2016-04-27 Hristian Kirtchev <kirtchev@adacore.com>
[official-gcc.git] / gcc / expmed.c
blobec968da63336d94efb534cf274222ff51ddaaf09
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2016 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "predict.h"
30 #include "tm_p.h"
31 #include "expmed.h"
32 #include "optabs.h"
33 #include "emit-rtl.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "dojump.h"
38 #include "explow.h"
39 #include "expr.h"
40 #include "langhooks.h"
42 struct target_expmed default_target_expmed;
43 #if SWITCHABLE_TARGET
44 struct target_expmed *this_target_expmed = &default_target_expmed;
45 #endif
47 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
48 unsigned HOST_WIDE_INT,
49 unsigned HOST_WIDE_INT,
50 unsigned HOST_WIDE_INT,
51 rtx, bool);
52 static void store_fixed_bit_field_1 (rtx, unsigned HOST_WIDE_INT,
53 unsigned HOST_WIDE_INT,
54 rtx, bool);
55 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
56 unsigned HOST_WIDE_INT,
57 unsigned HOST_WIDE_INT,
58 unsigned HOST_WIDE_INT,
59 rtx, bool);
60 static rtx extract_fixed_bit_field (machine_mode, rtx,
61 unsigned HOST_WIDE_INT,
62 unsigned HOST_WIDE_INT, rtx, int, bool);
63 static rtx extract_fixed_bit_field_1 (machine_mode, rtx,
64 unsigned HOST_WIDE_INT,
65 unsigned HOST_WIDE_INT, rtx, int, bool);
66 static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int);
67 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
68 unsigned HOST_WIDE_INT, int, bool);
69 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *);
70 static rtx expand_smod_pow2 (machine_mode, rtx, HOST_WIDE_INT);
71 static rtx expand_sdiv_pow2 (machine_mode, rtx, HOST_WIDE_INT);
73 /* Return a constant integer mask value of mode MODE with BITSIZE ones
74 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
75 The mask is truncated if necessary to the width of mode MODE. The
76 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
78 static inline rtx
79 mask_rtx (machine_mode mode, int bitpos, int bitsize, bool complement)
81 return immed_wide_int_const
82 (wi::shifted_mask (bitpos, bitsize, complement,
83 GET_MODE_PRECISION (mode)), mode);
86 /* Test whether a value is zero of a power of two. */
87 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
88 (((x) & ((x) - (unsigned HOST_WIDE_INT) 1)) == 0)
90 struct init_expmed_rtl
92 rtx reg;
93 rtx plus;
94 rtx neg;
95 rtx mult;
96 rtx sdiv;
97 rtx udiv;
98 rtx sdiv_32;
99 rtx smod_32;
100 rtx wide_mult;
101 rtx wide_lshr;
102 rtx wide_trunc;
103 rtx shift;
104 rtx shift_mult;
105 rtx shift_add;
106 rtx shift_sub0;
107 rtx shift_sub1;
108 rtx zext;
109 rtx trunc;
111 rtx pow2[MAX_BITS_PER_WORD];
112 rtx cint[MAX_BITS_PER_WORD];
115 static void
116 init_expmed_one_conv (struct init_expmed_rtl *all, machine_mode to_mode,
117 machine_mode from_mode, bool speed)
119 int to_size, from_size;
120 rtx which;
122 to_size = GET_MODE_PRECISION (to_mode);
123 from_size = GET_MODE_PRECISION (from_mode);
125 /* Most partial integers have a precision less than the "full"
126 integer it requires for storage. In case one doesn't, for
127 comparison purposes here, reduce the bit size by one in that
128 case. */
129 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT
130 && exact_log2 (to_size) != -1)
131 to_size --;
132 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT
133 && exact_log2 (from_size) != -1)
134 from_size --;
136 /* Assume cost of zero-extend and sign-extend is the same. */
137 which = (to_size < from_size ? all->trunc : all->zext);
139 PUT_MODE (all->reg, from_mode);
140 set_convert_cost (to_mode, from_mode, speed,
141 set_src_cost (which, to_mode, speed));
144 static void
145 init_expmed_one_mode (struct init_expmed_rtl *all,
146 machine_mode mode, int speed)
148 int m, n, mode_bitsize;
149 machine_mode mode_from;
151 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
153 PUT_MODE (all->reg, mode);
154 PUT_MODE (all->plus, mode);
155 PUT_MODE (all->neg, mode);
156 PUT_MODE (all->mult, mode);
157 PUT_MODE (all->sdiv, mode);
158 PUT_MODE (all->udiv, mode);
159 PUT_MODE (all->sdiv_32, mode);
160 PUT_MODE (all->smod_32, mode);
161 PUT_MODE (all->wide_trunc, mode);
162 PUT_MODE (all->shift, mode);
163 PUT_MODE (all->shift_mult, mode);
164 PUT_MODE (all->shift_add, mode);
165 PUT_MODE (all->shift_sub0, mode);
166 PUT_MODE (all->shift_sub1, mode);
167 PUT_MODE (all->zext, mode);
168 PUT_MODE (all->trunc, mode);
170 set_add_cost (speed, mode, set_src_cost (all->plus, mode, speed));
171 set_neg_cost (speed, mode, set_src_cost (all->neg, mode, speed));
172 set_mul_cost (speed, mode, set_src_cost (all->mult, mode, speed));
173 set_sdiv_cost (speed, mode, set_src_cost (all->sdiv, mode, speed));
174 set_udiv_cost (speed, mode, set_src_cost (all->udiv, mode, speed));
176 set_sdiv_pow2_cheap (speed, mode, (set_src_cost (all->sdiv_32, mode, speed)
177 <= 2 * add_cost (speed, mode)));
178 set_smod_pow2_cheap (speed, mode, (set_src_cost (all->smod_32, mode, speed)
179 <= 4 * add_cost (speed, mode)));
181 set_shift_cost (speed, mode, 0, 0);
183 int cost = add_cost (speed, mode);
184 set_shiftadd_cost (speed, mode, 0, cost);
185 set_shiftsub0_cost (speed, mode, 0, cost);
186 set_shiftsub1_cost (speed, mode, 0, cost);
189 n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
190 for (m = 1; m < n; m++)
192 XEXP (all->shift, 1) = all->cint[m];
193 XEXP (all->shift_mult, 1) = all->pow2[m];
195 set_shift_cost (speed, mode, m, set_src_cost (all->shift, mode, speed));
196 set_shiftadd_cost (speed, mode, m, set_src_cost (all->shift_add, mode,
197 speed));
198 set_shiftsub0_cost (speed, mode, m, set_src_cost (all->shift_sub0, mode,
199 speed));
200 set_shiftsub1_cost (speed, mode, m, set_src_cost (all->shift_sub1, mode,
201 speed));
204 if (SCALAR_INT_MODE_P (mode))
206 for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
207 mode_from = (machine_mode)(mode_from + 1))
208 init_expmed_one_conv (all, mode, mode_from, speed);
210 if (GET_MODE_CLASS (mode) == MODE_INT)
212 machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
213 if (wider_mode != VOIDmode)
215 PUT_MODE (all->zext, wider_mode);
216 PUT_MODE (all->wide_mult, wider_mode);
217 PUT_MODE (all->wide_lshr, wider_mode);
218 XEXP (all->wide_lshr, 1) = GEN_INT (mode_bitsize);
220 set_mul_widen_cost (speed, wider_mode,
221 set_src_cost (all->wide_mult, wider_mode, speed));
222 set_mul_highpart_cost (speed, mode,
223 set_src_cost (all->wide_trunc, mode, speed));
228 void
229 init_expmed (void)
231 struct init_expmed_rtl all;
232 machine_mode mode = QImode;
233 int m, speed;
235 memset (&all, 0, sizeof all);
236 for (m = 1; m < MAX_BITS_PER_WORD; m++)
238 all.pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
239 all.cint[m] = GEN_INT (m);
242 /* Avoid using hard regs in ways which may be unsupported. */
243 all.reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
244 all.plus = gen_rtx_PLUS (mode, all.reg, all.reg);
245 all.neg = gen_rtx_NEG (mode, all.reg);
246 all.mult = gen_rtx_MULT (mode, all.reg, all.reg);
247 all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg);
248 all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg);
249 all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]);
250 all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]);
251 all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg);
252 all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext);
253 all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg);
254 all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr);
255 all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg);
256 all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg);
257 all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg);
258 all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg);
259 all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult);
260 all.trunc = gen_rtx_TRUNCATE (mode, all.reg);
262 for (speed = 0; speed < 2; speed++)
264 crtl->maybe_hot_insn_p = speed;
265 set_zero_cost (speed, set_src_cost (const0_rtx, mode, speed));
267 for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
268 mode = (machine_mode)(mode + 1))
269 init_expmed_one_mode (&all, mode, speed);
271 if (MIN_MODE_PARTIAL_INT != VOIDmode)
272 for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
273 mode = (machine_mode)(mode + 1))
274 init_expmed_one_mode (&all, mode, speed);
276 if (MIN_MODE_VECTOR_INT != VOIDmode)
277 for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
278 mode = (machine_mode)(mode + 1))
279 init_expmed_one_mode (&all, mode, speed);
282 if (alg_hash_used_p ())
284 struct alg_hash_entry *p = alg_hash_entry_ptr (0);
285 memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
287 else
288 set_alg_hash_used_p (true);
289 default_rtl_profile ();
291 ggc_free (all.trunc);
292 ggc_free (all.shift_sub1);
293 ggc_free (all.shift_sub0);
294 ggc_free (all.shift_add);
295 ggc_free (all.shift_mult);
296 ggc_free (all.shift);
297 ggc_free (all.wide_trunc);
298 ggc_free (all.wide_lshr);
299 ggc_free (all.wide_mult);
300 ggc_free (all.zext);
301 ggc_free (all.smod_32);
302 ggc_free (all.sdiv_32);
303 ggc_free (all.udiv);
304 ggc_free (all.sdiv);
305 ggc_free (all.mult);
306 ggc_free (all.neg);
307 ggc_free (all.plus);
308 ggc_free (all.reg);
311 /* Return an rtx representing minus the value of X.
312 MODE is the intended mode of the result,
313 useful if X is a CONST_INT. */
316 negate_rtx (machine_mode mode, rtx x)
318 rtx result = simplify_unary_operation (NEG, mode, x, mode);
320 if (result == 0)
321 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
323 return result;
326 /* Whether reverse storage order is supported on the target. */
327 static int reverse_storage_order_supported = -1;
329 /* Check whether reverse storage order is supported on the target. */
331 static void
332 check_reverse_storage_order_support (void)
334 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
336 reverse_storage_order_supported = 0;
337 sorry ("reverse scalar storage order");
339 else
340 reverse_storage_order_supported = 1;
343 /* Whether reverse FP storage order is supported on the target. */
344 static int reverse_float_storage_order_supported = -1;
346 /* Check whether reverse FP storage order is supported on the target. */
348 static void
349 check_reverse_float_storage_order_support (void)
351 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
353 reverse_float_storage_order_supported = 0;
354 sorry ("reverse floating-point scalar storage order");
356 else
357 reverse_float_storage_order_supported = 1;
360 /* Return an rtx representing value of X with reverse storage order.
361 MODE is the intended mode of the result,
362 useful if X is a CONST_INT. */
365 flip_storage_order (enum machine_mode mode, rtx x)
367 enum machine_mode int_mode;
368 rtx result;
370 if (mode == QImode)
371 return x;
373 if (COMPLEX_MODE_P (mode))
375 rtx real = read_complex_part (x, false);
376 rtx imag = read_complex_part (x, true);
378 real = flip_storage_order (GET_MODE_INNER (mode), real);
379 imag = flip_storage_order (GET_MODE_INNER (mode), imag);
381 return gen_rtx_CONCAT (mode, real, imag);
384 if (__builtin_expect (reverse_storage_order_supported < 0, 0))
385 check_reverse_storage_order_support ();
387 if (SCALAR_INT_MODE_P (mode))
388 int_mode = mode;
389 else
391 if (FLOAT_MODE_P (mode)
392 && __builtin_expect (reverse_float_storage_order_supported < 0, 0))
393 check_reverse_float_storage_order_support ();
395 int_mode = mode_for_size (GET_MODE_PRECISION (mode), MODE_INT, 0);
396 if (int_mode == BLKmode)
398 sorry ("reverse storage order for %smode", GET_MODE_NAME (mode));
399 return x;
401 x = gen_lowpart (int_mode, x);
404 result = simplify_unary_operation (BSWAP, int_mode, x, int_mode);
405 if (result == 0)
406 result = expand_unop (int_mode, bswap_optab, x, NULL_RTX, 1);
408 if (int_mode != mode)
409 result = gen_lowpart (mode, result);
411 return result;
414 /* Adjust bitfield memory MEM so that it points to the first unit of mode
415 MODE that contains a bitfield of size BITSIZE at bit position BITNUM.
416 If MODE is BLKmode, return a reference to every byte in the bitfield.
417 Set *NEW_BITNUM to the bit position of the field within the new memory. */
419 static rtx
420 narrow_bit_field_mem (rtx mem, machine_mode mode,
421 unsigned HOST_WIDE_INT bitsize,
422 unsigned HOST_WIDE_INT bitnum,
423 unsigned HOST_WIDE_INT *new_bitnum)
425 if (mode == BLKmode)
427 *new_bitnum = bitnum % BITS_PER_UNIT;
428 HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
429 HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
430 / BITS_PER_UNIT);
431 return adjust_bitfield_address_size (mem, mode, offset, size);
433 else
435 unsigned int unit = GET_MODE_BITSIZE (mode);
436 *new_bitnum = bitnum % unit;
437 HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
438 return adjust_bitfield_address (mem, mode, offset);
442 /* The caller wants to perform insertion or extraction PATTERN on a
443 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
444 BITREGION_START and BITREGION_END are as for store_bit_field
445 and FIELDMODE is the natural mode of the field.
447 Search for a mode that is compatible with the memory access
448 restrictions and (where applicable) with a register insertion or
449 extraction. Return the new memory on success, storing the adjusted
450 bit position in *NEW_BITNUM. Return null otherwise. */
452 static rtx
453 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
454 rtx op0, HOST_WIDE_INT bitsize,
455 HOST_WIDE_INT bitnum,
456 unsigned HOST_WIDE_INT bitregion_start,
457 unsigned HOST_WIDE_INT bitregion_end,
458 machine_mode fieldmode,
459 unsigned HOST_WIDE_INT *new_bitnum)
461 bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
462 bitregion_end, MEM_ALIGN (op0),
463 MEM_VOLATILE_P (op0));
464 machine_mode best_mode;
465 if (iter.next_mode (&best_mode))
467 /* We can use a memory in BEST_MODE. See whether this is true for
468 any wider modes. All other things being equal, we prefer to
469 use the widest mode possible because it tends to expose more
470 CSE opportunities. */
471 if (!iter.prefer_smaller_modes ())
473 /* Limit the search to the mode required by the corresponding
474 register insertion or extraction instruction, if any. */
475 machine_mode limit_mode = word_mode;
476 extraction_insn insn;
477 if (get_best_reg_extraction_insn (&insn, pattern,
478 GET_MODE_BITSIZE (best_mode),
479 fieldmode))
480 limit_mode = insn.field_mode;
482 machine_mode wider_mode;
483 while (iter.next_mode (&wider_mode)
484 && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
485 best_mode = wider_mode;
487 return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
488 new_bitnum);
490 return NULL_RTX;
493 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
494 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
495 offset is then BITNUM / BITS_PER_UNIT. */
497 static bool
498 lowpart_bit_field_p (unsigned HOST_WIDE_INT bitnum,
499 unsigned HOST_WIDE_INT bitsize,
500 machine_mode struct_mode)
502 if (BYTES_BIG_ENDIAN)
503 return (bitnum % BITS_PER_UNIT == 0
504 && (bitnum + bitsize == GET_MODE_BITSIZE (struct_mode)
505 || (bitnum + bitsize) % BITS_PER_WORD == 0));
506 else
507 return bitnum % BITS_PER_WORD == 0;
510 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
511 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
512 Return false if the access would touch memory outside the range
513 BITREGION_START to BITREGION_END for conformance to the C++ memory
514 model. */
516 static bool
517 strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
518 unsigned HOST_WIDE_INT bitnum,
519 machine_mode fieldmode,
520 unsigned HOST_WIDE_INT bitregion_start,
521 unsigned HOST_WIDE_INT bitregion_end)
523 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode);
525 /* -fstrict-volatile-bitfields must be enabled and we must have a
526 volatile MEM. */
527 if (!MEM_P (op0)
528 || !MEM_VOLATILE_P (op0)
529 || flag_strict_volatile_bitfields <= 0)
530 return false;
532 /* Non-integral modes likely only happen with packed structures.
533 Punt. */
534 if (!SCALAR_INT_MODE_P (fieldmode))
535 return false;
537 /* The bit size must not be larger than the field mode, and
538 the field mode must not be larger than a word. */
539 if (bitsize > modesize || modesize > BITS_PER_WORD)
540 return false;
542 /* Check for cases of unaligned fields that must be split. */
543 if (bitnum % modesize + bitsize > modesize)
544 return false;
546 /* The memory must be sufficiently aligned for a MODESIZE access.
547 This condition guarantees, that the memory access will not
548 touch anything after the end of the structure. */
549 if (MEM_ALIGN (op0) < modesize)
550 return false;
552 /* Check for cases where the C++ memory model applies. */
553 if (bitregion_end != 0
554 && (bitnum - bitnum % modesize < bitregion_start
555 || bitnum - bitnum % modesize + modesize - 1 > bitregion_end))
556 return false;
558 return true;
561 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
562 bit number BITNUM can be treated as a simple value of mode MODE. */
564 static bool
565 simple_mem_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
566 unsigned HOST_WIDE_INT bitnum, machine_mode mode)
568 return (MEM_P (op0)
569 && bitnum % BITS_PER_UNIT == 0
570 && bitsize == GET_MODE_BITSIZE (mode)
571 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
572 || (bitnum % GET_MODE_ALIGNMENT (mode) == 0
573 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
576 /* Try to use instruction INSV to store VALUE into a field of OP0.
577 BITSIZE and BITNUM are as for store_bit_field. */
579 static bool
580 store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
581 unsigned HOST_WIDE_INT bitsize,
582 unsigned HOST_WIDE_INT bitnum,
583 rtx value)
585 struct expand_operand ops[4];
586 rtx value1;
587 rtx xop0 = op0;
588 rtx_insn *last = get_last_insn ();
589 bool copy_back = false;
591 machine_mode op_mode = insv->field_mode;
592 unsigned int unit = GET_MODE_BITSIZE (op_mode);
593 if (bitsize == 0 || bitsize > unit)
594 return false;
596 if (MEM_P (xop0))
597 /* Get a reference to the first byte of the field. */
598 xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
599 &bitnum);
600 else
602 /* Convert from counting within OP0 to counting in OP_MODE. */
603 if (BYTES_BIG_ENDIAN)
604 bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
606 /* If xop0 is a register, we need it in OP_MODE
607 to make it acceptable to the format of insv. */
608 if (GET_CODE (xop0) == SUBREG)
609 /* We can't just change the mode, because this might clobber op0,
610 and we will need the original value of op0 if insv fails. */
611 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
612 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
613 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
616 /* If the destination is a paradoxical subreg such that we need a
617 truncate to the inner mode, perform the insertion on a temporary and
618 truncate the result to the original destination. Note that we can't
619 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
620 X) 0)) is (reg:N X). */
621 if (GET_CODE (xop0) == SUBREG
622 && REG_P (SUBREG_REG (xop0))
623 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
624 op_mode))
626 rtx tem = gen_reg_rtx (op_mode);
627 emit_move_insn (tem, xop0);
628 xop0 = tem;
629 copy_back = true;
632 /* There are similar overflow check at the start of store_bit_field_1,
633 but that only check the situation where the field lies completely
634 outside the register, while there do have situation where the field
635 lies partialy in the register, we need to adjust bitsize for this
636 partial overflow situation. Without this fix, pr48335-2.c on big-endian
637 will broken on those arch support bit insert instruction, like arm, aarch64
638 etc. */
639 if (bitsize + bitnum > unit && bitnum < unit)
641 warning (OPT_Wextra, "write of %wu-bit data outside the bound of "
642 "destination object, data truncated into %wu-bit",
643 bitsize, unit - bitnum);
644 bitsize = unit - bitnum;
647 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
648 "backwards" from the size of the unit we are inserting into.
649 Otherwise, we count bits from the most significant on a
650 BYTES/BITS_BIG_ENDIAN machine. */
652 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
653 bitnum = unit - bitsize - bitnum;
655 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
656 value1 = value;
657 if (GET_MODE (value) != op_mode)
659 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
661 rtx tmp;
662 /* Optimization: Don't bother really extending VALUE
663 if it has all the bits we will actually use. However,
664 if we must narrow it, be sure we do it correctly. */
666 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
668 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
669 if (! tmp)
670 tmp = simplify_gen_subreg (op_mode,
671 force_reg (GET_MODE (value),
672 value1),
673 GET_MODE (value), 0);
675 else
677 tmp = gen_lowpart_if_possible (op_mode, value1);
678 if (! tmp)
679 tmp = gen_lowpart (op_mode, force_reg (GET_MODE (value),
680 value1));
682 value1 = tmp;
684 else if (CONST_INT_P (value))
685 value1 = gen_int_mode (INTVAL (value), op_mode);
686 else
687 /* Parse phase is supposed to make VALUE's data type
688 match that of the component reference, which is a type
689 at least as wide as the field; so VALUE should have
690 a mode that corresponds to that type. */
691 gcc_assert (CONSTANT_P (value));
694 create_fixed_operand (&ops[0], xop0);
695 create_integer_operand (&ops[1], bitsize);
696 create_integer_operand (&ops[2], bitnum);
697 create_input_operand (&ops[3], value1, op_mode);
698 if (maybe_expand_insn (insv->icode, 4, ops))
700 if (copy_back)
701 convert_move (op0, xop0, true);
702 return true;
704 delete_insns_since (last);
705 return false;
708 /* A subroutine of store_bit_field, with the same arguments. Return true
709 if the operation could be implemented.
