done;
168 /* It's not a no-op, but we can try to simplify it. */
169 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
170 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
171 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
173 if (count > 0)
174 apply_change_group ();
175 else
176 reload_cse_simplify_operands (insn, testreg);
179 done:
180 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
183 /* Do a very simple CSE pass over the hard registers.
185 This function detects no-op moves where we happened to assign two
186 different pseudo-registers to the same hard register, and then
187 copied one to the other. Reload will generate a useless
188 instruction copying a register to itself.
190 This function also detects cases where we load a value from memory
191 into two different registers, and (if memory is more expensive than
192 registers) changes it to simply copy the first register into the
193 second register.
195 Another optimization is performed that scans the operands of each
196 instruction to see whether the value is already available in a
197 hard register. It then replaces the operand with the hard register
198 if possible, much like an optional reload would. */
200 static void
201 reload_cse_regs_1 (void)
203 bool cfg_changed = false;
204 basic_block bb;
205 rtx_insn *insn;
206 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
208 cselib_init (CSELIB_RECORD_MEMORY);
209 init_alias_analysis ();
211 FOR_EACH_BB_FN (bb, cfun)
212 FOR_BB_INSNS (bb, insn)
214 if (INSN_P (insn))
215 cfg_changed |= reload_cse_simplify (insn, testreg);
217 cselib_process_insn (insn);
220 /* Clean up. */
221 end_alias_analysis ();
222 cselib_finish ();
223 if (cfg_changed)
224 cleanup_cfg (0);
227 /* Try to simplify a single SET instruction. SET is the set pattern.
228 INSN is the instruction it came from.
229 This function only handles one case: if we set a register to a value
230 which is not a register, we try to find that value in some other register
231 and change the set into a register copy. */
233 static int
234 reload_cse_simplify_set (rtx set, rtx_insn *insn)
236 int did_change = 0;
237 int dreg;
238 rtx src;
239 reg_class_t dclass;
240 int old_cost;
241 cselib_val *val;
242 struct elt_loc_list *l;
243 enum rtx_code extend_op = UNKNOWN;
244 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
246 dreg = true_regnum (SET_DEST (set));
247 if (dreg < 0)
248 return 0;
250 src = SET_SRC (set);
251 if (side_effects_p (src) || true_regnum (src) >= 0)
252 return 0;
254 dclass = REGNO_REG_CLASS (dreg);
256 /* When replacing a memory with a register, we need to honor assumptions
257 that combine made wrt the contents of sign bits. We'll do this by
258 generating an extend instruction instead of a reg->reg copy. Thus
259 the destination must be a register that we can widen. */
260 if (MEM_P (src)
261 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
262 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
263 && !REG_P (SET_DEST (set)))
264 return 0;
266 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
267 if (! val)
268 return 0;
270 /* If memory loads are cheaper than register copies, don't change them. */
271 if (MEM_P (src))
272 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
273 else if (REG_P (src))
274 old_cost = register_move_cost (GET_MODE (src),
275 REGNO_REG_CLASS (REGNO (src)), dclass);
276 else
277 old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
279 for (l = val->locs; l; l = l->next)
281 rtx this_rtx = l->loc;
282 int this_cost;
284 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
286 if (extend_op != UNKNOWN)
288 wide_int result;
290 if (!CONST_SCALAR_INT_P (this_rtx))
291 continue;
293 switch (extend_op)
295 case ZERO_EXTEND:
296 result = wide_int::from (std::make_pair (this_rtx,
297 GET_MODE (src)),
298 BITS_PER_WORD, UNSIGNED);
299 break;
300 case SIGN_EXTEND:
301 result = wide_int::from (std::make_pair (this_rtx,
302 GET_MODE (src)),
303 BITS_PER_WORD, SIGNED);
304 break;
305 default:
306 gcc_unreachable ();
308 this_rtx = immed_wide_int_const (result, word_mode);
311 this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
313 else if (REG_P (this_rtx))
315 if (extend_op != UNKNOWN)
317 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
318 this_cost = set_src_cost (this_rtx, word_mode, speed);
320 else
321 this_cost = register_move_cost (GET_MODE (this_rtx),
322 REGNO_REG_CLASS (REGNO (this_rtx)),
323 dclass);
325 else
326 continue;
328 /* If equal costs, prefer registers over anything else. That
329 tends to lead to smaller instructions on some machines. */
330 if (this_cost < old_cost
331 || (this_cost == old_cost
332 && REG_P (this_rtx)
333 && !REG_P (SET_SRC (set))))
335 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
336 && extend_op != UNKNOWN
337 #ifdef CANNOT_CHANGE_MODE_CLASS
338 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
339 word_mode,
340 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
341 #endif
344 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
345 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
346 validate_change (insn, &SET_DEST (set), wide_dest, 1);
349 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
350 old_cost = this_cost, did_change = 1;
354 return did_change;
357 /* Try to replace operands in INSN with equivalent values that are already
358 in registers. This can be viewed as optional reloading.
360 For each non-register operand in the insn, see if any hard regs are
361 known to be equivalent to that operand. Record the alternatives which
362 can accept these hard registers. Among all alternatives, select the
363 ones which are better or equal to the one currently matching, where
364 "better" is in terms of '?' and '!' constraints. Among the remaining
365 alternatives, select the one which replaces most operands with
366 hard registers. */
368 static int
369 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
371 int i, j;
373 /* For each operand, all registers that are equivalent to it. */
374 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
376 const char *constraints[MAX_RECOG_OPERANDS];
378 /* Vector recording how bad an alternative is. */
379 int *alternative_reject;
380 /* Vector recording how many registers can be introduced by choosing
381 this alternative. */
382 int *alternative_nregs;
383 /* Array of vectors recording, for each operand and each alternative,
384 which hard register to substitute, or -1 if the operand should be
385 left as it is. */
386 int *op_alt_regno[MAX_RECOG_OPERANDS];
387 /* Array of alternatives, sorted in order of decreasing desirability. */
388 int *alternative_order;
390 extract_constrain_insn (insn);
392 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
393 return 0;
395 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
396 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
397 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
398 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
399 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
401 /* For each operand, find out which regs are equivalent. */
402 for (i = 0; i < recog_data.n_operands; i++)
404 cselib_val *v;
405 struct elt_loc_list *l;
406 rtx op;
408 CLEAR_HARD_REG_SET (equiv_regs[i]);
410 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
411 right, so avoid the problem here. Likewise if we have a constant
412 and the insn pattern doesn't tell us the mode we need. */
413 if (LABEL_P (recog_data.operand[i])
414 || (CONSTANT_P (recog_data.operand[i])
415 && recog_data.operand_mode[i] == VOIDmode))
416 continue;
418 op = recog_data.operand[i];
419 if (MEM_P (op)
420 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
421 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
423 rtx set = single_set (insn);
425 /* We might have multiple sets, some of which do implicit
426 extension. Punt on this for now. */
427 if (! set)
428 continue;
429 /* If the destination is also a MEM or a STRICT_LOW_PART, no
430 extension applies.
