Fix a bug that broke -freorder-functions
[official-gcc.git] / gcc / tree-vrp.c
blob15331e1fcc69b04671d49c4b037619cc0be785a3
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "diagnostic-core.h"
37 #include "intl.h"
38 #include "cfgloop.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-chrec.h"
42 #include "gimple-fold.h"
43 #include "expr.h"
44 #include "optabs.h"
47 /* Type of value ranges. See value_range_d for a description of these
48 types. */
49 enum value_range_type { VR_UNDEFINED, VR_RANGE, VR_ANTI_RANGE, VR_VARYING };
51 /* Range of values that can be associated with an SSA_NAME after VRP
52 has executed. */
53 struct value_range_d
55 /* Lattice value represented by this range. */
56 enum value_range_type type;
58 /* Minimum and maximum values represented by this range. These
59 values should be interpreted as follows:
61 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
62 be NULL.
64 - If TYPE == VR_RANGE then MIN holds the minimum value and
65 MAX holds the maximum value of the range [MIN, MAX].
67 - If TYPE == ANTI_RANGE the variable is known to NOT
68 take any values in the range [MIN, MAX]. */
69 tree min;
70 tree max;
72 /* Set of SSA names whose value ranges are equivalent to this one.
73 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
74 bitmap equiv;
77 typedef struct value_range_d value_range_t;
79 /* Set of SSA names found live during the RPO traversal of the function
80 for still active basic-blocks. */
81 static sbitmap *live;
83 /* Return true if the SSA name NAME is live on the edge E. */
85 static bool
86 live_on_edge (edge e, tree name)
88 return (live[e->dest->index]
89 && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
92 /* Local functions. */
93 static int compare_values (tree val1, tree val2);
94 static int compare_values_warnv (tree val1, tree val2, bool *);
95 static void vrp_meet (value_range_t *, value_range_t *);
96 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
97 tree, tree, bool, bool *,
98 bool *);
100 /* Location information for ASSERT_EXPRs. Each instance of this
101 structure describes an ASSERT_EXPR for an SSA name. Since a single
102 SSA name may have more than one assertion associated with it, these
103 locations are kept in a linked list attached to the corresponding
104 SSA name. */
105 struct assert_locus_d
107 /* Basic block where the assertion would be inserted. */
108 basic_block bb;
110 /* Some assertions need to be inserted on an edge (e.g., assertions
111 generated by COND_EXPRs). In those cases, BB will be NULL. */
112 edge e;
114 /* Pointer to the statement that generated this assertion. */
115 gimple_stmt_iterator si;
117 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
118 enum tree_code comp_code;
120 /* Value being compared against. */
121 tree val;
123 /* Expression to compare. */
124 tree expr;
126 /* Next node in the linked list. */
127 struct assert_locus_d *next;
130 typedef struct assert_locus_d *assert_locus_t;
132 /* If bit I is present, it means that SSA name N_i has a list of
133 assertions that should be inserted in the IL. */
134 static bitmap need_assert_for;
136 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
137 holds a list of ASSERT_LOCUS_T nodes that describe where
138 ASSERT_EXPRs for SSA name N_I should be inserted. */
139 static assert_locus_t *asserts_for;
141 /* Value range array. After propagation, VR_VALUE[I] holds the range
142 of values that SSA name N_I may take. */
143 static unsigned num_vr_values;
144 static value_range_t **vr_value;
145 static bool values_propagated;
147 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
148 number of executable edges we saw the last time we visited the
149 node. */
150 static int *vr_phi_edge_counts;
152 typedef struct {
153 gimple stmt;
154 tree vec;
155 } switch_update;
157 static VEC (edge, heap) *to_remove_edges;
158 DEF_VEC_O(switch_update);
159 DEF_VEC_ALLOC_O(switch_update, heap);
160 static VEC (switch_update, heap) *to_update_switch_stmts;
163 /* Return the maximum value for TYPE. */
165 static inline tree
166 vrp_val_max (const_tree type)
168 if (!INTEGRAL_TYPE_P (type))
169 return NULL_TREE;
171 return TYPE_MAX_VALUE (type);
174 /* Return the minimum value for TYPE. */
176 static inline tree
177 vrp_val_min (const_tree type)
179 if (!INTEGRAL_TYPE_P (type))
180 return NULL_TREE;
182 return TYPE_MIN_VALUE (type);
185 /* Return whether VAL is equal to the maximum value of its type. This
186 will be true for a positive overflow infinity. We can't do a
187 simple equality comparison with TYPE_MAX_VALUE because C typedefs
188 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
189 to the integer constant with the same value in the type. */
191 static inline bool
192 vrp_val_is_max (const_tree val)
194 tree type_max = vrp_val_max (TREE_TYPE (val));
195 return (val == type_max
196 || (type_max != NULL_TREE
197 && operand_equal_p (val, type_max, 0)));
200 /* Return whether VAL is equal to the minimum value of its type. This
201 will be true for a negative overflow infinity. */
203 static inline bool
204 vrp_val_is_min (const_tree val)
206 tree type_min = vrp_val_min (TREE_TYPE (val));
207 return (val == type_min
208 || (type_min != NULL_TREE
209 && operand_equal_p (val, type_min, 0)));
213 /* Return whether TYPE should use an overflow infinity distinct from
214 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
215 represent a signed overflow during VRP computations. An infinity
216 is distinct from a half-range, which will go from some number to
217 TYPE_{MIN,MAX}_VALUE. */
219 static inline bool
220 needs_overflow_infinity (const_tree type)
222 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
225 /* Return whether TYPE can support our overflow infinity
226 representation: we use the TREE_OVERFLOW flag, which only exists
227 for constants. If TYPE doesn't support this, we don't optimize
228 cases which would require signed overflow--we drop them to
229 VARYING. */
231 static inline bool
232 supports_overflow_infinity (const_tree type)
234 tree min = vrp_val_min (type), max = vrp_val_max (type);
235 #ifdef ENABLE_CHECKING
236 gcc_assert (needs_overflow_infinity (type));
237 #endif
238 return (min != NULL_TREE
239 && CONSTANT_CLASS_P (min)
240 && max != NULL_TREE
241 && CONSTANT_CLASS_P (max));
244 /* VAL is the maximum or minimum value of a type. Return a
245 corresponding overflow infinity. */
247 static inline tree
248 make_overflow_infinity (tree val)
250 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
251 val = copy_node (val);
252 TREE_OVERFLOW (val) = 1;
253 return val;
256 /* Return a negative overflow infinity for TYPE. */
258 static inline tree
259 negative_overflow_infinity (tree type)
261 gcc_checking_assert (supports_overflow_infinity (type));
262 return make_overflow_infinity (vrp_val_min (type));
265 /* Return a positive overflow infinity for TYPE. */
267 static inline tree
268 positive_overflow_infinity (tree type)
270 gcc_checking_assert (supports_overflow_infinity (type));
271 return make_overflow_infinity (vrp_val_max (type));
274 /* Return whether VAL is a negative overflow infinity. */
276 static inline bool
277 is_negative_overflow_infinity (const_tree val)
279 return (needs_overflow_infinity (TREE_TYPE (val))
280 && CONSTANT_CLASS_P (val)
281 && TREE_OVERFLOW (val)
282 && vrp_val_is_min (val));
285 /* Return whether VAL is a positive overflow infinity. */
287 static inline bool
288 is_positive_overflow_infinity (const_tree val)
290 return (needs_overflow_infinity (TREE_TYPE (val))
291 && CONSTANT_CLASS_P (val)
292 && TREE_OVERFLOW (val)
293 && vrp_val_is_max (val));
296 /* Return whether VAL is a positive or negative overflow infinity. */
298 static inline bool
299 is_overflow_infinity (const_tree val)
301 return (needs_overflow_infinity (TREE_TYPE (val))
302 && CONSTANT_CLASS_P (val)
303 && TREE_OVERFLOW (val)
304 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
307 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
309 static inline bool
310 stmt_overflow_infinity (gimple stmt)
312 if (is_gimple_assign (stmt)
313 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
314 GIMPLE_SINGLE_RHS)
315 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
316 return false;
319 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
320 the same value with TREE_OVERFLOW clear. This can be used to avoid
321 confusing a regular value with an overflow value. */
323 static inline tree
324 avoid_overflow_infinity (tree val)
326 if (!is_overflow_infinity (val))
327 return val;
329 if (vrp_val_is_max (val))
330 return vrp_val_max (TREE_TYPE (val));
331 else
333 gcc_checking_assert (vrp_val_is_min (val));
334 return vrp_val_min (TREE_TYPE (val));
339 /* Return true if ARG is marked with the nonnull attribute in the
340 current function signature. */
342 static bool
343 nonnull_arg_p (const_tree arg)
345 tree t, attrs, fntype;
346 unsigned HOST_WIDE_INT arg_num;
348 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
350 /* The static chain decl is always non null. */
351 if (arg == cfun->static_chain_decl)
352 return true;
354 fntype = TREE_TYPE (current_function_decl);
355 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
357 /* If "nonnull" wasn't specified, we know nothing about the argument. */
358 if (attrs == NULL_TREE)
359 return false;
361 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
362 if (TREE_VALUE (attrs) == NULL_TREE)
363 return true;
365 /* Get the position number for ARG in the function signature. */
366 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
368 t = DECL_CHAIN (t), arg_num++)
370 if (t == arg)
371 break;
374 gcc_assert (t == arg);
376 /* Now see if ARG_NUM is mentioned in the nonnull list. */
377 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
379 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
380 return true;
383 return false;
387 /* Set value range VR to VR_VARYING. */
389 static inline void
390 set_value_range_to_varying (value_range_t *vr)
392 vr->type = VR_VARYING;
393 vr->min = vr->max = NULL_TREE;
394 if (vr->equiv)
395 bitmap_clear (vr->equiv);
399 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
401 static void
402 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
403 tree max, bitmap equiv)
405 #if defined ENABLE_CHECKING
406 /* Check the validity of the range. */
407 if (t == VR_RANGE || t == VR_ANTI_RANGE)
409 int cmp;
411 gcc_assert (min && max);
413 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
414 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
416 cmp = compare_values (min, max);
417 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
419 if (needs_overflow_infinity (TREE_TYPE (min)))
420 gcc_assert (!is_overflow_infinity (min)
421 || !is_overflow_infinity (max));
424 if (t == VR_UNDEFINED || t == VR_VARYING)
425 gcc_assert (min == NULL_TREE && max == NULL_TREE);
427 if (t == VR_UNDEFINED || t == VR_VARYING)
428 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
429 #endif
431 vr->type = t;
432 vr->min = min;
433 vr->max = max;
435 /* Since updating the equivalence set involves deep copying the
436 bitmaps, only do it if absolutely necessary. */
437 if (vr->equiv == NULL
438 && equiv != NULL)
439 vr->equiv = BITMAP_ALLOC (NULL);
441 if (equiv != vr->equiv)
443 if (equiv && !bitmap_empty_p (equiv))
444 bitmap_copy (vr->equiv, equiv);
445 else
446 bitmap_clear (vr->equiv);
451 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
452 This means adjusting T, MIN and MAX representing the case of a
453 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
454 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
455 In corner cases where MAX+1 or MIN-1 wraps this will fall back
456 to varying.
457 This routine exists to ease canonicalization in the case where we
458 extract ranges from var + CST op limit. */
460 static void
461 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
462 tree min, tree max, bitmap equiv)
464 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
465 if ((t != VR_RANGE
466 && t != VR_ANTI_RANGE)
467 || TREE_CODE (min) != INTEGER_CST
468 || TREE_CODE (max) != INTEGER_CST)
470 set_value_range (vr, t, min, max, equiv);
471 return;
474 /* Wrong order for min and max, to swap them and the VR type we need
475 to adjust them. */
476 if (tree_int_cst_lt (max, min))
478 tree one = build_int_cst (TREE_TYPE (min), 1);
479 tree tmp = int_const_binop (PLUS_EXPR, max, one);
480 max = int_const_binop (MINUS_EXPR, min, one);
481 min = tmp;
483 /* There's one corner case, if we had [C+1, C] before we now have
484 that again. But this represents an empty value range, so drop
485 to varying in this case. */
486 if (tree_int_cst_lt (max, min))
488 set_value_range_to_varying (vr);
489 return;
492 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
495 /* Anti-ranges that can be represented as ranges should be so. */
496 if (t == VR_ANTI_RANGE)
498 bool is_min = vrp_val_is_min (min);
499 bool is_max = vrp_val_is_max (max);
501 if (is_min && is_max)
503 /* We cannot deal with empty ranges, drop to varying. */
504 set_value_range_to_varying (vr);
505 return;
507 else if (is_min
508 /* As a special exception preserve non-null ranges. */
509 && !(TYPE_UNSIGNED (TREE_TYPE (min))
510 && integer_zerop (max)))
512 tree one = build_int_cst (TREE_TYPE (max), 1);
513 min = int_const_binop (PLUS_EXPR, max, one);
514 max = vrp_val_max (TREE_TYPE (max));
515 t = VR_RANGE;
517 else if (is_max)
519 tree one = build_int_cst (TREE_TYPE (min), 1);
520 max = int_const_binop (MINUS_EXPR, min, one);
521 min = vrp_val_min (TREE_TYPE (min));
522 t = VR_RANGE;
526 set_value_range (vr, t, min, max, equiv);
529 /* Copy value range FROM into value range TO. */
531 static inline void
532 copy_value_range (value_range_t *to, value_range_t *from)
534 set_value_range (to, from->type, from->min, from->max, from->equiv);
537 /* Set value range VR to a single value. This function is only called
538 with values we get from statements, and exists to clear the
539 TREE_OVERFLOW flag so that we don't think we have an overflow
540 infinity when we shouldn't. */
542 static inline void
543 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
545 gcc_assert (is_gimple_min_invariant (val));
546 val = avoid_overflow_infinity (val);
547 set_value_range (vr, VR_RANGE, val, val, equiv);
550 /* Set value range VR to a non-negative range of type TYPE.
551 OVERFLOW_INFINITY indicates whether to use an overflow infinity
552 rather than TYPE_MAX_VALUE; this should be true if we determine
553 that the range is nonnegative based on the assumption that signed
554 overflow does not occur. */
556 static inline void
557 set_value_range_to_nonnegative (value_range_t *vr, tree type,
558 bool overflow_infinity)
560 tree zero;
562 if (overflow_infinity && !supports_overflow_infinity (type))
564 set_value_range_to_varying (vr);
565 return;
568 zero = build_int_cst (type, 0);
569 set_value_range (vr, VR_RANGE, zero,
570 (overflow_infinity
571 ? positive_overflow_infinity (type)
572 : TYPE_MAX_VALUE (type)),
573 vr->equiv);
576 /* Set value range VR to a non-NULL range of type TYPE. */
578 static inline void
579 set_value_range_to_nonnull (value_range_t *vr, tree type)
581 tree zero = build_int_cst (type, 0);
582 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
586 /* Set value range VR to a NULL range of type TYPE. */
588 static inline void
589 set_value_range_to_null (value_range_t *vr, tree type)
591 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
595 /* Set value range VR to a range of a truthvalue of type TYPE. */
597 static inline void
598 set_value_range_to_truthvalue (value_range_t *vr, tree type)
600 if (TYPE_PRECISION (type) == 1)
601 set_value_range_to_varying (vr);
602 else
603 set_value_range (vr, VR_RANGE,
604 build_int_cst (type, 0), build_int_cst (type, 1),
605 vr->equiv);
609 /* Set value range VR to VR_UNDEFINED. */
611 static inline void
612 set_value_range_to_undefined (value_range_t *vr)
614 vr->type = VR_UNDEFINED;
615 vr->min = vr->max = NULL_TREE;
616 if (vr->equiv)
617 bitmap_clear (vr->equiv);
621 /* If abs (min) < abs (max), set VR to [-max, max], if
622 abs (min) >= abs (max), set VR to [-min, min]. */
624 static void
625 abs_extent_range (value_range_t *vr, tree min, tree max)
627 int cmp;
629 gcc_assert (TREE_CODE (min) == INTEGER_CST);
630 gcc_assert (TREE_CODE (max) == INTEGER_CST);
631 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
632 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
633 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
634 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
635 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
637 set_value_range_to_varying (vr);
638 return;
640 cmp = compare_values (min, max);
641 if (cmp == -1)
642 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
643 else if (cmp == 0 || cmp == 1)
645 max = min;
646 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
648 else
650 set_value_range_to_varying (vr);
651 return;
653 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
657 /* Return value range information for VAR.
659 If we have no values ranges recorded (ie, VRP is not running), then
660 return NULL. Otherwise create an empty range if none existed for VAR. */
662 static value_range_t *
663 get_value_range (const_tree var)
665 static const struct value_range_d vr_const_varying
666 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
667 value_range_t *vr;
668 tree sym;
669 unsigned ver = SSA_NAME_VERSION (var);
671 /* If we have no recorded ranges, then return NULL. */
672 if (! vr_value)
673 return NULL;
675 /* If we query the range for a new SSA name return an unmodifiable VARYING.
676 We should get here at most from the substitute-and-fold stage which
677 will never try to change values. */
678 if (ver >= num_vr_values)
679 return CONST_CAST (value_range_t *, &vr_const_varying);
681 vr = vr_value[ver];
682 if (vr)
683 return vr;
685 /* After propagation finished do not allocate new value-ranges. */
686 if (values_propagated)
687 return CONST_CAST (value_range_t *, &vr_const_varying);
689 /* Create a default value range. */
690 vr_value[ver] = vr = XCNEW (value_range_t);
692 /* Defer allocating the equivalence set. */
693 vr->equiv = NULL;
695 /* If VAR is a default definition of a parameter, the variable can
696 take any value in VAR's type. */
697 sym = SSA_NAME_VAR (var);
698 if (SSA_NAME_IS_DEFAULT_DEF (var)
699 && TREE_CODE (sym) == PARM_DECL)
701 /* Try to use the "nonnull" attribute to create ~[0, 0]
702 anti-ranges for pointers. Note that this is only valid with
703 default definitions of PARM_DECLs. */
704 if (POINTER_TYPE_P (TREE_TYPE (sym))
705 && nonnull_arg_p (sym))
706 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
707 else
708 set_value_range_to_varying (vr);
711 return vr;
714 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
716 static inline bool
717 vrp_operand_equal_p (const_tree val1, const_tree val2)
719 if (val1 == val2)
720 return true;
721 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
722 return false;
723 if (is_overflow_infinity (val1))
724 return is_overflow_infinity (val2);
725 return true;
728 /* Return true, if the bitmaps B1 and B2 are equal. */
730 static inline bool
731 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
733 return (b1 == b2
734 || ((!b1 || bitmap_empty_p (b1))
735 && (!b2 || bitmap_empty_p (b2)))
736 || (b1 && b2
737 && bitmap_equal_p (b1, b2)));
740 /* Update the value range and equivalence set for variable VAR to
741 NEW_VR. Return true if NEW_VR is different from VAR's previous
742 value.