711 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
712 no other way of implementing the operation. If FALLBACK_P is false,
713 return false instead. */
715 static bool
716 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
717 unsigned HOST_WIDE_INT bitnum,
718 unsigned HOST_WIDE_INT bitregion_start,
719 unsigned HOST_WIDE_INT bitregion_end,
720 machine_mode fieldmode,
721 rtx value, bool reverse, bool fallback_p)
723 rtx op0 = str_rtx;
724 rtx orig_value;
726 while (GET_CODE (op0) == SUBREG)
728 /* The following line once was done only if WORDS_BIG_ENDIAN,
729 but I think that is a mistake. WORDS_BIG_ENDIAN is
730 meaningful at a much higher level; when structures are copied
731 between memory and regs, the higher-numbered regs
732 always get higher addresses. */
733 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
734 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
735 int byte_offset = 0;
737 /* Paradoxical subregs need special handling on big-endian machines. */
738 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
740 int difference = inner_mode_size - outer_mode_size;
742 if (WORDS_BIG_ENDIAN)
743 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
744 if (BYTES_BIG_ENDIAN)
745 byte_offset += difference % UNITS_PER_WORD;
747 else
748 byte_offset = SUBREG_BYTE (op0);
750 bitnum += byte_offset * BITS_PER_UNIT;
751 op0 = SUBREG_REG (op0);
754 /* No action is needed if the target is a register and if the field
755 lies completely outside that register. This can occur if the source
756 code contains an out-of-bounds access to a small array. */
757 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
758 return true;
760 /* Use vec_set patterns for inserting parts of vectors whenever
761 available. */
762 if (VECTOR_MODE_P (GET_MODE (op0))
763 && !MEM_P (op0)
764 && optab_handler (vec_set_optab, GET_MODE (op0)) != CODE_FOR_nothing
765 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
766 && bitsize == GET_MODE_UNIT_BITSIZE (GET_MODE (op0))
767 && !(bitnum % GET_MODE_UNIT_BITSIZE (GET_MODE (op0))))
769 struct expand_operand ops[3];
770 machine_mode outermode = GET_MODE (op0);
771 machine_mode innermode = GET_MODE_INNER (outermode);
772 enum insn_code icode = optab_handler (vec_set_optab, outermode);
773 int pos = bitnum / GET_MODE_BITSIZE (innermode);
775 create_fixed_operand (&ops[0], op0);
776 create_input_operand (&ops[1], value, innermode);
777 create_integer_operand (&ops[2], pos);
778 if (maybe_expand_insn (icode, 3, ops))
779 return true;
782 /* If the target is a register, overwriting the entire object, or storing
783 a full-word or multi-word field can be done with just a SUBREG. */
784 if (!MEM_P (op0)
785 && bitsize == GET_MODE_BITSIZE (fieldmode)
786 && ((bitsize == GET_MODE_BITSIZE (GET_MODE (op0)) && bitnum == 0)
787 || (bitsize % BITS_PER_WORD == 0 && bitnum % BITS_PER_WORD == 0)))
789 /* Use the subreg machinery either to narrow OP0 to the required
790 words or to cope with mode punning between equal-sized modes.
791 In the latter case, use subreg on the rhs side, not lhs. */
792 rtx sub;
794 if (bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
796 sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0);
797 if (sub)
799 if (reverse)
800 sub = flip_storage_order (GET_MODE (op0), sub);
801 emit_move_insn (op0, sub);
802 return true;
805 else
807 sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
808 bitnum / BITS_PER_UNIT);
809 if (sub)
811 if (reverse)
812 value = flip_storage_order (fieldmode, value);
813 emit_move_insn (sub, value);
814 return true;
819 /* If the target is memory, storing any naturally aligned field can be
820 done with a simple store. For targets that support fast unaligned
821 memory, any naturally sized, unit aligned field can be done directly. */
822 if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode))
824 op0 = adjust_bitfield_address (op0, fieldmode, bitnum / BITS_PER_UNIT);
825 if (reverse)
826 value = flip_storage_order (fieldmode, value);
827 emit_move_insn (op0, value);
828 return true;
831 /* Make sure we are playing with integral modes. Pun with subregs
832 if we aren't. This must come after the entire register case above,
833 since that case is valid for any mode. The following cases are only
834 valid for integral modes. */
836 machine_mode imode = int_mode_for_mode (GET_MODE (op0));
837 if (imode != GET_MODE (op0))
839 if (MEM_P (op0))
840 op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
841 else
843 gcc_assert (imode != BLKmode);
844 op0 = gen_lowpart (imode, op0);
849 /* Storing an lsb-aligned field in a register
850 can be done with a movstrict instruction. */
852 if (!MEM_P (op0)
853 && !reverse
854 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
855 && bitsize == GET_MODE_BITSIZE (fieldmode)
856 && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
858 struct expand_operand ops[2];
859 enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
860 rtx arg0 = op0;
861 unsigned HOST_WIDE_INT subreg_off;
863 if (GET_CODE (arg0) == SUBREG)
865 /* Else we've got some float mode source being extracted into
866 a different float mode destination -- this combination of
867 subregs results in Severe Tire Damage. */
868 gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
869 || GET_MODE_CLASS (fieldmode) == MODE_INT
870 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
871 arg0 = SUBREG_REG (arg0);
874 subreg_off = bitnum / BITS_PER_UNIT;
875 if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off))
877 arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
879 create_fixed_operand (&ops[0], arg0);
880 /* Shrink the source operand to FIELDMODE. */
881 create_convert_operand_to (&ops[1], value, fieldmode, false);
882 if (maybe_expand_insn (icode, 2, ops))
883 return true;
887 /* Handle fields bigger than a word. */
889 if (bitsize > BITS_PER_WORD)
891 /* Here we transfer the words of the field
892 in the order least significant first.
893 This is because the most significant word is the one which may
894 be less than full.
895 However, only do that if the value is not BLKmode. */
897 const bool backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
898 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
899 unsigned int i;
900 rtx_insn *last;
902 /* This is the mode we must force value to, so that there will be enough
903 subwords to extract. Note that fieldmode will often (always?) be
904 VOIDmode, because that is what store_field uses to indicate that this
905 is a bit field, but passing VOIDmode to operand_subword_force
906 is not allowed. */
907 fieldmode = GET_MODE (value);
908 if (fieldmode == VOIDmode)
909 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
911 last = get_last_insn ();
912 for (i = 0; i < nwords; i++)
914 /* If I is 0, use the low-order word in both field and target;
915 if I is 1, use the next to lowest word; and so on. */
916 unsigned int wordnum = (backwards
917 ? GET_MODE_SIZE (fieldmode) / UNITS_PER_WORD
918 - i - 1
919 : i);
920 unsigned int bit_offset = (backwards ^ reverse
921 ? MAX ((int) bitsize - ((int) i + 1)
922 * BITS_PER_WORD,
924 : (int) i * BITS_PER_WORD);
925 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
926 unsigned HOST_WIDE_INT new_bitsize =
927 MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
929 /* If the remaining chunk doesn't have full wordsize we have
930 to make sure that for big-endian machines the higher order
931 bits are used. */
932 if (new_bitsize < BITS_PER_WORD && BYTES_BIG_ENDIAN && !backwards)
933 value_word = simplify_expand_binop (word_mode, lshr_optab,
934 value_word,
935 GEN_INT (BITS_PER_WORD
936 - new_bitsize),
937 NULL_RTX, true,
938 OPTAB_LIB_WIDEN);
940 if (!store_bit_field_1 (op0, new_bitsize,
941 bitnum + bit_offset,
942 bitregion_start, bitregion_end,
943 word_mode,
944 value_word, reverse, fallback_p))
946 delete_insns_since (last);
947 return false;
950 return true;
953 /* If VALUE has a floating-point or complex mode, access it as an
954 integer of the corresponding size. This can occur on a machine
955 with 64 bit registers that uses SFmode for float. It can also
956 occur for unaligned float or complex fields. */
957 orig_value = value;
958 if (GET_MODE (value) != VOIDmode
959 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
960 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
962 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
963 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
966 /* If OP0 is a multi-word register, narrow it to the affected word.
967 If the region spans two words, defer to store_split_bit_field. */
968 if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
970 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
971 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
972 gcc_assert (op0);
973 bitnum %= BITS_PER_WORD;
974 if (bitnum + bitsize > BITS_PER_WORD)
976 if (!fallback_p)
977 return false;
979 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
980 bitregion_end, value, reverse);
981 return true;
985 /* From here on we can assume that the field to be stored in fits
986 within a word. If the destination is a register, it too fits
987 in a word. */
989 extraction_insn insv;
990 if (!MEM_P (op0)
991 && !reverse
992 && get_best_reg_extraction_insn (&insv, EP_insv,
993 GET_MODE_BITSIZE (GET_MODE (op0)),
994 fieldmode)
995 && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
996 return true;
998 /* If OP0 is a memory, try copying it to a register and seeing if a
999 cheap register alternative is available. */
1000 if (MEM_P (op0) && !reverse)
1002 if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
1003 fieldmode)
1004 && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
1005 return true;
1007 rtx_insn *last = get_last_insn ();
1009 /* Try loading part of OP0 into a register, inserting the bitfield
1010 into that, and then copying the result back to OP0. */
1011 unsigned HOST_WIDE_INT bitpos;
1012 rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
1013 bitregion_start, bitregion_end,
1014 fieldmode, &bitpos);
1015 if (xop0)
1017 rtx tempreg = copy_to_reg (xop0);
1018 if (store_bit_field_1 (tempreg, bitsize, bitpos,
1019 bitregion_start, bitregion_end,
1020 fieldmode, orig_value, reverse, false))
1022 emit_move_insn (xop0, tempreg);
1023 return true;
1025 delete_insns_since (last);
1029 if (!fallback_p)
1030 return false;
1032 store_fixed_bit_field (op0, bitsize, bitnum, bitregion_start,
1033 bitregion_end, value, reverse);
1034 return true;
1037 /* Generate code to store value from rtx VALUE
1038 into a bit-field within structure STR_RTX
1039 containing BITSIZE bits starting at bit BITNUM.
1041 BITREGION_START is bitpos of the first bitfield in this region.
1042 BITREGION_END is the bitpos of the ending bitfield in this region.
1043 These two fields are 0, if the C++ memory model does not apply,
1044 or we are not interested in keeping track of bitfield regions.
1046 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
1048 If REVERSE is true, the store is to be done in reverse order. */
1050 void
1051 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1052 unsigned HOST_WIDE_INT bitnum,
1053 unsigned HOST_WIDE_INT bitregion_start,
1054 unsigned HOST_WIDE_INT bitregion_end,
1055 machine_mode fieldmode,
1056 rtx value, bool reverse)
1058 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1059 if (strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, fieldmode,
1060 bitregion_start, bitregion_end))
1062 /* Storing of a full word can be done with a simple store.
1063 We know here that the field can be accessed with one single
1064 instruction. For targets that support unaligned memory,
1065 an unaligned access may be necessary. */
1066 if (bitsize == GET_MODE_BITSIZE (fieldmode))
1068 str_rtx = adjust_bitfield_address (str_rtx, fieldmode,
1069 bitnum / BITS_PER_UNIT);
1070 if (reverse)
1071 value = flip_storage_order (fieldmode, value);
1072 gcc_assert (bitnum % BITS_PER_UNIT == 0);
1073 emit_move_insn (str_rtx, value);
1075 else
1077 rtx temp;
1079 str_rtx = narrow_bit_field_mem (str_rtx, fieldmode, bitsize, bitnum,
1080 &bitnum);
1081 gcc_assert (bitnum + bitsize <= GET_MODE_BITSIZE (fieldmode));
1082 temp = copy_to_reg (str_rtx);
1083 if (!store_bit_field_1 (temp, bitsize, bitnum, 0, 0,
1084 fieldmode, value, reverse, true))
1085 gcc_unreachable ();
1087 emit_move_insn (str_rtx, temp);
1090 return;
1093 /* Under the C++0x memory model, we must not touch bits outside the
1094 bit region. Adjust the address to start at the beginning of the
1095 bit region. */
1096 if (MEM_P (str_rtx) && bitregion_start > 0)
1098 machine_mode bestmode;
1099 HOST_WIDE_INT offset, size;
1101 gcc_assert ((bitregion_start % BITS_PER_UNIT) == 0);
1103 offset = bitregion_start / BITS_PER_UNIT;
1104 bitnum -= bitregion_start;
1105 size = (bitnum + bitsize + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
1106 bitregion_end -= bitregion_start;
1107 bitregion_start = 0;
1108 bestmode = get_best_mode (bitsize, bitnum,
1109 bitregion_start, bitregion_end,
1110 MEM_ALIGN (str_rtx), VOIDmode,
1111 MEM_VOLATILE_P (str_rtx));
1112 str_rtx = adjust_bitfield_address_size (str_rtx, bestmode, offset, size);
1115 if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
1116 bitregion_start, bitregion_end,
1117 fieldmode, value, reverse, true))
1118 gcc_unreachable ();
1121 /* Use shifts and boolean operations to store VALUE into a bit field of
1122 width BITSIZE in OP0, starting at bit BITNUM.
1124 If REVERSE is true, the store is to be done in reverse order. */
1126 static void
1127 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1128 unsigned HOST_WIDE_INT bitnum,
1129 unsigned HOST_WIDE_INT bitregion_start,
1130 unsigned HOST_WIDE_INT bitregion_end,
1131 rtx value, bool reverse)
1133 /* There is a case not handled here:
1134 a structure with a known alignment of just a halfword
1135 and a field split across two aligned halfwords within the structure.
1136 Or likewise a structure with a known alignment of just a byte
1137 and a field split across two bytes.
1138 Such cases are not supposed to be able to occur. */
1140 if (MEM_P (op0))
1142 machine_mode mode = GET_MODE (op0);
1143 if (GET_MODE_BITSIZE (mode) == 0
1144 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
1145 mode = word_mode;
1146 mode = get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
1147 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
1149 if (mode == VOIDmode)
1151 /* The only way this should occur is if the field spans word
1152 boundaries. */
1153 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
1154 bitregion_end, value, reverse);
1155 return;
1158 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
1161 store_fixed_bit_field_1 (op0, bitsize, bitnum, value, reverse);
1164 /* Helper function for store_fixed_bit_field, stores
1165 the bit field always using the MODE of OP0. */
1167 static void
1168 store_fixed_bit_field_1 (rtx op0, unsigned HOST_WIDE_INT bitsize,
1169 unsigned HOST_WIDE_INT bitnum,
1170 rtx value, bool reverse)
1172 machine_mode mode;
1173 rtx temp;
1174 int all_zero = 0;
1175 int all_one = 0;
1177 mode = GET_MODE (op0);
1178 gcc_assert (SCALAR_INT_MODE_P (mode));
1180 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1181 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1183 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
1184 /* BITNUM is the distance between our msb
1185 and that of the containing datum.
1186 Convert it to the distance from the lsb. */
1187 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1189 /* Now BITNUM is always the distance between our lsb
1190 and that of OP0. */
1192 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1193 we must first convert its mode to MODE. */
1195 if (CONST_INT_P (value))
1197 unsigned HOST_WIDE_INT v = UINTVAL (value);
1199 if (bitsize < HOST_BITS_PER_WIDE_INT)
1200 v &= ((unsigned HOST_WIDE_INT) 1 << bitsize) - 1;
1202 if (v == 0)
1203 all_zero = 1;
1204 else if ((bitsize < HOST_BITS_PER_WIDE_INT
1205 && v == ((unsigned HOST_WIDE_INT) 1 << bitsize) - 1)
1206 || (bitsize == HOST_BITS_PER_WIDE_INT
1207 && v == (unsigned HOST_WIDE_INT) -1))
1208 all_one = 1;
1210 value = lshift_value (mode, v, bitnum);
1212 else
1214 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
1215 && bitnum + bitsize != GET_MODE_BITSIZE (mode));
1217 if (GET_MODE (value) != mode)
1218 value = convert_to_mode (mode, value, 1);
1220 if (must_and)
1221 value = expand_binop (mode, and_optab, value,
1222 mask_rtx (mode, 0, bitsize, 0),
1223 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1224 if (bitnum > 0)
1225 value = expand_shift (LSHIFT_EXPR, mode, value,
1226 bitnum, NULL_RTX, 1);
1229 if (reverse)
1230 value = flip_storage_order (mode, value);
1232 /* Now clear the chosen bits in OP0,
1233 except that if VALUE is -1 we need not bother. */
1234 /* We keep the intermediates in registers to allow CSE to combine
1235 consecutive bitfield assignments. */
1237 temp = force_reg (mode, op0);
1239 if (! all_one)
1241 rtx mask = mask_rtx (mode, bitnum, bitsize, 1);
1242 if (reverse)
1243 mask = flip_storage_order (mode, mask);
1244 temp = expand_binop (mode, and_optab, temp, mask,
1245 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1246 temp = force_reg (mode, temp);
1249 /* Now logical-or VALUE into OP0, unless it is zero. */
1251 if (! all_zero)
1253 temp = expand_binop (mode, ior_optab, temp, value,
1254 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1255 temp = force_reg (mode, temp);
1258 if (op0 != temp)
1260 op0 = copy_rtx (op0);
1261 emit_move_insn (op0, temp);
1265 /* Store a bit field that is split across multiple accessible memory objects.
1267 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1268 BITSIZE is the field width; BITPOS the position of its first bit
1269 (within the word).
1270 VALUE is the value to store.
1272 If REVERSE is true, the store is to be done in reverse order.
1274 This does not yet handle fields wider than BITS_PER_WORD. */
1276 static void
1277 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1278 unsigned HOST_WIDE_INT bitpos,
1279 unsigned HOST_WIDE_INT bitregion_start,
1280 unsigned HOST_WIDE_INT bitregion_end,
1281 rtx value, bool reverse)
1283 unsigned int unit, total_bits, bitsdone = 0;
1285 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1286 much at a time. */
1287 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1288 unit = BITS_PER_WORD;
1289 else
1290 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1292 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1293 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1294 again, and we will mutually recurse forever. */
1295 if (MEM_P (op0) && GET_MODE_BITSIZE (GET_MODE (op0)) > 0)
1296 unit = MIN (unit, GET_MODE_BITSIZE (GET_MODE (op0)));
1298 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1299 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1300 that VALUE might be a floating-point constant. */
1301 if (CONSTANT_P (value) && !CONST_INT_P (value))
1303 rtx word = gen_lowpart_common (word_mode, value);
1305 if (word && (value != word))
1306 value = word;
1307 else
1308 value = gen_lowpart_common (word_mode,
1309 force_reg (GET_MODE (value) != VOIDmode
1310 ? GET_MODE (value)
1311 : word_mode, value));
1314 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1316 while (bitsdone < bitsize)
1318 unsigned HOST_WIDE_INT thissize;
1319 unsigned HOST_WIDE_INT thispos;
1320 unsigned HOST_WIDE_INT offset;
1321 rtx part, word;
1323 offset = (bitpos + bitsdone) / unit;
1324 thispos = (bitpos + bitsdone) % unit;
1326 /* When region of bytes we can touch is restricted, decrease
1327 UNIT close to the end of the region as needed. If op0 is a REG
1328 or SUBREG of REG, don't do this, as there can't be data races
1329 on a register and we can expand shorter code in some cases. */
1330 if (bitregion_end
1331 && unit > BITS_PER_UNIT
1332 && bitpos + bitsdone - thispos + unit > bitregion_end + 1
1333 && !REG_P (op0)
1334 && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
1336 unit = unit / 2;
1337 continue;
1340 /* THISSIZE must not overrun a word boundary. Otherwise,
1341 store_fixed_bit_field will call us again, and we will mutually
1342 recurse forever. */
1343 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1344 thissize = MIN (thissize, unit - thispos);
1346 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
1348 /* Fetch successively less significant portions. */
1349 if (CONST_INT_P (value))
1350 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1351 >> (bitsize - bitsdone - thissize))
1352 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1353 /* Likewise, but the source is little-endian. */
1354 else if (reverse)
1355 part = extract_fixed_bit_field (word_mode, value, thissize,
1356 bitsize - bitsdone - thissize,
1357 NULL_RTX, 1, false);
1358 else
1360 int total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1361 /* The args are chosen so that the last part includes the
1362 lsb. Give extract_bit_field the value it needs (with
1363 endianness compensation) to fetch the piece we want. */
1364 part = extract_fixed_bit_field (word_mode, value, thissize,
1365 total_bits - bitsize + bitsdone,
1366 NULL_RTX, 1, false);
1369 else
1371 /* Fetch successively more significant portions. */
1372 if (CONST_INT_P (value))
1373 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1374 >> bitsdone)
1375 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1376 /* Likewise, but the source is big-endian. */
1377 else if (reverse)
1378 part = extract_fixed_bit_field (word_mode, value, thissize,
1379 total_bits - bitsdone - thissize,
1380 NULL_RTX, 1, false);
1381 else
1382 part = extract_fixed_bit_field (word_mode, value, thissize,
1383 bitsdone, NULL_RTX, 1, false);
1386 /* If OP0 is a register, then handle OFFSET here.
1388 When handling multiword bitfields, extract_bit_field may pass
1389 down a word_mode SUBREG of a larger REG for a bitfield that actually
1390 crosses a word boundary. Thus, for a SUBREG, we must find
1391 the current word starting from the base register. */
1392 if (GET_CODE (op0) == SUBREG)
1394 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD)
1395 + (offset * unit / BITS_PER_WORD);
1396 machine_mode sub_mode = GET_MODE (SUBREG_REG (op0));
1397 if (sub_mode != BLKmode && GET_MODE_SIZE (sub_mode) < UNITS_PER_WORD)
1398 word = word_offset ? const0_rtx : op0;
1399 else
1400 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1401 GET_MODE (SUBREG_REG (op0)));
1402 offset &= BITS_PER_WORD / unit - 1;
1404 else if (REG_P (op0))
1406 machine_mode op0_mode = GET_MODE (op0);
1407 if (op0_mode != BLKmode && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD)
1408 word = offset ? const0_rtx : op0;
1409 else
1410 word = operand_subword_force (op0, offset * unit / BITS_PER_WORD,
1411 GET_MODE (op0));
1412 offset &= BITS_PER_WORD / unit - 1;
1414 else
1415 word = op0;
1417 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1418 it is just an out-of-bounds access. Ignore it. */
1419 if (word != const0_rtx)
1420 store_fixed_bit_field (word, thissize, offset * unit + thispos,
1421 bitregion_start, bitregion_end, part,
1422 reverse);
1423 bitsdone += thissize;
1427 /* A subroutine of extract_bit_field_1 that converts return value X
1428 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1429 to extract_bit_field. */
1431 static rtx
1432 convert_extracted_bit_field (rtx x, machine_mode mode,
1433 machine_mode tmode, bool unsignedp)
1435 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1436 return x;
1438 /* If the x mode is not a scalar integral, first convert to the
1439 integer mode of that size and then access it as a floating-point
1440 value via a SUBREG. */
1441 if (!SCALAR_INT_MODE_P (tmode))
1443 machine_mode smode;
1445 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1446 x = convert_to_mode (smode, x, unsignedp);
1447 x = force_reg (smode, x);
1448 return gen_lowpart (tmode, x);
1451 return convert_to_mode (tmode, x, unsignedp);
1454 /* Try to use an ext(z)v pattern to extract a field from OP0.