431 Also, if there is an explicit extension, we don't have to
432 worry about an implicit one. */
433 else if (MEM_P (SET_DEST (set))
434 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
435 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
436 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
437 ; /* Continue ordinary processing. */
438 #ifdef CANNOT_CHANGE_MODE_CLASS
439 /* If the register cannot change mode to word_mode, it follows that
440 it cannot have been used in word_mode. */
441 else if (REG_P (SET_DEST (set))
442 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
443 word_mode,
444 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
445 ; /* Continue ordinary processing. */
446 #endif
447 /* If this is a straight load, make the extension explicit. */
448 else if (REG_P (SET_DEST (set))
449 && recog_data.n_operands == 2
450 && SET_SRC (set) == op
451 && SET_DEST (set) == recog_data.operand[1-i])
453 validate_change (insn, recog_data.operand_loc[i],
454 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
455 word_mode, op),
457 validate_change (insn, recog_data.operand_loc[1-i],
458 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
460 if (! apply_change_group ())
461 return 0;
462 return reload_cse_simplify_operands (insn, testreg);
464 else
465 /* ??? There might be arithmetic operations with memory that are
466 safe to optimize, but is it worth the trouble? */
467 continue;
470 if (side_effects_p (op))
471 continue;
472 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
473 if (! v)
474 continue;
476 for (l = v->locs; l; l = l->next)
477 if (REG_P (l->loc))
478 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
481 alternative_mask preferred = get_preferred_alternatives (insn);
482 for (i = 0; i < recog_data.n_operands; i++)
484 machine_mode mode;
485 int regno;
486 const char *p;
488 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
489 for (j = 0; j < recog_data.n_alternatives; j++)
490 op_alt_regno[i][j] = -1;
492 p = constraints[i] = recog_data.constraints[i];
493 mode = recog_data.operand_mode[i];
495 /* Add the reject values for each alternative given by the constraints
496 for this operand. */
497 j = 0;
498 while (*p != '\0')
500 char c = *p++;
501 if (c == ',')
502 j++;
503 else if (c == '?')
504 alternative_reject[j] += 3;
505 else if (c == '!')
506 alternative_reject[j] += 300;
509 /* We won't change operands which are already registers. We
510 also don't want to modify output operands. */
511 regno = true_regnum (recog_data.operand[i]);
512 if (regno >= 0
513 || constraints[i][0] == '='
514 || constraints[i][0] == '+')
515 continue;
517 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
519 enum reg_class rclass = NO_REGS;
521 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
522 continue;
524 set_mode_and_regno (testreg, mode, regno);
526 /* We found a register equal to this operand. Now look for all
527 alternatives that can accept this register and have not been
528 assigned a register they can use yet. */
529 j = 0;
530 p = constraints[i];
531 for (;;)
533 char c = *p;
535 switch (c)
537 case 'g':
538 rclass = reg_class_subunion[rclass][GENERAL_REGS];
539 break;
541 default:
542 rclass
543 = (reg_class_subunion
544 [rclass]
545 [reg_class_for_constraint (lookup_constraint (p))]);
546 break;
548 case ',': case '\0':
549 /* See if REGNO fits this alternative, and set it up as the
550 replacement register if we don't have one for this
551 alternative yet and the operand being replaced is not
552 a cheap CONST_INT. */
553 if (op_alt_regno[i][j] == -1
554 && TEST_BIT (preferred, j)
555 && reg_fits_class_p (testreg, rclass, 0, mode)
556 && (!CONST_INT_P (recog_data.operand[i])
557 || (set_src_cost (recog_data.operand[i], mode,
558 optimize_bb_for_speed_p
559 (BLOCK_FOR_INSN (insn)))
560 > set_src_cost (testreg, mode,
561 optimize_bb_for_speed_p
562 (BLOCK_FOR_INSN (insn))))))
564 alternative_nregs[j]++;
565 op_alt_regno[i][j] = regno;
567 j++;
568 rclass = NO_REGS;
569 break;
571 p += CONSTRAINT_LEN (c, p);
573 if (c == '\0')
574 break;
579 /* Record all alternatives which are better or equal to the currently
580 matching one in the alternative_order array. */
581 for (i = j = 0; i < recog_data.n_alternatives; i++)
582 if (alternative_reject[i] <= alternative_reject[which_alternative])
583 alternative_order[j++] = i;
584 recog_data.n_alternatives = j;
586 /* Sort it. Given a small number of alternatives, a dumb algorithm
587 won't hurt too much. */
588 for (i = 0; i < recog_data.n_alternatives - 1; i++)
590 int best = i;
591 int best_reject = alternative_reject[alternative_order[i]];
592 int best_nregs = alternative_nregs[alternative_order[i]];
594 for (j = i + 1; j < recog_data.n_alternatives; j++)
596 int this_reject = alternative_reject[alternative_order[j]];
597 int this_nregs = alternative_nregs[alternative_order[j]];
599 if (this_reject < best_reject
600 || (this_reject == best_reject && this_nregs > best_nregs))
602 best = j;
603 best_reject = this_reject;
604 best_nregs = this_nregs;
608 std::swap (alternative_order[best], alternative_order[i]);
611 /* Substitute the operands as determined by op_alt_regno for the best
612 alternative. */
613 j = alternative_order[0];
615 for (i = 0; i < recog_data.n_operands; i++)
617 machine_mode mode = recog_data.operand_mode[i];
618 if (op_alt_regno[i][j] == -1)
619 continue;
621 validate_change (insn, recog_data.operand_loc[i],
622 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
625 for (i = recog_data.n_dups - 1; i >= 0; i--)
627 int op = recog_data.dup_num[i];
628 machine_mode mode = recog_data.operand_mode[op];
630 if (op_alt_regno[op][j] == -1)
631 continue;
633 validate_change (insn, recog_data.dup_loc[i],
634 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
637 return apply_change_group ();
640 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
641 addressing now.
642 This code might also be useful when reload gave up on reg+reg addressing
643 because of clashes between the return register and INDEX_REG_CLASS. */
645 /* The maximum number of uses of a register we can keep track of to
646 replace them with reg+reg addressing. */
647 #define RELOAD_COMBINE_MAX_USES 16
649 /* Describes a recorded use of a register. */
650 struct reg_use
652 /* The insn where a register has been used. */
653 rtx_insn *insn;
654 /* Points to the memory reference enclosing the use, if any, NULL_RTX
655 otherwise. */
656 rtx containing_mem;
657 /* Location of the register within INSN. */
658 rtx *usep;
659 /* The reverse uid of the insn. */
660 int ruid;
663 /* If the register is used in some unknown fashion, USE_INDEX is negative.
664 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
665 indicates where it is first set or clobbered.
666 Otherwise, USE_INDEX is the index of the last encountered use of the
667 register (which is first among these we have seen since we scan backwards).
668 USE_RUID indicates the first encountered, i.e. last, of these uses.
669 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
670 with a constant offset; OFFSET contains this constant in that case.
671 STORE_RUID is always meaningful if we only want to use a value in a
672 register in a different place: it denotes the next insn in the insn
673 stream (i.e. the last encountered) that sets or clobbers the register.