744 NOTE: This function assumes that NEW_VR is a temporary value range
745 object created for the sole purpose of updating VAR's range. The
746 storage used by the equivalence set from NEW_VR will be freed by
747 this function. Do not call update_value_range when NEW_VR
748 is the range object associated with another SSA name. */
750 static inline bool
751 update_value_range (const_tree var, value_range_t *new_vr)
753 value_range_t *old_vr;
754 bool is_new;
756 /* Update the value range, if necessary. */
757 old_vr = get_value_range (var);
758 is_new = old_vr->type != new_vr->type
759 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
760 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
761 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
763 if (is_new)
764 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
765 new_vr->equiv);
767 BITMAP_FREE (new_vr->equiv);
769 return is_new;
773 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
774 point where equivalence processing can be turned on/off. */
776 static void
777 add_equivalence (bitmap *equiv, const_tree var)
779 unsigned ver = SSA_NAME_VERSION (var);
780 value_range_t *vr = vr_value[ver];
782 if (*equiv == NULL)
783 *equiv = BITMAP_ALLOC (NULL);
784 bitmap_set_bit (*equiv, ver);
785 if (vr && vr->equiv)
786 bitmap_ior_into (*equiv, vr->equiv);
790 /* Return true if VR is ~[0, 0]. */
792 static inline bool
793 range_is_nonnull (value_range_t *vr)
795 return vr->type == VR_ANTI_RANGE
796 && integer_zerop (vr->min)
797 && integer_zerop (vr->max);
801 /* Return true if VR is [0, 0]. */
803 static inline bool
804 range_is_null (value_range_t *vr)
806 return vr->type == VR_RANGE
807 && integer_zerop (vr->min)
808 && integer_zerop (vr->max);
811 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
812 a singleton. */
814 static inline bool
815 range_int_cst_p (value_range_t *vr)
817 return (vr->type == VR_RANGE
818 && TREE_CODE (vr->max) == INTEGER_CST
819 && TREE_CODE (vr->min) == INTEGER_CST
820 && !TREE_OVERFLOW (vr->max)
821 && !TREE_OVERFLOW (vr->min));
824 /* Return true if VR is a INTEGER_CST singleton. */
826 static inline bool
827 range_int_cst_singleton_p (value_range_t *vr)
829 return (range_int_cst_p (vr)
830 && tree_int_cst_equal (vr->min, vr->max));
833 /* Return true if value range VR involves at least one symbol. */
835 static inline bool
836 symbolic_range_p (value_range_t *vr)
838 return (!is_gimple_min_invariant (vr->min)
839 || !is_gimple_min_invariant (vr->max));
842 /* Return true if value range VR uses an overflow infinity. */
844 static inline bool
845 overflow_infinity_range_p (value_range_t *vr)
847 return (vr->type == VR_RANGE
848 && (is_overflow_infinity (vr->min)
849 || is_overflow_infinity (vr->max)));
852 /* Return false if we can not make a valid comparison based on VR;
853 this will be the case if it uses an overflow infinity and overflow
854 is not undefined (i.e., -fno-strict-overflow is in effect).
855 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
856 uses an overflow infinity. */
858 static bool
859 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
861 gcc_assert (vr->type == VR_RANGE);
862 if (is_overflow_infinity (vr->min))
864 *strict_overflow_p = true;
865 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
866 return false;
868 if (is_overflow_infinity (vr->max))
870 *strict_overflow_p = true;
871 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
872 return false;
874 return true;
878 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
879 ranges obtained so far. */
881 static bool
882 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
884 return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
885 || (TREE_CODE (expr) == SSA_NAME
886 && ssa_name_nonnegative_p (expr)));
889 /* Return true if the result of assignment STMT is know to be non-negative.
890 If the return value is based on the assumption that signed overflow is
891 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
892 *STRICT_OVERFLOW_P.*/
894 static bool
895 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
897 enum tree_code code = gimple_assign_rhs_code (stmt);
898 switch (get_gimple_rhs_class (code))
900 case GIMPLE_UNARY_RHS:
901 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
902 gimple_expr_type (stmt),
903 gimple_assign_rhs1 (stmt),
904 strict_overflow_p);
905 case GIMPLE_BINARY_RHS:
906 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
907 gimple_expr_type (stmt),
908 gimple_assign_rhs1 (stmt),
909 gimple_assign_rhs2 (stmt),
910 strict_overflow_p);
911 case GIMPLE_TERNARY_RHS:
912 return false;
913 case GIMPLE_SINGLE_RHS:
914 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
915 strict_overflow_p);
916 case GIMPLE_INVALID_RHS:
917 gcc_unreachable ();
918 default:
919 gcc_unreachable ();
923 /* Return true if return value of call STMT is know to be non-negative.
924 If the return value is based on the assumption that signed overflow is
925 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
926 *STRICT_OVERFLOW_P.*/
928 static bool
929 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
931 tree arg0 = gimple_call_num_args (stmt) > 0 ?
932 gimple_call_arg (stmt, 0) : NULL_TREE;
933 tree arg1 = gimple_call_num_args (stmt) > 1 ?
934 gimple_call_arg (stmt, 1) : NULL_TREE;
936 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
937 gimple_call_fndecl (stmt),
938 arg0,
939 arg1,
940 strict_overflow_p);
943 /* Return true if STMT is know to to compute a non-negative value.
944 If the return value is based on the assumption that signed overflow is
945 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
946 *STRICT_OVERFLOW_P.*/
948 static bool
949 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
951 switch (gimple_code (stmt))
953 case GIMPLE_ASSIGN:
954 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
955 case GIMPLE_CALL:
956 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
957 default:
958 gcc_unreachable ();
962 /* Return true if the result of assignment STMT is know to be non-zero.
963 If the return value is based on the assumption that signed overflow is
964 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
965 *STRICT_OVERFLOW_P.*/
967 static bool
968 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
970 enum tree_code code = gimple_assign_rhs_code (stmt);
971 switch (get_gimple_rhs_class (code))
973 case GIMPLE_UNARY_RHS:
974 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
975 gimple_expr_type (stmt),
976 gimple_assign_rhs1 (stmt),
977 strict_overflow_p);
978 case GIMPLE_BINARY_RHS:
979 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
980 gimple_expr_type (stmt),
981 gimple_assign_rhs1 (stmt),
982 gimple_assign_rhs2 (stmt),
983 strict_overflow_p);
984 case GIMPLE_TERNARY_RHS:
985 return false;
986 case GIMPLE_SINGLE_RHS:
987 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
988 strict_overflow_p);
989 case GIMPLE_INVALID_RHS:
990 gcc_unreachable ();
991 default:
992 gcc_unreachable ();
996 /* Return true if STMT is know to to compute a non-zero value.
997 If the return value is based on the assumption that signed overflow is
998 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
999 *STRICT_OVERFLOW_P.*/
1001 static bool
1002 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1004 switch (gimple_code (stmt))
1006 case GIMPLE_ASSIGN:
1007 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1008 case GIMPLE_CALL:
1009 return gimple_alloca_call_p (stmt);
1010 default:
1011 gcc_unreachable ();
1015 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1016 obtained so far. */
1018 static bool
1019 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1021 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1022 return true;
1024 /* If we have an expression of the form &X->a, then the expression
1025 is nonnull if X is nonnull. */
1026 if (is_gimple_assign (stmt)
1027 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1029 tree expr = gimple_assign_rhs1 (stmt);
1030 tree base = get_base_address (TREE_OPERAND (expr, 0));
1032 if (base != NULL_TREE
1033 && TREE_CODE (base) == MEM_REF
1034 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1036 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1037 if (range_is_nonnull (vr))
1038 return true;
1042 return false;
1045 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1046 a gimple invariant, or SSA_NAME +- CST. */
1048 static bool
1049 valid_value_p (tree expr)
1051 if (TREE_CODE (expr) == SSA_NAME)
1052 return true;
1054 if (TREE_CODE (expr) == PLUS_EXPR
1055 || TREE_CODE (expr) == MINUS_EXPR)
1056 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1057 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1059 return is_gimple_min_invariant (expr);
1062 /* Return
1063 1 if VAL < VAL2
1064 0 if !(VAL < VAL2)
1065 -2 if those are incomparable. */
1066 static inline int
1067 operand_less_p (tree val, tree val2)
1069 /* LT is folded faster than GE and others. Inline the common case. */
1070 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1072 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1073 return INT_CST_LT_UNSIGNED (val, val2);
1074 else
1076 if (INT_CST_LT (val, val2))
1077 return 1;
1080 else
1082 tree tcmp;
1084 fold_defer_overflow_warnings ();
1086 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1088 fold_undefer_and_ignore_overflow_warnings ();
1090 if (!tcmp
1091 || TREE_CODE (tcmp) != INTEGER_CST)
1092 return -2;
1094 if (!integer_zerop (tcmp))
1095 return 1;
1098 /* val >= val2, not considering overflow infinity. */
1099 if (is_negative_overflow_infinity (val))
1100 return is_negative_overflow_infinity (val2) ? 0 : 1;
1101 else if (is_positive_overflow_infinity (val2))
1102 return is_positive_overflow_infinity (val) ? 0 : 1;
1104 return 0;
1107 /* Compare two values VAL1 and VAL2. Return
1109 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1110 -1 if VAL1 < VAL2,
1111 0 if VAL1 == VAL2,
1112 +1 if VAL1 > VAL2, and
1113 +2 if VAL1 != VAL2
1115 This is similar to tree_int_cst_compare but supports pointer values
1116 and values that cannot be compared at compile time.
1118 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1119 true if the return value is only valid if we assume that signed
1120 overflow is undefined. */
1122 static int
1123 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1125 if (val1 == val2)
1126 return 0;
1128 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1129 both integers. */
1130 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1131 == POINTER_TYPE_P (TREE_TYPE (val2)));
1132 /* Convert the two values into the same type. This is needed because
1133 sizetype causes sign extension even for unsigned types. */
1134 val2 = fold_convert (TREE_TYPE (val1), val2);
1135 STRIP_USELESS_TYPE_CONVERSION (val2);
1137 if ((TREE_CODE (val1) == SSA_NAME
1138 || TREE_CODE (val1) == PLUS_EXPR
1139 || TREE_CODE (val1) == MINUS_EXPR)
1140 && (TREE_CODE (val2) == SSA_NAME
1141 || TREE_CODE (val2) == PLUS_EXPR
1142 || TREE_CODE (val2) == MINUS_EXPR))
1144 tree n1, c1, n2, c2;
1145 enum tree_code code1, code2;
1147 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1148 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1149 same name, return -2. */
1150 if (TREE_CODE (val1) == SSA_NAME)
1152 code1 = SSA_NAME;
1153 n1 = val1;
1154 c1 = NULL_TREE;
1156 else
1158 code1 = TREE_CODE (val1);
1159 n1 = TREE_OPERAND (val1, 0);
1160 c1 = TREE_OPERAND (val1, 1);
1161 if (tree_int_cst_sgn (c1) == -1)
1163 if (is_negative_overflow_infinity (c1))
1164 return -2;
1165 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1166 if (!c1)
1167 return -2;
1168 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1172 if (TREE_CODE (val2) == SSA_NAME)
1174 code2 = SSA_NAME;
1175 n2 = val2;
1176 c2 = NULL_TREE;
1178 else
1180 code2 = TREE_CODE (val2);
1181 n2 = TREE_OPERAND (val2, 0);
1182 c2 = TREE_OPERAND (val2, 1);
1183 if (tree_int_cst_sgn (c2) == -1)
1185 if (is_negative_overflow_infinity (c2))
1186 return -2;
1187 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1188 if (!c2)
1189 return -2;
1190 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1194 /* Both values must use the same name. */
1195 if (n1 != n2)
1196 return -2;
1198 if (code1 == SSA_NAME
1199 && code2 == SSA_NAME)
1200 /* NAME == NAME */
1201 return 0;
1203 /* If overflow is defined we cannot simplify more. */
1204 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1205 return -2;
1207 if (strict_overflow_p != NULL
1208 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1209 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1210 *strict_overflow_p = true;
1212 if (code1 == SSA_NAME)
1214 if (code2 == PLUS_EXPR)
1215 /* NAME < NAME + CST */
1216 return -1;
1217 else if (code2 == MINUS_EXPR)
1218 /* NAME > NAME - CST */
1219 return 1;
1221 else if (code1 == PLUS_EXPR)
1223 if (code2 == SSA_NAME)
1224 /* NAME + CST > NAME */
1225 return 1;
1226 else if (code2 == PLUS_EXPR)
1227 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1228 return compare_values_warnv (c1, c2, strict_overflow_p);
1229 else if (code2 == MINUS_EXPR)
1230 /* NAME + CST1 > NAME - CST2 */
1231 return 1;
1233 else if (code1 == MINUS_EXPR)
1235 if (code2 == SSA_NAME)
1236 /* NAME - CST < NAME */
1237 return -1;
1238 else if (code2 == PLUS_EXPR)
1239 /* NAME - CST1 < NAME + CST2 */
1240 return -1;
1241 else if (code2 == MINUS_EXPR)
1242 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1243 C1 and C2 are swapped in the call to compare_values. */
1244 return compare_values_warnv (c2, c1, strict_overflow_p);
1247 gcc_unreachable ();
1250 /* We cannot compare non-constants. */
1251 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1252 return -2;
1254 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1256 /* We cannot compare overflowed values, except for overflow
1257 infinities. */
1258 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1260 if (strict_overflow_p != NULL)
1261 *strict_overflow_p = true;
1262 if (is_negative_overflow_infinity (val1))
1263 return is_negative_overflow_infinity (val2) ? 0 : -1;
1264 else if (is_negative_overflow_infinity (val2))
1265 return 1;
1266 else if (is_positive_overflow_infinity (val1))
1267 return is_positive_overflow_infinity (val2) ? 0 : 1;
1268 else if (is_positive_overflow_infinity (val2))
1269 return -1;
1270 return -2;
1273 return tree_int_cst_compare (val1, val2);
1275 else
1277 tree t;
1279 /* First see if VAL1 and VAL2 are not the same. */
1280 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1281 return 0;
1283 /* If VAL1 is a lower address than VAL2, return -1. */
1284 if (operand_less_p (val1, val2) == 1)
1285 return -1;
1287 /* If VAL1 is a higher address than VAL2, return +1. */
1288 if (operand_less_p (val2, val1) == 1)
1289 return 1;
1291 /* If VAL1 is different than VAL2, return +2.
1292 For integer constants we either have already returned -1 or 1
1293 or they are equivalent. We still might succeed in proving
1294 something about non-trivial operands. */
1295 if (TREE_CODE (val1) != INTEGER_CST
1296 || TREE_CODE (val2) != INTEGER_CST)
1298 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1299 if (t && integer_onep (t))
1300 return 2;
1303 return -2;
1307 /* Compare values like compare_values_warnv, but treat comparisons of
1308 nonconstants which rely on undefined overflow as incomparable. */
1310 static int
1311 compare_values (tree val1, tree val2)
1313 bool sop;
1314 int ret;
1316 sop = false;
1317 ret = compare_values_warnv (val1, val2, &sop);
1318 if (sop
1319 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1320 ret = -2;
1321 return ret;
1325 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1326 0 if VAL is not inside VR,
1327 -2 if we cannot tell either way.
1329 FIXME, the current semantics of this functions are a bit quirky
1330 when taken in the context of VRP. In here we do not care
1331 about VR's type. If VR is the anti-range ~[3, 5] the call
1332 value_inside_range (4, VR) will return 1.
1334 This is counter-intuitive in a strict sense, but the callers
1335 currently expect this. They are calling the function
1336 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1337 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1338 themselves.
1340 This also applies to value_ranges_intersect_p and
1341 range_includes_zero_p. The semantics of VR_RANGE and
1342 VR_ANTI_RANGE should be encoded here, but that also means
1343 adapting the users of these functions to the new semantics.
1345 Benchmark compile/20001226-1.c compilation time after changing this
1346 function. */
1348 static inline int
1349 value_inside_range (tree val, value_range_t * vr)
1351 int cmp1, cmp2;
1353 cmp1 = operand_less_p (val, vr->min);
1354 if (cmp1 == -2)
1355 return -2;
1356 if (cmp1 == 1)
1357 return 0;
1359 cmp2 = operand_less_p (vr->max, val);
1360 if (cmp2 == -2)
1361 return -2;
1363 return !cmp2;
1367 /* Return true if value ranges VR0 and VR1 have a non-empty
1368 intersection.
1370 Benchmark compile/20001226-1.c compilation time after changing this
1371 function.
1374 static inline bool
1375 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1377 /* The value ranges do not intersect if the maximum of the first range is
1378 less than the minimum of the second range or vice versa.
1379 When those relations are unknown, we can't do any better. */
1380 if (operand_less_p (vr0->max, vr1->min) != 0)
1381 return false;
1382 if (operand_less_p (vr1->max, vr0->min) != 0)
1383 return false;
1384 return true;
1388 /* Return true if VR includes the value zero, false otherwise. FIXME,
1389 currently this will return false for an anti-range like ~[-4, 3].
1390 This will be wrong when the semantics of value_inside_range are
1391 modified (currently the users of this function expect these
1392 semantics). */
1394 static inline bool
1395 range_includes_zero_p (value_range_t *vr)
1397 tree zero;
1399 gcc_assert (vr->type != VR_UNDEFINED
1400 && vr->type != VR_VARYING
1401 && !symbolic_range_p (vr));
1403 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1404 return (value_inside_range (zero, vr) == 1);
1407 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1408 false otherwise or if no value range information is available. */
1410 bool
1411 ssa_name_nonnegative_p (const_tree t)
1413 value_range_t *vr = get_value_range (t);
1415 if (INTEGRAL_TYPE_P (t)
1416 && TYPE_UNSIGNED (t))
1417 return true;
1419 if (!vr)
1420 return false;
1422 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1423 which would return a useful value should be encoded as a VR_RANGE. */
1424 if (vr->type == VR_RANGE)
1426 int result = compare_values (vr->min, integer_zero_node);
1428 return (result == 0 || result == 1);
1430 return false;
1433 /* If OP has a value range with a single constant value return that,
1434 otherwise return NULL_TREE. This returns OP itself if OP is a
1435 constant. */
1437 static tree
1438 op_with_constant_singleton_value_range (tree op)
1440 value_range_t *vr;
1442 if (is_gimple_min_invariant (op))
1443 return op;
1445 if (TREE_CODE (op) != SSA_NAME)
1446 return NULL_TREE;
1448 vr = get_value_range (op);
1449 if (vr->type == VR_RANGE
1450 && operand_equal_p (vr->min, vr->max, 0)
1451 && is_gimple_min_invariant (vr->min))
1452 return vr->min;
1454 return NULL_TREE;
1458 /* Extract value range information from an ASSERT_EXPR EXPR and store
1459 it in *VR_P. */
1461 static void
1462 extract_range_from_assert (value_range_t *vr_p, tree expr)
1464 tree var, cond, limit, min, max, type;
1465 value_range_t *var_vr, *limit_vr;
1466 enum tree_code cond_code;
1468 var = ASSERT_EXPR_VAR (expr);
1469 cond = ASSERT_EXPR_COND (expr);
1471 gcc_assert (COMPARISON_CLASS_P (cond));
1473 /* Find VAR in the ASSERT_EXPR conditional. */
1474 if (var == TREE_OPERAND (cond, 0)
1475 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1476 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1478 /* If the predicate is of the form VAR COMP LIMIT, then we just
1479 take LIMIT from the RHS and use the same comparison code. */
1480 cond_code = TREE_CODE (cond);
1481 limit = TREE_OPERAND (cond, 1);
1482 cond = TREE_OPERAND (cond, 0);
1484 else
1486 /* If the predicate is of the form LIMIT COMP VAR, then we need
1487 to flip around the comparison code to create the proper range
1488 for VAR. */
1489 cond_code = swap_tree_comparison (TREE_CODE (cond));
1490 limit = TREE_OPERAND (cond, 0);
1491 cond = TREE_OPERAND (cond, 1);
1494 limit = avoid_overflow_infinity (limit);
1496 type = TREE_TYPE (limit);
1497 gcc_assert (limit != var);
1499 /* For pointer arithmetic, we only keep track of pointer equality
1500 and inequality. */
1501 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1503 set_value_range_to_varying (vr_p);
1504 return;
1507 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1508 try to use LIMIT's range to avoid creating symbolic ranges
1509 unnecessarily. */
1510 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1512 /* LIMIT's range is only interesting if it has any useful information. */
1513 if (limit_vr
1514 && (limit_vr->type == VR_UNDEFINED
1515 || limit_vr->type == VR_VARYING
1516 || symbolic_range_p (limit_vr)))
1517 limit_vr = NULL;
1519 /* Initially, the new range has the same set of equivalences of
1520 VAR's range. This will be revised before returning the final
1521 value. Since assertions may be chained via mutually exclusive
1522 predicates, we will need to trim the set of equivalences before
1523 we are done. */
1524 gcc_assert (vr_p->equiv == NULL);
1525 add_equivalence (&vr_p->equiv, var);
1527 /* Extract a new range based on the asserted comparison for VAR and
1528 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1529 will only use it for equality comparisons (EQ_EXPR). For any
1530 other kind of assertion, we cannot derive a range from LIMIT's
1531 anti-range that can be used to describe the new range. For
1532 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1533 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1534 no single range for x_2 that could describe LE_EXPR, so we might
1535 as well build the range [b_4, +INF] for it.