1455 Return the extracted value on success, otherwise return null.
1456 EXT_MODE is the mode of the extraction and the other arguments
1457 are as for extract_bit_field. */
1459 static rtx
1460 extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
1461 unsigned HOST_WIDE_INT bitsize,
1462 unsigned HOST_WIDE_INT bitnum,
1463 int unsignedp, rtx target,
1464 machine_mode mode, machine_mode tmode)
1466 struct expand_operand ops[4];
1467 rtx spec_target = target;
1468 rtx spec_target_subreg = 0;
1469 machine_mode ext_mode = extv->field_mode;
1470 unsigned unit = GET_MODE_BITSIZE (ext_mode);
1472 if (bitsize == 0 || unit < bitsize)
1473 return NULL_RTX;
1475 if (MEM_P (op0))
1476 /* Get a reference to the first byte of the field. */
1477 op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
1478 &bitnum);
1479 else
1481 /* Convert from counting within OP0 to counting in EXT_MODE. */
1482 if (BYTES_BIG_ENDIAN)
1483 bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1485 /* If op0 is a register, we need it in EXT_MODE to make it
1486 acceptable to the format of ext(z)v. */
1487 if (GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1488 return NULL_RTX;
1489 if (REG_P (op0) && GET_MODE (op0) != ext_mode)
1490 op0 = gen_lowpart_SUBREG (ext_mode, op0);
1493 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1494 "backwards" from the size of the unit we are extracting from.
1495 Otherwise, we count bits from the most significant on a
1496 BYTES/BITS_BIG_ENDIAN machine. */
1498 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1499 bitnum = unit - bitsize - bitnum;
1501 if (target == 0)
1502 target = spec_target = gen_reg_rtx (tmode);
1504 if (GET_MODE (target) != ext_mode)
1506 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1507 between the mode of the extraction (word_mode) and the target
1508 mode. Instead, create a temporary and use convert_move to set
1509 the target. */
1510 if (REG_P (target)
1511 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode))
1513 target = gen_lowpart (ext_mode, target);
1514 if (GET_MODE_PRECISION (ext_mode)
1515 > GET_MODE_PRECISION (GET_MODE (spec_target)))
1516 spec_target_subreg = target;
1518 else
1519 target = gen_reg_rtx (ext_mode);
1522 create_output_operand (&ops[0], target, ext_mode);
1523 create_fixed_operand (&ops[1], op0);
1524 create_integer_operand (&ops[2], bitsize);
1525 create_integer_operand (&ops[3], bitnum);
1526 if (maybe_expand_insn (extv->icode, 4, ops))
1528 target = ops[0].value;
1529 if (target == spec_target)
1530 return target;
1531 if (target == spec_target_subreg)
1532 return spec_target;
1533 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1535 return NULL_RTX;
1538 /* A subroutine of extract_bit_field, with the same arguments.
1539 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1540 if we can find no other means of implementing the operation.
1541 if FALLBACK_P is false, return NULL instead. */
1543 static rtx
1544 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1545 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1546 machine_mode mode, machine_mode tmode,
1547 bool reverse, bool fallback_p)
1549 rtx op0 = str_rtx;
1550 machine_mode int_mode;
1551 machine_mode mode1;
1553 if (tmode == VOIDmode)
1554 tmode = mode;
1556 while (GET_CODE (op0) == SUBREG)
1558 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1559 op0 = SUBREG_REG (op0);
1562 /* If we have an out-of-bounds access to a register, just return an
1563 uninitialized register of the required mode. This can occur if the
1564 source code contains an out-of-bounds access to a small array. */
1565 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1566 return gen_reg_rtx (tmode);
1568 if (REG_P (op0)
1569 && mode == GET_MODE (op0)
1570 && bitnum == 0
1571 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1573 if (reverse)
1574 op0 = flip_storage_order (mode, op0);
1575 /* We're trying to extract a full register from itself. */
1576 return op0;
1579 /* See if we can get a better vector mode before extracting. */
1580 if (VECTOR_MODE_P (GET_MODE (op0))
1581 && !MEM_P (op0)
1582 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1584 machine_mode new_mode;
1586 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1587 new_mode = MIN_MODE_VECTOR_FLOAT;
1588 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1589 new_mode = MIN_MODE_VECTOR_FRACT;
1590 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1591 new_mode = MIN_MODE_VECTOR_UFRACT;
1592 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1593 new_mode = MIN_MODE_VECTOR_ACCUM;
1594 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1595 new_mode = MIN_MODE_VECTOR_UACCUM;
1596 else
1597 new_mode = MIN_MODE_VECTOR_INT;
1599 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1600 if (GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1601 && targetm.vector_mode_supported_p (new_mode))
1602 break;
1603 if (new_mode != VOIDmode)
1604 op0 = gen_lowpart (new_mode, op0);
1607 /* Use vec_extract patterns for extracting parts of vectors whenever
1608 available. */
1609 if (VECTOR_MODE_P (GET_MODE (op0))
1610 && !MEM_P (op0)
1611 && optab_handler (vec_extract_optab, GET_MODE (op0)) != CODE_FOR_nothing
1612 && ((bitnum + bitsize - 1) / GET_MODE_UNIT_BITSIZE (GET_MODE (op0))
1613 == bitnum / GET_MODE_UNIT_BITSIZE (GET_MODE (op0))))
1615 struct expand_operand ops[3];
1616 machine_mode outermode = GET_MODE (op0);
1617 machine_mode innermode = GET_MODE_INNER (outermode);
1618 enum insn_code icode = optab_handler (vec_extract_optab, outermode);
1619 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1621 create_output_operand (&ops[0], target, innermode);
1622 create_input_operand (&ops[1], op0, outermode);
1623 create_integer_operand (&ops[2], pos);
1624 if (maybe_expand_insn (icode, 3, ops))
1626 target = ops[0].value;
1627 if (GET_MODE (target) != mode)
1628 return gen_lowpart (tmode, target);
1629 return target;
1633 /* Make sure we are playing with integral modes. Pun with subregs
1634 if we aren't. */
1636 machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1637 if (imode != GET_MODE (op0))
1639 if (MEM_P (op0))
1640 op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
1641 else if (imode != BLKmode)
1643 op0 = gen_lowpart (imode, op0);
1645 /* If we got a SUBREG, force it into a register since we
1646 aren't going to be able to do another SUBREG on it. */
1647 if (GET_CODE (op0) == SUBREG)
1648 op0 = force_reg (imode, op0);
1650 else
1652 HOST_WIDE_INT size = GET_MODE_SIZE (GET_MODE (op0));
1653 rtx mem = assign_stack_temp (GET_MODE (op0), size);
1654 emit_move_insn (mem, op0);
1655 op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
1660 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1661 If that's wrong, the solution is to test for it and set TARGET to 0
1662 if needed. */
1664 /* Get the mode of the field to use for atomic access or subreg
1665 conversion. */
1666 mode1 = mode;
1667 if (SCALAR_INT_MODE_P (tmode))
1669 machine_mode try_mode = mode_for_size (bitsize,
1670 GET_MODE_CLASS (tmode), 0);
1671 if (try_mode != BLKmode)
1672 mode1 = try_mode;
1674 gcc_assert (mode1 != BLKmode);
1676 /* Extraction of a full MODE1 value can be done with a subreg as long
1677 as the least significant bit of the value is the least significant
1678 bit of either OP0 or a word of OP0. */
1679 if (!MEM_P (op0)
1680 && !reverse
1681 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
1682 && bitsize == GET_MODE_BITSIZE (mode1)
1683 && TRULY_NOOP_TRUNCATION_MODES_P (mode1, GET_MODE (op0)))
1685 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1686 bitnum / BITS_PER_UNIT);
1687 if (sub)
1688 return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
1691 /* Extraction of a full MODE1 value can be done with a load as long as
1692 the field is on a byte boundary and is sufficiently aligned. */
1693 if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1))
1695 op0 = adjust_bitfield_address (op0, mode1, bitnum / BITS_PER_UNIT);
1696 if (reverse)
1697 op0 = flip_storage_order (mode1, op0);
1698 return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
1701 /* Handle fields bigger than a word. */
1703 if (bitsize > BITS_PER_WORD)
1705 /* Here we transfer the words of the field
1706 in the order least significant first.
1707 This is because the most significant word is the one which may
1708 be less than full. */
1710 const bool backwards = WORDS_BIG_ENDIAN;
1711 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1712 unsigned int i;
1713 rtx_insn *last;
1715 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1716 target = gen_reg_rtx (mode);
1718 /* In case we're about to clobber a base register or something
1719 (see gcc.c-torture/execute/20040625-1.c). */
1720 if (reg_mentioned_p (target, str_rtx))
1721 target = gen_reg_rtx (mode);
1723 /* Indicate for flow that the entire target reg is being set. */
1724 emit_clobber (target);
1726 last = get_last_insn ();
1727 for (i = 0; i < nwords; i++)
1729 /* If I is 0, use the low-order word in both field and target;
1730 if I is 1, use the next to lowest word; and so on. */
1731 /* Word number in TARGET to use. */
1732 unsigned int wordnum
1733 = (backwards
1734 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1735 : i);
1736 /* Offset from start of field in OP0. */
1737 unsigned int bit_offset = (backwards ^ reverse
1738 ? MAX ((int) bitsize - ((int) i + 1)
1739 * BITS_PER_WORD,
1741 : (int) i * BITS_PER_WORD);
1742 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1743 rtx result_part
1744 = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
1745 bitsize - i * BITS_PER_WORD),
1746 bitnum + bit_offset, 1, target_part,
1747 mode, word_mode, reverse, fallback_p);
1749 gcc_assert (target_part);
1750 if (!result_part)
1752 delete_insns_since (last);
1753 return NULL;
1756 if (result_part != target_part)
1757 emit_move_insn (target_part, result_part);
1760 if (unsignedp)
1762 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1763 need to be zero'd out. */
1764 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1766 unsigned int i, total_words;
1768 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1769 for (i = nwords; i < total_words; i++)
1770 emit_move_insn
1771 (operand_subword (target,
1772 backwards ? total_words - i - 1 : i,
1773 1, VOIDmode),
1774 const0_rtx);
1776 return target;
1779 /* Signed bit field: sign-extend with two arithmetic shifts. */
1780 target = expand_shift (LSHIFT_EXPR, mode, target,
1781 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1782 return expand_shift (RSHIFT_EXPR, mode, target,
1783 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1786 /* If OP0 is a multi-word register, narrow it to the affected word.
1787 If the region spans two words, defer to extract_split_bit_field. */
1788 if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1790 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
1791 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1792 bitnum %= BITS_PER_WORD;
1793 if (bitnum + bitsize > BITS_PER_WORD)
1795 if (!fallback_p)
1796 return NULL_RTX;
1797 target = extract_split_bit_field (op0, bitsize, bitnum, unsignedp,
1798 reverse);
1799 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1803 /* From here on we know the desired field is smaller than a word.
1804 If OP0 is a register, it too fits within a word. */
1805 enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
1806 extraction_insn extv;
1807 if (!MEM_P (op0)
1808 && !reverse
1809 /* ??? We could limit the structure size to the part of OP0 that
1810 contains the field, with appropriate checks for endianness
1811 and TRULY_NOOP_TRUNCATION. */
1812 && get_best_reg_extraction_insn (&extv, pattern,
1813 GET_MODE_BITSIZE (GET_MODE (op0)),
1814 tmode))
1816 rtx result = extract_bit_field_using_extv (&extv, op0, bitsize, bitnum,
1817 unsignedp, target, mode,
1818 tmode);
1819 if (result)
1820 return result;
1823 /* If OP0 is a memory, try copying it to a register and seeing if a
1824 cheap register alternative is available. */
1825 if (MEM_P (op0) & !reverse)
1827 if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
1828 tmode))
1830 rtx result = extract_bit_field_using_extv (&extv, op0, bitsize,
1831 bitnum, unsignedp,
1832 target, mode,
1833 tmode);
1834 if (result)
1835 return result;
1838 rtx_insn *last = get_last_insn ();
1840 /* Try loading part of OP0 into a register and extracting the
1841 bitfield from that. */
1842 unsigned HOST_WIDE_INT bitpos;
1843 rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
1844 0, 0, tmode, &bitpos);
1845 if (xop0)
1847 xop0 = copy_to_reg (xop0);
1848 rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
1849 unsignedp, target,
1850 mode, tmode, reverse, false);
1851 if (result)
1852 return result;
1853 delete_insns_since (last);
1857 if (!fallback_p)
1858 return NULL;
1860 /* Find a correspondingly-sized integer field, so we can apply
1861 shifts and masks to it. */
1862 int_mode = int_mode_for_mode (tmode);
1863 if (int_mode == BLKmode)
1864 int_mode = int_mode_for_mode (mode);
1865 /* Should probably push op0 out to memory and then do a load. */
1866 gcc_assert (int_mode != BLKmode);
1868 target = extract_fixed_bit_field (int_mode, op0, bitsize, bitnum, target,
1869 unsignedp, reverse);
1871 /* Complex values must be reversed piecewise, so we need to undo the global
1872 reversal, convert to the complex mode and reverse again. */
1873 if (reverse && COMPLEX_MODE_P (tmode))
1875 target = flip_storage_order (int_mode, target);
1876 target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
1877 target = flip_storage_order (tmode, target);
1879 else
1880 target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
1882 return target;
1885 /* Generate code to extract a byte-field from STR_RTX
1886 containing BITSIZE bits, starting at BITNUM,
1887 and put it in TARGET if possible (if TARGET is nonzero).
1888 Regardless of TARGET, we return the rtx for where the value is placed.
1890 STR_RTX is the structure containing the byte (a REG or MEM).
1891 UNSIGNEDP is nonzero if this is an unsigned bit field.
1892 MODE is the natural mode of the field value once extracted.
1893 TMODE is the mode the caller would like the value to have;
1894 but the value may be returned with type MODE instead.
1896 If REVERSE is true, the extraction is to be done in reverse order.
1898 If a TARGET is specified and we can store in it at no extra cost,
1899 we do so, and return TARGET.
1900 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1901 if they are equally easy. */
1904 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1905 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1906 machine_mode mode, machine_mode tmode, bool reverse)
1908 machine_mode mode1;
1910 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1911 if (GET_MODE_BITSIZE (GET_MODE (str_rtx)) > 0)
1912 mode1 = GET_MODE (str_rtx);
1913 else if (target && GET_MODE_BITSIZE (GET_MODE (target)) > 0)
1914 mode1 = GET_MODE (target);
1915 else
1916 mode1 = tmode;
1918 if (strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, mode1, 0, 0))
1920 /* Extraction of a full MODE1 value can be done with a simple load.
1921 We know here that the field can be accessed with one single
1922 instruction. For targets that support unaligned memory,
1923 an unaligned access may be necessary. */
1924 if (bitsize == GET_MODE_BITSIZE (mode1))
1926 rtx result = adjust_bitfield_address (str_rtx, mode1,
1927 bitnum / BITS_PER_UNIT);
1928 if (reverse)
1929 result = flip_storage_order (mode1, result);
1930 gcc_assert (bitnum % BITS_PER_UNIT == 0);
1931 return convert_extracted_bit_field (result, mode, tmode, unsignedp);
1934 str_rtx = narrow_bit_field_mem (str_rtx, mode1, bitsize, bitnum,
1935 &bitnum);
1936 gcc_assert (bitnum + bitsize <= GET_MODE_BITSIZE (mode1));
1937 str_rtx = copy_to_reg (str_rtx);
1940 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
1941 target, mode, tmode, reverse, true);
1944 /* Use shifts and boolean operations to extract a field of BITSIZE bits
1945 from bit BITNUM of OP0.
1947 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1948 If REVERSE is true, the extraction is to be done in reverse order.
1950 If TARGET is nonzero, attempts to store the value there
1951 and return TARGET, but this is not guaranteed.
1952 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1954 static rtx
1955 extract_fixed_bit_field (machine_mode tmode, rtx op0,
1956 unsigned HOST_WIDE_INT bitsize,
1957 unsigned HOST_WIDE_INT bitnum, rtx target,
1958 int unsignedp, bool reverse)
1960 if (MEM_P (op0))
1962 machine_mode mode
1963 = get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0), word_mode,
1964 MEM_VOLATILE_P (op0));
1966 if (mode == VOIDmode)
1967 /* The only way this should occur is if the field spans word
1968 boundaries. */
1969 return extract_split_bit_field (op0, bitsize, bitnum, unsignedp,
1970 reverse);
1972 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
1975 return extract_fixed_bit_field_1 (tmode, op0, bitsize, bitnum,
1976 target, unsignedp, reverse);
1979 /* Helper function for extract_fixed_bit_field, extracts
1980 the bit field always using the MODE of OP0. */
1982 static rtx
1983 extract_fixed_bit_field_1 (machine_mode tmode, rtx op0,
1984 unsigned HOST_WIDE_INT bitsize,
1985 unsigned HOST_WIDE_INT bitnum, rtx target,
1986 int unsignedp, bool reverse)
1988 machine_mode mode = GET_MODE (op0);
1989 gcc_assert (SCALAR_INT_MODE_P (mode));
1991 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1992 for invalid input, such as extract equivalent of f5 from
1993 gcc.dg/pr48335-2.c. */
1995 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
1996 /* BITNUM is the distance between our msb and that of OP0.
1997 Convert it to the distance from the lsb. */
1998 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
2000 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
2001 We have reduced the big-endian case to the little-endian case. */
2002 if (reverse)
2003 op0 = flip_storage_order (mode, op0);
2005 if (unsignedp)
2007 if (bitnum)
2009 /* If the field does not already start at the lsb,
2010 shift it so it does. */
2011 /* Maybe propagate the target for the shift. */
2012 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
2013 if (tmode != mode)
2014 subtarget = 0;
2015 op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
2017 /* Convert the value to the desired mode. */
2018 if (mode != tmode)
2019 op0 = convert_to_mode (tmode, op0, 1);
2021 /* Unless the msb of the field used to be the msb when we shifted,
2022 mask out the upper bits. */
2024 if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
2025 return expand_binop (GET_MODE (op0), and_optab, op0,
2026 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
2027 target, 1, OPTAB_LIB_WIDEN);
2028 return op0;
2031 /* To extract a signed bit-field, first shift its msb to the msb of the word,
2032 then arithmetic-shift its lsb to the lsb of the word. */
2033 op0 = force_reg (mode, op0);
2035 /* Find the narrowest integer mode that contains the field. */
2037 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2038 mode = GET_MODE_WIDER_MODE (mode))
2039 if (GET_MODE_BITSIZE (mode) >= bitsize + bitnum)
2041 op0 = convert_to_mode (mode, op0, 0);
2042 break;
2045 if (mode != tmode)
2046 target = 0;
2048 if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
2050 int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
2051 /* Maybe propagate the target for the shift. */
2052 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
2053 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
2056 return expand_shift (RSHIFT_EXPR, mode, op0,
2057 GET_MODE_BITSIZE (mode) - bitsize, target, 0);
2060 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
2061 VALUE << BITPOS. */
2063 static rtx
2064 lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value,
2065 int bitpos)
2067 return immed_wide_int_const (wi::lshift (value, bitpos), mode);
2070 /* Extract a bit field that is split across two words
2071 and return an RTX for the result.
2073 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2074 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2075 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
2077 If REVERSE is true, the extraction is to be done in reverse order. */
2079 static rtx
2080 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
2081 unsigned HOST_WIDE_INT bitpos, int unsignedp,
2082 bool reverse)
2084 unsigned int unit;
2085 unsigned int bitsdone = 0;
2086 rtx result = NULL_RTX;
2087 int first = 1;
2089 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2090 much at a time. */
2091 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2092 unit = BITS_PER_WORD;
2093 else
2094 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2096 while (bitsdone < bitsize)
2098 unsigned HOST_WIDE_INT thissize;
2099 rtx part, word;
2100 unsigned HOST_WIDE_INT thispos;
2101 unsigned HOST_WIDE_INT offset;
2103 offset = (bitpos + bitsdone) / unit;
2104 thispos = (bitpos + bitsdone) % unit;
2106 /* THISSIZE must not overrun a word boundary. Otherwise,
2107 extract_fixed_bit_field will call us again, and we will mutually
2108 recurse forever. */
2109 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2110 thissize = MIN (thissize, unit - thispos);
2112 /* If OP0 is a register, then handle OFFSET here.
2114 When handling multiword bitfields, extract_bit_field may pass
2115 down a word_mode SUBREG of a larger REG for a bitfield that actually
2116 crosses a word boundary. Thus, for a SUBREG, we must find
2117 the current word starting from the base register. */
2118 if (GET_CODE (op0) == SUBREG)
2120 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
2121 word = operand_subword_force (SUBREG_REG (op0), word_offset,
2122 GET_MODE (SUBREG_REG (op0)));
2123 offset = 0;
2125 else if (REG_P (op0))
2127 word = operand_subword_force (op0, offset, GET_MODE (op0));
2128 offset = 0;
2130 else
2131 word = op0;
2133 /* Extract the parts in bit-counting order,
2134 whose meaning is determined by BYTES_PER_UNIT.
2135 OFFSET is in UNITs, and UNIT is in bits. */
2136 part = extract_fixed_bit_field (word_mode, word, thissize,
2137 offset * unit + thispos, 0, 1, reverse);
2138 bitsdone += thissize;
2140 /* Shift this part into place for the result. */
2141 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
2143 if (bitsize != bitsdone)
2144 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2145 bitsize - bitsdone, 0, 1);
2147 else
2149 if (bitsdone != thissize)
2150 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2151 bitsdone - thissize, 0, 1);
2154 if (first)
2155 result = part;
2156 else
2157 /* Combine the parts with bitwise or. This works
2158 because we extracted each part as an unsigned bit field. */
2159 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2160 OPTAB_LIB_WIDEN);
2162 first = 0;
2165 /* Unsigned bit field: we are done. */
2166 if (unsignedp)
2167 return result;
2168 /* Signed bit field: sign-extend with two arithmetic shifts. */
2169 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2170 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2171 return expand_shift (RSHIFT_EXPR, word_mode, result,
2172 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2175 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2176 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2177 MODE, fill the upper bits with zeros. Fail if the layout of either
2178 mode is unknown (as for CC modes) or if the extraction would involve
2179 unprofitable mode punning. Return the value on success, otherwise
2180 return null.