674 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
675 static struct
677 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
678 rtx offset;
679 int use_index;
680 int store_ruid;
681 int real_store_ruid;
682 int use_ruid;
683 bool all_offsets_match;
684 } reg_state[FIRST_PSEUDO_REGISTER];
686 /* Reverse linear uid. This is increased in reload_combine while scanning
687 the instructions from last to first. It is used to set last_label_ruid
688 and the store_ruid / use_ruid fields in reg_state. */
689 static int reload_combine_ruid;
691 /* The RUID of the last label we encountered in reload_combine. */
692 static int last_label_ruid;
694 /* The RUID of the last jump we encountered in reload_combine. */
695 static int last_jump_ruid;
697 /* The register numbers of the first and last index register. A value of
698 -1 in LAST_INDEX_REG indicates that we've previously computed these
699 values and found no suitable index registers. */
700 static int first_index_reg = -1;
701 static int last_index_reg;
703 #define LABEL_LIVE(LABEL) \
704 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
706 /* Subroutine of reload_combine_split_ruids, called to fix up a single
707 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
709 static inline void
710 reload_combine_split_one_ruid (int *pruid, int split_ruid)
712 if (*pruid > split_ruid)
713 (*pruid)++;
716 /* Called when we insert a new insn in a position we've already passed in
717 the scan. Examine all our state, increasing all ruids that are higher
718 than SPLIT_RUID by one in order to make room for a new insn. */
720 static void
721 reload_combine_split_ruids (int split_ruid)
723 unsigned i;
725 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
726 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
727 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
729 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
731 int j, idx = reg_state[i].use_index;
732 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
733 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
734 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
735 split_ruid);
736 if (idx < 0)
737 continue;
738 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
740 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
741 split_ruid);
746 /* Called when we are about to rescan a previously encountered insn with
747 reload_combine_note_use after modifying some part of it. This clears all
748 information about uses in that particular insn. */
750 static void
751 reload_combine_purge_insn_uses (rtx_insn *insn)
753 unsigned i;
755 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
757 int j, k, idx = reg_state[i].use_index;
758 if (idx < 0)
759 continue;
760 j = k = RELOAD_COMBINE_MAX_USES;
761 while (j-- > idx)
763 if (reg_state[i].reg_use[j].insn != insn)
765 k--;
766 if (k != j)
767 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
770 reg_state[i].use_index = k;
774 /* Called when we need to forget about all uses of REGNO after an insn
775 which is identified by RUID. */
777 static void
778 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
780 int j, k, idx = reg_state[regno].use_index;
781 if (idx < 0)
782 return;
783 j = k = RELOAD_COMBINE_MAX_USES;
784 while (j-- > idx)
786 if (reg_state[regno].reg_use[j].ruid >= ruid)
788 k--;
789 if (k != j)
790 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
793 reg_state[regno].use_index = k;
796 /* Find the use of REGNO with the ruid that is highest among those
797 lower than RUID_LIMIT, and return it if it is the only use of this
798 reg in the insn. Return NULL otherwise. */
800 static struct reg_use *
801 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
803 int i, best_ruid = 0;
804 int use_idx = reg_state[regno].use_index;
805 struct reg_use *retval;
807 if (use_idx < 0)
808 return NULL;
809 retval = NULL;
810 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
812 struct reg_use *use = reg_state[regno].reg_use + i;
813 int this_ruid = use->ruid;
814 if (this_ruid >= ruid_limit)
815 continue;
816 if (this_ruid > best_ruid)
818 best_ruid = this_ruid;
819 retval = use;
821 else if (this_ruid == best_ruid)
822 retval = NULL;
824 if (last_label_ruid >= best_ruid)
825 return NULL;
826 return retval;
829 /* After we've moved an add insn, fix up any debug insns that occur
830 between the old location of the add and the new location. REG is
831 the destination register of the add insn; REPLACEMENT is the
832 SET_SRC of the add. FROM and TO specify the range in which we
833 should make this change on debug insns. */
835 static void
836 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
838 rtx_insn *insn;
839 for (insn = from; insn != to; insn = NEXT_INSN (insn))
841 rtx t;
843 if (!DEBUG_INSN_P (insn))
844 continue;
846 t = INSN_VAR_LOCATION_LOC (insn);
847 t = simplify_replace_rtx (t, reg, replacement);
848 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
852 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
853 with SRC in the insn described by USE, taking costs into account. Return
854 true if we made the replacement. */
856 static bool
857 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
859 rtx_insn *use_insn = use->insn;
860 rtx mem = use->containing_mem;
861 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
863 if (mem != NULL_RTX)
865 addr_space_t as = MEM_ADDR_SPACE (mem);
866 rtx oldaddr = XEXP (mem, 0);
867 rtx newaddr = NULL_RTX;
868 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
869 int new_cost;
871 newaddr = simplify_replace_rtx (oldaddr, reg, src);
872 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
874 XEXP (mem, 0) = newaddr;
875 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
876 XEXP (mem, 0) = oldaddr;
877 if (new_cost <= old_cost
878 && validate_change (use_insn,
879 &XEXP (mem, 0), newaddr, 0))
880 return true;
883 else
885 rtx new_set = single_set (use_insn);
886 if (new_set
887 && REG_P (SET_DEST (new_set))
888 && GET_CODE (SET_SRC (new_set)) == PLUS
889 && REG_P (XEXP (SET_SRC (new_set), 0))
890 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
892 rtx new_src;
893 machine_mode mode = GET_MODE (SET_DEST (new_set));
894 int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
896 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
897 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
899 if (set_src_cost (new_src, mode, speed) <= old_cost
900 && validate_change (use_insn, &SET_SRC (new_set),
901 new_src, 0))
902 return true;
905 return false;
908 /* Called by reload_combine when scanning INSN. This function tries to detect
909 patterns where a constant is added to a register, and the result is used
910 in an address.
911 Return true if no further processing is needed on INSN; false if it wasn't
912 recognized and should be handled normally. */
914 static bool
915 reload_combine_recognize_const_pattern (rtx_insn *insn)
917 int from_ruid = reload_combine_ruid;
918 rtx set, pat, reg, src, addreg;
919 unsigned int regno;
920 struct reg_use *use;
921 bool must_move_add;
922 rtx_insn *add_moved_after_insn = NULL;
923 int add_moved_after_ruid = 0;
924 int clobbered_regno = -1;
926 set = single_set (insn);
927 if (set == NULL_RTX)
928 return false;
930 reg = SET_DEST (set);
931 src = SET_SRC (set);
932 if (!REG_P (reg)
933 || REG_NREGS (reg) != 1
934 || GET_MODE (reg) != Pmode
935 || reg == stack_pointer_rtx)
936 return false;
938 regno = REGNO (reg);
940 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
941 uses of REG1 inside an address, or inside another add insn. If
942 possible and profitable, merge the addition into subsequent
943 uses. */
944 if (GET_CODE (src) != PLUS
945 || !REG_P (XEXP (src, 0))
946 || !CONSTANT_P (XEXP (src, 1)))
947 return false;
949 addreg = XEXP (src, 0);
950 must_move_add = rtx_equal_p (reg, addreg);
952 pat = PATTERN (insn);
953 if (must_move_add && set != pat)
955 /* We have to be careful when moving the add; apart from the
956 single_set there may also be clobbers. Recognize one special
957 case, that of one clobber alongside the set (likely a clobber
958 of the CC register). */
959 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
960 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
961 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
962 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
963 return false;
964 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