1536 One special case we handle is extracting a range from a
1537 range test encoded as (unsigned)var + CST <= limit. */
1538 if (TREE_CODE (cond) == NOP_EXPR
1539 || TREE_CODE (cond) == PLUS_EXPR)
1541 if (TREE_CODE (cond) == PLUS_EXPR)
1543 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1544 TREE_OPERAND (cond, 1));
1545 max = int_const_binop (PLUS_EXPR, limit, min);
1546 cond = TREE_OPERAND (cond, 0);
1548 else
1550 min = build_int_cst (TREE_TYPE (var), 0);
1551 max = limit;
1554 /* Make sure to not set TREE_OVERFLOW on the final type
1555 conversion. We are willingly interpreting large positive
1556 unsigned values as negative singed values here. */
1557 min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
1558 0, false);
1559 max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
1560 0, false);
1562 /* We can transform a max, min range to an anti-range or
1563 vice-versa. Use set_and_canonicalize_value_range which does
1564 this for us. */
1565 if (cond_code == LE_EXPR)
1566 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1567 min, max, vr_p->equiv);
1568 else if (cond_code == GT_EXPR)
1569 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1570 min, max, vr_p->equiv);
1571 else
1572 gcc_unreachable ();
1574 else if (cond_code == EQ_EXPR)
1576 enum value_range_type range_type;
1578 if (limit_vr)
1580 range_type = limit_vr->type;
1581 min = limit_vr->min;
1582 max = limit_vr->max;
1584 else
1586 range_type = VR_RANGE;
1587 min = limit;
1588 max = limit;
1591 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1593 /* When asserting the equality VAR == LIMIT and LIMIT is another
1594 SSA name, the new range will also inherit the equivalence set
1595 from LIMIT. */
1596 if (TREE_CODE (limit) == SSA_NAME)
1597 add_equivalence (&vr_p->equiv, limit);
1599 else if (cond_code == NE_EXPR)
1601 /* As described above, when LIMIT's range is an anti-range and
1602 this assertion is an inequality (NE_EXPR), then we cannot
1603 derive anything from the anti-range. For instance, if
1604 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1605 not imply that VAR's range is [0, 0]. So, in the case of
1606 anti-ranges, we just assert the inequality using LIMIT and
1607 not its anti-range.
1609 If LIMIT_VR is a range, we can only use it to build a new
1610 anti-range if LIMIT_VR is a single-valued range. For
1611 instance, if LIMIT_VR is [0, 1], the predicate
1612 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1613 Rather, it means that for value 0 VAR should be ~[0, 0]
1614 and for value 1, VAR should be ~[1, 1]. We cannot
1615 represent these ranges.
1617 The only situation in which we can build a valid
1618 anti-range is when LIMIT_VR is a single-valued range
1619 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1620 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1621 if (limit_vr
1622 && limit_vr->type == VR_RANGE
1623 && compare_values (limit_vr->min, limit_vr->max) == 0)
1625 min = limit_vr->min;
1626 max = limit_vr->max;
1628 else
1630 /* In any other case, we cannot use LIMIT's range to build a
1631 valid anti-range. */
1632 min = max = limit;
1635 /* If MIN and MAX cover the whole range for their type, then
1636 just use the original LIMIT. */
1637 if (INTEGRAL_TYPE_P (type)
1638 && vrp_val_is_min (min)
1639 && vrp_val_is_max (max))
1640 min = max = limit;
1642 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1644 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1646 min = TYPE_MIN_VALUE (type);
1648 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1649 max = limit;
1650 else
1652 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1653 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1654 LT_EXPR. */
1655 max = limit_vr->max;
1658 /* If the maximum value forces us to be out of bounds, simply punt.
1659 It would be pointless to try and do anything more since this
1660 all should be optimized away above us. */
1661 if ((cond_code == LT_EXPR
1662 && compare_values (max, min) == 0)
1663 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1664 set_value_range_to_varying (vr_p);
1665 else
1667 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1668 if (cond_code == LT_EXPR)
1670 tree one = build_int_cst (type, 1);
1671 max = fold_build2 (MINUS_EXPR, type, max, one);
1672 if (EXPR_P (max))
1673 TREE_NO_WARNING (max) = 1;
1676 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1679 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1681 max = TYPE_MAX_VALUE (type);
1683 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1684 min = limit;
1685 else
1687 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1688 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1689 GT_EXPR. */
1690 min = limit_vr->min;
1693 /* If the minimum value forces us to be out of bounds, simply punt.
1694 It would be pointless to try and do anything more since this
1695 all should be optimized away above us. */
1696 if ((cond_code == GT_EXPR
1697 && compare_values (min, max) == 0)
1698 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1699 set_value_range_to_varying (vr_p);
1700 else
1702 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1703 if (cond_code == GT_EXPR)
1705 tree one = build_int_cst (type, 1);
1706 min = fold_build2 (PLUS_EXPR, type, min, one);
1707 if (EXPR_P (min))
1708 TREE_NO_WARNING (min) = 1;
1711 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1714 else
1715 gcc_unreachable ();
1717 /* If VAR already had a known range, it may happen that the new
1718 range we have computed and VAR's range are not compatible. For
1719 instance,
1721 if (p_5 == NULL)
1722 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1723 x_7 = p_6->fld;
1724 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1726 While the above comes from a faulty program, it will cause an ICE
1727 later because p_8 and p_6 will have incompatible ranges and at
1728 the same time will be considered equivalent. A similar situation
1729 would arise from
1731 if (i_5 > 10)
1732 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1733 if (i_5 < 5)
1734 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1736 Again i_6 and i_7 will have incompatible ranges. It would be
1737 pointless to try and do anything with i_7's range because
1738 anything dominated by 'if (i_5 < 5)' will be optimized away.
1739 Note, due to the wa in which simulation proceeds, the statement
1740 i_7 = ASSERT_EXPR <...> we would never be visited because the
1741 conditional 'if (i_5 < 5)' always evaluates to false. However,
1742 this extra check does not hurt and may protect against future
1743 changes to VRP that may get into a situation similar to the
1744 NULL pointer dereference example.
1746 Note that these compatibility tests are only needed when dealing
1747 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1748 are both anti-ranges, they will always be compatible, because two
1749 anti-ranges will always have a non-empty intersection. */
1751 var_vr = get_value_range (var);
1753 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1754 ranges or anti-ranges. */
1755 if (vr_p->type == VR_VARYING
1756 || vr_p->type == VR_UNDEFINED
1757 || var_vr->type == VR_VARYING
1758 || var_vr->type == VR_UNDEFINED
1759 || symbolic_range_p (vr_p)
1760 || symbolic_range_p (var_vr))
1761 return;
1763 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1765 /* If the two ranges have a non-empty intersection, we can
1766 refine the resulting range. Since the assert expression
1767 creates an equivalency and at the same time it asserts a
1768 predicate, we can take the intersection of the two ranges to
1769 get better precision. */
1770 if (value_ranges_intersect_p (var_vr, vr_p))
1772 /* Use the larger of the two minimums. */
1773 if (compare_values (vr_p->min, var_vr->min) == -1)
1774 min = var_vr->min;
1775 else
1776 min = vr_p->min;
1778 /* Use the smaller of the two maximums. */
1779 if (compare_values (vr_p->max, var_vr->max) == 1)
1780 max = var_vr->max;
1781 else
1782 max = vr_p->max;
1784 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1786 else
1788 /* The two ranges do not intersect, set the new range to
1789 VARYING, because we will not be able to do anything
1790 meaningful with it. */
1791 set_value_range_to_varying (vr_p);
1794 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1795 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1797 /* A range and an anti-range will cancel each other only if
1798 their ends are the same. For instance, in the example above,
1799 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1800 so VR_P should be set to VR_VARYING. */
1801 if (compare_values (var_vr->min, vr_p->min) == 0
1802 && compare_values (var_vr->max, vr_p->max) == 0)
1803 set_value_range_to_varying (vr_p);
1804 else
1806 tree min, max, anti_min, anti_max, real_min, real_max;
1807 int cmp;
1809 /* We want to compute the logical AND of the two ranges;
1810 there are three cases to consider.
1813 1. The VR_ANTI_RANGE range is completely within the
1814 VR_RANGE and the endpoints of the ranges are
1815 different. In that case the resulting range
1816 should be whichever range is more precise.
1817 Typically that will be the VR_RANGE.
1819 2. The VR_ANTI_RANGE is completely disjoint from
1820 the VR_RANGE. In this case the resulting range
1821 should be the VR_RANGE.
1823 3. There is some overlap between the VR_ANTI_RANGE
1824 and the VR_RANGE.
1826 3a. If the high limit of the VR_ANTI_RANGE resides
1827 within the VR_RANGE, then the result is a new
1828 VR_RANGE starting at the high limit of the
1829 VR_ANTI_RANGE + 1 and extending to the
1830 high limit of the original VR_RANGE.
1832 3b. If the low limit of the VR_ANTI_RANGE resides
1833 within the VR_RANGE, then the result is a new
1834 VR_RANGE starting at the low limit of the original
1835 VR_RANGE and extending to the low limit of the
1836 VR_ANTI_RANGE - 1. */
1837 if (vr_p->type == VR_ANTI_RANGE)
1839 anti_min = vr_p->min;
1840 anti_max = vr_p->max;
1841 real_min = var_vr->min;
1842 real_max = var_vr->max;
1844 else
1846 anti_min = var_vr->min;
1847 anti_max = var_vr->max;
1848 real_min = vr_p->min;
1849 real_max = vr_p->max;
1853 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1854 not including any endpoints. */
1855 if (compare_values (anti_max, real_max) == -1
1856 && compare_values (anti_min, real_min) == 1)
1858 /* If the range is covering the whole valid range of
1859 the type keep the anti-range. */
1860 if (!vrp_val_is_min (real_min)
1861 || !vrp_val_is_max (real_max))
1862 set_value_range (vr_p, VR_RANGE, real_min,
1863 real_max, vr_p->equiv);
1865 /* Case 2, VR_ANTI_RANGE completely disjoint from
1866 VR_RANGE. */
1867 else if (compare_values (anti_min, real_max) == 1
1868 || compare_values (anti_max, real_min) == -1)
1870 set_value_range (vr_p, VR_RANGE, real_min,
1871 real_max, vr_p->equiv);
1873 /* Case 3a, the anti-range extends into the low
1874 part of the real range. Thus creating a new
1875 low for the real range. */
1876 else if (((cmp = compare_values (anti_max, real_min)) == 1
1877 || cmp == 0)
1878 && compare_values (anti_max, real_max) == -1)
1880 gcc_assert (!is_positive_overflow_infinity (anti_max));
1881 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1882 && vrp_val_is_max (anti_max))
1884 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1886 set_value_range_to_varying (vr_p);
1887 return;
1889 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1891 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1892 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1893 anti_max,
1894 build_int_cst (TREE_TYPE (var_vr->min), 1));
1895 else
1896 min = fold_build_pointer_plus_hwi (anti_max, 1);
1897 max = real_max;
1898 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1900 /* Case 3b, the anti-range extends into the high
1901 part of the real range. Thus creating a new
1902 higher for the real range. */
1903 else if (compare_values (anti_min, real_min) == 1
1904 && ((cmp = compare_values (anti_min, real_max)) == -1
1905 || cmp == 0))
1907 gcc_assert (!is_negative_overflow_infinity (anti_min));
1908 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1909 && vrp_val_is_min (anti_min))
1911 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1913 set_value_range_to_varying (vr_p);
1914 return;
1916 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1918 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1919 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1920 anti_min,
1921 build_int_cst (TREE_TYPE (var_vr->min), 1));
1922 else
1923 max = fold_build_pointer_plus_hwi (anti_min, -1);
1924 min = real_min;
1925 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1932 /* Extract range information from SSA name VAR and store it in VR. If
1933 VAR has an interesting range, use it. Otherwise, create the
1934 range [VAR, VAR] and return it. This is useful in situations where
1935 we may have conditionals testing values of VARYING names. For
1936 instance,
1938 x_3 = y_5;
1939 if (x_3 > y_5)
1942 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1943 always false. */
1945 static void
1946 extract_range_from_ssa_name (value_range_t *vr, tree var)
1948 value_range_t *var_vr = get_value_range (var);
1950 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1951 copy_value_range (vr, var_vr);
1952 else
1953 set_value_range (vr, VR_RANGE, var, var, NULL);
1955 add_equivalence (&vr->equiv, var);
1959 /* Wrapper around int_const_binop. If the operation overflows and we
1960 are not using wrapping arithmetic, then adjust the result to be
1961 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1962 NULL_TREE if we need to use an overflow infinity representation but
1963 the type does not support it. */
1965 static tree
1966 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1968 tree res;
1970 res = int_const_binop (code, val1, val2);
1972 /* If we are using unsigned arithmetic, operate symbolically
1973 on -INF and +INF as int_const_binop only handles signed overflow. */
1974 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1976 int checkz = compare_values (res, val1);
1977 bool overflow = false;
1979 /* Ensure that res = val1 [+*] val2 >= val1
1980 or that res = val1 - val2 <= val1. */
1981 if ((code == PLUS_EXPR
1982 && !(checkz == 1 || checkz == 0))
1983 || (code == MINUS_EXPR
1984 && !(checkz == 0 || checkz == -1)))
1986 overflow = true;
1988 /* Checking for multiplication overflow is done by dividing the
1989 output of the multiplication by the first input of the
1990 multiplication. If the result of that division operation is
1991 not equal to the second input of the multiplication, then the
1992 multiplication overflowed. */
1993 else if (code == MULT_EXPR && !integer_zerop (val1))
1995 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1996 res,
1997 val1);
1998 int check = compare_values (tmp, val2);
2000 if (check != 0)
2001 overflow = true;
2004 if (overflow)
2006 res = copy_node (res);
2007 TREE_OVERFLOW (res) = 1;
2011 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
2012 /* If the singed operation wraps then int_const_binop has done
2013 everything we want. */
2015 else if ((TREE_OVERFLOW (res)
2016 && !TREE_OVERFLOW (val1)
2017 && !TREE_OVERFLOW (val2))
2018 || is_overflow_infinity (val1)
2019 || is_overflow_infinity (val2))
2021 /* If the operation overflowed but neither VAL1 nor VAL2 are
2022 overflown, return -INF or +INF depending on the operation
2023 and the combination of signs of the operands. */
2024 int sgn1 = tree_int_cst_sgn (val1);
2025 int sgn2 = tree_int_cst_sgn (val2);
2027 if (needs_overflow_infinity (TREE_TYPE (res))
2028 && !supports_overflow_infinity (TREE_TYPE (res)))
2029 return NULL_TREE;
2031 /* We have to punt on adding infinities of different signs,
2032 since we can't tell what the sign of the result should be.
2033 Likewise for subtracting infinities of the same sign. */
2034 if (((code == PLUS_EXPR && sgn1 != sgn2)
2035 || (code == MINUS_EXPR && sgn1 == sgn2))
2036 && is_overflow_infinity (val1)
2037 && is_overflow_infinity (val2))
2038 return NULL_TREE;
2040 /* Don't try to handle division or shifting of infinities. */
2041 if ((code == TRUNC_DIV_EXPR
2042 || code == FLOOR_DIV_EXPR
2043 || code == CEIL_DIV_EXPR
2044 || code == EXACT_DIV_EXPR
2045 || code == ROUND_DIV_EXPR
2046 || code == RSHIFT_EXPR)
2047 && (is_overflow_infinity (val1)
2048 || is_overflow_infinity (val2)))
2049 return NULL_TREE;
2051 /* Notice that we only need to handle the restricted set of
2052 operations handled by extract_range_from_binary_expr.
2053 Among them, only multiplication, addition and subtraction
2054 can yield overflow without overflown operands because we
2055 are working with integral types only... except in the
2056 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2057 for division too. */
2059 /* For multiplication, the sign of the overflow is given
2060 by the comparison of the signs of the operands. */
2061 if ((code == MULT_EXPR && sgn1 == sgn2)
2062 /* For addition, the operands must be of the same sign
2063 to yield an overflow. Its sign is therefore that
2064 of one of the operands, for example the first. For
2065 infinite operands X + -INF is negative, not positive. */
2066 || (code == PLUS_EXPR
2067 && (sgn1 >= 0
2068 ? !is_negative_overflow_infinity (val2)
2069 : is_positive_overflow_infinity (val2)))
2070 /* For subtraction, non-infinite operands must be of
2071 different signs to yield an overflow. Its sign is
2072 therefore that of the first operand or the opposite of
2073 that of the second operand. A first operand of 0 counts
2074 as positive here, for the corner case 0 - (-INF), which
2075 overflows, but must yield +INF. For infinite operands 0
2076 - INF is negative, not positive. */
2077 || (code == MINUS_EXPR
2078 && (sgn1 >= 0
2079 ? !is_positive_overflow_infinity (val2)
2080 : is_negative_overflow_infinity (val2)))
2081 /* We only get in here with positive shift count, so the
2082 overflow direction is the same as the sign of val1.