2182 This is different from gen_lowpart* in these respects:
2184 - the returned value must always be considered an rvalue
2186 - when MODE is wider than SRC_MODE, the extraction involves
2187 a zero extension
2189 - when MODE is smaller than SRC_MODE, the extraction involves
2190 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
2192 In other words, this routine performs a computation, whereas the
2193 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2194 operations. */
2197 extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src)
2199 machine_mode int_mode, src_int_mode;
2201 if (mode == src_mode)
2202 return src;
2204 if (CONSTANT_P (src))
2206 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2207 fails, it will happily create (subreg (symbol_ref)) or similar
2208 invalid SUBREGs. */
2209 unsigned int byte = subreg_lowpart_offset (mode, src_mode);
2210 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2211 if (ret)
2212 return ret;
2214 if (GET_MODE (src) == VOIDmode
2215 || !validate_subreg (mode, src_mode, src, byte))
2216 return NULL_RTX;
2218 src = force_reg (GET_MODE (src), src);
2219 return gen_rtx_SUBREG (mode, src, byte);
2222 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2223 return NULL_RTX;
2225 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2226 && MODES_TIEABLE_P (mode, src_mode))
2228 rtx x = gen_lowpart_common (mode, src);
2229 if (x)
2230 return x;
2233 src_int_mode = int_mode_for_mode (src_mode);
2234 int_mode = int_mode_for_mode (mode);
2235 if (src_int_mode == BLKmode || int_mode == BLKmode)
2236 return NULL_RTX;
2238 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2239 return NULL_RTX;
2240 if (!MODES_TIEABLE_P (int_mode, mode))
2241 return NULL_RTX;
2243 src = gen_lowpart (src_int_mode, src);
2244 src = convert_modes (int_mode, src_int_mode, src, true);
2245 src = gen_lowpart (mode, src);
2246 return src;
2249 /* Add INC into TARGET. */
2251 void
2252 expand_inc (rtx target, rtx inc)
2254 rtx value = expand_binop (GET_MODE (target), add_optab,
2255 target, inc,
2256 target, 0, OPTAB_LIB_WIDEN);
2257 if (value != target)
2258 emit_move_insn (target, value);
2261 /* Subtract DEC from TARGET. */
2263 void
2264 expand_dec (rtx target, rtx dec)
2266 rtx value = expand_binop (GET_MODE (target), sub_optab,
2267 target, dec,
2268 target, 0, OPTAB_LIB_WIDEN);
2269 if (value != target)
2270 emit_move_insn (target, value);
2273 /* Output a shift instruction for expression code CODE,
2274 with SHIFTED being the rtx for the value to shift,
2275 and AMOUNT the rtx for the amount to shift by.
2276 Store the result in the rtx TARGET, if that is convenient.
2277 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2278 Return the rtx for where the value is. */
2280 static rtx
2281 expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted,
2282 rtx amount, rtx target, int unsignedp)
2284 rtx op1, temp = 0;
2285 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2286 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2287 optab lshift_optab = ashl_optab;
2288 optab rshift_arith_optab = ashr_optab;
2289 optab rshift_uns_optab = lshr_optab;
2290 optab lrotate_optab = rotl_optab;
2291 optab rrotate_optab = rotr_optab;
2292 machine_mode op1_mode;
2293 machine_mode scalar_mode = mode;
2294 int attempt;
2295 bool speed = optimize_insn_for_speed_p ();
2297 if (VECTOR_MODE_P (mode))
2298 scalar_mode = GET_MODE_INNER (mode);
2299 op1 = amount;
2300 op1_mode = GET_MODE (op1);
2302 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2303 shift amount is a vector, use the vector/vector shift patterns. */
2304 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2306 lshift_optab = vashl_optab;
2307 rshift_arith_optab = vashr_optab;
2308 rshift_uns_optab = vlshr_optab;
2309 lrotate_optab = vrotl_optab;
2310 rrotate_optab = vrotr_optab;
2313 /* Previously detected shift-counts computed by NEGATE_EXPR
2314 and shifted in the other direction; but that does not work
2315 on all machines. */
2317 if (SHIFT_COUNT_TRUNCATED)
2319 if (CONST_INT_P (op1)
2320 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2321 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode)))
2322 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2323 % GET_MODE_BITSIZE (scalar_mode));
2324 else if (GET_CODE (op1) == SUBREG
2325 && subreg_lowpart_p (op1)
2326 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
2327 && SCALAR_INT_MODE_P (GET_MODE (op1)))
2328 op1 = SUBREG_REG (op1);
2331 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2332 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2333 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2334 amount instead. */
2335 if (rotate
2336 && CONST_INT_P (op1)
2337 && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (scalar_mode) / 2 + left,
2338 GET_MODE_BITSIZE (scalar_mode) - 1))
2340 op1 = GEN_INT (GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1));
2341 left = !left;
2342 code = left ? LROTATE_EXPR : RROTATE_EXPR;
2345 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2346 Note that this is not the case for bigger values. For instance a rotation
2347 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2348 0x04030201 (bswapsi). */
2349 if (rotate
2350 && CONST_INT_P (op1)
2351 && INTVAL (op1) == BITS_PER_UNIT
2352 && GET_MODE_SIZE (scalar_mode) == 2
2353 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing)
2354 return expand_unop (HImode, bswap_optab, shifted, NULL_RTX,
2355 unsignedp);
2357 if (op1 == const0_rtx)
2358 return shifted;
2360 /* Check whether its cheaper to implement a left shift by a constant
2361 bit count by a sequence of additions. */
2362 if (code == LSHIFT_EXPR
2363 && CONST_INT_P (op1)
2364 && INTVAL (op1) > 0
2365 && INTVAL (op1) < GET_MODE_PRECISION (scalar_mode)
2366 && INTVAL (op1) < MAX_BITS_PER_WORD
2367 && (shift_cost (speed, mode, INTVAL (op1))
2368 > INTVAL (op1) * add_cost (speed, mode))
2369 && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
2371 int i;
2372 for (i = 0; i < INTVAL (op1); i++)
2374 temp = force_reg (mode, shifted);
2375 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2376 unsignedp, OPTAB_LIB_WIDEN);
2378 return shifted;
2381 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2383 enum optab_methods methods;
2385 if (attempt == 0)
2386 methods = OPTAB_DIRECT;
2387 else if (attempt == 1)
2388 methods = OPTAB_WIDEN;
2389 else
2390 methods = OPTAB_LIB_WIDEN;
2392 if (rotate)
2394 /* Widening does not work for rotation. */
2395 if (methods == OPTAB_WIDEN)
2396 continue;
2397 else if (methods == OPTAB_LIB_WIDEN)
2399 /* If we have been unable to open-code this by a rotation,
2400 do it as the IOR of two shifts. I.e., to rotate A
2401 by N bits, compute
2402 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2403 where C is the bitsize of A.
2405 It is theoretically possible that the target machine might
2406 not be able to perform either shift and hence we would
2407 be making two libcalls rather than just the one for the
2408 shift (similarly if IOR could not be done). We will allow
2409 this extremely unlikely lossage to avoid complicating the
2410 code below. */
2412 rtx subtarget = target == shifted ? 0 : target;
2413 rtx new_amount, other_amount;
2414 rtx temp1;
2416 new_amount = op1;
2417 if (op1 == const0_rtx)
2418 return shifted;
2419 else if (CONST_INT_P (op1))
2420 other_amount = GEN_INT (GET_MODE_BITSIZE (scalar_mode)
2421 - INTVAL (op1));
2422 else
2424 other_amount
2425 = simplify_gen_unary (NEG, GET_MODE (op1),
2426 op1, GET_MODE (op1));
2427 HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1;
2428 other_amount
2429 = simplify_gen_binary (AND, GET_MODE (op1), other_amount,
2430 gen_int_mode (mask, GET_MODE (op1)));
2433 shifted = force_reg (mode, shifted);
2435 temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2436 mode, shifted, new_amount, 0, 1);
2437 temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2438 mode, shifted, other_amount,
2439 subtarget, 1);
2440 return expand_binop (mode, ior_optab, temp, temp1, target,
2441 unsignedp, methods);
2444 temp = expand_binop (mode,
2445 left ? lrotate_optab : rrotate_optab,
2446 shifted, op1, target, unsignedp, methods);
2448 else if (unsignedp)
2449 temp = expand_binop (mode,
2450 left ? lshift_optab : rshift_uns_optab,
2451 shifted, op1, target, unsignedp, methods);
2453 /* Do arithmetic shifts.
2454 Also, if we are going to widen the operand, we can just as well
2455 use an arithmetic right-shift instead of a logical one. */
2456 if (temp == 0 && ! rotate
2457 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2459 enum optab_methods methods1 = methods;
2461 /* If trying to widen a log shift to an arithmetic shift,
2462 don't accept an arithmetic shift of the same size. */
2463 if (unsignedp)
2464 methods1 = OPTAB_MUST_WIDEN;
2466 /* Arithmetic shift */
2468 temp = expand_binop (mode,
2469 left ? lshift_optab : rshift_arith_optab,
2470 shifted, op1, target, unsignedp, methods1);
2473 /* We used to try extzv here for logical right shifts, but that was
2474 only useful for one machine, the VAX, and caused poor code
2475 generation there for lshrdi3, so the code was deleted and a
2476 define_expand for lshrsi3 was added to vax.md. */
2479 gcc_assert (temp);
2480 return temp;
2483 /* Output a shift instruction for expression code CODE,
2484 with SHIFTED being the rtx for the value to shift,
2485 and AMOUNT the amount to shift by.
2486 Store the result in the rtx TARGET, if that is convenient.
2487 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2488 Return the rtx for where the value is. */
2491 expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2492 int amount, rtx target, int unsignedp)
2494 return expand_shift_1 (code, mode,
2495 shifted, GEN_INT (amount), target, unsignedp);
2498 /* Output a shift instruction for expression code CODE,
2499 with SHIFTED being the rtx for the value to shift,
2500 and AMOUNT the tree for the amount to shift by.
2501 Store the result in the rtx TARGET, if that is convenient.
2502 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2503 Return the rtx for where the value is. */
2506 expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted,
2507 tree amount, rtx target, int unsignedp)
2509 return expand_shift_1 (code, mode,
2510 shifted, expand_normal (amount), target, unsignedp);
2514 /* Indicates the type of fixup needed after a constant multiplication.
2515 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2516 the result should be negated, and ADD_VARIANT means that the
2517 multiplicand should be added to the result. */
2518 enum mult_variant {basic_variant, negate_variant, add_variant};
2520 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2521 const struct mult_cost *, machine_mode mode);
2522 static bool choose_mult_variant (machine_mode, HOST_WIDE_INT,
2523 struct algorithm *, enum mult_variant *, int);
2524 static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx,
2525 const struct algorithm *, enum mult_variant);
2526 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2527 static rtx extract_high_half (machine_mode, rtx);
2528 static rtx expmed_mult_highpart (machine_mode, rtx, rtx, rtx, int, int);
2529 static rtx expmed_mult_highpart_optab (machine_mode, rtx, rtx, rtx,
2530 int, int);
2531 /* Compute and return the best algorithm for multiplying by T.
2532 The algorithm must cost less than cost_limit
2533 If retval.cost >= COST_LIMIT, no algorithm was found and all
2534 other field of the returned struct are undefined.
2535 MODE is the machine mode of the multiplication. */
2537 static void
2538 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2539 const struct mult_cost *cost_limit, machine_mode mode)
2541 int m;
2542 struct algorithm *alg_in, *best_alg;
2543 struct mult_cost best_cost;
2544 struct mult_cost new_limit;
2545 int op_cost, op_latency;
2546 unsigned HOST_WIDE_INT orig_t = t;
2547 unsigned HOST_WIDE_INT q;
2548 int maxm, hash_index;
2549 bool cache_hit = false;
2550 enum alg_code cache_alg = alg_zero;
2551 bool speed = optimize_insn_for_speed_p ();
2552 machine_mode imode;
2553 struct alg_hash_entry *entry_ptr;
2555 /* Indicate that no algorithm is yet found. If no algorithm
2556 is found, this value will be returned and indicate failure. */
2557 alg_out->cost.cost = cost_limit->cost + 1;
2558 alg_out->cost.latency = cost_limit->latency + 1;
2560 if (cost_limit->cost < 0
2561 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2562 return;
2564 /* Be prepared for vector modes. */
2565 imode = GET_MODE_INNER (mode);
2567 maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
2569 /* Restrict the bits of "t" to the multiplication's mode. */
2570 t &= GET_MODE_MASK (imode);
2572 /* t == 1 can be done in zero cost. */
2573 if (t == 1)
2575 alg_out->ops = 1;
2576 alg_out->cost.cost = 0;
2577 alg_out->cost.latency = 0;
2578 alg_out->op[0] = alg_m;
2579 return;
2582 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2583 fail now. */
2584 if (t == 0)
2586 if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
2587 return;
2588 else
2590 alg_out->ops = 1;
2591 alg_out->cost.cost = zero_cost (speed);
2592 alg_out->cost.latency = zero_cost (speed);
2593 alg_out->op[0] = alg_zero;
2594 return;
2598 /* We'll be needing a couple extra algorithm structures now. */
2600 alg_in = XALLOCA (struct algorithm);
2601 best_alg = XALLOCA (struct algorithm);
2602 best_cost = *cost_limit;
2604 /* Compute the hash index. */
2605 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2607 /* See if we already know what to do for T. */
2608 entry_ptr = alg_hash_entry_ptr (hash_index);
2609 if (entry_ptr->t == t
2610 && entry_ptr->mode == mode
2611 && entry_ptr->mode == mode
2612 && entry_ptr->speed == speed
2613 && entry_ptr->alg != alg_unknown)
2615 cache_alg = entry_ptr->alg;
2617 if (cache_alg == alg_impossible)
2619 /* The cache tells us that it's impossible to synthesize
2620 multiplication by T within entry_ptr->cost. */
2621 if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
2622 /* COST_LIMIT is at least as restrictive as the one
2623 recorded in the hash table, in which case we have no
2624 hope of synthesizing a multiplication. Just
2625 return. */
2626 return;
2628 /* If we get here, COST_LIMIT is less restrictive than the
2629 one recorded in the hash table, so we may be able to
2630 synthesize a multiplication. Proceed as if we didn't
2631 have the cache entry. */
2633 else
2635 if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
2636 /* The cached algorithm shows that this multiplication
2637 requires more cost than COST_LIMIT. Just return. This
2638 way, we don't clobber this cache entry with
2639 alg_impossible but retain useful information. */
2640 return;
2642 cache_hit = true;
2644 switch (cache_alg)
2646 case alg_shift:
2647 goto do_alg_shift;
2649 case alg_add_t_m2:
2650 case alg_sub_t_m2:
2651 goto do_alg_addsub_t_m2;
2653 case alg_add_factor:
2654 case alg_sub_factor:
2655 goto do_alg_addsub_factor;
2657 case alg_add_t2_m:
2658 goto do_alg_add_t2_m;
2660 case alg_sub_t2_m:
2661 goto do_alg_sub_t2_m;
2663 default:
2664 gcc_unreachable ();
2669 /* If we have a group of zero bits at the low-order part of T, try
2670 multiplying by the remaining bits and then doing a shift. */
2672 if ((t & 1) == 0)
2674 do_alg_shift:
2675 m = floor_log2 (t & -t); /* m = number of low zero bits */
2676 if (m < maxm)
2678 q = t >> m;
2679 /* The function expand_shift will choose between a shift and
2680 a sequence of additions, so the observed cost is given as
2681 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2682 op_cost = m * add_cost (speed, mode);
2683 if (shift_cost (speed, mode, m) < op_cost)
2684 op_cost = shift_cost (speed, mode, m);
2685 new_limit.cost = best_cost.cost - op_cost;
2686 new_limit.latency = best_cost.latency - op_cost;
2687 synth_mult (alg_in, q, &new_limit, mode);
2689 alg_in->cost.cost += op_cost;
2690 alg_in->cost.latency += op_cost;
2691 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2693 best_cost = alg_in->cost;
2694 std::swap (alg_in, best_alg);
2695 best_alg->log[best_alg->ops] = m;
2696 best_alg->op[best_alg->ops] = alg_shift;
2699 /* See if treating ORIG_T as a signed number yields a better
2700 sequence. Try this sequence only for a negative ORIG_T
2701 as it would be useless for a non-negative ORIG_T. */
2702 if ((HOST_WIDE_INT) orig_t < 0)
2704 /* Shift ORIG_T as follows because a right shift of a
2705 negative-valued signed type is implementation
2706 defined. */
2707 q = ~(~orig_t >> m);
2708 /* The function expand_shift will choose between a shift
2709 and a sequence of additions, so the observed cost is
2710 given as MIN (m * add_cost(speed, mode),
2711 shift_cost(speed, mode, m)). */
2712 op_cost = m * add_cost (speed, mode);
2713 if (shift_cost (speed, mode, m) < op_cost)
2714 op_cost = shift_cost (speed, mode, m);
2715 new_limit.cost = best_cost.cost - op_cost;
2716 new_limit.latency = best_cost.latency - op_cost;
2717 synth_mult (alg_in, q, &new_limit, mode);
2719 alg_in->cost.cost += op_cost;
2720 alg_in->cost.latency += op_cost;
2721 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2723 best_cost = alg_in->cost;
2724 std::swap (alg_in, best_alg);
2725 best_alg->log[best_alg->ops] = m;
2726 best_alg->op[best_alg->ops] = alg_shift;
2730 if (cache_hit)
2731 goto done;
2734 /* If we have an odd number, add or subtract one. */
2735 if ((t & 1) != 0)
2737 unsigned HOST_WIDE_INT w;
2739 do_alg_addsub_t_m2:
2740 for (w = 1; (w & t) != 0; w <<= 1)
2742 /* If T was -1, then W will be zero after the loop. This is another
2743 case where T ends with ...111. Handling this with (T + 1) and
2744 subtract 1 produces slightly better code and results in algorithm
2745 selection much faster than treating it like the ...0111 case
2746 below. */
2747 if (w == 0
2748 || (w > 2
2749 /* Reject the case where t is 3.
2750 Thus we prefer addition in that case. */
2751 && t != 3))
2753 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2755 op_cost = add_cost (speed, mode);
2756 new_limit.cost = best_cost.cost - op_cost;
2757 new_limit.latency = best_cost.latency - op_cost;
2758 synth_mult (alg_in, t + 1, &new_limit, mode);
2760 alg_in->cost.cost += op_cost;
2761 alg_in->cost.latency += op_cost;
2762 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2764 best_cost = alg_in->cost;
2765 std::swap (alg_in, best_alg);
2766 best_alg->log[best_alg->ops] = 0;
2767 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2770 else
2772 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
2774 op_cost = add_cost (speed, mode);
2775 new_limit.cost = best_cost.cost - op_cost;
2776 new_limit.latency = best_cost.latency - op_cost;
2777 synth_mult (alg_in, t - 1, &new_limit, mode);
2779 alg_in->cost.cost += op_cost;
2780 alg_in->cost.latency += op_cost;
2781 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2783 best_cost = alg_in->cost;
2784 std::swap (alg_in, best_alg);
2785 best_alg->log[best_alg->ops] = 0;
2786 best_alg->op[best_alg->ops] = alg_add_t_m2;
2790 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2791 quickly with a - a * n for some appropriate constant n. */
2792 m = exact_log2 (-orig_t + 1);
2793 if (m >= 0 && m < maxm)
2795 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2796 /* If the target has a cheap shift-and-subtract insn use
2797 that in preference to a shift insn followed by a sub insn.
2798 Assume that the shift-and-sub is "atomic" with a latency
2799 equal to it's cost, otherwise assume that on superscalar
2800 hardware the shift may be executed concurrently with the
2801 earlier steps in the algorithm. */
2802 if (shiftsub1_cost (speed, mode, m) <= op_cost)
2804 op_cost = shiftsub1_cost (speed, mode, m);
2805 op_latency = op_cost;
2807 else
2808 op_latency = add_cost (speed, mode);
2810 new_limit.cost = best_cost.cost - op_cost;
2811 new_limit.latency = best_cost.latency - op_latency;
2812 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
2813 &new_limit, mode);
2815 alg_in->cost.cost += op_cost;
2816 alg_in->cost.latency += op_latency;
2817 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2819 best_cost = alg_in->cost;
2820 std::swap (alg_in, best_alg);
2821 best_alg->log[best_alg->ops] = m;
2822 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2826 if (cache_hit)
2827 goto done;
2830 /* Look for factors of t of the form
2831 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2832 If we find such a factor, we can multiply by t using an algorithm that
2833 multiplies by q, shift the result by m and add/subtract it to itself.