969 use = reload_combine_closest_single_use (regno, from_ruid);
971 if (use)
972 /* Start the search for the next use from here. */
973 from_ruid = use->ruid;
975 if (use && GET_MODE (*use->usep) == Pmode)
977 bool delete_add = false;
978 rtx_insn *use_insn = use->insn;
979 int use_ruid = use->ruid;
981 /* Avoid moving the add insn past a jump. */
982 if (must_move_add && use_ruid <= last_jump_ruid)
983 break;
985 /* If the add clobbers another hard reg in parallel, don't move
986 it past a real set of this hard reg. */
987 if (must_move_add && clobbered_regno >= 0
988 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
989 break;
991 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
992 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
993 break;
995 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
996 /* Avoid moving a use of ADDREG past a point where it is stored. */
997 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
998 break;
1000 /* We also must not move the addition past an insn that sets
1001 the same register, unless we can combine two add insns. */
1002 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1004 if (use->containing_mem == NULL_RTX)
1005 delete_add = true;
1006 else
1007 break;
1010 if (try_replace_in_use (use, reg, src))
1012 reload_combine_purge_insn_uses (use_insn);
1013 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1014 use_ruid, NULL_RTX);
1016 if (delete_add)
1018 fixup_debug_insns (reg, src, insn, use_insn);
1019 delete_insn (insn);
1020 return true;
1022 if (must_move_add)
1024 add_moved_after_insn = use_insn;
1025 add_moved_after_ruid = use_ruid;
1027 continue;
1030 /* If we get here, we couldn't handle this use. */
1031 if (must_move_add)
1032 break;
1034 while (use);
1036 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1037 /* Process the add normally. */
1038 return false;
1040 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1042 reorder_insns (insn, insn, add_moved_after_insn);
1043 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1044 reload_combine_split_ruids (add_moved_after_ruid - 1);
1045 reload_combine_note_use (&PATTERN (insn), insn,
1046 add_moved_after_ruid, NULL_RTX);
1047 reg_state[regno].store_ruid = add_moved_after_ruid;
1049 return true;
1052 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1053 can handle and improve. Return true if no further processing is needed on
1054 INSN; false if it wasn't recognized and should be handled normally. */
1056 static bool
1057 reload_combine_recognize_pattern (rtx_insn *insn)
1059 rtx set, reg, src;
1061 set = single_set (insn);
1062 if (set == NULL_RTX)
1063 return false;
1065 reg = SET_DEST (set);
1066 src = SET_SRC (set);
1067 if (!REG_P (reg) || REG_NREGS (reg) != 1)
1068 return false;
1070 unsigned int regno = REGNO (reg);
1071 machine_mode mode = GET_MODE (reg);
1073 if (reg_state[regno].use_index < 0
1074 || reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
1075 return false;
1077 for (int i = reg_state[regno].use_index;
1078 i < RELOAD_COMBINE_MAX_USES; i++)
1080 struct reg_use *use = reg_state[regno].reg_use + i;
1081 if (GET_MODE (*use->usep) != mode)
1082 return false;
1085 /* Look for (set (REGX) (CONST_INT))
1086 (set (REGX) (PLUS (REGX) (REGY)))
1088 ... (MEM (REGX)) ...
1089 and convert it to
1090 (set (REGZ) (CONST_INT))
1092 ... (MEM (PLUS (REGZ) (REGY)))... .
1094 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1095 and that we know all uses of REGX before it dies.
1096 Also, explicitly check that REGX != REGY; our life information
1097 does not yet show whether REGY changes in this insn. */
1099 if (GET_CODE (src) == PLUS
1100 && reg_state[regno].all_offsets_match
1101 && last_index_reg != -1
1102 && REG_P (XEXP (src, 1))
1103 && rtx_equal_p (XEXP (src, 0), reg)
1104 && !rtx_equal_p (XEXP (src, 1), reg)
1105 && last_label_ruid < reg_state[regno].use_ruid)
1107 rtx base = XEXP (src, 1);
1108 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1109 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1110 rtx index_reg = NULL_RTX;
1111 rtx reg_sum = NULL_RTX;
1112 int i;
1114 /* Now we need to set INDEX_REG to an index register (denoted as
1115 REGZ in the illustration above) and REG_SUM to the expression
1116 register+register that we want to use to substitute uses of REG
1117 (typically in MEMs) with. First check REG and BASE for being
1118 index registers; we can use them even if they are not dead. */
1119 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1120 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1121 REGNO (base)))
1123 index_reg = reg;
1124 reg_sum = src;
1126 else
1128 /* Otherwise, look for a free index register. Since we have
1129 checked above that neither REG nor BASE are index registers,
1130 if we find anything at all, it will be different from these
1131 two registers. */
1132 for (i = first_index_reg; i <= last_index_reg; i++)
1134 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1135 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1136 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1137 && (call_used_regs[i] || df_regs_ever_live_p (i))
1138 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1139 && !fixed_regs[i] && !global_regs[i]
1140 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1141 && targetm.hard_regno_scratch_ok (i))
1143 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1144 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1145 break;
1150 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1151 (REGY), i.e. BASE, is not clobbered before the last use we'll
1152 create. */
1153 if (reg_sum
1154 && prev_set
1155 && CONST_INT_P (SET_SRC (prev_set))
1156 && rtx_equal_p (SET_DEST (prev_set), reg)
1157 && (reg_state[REGNO (base)].store_ruid
1158 <= reg_state[regno].use_ruid))
1160 /* Change destination register and, if necessary, the constant
1161 value in PREV, the constant loading instruction. */
1162 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1163 if (reg_state[regno].offset != const0_rtx)
1164 validate_change (prev,
1165 &SET_SRC (prev_set),
1166 GEN_INT (INTVAL (SET_SRC (prev_set))
1167 + INTVAL (reg_state[regno].offset)),
1170 /* Now for every use of REG that we have recorded, replace REG
1171 with REG_SUM. */
1172 for (i = reg_state[regno].use_index;
1173 i < RELOAD_COMBINE_MAX_USES; i++)
1174 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1175 reg_state[regno].reg_use[i].usep,
1176 /* Each change must have its own
1177 replacement. */
1178 reg_sum, 1);
1180 if (apply_change_group ())
1182 struct reg_use *lowest_ruid = NULL;
1184 /* For every new use of REG_SUM, we have to record the use
1185 of BASE therein, i.e. operand 1. */
1186 for (i = reg_state[regno].use_index;
1187 i < RELOAD_COMBINE_MAX_USES; i++)
1189 struct reg_use *use = reg_state[regno].reg_use + i;
1190 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1191 use->ruid, use->containing_mem);
1192 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1193 lowest_ruid = use;
1196 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1198 /* Delete the reg-reg addition. */
1199 delete_insn (insn);
1201 if (reg_state[regno].offset != const0_rtx)
1202 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1203 are now invalid. */
1204 remove_reg_equal_equiv_notes (prev);
1206 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1207 return true;
1211 return false;
1214 static void
1215 reload_combine (void)
1217 rtx_insn *insn, *prev;
1218 basic_block bb;
1219 unsigned int r;
1220 int min_labelno, n_labels;
1221 HARD_REG_SET ever_live_at_start, *label_live;
1223 /* To avoid wasting too much time later searching for an index register,
1224 determine the minimum and maximum index register numbers. */
1225 if (INDEX_REG_CLASS == NO_REGS)
1226 last_index_reg = -1;
1227 else if (first_index_reg == -1 && last_index_reg == 0)
1229 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1230 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1232 if (first_index_reg == -1)
1233 first_index_reg = r;
1235 last_index_reg = r;
1238 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1239 to -1 so we'll know to quit early the next time we get here. */
1240 if (first_index_reg == -1)
1242 last_index_reg = -1;
1243 return;
1247 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1248 information is a bit fuzzy immediately after reload, but it's
1249 still good enough to determine which registers are live at a jump
1250 destination. */