2083 Actually rshift does not overflow at all, but we only
2084 handle the case of shifting overflowed -INF and +INF. */
2085 || (code == RSHIFT_EXPR
2086 && sgn1 >= 0)
2087 /* For division, the only case is -INF / -1 = +INF. */
2088 || code == TRUNC_DIV_EXPR
2089 || code == FLOOR_DIV_EXPR
2090 || code == CEIL_DIV_EXPR
2091 || code == EXACT_DIV_EXPR
2092 || code == ROUND_DIV_EXPR)
2093 return (needs_overflow_infinity (TREE_TYPE (res))
2094 ? positive_overflow_infinity (TREE_TYPE (res))
2095 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2096 else
2097 return (needs_overflow_infinity (TREE_TYPE (res))
2098 ? negative_overflow_infinity (TREE_TYPE (res))
2099 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2102 return res;
2106 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
2107 bitmask if some bit is unset, it means for all numbers in the range
2108 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2109 bitmask if some bit is set, it means for all numbers in the range
2110 the bit is 1, otherwise it might be 0 or 1. */
2112 static bool
2113 zero_nonzero_bits_from_vr (value_range_t *vr, double_int *may_be_nonzero,
2114 double_int *must_be_nonzero)
2116 if (range_int_cst_p (vr))
2118 if (range_int_cst_singleton_p (vr))
2120 *may_be_nonzero = tree_to_double_int (vr->min);
2121 *must_be_nonzero = *may_be_nonzero;
2122 return true;
2124 if (tree_int_cst_sgn (vr->min) >= 0)
2126 double_int dmin = tree_to_double_int (vr->min);
2127 double_int dmax = tree_to_double_int (vr->max);
2128 double_int xor_mask = double_int_xor (dmin, dmax);
2129 *may_be_nonzero = double_int_ior (dmin, dmax);
2130 *must_be_nonzero = double_int_and (dmin, dmax);
2131 if (xor_mask.high != 0)
2133 unsigned HOST_WIDE_INT mask
2134 = ((unsigned HOST_WIDE_INT) 1
2135 << floor_log2 (xor_mask.high)) - 1;
2136 may_be_nonzero->low = ALL_ONES;
2137 may_be_nonzero->high |= mask;
2138 must_be_nonzero->low = 0;
2139 must_be_nonzero->high &= ~mask;
2141 else if (xor_mask.low != 0)
2143 unsigned HOST_WIDE_INT mask
2144 = ((unsigned HOST_WIDE_INT) 1
2145 << floor_log2 (xor_mask.low)) - 1;
2146 may_be_nonzero->low |= mask;
2147 must_be_nonzero->low &= ~mask;
2149 return true;
2152 may_be_nonzero->low = ALL_ONES;
2153 may_be_nonzero->high = ALL_ONES;
2154 must_be_nonzero->low = 0;
2155 must_be_nonzero->high = 0;
2156 return false;
2160 /* Extract range information from a binary expression EXPR based on
2161 the ranges of each of its operands and the expression code. */
2163 static void
2164 extract_range_from_binary_expr (value_range_t *vr,
2165 enum tree_code code,
2166 tree expr_type, tree op0, tree op1)
2168 enum value_range_type type;
2169 tree min, max;
2170 int cmp;
2171 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2172 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2174 /* Not all binary expressions can be applied to ranges in a
2175 meaningful way. Handle only arithmetic operations. */
2176 if (code != PLUS_EXPR
2177 && code != MINUS_EXPR
2178 && code != POINTER_PLUS_EXPR
2179 && code != MULT_EXPR
2180 && code != TRUNC_DIV_EXPR
2181 && code != FLOOR_DIV_EXPR
2182 && code != CEIL_DIV_EXPR
2183 && code != EXACT_DIV_EXPR
2184 && code != ROUND_DIV_EXPR
2185 && code != TRUNC_MOD_EXPR
2186 && code != RSHIFT_EXPR
2187 && code != MIN_EXPR
2188 && code != MAX_EXPR
2189 && code != BIT_AND_EXPR
2190 && code != BIT_IOR_EXPR)
2192 /* We can still do constant propagation here. */
2193 tree const_op0 = op_with_constant_singleton_value_range (op0);
2194 tree const_op1 = op_with_constant_singleton_value_range (op1);
2195 if (const_op0 || const_op1)
2197 tree tem = fold_binary (code, expr_type,
2198 const_op0 ? const_op0 : op0,
2199 const_op1 ? const_op1 : op1);
2200 if (tem
2201 && is_gimple_min_invariant (tem)
2202 && !is_overflow_infinity (tem))
2204 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2205 return;
2208 set_value_range_to_varying (vr);
2209 return;
2212 /* Get value ranges for each operand. For constant operands, create
2213 a new value range with the operand to simplify processing. */
2214 if (TREE_CODE (op0) == SSA_NAME)
2215 vr0 = *(get_value_range (op0));
2216 else if (is_gimple_min_invariant (op0))
2217 set_value_range_to_value (&vr0, op0, NULL);
2218 else
2219 set_value_range_to_varying (&vr0);
2221 if (TREE_CODE (op1) == SSA_NAME)
2222 vr1 = *(get_value_range (op1));
2223 else if (is_gimple_min_invariant (op1))
2224 set_value_range_to_value (&vr1, op1, NULL);
2225 else
2226 set_value_range_to_varying (&vr1);
2228 /* If both ranges are UNDEFINED, so is the result. */
2229 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2231 set_value_range_to_undefined (vr);
2232 return;
2234 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2235 code. At some point we may want to special-case operations that
2236 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2237 operand. */
2238 else if (vr0.type == VR_UNDEFINED)
2239 set_value_range_to_varying (&vr0);
2240 else if (vr1.type == VR_UNDEFINED)
2241 set_value_range_to_varying (&vr1);
2243 /* The type of the resulting value range defaults to VR0.TYPE. */
2244 type = vr0.type;
2246 /* Refuse to operate on VARYING ranges, ranges of different kinds
2247 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2248 because we may be able to derive a useful range even if one of
2249 the operands is VR_VARYING or symbolic range. Similarly for
2250 divisions. TODO, we may be able to derive anti-ranges in
2251 some cases. */
2252 if (code != BIT_AND_EXPR
2253 && code != BIT_IOR_EXPR
2254 && code != TRUNC_DIV_EXPR
2255 && code != FLOOR_DIV_EXPR
2256 && code != CEIL_DIV_EXPR
2257 && code != EXACT_DIV_EXPR
2258 && code != ROUND_DIV_EXPR
2259 && code != TRUNC_MOD_EXPR
2260 && (vr0.type == VR_VARYING
2261 || vr1.type == VR_VARYING
2262 || vr0.type != vr1.type
2263 || symbolic_range_p (&vr0)
2264 || symbolic_range_p (&vr1)))
2266 set_value_range_to_varying (vr);
2267 return;
2270 /* Now evaluate the expression to determine the new range. */
2271 if (POINTER_TYPE_P (expr_type)
2272 || POINTER_TYPE_P (TREE_TYPE (op0))
2273 || POINTER_TYPE_P (TREE_TYPE (op1)))
2275 if (code == BIT_IOR_EXPR)
2277 set_value_range_to_varying (vr);
2278 return;
2280 else if (code == MIN_EXPR || code == MAX_EXPR)
2282 /* For MIN/MAX expressions with pointers, we only care about
2283 nullness, if both are non null, then the result is nonnull.
2284 If both are null, then the result is null. Otherwise they
2285 are varying. */
2286 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2287 set_value_range_to_nonnull (vr, expr_type);
2288 else if (range_is_null (&vr0) && range_is_null (&vr1))
2289 set_value_range_to_null (vr, expr_type);
2290 else
2291 set_value_range_to_varying (vr);
2293 return;
2295 if (code == POINTER_PLUS_EXPR)
2297 /* For pointer types, we are really only interested in asserting
2298 whether the expression evaluates to non-NULL. */
2299 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2300 set_value_range_to_nonnull (vr, expr_type);
2301 else if (range_is_null (&vr0) && range_is_null (&vr1))
2302 set_value_range_to_null (vr, expr_type);
2303 else
2304 set_value_range_to_varying (vr);
2306 else if (code == BIT_AND_EXPR)
2308 /* For pointer types, we are really only interested in asserting
2309 whether the expression evaluates to non-NULL. */
2310 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2311 set_value_range_to_nonnull (vr, expr_type);
2312 else if (range_is_null (&vr0) || range_is_null (&vr1))
2313 set_value_range_to_null (vr, expr_type);
2314 else
2315 set_value_range_to_varying (vr);
2317 else
2318 gcc_unreachable ();
2320 return;
2323 /* For integer ranges, apply the operation to each end of the
2324 range and see what we end up with. */
2325 if (code == PLUS_EXPR
2326 || code == MIN_EXPR
2327 || code == MAX_EXPR)
2329 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2330 VR_VARYING. It would take more effort to compute a precise
2331 range for such a case. For example, if we have op0 == 1 and
2332 op1 == -1 with their ranges both being ~[0,0], we would have
2333 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2334 Note that we are guaranteed to have vr0.type == vr1.type at
2335 this point. */
2336 if (vr0.type == VR_ANTI_RANGE)
2338 if (code == PLUS_EXPR)
2340 set_value_range_to_varying (vr);
2341 return;
2343 /* For MIN_EXPR and MAX_EXPR with two VR_ANTI_RANGEs,
2344 the resulting VR_ANTI_RANGE is the same - intersection
2345 of the two ranges. */
2346 min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
2347 max = vrp_int_const_binop (MIN_EXPR, vr0.max, vr1.max);
2349 else
2351 /* For operations that make the resulting range directly
2352 proportional to the original ranges, apply the operation to
2353 the same end of each range. */
2354 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2355 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2358 /* If both additions overflowed the range kind is still correct.
2359 This happens regularly with subtracting something in unsigned
2360 arithmetic.
2361 ??? See PR30318 for all the cases we do not handle. */
2362 if (code == PLUS_EXPR
2363 && (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2364 && (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2366 min = build_int_cst_wide (TREE_TYPE (min),
2367 TREE_INT_CST_LOW (min),
2368 TREE_INT_CST_HIGH (min));
2369 max = build_int_cst_wide (TREE_TYPE (max),
2370 TREE_INT_CST_LOW (max),
2371 TREE_INT_CST_HIGH (max));
2374 else if (code == MULT_EXPR
2375 || code == TRUNC_DIV_EXPR
2376 || code == FLOOR_DIV_EXPR
2377 || code == CEIL_DIV_EXPR
2378 || code == EXACT_DIV_EXPR
2379 || code == ROUND_DIV_EXPR
2380 || code == RSHIFT_EXPR)
2382 tree val[4];
2383 size_t i;
2384 bool sop;
2386 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2387 drop to VR_VARYING. It would take more effort to compute a
2388 precise range for such a case. For example, if we have
2389 op0 == 65536 and op1 == 65536 with their ranges both being
2390 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2391 we cannot claim that the product is in ~[0,0]. Note that we
2392 are guaranteed to have vr0.type == vr1.type at this
2393 point. */
2394 if (code == MULT_EXPR
2395 && vr0.type == VR_ANTI_RANGE
2396 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
2398 set_value_range_to_varying (vr);
2399 return;
2402 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2403 then drop to VR_VARYING. Outside of this range we get undefined
2404 behavior from the shift operation. We cannot even trust
2405 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2406 shifts, and the operation at the tree level may be widened. */
2407 if (code == RSHIFT_EXPR)
2409 if (vr1.type == VR_ANTI_RANGE
2410 || !vrp_expr_computes_nonnegative (op1, &sop)
2411 || (operand_less_p
2412 (build_int_cst (TREE_TYPE (vr1.max),
2413 TYPE_PRECISION (expr_type) - 1),
2414 vr1.max) != 0))
2416 set_value_range_to_varying (vr);
2417 return;
2421 else if ((code == TRUNC_DIV_EXPR
2422 || code == FLOOR_DIV_EXPR
2423 || code == CEIL_DIV_EXPR
2424 || code == EXACT_DIV_EXPR
2425 || code == ROUND_DIV_EXPR)
2426 && (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
2428 /* For division, if op1 has VR_RANGE but op0 does not, something
2429 can be deduced just from that range. Say [min, max] / [4, max]
2430 gives [min / 4, max / 4] range. */
2431 if (vr1.type == VR_RANGE
2432 && !symbolic_range_p (&vr1)
2433 && !range_includes_zero_p (&vr1))
2435 vr0.type = type = VR_RANGE;
2436 vr0.min = vrp_val_min (TREE_TYPE (op0));
2437 vr0.max = vrp_val_max (TREE_TYPE (op1));
2439 else
2441 set_value_range_to_varying (vr);
2442 return;
2446 /* For divisions, if flag_non_call_exceptions is true, we must
2447 not eliminate a division by zero. */
2448 if ((code == TRUNC_DIV_EXPR
2449 || code == FLOOR_DIV_EXPR
2450 || code == CEIL_DIV_EXPR
2451 || code == EXACT_DIV_EXPR
2452 || code == ROUND_DIV_EXPR)
2453 && cfun->can_throw_non_call_exceptions
2454 && (vr1.type != VR_RANGE
2455 || symbolic_range_p (&vr1)
2456 || range_includes_zero_p (&vr1)))
2458 set_value_range_to_varying (vr);
2459 return;
2462 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2463 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2464 include 0. */
2465 if ((code == TRUNC_DIV_EXPR
2466 || code == FLOOR_DIV_EXPR
2467 || code == CEIL_DIV_EXPR
2468 || code == EXACT_DIV_EXPR
2469 || code == ROUND_DIV_EXPR)
2470 && vr0.type == VR_RANGE
2471 && (vr1.type != VR_RANGE
2472 || symbolic_range_p (&vr1)
2473 || range_includes_zero_p (&vr1)))
2475 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2476 int cmp;
2478 sop = false;
2479 min = NULL_TREE;
2480 max = NULL_TREE;
2481 if (vrp_expr_computes_nonnegative (op1, &sop) && !sop)
2483 /* For unsigned division or when divisor is known
2484 to be non-negative, the range has to cover
2485 all numbers from 0 to max for positive max
2486 and all numbers from min to 0 for negative min. */
2487 cmp = compare_values (vr0.max, zero);
2488 if (cmp == -1)
2489 max = zero;
2490 else if (cmp == 0 || cmp == 1)
2491 max = vr0.max;
2492 else
2493 type = VR_VARYING;
2494 cmp = compare_values (vr0.min, zero);
2495 if (cmp == 1)
2496 min = zero;
2497 else if (cmp == 0 || cmp == -1)
2498 min = vr0.min;
2499 else
2500 type = VR_VARYING;
2502 else
2504 /* Otherwise the range is -max .. max or min .. -min
2505 depending on which bound is bigger in absolute value,
2506 as the division can change the sign. */
2507 abs_extent_range (vr, vr0.min, vr0.max);
2508 return;
2510 if (type == VR_VARYING)
2512 set_value_range_to_varying (vr);
2513 return;
2517 /* Multiplications and divisions are a bit tricky to handle,
2518 depending on the mix of signs we have in the two ranges, we
2519 need to operate on different values to get the minimum and
2520 maximum values for the new range. One approach is to figure
2521 out all the variations of range combinations and do the
2522 operations.
2524 However, this involves several calls to compare_values and it
2525 is pretty convoluted. It's simpler to do the 4 operations
2526 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2527 MAX1) and then figure the smallest and largest values to form
2528 the new range. */
2529 else
2531 gcc_assert ((vr0.type == VR_RANGE
2532 || (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
2533 && vr0.type == vr1.type);
2535 /* Compute the 4 cross operations. */
2536 sop = false;
2537 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
2538 if (val[0] == NULL_TREE)
2539 sop = true;
2541 if (vr1.max == vr1.min)
2542 val[1] = NULL_TREE;
2543 else
2545 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2546 if (val[1] == NULL_TREE)
2547 sop = true;
2550 if (vr0.max == vr0.min)
2551 val[2] = NULL_TREE;
2552 else
2554 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2555 if (val[2] == NULL_TREE)
2556 sop = true;
2559 if (vr0.min == vr0.max || vr1.min == vr1.max)
2560 val[3] = NULL_TREE;
2561 else
2563 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2564 if (val[3] == NULL_TREE)
2565 sop = true;
2568 if (sop)
2570 set_value_range_to_varying (vr);
2571 return;
2574 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2575 of VAL[i]. */
2576 min = val[0];
2577 max = val[0];
2578 for (i = 1; i < 4; i++)
2580 if (!is_gimple_min_invariant (min)
2581 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2582 || !is_gimple_min_invariant (max)
2583 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2584 break;
2586 if (val[i])
2588 if (!is_gimple_min_invariant (val[i])
2589 || (TREE_OVERFLOW (val[i])
2590 && !is_overflow_infinity (val[i])))
2592 /* If we found an overflowed value, set MIN and MAX
2593 to it so that we set the resulting range to
2594 VARYING. */
2595 min = max = val[i];
2596 break;
2599 if (compare_values (val[i], min) == -1)
2600 min = val[i];
2602 if (compare_values (val[i], max) == 1)
2603 max = val[i];
2608 else if (code == TRUNC_MOD_EXPR)
2610 bool sop = false;
2611 if (vr1.type != VR_RANGE
2612 || symbolic_range_p (&vr1)
2613 || range_includes_zero_p (&vr1)
2614 || vrp_val_is_min (vr1.min))
2616 set_value_range_to_varying (vr);
2617 return;
2619 type = VR_RANGE;
2620 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2621 max = fold_unary_to_constant (ABS_EXPR, TREE_TYPE (vr1.min), vr1.min);
2622 if (tree_int_cst_lt (max, vr1.max))
2623 max = vr1.max;
2624 max = int_const_binop (MINUS_EXPR, max, integer_one_node);
2625 /* If the dividend is non-negative the modulus will be
2626 non-negative as well. */
2627 if (TYPE_UNSIGNED (TREE_TYPE (max))
2628 || (vrp_expr_computes_nonnegative (op0, &sop) && !sop))
2629 min = build_int_cst (TREE_TYPE (max), 0);
2630 else
2631 min = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (max), max);
2633 else if (code == MINUS_EXPR)
2635 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2636 VR_VARYING. It would take more effort to compute a precise
2637 range for such a case. For example, if we have op0 == 1 and
2638 op1 == 1 with their ranges both being ~[0,0], we would have
2639 op0 - op1 == 0, so we cannot claim that the difference is in
2640 ~[0,0]. Note that we are guaranteed to have
2641 vr0.type == vr1.type at this point. */
2642 if (vr0.type == VR_ANTI_RANGE)
2644 set_value_range_to_varying (vr);
2645 return;
2648 /* For MINUS_EXPR, apply the operation to the opposite ends of
2649 each range. */
2650 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2651 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2653 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR)
2655 bool vr0_int_cst_singleton_p, vr1_int_cst_singleton_p;
2656 bool int_cst_range0, int_cst_range1;
2657 double_int may_be_nonzero0, may_be_nonzero1;
2658 double_int must_be_nonzero0, must_be_nonzero1;
2659 value_range_t *non_singleton_vr;
2660 tree singleton_val;
2662 vr0_int_cst_singleton_p = range_int_cst_singleton_p (&vr0);
2663 vr1_int_cst_singleton_p = range_int_cst_singleton_p (&vr1);
2664 int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
2665 &must_be_nonzero0);
2666 int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
2667 &must_be_nonzero1);
2669 singleton_val = (vr0_int_cst_singleton_p ? vr0.min : vr1.min);
2670 non_singleton_vr = (vr0_int_cst_singleton_p ? &vr1 : &vr0);
2672 type = VR_RANGE;
2673 if (vr0_int_cst_singleton_p && vr1_int_cst_singleton_p)
2674 min = max = int_const_binop (code, vr0.max, vr1.max);
2675 else if ((vr0_int_cst_singleton_p || vr1_int_cst_singleton_p)
2676 && (integer_zerop (singleton_val)
2677 || integer_all_onesp (singleton_val)))
2679 /* If one of the operands is zero for and-case, we know that
2680 * the whole expression evaluates zero.
2681 If one of the operands has all bits set to one for
2682 or-case, we know that the whole expression evaluates
2683 to this one. */
2684 min = max = singleton_val;
2685 if ((code == BIT_IOR_EXPR
2686 && integer_zerop (singleton_val))
2687 || (code == BIT_AND_EXPR
2688 && integer_all_onesp (singleton_val)))
2689 /* If one of the operands has all bits set to one, we know
2690 that the whole expression evaluates to the other one for
2691 the and-case.
2692 If one of the operands is zero, we know that the whole
2693 expression evaluates to the other one for the or-case. */
2695 type = non_singleton_vr->type;
2696 min = non_singleton_vr->min;
2697 max = non_singleton_vr->max;
2699 set_value_range (vr, type, min, max, NULL);
2700 return;
2702 else if (!int_cst_range0 && !int_cst_range1)
2704 set_value_range_to_varying (vr);
2705 return;
2707 else if (code == BIT_AND_EXPR)
2709 min = double_int_to_tree (expr_type,
2710 double_int_and (must_be_nonzero0,
2711 must_be_nonzero1));
2712 max = double_int_to_tree (expr_type,
2713 double_int_and (may_be_nonzero0,
2714 may_be_nonzero1));
2715 if (TREE_OVERFLOW (min) || tree_int_cst_sgn (min) < 0)
2716 min = NULL_TREE;
2717 if (TREE_OVERFLOW (max) || tree_int_cst_sgn (max) < 0)
2718 max = NULL_TREE;
2719 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
2721 if (min == NULL_TREE)
2722 min = build_int_cst (expr_type, 0);
2723 if (max == NULL_TREE || tree_int_cst_lt (vr0.max, max))
2724 max = vr0.max;
2726 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
2728 if (min == NULL_TREE)
2729 min = build_int_cst (expr_type, 0);
2730 if (max == NULL_TREE || tree_int_cst_lt (vr1.max, max))
2731 max = vr1.max;
2734 else if (!int_cst_range0
2735 || !int_cst_range1
2736 || tree_int_cst_sgn (vr0.min) < 0
2737 || tree_int_cst_sgn (vr1.min) < 0)
2739 set_value_range_to_varying (vr);
2740 return;
2742 else
2744 min = double_int_to_tree (expr_type,
2745 double_int_ior (must_be_nonzero0,
2746 must_be_nonzero1));
2747 max = double_int_to_tree (expr_type,
2748 double_int_ior (may_be_nonzero0,
2749 may_be_nonzero1));
2750 if (TREE_OVERFLOW (min) || tree_int_cst_sgn (min) < 0)
2751 min = vr0.min;
2752 else
2753 min = vrp_int_const_binop (MAX_EXPR, min, vr0.min);
2754 if (TREE_OVERFLOW (max) || tree_int_cst_sgn (max) < 0)
2755 max = NULL_TREE;
2756 min = vrp_int_const_binop (MAX_EXPR, min, vr1.min);
2759 else
2760 gcc_unreachable ();
2762 /* If either MIN or MAX overflowed, then set the resulting range to
2763 VARYING. But we do accept an overflow infinity
2764 representation. */
2765 if (min == NULL_TREE
2766 || !is_gimple_min_invariant (min)
2767 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2768 || max == NULL_TREE
2769 || !is_gimple_min_invariant (max)
2770 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2772 set_value_range_to_varying (vr);
2773 return;
2776 /* We punt if:
2777 1) [-INF, +INF]
2778 2) [-INF, +-INF(OVF)]
2779 3) [+-INF(OVF), +INF]
2780 4) [+-INF(OVF), +-INF(OVF)]