2835 We search for large factors first and loop down, even if large factors
2836 are less probable than small; if we find a large factor we will find a
2837 good sequence quickly, and therefore be able to prune (by decreasing
2838 COST_LIMIT) the search. */
2840 do_alg_addsub_factor:
2841 for (m = floor_log2 (t - 1); m >= 2; m--)
2843 unsigned HOST_WIDE_INT d;
2845 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2846 if (t % d == 0 && t > d && m < maxm
2847 && (!cache_hit || cache_alg == alg_add_factor))
2849 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2850 if (shiftadd_cost (speed, mode, m) <= op_cost)
2851 op_cost = shiftadd_cost (speed, mode, m);
2853 op_latency = op_cost;
2856 new_limit.cost = best_cost.cost - op_cost;
2857 new_limit.latency = best_cost.latency - op_latency;
2858 synth_mult (alg_in, t / d, &new_limit, mode);
2860 alg_in->cost.cost += op_cost;
2861 alg_in->cost.latency += op_latency;
2862 if (alg_in->cost.latency < op_cost)
2863 alg_in->cost.latency = op_cost;
2864 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2866 best_cost = alg_in->cost;
2867 std::swap (alg_in, best_alg);
2868 best_alg->log[best_alg->ops] = m;
2869 best_alg->op[best_alg->ops] = alg_add_factor;
2871 /* Other factors will have been taken care of in the recursion. */
2872 break;
2875 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2876 if (t % d == 0 && t > d && m < maxm
2877 && (!cache_hit || cache_alg == alg_sub_factor))
2879 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2880 if (shiftsub0_cost (speed, mode, m) <= op_cost)
2881 op_cost = shiftsub0_cost (speed, mode, m);
2883 op_latency = op_cost;
2885 new_limit.cost = best_cost.cost - op_cost;
2886 new_limit.latency = best_cost.latency - op_latency;
2887 synth_mult (alg_in, t / d, &new_limit, mode);
2889 alg_in->cost.cost += op_cost;
2890 alg_in->cost.latency += op_latency;
2891 if (alg_in->cost.latency < op_cost)
2892 alg_in->cost.latency = op_cost;
2893 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2895 best_cost = alg_in->cost;
2896 std::swap (alg_in, best_alg);
2897 best_alg->log[best_alg->ops] = m;
2898 best_alg->op[best_alg->ops] = alg_sub_factor;
2900 break;
2903 if (cache_hit)
2904 goto done;
2906 /* Try shift-and-add (load effective address) instructions,
2907 i.e. do a*3, a*5, a*9. */
2908 if ((t & 1) != 0)
2910 do_alg_add_t2_m:
2911 q = t - 1;
2912 q = q & -q;
2913 m = exact_log2 (q);
2914 if (m >= 0 && m < maxm)
2916 op_cost = shiftadd_cost (speed, mode, m);
2917 new_limit.cost = best_cost.cost - op_cost;
2918 new_limit.latency = best_cost.latency - op_cost;
2919 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2921 alg_in->cost.cost += op_cost;
2922 alg_in->cost.latency += op_cost;
2923 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2925 best_cost = alg_in->cost;
2926 std::swap (alg_in, best_alg);
2927 best_alg->log[best_alg->ops] = m;
2928 best_alg->op[best_alg->ops] = alg_add_t2_m;
2931 if (cache_hit)
2932 goto done;
2934 do_alg_sub_t2_m:
2935 q = t + 1;
2936 q = q & -q;
2937 m = exact_log2 (q);
2938 if (m >= 0 && m < maxm)
2940 op_cost = shiftsub0_cost (speed, mode, m);
2941 new_limit.cost = best_cost.cost - op_cost;
2942 new_limit.latency = best_cost.latency - op_cost;
2943 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2945 alg_in->cost.cost += op_cost;
2946 alg_in->cost.latency += op_cost;
2947 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2949 best_cost = alg_in->cost;
2950 std::swap (alg_in, best_alg);
2951 best_alg->log[best_alg->ops] = m;
2952 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2955 if (cache_hit)
2956 goto done;
2959 done:
2960 /* If best_cost has not decreased, we have not found any algorithm. */
2961 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2963 /* We failed to find an algorithm. Record alg_impossible for
2964 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2965 we are asked to find an algorithm for T within the same or
2966 lower COST_LIMIT, we can immediately return to the
2967 caller. */
2968 entry_ptr->t = t;
2969 entry_ptr->mode = mode;
2970 entry_ptr->speed = speed;
2971 entry_ptr->alg = alg_impossible;
2972 entry_ptr->cost = *cost_limit;
2973 return;
2976 /* Cache the result. */
2977 if (!cache_hit)
2979 entry_ptr->t = t;
2980 entry_ptr->mode = mode;
2981 entry_ptr->speed = speed;
2982 entry_ptr->alg = best_alg->op[best_alg->ops];
2983 entry_ptr->cost.cost = best_cost.cost;
2984 entry_ptr->cost.latency = best_cost.latency;
2987 /* If we are getting a too long sequence for `struct algorithm'
2988 to record, make this search fail. */
2989 if (best_alg->ops == MAX_BITS_PER_WORD)
2990 return;
2992 /* Copy the algorithm from temporary space to the space at alg_out.
2993 We avoid using structure assignment because the majority of
2994 best_alg is normally undefined, and this is a critical function. */
2995 alg_out->ops = best_alg->ops + 1;
2996 alg_out->cost = best_cost;
2997 memcpy (alg_out->op, best_alg->op,
2998 alg_out->ops * sizeof *alg_out->op);
2999 memcpy (alg_out->log, best_alg->log,
3000 alg_out->ops * sizeof *alg_out->log);
3003 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
3004 Try three variations:
3006 - a shift/add sequence based on VAL itself
3007 - a shift/add sequence based on -VAL, followed by a negation
3008 - a shift/add sequence based on VAL - 1, followed by an addition.
3010 Return true if the cheapest of these cost less than MULT_COST,
3011 describing the algorithm in *ALG and final fixup in *VARIANT. */
3013 static bool
3014 choose_mult_variant (machine_mode mode, HOST_WIDE_INT val,
3015 struct algorithm *alg, enum mult_variant *variant,
3016 int mult_cost)
3018 struct algorithm alg2;
3019 struct mult_cost limit;
3020 int op_cost;
3021 bool speed = optimize_insn_for_speed_p ();
3023 /* Fail quickly for impossible bounds. */
3024 if (mult_cost < 0)
3025 return false;
3027 /* Ensure that mult_cost provides a reasonable upper bound.
3028 Any constant multiplication can be performed with less
3029 than 2 * bits additions. */
3030 op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
3031 if (mult_cost > op_cost)
3032 mult_cost = op_cost;
3034 *variant = basic_variant;
3035 limit.cost = mult_cost;
3036 limit.latency = mult_cost;
3037 synth_mult (alg, val, &limit, mode);
3039 /* This works only if the inverted value actually fits in an
3040 `unsigned int' */
3041 if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
3043 op_cost = neg_cost (speed, mode);
3044 if (MULT_COST_LESS (&alg->cost, mult_cost))
3046 limit.cost = alg->cost.cost - op_cost;
3047 limit.latency = alg->cost.latency - op_cost;
3049 else
3051 limit.cost = mult_cost - op_cost;
3052 limit.latency = mult_cost - op_cost;
3055 synth_mult (&alg2, -val, &limit, mode);
3056 alg2.cost.cost += op_cost;
3057 alg2.cost.latency += op_cost;
3058 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
3059 *alg = alg2, *variant = negate_variant;
3062 /* This proves very useful for division-by-constant. */
3063 op_cost = add_cost (speed, mode);
3064 if (MULT_COST_LESS (&alg->cost, mult_cost))
3066 limit.cost = alg->cost.cost - op_cost;
3067 limit.latency = alg->cost.latency - op_cost;
3069 else
3071 limit.cost = mult_cost - op_cost;
3072 limit.latency = mult_cost - op_cost;
3075 synth_mult (&alg2, val - 1, &limit, mode);
3076 alg2.cost.cost += op_cost;
3077 alg2.cost.latency += op_cost;
3078 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
3079 *alg = alg2, *variant = add_variant;
3081 return MULT_COST_LESS (&alg->cost, mult_cost);
3084 /* A subroutine of expand_mult, used for constant multiplications.
3085 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
3086 convenient. Use the shift/add sequence described by ALG and apply
3087 the final fixup specified by VARIANT. */
3089 static rtx
3090 expand_mult_const (machine_mode mode, rtx op0, HOST_WIDE_INT val,
3091 rtx target, const struct algorithm *alg,
3092 enum mult_variant variant)
3094 HOST_WIDE_INT val_so_far;
3095 rtx_insn *insn;
3096 rtx accum, tem;
3097 int opno;
3098 machine_mode nmode;
3100 /* Avoid referencing memory over and over and invalid sharing
3101 on SUBREGs. */
3102 op0 = force_reg (mode, op0);
3104 /* ACCUM starts out either as OP0 or as a zero, depending on
3105 the first operation. */
3107 if (alg->op[0] == alg_zero)
3109 accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
3110 val_so_far = 0;
3112 else if (alg->op[0] == alg_m)
3114 accum = copy_to_mode_reg (mode, op0);
3115 val_so_far = 1;
3117 else
3118 gcc_unreachable ();
3120 for (opno = 1; opno < alg->ops; opno++)
3122 int log = alg->log[opno];
3123 rtx shift_subtarget = optimize ? 0 : accum;
3124 rtx add_target
3125 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
3126 && !optimize)
3127 ? target : 0;
3128 rtx accum_target = optimize ? 0 : accum;
3129 rtx accum_inner;
3131 switch (alg->op[opno])
3133 case alg_shift:
3134 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3135 /* REG_EQUAL note will be attached to the following insn. */
3136 emit_move_insn (accum, tem);
3137 val_so_far <<= log;
3138 break;
3140 case alg_add_t_m2:
3141 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3142 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3143 add_target ? add_target : accum_target);
3144 val_so_far += (HOST_WIDE_INT) 1 << log;
3145 break;
3147 case alg_sub_t_m2:
3148 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3149 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3150 add_target ? add_target : accum_target);
3151 val_so_far -= (HOST_WIDE_INT) 1 << log;
3152 break;
3154 case alg_add_t2_m:
3155 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3156 log, shift_subtarget, 0);
3157 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3158 add_target ? add_target : accum_target);
3159 val_so_far = (val_so_far << log) + 1;
3160 break;
3162 case alg_sub_t2_m:
3163 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3164 log, shift_subtarget, 0);
3165 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3166 add_target ? add_target : accum_target);
3167 val_so_far = (val_so_far << log) - 1;
3168 break;
3170 case alg_add_factor:
3171 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3172 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3173 add_target ? add_target : accum_target);
3174 val_so_far += val_so_far << log;
3175 break;
3177 case alg_sub_factor:
3178 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3179 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3180 (add_target
3181 ? add_target : (optimize ? 0 : tem)));
3182 val_so_far = (val_so_far << log) - val_so_far;
3183 break;
3185 default:
3186 gcc_unreachable ();
3189 if (SCALAR_INT_MODE_P (mode))
3191 /* Write a REG_EQUAL note on the last insn so that we can cse
3192 multiplication sequences. Note that if ACCUM is a SUBREG,
3193 we've set the inner register and must properly indicate that. */
3194 tem = op0, nmode = mode;
3195 accum_inner = accum;
3196 if (GET_CODE (accum) == SUBREG)
3198 accum_inner = SUBREG_REG (accum);
3199 nmode = GET_MODE (accum_inner);
3200 tem = gen_lowpart (nmode, op0);
3203 insn = get_last_insn ();
3204 set_dst_reg_note (insn, REG_EQUAL,
3205 gen_rtx_MULT (nmode, tem,
3206 gen_int_mode (val_so_far, nmode)),
3207 accum_inner);
3211 if (variant == negate_variant)
3213 val_so_far = -val_so_far;
3214 accum = expand_unop (mode, neg_optab, accum, target, 0);
3216 else if (variant == add_variant)
3218 val_so_far = val_so_far + 1;
3219 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3222 /* Compare only the bits of val and val_so_far that are significant
3223 in the result mode, to avoid sign-/zero-extension confusion. */
3224 nmode = GET_MODE_INNER (mode);
3225 val &= GET_MODE_MASK (nmode);
3226 val_so_far &= GET_MODE_MASK (nmode);
3227 gcc_assert (val == val_so_far);
3229 return accum;
3232 /* Perform a multiplication and return an rtx for the result.
3233 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3234 TARGET is a suggestion for where to store the result (an rtx).
3236 We check specially for a constant integer as OP1.
3237 If you want this check for OP0 as well, then before calling
3238 you should swap the two operands if OP0 would be constant. */
3241 expand_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3242 int unsignedp)
3244 enum mult_variant variant;
3245 struct algorithm algorithm;
3246 rtx scalar_op1;
3247 int max_cost;
3248 bool speed = optimize_insn_for_speed_p ();
3249 bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
3251 if (CONSTANT_P (op0))
3252 std::swap (op0, op1);
3254 /* For vectors, there are several simplifications that can be made if
3255 all elements of the vector constant are identical. */
3256 scalar_op1 = unwrap_const_vec_duplicate (op1);
3258 if (INTEGRAL_MODE_P (mode))
3260 rtx fake_reg;
3261 HOST_WIDE_INT coeff;
3262 bool is_neg;
3263 int mode_bitsize;
3265 if (op1 == CONST0_RTX (mode))
3266 return op1;
3267 if (op1 == CONST1_RTX (mode))
3268 return op0;
3269 if (op1 == CONSTM1_RTX (mode))
3270 return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
3271 op0, target, 0);
3273 if (do_trapv)
3274 goto skip_synth;
3276 /* If mode is integer vector mode, check if the backend supports
3277 vector lshift (by scalar or vector) at all. If not, we can't use
3278 synthetized multiply. */
3279 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
3280 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing
3281 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing)
3282 goto skip_synth;
3284 /* These are the operations that are potentially turned into
3285 a sequence of shifts and additions. */
3286 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
3288 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3289 less than or equal in size to `unsigned int' this doesn't matter.
3290 If the mode is larger than `unsigned int', then synth_mult works
3291 only if the constant value exactly fits in an `unsigned int' without
3292 any truncation. This means that multiplying by negative values does
3293 not work; results are off by 2^32 on a 32 bit machine. */
3294 if (CONST_INT_P (scalar_op1))
3296 coeff = INTVAL (scalar_op1);
3297 is_neg = coeff < 0;
3299 #if TARGET_SUPPORTS_WIDE_INT
3300 else if (CONST_WIDE_INT_P (scalar_op1))
3301 #else
3302 else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
3303 #endif
3305 int shift = wi::exact_log2 (std::make_pair (scalar_op1, mode));
3306 /* Perfect power of 2 (other than 1, which is handled above). */
3307 if (shift > 0)
3308 return expand_shift (LSHIFT_EXPR, mode, op0,
3309 shift, target, unsignedp);
3310 else
3311 goto skip_synth;
3313 else
3314 goto skip_synth;
3316 /* We used to test optimize here, on the grounds that it's better to
3317 produce a smaller program when -O is not used. But this causes
3318 such a terrible slowdown sometimes that it seems better to always
3319 use synth_mult. */
3321 /* Special case powers of two. */
3322 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
3323 && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
3324 return expand_shift (LSHIFT_EXPR, mode, op0,
3325 floor_log2 (coeff), target, unsignedp);
3327 fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3329 /* Attempt to handle multiplication of DImode values by negative
3330 coefficients, by performing the multiplication by a positive
3331 multiplier and then inverting the result. */
3332 if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
3334 /* Its safe to use -coeff even for INT_MIN, as the
3335 result is interpreted as an unsigned coefficient.
3336 Exclude cost of op0 from max_cost to match the cost
3337 calculation of the synth_mult. */
3338 coeff = -(unsigned HOST_WIDE_INT) coeff;
3339 max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1),
3340 mode, speed)
3341 - neg_cost (speed, mode));
3342 if (max_cost <= 0)
3343 goto skip_synth;
3345 /* Special case powers of two. */
3346 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3348 rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
3349 floor_log2 (coeff), target, unsignedp);
3350 return expand_unop (mode, neg_optab, temp, target, 0);
3353 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3354 max_cost))
3356 rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
3357 &algorithm, variant);
3358 return expand_unop (mode, neg_optab, temp, target, 0);
3360 goto skip_synth;
3363 /* Exclude cost of op0 from max_cost to match the cost
3364 calculation of the synth_mult. */
3365 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), mode, speed);
3366 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3367 return expand_mult_const (mode, op0, coeff, target,
3368 &algorithm, variant);
3370 skip_synth:
3372 /* Expand x*2.0 as x+x. */
3373 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1)
3374 && real_equal (CONST_DOUBLE_REAL_VALUE (scalar_op1), &dconst2))
3376 op0 = force_reg (GET_MODE (op0), op0);
3377 return expand_binop (mode, add_optab, op0, op0,
3378 target, unsignedp, OPTAB_LIB_WIDEN);
3381 /* This used to use umul_optab if unsigned, but for non-widening multiply
3382 there is no difference between signed and unsigned. */
3383 op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
3384 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3385 gcc_assert (op0);
3386 return op0;
3389 /* Return a cost estimate for multiplying a register by the given
3390 COEFFicient in the given MODE and SPEED. */
3393 mult_by_coeff_cost (HOST_WIDE_INT coeff, machine_mode mode, bool speed)
3395 int max_cost;
3396 struct algorithm algorithm;
3397 enum mult_variant variant;
3399 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3400 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg),
3401 mode, speed);
3402 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3403 return algorithm.cost.cost;
3404 else
3405 return max_cost;
3408 /* Perform a widening multiplication and return an rtx for the result.
3409 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3410 TARGET is a suggestion for where to store the result (an rtx).
3411 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3412 or smul_widen_optab.
3414 We check specially for a constant integer as OP1, comparing the
3415 cost of a widening multiply against the cost of a sequence of shifts
3416 and adds. */
3419 expand_widening_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3420 int unsignedp, optab this_optab)
3422 bool speed = optimize_insn_for_speed_p ();
3423 rtx cop1;
3425 if (CONST_INT_P (op1)
3426 && GET_MODE (op0) != VOIDmode
3427 && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
3428 this_optab == umul_widen_optab))
3429 && CONST_INT_P (cop1)
3430 && (INTVAL (cop1) >= 0
3431 || HWI_COMPUTABLE_MODE_P (mode)))
3433 HOST_WIDE_INT coeff = INTVAL (cop1);
3434 int max_cost;
3435 enum mult_variant variant;
3436 struct algorithm algorithm;
3438 if (coeff == 0)
3439 return CONST0_RTX (mode);
3441 /* Special case powers of two. */
3442 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3444 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3445 return expand_shift (LSHIFT_EXPR, mode, op0,
3446 floor_log2 (coeff), target, unsignedp);
3449 /* Exclude cost of op0 from max_cost to match the cost
3450 calculation of the synth_mult. */
3451 max_cost = mul_widen_cost (speed, mode);
3452 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3453 max_cost))
3455 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3456 return expand_mult_const (mode, op0, coeff, target,
3457 &algorithm, variant);
3460 return expand_binop (mode, this_optab, op0, op1, target,
3461 unsignedp, OPTAB_LIB_WIDEN);
3464 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3465 replace division by D, and put the least significant N bits of the result
3466 in *MULTIPLIER_PTR and return the most significant bit.
3468 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3469 needed precision is in PRECISION (should be <= N).
3471 PRECISION should be as small as possible so this function can choose
3472 multiplier more freely.
3474 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3475 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3477 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3478 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3480 unsigned HOST_WIDE_INT
3481 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3482 unsigned HOST_WIDE_INT *multiplier_ptr,
3483 int *post_shift_ptr, int *lgup_ptr)
3485 int lgup, post_shift;
3486 int pow, pow2;
3488 /* lgup = ceil(log2(divisor)); */
3489 lgup = ceil_log2 (d);
3491 gcc_assert (lgup <= n);
3493 pow = n + lgup;
3494 pow2 = n + lgup - precision;
3496 /* mlow = 2^(N + lgup)/d */
3497 wide_int val = wi::set_bit_in_zero (pow, HOST_BITS_PER_DOUBLE_INT);
3498 wide_int mlow = wi::udiv_trunc (val, d);
3500 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3501 val |= wi::set_bit_in_zero (pow2, HOST_BITS_PER_DOUBLE_INT);
3502 wide_int mhigh = wi::udiv_trunc (val, d);
3504 /* If precision == N, then mlow, mhigh exceed 2^N
3505 (but they do not exceed 2^(N+1)). */
3507 /* Reduce to lowest terms. */
3508 for (post_shift = lgup; post_shift > 0; post_shift--)
3510 unsigned HOST_WIDE_INT ml_lo = wi::extract_uhwi (mlow, 1,
3511 HOST_BITS_PER_WIDE_INT);
3512 unsigned HOST_WIDE_INT mh_lo = wi::extract_uhwi (mhigh, 1,
3513 HOST_BITS_PER_WIDE_INT);
3514 if (ml_lo >= mh_lo)
3515 break;
3517 mlow = wi::uhwi (ml_lo, HOST_BITS_PER_DOUBLE_INT);
3518 mhigh = wi::uhwi (mh_lo, HOST_BITS_PER_DOUBLE_INT);
3521 *post_shift_ptr = post_shift;
3522 *lgup_ptr = lgup;
3523 if (n < HOST_BITS_PER_WIDE_INT)
3525 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3526 *multiplier_ptr = mhigh.to_uhwi () & mask;
3527 return mhigh.to_uhwi () >= mask;
3529 else
3531 *multiplier_ptr = mhigh.to_uhwi ();
3532 return wi::extract_uhwi (mhigh, HOST_BITS_PER_WIDE_INT, 1);
3536 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3537 congruent to 1 (mod 2**N). */
3539 static unsigned HOST_WIDE_INT
3540 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3542 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3544 /* The algorithm notes that the choice y = x satisfies
3545 x*y == 1 mod 2^3, since x is assumed odd.
3546 Each iteration doubles the number of bits of significance in y. */
3548 unsigned HOST_WIDE_INT mask;
3549 unsigned HOST_WIDE_INT y = x;
3550 int nbit = 3;
3552 mask = (n == HOST_BITS_PER_WIDE_INT
3553 ? ~(unsigned HOST_WIDE_INT) 0
3554 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3556 while (nbit < n)
3558 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3559 nbit *= 2;
3561 return y;
3564 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3565 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3566 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3567 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3568 become signed.
3570 The result is put in TARGET if that is convenient.
3572 MODE is the mode of operation. */
3575 expand_mult_highpart_adjust (machine_mode mode, rtx adj_operand, rtx op0,
3576 rtx op1, rtx target, int unsignedp)
3578 rtx tem;
3579 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3581 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3582 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3583 tem = expand_and (mode, tem, op1, NULL_RTX);
3584 adj_operand
3585 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3586 adj_operand);
3588 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3589 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3590 tem = expand_and (mode, tem, op0, NULL_RTX);
3591 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3592 target);
3594 return target;
3597 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3599 static rtx
3600 extract_high_half (machine_mode mode, rtx op)
3602 machine_mode wider_mode;
3604 if (mode == word_mode)
3605 return gen_highpart (mode, op);
3607 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3609 wider_mode = GET_MODE_WIDER_MODE (mode);
3610 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3611 GET_MODE_BITSIZE (mode), 0, 1);
3612 return convert_modes (mode, wider_mode, op, 0);
3615 /* Like expmed_mult_highpart, but only consider using a multiplication
3616 optab. OP1 is an rtx for the constant operand. */
3618 static rtx
3619 expmed_mult_highpart_optab (machine_mode mode, rtx op0, rtx op1,
3620 rtx target, int unsignedp, int max_cost)
3622 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3623 machine_mode wider_mode;
3624 optab moptab;
3625 rtx tem;
3626 int size;
3627 bool speed = optimize_insn_for_speed_p ();
3629 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3631 wider_mode = GET_MODE_WIDER_MODE (mode);
3632 size = GET_MODE_BITSIZE (mode);
3634 /* Firstly, try using a multiplication insn that only generates the needed
3635 high part of the product, and in the sign flavor of unsignedp. */
3636 if (mul_highpart_cost (speed, mode) < max_cost)
3638 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3639 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3640 unsignedp, OPTAB_DIRECT);
3641 if (tem)
3642 return tem;
3645 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3646 Need to adjust the result after the multiplication. */
3647 if (size - 1 < BITS_PER_WORD
3648 && (mul_highpart_cost (speed, mode)
3649 + 2 * shift_cost (speed, mode, size-1)
3650 + 4 * add_cost (speed, mode) < max_cost))
3652 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3653 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3654 unsignedp, OPTAB_DIRECT);
3655 if (tem)
3656 /* We used the wrong signedness. Adjust the result. */
3657 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3658 tem, unsignedp);
3661 /* Try widening multiplication. */
3662 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3663 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3664 && mul_widen_cost (speed, wider_mode) < max_cost)
3666 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3667 unsignedp, OPTAB_WIDEN);
3668 if (tem)
3669 return extract_high_half (mode, tem);
3672 /* Try widening the mode and perform a non-widening multiplication. */
3673 if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
3674 && size - 1 < BITS_PER_WORD
3675 && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
3676 < max_cost))
3678 rtx_insn *insns;
3679 rtx wop0, wop1;
3681 /* We need to widen the operands, for example to ensure the
3682 constant multiplier is correctly sign or zero extended.