1251 min_labelno = get_first_label_num ();
1252 n_labels = max_label_num () - min_labelno;
1253 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1254 CLEAR_HARD_REG_SET (ever_live_at_start);
1256 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1258 insn = BB_HEAD (bb);
1259 if (LABEL_P (insn))
1261 HARD_REG_SET live;
1262 bitmap live_in = df_get_live_in (bb);
1264 REG_SET_TO_HARD_REG_SET (live, live_in);
1265 compute_use_by_pseudos (&live, live_in);
1266 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1267 IOR_HARD_REG_SET (ever_live_at_start, live);
1271 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1272 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1273 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1275 reg_state[r].store_ruid = 0;
1276 reg_state[r].real_store_ruid = 0;
1277 if (fixed_regs[r])
1278 reg_state[r].use_index = -1;
1279 else
1280 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1283 for (insn = get_last_insn (); insn; insn = prev)
1285 bool control_flow_insn;
1286 rtx note;
1288 prev = PREV_INSN (insn);
1290 /* We cannot do our optimization across labels. Invalidating all the use
1291 information we have would be costly, so we just note where the label
1292 is and then later disable any optimization that would cross it. */
1293 if (LABEL_P (insn))
1294 last_label_ruid = reload_combine_ruid;
1295 else if (BARRIER_P (insn))
1297 /* Crossing a barrier resets all the use information. */
1298 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1299 if (! fixed_regs[r])
1300 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1302 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1303 /* Optimizations across insns being marked as volatile must be
1304 prevented. All the usage information is invalidated
1305 here. */
1306 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1307 if (! fixed_regs[r]
1308 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1309 reg_state[r].use_index = -1;
1311 if (! NONDEBUG_INSN_P (insn))
1312 continue;
1314 reload_combine_ruid++;
1316 control_flow_insn = control_flow_insn_p (insn);
1317 if (control_flow_insn)
1318 last_jump_ruid = reload_combine_ruid;
1320 if (reload_combine_recognize_const_pattern (insn)
1321 || reload_combine_recognize_pattern (insn))
1322 continue;
1324 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1326 if (CALL_P (insn))
1328 rtx link;
1329 HARD_REG_SET used_regs;
1331 get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
1333 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1334 if (TEST_HARD_REG_BIT (used_regs, r))
1336 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1337 reg_state[r].store_ruid = reload_combine_ruid;
1340 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1341 link = XEXP (link, 1))
1343 rtx setuse = XEXP (link, 0);
1344 rtx usage_rtx = XEXP (setuse, 0);
1345 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1346 && REG_P (usage_rtx))
1348 unsigned int end_regno = END_REGNO (usage_rtx);
1349 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
1350 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1352 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1353 reg_state[i].store_ruid = reload_combine_ruid;
1355 else
1356 reg_state[i].use_index = -1;
1361 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1363 /* Non-spill registers might be used at the call destination in
1364 some unknown fashion, so we have to mark the unknown use. */
1365 HARD_REG_SET *live;
1367 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1368 && JUMP_LABEL (insn))
1370 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1371 live = NULL;
1372 else
1373 live = &LABEL_LIVE (JUMP_LABEL (insn));
1375 else
1376 live = &ever_live_at_start;
1378 if (live)
1379 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1380 if (TEST_HARD_REG_BIT (*live, r))
1381 reg_state[r].use_index = -1;
1384 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1385 NULL_RTX);
1387 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1389 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1391 int regno = REGNO (XEXP (note, 0));
1392 reg_state[regno].store_ruid = reload_combine_ruid;
1393 reg_state[regno].real_store_ruid = reload_combine_ruid;
1394 reg_state[regno].use_index = -1;
1399 free (label_live);
1402 /* Check if DST is a register or a subreg of a register; if it is,
1403 update store_ruid, real_store_ruid and use_index in the reg_state
1404 structure accordingly. Called via note_stores from reload_combine. */
1406 static void
1407 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1409 int regno = 0;
1410 int i;
1411 machine_mode mode = GET_MODE (dst);
1413 if (GET_CODE (dst) == SUBREG)
1415 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1416 GET_MODE (SUBREG_REG (dst)),
1417 SUBREG_BYTE (dst),
1418 GET_MODE (dst));
1419 dst = SUBREG_REG (dst);
1422 /* Some targets do argument pushes without adding REG_INC notes. */
1424 if (MEM_P (dst))
1426 dst = XEXP (dst, 0);
1427 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1428 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1429 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1431 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1432 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
1434 /* We could probably do better, but for now mark the register
1435 as used in an unknown fashion and set/clobbered at this
1436 insn. */
1437 reg_state[i].use_index = -1;
1438 reg_state[i].store_ruid = reload_combine_ruid;
1439 reg_state[i].real_store_ruid = reload_combine_ruid;
1442 else
1443 return;
1446 if (!REG_P (dst))
1447 return;
1448 regno += REGNO (dst);
1450 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1451 careful with registers / register parts that are not full words.
1452 Similarly for ZERO_EXTRACT. */
1453 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1454 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1456 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1458 reg_state[i].use_index = -1;
1459 reg_state[i].store_ruid = reload_combine_ruid;
1460 reg_state[i].real_store_ruid = reload_combine_ruid;
1463 else
1465 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1467 reg_state[i].store_ruid = reload_combine_ruid;
1468 if (GET_CODE (set) == SET)
1469 reg_state[i].real_store_ruid = reload_combine_ruid;
1470 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1475 /* XP points to a piece of rtl that has to be checked for any uses of
1476 registers.
1477 *XP is the pattern of INSN, or a part of it.
1478 Called from reload_combine, and recursively by itself. */
1479 static void
1480 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1482 rtx x = *xp;
1483 enum rtx_code code = x->code;
1484 const char *fmt;
1485 int i, j;
1486 rtx offset = const0_rtx; /* For the REG case below. */
1488 switch (code)
1490 case SET:
1491 if (REG_P (SET_DEST (x)))
1493 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1494 return;
1496 break;
1498 case USE:
1499 /* If this is the USE of a return value, we can't change it. */
1500 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1502 /* Mark the return register as used in an unknown fashion. */
1503 rtx reg = XEXP (x, 0);
1504 unsigned int end_regno = END_REGNO (reg);
1505 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1506 reg_state[regno].use_index = -1;
1507 return;
1509 break;
1511 case CLOBBER:
1512 if (REG_P (SET_DEST (x)))
1514 /* No spurious CLOBBERs of pseudo registers may remain. */
1515 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1516 return;
1518 break;
1520 case PLUS:
1521 /* We are interested in (plus (reg) (const_int)) . */
1522 if (!REG_P (XEXP (x, 0))
1523 || !CONST_INT_P (XEXP (x, 1)))
1524 break;
1525 offset = XEXP (x, 1);
1526 x = XEXP (x, 0);
1527 /* Fall through. */
1528 case REG:
1530 int regno = REGNO (x);
1531 int use_index;
1532 int nregs;
1534 /* No spurious USEs of pseudo registers may remain. */
1535 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1537 nregs = REG_NREGS (x);
1539 /* We can't substitute into multi-hard-reg uses. */
1540 if (nregs > 1)
1542 while (--nregs >= 0)
1543 reg_state[regno + nregs].use_index = -1;
1544 return;
1547 /* We may be called to update uses in previously seen insns.
1548 Don't add uses beyond the last store we saw. */
1549 if (ruid < reg_state[regno].store_ruid)
1550 return;
1552 /* If this register is already used in some unknown fashion, we
1553 can't do anything.