2781 We learn nothing when we have INF and INF(OVF) on both sides.
2782 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2783 overflow. */
2784 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2785 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2787 set_value_range_to_varying (vr);
2788 return;
2791 cmp = compare_values (min, max);
2792 if (cmp == -2 || cmp == 1)
2794 /* If the new range has its limits swapped around (MIN > MAX),
2795 then the operation caused one of them to wrap around, mark
2796 the new range VARYING. */
2797 set_value_range_to_varying (vr);
2799 else
2800 set_value_range (vr, type, min, max, NULL);
2804 /* Extract range information from a unary expression EXPR based on
2805 the range of its operand and the expression code. */
2807 static void
2808 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
2809 tree type, tree op0)
2811 tree min, max;
2812 int cmp;
2813 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2815 /* Refuse to operate on certain unary expressions for which we
2816 cannot easily determine a resulting range. */
2817 if (code == FIX_TRUNC_EXPR
2818 || code == FLOAT_EXPR
2819 || code == BIT_NOT_EXPR
2820 || code == CONJ_EXPR)
2822 /* We can still do constant propagation here. */
2823 if ((op0 = op_with_constant_singleton_value_range (op0)) != NULL_TREE)
2825 tree tem = fold_unary (code, type, op0);
2826 if (tem
2827 && is_gimple_min_invariant (tem)
2828 && !is_overflow_infinity (tem))
2830 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2831 return;
2834 set_value_range_to_varying (vr);
2835 return;
2838 /* Get value ranges for the operand. For constant operands, create
2839 a new value range with the operand to simplify processing. */
2840 if (TREE_CODE (op0) == SSA_NAME)
2841 vr0 = *(get_value_range (op0));
2842 else if (is_gimple_min_invariant (op0))
2843 set_value_range_to_value (&vr0, op0, NULL);
2844 else
2845 set_value_range_to_varying (&vr0);
2847 /* If VR0 is UNDEFINED, so is the result. */
2848 if (vr0.type == VR_UNDEFINED)
2850 set_value_range_to_undefined (vr);
2851 return;
2854 /* Refuse to operate on symbolic ranges, or if neither operand is
2855 a pointer or integral type. */
2856 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2857 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2858 || (vr0.type != VR_VARYING
2859 && symbolic_range_p (&vr0)))
2861 set_value_range_to_varying (vr);
2862 return;
2865 /* If the expression involves pointers, we are only interested in
2866 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2867 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
2869 bool sop;
2871 sop = false;
2872 if (range_is_nonnull (&vr0)
2873 || (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
2874 && !sop))
2875 set_value_range_to_nonnull (vr, type);
2876 else if (range_is_null (&vr0))
2877 set_value_range_to_null (vr, type);
2878 else
2879 set_value_range_to_varying (vr);
2881 return;
2884 /* Handle unary expressions on integer ranges. */
2885 if (CONVERT_EXPR_CODE_P (code)
2886 && INTEGRAL_TYPE_P (type)
2887 && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2889 tree inner_type = TREE_TYPE (op0);
2890 tree outer_type = type;
2892 /* If VR0 is varying and we increase the type precision, assume
2893 a full range for the following transformation. */
2894 if (vr0.type == VR_VARYING
2895 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2897 vr0.type = VR_RANGE;
2898 vr0.min = TYPE_MIN_VALUE (inner_type);
2899 vr0.max = TYPE_MAX_VALUE (inner_type);
2902 /* If VR0 is a constant range or anti-range and the conversion is
2903 not truncating we can convert the min and max values and
2904 canonicalize the resulting range. Otherwise we can do the
2905 conversion if the size of the range is less than what the
2906 precision of the target type can represent and the range is
2907 not an anti-range. */
2908 if ((vr0.type == VR_RANGE
2909 || vr0.type == VR_ANTI_RANGE)
2910 && TREE_CODE (vr0.min) == INTEGER_CST
2911 && TREE_CODE (vr0.max) == INTEGER_CST
2912 && (!is_overflow_infinity (vr0.min)
2913 || (vr0.type == VR_RANGE
2914 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2915 && needs_overflow_infinity (outer_type)
2916 && supports_overflow_infinity (outer_type)))
2917 && (!is_overflow_infinity (vr0.max)
2918 || (vr0.type == VR_RANGE
2919 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2920 && needs_overflow_infinity (outer_type)
2921 && supports_overflow_infinity (outer_type)))
2922 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2923 || (vr0.type == VR_RANGE
2924 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2925 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
2926 size_int (TYPE_PRECISION (outer_type)))))))
2928 tree new_min, new_max;
2929 new_min = force_fit_type_double (outer_type,
2930 tree_to_double_int (vr0.min),
2931 0, false);
2932 new_max = force_fit_type_double (outer_type,
2933 tree_to_double_int (vr0.max),
2934 0, false);
2935 if (is_overflow_infinity (vr0.min))
2936 new_min = negative_overflow_infinity (outer_type);
2937 if (is_overflow_infinity (vr0.max))
2938 new_max = positive_overflow_infinity (outer_type);
2939 set_and_canonicalize_value_range (vr, vr0.type,
2940 new_min, new_max, NULL);
2941 return;
2944 set_value_range_to_varying (vr);
2945 return;
2948 /* Conversion of a VR_VARYING value to a wider type can result
2949 in a usable range. So wait until after we've handled conversions
2950 before dropping the result to VR_VARYING if we had a source
2951 operand that is VR_VARYING. */
2952 if (vr0.type == VR_VARYING)
2954 set_value_range_to_varying (vr);
2955 return;
2958 /* Apply the operation to each end of the range and see what we end
2959 up with. */
2960 if (code == NEGATE_EXPR
2961 && !TYPE_UNSIGNED (type))
2963 /* NEGATE_EXPR flips the range around. We need to treat
2964 TYPE_MIN_VALUE specially. */
2965 if (is_positive_overflow_infinity (vr0.max))
2966 min = negative_overflow_infinity (type);
2967 else if (is_negative_overflow_infinity (vr0.max))
2968 min = positive_overflow_infinity (type);
2969 else if (!vrp_val_is_min (vr0.max))
2970 min = fold_unary_to_constant (code, type, vr0.max);
2971 else if (needs_overflow_infinity (type))
2973 if (supports_overflow_infinity (type)
2974 && !is_overflow_infinity (vr0.min)
2975 && !vrp_val_is_min (vr0.min))
2976 min = positive_overflow_infinity (type);
2977 else
2979 set_value_range_to_varying (vr);
2980 return;
2983 else
2984 min = TYPE_MIN_VALUE (type);
2986 if (is_positive_overflow_infinity (vr0.min))
2987 max = negative_overflow_infinity (type);
2988 else if (is_negative_overflow_infinity (vr0.min))
2989 max = positive_overflow_infinity (type);
2990 else if (!vrp_val_is_min (vr0.min))
2991 max = fold_unary_to_constant (code, type, vr0.min);
2992 else if (needs_overflow_infinity (type))
2994 if (supports_overflow_infinity (type))
2995 max = positive_overflow_infinity (type);
2996 else
2998 set_value_range_to_varying (vr);
2999 return;
3002 else
3003 max = TYPE_MIN_VALUE (type);
3005 else if (code == NEGATE_EXPR
3006 && TYPE_UNSIGNED (type))
3008 if (!range_includes_zero_p (&vr0))
3010 max = fold_unary_to_constant (code, type, vr0.min);
3011 min = fold_unary_to_constant (code, type, vr0.max);
3013 else
3015 if (range_is_null (&vr0))
3016 set_value_range_to_null (vr, type);
3017 else
3018 set_value_range_to_varying (vr);
3019 return;
3022 else if (code == ABS_EXPR
3023 && !TYPE_UNSIGNED (type))
3025 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3026 useful range. */
3027 if (!TYPE_OVERFLOW_UNDEFINED (type)
3028 && ((vr0.type == VR_RANGE
3029 && vrp_val_is_min (vr0.min))
3030 || (vr0.type == VR_ANTI_RANGE
3031 && !vrp_val_is_min (vr0.min)
3032 && !range_includes_zero_p (&vr0))))
3034 set_value_range_to_varying (vr);
3035 return;
3038 /* ABS_EXPR may flip the range around, if the original range
3039 included negative values. */
3040 if (is_overflow_infinity (vr0.min))
3041 min = positive_overflow_infinity (type);
3042 else if (!vrp_val_is_min (vr0.min))
3043 min = fold_unary_to_constant (code, type, vr0.min);
3044 else if (!needs_overflow_infinity (type))
3045 min = TYPE_MAX_VALUE (type);
3046 else if (supports_overflow_infinity (type))
3047 min = positive_overflow_infinity (type);
3048 else
3050 set_value_range_to_varying (vr);
3051 return;
3054 if (is_overflow_infinity (vr0.max))
3055 max = positive_overflow_infinity (type);
3056 else if (!vrp_val_is_min (vr0.max))
3057 max = fold_unary_to_constant (code, type, vr0.max);
3058 else if (!needs_overflow_infinity (type))
3059 max = TYPE_MAX_VALUE (type);
3060 else if (supports_overflow_infinity (type)
3061 /* We shouldn't generate [+INF, +INF] as set_value_range
3062 doesn't like this and ICEs. */
3063 && !is_positive_overflow_infinity (min))
3064 max = positive_overflow_infinity (type);
3065 else
3067 set_value_range_to_varying (vr);
3068 return;
3071 cmp = compare_values (min, max);
3073 /* If a VR_ANTI_RANGEs contains zero, then we have
3074 ~[-INF, min(MIN, MAX)]. */
3075 if (vr0.type == VR_ANTI_RANGE)
3077 if (range_includes_zero_p (&vr0))
3079 /* Take the lower of the two values. */
3080 if (cmp != 1)
3081 max = min;
3083 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3084 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3085 flag_wrapv is set and the original anti-range doesn't include
3086 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3087 if (TYPE_OVERFLOW_WRAPS (type))
3089 tree type_min_value = TYPE_MIN_VALUE (type);
3091 min = (vr0.min != type_min_value
3092 ? int_const_binop (PLUS_EXPR, type_min_value,
3093 integer_one_node)
3094 : type_min_value);
3096 else
3098 if (overflow_infinity_range_p (&vr0))
3099 min = negative_overflow_infinity (type);
3100 else
3101 min = TYPE_MIN_VALUE (type);
3104 else
3106 /* All else has failed, so create the range [0, INF], even for
3107 flag_wrapv since TYPE_MIN_VALUE is in the original
3108 anti-range. */
3109 vr0.type = VR_RANGE;
3110 min = build_int_cst (type, 0);
3111 if (needs_overflow_infinity (type))
3113 if (supports_overflow_infinity (type))
3114 max = positive_overflow_infinity (type);
3115 else
3117 set_value_range_to_varying (vr);
3118 return;
3121 else
3122 max = TYPE_MAX_VALUE (type);
3126 /* If the range contains zero then we know that the minimum value in the
3127 range will be zero. */
3128 else if (range_includes_zero_p (&vr0))
3130 if (cmp == 1)
3131 max = min;
3132 min = build_int_cst (type, 0);
3134 else
3136 /* If the range was reversed, swap MIN and MAX. */
3137 if (cmp == 1)
3139 tree t = min;
3140 min = max;
3141 max = t;
3145 else
3147 /* Otherwise, operate on each end of the range. */
3148 min = fold_unary_to_constant (code, type, vr0.min);
3149 max = fold_unary_to_constant (code, type, vr0.max);
3151 if (needs_overflow_infinity (type))
3153 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
3155 /* If both sides have overflowed, we don't know
3156 anything. */
3157 if ((is_overflow_infinity (vr0.min)
3158 || TREE_OVERFLOW (min))
3159 && (is_overflow_infinity (vr0.max)
3160 || TREE_OVERFLOW (max)))
3162 set_value_range_to_varying (vr);
3163 return;
3166 if (is_overflow_infinity (vr0.min))
3167 min = vr0.min;
3168 else if (TREE_OVERFLOW (min))
3170 if (supports_overflow_infinity (type))
3171 min = (tree_int_cst_sgn (min) >= 0
3172 ? positive_overflow_infinity (TREE_TYPE (min))
3173 : negative_overflow_infinity (TREE_TYPE (min)));
3174 else
3176 set_value_range_to_varying (vr);
3177 return;
3181 if (is_overflow_infinity (vr0.max))
3182 max = vr0.max;
3183 else if (TREE_OVERFLOW (max))
3185 if (supports_overflow_infinity (type))
3186 max = (tree_int_cst_sgn (max) >= 0
3187 ? positive_overflow_infinity (TREE_TYPE (max))
3188 : negative_overflow_infinity (TREE_TYPE (max)));
3189 else
3191 set_value_range_to_varying (vr);
3192 return;
3198 cmp = compare_values (min, max);
3199 if (cmp == -2 || cmp == 1)
3201 /* If the new range has its limits swapped around (MIN > MAX),
3202 then the operation caused one of them to wrap around, mark
3203 the new range VARYING. */
3204 set_value_range_to_varying (vr);
3206 else
3207 set_value_range (vr, vr0.type, min, max, NULL);
3211 /* Extract range information from a conditional expression EXPR based on
3212 the ranges of each of its operands and the expression code. */
3214 static void
3215 extract_range_from_cond_expr (value_range_t *vr, tree expr)
3217 tree op0, op1;
3218 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3219 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3221 /* Get value ranges for each operand. For constant operands, create
3222 a new value range with the operand to simplify processing. */
3223 op0 = COND_EXPR_THEN (expr);
3224 if (TREE_CODE (op0) == SSA_NAME)
3225 vr0 = *(get_value_range (op0));
3226 else if (is_gimple_min_invariant (op0))
3227 set_value_range_to_value (&vr0, op0, NULL);
3228 else
3229 set_value_range_to_varying (&vr0);
3231 op1 = COND_EXPR_ELSE (expr);
3232 if (TREE_CODE (op1) == SSA_NAME)
3233 vr1 = *(get_value_range (op1));
3234 else if (is_gimple_min_invariant (op1))
3235 set_value_range_to_value (&vr1, op1, NULL);
3236 else
3237 set_value_range_to_varying (&vr1);
3239 /* The resulting value range is the union of the operand ranges */
3240 vrp_meet (&vr0, &vr1);
3241 copy_value_range (vr, &vr0);
3245 /* Extract range information from a comparison expression EXPR based
3246 on the range of its operand and the expression code. */
3248 static void
3249 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3250 tree type, tree op0, tree op1)
3252 bool sop = false;
3253 tree val;
3255 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3256 NULL);
3258 /* A disadvantage of using a special infinity as an overflow
3259 representation is that we lose the ability to record overflow
3260 when we don't have an infinity. So we have to ignore a result
3261 which relies on overflow. */
3263 if (val && !is_overflow_infinity (val) && !sop)
3265 /* Since this expression was found on the RHS of an assignment,
3266 its type may be different from _Bool. Convert VAL to EXPR's
3267 type. */
3268 val = fold_convert (type, val);
3269 if (is_gimple_min_invariant (val))
3270 set_value_range_to_value (vr, val, vr->equiv);
3271 else
3272 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3274 else
3275 /* The result of a comparison is always true or false. */
3276 set_value_range_to_truthvalue (vr, type);
3279 /* Try to derive a nonnegative or nonzero range out of STMT relying
3280 primarily on generic routines in fold in conjunction with range data.
3281 Store the result in *VR */
3283 static void
3284 extract_range_basic (value_range_t *vr, gimple stmt)
3286 bool sop = false;
3287 tree type = gimple_expr_type (stmt);
3289 if (INTEGRAL_TYPE_P (type)
3290 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3291 set_value_range_to_nonnegative (vr, type,
3292 sop || stmt_overflow_infinity (stmt));
3293 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3294 && !sop)
3295 set_value_range_to_nonnull (vr, type);
3296 else
3297 set_value_range_to_varying (vr);
3301 /* Try to compute a useful range out of assignment STMT and store it
3302 in *VR. */
3304 static void
3305 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3307 enum tree_code code = gimple_assign_rhs_code (stmt);
3309 if (code == ASSERT_EXPR)
3310 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3311 else if (code == SSA_NAME)
3312 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3313 else if (TREE_CODE_CLASS (code) == tcc_binary)
3314 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3315 gimple_expr_type (stmt),
3316 gimple_assign_rhs1 (stmt),
3317 gimple_assign_rhs2 (stmt));
3318 else if (TREE_CODE_CLASS (code) == tcc_unary)
3319 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3320 gimple_expr_type (stmt),
3321 gimple_assign_rhs1 (stmt));
3322 else if (code == COND_EXPR)
3323 extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
3324 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3325 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3326 gimple_expr_type (stmt),
3327 gimple_assign_rhs1 (stmt),
3328 gimple_assign_rhs2 (stmt));
3329 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3330 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3331 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3332 else
3333 set_value_range_to_varying (vr);
3335 if (vr->type == VR_VARYING)
3336 extract_range_basic (vr, stmt);
3339 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3340 would be profitable to adjust VR using scalar evolution information
3341 for VAR. If so, update VR with the new limits. */
3343 static void
3344 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3345 gimple stmt, tree var)
3347 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3348 enum ev_direction dir;
3350 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3351 better opportunities than a regular range, but I'm not sure. */
3352 if (vr->type == VR_ANTI_RANGE)
3353 return;
3355 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3357 /* Like in PR19590, scev can return a constant function. */
3358 if (is_gimple_min_invariant (chrec))
3360 set_value_range_to_value (vr, chrec, vr->equiv);
3361 return;
3364 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3365 return;
3367 init = initial_condition_in_loop_num (chrec, loop->num);
3368 tem = op_with_constant_singleton_value_range (init);
3369 if (tem)
3370 init = tem;
3371 step = evolution_part_in_loop_num (chrec, loop->num);
3372 tem = op_with_constant_singleton_value_range (step);
3373 if (tem)
3374 step = tem;
3376 /* If STEP is symbolic, we can't know whether INIT will be the
3377 minimum or maximum value in the range. Also, unless INIT is
3378 a simple expression, compare_values and possibly other functions
3379 in tree-vrp won't be able to handle it. */
3380 if (step == NULL_TREE
3381 || !is_gimple_min_invariant (step)
3382 || !valid_value_p (init))
3383 return;
3385 dir = scev_direction (chrec);
3386 if (/* Do not adjust ranges if we do not know whether the iv increases
3387 or decreases, ... */
3388 dir == EV_DIR_UNKNOWN
3389 /* ... or if it may wrap. */
3390 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3391 true))
3392 return;
3394 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3395 negative_overflow_infinity and positive_overflow_infinity,
3396 because we have concluded that the loop probably does not
3397 wrap. */
3399 type = TREE_TYPE (var);
3400 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3401 tmin = lower_bound_in_type (type, type);
3402 else
3403 tmin = TYPE_MIN_VALUE (type);
3404 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3405 tmax = upper_bound_in_type (type, type);
3406 else
3407 tmax = TYPE_MAX_VALUE (type);
3409 /* Try to use estimated number of iterations for the loop to constrain the
3410 final value in the evolution. */
3411 if (TREE_CODE (step) == INTEGER_CST
3412 && is_gimple_val (init)
3413 && (TREE_CODE (init) != SSA_NAME
3414 || get_value_range (init)->type == VR_RANGE))
3416 double_int nit;
3418 if (estimated_loop_iterations (loop, true, &nit))
3420 value_range_t maxvr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3421 double_int dtmp;
3422 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
3423 int overflow = 0;
3425 dtmp = double_int_mul_with_sign (tree_to_double_int (step), nit,
3426 unsigned_p, &overflow);
3427 /* If the multiplication overflowed we can't do a meaningful
3428 adjustment. Likewise if the result doesn't fit in the type
3429 of the induction variable. For a signed type we have to
3430 check whether the result has the expected signedness which
3431 is that of the step as number of iterations is unsigned. */
3432 if (!overflow
3433 && double_int_fits_to_tree_p (TREE_TYPE (init), dtmp)
3434 && (unsigned_p
3435 || ((dtmp.high ^ TREE_INT_CST_HIGH (step)) >= 0)))
3437 tem = double_int_to_tree (TREE_TYPE (init), dtmp);
3438 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3439 TREE_TYPE (init), init, tem);
3440 /* Likewise if the addition did. */
3441 if (maxvr.type == VR_RANGE)
3443 tmin = maxvr.min;
3444 tmax = maxvr.max;
3450 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3452 min = tmin;
3453 max = tmax;
3455 /* For VARYING or UNDEFINED ranges, just about anything we get
3456 from scalar evolutions should be better. */
3458 if (dir == EV_DIR_DECREASES)
3459 max = init;
3460 else
3461 min = init;
3463 /* If we would create an invalid range, then just assume we
3464 know absolutely nothing. This may be over-conservative,
3465 but it's clearly safe, and should happen only in unreachable
3466 parts of code, or for invalid programs. */
3467 if (compare_values (min, max) == 1)
3468 return;
3470 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3472 else if (vr->type == VR_RANGE)
3474 min = vr->min;
3475 max = vr->max;
3477 if (dir == EV_DIR_DECREASES)
3479 /* INIT is the maximum value. If INIT is lower than VR->MAX
3480 but no smaller than VR->MIN, set VR->MAX to INIT. */
3481 if (compare_values (init, max) == -1)
3482 max = init;
3484 /* According to the loop information, the variable does not
3485 overflow. If we think it does, probably because of an
3486 overflow due to arithmetic on a different INF value,
3487 reset now. */
3488 if (is_negative_overflow_infinity (min)
3489 || compare_values (min, tmin) == -1)
3490 min = tmin;
3493 else
3495 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3496 if (compare_values (init, min) == 1)
3497 min = init;
3499 if (is_positive_overflow_infinity (max)
3500 || compare_values (tmax, max) == -1)
3501 max = tmax;
3504 /* If we just created an invalid range with the minimum
3505 greater than the maximum, we fail conservatively.