3683 Use a sequence to clean-up any instructions emitted by
3684 the conversions if things don't work out. */
3685 start_sequence ();
3686 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3687 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3688 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3689 unsignedp, OPTAB_WIDEN);
3690 insns = get_insns ();
3691 end_sequence ();
3693 if (tem)
3695 emit_insn (insns);
3696 return extract_high_half (mode, tem);
3700 /* Try widening multiplication of opposite signedness, and adjust. */
3701 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3702 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3703 && size - 1 < BITS_PER_WORD
3704 && (mul_widen_cost (speed, wider_mode)
3705 + 2 * shift_cost (speed, mode, size-1)
3706 + 4 * add_cost (speed, mode) < max_cost))
3708 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3709 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3710 if (tem != 0)
3712 tem = extract_high_half (mode, tem);
3713 /* We used the wrong signedness. Adjust the result. */
3714 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3715 target, unsignedp);
3719 return 0;
3722 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3723 putting the high half of the result in TARGET if that is convenient,
3724 and return where the result is. If the operation can not be performed,
3725 0 is returned.
3727 MODE is the mode of operation and result.
3729 UNSIGNEDP nonzero means unsigned multiply.
3731 MAX_COST is the total allowed cost for the expanded RTL. */
3733 static rtx
3734 expmed_mult_highpart (machine_mode mode, rtx op0, rtx op1,
3735 rtx target, int unsignedp, int max_cost)
3737 machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3738 unsigned HOST_WIDE_INT cnst1;
3739 int extra_cost;
3740 bool sign_adjust = false;
3741 enum mult_variant variant;
3742 struct algorithm alg;
3743 rtx tem;
3744 bool speed = optimize_insn_for_speed_p ();
3746 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3747 /* We can't support modes wider than HOST_BITS_PER_INT. */
3748 gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
3750 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3752 /* We can't optimize modes wider than BITS_PER_WORD.
3753 ??? We might be able to perform double-word arithmetic if
3754 mode == word_mode, however all the cost calculations in
3755 synth_mult etc. assume single-word operations. */
3756 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3757 return expmed_mult_highpart_optab (mode, op0, op1, target,
3758 unsignedp, max_cost);
3760 extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
3762 /* Check whether we try to multiply by a negative constant. */
3763 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3765 sign_adjust = true;
3766 extra_cost += add_cost (speed, mode);
3769 /* See whether shift/add multiplication is cheap enough. */
3770 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3771 max_cost - extra_cost))
3773 /* See whether the specialized multiplication optabs are
3774 cheaper than the shift/add version. */
3775 tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3776 alg.cost.cost + extra_cost);
3777 if (tem)
3778 return tem;
3780 tem = convert_to_mode (wider_mode, op0, unsignedp);
3781 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3782 tem = extract_high_half (mode, tem);
3784 /* Adjust result for signedness. */
3785 if (sign_adjust)
3786 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3788 return tem;
3790 return expmed_mult_highpart_optab (mode, op0, op1, target,
3791 unsignedp, max_cost);
3795 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3797 static rtx
3798 expand_smod_pow2 (machine_mode mode, rtx op0, HOST_WIDE_INT d)
3800 rtx result, temp, shift;
3801 rtx_code_label *label;
3802 int logd;
3803 int prec = GET_MODE_PRECISION (mode);
3805 logd = floor_log2 (d);
3806 result = gen_reg_rtx (mode);
3808 /* Avoid conditional branches when they're expensive. */
3809 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3810 && optimize_insn_for_speed_p ())
3812 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3813 mode, 0, -1);
3814 if (signmask)
3816 HOST_WIDE_INT masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3817 signmask = force_reg (mode, signmask);
3818 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3820 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3821 which instruction sequence to use. If logical right shifts
3822 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3823 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3825 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3826 if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
3827 || (set_src_cost (temp, mode, optimize_insn_for_speed_p ())
3828 > COSTS_N_INSNS (2)))
3830 temp = expand_binop (mode, xor_optab, op0, signmask,
3831 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3832 temp = expand_binop (mode, sub_optab, temp, signmask,
3833 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3834 temp = expand_binop (mode, and_optab, temp,
3835 gen_int_mode (masklow, mode),
3836 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3837 temp = expand_binop (mode, xor_optab, temp, signmask,
3838 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3839 temp = expand_binop (mode, sub_optab, temp, signmask,
3840 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3842 else
3844 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3845 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3846 signmask = force_reg (mode, signmask);
3848 temp = expand_binop (mode, add_optab, op0, signmask,
3849 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3850 temp = expand_binop (mode, and_optab, temp,
3851 gen_int_mode (masklow, mode),
3852 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3853 temp = expand_binop (mode, sub_optab, temp, signmask,
3854 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3856 return temp;
3860 /* Mask contains the mode's signbit and the significant bits of the
3861 modulus. By including the signbit in the operation, many targets
3862 can avoid an explicit compare operation in the following comparison
3863 against zero. */
3864 wide_int mask = wi::mask (logd, false, prec);
3865 mask = wi::set_bit (mask, prec - 1);
3867 temp = expand_binop (mode, and_optab, op0,
3868 immed_wide_int_const (mask, mode),
3869 result, 1, OPTAB_LIB_WIDEN);
3870 if (temp != result)
3871 emit_move_insn (result, temp);
3873 label = gen_label_rtx ();
3874 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3876 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3877 0, OPTAB_LIB_WIDEN);
3879 mask = wi::mask (logd, true, prec);
3880 temp = expand_binop (mode, ior_optab, temp,
3881 immed_wide_int_const (mask, mode),
3882 result, 1, OPTAB_LIB_WIDEN);
3883 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3884 0, OPTAB_LIB_WIDEN);
3885 if (temp != result)
3886 emit_move_insn (result, temp);
3887 emit_label (label);
3888 return result;
3891 /* Expand signed division of OP0 by a power of two D in mode MODE.
3892 This routine is only called for positive values of D. */
3894 static rtx
3895 expand_sdiv_pow2 (machine_mode mode, rtx op0, HOST_WIDE_INT d)
3897 rtx temp;
3898 rtx_code_label *label;
3899 int logd;
3901 logd = floor_log2 (d);
3903 if (d == 2
3904 && BRANCH_COST (optimize_insn_for_speed_p (),
3905 false) >= 1)
3907 temp = gen_reg_rtx (mode);
3908 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3909 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3910 0, OPTAB_LIB_WIDEN);
3911 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3914 if (HAVE_conditional_move
3915 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
3917 rtx temp2;
3919 start_sequence ();
3920 temp2 = copy_to_mode_reg (mode, op0);
3921 temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
3922 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3923 temp = force_reg (mode, temp);
3925 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3926 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3927 mode, temp, temp2, mode, 0);
3928 if (temp2)
3930 rtx_insn *seq = get_insns ();
3931 end_sequence ();
3932 emit_insn (seq);
3933 return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
3935 end_sequence ();
3938 if (BRANCH_COST (optimize_insn_for_speed_p (),
3939 false) >= 2)
3941 int ushift = GET_MODE_BITSIZE (mode) - logd;
3943 temp = gen_reg_rtx (mode);
3944 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3945 if (GET_MODE_BITSIZE (mode) >= BITS_PER_WORD
3946 || shift_cost (optimize_insn_for_speed_p (), mode, ushift)
3947 > COSTS_N_INSNS (1))
3948 temp = expand_binop (mode, and_optab, temp, gen_int_mode (d - 1, mode),
3949 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3950 else
3951 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3952 ushift, NULL_RTX, 1);
3953 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3954 0, OPTAB_LIB_WIDEN);
3955 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3958 label = gen_label_rtx ();
3959 temp = copy_to_mode_reg (mode, op0);
3960 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3961 expand_inc (temp, gen_int_mode (d - 1, mode));
3962 emit_label (label);
3963 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3966 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3967 if that is convenient, and returning where the result is.
3968 You may request either the quotient or the remainder as the result;
3969 specify REM_FLAG nonzero to get the remainder.
3971 CODE is the expression code for which kind of division this is;
3972 it controls how rounding is done. MODE is the machine mode to use.
3973 UNSIGNEDP nonzero means do unsigned division. */
3975 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3976 and then correct it by or'ing in missing high bits
3977 if result of ANDI is nonzero.
3978 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3979 This could optimize to a bfexts instruction.
3980 But C doesn't use these operations, so their optimizations are
3981 left for later. */
3982 /* ??? For modulo, we don't actually need the highpart of the first product,
3983 the low part will do nicely. And for small divisors, the second multiply
3984 can also be a low-part only multiply or even be completely left out.
3985 E.g. to calculate the remainder of a division by 3 with a 32 bit
3986 multiply, multiply with 0x55555556 and extract the upper two bits;
3987 the result is exact for inputs up to 0x1fffffff.
3988 The input range can be reduced by using cross-sum rules.
3989 For odd divisors >= 3, the following table gives right shift counts
3990 so that if a number is shifted by an integer multiple of the given
3991 amount, the remainder stays the same:
3992 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3993 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3994 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3995 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3996 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3998 Cross-sum rules for even numbers can be derived by leaving as many bits
3999 to the right alone as the divisor has zeros to the right.
4000 E.g. if x is an unsigned 32 bit number:
4001 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
4005 expand_divmod (int rem_flag, enum tree_code code, machine_mode mode,
4006 rtx op0, rtx op1, rtx target, int unsignedp)
4008 machine_mode compute_mode;
4009 rtx tquotient;
4010 rtx quotient = 0, remainder = 0;
4011 rtx_insn *last;
4012 int size;
4013 rtx_insn *insn;
4014 optab optab1, optab2;
4015 int op1_is_constant, op1_is_pow2 = 0;
4016 int max_cost, extra_cost;
4017 static HOST_WIDE_INT last_div_const = 0;
4018 bool speed = optimize_insn_for_speed_p ();
4020 op1_is_constant = CONST_INT_P (op1);
4021 if (op1_is_constant)
4023 unsigned HOST_WIDE_INT ext_op1 = UINTVAL (op1);
4024 if (unsignedp)
4025 ext_op1 &= GET_MODE_MASK (mode);
4026 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
4027 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
4031 This is the structure of expand_divmod:
4033 First comes code to fix up the operands so we can perform the operations
4034 correctly and efficiently.
4036 Second comes a switch statement with code specific for each rounding mode.
4037 For some special operands this code emits all RTL for the desired
4038 operation, for other cases, it generates only a quotient and stores it in
4039 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
4040 to indicate that it has not done anything.
4042 Last comes code that finishes the operation. If QUOTIENT is set and
4043 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
4044 QUOTIENT is not set, it is computed using trunc rounding.
4046 We try to generate special code for division and remainder when OP1 is a
4047 constant. If |OP1| = 2**n we can use shifts and some other fast
4048 operations. For other values of OP1, we compute a carefully selected
4049 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
4050 by m.
4052 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
4053 half of the product. Different strategies for generating the product are
4054 implemented in expmed_mult_highpart.
4056 If what we actually want is the remainder, we generate that by another
4057 by-constant multiplication and a subtraction. */
4059 /* We shouldn't be called with OP1 == const1_rtx, but some of the
4060 code below will malfunction if we are, so check here and handle
4061 the special case if so. */
4062 if (op1 == const1_rtx)
4063 return rem_flag ? const0_rtx : op0;
4065 /* When dividing by -1, we could get an overflow.
4066 negv_optab can handle overflows. */
4067 if (! unsignedp && op1 == constm1_rtx)
4069 if (rem_flag)
4070 return const0_rtx;
4071 return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT
4072 ? negv_optab : neg_optab, op0, target, 0);
4075 if (target
4076 /* Don't use the function value register as a target
4077 since we have to read it as well as write it,
4078 and function-inlining gets confused by this. */
4079 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
4080 /* Don't clobber an operand while doing a multi-step calculation. */
4081 || ((rem_flag || op1_is_constant)
4082 && (reg_mentioned_p (target, op0)
4083 || (MEM_P (op0) && MEM_P (target))))
4084 || reg_mentioned_p (target, op1)
4085 || (MEM_P (op1) && MEM_P (target))))
4086 target = 0;
4088 /* Get the mode in which to perform this computation. Normally it will
4089 be MODE, but sometimes we can't do the desired operation in MODE.
4090 If so, pick a wider mode in which we can do the operation. Convert
4091 to that mode at the start to avoid repeated conversions.
4093 First see what operations we need. These depend on the expression
4094 we are evaluating. (We assume that divxx3 insns exist under the
4095 same conditions that modxx3 insns and that these insns don't normally
4096 fail. If these assumptions are not correct, we may generate less
4097 efficient code in some cases.)
4099 Then see if we find a mode in which we can open-code that operation
4100 (either a division, modulus, or shift). Finally, check for the smallest
4101 mode for which we can do the operation with a library call. */
4103 /* We might want to refine this now that we have division-by-constant
4104 optimization. Since expmed_mult_highpart tries so many variants, it is
4105 not straightforward to generalize this. Maybe we should make an array
4106 of possible modes in init_expmed? Save this for GCC 2.7. */
4108 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
4109 ? (unsignedp ? lshr_optab : ashr_optab)
4110 : (unsignedp ? udiv_optab : sdiv_optab));
4111 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
4112 ? optab1
4113 : (unsignedp ? udivmod_optab : sdivmod_optab));
4115 for (compute_mode = mode; compute_mode != VOIDmode;
4116 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
4117 if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
4118 || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
4119 break;
4121 if (compute_mode == VOIDmode)
4122 for (compute_mode = mode; compute_mode != VOIDmode;
4123 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
4124 if (optab_libfunc (optab1, compute_mode)
4125 || optab_libfunc (optab2, compute_mode))
4126 break;
4128 /* If we still couldn't find a mode, use MODE, but expand_binop will
4129 probably die. */
4130 if (compute_mode == VOIDmode)
4131 compute_mode = mode;
4133 if (target && GET_MODE (target) == compute_mode)
4134 tquotient = target;
4135 else
4136 tquotient = gen_reg_rtx (compute_mode);
4138 size = GET_MODE_BITSIZE (compute_mode);
4139 #if 0
4140 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4141 (mode), and thereby get better code when OP1 is a constant. Do that
4142 later. It will require going over all usages of SIZE below. */
4143 size = GET_MODE_BITSIZE (mode);
4144 #endif
4146 /* Only deduct something for a REM if the last divide done was
4147 for a different constant. Then set the constant of the last
4148 divide. */
4149 max_cost = (unsignedp
4150 ? udiv_cost (speed, compute_mode)
4151 : sdiv_cost (speed, compute_mode));
4152 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
4153 && INTVAL (op1) == last_div_const))
4154 max_cost -= (mul_cost (speed, compute_mode)
4155 + add_cost (speed, compute_mode));
4157 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
4159 /* Now convert to the best mode to use. */
4160 if (compute_mode != mode)
4162 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
4163 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
4165 /* convert_modes may have placed op1 into a register, so we
4166 must recompute the following. */
4167 op1_is_constant = CONST_INT_P (op1);
4168 op1_is_pow2 = (op1_is_constant
4169 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4170 || (! unsignedp
4171 && EXACT_POWER_OF_2_OR_ZERO_P (-UINTVAL (op1))))));
4174 /* If one of the operands is a volatile MEM, copy it into a register. */
4176 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
4177 op0 = force_reg (compute_mode, op0);
4178 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
4179 op1 = force_reg (compute_mode, op1);
4181 /* If we need the remainder or if OP1 is constant, we need to
4182 put OP0 in a register in case it has any queued subexpressions. */
4183 if (rem_flag || op1_is_constant)
4184 op0 = force_reg (compute_mode, op0);
4186 last = get_last_insn ();
4188 /* Promote floor rounding to trunc rounding for unsigned operations. */
4189 if (unsignedp)
4191 if (code == FLOOR_DIV_EXPR)
4192 code = TRUNC_DIV_EXPR;
4193 if (code == FLOOR_MOD_EXPR)
4194 code = TRUNC_MOD_EXPR;
4195 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4196 code = TRUNC_DIV_EXPR;
4199 if (op1 != const0_rtx)
4200 switch (code)
4202 case TRUNC_MOD_EXPR:
4203 case TRUNC_DIV_EXPR:
4204 if (op1_is_constant)
4206 if (unsignedp)
4208 unsigned HOST_WIDE_INT mh, ml;
4209 int pre_shift, post_shift;
4210 int dummy;
4211 unsigned HOST_WIDE_INT d = (INTVAL (op1)
4212 & GET_MODE_MASK (compute_mode));
4214 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4216 pre_shift = floor_log2 (d);
4217 if (rem_flag)
4219 unsigned HOST_WIDE_INT mask
4220 = ((unsigned HOST_WIDE_INT) 1 << pre_shift) - 1;
4221 remainder
4222 = expand_binop (compute_mode, and_optab, op0,
4223 gen_int_mode (mask, compute_mode),
4224 remainder, 1,
4225 OPTAB_LIB_WIDEN);
4226 if (remainder)
4227 return gen_lowpart (mode, remainder);
4229 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4230 pre_shift, tquotient, 1);
4232 else if (size <= HOST_BITS_PER_WIDE_INT)
4234 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4236 /* Most significant bit of divisor is set; emit an scc
4237 insn. */
4238 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4239 compute_mode, 1, 1);
4241 else
4243 /* Find a suitable multiplier and right shift count
4244 instead of multiplying with D. */
4246 mh = choose_multiplier (d, size, size,
4247 &ml, &post_shift, &dummy);
4249 /* If the suggested multiplier is more than SIZE bits,
4250 we can do better for even divisors, using an
4251 initial right shift. */
4252 if (mh != 0 && (d & 1) == 0)
4254 pre_shift = floor_log2 (d & -d);
4255 mh = choose_multiplier (d >> pre_shift, size,
4256 size - pre_shift,
4257 &ml, &post_shift, &dummy);
4258 gcc_assert (!mh);
4260 else
4261 pre_shift = 0;
4263 if (mh != 0)
4265 rtx t1, t2, t3, t4;
4267 if (post_shift - 1 >= BITS_PER_WORD)
4268 goto fail1;
4270 extra_cost
4271 = (shift_cost (speed, compute_mode, post_shift - 1)
4272 + shift_cost (speed, compute_mode, 1)
4273 + 2 * add_cost (speed, compute_mode));
4274 t1 = expmed_mult_highpart
4275 (compute_mode, op0,
4276 gen_int_mode (ml, compute_mode),
4277 NULL_RTX, 1, max_cost - extra_cost);
4278 if (t1 == 0)
4279 goto fail1;
4280 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4281 op0, t1),
4282 NULL_RTX);
4283 t3 = expand_shift (RSHIFT_EXPR, compute_mode,
4284 t2, 1, NULL_RTX, 1);
4285 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4286 t1, t3),
4287 NULL_RTX);
4288 quotient = expand_shift
4289 (RSHIFT_EXPR, compute_mode, t4,
4290 post_shift - 1, tquotient, 1);
4292 else
4294 rtx t1, t2;
4296 if (pre_shift >= BITS_PER_WORD
4297 || post_shift >= BITS_PER_WORD)
4298 goto fail1;
4300 t1 = expand_shift
4301 (RSHIFT_EXPR, compute_mode, op0,
4302 pre_shift, NULL_RTX, 1);
4303 extra_cost
4304 = (shift_cost (speed, compute_mode, pre_shift)
4305 + shift_cost (speed, compute_mode, post_shift));
4306 t2 = expmed_mult_highpart
4307 (compute_mode, t1,
4308 gen_int_mode (ml, compute_mode),
4309 NULL_RTX, 1, max_cost - extra_cost);
4310 if (t2 == 0)
4311 goto fail1;
4312 quotient = expand_shift
4313 (RSHIFT_EXPR, compute_mode, t2,
4314 post_shift, tquotient, 1);
4318 else /* Too wide mode to use tricky code */
4319 break;
4321 insn = get_last_insn ();
4322 if (insn != last)
4323 set_dst_reg_note (insn, REG_EQUAL,
4324 gen_rtx_UDIV (compute_mode, op0, op1),
4325 quotient);
4327 else /* TRUNC_DIV, signed */
4329 unsigned HOST_WIDE_INT ml;
4330 int lgup, post_shift;
4331 rtx mlr;
4332 HOST_WIDE_INT d = INTVAL (op1);
4333 unsigned HOST_WIDE_INT abs_d;
4335 /* Since d might be INT_MIN, we have to cast to
4336 unsigned HOST_WIDE_INT before negating to avoid
4337 undefined signed overflow. */
4338 abs_d = (d >= 0
4339 ? (unsigned HOST_WIDE_INT) d
4340 : - (unsigned HOST_WIDE_INT) d);
4342 /* n rem d = n rem -d */
4343 if (rem_flag && d < 0)
4345 d = abs_d;
4346 op1 = gen_int_mode (abs_d, compute_mode);
4349 if (d == 1)
4350 quotient = op0;
4351 else if (d == -1)
4352 quotient = expand_unop (compute_mode, neg_optab, op0,
4353 tquotient, 0);
4354 else if (HOST_BITS_PER_WIDE_INT >= size
4355 && abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4357 /* This case is not handled correctly below. */
4358 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4359 compute_mode, 1, 1);
4360 if (quotient == 0)
4361 goto fail1;
4363 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4364 && (rem_flag
4365 ? smod_pow2_cheap (speed, compute_mode)
4366 : sdiv_pow2_cheap (speed, compute_mode))
4367 /* We assume that cheap metric is true if the
4368 optab has an expander for this mode. */
4369 && ((optab_handler ((rem_flag ? smod_optab
4370 : sdiv_optab),
4371 compute_mode)
4372 != CODE_FOR_nothing)
4373 || (optab_handler (sdivmod_optab,
4374 compute_mode)
4375 != CODE_FOR_nothing)))
4377 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4379 if (rem_flag)
4381 remainder = expand_smod_pow2 (compute_mode, op0, d);
4382 if (remainder)
4383 return gen_lowpart (mode, remainder);
4386 if (sdiv_pow2_cheap (speed, compute_mode)
4387 && ((optab_handler (sdiv_optab, compute_mode)
4388 != CODE_FOR_nothing)
4389 || (optab_handler (sdivmod_optab, compute_mode)
4390 != CODE_FOR_nothing)))
4391 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4392 compute_mode, op0,
4393 gen_int_mode (abs_d,
4394 compute_mode),
4395 NULL_RTX, 0);
4396 else
4397 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4399 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4400 negate the quotient. */
4401 if (d < 0)
4403 insn = get_last_insn ();
4404 if (insn != last
4405 && abs_d < ((unsigned HOST_WIDE_INT) 1
4406 << (HOST_BITS_PER_WIDE_INT - 1)))
4407 set_dst_reg_note (insn, REG_EQUAL,
4408 gen_rtx_DIV (compute_mode, op0,
4409 gen_int_mode
4410 (abs_d,
4411 compute_mode)),
4412 quotient);
4414 quotient = expand_unop (compute_mode, neg_optab,
4415 quotient, quotient, 0);
4418 else if (size <= HOST_BITS_PER_WIDE_INT)
4420 choose_multiplier (abs_d, size, size - 1,
4421 &ml, &post_shift, &lgup);
4422 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4424 rtx t1, t2, t3;
4426 if (post_shift >= BITS_PER_WORD
4427 || size - 1 >= BITS_PER_WORD)
4428 goto fail1;
4430 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4431 + shift_cost (speed, compute_mode, size - 1)
4432 + add_cost (speed, compute_mode));
4433 t1 = expmed_mult_highpart
4434 (compute_mode, op0, gen_int_mode (ml, compute_mode),
4435 NULL_RTX, 0, max_cost - extra_cost);
4436 if (t1 == 0)
4437 goto fail1;
4438 t2 = expand_shift
4439 (RSHIFT_EXPR, compute_mode, t1,
4440 post_shift, NULL_RTX, 0);
4441 t3 = expand_shift
4442 (RSHIFT_EXPR, compute_mode, op0,
4443 size - 1, NULL_RTX, 0);
4444 if (d < 0)
4445 quotient
4446 = force_operand (gen_rtx_MINUS (compute_mode,
4447 t3, t2),
4448 tquotient);
4449 else
4450 quotient
4451 = force_operand (gen_rtx_MINUS (compute_mode,
4452 t2, t3),
4453 tquotient);
4455 else
4457 rtx t1, t2, t3, t4;
4459 if (post_shift >= BITS_PER_WORD
4460 || size - 1 >= BITS_PER_WORD)
4461 goto fail1;
4463 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4464 mlr = gen_int_mode (ml, compute_mode);
4465 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4466 + shift_cost (speed, compute_mode, size - 1)
4467 + 2 * add_cost (speed, compute_mode));
4468 t1 = expmed_mult_highpart (compute_mode, op0, mlr,
4469 NULL_RTX, 0,
4470 max_cost - extra_cost);
4471 if (t1 == 0)
4472 goto fail1;
4473 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4474 t1, op0),
4475 NULL_RTX);
4476 t3 = expand_shift
4477 (RSHIFT_EXPR, compute_mode, t2,
4478 post_shift, NULL_RTX, 0);
4479 t4 = expand_shift
4480 (RSHIFT_EXPR, compute_mode, op0,
4481 size - 1, NULL_RTX, 0);
4482 if (d < 0)
4483 quotient
4484 = force_operand (gen_rtx_MINUS (compute_mode,
4485 t4, t3),
4486 tquotient);
4487 else
4488 quotient
4489 = force_operand (gen_rtx_MINUS (compute_mode,
4490 t3, t4),
4491 tquotient);
4494 else /* Too wide mode to use tricky code */
4495 break;
4497 insn = get_last_insn ();
4498 if (insn != last)
4499 set_dst_reg_note (insn, REG_EQUAL,
4500 gen_rtx_DIV (compute_mode, op0, op1),
4501 quotient);
4503 break;
4505 fail1:
4506 delete_insns_since (last);
4507 break;
4509 case FLOOR_DIV_EXPR:
4510 case FLOOR_MOD_EXPR:
4511 /* We will come here only for signed operations. */
4512 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4514 unsigned HOST_WIDE_INT mh, ml;
4515 int pre_shift, lgup, post_shift;
4516 HOST_WIDE_INT d = INTVAL (op1);
4518 if (d > 0)
4520 /* We could just as easily deal with negative constants here,
4521 but it does not seem worth the trouble for GCC 2.6. */
4522 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4524 pre_shift = floor_log2 (d);
4525 if (rem_flag)
4527 unsigned HOST_WIDE_INT mask
4528 = ((unsigned HOST_WIDE_INT) 1 << pre_shift) - 1;
4529 remainder = expand_binop
4530 (compute_mode, and_optab, op0,
4531 gen_int_mode (mask, compute_mode),
4532 remainder, 0, OPTAB_LIB_WIDEN);
4533 if (remainder)
4534 return gen_lowpart (mode, remainder);
4536 quotient = expand_shift
4537 (RSHIFT_EXPR, compute_mode, op0,
4538 pre_shift, tquotient, 0);
4540 else
4542 rtx t1, t2, t3, t4;
4544 mh = choose_multiplier (d, size, size - 1,
4545 &ml, &post_shift, &lgup);
4546 gcc_assert (!mh);
4548 if (post_shift < BITS_PER_WORD
4549 && size - 1 < BITS_PER_WORD)
4551 t1 = expand_shift
4552 (RSHIFT_EXPR, compute_mode, op0,
4553 size - 1, NULL_RTX, 0);
4554 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4555 NULL_RTX, 0, OPTAB_WIDEN);
4556 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4557 + shift_cost (speed, compute_mode, size - 1)
4558 + 2 * add_cost (speed, compute_mode));
4559 t3 = expmed_mult_highpart
4560 (compute_mode, t2, gen_int_mode (ml, compute_mode),
4561 NULL_RTX, 1, max_cost - extra_cost);
4562 if (t3 != 0)
4564 t4 = expand_shift
4565 (RSHIFT_EXPR, compute_mode, t3,
4566 post_shift, NULL_RTX, 1);
4567 quotient = expand_binop (compute_mode, xor_optab,
4568 t4, t1, tquotient, 0,
4569 OPTAB_WIDEN);
4574 else
4576 rtx nsign, t1, t2, t3, t4;
4577 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4578 op0, constm1_rtx), NULL_RTX);
4579 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4580 0, OPTAB_WIDEN);
4581 nsign = expand_shift
4582 (RSHIFT_EXPR, compute_mode, t2,
4583 size - 1, NULL_RTX, 0);
4584 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4585 NULL_RTX);
4586 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4587 NULL_RTX, 0);
4588 if (t4)
4590 rtx t5;
4591 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4592 NULL_RTX, 0);
4593 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4594 t4, t5),
4595 tquotient);
4600 if (quotient != 0)
4601 break;
4602 delete_insns_since (last);
4604 /* Try using an instruction that produces both the quotient and
4605 remainder, using truncation. We can easily compensate the quotient
4606 or remainder to get floor rounding, once we have the remainder.