1554 If we decrement the index from zero to -1, we can't store more
1555 uses, so this register becomes used in an unknown fashion. */
1556 use_index = --reg_state[regno].use_index;
1557 if (use_index < 0)
1558 return;
1560 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1562 /* This is the first use of this register we have seen since we
1563 marked it as dead. */
1564 reg_state[regno].offset = offset;
1565 reg_state[regno].all_offsets_match = true;
1566 reg_state[regno].use_ruid = ruid;
1568 else
1570 if (reg_state[regno].use_ruid > ruid)
1571 reg_state[regno].use_ruid = ruid;
1573 if (! rtx_equal_p (offset, reg_state[regno].offset))
1574 reg_state[regno].all_offsets_match = false;
1577 reg_state[regno].reg_use[use_index].insn = insn;
1578 reg_state[regno].reg_use[use_index].ruid = ruid;
1579 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1580 reg_state[regno].reg_use[use_index].usep = xp;
1581 return;
1584 case MEM:
1585 containing_mem = x;
1586 break;
1588 default:
1589 break;
1592 /* Recursively process the components of X. */
1593 fmt = GET_RTX_FORMAT (code);
1594 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1596 if (fmt[i] == 'e')
1597 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1598 else if (fmt[i] == 'E')
1600 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1601 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1602 containing_mem);
1607 /* See if we can reduce the cost of a constant by replacing a move
1608 with an add. We track situations in which a register is set to a
1609 constant or to a register plus a constant. */
1610 /* We cannot do our optimization across labels. Invalidating all the
1611 information about register contents we have would be costly, so we
1612 use move2add_last_label_luid to note where the label is and then
1613 later disable any optimization that would cross it.
1614 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1615 are only valid if reg_set_luid[n] is greater than
1616 move2add_last_label_luid.
1617 For a set that established a new (potential) base register with
1618 non-constant value, we use move2add_luid from the place where the
1619 setting insn is encountered; registers based off that base then
1620 get the same reg_set_luid. Constants all get
1621 move2add_last_label_luid + 1 as their reg_set_luid. */
1622 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1624 /* If reg_base_reg[n] is negative, register n has been set to
1625 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1626 If reg_base_reg[n] is non-negative, register n has been set to the
1627 sum of reg_offset[n] and the value of register reg_base_reg[n]
1628 before reg_set_luid[n], calculated in mode reg_mode[n] .
1629 For multi-hard-register registers, all but the first one are
1630 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1631 marks it as invalid. */
1632 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1633 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1634 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1635 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1637 /* move2add_luid is linearly increased while scanning the instructions
1638 from first to last. It is used to set reg_set_luid in
1639 reload_cse_move2add and move2add_note_store. */
1640 static int move2add_luid;
1642 /* move2add_last_label_luid is set whenever a label is found. Labels
1643 invalidate all previously collected reg_offset data. */
1644 static int move2add_last_label_luid;
1646 /* ??? We don't know how zero / sign extension is handled, hence we
1647 can't go from a narrower to a wider mode. */
1648 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1649 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1650 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1651 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1653 /* Record that REG is being set to a value with the mode of REG. */
1655 static void
1656 move2add_record_mode (rtx reg)
1658 int regno, nregs;
1659 machine_mode mode = GET_MODE (reg);
1661 if (GET_CODE (reg) == SUBREG)
1663 regno = subreg_regno (reg);
1664 nregs = subreg_nregs (reg);
1666 else if (REG_P (reg))
1668 regno = REGNO (reg);
1669 nregs = REG_NREGS (reg);
1671 else
1672 gcc_unreachable ();
1673 for (int i = nregs - 1; i > 0; i--)
1674 reg_mode[regno + i] = BLKmode;
1675 reg_mode[regno] = mode;
1678 /* Record that REG is being set to the sum of SYM and OFF. */
1680 static void
1681 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1683 int regno = REGNO (reg);
1685 move2add_record_mode (reg);
1686 reg_set_luid[regno] = move2add_luid;
1687 reg_base_reg[regno] = -1;
1688 reg_symbol_ref[regno] = sym;
1689 reg_offset[regno] = INTVAL (off);
1692 /* Check if REGNO contains a valid value in MODE. */
1694 static bool
1695 move2add_valid_value_p (int regno, machine_mode mode)
1697 if (reg_set_luid[regno] <= move2add_last_label_luid)
1698 return false;
1700 if (mode != reg_mode[regno])
1702 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1703 return false;
1704 /* The value loaded into regno in reg_mode[regno] is also valid in
1705 mode after truncation only if (REG:mode regno) is the lowpart of
1706 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1707 regno of the lowpart might be different. */
1708 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1709 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1710 if (s_off != 0)
1711 /* We could in principle adjust regno, check reg_mode[regno] to be
1712 BLKmode, and return s_off to the caller (vs. -1 for failure),
1713 but we currently have no callers that could make use of this
1714 information. */
1715 return false;
1718 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1719 if (reg_mode[regno + i] != BLKmode)
1720 return false;
1721 return true;
1724 /* This function is called with INSN that sets REG to (SYM + OFF),
1725 while REG is known to already have value (SYM + offset).
1726 This function tries to change INSN into an add instruction
1727 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1728 It also updates the information about REG's known value.
1729 Return true if we made a change. */
1731 static bool
1732 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1734 rtx pat = PATTERN (insn);
1735 rtx src = SET_SRC (pat);
1736 int regno = REGNO (reg);
1737 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
1738 GET_MODE (reg));
1739 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1740 bool changed = false;
1742 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1743 use (set (reg) (reg)) instead.
1744 We don't delete this insn, nor do we convert it into a
1745 note, to avoid losing register notes or the return
1746 value flag. jump2 already knows how to get rid of
1747 no-op moves. */
1748 if (new_src == const0_rtx)
1750 /* If the constants are different, this is a
1751 truncation, that, if turned into (set (reg)
1752 (reg)), would be discarded. Maybe we should
1753 try a truncMN pattern? */
1754 if (INTVAL (off) == reg_offset [regno])
1755 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1757 else
1759 struct full_rtx_costs oldcst, newcst;
1760 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1762 get_full_set_rtx_cost (pat, &oldcst);
1763 SET_SRC (pat) = tem;
1764 get_full_set_rtx_cost (pat, &newcst);
1765 SET_SRC (pat) = src;
1767 if (costs_lt_p (&newcst, &oldcst, speed)
1768 && have_add2_insn (reg, new_src))
1769 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1770 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1772 machine_mode narrow_mode;
1773 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1774 narrow_mode != VOIDmode
1775 && narrow_mode != GET_MODE (reg);
1776 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1778 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1779 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1780 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1782 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1783 rtx narrow_src = gen_int_mode (INTVAL (off),
1784 narrow_mode);
1785 rtx new_set
1786 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1787 narrow_reg),
1788 narrow_src);
1789 get_full_set_rtx_cost (new_set, &newcst);
1790 if (costs_lt_p (&newcst, &oldcst, speed))
1792 changed = validate_change (insn, &PATTERN (insn),
1793 new_set, 0);
1794 if (changed)
1795 break;
1801 move2add_record_sym_value (reg, sym, off);
1802 return changed;
1806 /* This function is called with INSN that sets REG to (SYM + OFF),
1807 but REG doesn't have known value (SYM + offset). This function
1808 tries to find another register which is known to already have
1809 value (SYM + offset) and change INSN into an add instruction
1810 (set (REG) (plus (the found register) (OFF - offset))) if such
1811 a register is found. It also updates the information about
1812 REG's known value.
1813 Return true iff we made a change. */
1815 static bool
1816 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1818 rtx pat = PATTERN (insn);
1819 rtx src = SET_SRC (pat);
1820 int regno = REGNO (reg);
1821 int min_regno = 0;
1822 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1823 int i;
1824 bool changed = false;
1825 struct full_rtx_costs oldcst, newcst, mincst;
1826 rtx plus_expr;
1828 init_costs_to_max (&mincst);
1829 get_full_set_rtx_cost (pat, &oldcst);
1831 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1832 SET_SRC (pat) = plus_expr;
1834 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1835 if (move2add_valid_value_p (i, GET_MODE (reg))
1836 && reg_base_reg[i] < 0
1837 && reg_symbol_ref[i] != NULL_RTX
1838 && rtx_equal_p (sym, reg_symbol_ref[i]))
1840 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1841 GET_MODE (reg));
1842 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1843 use (set (reg) (reg)) instead.