3506 This should happen only in unreachable
3507 parts of code, or for invalid programs. */
3508 if (compare_values (min, max) == 1)
3509 return;
3511 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3515 /* Return true if VAR may overflow at STMT. This checks any available
3516 loop information to see if we can determine that VAR does not
3517 overflow. */
3519 static bool
3520 vrp_var_may_overflow (tree var, gimple stmt)
3522 struct loop *l;
3523 tree chrec, init, step;
3525 if (current_loops == NULL)
3526 return true;
3528 l = loop_containing_stmt (stmt);
3529 if (l == NULL
3530 || !loop_outer (l))
3531 return true;
3533 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3534 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3535 return true;
3537 init = initial_condition_in_loop_num (chrec, l->num);
3538 step = evolution_part_in_loop_num (chrec, l->num);
3540 if (step == NULL_TREE
3541 || !is_gimple_min_invariant (step)
3542 || !valid_value_p (init))
3543 return true;
3545 /* If we get here, we know something useful about VAR based on the
3546 loop information. If it wraps, it may overflow. */
3548 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3549 true))
3550 return true;
3552 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3554 print_generic_expr (dump_file, var, 0);
3555 fprintf (dump_file, ": loop information indicates does not overflow\n");
3558 return false;
3562 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3564 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3565 all the values in the ranges.
3567 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3569 - Return NULL_TREE if it is not always possible to determine the
3570 value of the comparison.
3572 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3573 overflow infinity was used in the test. */
3576 static tree
3577 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3578 bool *strict_overflow_p)
3580 /* VARYING or UNDEFINED ranges cannot be compared. */
3581 if (vr0->type == VR_VARYING
3582 || vr0->type == VR_UNDEFINED
3583 || vr1->type == VR_VARYING
3584 || vr1->type == VR_UNDEFINED)
3585 return NULL_TREE;
3587 /* Anti-ranges need to be handled separately. */
3588 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3590 /* If both are anti-ranges, then we cannot compute any
3591 comparison. */
3592 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3593 return NULL_TREE;
3595 /* These comparisons are never statically computable. */
3596 if (comp == GT_EXPR
3597 || comp == GE_EXPR
3598 || comp == LT_EXPR
3599 || comp == LE_EXPR)
3600 return NULL_TREE;
3602 /* Equality can be computed only between a range and an
3603 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3604 if (vr0->type == VR_RANGE)
3606 /* To simplify processing, make VR0 the anti-range. */
3607 value_range_t *tmp = vr0;
3608 vr0 = vr1;
3609 vr1 = tmp;
3612 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3614 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3615 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3616 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3618 return NULL_TREE;
3621 if (!usable_range_p (vr0, strict_overflow_p)
3622 || !usable_range_p (vr1, strict_overflow_p))
3623 return NULL_TREE;
3625 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3626 operands around and change the comparison code. */
3627 if (comp == GT_EXPR || comp == GE_EXPR)
3629 value_range_t *tmp;
3630 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3631 tmp = vr0;
3632 vr0 = vr1;
3633 vr1 = tmp;
3636 if (comp == EQ_EXPR)
3638 /* Equality may only be computed if both ranges represent
3639 exactly one value. */
3640 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3641 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3643 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3644 strict_overflow_p);
3645 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3646 strict_overflow_p);
3647 if (cmp_min == 0 && cmp_max == 0)
3648 return boolean_true_node;
3649 else if (cmp_min != -2 && cmp_max != -2)
3650 return boolean_false_node;
3652 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3653 else if (compare_values_warnv (vr0->min, vr1->max,
3654 strict_overflow_p) == 1
3655 || compare_values_warnv (vr1->min, vr0->max,
3656 strict_overflow_p) == 1)
3657 return boolean_false_node;
3659 return NULL_TREE;
3661 else if (comp == NE_EXPR)
3663 int cmp1, cmp2;
3665 /* If VR0 is completely to the left or completely to the right
3666 of VR1, they are always different. Notice that we need to
3667 make sure that both comparisons yield similar results to
3668 avoid comparing values that cannot be compared at
3669 compile-time. */
3670 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3671 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3672 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3673 return boolean_true_node;
3675 /* If VR0 and VR1 represent a single value and are identical,
3676 return false. */
3677 else if (compare_values_warnv (vr0->min, vr0->max,
3678 strict_overflow_p) == 0
3679 && compare_values_warnv (vr1->min, vr1->max,
3680 strict_overflow_p) == 0
3681 && compare_values_warnv (vr0->min, vr1->min,
3682 strict_overflow_p) == 0
3683 && compare_values_warnv (vr0->max, vr1->max,
3684 strict_overflow_p) == 0)
3685 return boolean_false_node;
3687 /* Otherwise, they may or may not be different. */
3688 else
3689 return NULL_TREE;
3691 else if (comp == LT_EXPR || comp == LE_EXPR)
3693 int tst;
3695 /* If VR0 is to the left of VR1, return true. */
3696 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3697 if ((comp == LT_EXPR && tst == -1)
3698 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3700 if (overflow_infinity_range_p (vr0)
3701 || overflow_infinity_range_p (vr1))
3702 *strict_overflow_p = true;
3703 return boolean_true_node;
3706 /* If VR0 is to the right of VR1, return false. */
3707 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3708 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3709 || (comp == LE_EXPR && tst == 1))
3711 if (overflow_infinity_range_p (vr0)
3712 || overflow_infinity_range_p (vr1))
3713 *strict_overflow_p = true;
3714 return boolean_false_node;
3717 /* Otherwise, we don't know. */
3718 return NULL_TREE;
3721 gcc_unreachable ();
3725 /* Given a value range VR, a value VAL and a comparison code COMP, return
3726 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3727 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3728 always returns false. Return NULL_TREE if it is not always
3729 possible to determine the value of the comparison. Also set
3730 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3731 infinity was used in the test. */
3733 static tree
3734 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3735 bool *strict_overflow_p)
3737 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3738 return NULL_TREE;
3740 /* Anti-ranges need to be handled separately. */
3741 if (vr->type == VR_ANTI_RANGE)
3743 /* For anti-ranges, the only predicates that we can compute at
3744 compile time are equality and inequality. */
3745 if (comp == GT_EXPR
3746 || comp == GE_EXPR
3747 || comp == LT_EXPR
3748 || comp == LE_EXPR)
3749 return NULL_TREE;
3751 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3752 if (value_inside_range (val, vr) == 1)
3753 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3755 return NULL_TREE;
3758 if (!usable_range_p (vr, strict_overflow_p))
3759 return NULL_TREE;
3761 if (comp == EQ_EXPR)
3763 /* EQ_EXPR may only be computed if VR represents exactly
3764 one value. */
3765 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3767 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3768 if (cmp == 0)
3769 return boolean_true_node;
3770 else if (cmp == -1 || cmp == 1 || cmp == 2)
3771 return boolean_false_node;
3773 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3774 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3775 return boolean_false_node;
3777 return NULL_TREE;
3779 else if (comp == NE_EXPR)
3781 /* If VAL is not inside VR, then they are always different. */
3782 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3783 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3784 return boolean_true_node;
3786 /* If VR represents exactly one value equal to VAL, then return
3787 false. */
3788 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3789 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3790 return boolean_false_node;
3792 /* Otherwise, they may or may not be different. */
3793 return NULL_TREE;
3795 else if (comp == LT_EXPR || comp == LE_EXPR)
3797 int tst;
3799 /* If VR is to the left of VAL, return true. */
3800 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3801 if ((comp == LT_EXPR && tst == -1)
3802 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3804 if (overflow_infinity_range_p (vr))
3805 *strict_overflow_p = true;
3806 return boolean_true_node;
3809 /* If VR is to the right of VAL, return false. */
3810 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3811 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3812 || (comp == LE_EXPR && tst == 1))
3814 if (overflow_infinity_range_p (vr))
3815 *strict_overflow_p = true;
3816 return boolean_false_node;
3819 /* Otherwise, we don't know. */
3820 return NULL_TREE;
3822 else if (comp == GT_EXPR || comp == GE_EXPR)
3824 int tst;
3826 /* If VR is to the right of VAL, return true. */
3827 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3828 if ((comp == GT_EXPR && tst == 1)
3829 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3831 if (overflow_infinity_range_p (vr))
3832 *strict_overflow_p = true;
3833 return boolean_true_node;
3836 /* If VR is to the left of VAL, return false. */
3837 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3838 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3839 || (comp == GE_EXPR && tst == -1))
3841 if (overflow_infinity_range_p (vr))
3842 *strict_overflow_p = true;
3843 return boolean_false_node;
3846 /* Otherwise, we don't know. */
3847 return NULL_TREE;
3850 gcc_unreachable ();
3854 /* Debugging dumps. */
3856 void dump_value_range (FILE *, value_range_t *);
3857 void debug_value_range (value_range_t *);
3858 void dump_all_value_ranges (FILE *);
3859 void debug_all_value_ranges (void);
3860 void dump_vr_equiv (FILE *, bitmap);
3861 void debug_vr_equiv (bitmap);
3864 /* Dump value range VR to FILE. */
3866 void
3867 dump_value_range (FILE *file, value_range_t *vr)
3869 if (vr == NULL)
3870 fprintf (file, "[]");
3871 else if (vr->type == VR_UNDEFINED)
3872 fprintf (file, "UNDEFINED");
3873 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3875 tree type = TREE_TYPE (vr->min);
3877 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3879 if (is_negative_overflow_infinity (vr->min))
3880 fprintf (file, "-INF(OVF)");
3881 else if (INTEGRAL_TYPE_P (type)
3882 && !TYPE_UNSIGNED (type)
3883 && vrp_val_is_min (vr->min))
3884 fprintf (file, "-INF");
3885 else
3886 print_generic_expr (file, vr->min, 0);
3888 fprintf (file, ", ");
3890 if (is_positive_overflow_infinity (vr->max))
3891 fprintf (file, "+INF(OVF)");
3892 else if (INTEGRAL_TYPE_P (type)
3893 && vrp_val_is_max (vr->max))
3894 fprintf (file, "+INF");
3895 else
3896 print_generic_expr (file, vr->max, 0);
3898 fprintf (file, "]");
3900 if (vr->equiv)
3902 bitmap_iterator bi;
3903 unsigned i, c = 0;
3905 fprintf (file, " EQUIVALENCES: { ");
3907 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3909 print_generic_expr (file, ssa_name (i), 0);
3910 fprintf (file, " ");
3911 c++;
3914 fprintf (file, "} (%u elements)", c);
3917 else if (vr->type == VR_VARYING)
3918 fprintf (file, "VARYING");
3919 else
3920 fprintf (file, "INVALID RANGE");
3924 /* Dump value range VR to stderr. */
3926 DEBUG_FUNCTION void
3927 debug_value_range (value_range_t *vr)
3929 dump_value_range (stderr, vr);
3930 fprintf (stderr, "\n");
3934 /* Dump value ranges of all SSA_NAMEs to FILE. */
3936 void
3937 dump_all_value_ranges (FILE *file)
3939 size_t i;
3941 for (i = 0; i < num_vr_values; i++)
3943 if (vr_value[i])
3945 print_generic_expr (file, ssa_name (i), 0);
3946 fprintf (file, ": ");
3947 dump_value_range (file, vr_value[i]);
3948 fprintf (file, "\n");
3952 fprintf (file, "\n");
3956 /* Dump all value ranges to stderr. */
3958 DEBUG_FUNCTION void
3959 debug_all_value_ranges (void)
3961 dump_all_value_ranges (stderr);
3965 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3966 create a new SSA name N and return the assertion assignment
3967 'V = ASSERT_EXPR <V, V OP W>'. */
3969 static gimple
3970 build_assert_expr_for (tree cond, tree v)
3972 tree n;
3973 gimple assertion;
3975 gcc_assert (TREE_CODE (v) == SSA_NAME);
3976 n = duplicate_ssa_name (v, NULL);
3978 if (COMPARISON_CLASS_P (cond))
3980 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3981 assertion = gimple_build_assign (n, a);
3983 else if (TREE_CODE (cond) == SSA_NAME)
3985 /* Given V, build the assignment N = true. */
3986 gcc_assert (v == cond);
3987 assertion = gimple_build_assign (n, boolean_true_node);
3989 else
3990 gcc_unreachable ();
3992 SSA_NAME_DEF_STMT (n) = assertion;
3994 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3995 operand of the ASSERT_EXPR. Register the new name and the old one
3996 in the replacement table so that we can fix the SSA web after
3997 adding all the ASSERT_EXPRs. */
3998 register_new_name_mapping (n, v);
4000 return assertion;
4004 /* Return false if EXPR is a predicate expression involving floating
4005 point values. */
4007 static inline bool
4008 fp_predicate (gimple stmt)
4010 GIMPLE_CHECK (stmt, GIMPLE_COND);
4012 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4016 /* If the range of values taken by OP can be inferred after STMT executes,
4017 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4018 describes the inferred range. Return true if a range could be
4019 inferred. */
4021 static bool
4022 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4024 *val_p = NULL_TREE;
4025 *comp_code_p = ERROR_MARK;
4027 /* Do not attempt to infer anything in names that flow through
4028 abnormal edges. */
4029 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4030 return false;
4032 /* Similarly, don't infer anything from statements that may throw
4033 exceptions. */
4034 if (stmt_could_throw_p (stmt))
4035 return false;
4037 /* If STMT is the last statement of a basic block with no
4038 successors, there is no point inferring anything about any of its
4039 operands. We would not be able to find a proper insertion point
4040 for the assertion, anyway. */
4041 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
4042 return false;
4044 /* We can only assume that a pointer dereference will yield
4045 non-NULL if -fdelete-null-pointer-checks is enabled. */
4046 if (flag_delete_null_pointer_checks
4047 && POINTER_TYPE_P (TREE_TYPE (op))
4048 && gimple_code (stmt) != GIMPLE_ASM)
4050 unsigned num_uses, num_loads, num_stores;
4052 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
4053 if (num_loads + num_stores > 0)
4055 *val_p = build_int_cst (TREE_TYPE (op), 0);
4056 *comp_code_p = NE_EXPR;
4057 return true;
4061 return false;
4065 void dump_asserts_for (FILE *, tree);
4066 void debug_asserts_for (tree);
4067 void dump_all_asserts (FILE *);
4068 void debug_all_asserts (void);
4070 /* Dump all the registered assertions for NAME to FILE. */
4072 void
4073 dump_asserts_for (FILE *file, tree name)
4075 assert_locus_t loc;
4077 fprintf (file, "Assertions to be inserted for ");
4078 print_generic_expr (file, name, 0);
4079 fprintf (file, "\n");
4081 loc = asserts_for[SSA_NAME_VERSION (name)];
4082 while (loc)
4084 fprintf (file, "\t");
4085 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4086 fprintf (file, "\n\tBB #%d", loc->bb->index);
4087 if (loc->e)
4089 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4090 loc->e->dest->index);
4091 dump_edge_info (file, loc->e, 0);
4093 fprintf (file, "\n\tPREDICATE: ");
4094 print_generic_expr (file, name, 0);
4095 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
4096 print_generic_expr (file, loc->val, 0);
4097 fprintf (file, "\n\n");
4098 loc = loc->next;
4101 fprintf (file, "\n");
4105 /* Dump all the registered assertions for NAME to stderr. */
4107 DEBUG_FUNCTION void
4108 debug_asserts_for (tree name)
4110 dump_asserts_for (stderr, name);
4114 /* Dump all the registered assertions for all the names to FILE. */
4116 void
4117 dump_all_asserts (FILE *file)
4119 unsigned i;
4120 bitmap_iterator bi;
4122 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4123 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4124 dump_asserts_for (file, ssa_name (i));
4125 fprintf (file, "\n");
4129 /* Dump all the registered assertions for all the names to stderr. */
4131 DEBUG_FUNCTION void
4132 debug_all_asserts (void)
4134 dump_all_asserts (stderr);
4138 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4139 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4140 E->DEST, then register this location as a possible insertion point
4141 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4143 BB, E and SI provide the exact insertion point for the new
4144 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4145 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4146 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4147 must not be NULL. */
4149 static void
4150 register_new_assert_for (tree name, tree expr,
4151 enum tree_code comp_code,
4152 tree val,
4153 basic_block bb,
4154 edge e,
4155 gimple_stmt_iterator si)
4157 assert_locus_t n, loc, last_loc;
4158 basic_block dest_bb;
4160 gcc_checking_assert (bb == NULL || e == NULL);
4162 if (e == NULL)
4163 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4164 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4166 /* Never build an assert comparing against an integer constant with
4167 TREE_OVERFLOW set. This confuses our undefined overflow warning
4168 machinery. */
4169 if (TREE_CODE (val) == INTEGER_CST
4170 && TREE_OVERFLOW (val))
4171 val = build_int_cst_wide (TREE_TYPE (val),
4172 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
4174 /* The new assertion A will be inserted at BB or E. We need to
4175 determine if the new location is dominated by a previously
4176 registered location for A. If we are doing an edge insertion,
4177 assume that A will be inserted at E->DEST. Note that this is not
4178 necessarily true.
4180 If E is a critical edge, it will be split. But even if E is
4181 split, the new block will dominate the same set of blocks that
4182 E->DEST dominates.
4184 The reverse, however, is not true, blocks dominated by E->DEST
4185 will not be dominated by the new block created to split E. So,
4186 if the insertion location is on a critical edge, we will not use
4187 the new location to move another assertion previously registered
4188 at a block dominated by E->DEST. */
4189 dest_bb = (bb) ? bb : e->dest;
4191 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4192 VAL at a block dominating DEST_BB, then we don't need to insert a new
4193 one. Similarly, if the same assertion already exists at a block
4194 dominated by DEST_BB and the new location is not on a critical
4195 edge, then update the existing location for the assertion (i.e.,
4196 move the assertion up in the dominance tree).
4198 Note, this is implemented as a simple linked list because there
4199 should not be more than a handful of assertions registered per
4200 name. If this becomes a performance problem, a table hashed by
4201 COMP_CODE and VAL could be implemented. */
4202 loc = asserts_for[SSA_NAME_VERSION (name)];
4203 last_loc = loc;
4204 while (loc)
4206 if (loc->comp_code == comp_code
4207 && (loc->val == val
4208 || operand_equal_p (loc->val, val, 0))
4209 && (loc->expr == expr
4210 || operand_equal_p (loc->expr, expr, 0)))
4212 /* If the assertion NAME COMP_CODE VAL has already been
4213 registered at a basic block that dominates DEST_BB, then
4214 we don't need to insert the same assertion again. Note
4215 that we don't check strict dominance here to avoid
4216 replicating the same assertion inside the same basic
4217 block more than once (e.g., when a pointer is
4218 dereferenced several times inside a block).