4607 Notice that we compute also the final remainder value here,
4608 and return the result right away. */
4609 if (target == 0 || GET_MODE (target) != compute_mode)
4610 target = gen_reg_rtx (compute_mode);
4612 if (rem_flag)
4614 remainder
4615 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4616 quotient = gen_reg_rtx (compute_mode);
4618 else
4620 quotient
4621 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4622 remainder = gen_reg_rtx (compute_mode);
4625 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4626 quotient, remainder, 0))
4628 /* This could be computed with a branch-less sequence.
4629 Save that for later. */
4630 rtx tem;
4631 rtx_code_label *label = gen_label_rtx ();
4632 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4633 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4634 NULL_RTX, 0, OPTAB_WIDEN);
4635 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4636 expand_dec (quotient, const1_rtx);
4637 expand_inc (remainder, op1);
4638 emit_label (label);
4639 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4642 /* No luck with division elimination or divmod. Have to do it
4643 by conditionally adjusting op0 *and* the result. */
4645 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4646 rtx adjusted_op0;
4647 rtx tem;
4649 quotient = gen_reg_rtx (compute_mode);
4650 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4651 label1 = gen_label_rtx ();
4652 label2 = gen_label_rtx ();
4653 label3 = gen_label_rtx ();
4654 label4 = gen_label_rtx ();
4655 label5 = gen_label_rtx ();
4656 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4657 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4658 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4659 quotient, 0, OPTAB_LIB_WIDEN);
4660 if (tem != quotient)
4661 emit_move_insn (quotient, tem);
4662 emit_jump_insn (targetm.gen_jump (label5));
4663 emit_barrier ();
4664 emit_label (label1);
4665 expand_inc (adjusted_op0, const1_rtx);
4666 emit_jump_insn (targetm.gen_jump (label4));
4667 emit_barrier ();
4668 emit_label (label2);
4669 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4670 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4671 quotient, 0, OPTAB_LIB_WIDEN);
4672 if (tem != quotient)
4673 emit_move_insn (quotient, tem);
4674 emit_jump_insn (targetm.gen_jump (label5));
4675 emit_barrier ();
4676 emit_label (label3);
4677 expand_dec (adjusted_op0, const1_rtx);
4678 emit_label (label4);
4679 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4680 quotient, 0, OPTAB_LIB_WIDEN);
4681 if (tem != quotient)
4682 emit_move_insn (quotient, tem);
4683 expand_dec (quotient, const1_rtx);
4684 emit_label (label5);
4686 break;
4688 case CEIL_DIV_EXPR:
4689 case CEIL_MOD_EXPR:
4690 if (unsignedp)
4692 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4694 rtx t1, t2, t3;
4695 unsigned HOST_WIDE_INT d = INTVAL (op1);
4696 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4697 floor_log2 (d), tquotient, 1);
4698 t2 = expand_binop (compute_mode, and_optab, op0,
4699 gen_int_mode (d - 1, compute_mode),
4700 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4701 t3 = gen_reg_rtx (compute_mode);
4702 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4703 compute_mode, 1, 1);
4704 if (t3 == 0)
4706 rtx_code_label *lab;
4707 lab = gen_label_rtx ();
4708 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4709 expand_inc (t1, const1_rtx);
4710 emit_label (lab);
4711 quotient = t1;
4713 else
4714 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4715 t1, t3),
4716 tquotient);
4717 break;
4720 /* Try using an instruction that produces both the quotient and
4721 remainder, using truncation. We can easily compensate the
4722 quotient or remainder to get ceiling rounding, once we have the
4723 remainder. Notice that we compute also the final remainder
4724 value here, and return the result right away. */
4725 if (target == 0 || GET_MODE (target) != compute_mode)
4726 target = gen_reg_rtx (compute_mode);
4728 if (rem_flag)
4730 remainder = (REG_P (target)
4731 ? target : gen_reg_rtx (compute_mode));
4732 quotient = gen_reg_rtx (compute_mode);
4734 else
4736 quotient = (REG_P (target)
4737 ? target : gen_reg_rtx (compute_mode));
4738 remainder = gen_reg_rtx (compute_mode);
4741 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4742 remainder, 1))
4744 /* This could be computed with a branch-less sequence.
4745 Save that for later. */
4746 rtx_code_label *label = gen_label_rtx ();
4747 do_cmp_and_jump (remainder, const0_rtx, EQ,
4748 compute_mode, label);
4749 expand_inc (quotient, const1_rtx);
4750 expand_dec (remainder, op1);
4751 emit_label (label);
4752 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4755 /* No luck with division elimination or divmod. Have to do it
4756 by conditionally adjusting op0 *and* the result. */
4758 rtx_code_label *label1, *label2;
4759 rtx adjusted_op0, tem;
4761 quotient = gen_reg_rtx (compute_mode);
4762 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4763 label1 = gen_label_rtx ();
4764 label2 = gen_label_rtx ();
4765 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4766 compute_mode, label1);
4767 emit_move_insn (quotient, const0_rtx);
4768 emit_jump_insn (targetm.gen_jump (label2));
4769 emit_barrier ();
4770 emit_label (label1);
4771 expand_dec (adjusted_op0, const1_rtx);
4772 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4773 quotient, 1, OPTAB_LIB_WIDEN);
4774 if (tem != quotient)
4775 emit_move_insn (quotient, tem);
4776 expand_inc (quotient, const1_rtx);
4777 emit_label (label2);
4780 else /* signed */
4782 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4783 && INTVAL (op1) >= 0)
4785 /* This is extremely similar to the code for the unsigned case
4786 above. For 2.7 we should merge these variants, but for
4787 2.6.1 I don't want to touch the code for unsigned since that
4788 get used in C. The signed case will only be used by other
4789 languages (Ada). */
4791 rtx t1, t2, t3;
4792 unsigned HOST_WIDE_INT d = INTVAL (op1);
4793 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4794 floor_log2 (d), tquotient, 0);
4795 t2 = expand_binop (compute_mode, and_optab, op0,
4796 gen_int_mode (d - 1, compute_mode),
4797 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4798 t3 = gen_reg_rtx (compute_mode);
4799 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4800 compute_mode, 1, 1);
4801 if (t3 == 0)
4803 rtx_code_label *lab;
4804 lab = gen_label_rtx ();
4805 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4806 expand_inc (t1, const1_rtx);
4807 emit_label (lab);
4808 quotient = t1;
4810 else
4811 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4812 t1, t3),
4813 tquotient);
4814 break;
4817 /* Try using an instruction that produces both the quotient and
4818 remainder, using truncation. We can easily compensate the
4819 quotient or remainder to get ceiling rounding, once we have the
4820 remainder. Notice that we compute also the final remainder
4821 value here, and return the result right away. */
4822 if (target == 0 || GET_MODE (target) != compute_mode)
4823 target = gen_reg_rtx (compute_mode);
4824 if (rem_flag)
4826 remainder= (REG_P (target)
4827 ? target : gen_reg_rtx (compute_mode));
4828 quotient = gen_reg_rtx (compute_mode);
4830 else
4832 quotient = (REG_P (target)
4833 ? target : gen_reg_rtx (compute_mode));
4834 remainder = gen_reg_rtx (compute_mode);
4837 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4838 remainder, 0))
4840 /* This could be computed with a branch-less sequence.
4841 Save that for later. */
4842 rtx tem;
4843 rtx_code_label *label = gen_label_rtx ();
4844 do_cmp_and_jump (remainder, const0_rtx, EQ,
4845 compute_mode, label);
4846 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4847 NULL_RTX, 0, OPTAB_WIDEN);
4848 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4849 expand_inc (quotient, const1_rtx);
4850 expand_dec (remainder, op1);
4851 emit_label (label);
4852 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4855 /* No luck with division elimination or divmod. Have to do it
4856 by conditionally adjusting op0 *and* the result. */
4858 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4859 rtx adjusted_op0;
4860 rtx tem;
4862 quotient = gen_reg_rtx (compute_mode);
4863 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4864 label1 = gen_label_rtx ();
4865 label2 = gen_label_rtx ();
4866 label3 = gen_label_rtx ();
4867 label4 = gen_label_rtx ();
4868 label5 = gen_label_rtx ();
4869 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4870 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4871 compute_mode, label1);
4872 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4873 quotient, 0, OPTAB_LIB_WIDEN);
4874 if (tem != quotient)
4875 emit_move_insn (quotient, tem);
4876 emit_jump_insn (targetm.gen_jump (label5));
4877 emit_barrier ();
4878 emit_label (label1);
4879 expand_dec (adjusted_op0, const1_rtx);
4880 emit_jump_insn (targetm.gen_jump (label4));
4881 emit_barrier ();
4882 emit_label (label2);
4883 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4884 compute_mode, label3);
4885 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4886 quotient, 0, OPTAB_LIB_WIDEN);
4887 if (tem != quotient)
4888 emit_move_insn (quotient, tem);
4889 emit_jump_insn (targetm.gen_jump (label5));
4890 emit_barrier ();
4891 emit_label (label3);
4892 expand_inc (adjusted_op0, const1_rtx);
4893 emit_label (label4);
4894 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4895 quotient, 0, OPTAB_LIB_WIDEN);
4896 if (tem != quotient)
4897 emit_move_insn (quotient, tem);
4898 expand_inc (quotient, const1_rtx);
4899 emit_label (label5);
4902 break;
4904 case EXACT_DIV_EXPR:
4905 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4907 HOST_WIDE_INT d = INTVAL (op1);
4908 unsigned HOST_WIDE_INT ml;
4909 int pre_shift;
4910 rtx t1;
4912 pre_shift = floor_log2 (d & -d);
4913 ml = invert_mod2n (d >> pre_shift, size);
4914 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4915 pre_shift, NULL_RTX, unsignedp);
4916 quotient = expand_mult (compute_mode, t1,
4917 gen_int_mode (ml, compute_mode),
4918 NULL_RTX, 1);
4920 insn = get_last_insn ();
4921 set_dst_reg_note (insn, REG_EQUAL,
4922 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4923 compute_mode, op0, op1),
4924 quotient);
4926 break;
4928 case ROUND_DIV_EXPR:
4929 case ROUND_MOD_EXPR:
4930 if (unsignedp)
4932 rtx tem;
4933 rtx_code_label *label;
4934 label = gen_label_rtx ();
4935 quotient = gen_reg_rtx (compute_mode);
4936 remainder = gen_reg_rtx (compute_mode);
4937 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4939 rtx tem;
4940 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4941 quotient, 1, OPTAB_LIB_WIDEN);
4942 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4943 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4944 remainder, 1, OPTAB_LIB_WIDEN);
4946 tem = plus_constant (compute_mode, op1, -1);
4947 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem, 1, NULL_RTX, 1);
4948 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4949 expand_inc (quotient, const1_rtx);
4950 expand_dec (remainder, op1);
4951 emit_label (label);
4953 else
4955 rtx abs_rem, abs_op1, tem, mask;
4956 rtx_code_label *label;
4957 label = gen_label_rtx ();
4958 quotient = gen_reg_rtx (compute_mode);
4959 remainder = gen_reg_rtx (compute_mode);
4960 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4962 rtx tem;
4963 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4964 quotient, 0, OPTAB_LIB_WIDEN);
4965 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4966 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4967 remainder, 0, OPTAB_LIB_WIDEN);
4969 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4970 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4971 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4972 1, NULL_RTX, 1);
4973 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4974 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4975 NULL_RTX, 0, OPTAB_WIDEN);
4976 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4977 size - 1, NULL_RTX, 0);
4978 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4979 NULL_RTX, 0, OPTAB_WIDEN);
4980 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4981 NULL_RTX, 0, OPTAB_WIDEN);
4982 expand_inc (quotient, tem);
4983 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4984 NULL_RTX, 0, OPTAB_WIDEN);
4985 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4986 NULL_RTX, 0, OPTAB_WIDEN);
4987 expand_dec (remainder, tem);
4988 emit_label (label);
4990 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4992 default:
4993 gcc_unreachable ();
4996 if (quotient == 0)
4998 if (target && GET_MODE (target) != compute_mode)
4999 target = 0;
5001 if (rem_flag)
5003 /* Try to produce the remainder without producing the quotient.
5004 If we seem to have a divmod pattern that does not require widening,
5005 don't try widening here. We should really have a WIDEN argument
5006 to expand_twoval_binop, since what we'd really like to do here is
5007 1) try a mod insn in compute_mode
5008 2) try a divmod insn in compute_mode
5009 3) try a div insn in compute_mode and multiply-subtract to get
5010 remainder
5011 4) try the same things with widening allowed. */
5012 remainder
5013 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
5014 op0, op1, target,
5015 unsignedp,
5016 ((optab_handler (optab2, compute_mode)
5017 != CODE_FOR_nothing)
5018 ? OPTAB_DIRECT : OPTAB_WIDEN));
5019 if (remainder == 0)
5021 /* No luck there. Can we do remainder and divide at once
5022 without a library call? */
5023 remainder = gen_reg_rtx (compute_mode);
5024 if (! expand_twoval_binop ((unsignedp
5025 ? udivmod_optab
5026 : sdivmod_optab),
5027 op0, op1,
5028 NULL_RTX, remainder, unsignedp))
5029 remainder = 0;
5032 if (remainder)
5033 return gen_lowpart (mode, remainder);
5036 /* Produce the quotient. Try a quotient insn, but not a library call.
5037 If we have a divmod in this mode, use it in preference to widening
5038 the div (for this test we assume it will not fail). Note that optab2
5039 is set to the one of the two optabs that the call below will use. */
5040 quotient
5041 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
5042 op0, op1, rem_flag ? NULL_RTX : target,
5043 unsignedp,
5044 ((optab_handler (optab2, compute_mode)
5045 != CODE_FOR_nothing)
5046 ? OPTAB_DIRECT : OPTAB_WIDEN));
5048 if (quotient == 0)
5050 /* No luck there. Try a quotient-and-remainder insn,
5051 keeping the quotient alone. */
5052 quotient = gen_reg_rtx (compute_mode);
5053 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
5054 op0, op1,
5055 quotient, NULL_RTX, unsignedp))
5057 quotient = 0;
5058 if (! rem_flag)
5059 /* Still no luck. If we are not computing the remainder,
5060 use a library call for the quotient. */
5061 quotient = sign_expand_binop (compute_mode,
5062 udiv_optab, sdiv_optab,
5063 op0, op1, target,
5064 unsignedp, OPTAB_LIB_WIDEN);
5069 if (rem_flag)
5071 if (target && GET_MODE (target) != compute_mode)
5072 target = 0;
5074 if (quotient == 0)
5076 /* No divide instruction either. Use library for remainder. */
5077 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
5078 op0, op1, target,
5079 unsignedp, OPTAB_LIB_WIDEN);
5080 /* No remainder function. Try a quotient-and-remainder
5081 function, keeping the remainder. */
5082 if (!remainder)
5084 remainder = gen_reg_rtx (compute_mode);
5085 if (!expand_twoval_binop_libfunc
5086 (unsignedp ? udivmod_optab : sdivmod_optab,
5087 op0, op1,
5088 NULL_RTX, remainder,
5089 unsignedp ? UMOD : MOD))
5090 remainder = NULL_RTX;
5093 else
5095 /* We divided. Now finish doing X - Y * (X / Y). */
5096 remainder = expand_mult (compute_mode, quotient, op1,
5097 NULL_RTX, unsignedp);
5098 remainder = expand_binop (compute_mode, sub_optab, op0,
5099 remainder, target, unsignedp,
5100 OPTAB_LIB_WIDEN);
5104 return gen_lowpart (mode, rem_flag ? remainder : quotient);
5107 /* Return a tree node with data type TYPE, describing the value of X.