1844 We don't delete this insn, nor do we convert it into a
1845 note, to avoid losing register notes or the return
1846 value flag. jump2 already knows how to get rid of
1847 no-op moves. */
1848 if (new_src == const0_rtx)
1850 init_costs_to_zero (&mincst);
1851 min_regno = i;
1852 break;
1854 else
1856 XEXP (plus_expr, 1) = new_src;
1857 get_full_set_rtx_cost (pat, &newcst);
1859 if (costs_lt_p (&newcst, &mincst, speed))
1861 mincst = newcst;
1862 min_regno = i;
1866 SET_SRC (pat) = src;
1868 if (costs_lt_p (&mincst, &oldcst, speed))
1870 rtx tem;
1872 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1873 if (i != min_regno)
1875 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1876 GET_MODE (reg));
1877 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1879 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1880 changed = true;
1882 reg_set_luid[regno] = move2add_luid;
1883 move2add_record_sym_value (reg, sym, off);
1884 return changed;
1887 /* Convert move insns with constant inputs to additions if they are cheaper.
1888 Return true if any changes were made. */
1889 static bool
1890 reload_cse_move2add (rtx_insn *first)
1892 int i;
1893 rtx_insn *insn;
1894 bool changed = false;
1896 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1898 reg_set_luid[i] = 0;
1899 reg_offset[i] = 0;
1900 reg_base_reg[i] = 0;
1901 reg_symbol_ref[i] = NULL_RTX;
1902 reg_mode[i] = VOIDmode;
1905 move2add_last_label_luid = 0;
1906 move2add_luid = 2;
1907 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1909 rtx pat, note;
1911 if (LABEL_P (insn))
1913 move2add_last_label_luid = move2add_luid;
1914 /* We're going to increment move2add_luid twice after a
1915 label, so that we can use move2add_last_label_luid + 1 as
1916 the luid for constants. */
1917 move2add_luid++;
1918 continue;
1920 if (! INSN_P (insn))
1921 continue;
1922 pat = PATTERN (insn);
1923 /* For simplicity, we only perform this optimization on
1924 straightforward SETs. */
1925 if (GET_CODE (pat) == SET
1926 && REG_P (SET_DEST (pat)))
1928 rtx reg = SET_DEST (pat);
1929 int regno = REGNO (reg);
1930 rtx src = SET_SRC (pat);
1932 /* Check if we have valid information on the contents of this
1933 register in the mode of REG. */
1934 if (move2add_valid_value_p (regno, GET_MODE (reg))
1935 && dbg_cnt (cse2_move2add))
1937 /* Try to transform (set (REGX) (CONST_INT A))
1939 (set (REGX) (CONST_INT B))
1941 (set (REGX) (CONST_INT A))
1943 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1945 (set (REGX) (CONST_INT A))
1947 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1950 if (CONST_INT_P (src)
1951 && reg_base_reg[regno] < 0
1952 && reg_symbol_ref[regno] == NULL_RTX)
1954 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1955 continue;
1958 /* Try to transform (set (REGX) (REGY))
1959 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1961 (set (REGX) (REGY))
1962 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1964 (set (REGX) (REGY))
1965 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1967 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1968 else if (REG_P (src)
1969 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1970 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1971 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
1973 rtx_insn *next = next_nonnote_nondebug_insn (insn);
1974 rtx set = NULL_RTX;
1975 if (next)
1976 set = single_set (next);
1977 if (set
1978 && SET_DEST (set) == reg
1979 && GET_CODE (SET_SRC (set)) == PLUS
1980 && XEXP (SET_SRC (set), 0) == reg
1981 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1983 rtx src3 = XEXP (SET_SRC (set), 1);
1984 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
1985 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1986 HOST_WIDE_INT regno_offset = reg_offset[regno];
1987 rtx new_src =
1988 gen_int_mode (added_offset
1989 + base_offset
1990 - regno_offset,
1991 GET_MODE (reg));
1992 bool success = false;
1993 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1995 if (new_src == const0_rtx)
1996 /* See above why we create (set (reg) (reg)) here. */
1997 success
1998 = validate_change (next, &SET_SRC (set), reg, 0);
1999 else
2001 rtx old_src = SET_SRC (set);
2002 struct full_rtx_costs oldcst, newcst;
2003 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
2005 get_full_set_rtx_cost (set, &oldcst);
2006 SET_SRC (set) = tem;
2007 get_full_set_src_cost (tem, GET_MODE (reg), &newcst);
2008 SET_SRC (set) = old_src;
2009 costs_add_n_insns (&oldcst, 1);
2011 if (costs_lt_p (&newcst, &oldcst, speed)
2012 && have_add2_insn (reg, new_src))
2014 rtx newpat = gen_rtx_SET (reg, tem);
2015 success
2016 = validate_change (next, &PATTERN (next),
2017 newpat, 0);
2020 if (success)
2021 delete_insn (insn);
2022 changed |= success;
2023 insn = next;
2024 move2add_record_mode (reg);
2025 reg_offset[regno]
2026 = trunc_int_for_mode (added_offset + base_offset,
2027 GET_MODE (reg));
2028 continue;
2033 /* Try to transform
2034 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2036 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2038 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2040 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2041 if ((GET_CODE (src) == SYMBOL_REF
2042 || (GET_CODE (src) == CONST
2043 && GET_CODE (XEXP (src, 0)) == PLUS
2044 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2045 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2046 && dbg_cnt (cse2_move2add))
2048 rtx sym, off;
2050 if (GET_CODE (src) == SYMBOL_REF)
2052 sym = src;
2053 off = const0_rtx;
2055 else
2057 sym = XEXP (XEXP (src, 0), 0);
2058 off = XEXP (XEXP (src, 0), 1);
2061 /* If the reg already contains the value which is sum of
2062 sym and some constant value, we can use an add2 insn. */
2063 if (move2add_valid_value_p (regno, GET_MODE (reg))
2064 && reg_base_reg[regno] < 0
2065 && reg_symbol_ref[regno] != NULL_RTX
2066 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2067 changed |= move2add_use_add2_insn (reg, sym, off, insn);
2069 /* Otherwise, we have to find a register whose value is sum
2070 of sym and some constant value. */
2071 else
2072 changed |= move2add_use_add3_insn (reg, sym, off, insn);
2074 continue;
2078 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2080 if (REG_NOTE_KIND (note) == REG_INC
2081 && REG_P (XEXP (note, 0)))
2083 /* Reset the information about this register. */
2084 int regno = REGNO (XEXP (note, 0));
2085 if (regno < FIRST_PSEUDO_REGISTER)
2087 move2add_record_mode (XEXP (note, 0));
2088 reg_mode[regno] = VOIDmode;
2092 note_stores (PATTERN (insn), move2add_note_store, insn);
2094 /* If INSN is a conditional branch, we try to extract an
2095 implicit set out of it. */
2096 if (any_condjump_p (insn))
2098 rtx cnd = fis_get_condition (insn);
2100 if (cnd != NULL_RTX
2101 && GET_CODE (cnd) == NE
2102 && REG_P (XEXP (cnd, 0))
2103 && !reg_set_p (XEXP (cnd, 0), insn)
2104 /* The following two checks, which are also in
2105 move2add_note_store, are intended to reduce the
2106 number of calls to gen_rtx_SET to avoid memory
2107 allocation if possible. */
2108 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2109 && REG_NREGS (XEXP (cnd, 0)) == 1
2110 && CONST_INT_P (XEXP (cnd, 1)))
2112 rtx implicit_set =
2113 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
2114 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2118 /* If this is a CALL_INSN, all call used registers are stored with
2119 unknown values. */
2120 if (CALL_P (insn))
2122 rtx link;
2124 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2126 if (call_used_regs[i])
2127 /* Reset the information about this register. */
2128 reg_mode[i] = VOIDmode;
2131 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
2132 link = XEXP (link, 1))
2134 rtx setuse = XEXP (link, 0);
2135 rtx usage_rtx = XEXP (setuse, 0);
2136 if (GET_CODE (setuse) == CLOBBER
2137 && REG_P (usage_rtx))
2139 unsigned int end_regno = END_REGNO (usage_rtx);
2140 for (unsigned int r = REGNO (usage_rtx); r < end_regno; ++r)
2141 /* Reset the information about this register. */
2142 reg_mode[r] = VOIDmode;
2147 return changed;
2150 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2151 contains SET.