4220 An exception to this rule are edge insertions. If the
4221 new assertion is to be inserted on edge E, then it will
4222 dominate all the other insertions that we may want to
4223 insert in DEST_BB. So, if we are doing an edge
4224 insertion, don't do this dominance check. */
4225 if (e == NULL
4226 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
4227 return;
4229 /* Otherwise, if E is not a critical edge and DEST_BB
4230 dominates the existing location for the assertion, move
4231 the assertion up in the dominance tree by updating its
4232 location information. */
4233 if ((e == NULL || !EDGE_CRITICAL_P (e))
4234 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4236 loc->bb = dest_bb;
4237 loc->e = e;
4238 loc->si = si;
4239 return;
4243 /* Update the last node of the list and move to the next one. */
4244 last_loc = loc;
4245 loc = loc->next;
4248 /* If we didn't find an assertion already registered for
4249 NAME COMP_CODE VAL, add a new one at the end of the list of
4250 assertions associated with NAME. */
4251 n = XNEW (struct assert_locus_d);
4252 n->bb = dest_bb;
4253 n->e = e;
4254 n->si = si;
4255 n->comp_code = comp_code;
4256 n->val = val;
4257 n->expr = expr;
4258 n->next = NULL;
4260 if (last_loc)
4261 last_loc->next = n;
4262 else
4263 asserts_for[SSA_NAME_VERSION (name)] = n;
4265 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4268 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4269 Extract a suitable test code and value and store them into *CODE_P and
4270 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4272 If no extraction was possible, return FALSE, otherwise return TRUE.
4274 If INVERT is true, then we invert the result stored into *CODE_P. */
4276 static bool
4277 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4278 tree cond_op0, tree cond_op1,
4279 bool invert, enum tree_code *code_p,
4280 tree *val_p)
4282 enum tree_code comp_code;
4283 tree val;
4285 /* Otherwise, we have a comparison of the form NAME COMP VAL
4286 or VAL COMP NAME. */
4287 if (name == cond_op1)
4289 /* If the predicate is of the form VAL COMP NAME, flip
4290 COMP around because we need to register NAME as the
4291 first operand in the predicate. */
4292 comp_code = swap_tree_comparison (cond_code);
4293 val = cond_op0;
4295 else
4297 /* The comparison is of the form NAME COMP VAL, so the
4298 comparison code remains unchanged. */
4299 comp_code = cond_code;
4300 val = cond_op1;
4303 /* Invert the comparison code as necessary. */
4304 if (invert)
4305 comp_code = invert_tree_comparison (comp_code, 0);
4307 /* VRP does not handle float types. */
4308 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4309 return false;
4311 /* Do not register always-false predicates.
4312 FIXME: this works around a limitation in fold() when dealing with
4313 enumerations. Given 'enum { N1, N2 } x;', fold will not
4314 fold 'if (x > N2)' to 'if (0)'. */
4315 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4316 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4318 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4319 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4321 if (comp_code == GT_EXPR
4322 && (!max
4323 || compare_values (val, max) == 0))
4324 return false;
4326 if (comp_code == LT_EXPR
4327 && (!min
4328 || compare_values (val, min) == 0))
4329 return false;
4331 *code_p = comp_code;
4332 *val_p = val;
4333 return true;
4336 /* Try to register an edge assertion for SSA name NAME on edge E for
4337 the condition COND contributing to the conditional jump pointed to by BSI.
4338 Invert the condition COND if INVERT is true.
4339 Return true if an assertion for NAME could be registered. */
4341 static bool
4342 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4343 enum tree_code cond_code,
4344 tree cond_op0, tree cond_op1, bool invert)
4346 tree val;
4347 enum tree_code comp_code;
4348 bool retval = false;
4350 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4351 cond_op0,
4352 cond_op1,
4353 invert, &comp_code, &val))
4354 return false;
4356 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4357 reachable from E. */
4358 if (live_on_edge (e, name)
4359 && !has_single_use (name))
4361 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4362 retval = true;
4365 /* In the case of NAME <= CST and NAME being defined as
4366 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4367 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4368 This catches range and anti-range tests. */
4369 if ((comp_code == LE_EXPR
4370 || comp_code == GT_EXPR)
4371 && TREE_CODE (val) == INTEGER_CST
4372 && TYPE_UNSIGNED (TREE_TYPE (val)))
4374 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4375 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4377 /* Extract CST2 from the (optional) addition. */
4378 if (is_gimple_assign (def_stmt)
4379 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4381 name2 = gimple_assign_rhs1 (def_stmt);
4382 cst2 = gimple_assign_rhs2 (def_stmt);
4383 if (TREE_CODE (name2) == SSA_NAME
4384 && TREE_CODE (cst2) == INTEGER_CST)
4385 def_stmt = SSA_NAME_DEF_STMT (name2);
4388 /* Extract NAME2 from the (optional) sign-changing cast. */
4389 if (gimple_assign_cast_p (def_stmt))
4391 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4392 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4393 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4394 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4395 name3 = gimple_assign_rhs1 (def_stmt);
4398 /* If name3 is used later, create an ASSERT_EXPR for it. */
4399 if (name3 != NULL_TREE
4400 && TREE_CODE (name3) == SSA_NAME
4401 && (cst2 == NULL_TREE
4402 || TREE_CODE (cst2) == INTEGER_CST)
4403 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4404 && live_on_edge (e, name3)
4405 && !has_single_use (name3))
4407 tree tmp;
4409 /* Build an expression for the range test. */
4410 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4411 if (cst2 != NULL_TREE)
4412 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4414 if (dump_file)
4416 fprintf (dump_file, "Adding assert for ");
4417 print_generic_expr (dump_file, name3, 0);
4418 fprintf (dump_file, " from ");
4419 print_generic_expr (dump_file, tmp, 0);
4420 fprintf (dump_file, "\n");
4423 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4425 retval = true;
4428 /* If name2 is used later, create an ASSERT_EXPR for it. */
4429 if (name2 != NULL_TREE
4430 && TREE_CODE (name2) == SSA_NAME
4431 && TREE_CODE (cst2) == INTEGER_CST
4432 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4433 && live_on_edge (e, name2)
4434 && !has_single_use (name2))
4436 tree tmp;
4438 /* Build an expression for the range test. */
4439 tmp = name2;
4440 if (TREE_TYPE (name) != TREE_TYPE (name2))
4441 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4442 if (cst2 != NULL_TREE)
4443 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4445 if (dump_file)
4447 fprintf (dump_file, "Adding assert for ");
4448 print_generic_expr (dump_file, name2, 0);
4449 fprintf (dump_file, " from ");
4450 print_generic_expr (dump_file, tmp, 0);
4451 fprintf (dump_file, "\n");
4454 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4456 retval = true;
4460 return retval;
4463 /* OP is an operand of a truth value expression which is known to have
4464 a particular value. Register any asserts for OP and for any
4465 operands in OP's defining statement.
4467 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4468 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4470 static bool
4471 register_edge_assert_for_1 (tree op, enum tree_code code,
4472 edge e, gimple_stmt_iterator bsi)
4474 bool retval = false;
4475 gimple op_def;
4476 tree val;
4477 enum tree_code rhs_code;
4479 /* We only care about SSA_NAMEs. */
4480 if (TREE_CODE (op) != SSA_NAME)
4481 return false;
4483 /* We know that OP will have a zero or nonzero value. If OP is used
4484 more than once go ahead and register an assert for OP.
4486 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4487 it will always be set for OP (because OP is used in a COND_EXPR in
4488 the subgraph). */
4489 if (!has_single_use (op))
4491 val = build_int_cst (TREE_TYPE (op), 0);
4492 register_new_assert_for (op, op, code, val, NULL, e, bsi);
4493 retval = true;
4496 /* Now look at how OP is set. If it's set from a comparison,
4497 a truth operation or some bit operations, then we may be able
4498 to register information about the operands of that assignment. */
4499 op_def = SSA_NAME_DEF_STMT (op);
4500 if (gimple_code (op_def) != GIMPLE_ASSIGN)
4501 return retval;
4503 rhs_code = gimple_assign_rhs_code (op_def);
4505 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
4507 bool invert = (code == EQ_EXPR ? true : false);
4508 tree op0 = gimple_assign_rhs1 (op_def);
4509 tree op1 = gimple_assign_rhs2 (op_def);
4511 if (TREE_CODE (op0) == SSA_NAME)
4512 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
4513 invert);
4514 if (TREE_CODE (op1) == SSA_NAME)
4515 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
4516 invert);
4518 else if ((code == NE_EXPR
4519 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
4520 || (code == EQ_EXPR
4521 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
4523 /* Recurse on each operand. */
4524 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4525 code, e, bsi);
4526 retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
4527 code, e, bsi);
4529 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
4530 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
4532 /* Recurse, flipping CODE. */
4533 code = invert_tree_comparison (code, false);
4534 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4535 code, e, bsi);
4537 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
4539 /* Recurse through the copy. */
4540 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4541 code, e, bsi);
4543 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
4545 /* Recurse through the type conversion. */
4546 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4547 code, e, bsi);
4550 return retval;
4553 /* Try to register an edge assertion for SSA name NAME on edge E for
4554 the condition COND contributing to the conditional jump pointed to by SI.
4555 Return true if an assertion for NAME could be registered. */
4557 static bool
4558 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
4559 enum tree_code cond_code, tree cond_op0,
4560 tree cond_op1)
4562 tree val;
4563 enum tree_code comp_code;
4564 bool retval = false;
4565 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
4567 /* Do not attempt to infer anything in names that flow through
4568 abnormal edges. */
4569 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
4570 return false;
4572 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4573 cond_op0, cond_op1,
4574 is_else_edge,
4575 &comp_code, &val))
4576 return false;
4578 /* Register ASSERT_EXPRs for name. */
4579 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
4580 cond_op1, is_else_edge);
4583 /* If COND is effectively an equality test of an SSA_NAME against
4584 the value zero or one, then we may be able to assert values
4585 for SSA_NAMEs which flow into COND. */
4587 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
4588 statement of NAME we can assert both operands of the BIT_AND_EXPR
4589 have nonzero value. */
4590 if (((comp_code == EQ_EXPR && integer_onep (val))
4591 || (comp_code == NE_EXPR && integer_zerop (val))))
4593 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4595 if (is_gimple_assign (def_stmt)
4596 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
4598 tree op0 = gimple_assign_rhs1 (def_stmt);
4599 tree op1 = gimple_assign_rhs2 (def_stmt);
4600 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4601 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
4605 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
4606 statement of NAME we can assert both operands of the BIT_IOR_EXPR
4607 have zero value. */
4608 if (((comp_code == EQ_EXPR && integer_zerop (val))
4609 || (comp_code == NE_EXPR && integer_onep (val))))
4611 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4613 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4614 necessarily zero value, or if type-precision is one. */
4615 if (is_gimple_assign (def_stmt)
4616 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
4617 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
4618 || comp_code == EQ_EXPR)))
4620 tree op0 = gimple_assign_rhs1 (def_stmt);
4621 tree op1 = gimple_assign_rhs2 (def_stmt);
4622 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4623 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4627 return retval;
4631 /* Determine whether the outgoing edges of BB should receive an
4632 ASSERT_EXPR for each of the operands of BB's LAST statement.
4633 The last statement of BB must be a COND_EXPR.
4635 If any of the sub-graphs rooted at BB have an interesting use of
4636 the predicate operands, an assert location node is added to the
4637 list of assertions for the corresponding operands. */
4639 static bool
4640 find_conditional_asserts (basic_block bb, gimple last)
4642 bool need_assert;
4643 gimple_stmt_iterator bsi;
4644 tree op;
4645 edge_iterator ei;
4646 edge e;
4647 ssa_op_iter iter;
4649 need_assert = false;
4650 bsi = gsi_for_stmt (last);
4652 /* Look for uses of the operands in each of the sub-graphs
4653 rooted at BB. We need to check each of the outgoing edges
4654 separately, so that we know what kind of ASSERT_EXPR to
4655 insert. */
4656 FOR_EACH_EDGE (e, ei, bb->succs)
4658 if (e->dest == bb)
4659 continue;
4661 /* Register the necessary assertions for each operand in the
4662 conditional predicate. */
4663 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4665 need_assert |= register_edge_assert_for (op, e, bsi,
4666 gimple_cond_code (last),
4667 gimple_cond_lhs (last),
4668 gimple_cond_rhs (last));
4672 return need_assert;
4675 struct case_info
4677 tree expr;
4678 basic_block bb;
4681 /* Compare two case labels sorting first by the destination bb index
4682 and then by the case value. */
4684 static int
4685 compare_case_labels (const void *p1, const void *p2)
4687 const struct case_info *ci1 = (const struct case_info *) p1;
4688 const struct case_info *ci2 = (const struct case_info *) p2;
4689 int idx1 = ci1->bb->index;
4690 int idx2 = ci2->bb->index;
4692 if (idx1 < idx2)
4693 return -1;
4694 else if (idx1 == idx2)
4696 /* Make sure the default label is first in a group. */
4697 if (!CASE_LOW (ci1->expr))
4698 return -1;
4699 else if (!CASE_LOW (ci2->expr))
4700 return 1;
4701 else
4702 return tree_int_cst_compare (CASE_LOW (ci1->expr),
4703 CASE_LOW (ci2->expr));
4705 else
4706 return 1;
4709 /* Determine whether the outgoing edges of BB should receive an
4710 ASSERT_EXPR for each of the operands of BB's LAST statement.
4711 The last statement of BB must be a SWITCH_EXPR.
4713 If any of the sub-graphs rooted at BB have an interesting use of
4714 the predicate operands, an assert location node is added to the
4715 list of assertions for the corresponding operands. */
4717 static bool
4718 find_switch_asserts (basic_block bb, gimple last)
4720 bool need_assert;
4721 gimple_stmt_iterator bsi;
4722 tree op;
4723 edge e;
4724 struct case_info *ci;
4725 size_t n = gimple_switch_num_labels (last);
4726 #if GCC_VERSION >= 4000
4727 unsigned int idx;
4728 #else
4729 /* Work around GCC 3.4 bug (PR 37086). */
4730 volatile unsigned int idx;
4731 #endif
4733 need_assert = false;
4734 bsi = gsi_for_stmt (last);
4735 op = gimple_switch_index (last);
4736 if (TREE_CODE (op) != SSA_NAME)
4737 return false;
4739 /* Build a vector of case labels sorted by destination label. */
4740 ci = XNEWVEC (struct case_info, n);
4741 for (idx = 0; idx < n; ++idx)
4743 ci[idx].expr = gimple_switch_label (last, idx);
4744 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
4746 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
4748 for (idx = 0; idx < n; ++idx)
4750 tree min, max;
4751 tree cl = ci[idx].expr;
4752 basic_block cbb = ci[idx].bb;
4754 min = CASE_LOW (cl);
4755 max = CASE_HIGH (cl);
4757 /* If there are multiple case labels with the same destination
4758 we need to combine them to a single value range for the edge. */
4759 if (idx + 1 < n && cbb == ci[idx + 1].bb)
4761 /* Skip labels until the last of the group. */
4762 do {
4763 ++idx;
4764 } while (idx < n && cbb == ci[idx].bb);
4765 --idx;
4767 /* Pick up the maximum of the case label range. */
4768 if (CASE_HIGH (ci[idx].expr))
4769 max = CASE_HIGH (ci[idx].expr);
4770 else
4771 max = CASE_LOW (ci[idx].expr);
4774 /* Nothing to do if the range includes the default label until we
4775 can register anti-ranges. */
4776 if (min == NULL_TREE)
4777 continue;
4779 /* Find the edge to register the assert expr on. */
4780 e = find_edge (bb, cbb);
4782 /* Register the necessary assertions for the operand in the
4783 SWITCH_EXPR. */
4784 need_assert |= register_edge_assert_for (op, e, bsi,
4785 max ? GE_EXPR : EQ_EXPR,
4787 fold_convert (TREE_TYPE (op),
4788 min));
4789 if (max)
4791 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4793 fold_convert (TREE_TYPE (op),
4794 max));
4798 XDELETEVEC (ci);
4799 return need_assert;
4803 /* Traverse all the statements in block BB looking for statements that
4804 may generate useful assertions for the SSA names in their operand.
4805 If a statement produces a useful assertion A for name N_i, then the
4806 list of assertions already generated for N_i is scanned to
4807 determine if A is actually needed.
4809 If N_i already had the assertion A at a location dominating the
4810 current location, then nothing needs to be done. Otherwise, the
4811 new location for A is recorded instead.
4813 1- For every statement S in BB, all the variables used by S are
4814 added to bitmap FOUND_IN_SUBGRAPH.
4816 2- If statement S uses an operand N in a way that exposes a known
4817 value range for N, then if N was not already generated by an
4818 ASSERT_EXPR, create a new assert location for N. For instance,
4819 if N is a pointer and the statement dereferences it, we can
4820 assume that N is not NULL.
4822 3- COND_EXPRs are a special case of #2. We can derive range
4823 information from the predicate but need to insert different
4824 ASSERT_EXPRs for each of the sub-graphs rooted at the
4825 conditional block. If the last statement of BB is a conditional
4826 expression of the form 'X op Y', then
4828 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4830 b) If the conditional is the only entry point to the sub-graph
4831 corresponding to the THEN_CLAUSE, recurse into it. On
4832 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4833 an ASSERT_EXPR is added for the corresponding variable.
4835 c) Repeat step (b) on the ELSE_CLAUSE.
4837 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4839 For instance,
4841 if (a == 9)
4842 b = a;
4843 else
4844 b = c + 1;
4846 In this case, an assertion on the THEN clause is useful to
4847 determine that 'a' is always 9 on that edge. However, an assertion
4848 on the ELSE clause would be unnecessary.
4850 4- If BB does not end in a conditional expression, then we recurse
4851 into BB's dominator children.
4853 At the end of the recursive traversal, every SSA name will have a
4854 list of locations where ASSERT_EXPRs should be added. When a new
4855 location for name N is found, it is registered by calling
4856 register_new_assert_for. That function keeps track of all the
4857 registered assertions to prevent adding unnecessary assertions.
4858 For instance, if a pointer P_4 is dereferenced more than once in a
4859 dominator tree, only the location dominating all the dereference of
4860 P_4 will receive an ASSERT_EXPR.
4862 If this function returns true, then it means that there are names
4863 for which we need to generate ASSERT_EXPRs. Those assertions are
4864 inserted by process_assert_insertions. */
4866 static bool
4867 find_assert_locations_1 (basic_block bb, sbitmap live)
4869 gimple_stmt_iterator si;
4870 gimple last;
4871 gimple phi;
4872 bool need_assert;
4874 need_assert = false;
4875 last = last_stmt (bb);
4877 /* If BB's last statement is a conditional statement involving integer
4878 operands, determine if we need to add ASSERT_EXPRs. */
4879 if (last
4880 && gimple_code (last) == GIMPLE_COND
4881 && !fp_predicate (last)
4882 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4883 need_assert |= find_conditional_asserts (bb, last);
4885 /* If BB's last statement is a switch statement involving integer
4886 operands, determine if we need to add ASSERT_EXPRs. */
4887 if (last
4888 && gimple_code (last) == GIMPLE_SWITCH
4889 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4890 need_assert |= find_switch_asserts (bb, last);
4892 /* Traverse all the statements in BB marking used names and looking
4893 for statements that may infer assertions for their used operands. */
4894 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4896 gimple stmt;
4897 tree op;
4898 ssa_op_iter i;
4900 stmt = gsi_stmt (si);
4902 if (is_gimple_debug (stmt))
4903 continue;
4905 /* See if we can derive an assertion for any of STMT's operands. */
4906 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4908 tree value;
4909 enum tree_code comp_code;
4911 /* Mark OP in our live bitmap. */
4912 SET_BIT (live, SSA_NAME_VERSION (op));
4914 /* If OP is used in such a way that we can infer a value
4915 range for it, and we don't find a previous assertion for
4916 it, create a new assertion location node for OP. */
4917 if (infer_value_range (stmt, op, &comp_code, &value))
4919 /* If we are able to infer a nonzero value range for OP,
4920 then walk backwards through the use-def chain to see if OP
4921 was set via a typecast.