5108 Usually this is an VAR_DECL, if there is no obvious better choice.
5109 X may be an expression, however we only support those expressions
5110 generated by loop.c. */
5112 tree
5113 make_tree (tree type, rtx x)
5115 tree t;
5117 switch (GET_CODE (x))
5119 case CONST_INT:
5120 case CONST_WIDE_INT:
5121 t = wide_int_to_tree (type, std::make_pair (x, TYPE_MODE (type)));
5122 return t;
5124 case CONST_DOUBLE:
5125 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT * 2 <= MAX_BITSIZE_MODE_ANY_INT);
5126 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
5127 t = wide_int_to_tree (type,
5128 wide_int::from_array (&CONST_DOUBLE_LOW (x), 2,
5129 HOST_BITS_PER_WIDE_INT * 2));
5130 else
5131 t = build_real (type, *CONST_DOUBLE_REAL_VALUE (x));
5133 return t;
5135 case CONST_VECTOR:
5137 int units = CONST_VECTOR_NUNITS (x);
5138 tree itype = TREE_TYPE (type);
5139 tree *elts;
5140 int i;
5142 /* Build a tree with vector elements. */
5143 elts = XALLOCAVEC (tree, units);
5144 for (i = units - 1; i >= 0; --i)
5146 rtx elt = CONST_VECTOR_ELT (x, i);
5147 elts[i] = make_tree (itype, elt);
5150 return build_vector (type, elts);
5153 case PLUS:
5154 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5155 make_tree (type, XEXP (x, 1)));
5157 case MINUS:
5158 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5159 make_tree (type, XEXP (x, 1)));
5161 case NEG:
5162 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5164 case MULT:
5165 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5166 make_tree (type, XEXP (x, 1)));
5168 case ASHIFT:
5169 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5170 make_tree (type, XEXP (x, 1)));
5172 case LSHIFTRT:
5173 t = unsigned_type_for (type);
5174 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5175 make_tree (t, XEXP (x, 0)),
5176 make_tree (type, XEXP (x, 1))));
5178 case ASHIFTRT:
5179 t = signed_type_for (type);
5180 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5181 make_tree (t, XEXP (x, 0)),
5182 make_tree (type, XEXP (x, 1))));
5184 case DIV:
5185 if (TREE_CODE (type) != REAL_TYPE)
5186 t = signed_type_for (type);
5187 else
5188 t = type;
5190 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5191 make_tree (t, XEXP (x, 0)),
5192 make_tree (t, XEXP (x, 1))));
5193 case UDIV:
5194 t = unsigned_type_for (type);
5195 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5196 make_tree (t, XEXP (x, 0)),
5197 make_tree (t, XEXP (x, 1))));
5199 case SIGN_EXTEND:
5200 case ZERO_EXTEND:
5201 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5202 GET_CODE (x) == ZERO_EXTEND);
5203 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5205 case CONST:
5206 return make_tree (type, XEXP (x, 0));
5208 case SYMBOL_REF:
5209 t = SYMBOL_REF_DECL (x);
5210 if (t)
5211 return fold_convert (type, build_fold_addr_expr (t));
5212 /* else fall through. */
5214 default:
5215 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5217 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5218 address mode to pointer mode. */
5219 if (POINTER_TYPE_P (type))
5220 x = convert_memory_address_addr_space
5221 (TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5223 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5224 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5225 t->decl_with_rtl.rtl = x;
5227 return t;
5231 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5232 and returning TARGET.
5234 If TARGET is 0, a pseudo-register or constant is returned. */
5237 expand_and (machine_mode mode, rtx op0, rtx op1, rtx target)
5239 rtx tem = 0;
5241 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5242 tem = simplify_binary_operation (AND, mode, op0, op1);
5243 if (tem == 0)
5244 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5246 if (target == 0)
5247 target = tem;
5248 else if (tem != target)
5249 emit_move_insn (target, tem);
5250 return target;
5253 /* Helper function for emit_store_flag. */
5255 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5256 machine_mode mode, machine_mode compare_mode,
5257 int unsignedp, rtx x, rtx y, int normalizep,
5258 machine_mode target_mode)
5260 struct expand_operand ops[4];
5261 rtx op0, comparison, subtarget;
5262 rtx_insn *last;
5263 machine_mode result_mode = targetm.cstore_mode (icode);
5265 last = get_last_insn ();
5266 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5267 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5268 if (!x || !y)
5270 delete_insns_since (last);
5271 return NULL_RTX;
5274 if (target_mode == VOIDmode)
5275 target_mode = result_mode;
5276 if (!target)
5277 target = gen_reg_rtx (target_mode);
5279 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5281 create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
5282 create_fixed_operand (&ops[1], comparison);
5283 create_fixed_operand (&ops[2], x);
5284 create_fixed_operand (&ops[3], y);
5285 if (!maybe_expand_insn (icode, 4, ops))
5287 delete_insns_since (last);
5288 return NULL_RTX;
5290 subtarget = ops[0].value;
5292 /* If we are converting to a wider mode, first convert to
5293 TARGET_MODE, then normalize. This produces better combining
5294 opportunities on machines that have a SIGN_EXTRACT when we are
5295 testing a single bit. This mostly benefits the 68k.
5297 If STORE_FLAG_VALUE does not have the sign bit set when
5298 interpreted in MODE, we can do this conversion as unsigned, which
5299 is usually more efficient. */
5300 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
5302 convert_move (target, subtarget,
5303 val_signbit_known_clear_p (result_mode,
5304 STORE_FLAG_VALUE));
5305 op0 = target;
5306 result_mode = target_mode;
5308 else
5309 op0 = subtarget;
5311 /* If we want to keep subexpressions around, don't reuse our last
5312 target. */
5313 if (optimize)
5314 subtarget = 0;
5316 /* Now normalize to the proper value in MODE. Sometimes we don't
5317 have to do anything. */
5318 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5320 /* STORE_FLAG_VALUE might be the most negative number, so write
5321 the comparison this way to avoid a compiler-time warning. */
5322 else if (- normalizep == STORE_FLAG_VALUE)
5323 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5325 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5326 it hard to use a value of just the sign bit due to ANSI integer
5327 constant typing rules. */
5328 else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
5329 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5330 GET_MODE_BITSIZE (result_mode) - 1, subtarget,
5331 normalizep == 1);
5332 else
5334 gcc_assert (STORE_FLAG_VALUE & 1);
5336 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5337 if (normalizep == -1)
5338 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5341 /* If we were converting to a smaller mode, do the conversion now. */
5342 if (target_mode != result_mode)
5344 convert_move (target, op0, 0);
5345 return target;
5347 else
5348 return op0;
5352 /* A subroutine of emit_store_flag only including "tricks" that do not
5353 need a recursive call. These are kept separate to avoid infinite
5354 loops. */
5356 static rtx
5357 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5358 machine_mode mode, int unsignedp, int normalizep,
5359 machine_mode target_mode)
5361 rtx subtarget;
5362 enum insn_code icode;
5363 machine_mode compare_mode;
5364 enum mode_class mclass;
5365 enum rtx_code scode;
5367 if (unsignedp)
5368 code = unsigned_condition (code);
5369 scode = swap_condition (code);
5371 /* If one operand is constant, make it the second one. Only do this
5372 if the other operand is not constant as well. */
5374 if (swap_commutative_operands_p (op0, op1))
5376 std::swap (op0, op1);
5377 code = swap_condition (code);
5380 if (mode == VOIDmode)
5381 mode = GET_MODE (op0);
5383 /* For some comparisons with 1 and -1, we can convert this to
5384 comparisons with zero. This will often produce more opportunities for
5385 store-flag insns. */
5387 switch (code)
5389 case LT:
5390 if (op1 == const1_rtx)
5391 op1 = const0_rtx, code = LE;
5392 break;
5393 case LE:
5394 if (op1 == constm1_rtx)
5395 op1 = const0_rtx, code = LT;
5396 break;
5397 case GE:
5398 if (op1 == const1_rtx)
5399 op1 = const0_rtx, code = GT;
5400 break;
5401 case GT:
5402 if (op1 == constm1_rtx)
5403 op1 = const0_rtx, code = GE;
5404 break;
5405 case GEU:
5406 if (op1 == const1_rtx)
5407 op1 = const0_rtx, code = NE;
5408 break;
5409 case LTU:
5410 if (op1 == const1_rtx)
5411 op1 = const0_rtx, code = EQ;
5412 break;
5413 default:
5414 break;
5417 /* If we are comparing a double-word integer with zero or -1, we can
5418 convert the comparison into one involving a single word. */
5419 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5420 && GET_MODE_CLASS (mode) == MODE_INT
5421 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5423 rtx tem;
5424 if ((code == EQ || code == NE)
5425 && (op1 == const0_rtx || op1 == constm1_rtx))
5427 rtx op00, op01;
5429 /* Do a logical OR or AND of the two words and compare the
5430 result. */
5431 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5432 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5433 tem = expand_binop (word_mode,
5434 op1 == const0_rtx ? ior_optab : and_optab,
5435 op00, op01, NULL_RTX, unsignedp,
5436 OPTAB_DIRECT);
5438 if (tem != 0)
5439 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5440 unsignedp, normalizep);
5442 else if ((code == LT || code == GE) && op1 == const0_rtx)
5444 rtx op0h;
5446 /* If testing the sign bit, can just test on high word. */
5447 op0h = simplify_gen_subreg (word_mode, op0, mode,
5448 subreg_highpart_offset (word_mode,
5449 mode));
5450 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5451 unsignedp, normalizep);
5453 else
5454 tem = NULL_RTX;
5456 if (tem)
5458 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5459 return tem;
5460 if (!target)
5461 target = gen_reg_rtx (target_mode);
5463 convert_move (target, tem,
5464 !val_signbit_known_set_p (word_mode,
5465 (normalizep ? normalizep
5466 : STORE_FLAG_VALUE)));
5467 return target;
5471 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5472 complement of A (for GE) and shifting the sign bit to the low bit. */
5473 if (op1 == const0_rtx && (code == LT || code == GE)
5474 && GET_MODE_CLASS (mode) == MODE_INT
5475 && (normalizep || STORE_FLAG_VALUE == 1
5476 || val_signbit_p (mode, STORE_FLAG_VALUE)))
5478 subtarget = target;
5480 if (!target)
5481 target_mode = mode;
5483 /* If the result is to be wider than OP0, it is best to convert it
5484 first. If it is to be narrower, it is *incorrect* to convert it
5485 first. */
5486 else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5488 op0 = convert_modes (target_mode, mode, op0, 0);
5489 mode = target_mode;
5492 if (target_mode != mode)
5493 subtarget = 0;
5495 if (code == GE)
5496 op0 = expand_unop (mode, one_cmpl_optab, op0,
5497 ((STORE_FLAG_VALUE == 1 || normalizep)
5498 ? 0 : subtarget), 0);
5500 if (STORE_FLAG_VALUE == 1 || normalizep)
5501 /* If we are supposed to produce a 0/1 value, we want to do
5502 a logical shift from the sign bit to the low-order bit; for
5503 a -1/0 value, we do an arithmetic shift. */
5504 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5505 GET_MODE_BITSIZE (mode) - 1,
5506 subtarget, normalizep != -1);
5508 if (mode != target_mode)
5509 op0 = convert_modes (target_mode, mode, op0, 0);
5511 return op0;
5514 mclass = GET_MODE_CLASS (mode);
5515 for (compare_mode = mode; compare_mode != VOIDmode;
5516 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5518 machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5519 icode = optab_handler (cstore_optab, optab_mode);
5520 if (icode != CODE_FOR_nothing)
5522 do_pending_stack_adjust ();
5523 rtx tem = emit_cstore (target, icode, code, mode, compare_mode,
5524 unsignedp, op0, op1, normalizep, target_mode);
5525 if (tem)
5526 return tem;
5528 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5530 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5531 unsignedp, op1, op0, normalizep, target_mode);
5532 if (tem)
5533 return tem;
5535 break;
5539 return 0;
5542 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5543 and storing in TARGET. Normally return TARGET.
5544 Return 0 if that cannot be done.
5546 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5547 it is VOIDmode, they cannot both be CONST_INT.
5549 UNSIGNEDP is for the case where we have to widen the operands
5550 to perform the operation. It says to use zero-extension.
5552 NORMALIZEP is 1 if we should convert the result to be either zero
5553 or one. Normalize is -1 if we should convert the result to be
5554 either zero or -1. If NORMALIZEP is zero, the result will be left
5555 "raw" out of the scc insn. */
5558 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5559 machine_mode mode, int unsignedp, int normalizep)
5561 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5562 enum rtx_code rcode;
5563 rtx subtarget;
5564 rtx tem, trueval;
5565 rtx_insn *last;
5567 /* If we compare constants, we shouldn't use a store-flag operation,
5568 but a constant load. We can get there via the vanilla route that
5569 usually generates a compare-branch sequence, but will in this case
5570 fold the comparison to a constant, and thus elide the branch. */
5571 if (CONSTANT_P (op0) && CONSTANT_P (op1))
5572 return NULL_RTX;
5574 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5575 target_mode);
5576 if (tem)
5577 return tem;
5579 /* If we reached here, we can't do this with a scc insn, however there
5580 are some comparisons that can be done in other ways. Don't do any
5581 of these cases if branches are very cheap. */
5582 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5583 return 0;
5585 /* See what we need to return. We can only return a 1, -1, or the
5586 sign bit. */
5588 if (normalizep == 0)
5590 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5591 normalizep = STORE_FLAG_VALUE;
5593 else if (val_signbit_p (mode, STORE_FLAG_VALUE))
5595 else
5596 return 0;
5599 last = get_last_insn ();
5601 /* If optimizing, use different pseudo registers for each insn, instead
5602 of reusing the same pseudo. This leads to better CSE, but slows
5603 down the compiler, since there are more pseudos */
5604 subtarget = (!optimize
5605 && (target_mode == mode)) ? target : NULL_RTX;
5606 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
5608 /* For floating-point comparisons, try the reverse comparison or try
5609 changing the "orderedness" of the comparison. */
5610 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5612 enum rtx_code first_code;
5613 bool and_them;
5615 rcode = reverse_condition_maybe_unordered (code);
5616 if (can_compare_p (rcode, mode, ccp_store_flag)
5617 && (code == ORDERED || code == UNORDERED
5618 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5619 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5621 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5622 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5624 /* For the reverse comparison, use either an addition or a XOR. */
5625 if (want_add
5626 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
5627 optimize_insn_for_speed_p ()) == 0)
5629 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5630 STORE_FLAG_VALUE, target_mode);
5631 if (tem)
5632 return expand_binop (target_mode, add_optab, tem,
5633 gen_int_mode (normalizep, target_mode),
5634 target, 0, OPTAB_WIDEN);
5636 else if (!want_add
5637 && rtx_cost (trueval, mode, XOR, 1,
5638 optimize_insn_for_speed_p ()) == 0)
5640 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5641 normalizep, target_mode);
5642 if (tem)
5643 return expand_binop (target_mode, xor_optab, tem, trueval,
5644 target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
5648 delete_insns_since (last);
5650 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5651 if (code == ORDERED || code == UNORDERED)
5652 return 0;
5654 and_them = split_comparison (code, mode, &first_code, &code);
5656 /* If there are no NaNs, the first comparison should always fall through.
5657 Effectively change the comparison to the other one. */
5658 if (!HONOR_NANS (mode))
5660 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
5661 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
5662 target_mode);
5665 if (!HAVE_conditional_move)
5666 return 0;
5668 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5669 conditional move. */
5670 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
5671 normalizep, target_mode);
5672 if (tem == 0)
5673 return 0;
5675 if (and_them)
5676 tem = emit_conditional_move (target, code, op0, op1, mode,
5677 tem, const0_rtx, GET_MODE (tem), 0);
5678 else
5679 tem = emit_conditional_move (target, code, op0, op1, mode,
5680 trueval, tem, GET_MODE (tem), 0);
5682 if (tem == 0)
5683 delete_insns_since (last);
5684 return tem;
5687 /* The remaining tricks only apply to integer comparisons. */
5689 if (GET_MODE_CLASS (mode) != MODE_INT)
5690 return 0;
5692 /* If this is an equality comparison of integers, we can try to exclusive-or
5693 (or subtract) the two operands and use a recursive call to try the
5694 comparison with zero. Don't do any of these cases if branches are
5695 very cheap. */
5697 if ((code == EQ || code == NE) && op1 != const0_rtx)
5699 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5700 OPTAB_WIDEN);
5702 if (tem == 0)
5703 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5704 OPTAB_WIDEN);
5705 if (tem != 0)
5706 tem = emit_store_flag (target, code, tem, const0_rtx,
5707 mode, unsignedp, normalizep);
5708 if (tem != 0)
5709 return tem;
5711 delete_insns_since (last);
5714 /* For integer comparisons, try the reverse comparison. However, for
5715 small X and if we'd have anyway to extend, implementing "X != 0"
5716 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5717 rcode = reverse_condition (code);
5718 if (can_compare_p (rcode, mode, ccp_store_flag)
5719 && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
5720 && code == NE
5721 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5722 && op1 == const0_rtx))
5724 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5725 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5727 /* Again, for the reverse comparison, use either an addition or a XOR. */
5728 if (want_add
5729 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
5730 optimize_insn_for_speed_p ()) == 0)
5732 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5733 STORE_FLAG_VALUE, target_mode);
5734 if (tem != 0)
5735 tem = expand_binop (target_mode, add_optab, tem,
5736 gen_int_mode (normalizep, target_mode),
5737 target, 0, OPTAB_WIDEN);
5739 else if (!want_add
5740 && rtx_cost (trueval, mode, XOR, 1,
5741 optimize_insn_for_speed_p ()) == 0)
5743 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5744 normalizep, target_mode);
5745 if (tem != 0)
5746 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5747 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5750 if (tem != 0)
5751 return tem;
5752 delete_insns_since (last);
5755 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5756 the constant zero. Reject all other comparisons at this point. Only
5757 do LE and GT if branches are expensive since they are expensive on
5758 2-operand machines. */
5760 if (op1 != const0_rtx
5761 || (code != EQ && code != NE
5762 && (BRANCH_COST (optimize_insn_for_speed_p (),
5763 false) <= 1 || (code != LE && code != GT))))
5764 return 0;
5766 /* Try to put the result of the comparison in the sign bit. Assume we can't
5767 do the necessary operation below. */
5769 tem = 0;
5771 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5772 the sign bit set. */
5774 if (code == LE)
5776 /* This is destructive, so SUBTARGET can't be OP0. */
5777 if (rtx_equal_p (subtarget, op0))
5778 subtarget = 0;
5780 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5781 OPTAB_WIDEN);
5782 if (tem)
5783 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5784 OPTAB_WIDEN);
5787 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5788 number of bits in the mode of OP0, minus one. */
5790 if (code == GT)
5792 if (rtx_equal_p (subtarget, op0))
5793 subtarget = 0;
5795 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5796 GET_MODE_BITSIZE (mode) - 1,
5797 subtarget, 0);
5798 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5799 OPTAB_WIDEN);
5802 if (code == EQ || code == NE)
5804 /* For EQ or NE, one way to do the comparison is to apply an operation
5805 that converts the operand into a positive number if it is nonzero
5806 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5807 for NE we negate. This puts the result in the sign bit. Then we
5808 normalize with a shift, if needed.
5810 Two operations that can do the above actions are ABS and FFS, so try
5811 them. If that doesn't work, and MODE is smaller than a full word,
5812 we can use zero-extension to the wider mode (an unsigned conversion)
5813 as the operation. */
5815 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5816 that is compensated by the subsequent overflow when subtracting
5817 one / negating. */
5819 if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
5820 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5821 else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
5822 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5823 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5825 tem = convert_modes (word_mode, mode, op0, 1);
5826 mode = word_mode;
5829 if (tem != 0)
5831 if (code == EQ)
5832 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5833 0, OPTAB_WIDEN);
5834 else
5835 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5838 /* If we couldn't do it that way, for NE we can "or" the two's complement
5839 of the value with itself. For EQ, we take the one's complement of
5840 that "or", which is an extra insn, so we only handle EQ if branches
5841 are expensive. */
5843 if (tem == 0
5844 && (code == NE
5845 || BRANCH_COST (optimize_insn_for_speed_p (),
5846 false) > 1))
5848 if (rtx_equal_p (subtarget, op0))
5849 subtarget = 0;
5851 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5852 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5853 OPTAB_WIDEN);
5855 if (tem && code == EQ)
5856 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5860 if (tem && normalizep)
5861 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5862 GET_MODE_BITSIZE (mode) - 1,
5863 subtarget, normalizep == 1);
5865 if (tem)
5867 if (!target)
5869 else if (GET_MODE (tem) != target_mode)
5871 convert_move (target, tem, 0);
5872 tem = target;
5874 else if (!subtarget)
5876 emit_move_insn (target, tem);
5877 tem = target;
5880 else
5881 delete_insns_since (last);
5883 return tem;
5886 /* Like emit_store_flag, but always succeeds. */
5889 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5890 machine_mode mode, int unsignedp, int normalizep)
5892 rtx tem;
5893 rtx_code_label *label;
5894 rtx trueval, falseval;
5896 /* First see if emit_store_flag can do the job. */
5897 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5898 if (tem != 0)
5899 return tem;
5901 if (!target)
5902 target = gen_reg_rtx (word_mode);
5904 /* If this failed, we have to do this with set/compare/jump/set code.
5905 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5906 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
5907 if (code == NE
5908 && GET_MODE_CLASS (mode) == MODE_INT
5909 && REG_P (target)
5910 && op0 == target
5911 && op1 == const0_rtx)
5913 label = gen_label_rtx ();
5914 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp, mode,
5915 NULL_RTX, NULL, label, -1);
5916 emit_move_insn (target, trueval);
5917 emit_label (label);
5918 return target;
5921 if (!REG_P (target)
5922 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5923 target = gen_reg_rtx (GET_MODE (target));
5925 /* Jump in the right direction if the target cannot implement CODE
5926 but can jump on its reverse condition. */
5927 falseval = const0_rtx;
5928 if (! can_compare_p (code, mode, ccp_jump)
5929 && (! FLOAT_MODE_P (mode)
5930 || code == ORDERED || code == UNORDERED
5931 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5932 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5934 enum rtx_code rcode;
5935 if (FLOAT_MODE_P (mode))
5936 rcode = reverse_condition_maybe_unordered (code);
5937 else
5938 rcode = reverse_condition (code);
5940 /* Canonicalize to UNORDERED for the libcall. */
5941 if (can_compare_p (rcode, mode, ccp_jump)
5942 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
5944 falseval = trueval;
5945 trueval = const0_rtx;
5946 code = rcode;
5950 emit_move_insn (target, trueval);
5951 label = gen_label_rtx ();
5952 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX, NULL,
5953 label, -1);
5955 emit_move_insn (target, falseval);
5956 emit_label (label);
5958 return target;
5961 /* Perform possibly multi-word comparison and conditional jump to LABEL
5962 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5963 now a thin wrapper around do_compare_rtx_and_jump. */
5965 static void
5966 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, machine_mode mode,
5967 rtx_code_label *label)
5969 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5970 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode, NULL_RTX,
5971 NULL, label, -1);