2152 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2153 Called from reload_cse_move2add via note_stores. */
2155 static void
2156 move2add_note_store (rtx dst, const_rtx set, void *data)
2158 rtx_insn *insn = (rtx_insn *) data;
2159 unsigned int regno = 0;
2160 machine_mode mode = GET_MODE (dst);
2162 /* Some targets do argument pushes without adding REG_INC notes. */
2164 if (MEM_P (dst))
2166 dst = XEXP (dst, 0);
2167 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2168 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2169 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
2170 return;
2173 if (GET_CODE (dst) == SUBREG)
2174 regno = subreg_regno (dst);
2175 else if (REG_P (dst))
2176 regno = REGNO (dst);
2177 else
2178 return;
2180 if (SCALAR_INT_MODE_P (mode)
2181 && GET_CODE (set) == SET)
2183 rtx note, sym = NULL_RTX;
2184 rtx off;
2186 note = find_reg_equal_equiv_note (insn);
2187 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2189 sym = XEXP (note, 0);
2190 off = const0_rtx;
2192 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2193 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2194 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2195 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2197 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2198 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2201 if (sym != NULL_RTX)
2203 move2add_record_sym_value (dst, sym, off);
2204 return;
2208 if (SCALAR_INT_MODE_P (mode)
2209 && GET_CODE (set) == SET
2210 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2211 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2213 rtx src = SET_SRC (set);
2214 rtx base_reg;
2215 unsigned HOST_WIDE_INT offset;
2216 int base_regno;
2218 switch (GET_CODE (src))
2220 case PLUS:
2221 if (REG_P (XEXP (src, 0)))
2223 base_reg = XEXP (src, 0);
2225 if (CONST_INT_P (XEXP (src, 1)))
2226 offset = UINTVAL (XEXP (src, 1));
2227 else if (REG_P (XEXP (src, 1))
2228 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2230 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2231 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2232 offset = reg_offset[REGNO (XEXP (src, 1))];
2233 /* Maybe the first register is known to be a
2234 constant. */
2235 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2236 && reg_base_reg[REGNO (base_reg)] < 0
2237 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2239 offset = reg_offset[REGNO (base_reg)];
2240 base_reg = XEXP (src, 1);
2242 else
2243 goto invalidate;
2245 else
2246 goto invalidate;
2248 break;
2251 goto invalidate;
2253 case REG:
2254 base_reg = src;
2255 offset = 0;
2256 break;
2258 case CONST_INT:
2259 /* Start tracking the register as a constant. */
2260 reg_base_reg[regno] = -1;
2261 reg_symbol_ref[regno] = NULL_RTX;
2262 reg_offset[regno] = INTVAL (SET_SRC (set));
2263 /* We assign the same luid to all registers set to constants. */
2264 reg_set_luid[regno] = move2add_last_label_luid + 1;
2265 move2add_record_mode (dst);
2266 return;
2268 default:
2269 goto invalidate;
2272 base_regno = REGNO (base_reg);
2273 /* If information about the base register is not valid, set it
2274 up as a new base register, pretending its value is known
2275 starting from the current insn. */
2276 if (!move2add_valid_value_p (base_regno, mode))
2278 reg_base_reg[base_regno] = base_regno;
2279 reg_symbol_ref[base_regno] = NULL_RTX;
2280 reg_offset[base_regno] = 0;
2281 reg_set_luid[base_regno] = move2add_luid;
2282 gcc_assert (GET_MODE (base_reg) == mode);
2283 move2add_record_mode (base_reg);
2286 /* Copy base information from our base register. */
2287 reg_set_luid[regno] = reg_set_luid[base_regno];
2288 reg_base_reg[regno] = reg_base_reg[base_regno];
2289 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2291 /* Compute the sum of the offsets or constants. */
2292 reg_offset[regno]
2293 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2295 move2add_record_mode (dst);
2297 else
2299 invalidate:
2300 /* Invalidate the contents of the register. */
2301 move2add_record_mode (dst);
2302 reg_mode[regno] = VOIDmode;
2306 namespace {
2308 const pass_data pass_data_postreload_cse =
2310 RTL_PASS, /* type */
2311 "postreload", /* name */
2312 OPTGROUP_NONE, /* optinfo_flags */
2313 TV_RELOAD_CSE_REGS, /* tv_id */
2314 0, /* properties_required */
2315 0, /* properties_provided */
2316 0, /* properties_destroyed */
2317 0, /* todo_flags_start */
2318 TODO_df_finish, /* todo_flags_finish */
2321 class pass_postreload_cse : public rtl_opt_pass
2323 public:
2324 pass_postreload_cse (gcc::context *ctxt)
2325 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2328 /* opt_pass methods: */
2329 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2331 virtual unsigned int execute (function *);
2333 }; // class pass_postreload_cse
2335 unsigned int
2336 pass_postreload_cse::execute (function *fun)
2338 if (!dbg_cnt (postreload_cse))
2339 return 0;
2341 /* Do a very simple CSE pass over just the hard registers. */
2342 reload_cse_regs (get_insns ());
2343 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2344 Remove any EH edges associated with them. */
2345 if (fun->can_throw_non_call_exceptions
2346 && purge_all_dead_edges ())
2347 cleanup_cfg (0);
2349 return 0;
2352 } // anon namespace
2354 rtl_opt_pass *
2355 make_pass_postreload_cse (gcc::context *ctxt)
2357 return new pass_postreload_cse (ctxt);