4923 If so, then we can also infer a nonzero value range
4924 for the operand of the NOP_EXPR. */
4925 if (comp_code == NE_EXPR && integer_zerop (value))
4927 tree t = op;
4928 gimple def_stmt = SSA_NAME_DEF_STMT (t);
4930 while (is_gimple_assign (def_stmt)
4931 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
4932 && TREE_CODE
4933 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
4934 && POINTER_TYPE_P
4935 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
4937 t = gimple_assign_rhs1 (def_stmt);
4938 def_stmt = SSA_NAME_DEF_STMT (t);
4940 /* Note we want to register the assert for the
4941 operand of the NOP_EXPR after SI, not after the
4942 conversion. */
4943 if (! has_single_use (t))
4945 register_new_assert_for (t, t, comp_code, value,
4946 bb, NULL, si);
4947 need_assert = true;
4952 /* If OP is used only once, namely in this STMT, don't
4953 bother creating an ASSERT_EXPR for it. Such an
4954 ASSERT_EXPR would do nothing but increase compile time. */
4955 if (!has_single_use (op))
4957 register_new_assert_for (op, op, comp_code, value,
4958 bb, NULL, si);
4959 need_assert = true;
4965 /* Traverse all PHI nodes in BB marking used operands. */
4966 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
4968 use_operand_p arg_p;
4969 ssa_op_iter i;
4970 phi = gsi_stmt (si);
4972 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4974 tree arg = USE_FROM_PTR (arg_p);
4975 if (TREE_CODE (arg) == SSA_NAME)
4976 SET_BIT (live, SSA_NAME_VERSION (arg));
4980 return need_assert;
4983 /* Do an RPO walk over the function computing SSA name liveness
4984 on-the-fly and deciding on assert expressions to insert.
4985 Returns true if there are assert expressions to be inserted. */
4987 static bool
4988 find_assert_locations (void)
4990 int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4991 int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4992 int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4993 int rpo_cnt, i;
4994 bool need_asserts;
4996 live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
4997 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
4998 for (i = 0; i < rpo_cnt; ++i)
4999 bb_rpo[rpo[i]] = i;
5001 need_asserts = false;
5002 for (i = rpo_cnt-1; i >= 0; --i)
5004 basic_block bb = BASIC_BLOCK (rpo[i]);
5005 edge e;
5006 edge_iterator ei;
5008 if (!live[rpo[i]])
5010 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
5011 sbitmap_zero (live[rpo[i]]);
5014 /* Process BB and update the live information with uses in
5015 this block. */
5016 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
5018 /* Merge liveness into the predecessor blocks and free it. */
5019 if (!sbitmap_empty_p (live[rpo[i]]))
5021 int pred_rpo = i;
5022 FOR_EACH_EDGE (e, ei, bb->preds)
5024 int pred = e->src->index;
5025 if (e->flags & EDGE_DFS_BACK)
5026 continue;
5028 if (!live[pred])
5030 live[pred] = sbitmap_alloc (num_ssa_names);
5031 sbitmap_zero (live[pred]);
5033 sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
5035 if (bb_rpo[pred] < pred_rpo)
5036 pred_rpo = bb_rpo[pred];
5039 /* Record the RPO number of the last visited block that needs
5040 live information from this block. */
5041 last_rpo[rpo[i]] = pred_rpo;
5043 else
5045 sbitmap_free (live[rpo[i]]);
5046 live[rpo[i]] = NULL;
5049 /* We can free all successors live bitmaps if all their
5050 predecessors have been visited already. */
5051 FOR_EACH_EDGE (e, ei, bb->succs)
5052 if (last_rpo[e->dest->index] == i
5053 && live[e->dest->index])
5055 sbitmap_free (live[e->dest->index]);
5056 live[e->dest->index] = NULL;
5060 XDELETEVEC (rpo);
5061 XDELETEVEC (bb_rpo);
5062 XDELETEVEC (last_rpo);
5063 for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
5064 if (live[i])
5065 sbitmap_free (live[i]);
5066 XDELETEVEC (live);
5068 return need_asserts;
5071 /* Create an ASSERT_EXPR for NAME and insert it in the location
5072 indicated by LOC. Return true if we made any edge insertions. */
5074 static bool
5075 process_assert_insertions_for (tree name, assert_locus_t loc)
5077 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5078 gimple stmt;
5079 tree cond;
5080 gimple assert_stmt;
5081 edge_iterator ei;
5082 edge e;
5084 /* If we have X <=> X do not insert an assert expr for that. */
5085 if (loc->expr == loc->val)
5086 return false;
5088 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
5089 assert_stmt = build_assert_expr_for (cond, name);
5090 if (loc->e)
5092 /* We have been asked to insert the assertion on an edge. This
5093 is used only by COND_EXPR and SWITCH_EXPR assertions. */
5094 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
5095 || (gimple_code (gsi_stmt (loc->si))
5096 == GIMPLE_SWITCH));
5098 gsi_insert_on_edge (loc->e, assert_stmt);
5099 return true;
5102 /* Otherwise, we can insert right after LOC->SI iff the
5103 statement must not be the last statement in the block. */
5104 stmt = gsi_stmt (loc->si);
5105 if (!stmt_ends_bb_p (stmt))
5107 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
5108 return false;
5111 /* If STMT must be the last statement in BB, we can only insert new
5112 assertions on the non-abnormal edge out of BB. Note that since
5113 STMT is not control flow, there may only be one non-abnormal edge
5114 out of BB. */
5115 FOR_EACH_EDGE (e, ei, loc->bb->succs)
5116 if (!(e->flags & EDGE_ABNORMAL))
5118 gsi_insert_on_edge (e, assert_stmt);
5119 return true;
5122 gcc_unreachable ();
5126 /* Process all the insertions registered for every name N_i registered
5127 in NEED_ASSERT_FOR. The list of assertions to be inserted are
5128 found in ASSERTS_FOR[i]. */
5130 static void
5131 process_assert_insertions (void)
5133 unsigned i;
5134 bitmap_iterator bi;
5135 bool update_edges_p = false;
5136 int num_asserts = 0;
5138 if (dump_file && (dump_flags & TDF_DETAILS))
5139 dump_all_asserts (dump_file);
5141 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
5143 assert_locus_t loc = asserts_for[i];
5144 gcc_assert (loc);
5146 while (loc)
5148 assert_locus_t next = loc->next;
5149 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
5150 free (loc);
5151 loc = next;
5152 num_asserts++;
5156 if (update_edges_p)
5157 gsi_commit_edge_inserts ();
5159 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
5160 num_asserts);
5164 /* Traverse the flowgraph looking for conditional jumps to insert range
5165 expressions. These range expressions are meant to provide information
5166 to optimizations that need to reason in terms of value ranges. They
5167 will not be expanded into RTL. For instance, given:
5169 x = ...
5170 y = ...
5171 if (x < y)
5172 y = x - 2;
5173 else
5174 x = y + 3;
5176 this pass will transform the code into:
5178 x = ...
5179 y = ...
5180 if (x < y)
5182 x = ASSERT_EXPR <x, x < y>
5183 y = x - 2
5185 else
5187 y = ASSERT_EXPR <y, x <= y>
5188 x = y + 3
5191 The idea is that once copy and constant propagation have run, other
5192 optimizations will be able to determine what ranges of values can 'x'
5193 take in different paths of the code, simply by checking the reaching
5194 definition of 'x'. */
5196 static void
5197 insert_range_assertions (void)
5199 need_assert_for = BITMAP_ALLOC (NULL);
5200 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
5202 calculate_dominance_info (CDI_DOMINATORS);
5204 if (find_assert_locations ())
5206 process_assert_insertions ();
5207 update_ssa (TODO_update_ssa_no_phi);
5210 if (dump_file && (dump_flags & TDF_DETAILS))
5212 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
5213 dump_function_to_file (current_function_decl, dump_file, dump_flags);
5216 free (asserts_for);
5217 BITMAP_FREE (need_assert_for);
5220 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
5221 and "struct" hacks. If VRP can determine that the
5222 array subscript is a constant, check if it is outside valid
5223 range. If the array subscript is a RANGE, warn if it is
5224 non-overlapping with valid range.
5225 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
5227 static void
5228 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
5230 value_range_t* vr = NULL;
5231 tree low_sub, up_sub;
5232 tree low_bound, up_bound, up_bound_p1;
5233 tree base;
5235 if (TREE_NO_WARNING (ref))
5236 return;
5238 low_sub = up_sub = TREE_OPERAND (ref, 1);
5239 up_bound = array_ref_up_bound (ref);
5241 /* Can not check flexible arrays. */
5242 if (!up_bound
5243 || TREE_CODE (up_bound) != INTEGER_CST)
5244 return;
5246 /* Accesses to trailing arrays via pointers may access storage
5247 beyond the types array bounds. */
5248 base = get_base_address (ref);
5249 if (base && TREE_CODE (base) == MEM_REF)
5251 tree cref, next = NULL_TREE;
5253 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
5254 return;
5256 cref = TREE_OPERAND (ref, 0);
5257 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
5258 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
5259 next && TREE_CODE (next) != FIELD_DECL;
5260 next = DECL_CHAIN (next))
5263 /* If this is the last field in a struct type or a field in a
5264 union type do not warn. */
5265 if (!next)
5266 return;
5269 low_bound = array_ref_low_bound (ref);
5270 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node);
5272 if (TREE_CODE (low_sub) == SSA_NAME)
5274 vr = get_value_range (low_sub);
5275 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
5277 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
5278 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
5282 if (vr && vr->type == VR_ANTI_RANGE)
5284 if (TREE_CODE (up_sub) == INTEGER_CST
5285 && tree_int_cst_lt (up_bound, up_sub)
5286 && TREE_CODE (low_sub) == INTEGER_CST
5287 && tree_int_cst_lt (low_sub, low_bound))
5289 warning_at (location, OPT_Warray_bounds,
5290 "array subscript is outside array bounds");
5291 TREE_NO_WARNING (ref) = 1;
5294 else if (TREE_CODE (up_sub) == INTEGER_CST
5295 && (ignore_off_by_one
5296 ? (tree_int_cst_lt (up_bound, up_sub)
5297 && !tree_int_cst_equal (up_bound_p1, up_sub))
5298 : (tree_int_cst_lt (up_bound, up_sub)
5299 || tree_int_cst_equal (up_bound_p1, up_sub))))
5301 warning_at (location, OPT_Warray_bounds,
5302 "array subscript is above array bounds");
5303 TREE_NO_WARNING (ref) = 1;
5305 else if (TREE_CODE (low_sub) == INTEGER_CST
5306 && tree_int_cst_lt (low_sub, low_bound))
5308 warning_at (location, OPT_Warray_bounds,
5309 "array subscript is below array bounds");
5310 TREE_NO_WARNING (ref) = 1;
5314 /* Searches if the expr T, located at LOCATION computes
5315 address of an ARRAY_REF, and call check_array_ref on it. */
5317 static void
5318 search_for_addr_array (tree t, location_t location)
5320 while (TREE_CODE (t) == SSA_NAME)
5322 gimple g = SSA_NAME_DEF_STMT (t);
5324 if (gimple_code (g) != GIMPLE_ASSIGN)
5325 return;
5327 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
5328 != GIMPLE_SINGLE_RHS)
5329 return;
5331 t = gimple_assign_rhs1 (g);
5335 /* We are only interested in addresses of ARRAY_REF's. */
5336 if (TREE_CODE (t) != ADDR_EXPR)
5337 return;
5339 /* Check each ARRAY_REFs in the reference chain. */
5342 if (TREE_CODE (t) == ARRAY_REF)
5343 check_array_ref (location, t, true /*ignore_off_by_one*/);
5345 t = TREE_OPERAND (t, 0);
5347 while (handled_component_p (t));
5349 if (TREE_CODE (t) == MEM_REF
5350 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
5351 && !TREE_NO_WARNING (t))
5353 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
5354 tree low_bound, up_bound, el_sz;
5355 double_int idx;
5356 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
5357 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
5358 || !TYPE_DOMAIN (TREE_TYPE (tem)))
5359 return;
5361 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5362 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5363 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
5364 if (!low_bound
5365 || TREE_CODE (low_bound) != INTEGER_CST
5366 || !up_bound
5367 || TREE_CODE (up_bound) != INTEGER_CST
5368 || !el_sz
5369 || TREE_CODE (el_sz) != INTEGER_CST)
5370 return;
5372 idx = mem_ref_offset (t);
5373 idx = double_int_sdiv (idx, tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
5374 if (double_int_scmp (idx, double_int_zero) < 0)
5376 warning_at (location, OPT_Warray_bounds,
5377 "array subscript is below array bounds");
5378 TREE_NO_WARNING (t) = 1;
5380 else if (double_int_scmp (idx,
5381 double_int_add
5382 (double_int_add
5383 (tree_to_double_int (up_bound),
5384 double_int_neg
5385 (tree_to_double_int (low_bound))),
5386 double_int_one)) > 0)
5388 warning_at (location, OPT_Warray_bounds,
5389 "array subscript is above array bounds");
5390 TREE_NO_WARNING (t) = 1;
5395 /* walk_tree() callback that checks if *TP is
5396 an ARRAY_REF inside an ADDR_EXPR (in which an array
5397 subscript one outside the valid range is allowed). Call
5398 check_array_ref for each ARRAY_REF found. The location is
5399 passed in DATA. */
5401 static tree
5402 check_array_bounds (tree *tp, int *walk_subtree, void *data)
5404 tree t = *tp;
5405 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5406 location_t location;
5408 if (EXPR_HAS_LOCATION (t))
5409 location = EXPR_LOCATION (t);
5410 else
5412 location_t *locp = (location_t *) wi->info;
5413 location = *locp;
5416 *walk_subtree = TRUE;
5418 if (TREE_CODE (t) == ARRAY_REF)
5419 check_array_ref (location, t, false /*ignore_off_by_one*/);
5421 if (TREE_CODE (t) == MEM_REF
5422 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
5423 search_for_addr_array (TREE_OPERAND (t, 0), location);
5425 if (TREE_CODE (t) == ADDR_EXPR)
5426 *walk_subtree = FALSE;
5428 return NULL_TREE;
5431 /* Walk over all statements of all reachable BBs and call check_array_bounds
5432 on them. */
5434 static void
5435 check_all_array_refs (void)
5437 basic_block bb;
5438 gimple_stmt_iterator si;
5440 FOR_EACH_BB (bb)
5442 edge_iterator ei;
5443 edge e;
5444 bool executable = false;
5446 /* Skip blocks that were found to be unreachable. */
5447 FOR_EACH_EDGE (e, ei, bb->preds)
5448 executable |= !!(e->flags & EDGE_EXECUTABLE);
5449 if (!executable)
5450 continue;
5452 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5454 gimple stmt = gsi_stmt (si);
5455 struct walk_stmt_info wi;
5456 if (!gimple_has_location (stmt))
5457 continue;
5459 if (is_gimple_call (stmt))
5461 size_t i;
5462 size_t n = gimple_call_num_args (stmt);
5463 for (i = 0; i < n; i++)
5465 tree arg = gimple_call_arg (stmt, i);
5466 search_for_addr_array (arg, gimple_location (stmt));
5469 else
5471 memset (&wi, 0, sizeof (wi));
5472 wi.info = CONST_CAST (void *, (const void *)
5473 gimple_location_ptr (stmt));
5475 walk_gimple_op (gsi_stmt (si),
5476 check_array_bounds,
5477 &wi);
5483 /* Convert range assertion expressions into the implied copies and
5484 copy propagate away the copies. Doing the trivial copy propagation
5485 here avoids the need to run the full copy propagation pass after
5486 VRP.
5488 FIXME, this will eventually lead to copy propagation removing the
5489 names that had useful range information attached to them. For
5490 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5491 then N_i will have the range [3, +INF].
5493 However, by converting the assertion into the implied copy
5494 operation N_i = N_j, we will then copy-propagate N_j into the uses
5495 of N_i and lose the range information. We may want to hold on to
5496 ASSERT_EXPRs a little while longer as the ranges could be used in
5497 things like jump threading.
5499 The problem with keeping ASSERT_EXPRs around is that passes after
5500 VRP need to handle them appropriately.
5502 Another approach would be to make the range information a first
5503 class property of the SSA_NAME so that it can be queried from
5504 any pass. This is made somewhat more complex by the need for
5505 multiple ranges to be associated with one SSA_NAME. */
5507 static void
5508 remove_range_assertions (void)
5510 basic_block bb;
5511 gimple_stmt_iterator si;
5513 /* Note that the BSI iterator bump happens at the bottom of the
5514 loop and no bump is necessary if we're removing the statement
5515 referenced by the current BSI. */
5516 FOR_EACH_BB (bb)
5517 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
5519 gimple stmt = gsi_stmt (si);
5520 gimple use_stmt;
5522 if (is_gimple_assign (stmt)
5523 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5525 tree rhs = gimple_assign_rhs1 (stmt);
5526 tree var;
5527 tree cond = fold (ASSERT_EXPR_COND (rhs));
5528 use_operand_p use_p;
5529 imm_use_iterator iter;
5531 gcc_assert (cond != boolean_false_node);
5533 /* Propagate the RHS into every use of the LHS. */
5534 var = ASSERT_EXPR_VAR (rhs);
5535 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
5536 gimple_assign_lhs (stmt))
5537 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5539 SET_USE (use_p, var);
5540 gcc_assert (TREE_CODE (var) == SSA_NAME);
5543 /* And finally, remove the copy, it is not needed. */
5544 gsi_remove (&si, true);
5545 release_defs (stmt);
5547 else
5548 gsi_next (&si);
5553 /* Return true if STMT is interesting for VRP. */
5555 static bool
5556 stmt_interesting_for_vrp (gimple stmt)
5558 if (gimple_code (stmt) == GIMPLE_PHI
5559 && is_gimple_reg (gimple_phi_result (stmt))
5560 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
5561 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
5562 return true;
5563 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5565 tree lhs = gimple_get_lhs (stmt);
5567 /* In general, assignments with virtual operands are not useful
5568 for deriving ranges, with the obvious exception of calls to
5569 builtin functions. */
5570 if (lhs && TREE_CODE (lhs) == SSA_NAME
5571 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5572 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5573 && ((is_gimple_call (stmt)
5574 && gimple_call_fndecl (stmt) != NULL_TREE
5575 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
5576 || !gimple_vuse (stmt)))
5577 return true;
5579 else if (gimple_code (stmt) == GIMPLE_COND
5580 || gimple_code (stmt) == GIMPLE_SWITCH)
5581 return true;
5583 return false;
5587 /* Initialize local data structures for VRP. */
5589 static void
5590 vrp_initialize (void)
5592 basic_block bb;
5594 values_propagated = false;
5595 num_vr_values = num_ssa_names;
5596 vr_value = XCNEWVEC (value_range_t *, num_vr_values);
5597 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
5599 FOR_EACH_BB (bb)
5601 gimple_stmt_iterator si;
5603 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5605 gimple phi = gsi_stmt (si);
5606 if (!stmt_interesting_for_vrp (phi))
5608 tree lhs = PHI_RESULT (phi);
5609 set_value_range_to_varying (get_value_range (lhs));
5610 prop_set_simulate_again (phi, false);
5612 else
5613 prop_set_simulate_again (phi, true);
5616 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5618 gimple stmt = gsi_stmt (si);
5620 /* If the statement is a control insn, then we do not
5621 want to avoid simulating the statement once. Failure
5622 to do so means that those edges will never get added. */
5623 if (stmt_ends_bb_p (stmt))
5624 prop_set_simulate_again (stmt, true);
5625 else if (!stmt_interesting_for_vrp (stmt))
5627 ssa_op_iter i;
5628 tree def;
5629 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
5630 set_value_range_to_varying (get_value_range (def));
5631 prop_set_simulate_again (stmt, false);
5633 else
5634 prop_set_simulate_again (stmt, true);
5639 /* Return the singleton value-range for NAME or NAME. */
5641 static inline tree
5642 vrp_valueize (tree name)
5644 if (TREE_CODE (name) == SSA_NAME)
5646 value_range_t *vr = get_value_range (name);
5647 if (vr->type == VR_RANGE
5648 && (vr->min == vr->max
5649 || operand_equal_p (vr->min, vr->max, 0)))
5650 return vr->min;
5652 return name;
5655 /* Visit assignment STMT. If it produces an interesting range, record
5656 the SSA name in *OUTPUT_P. */
5658 static enum ssa_prop_result
5659 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
5661 tree def, lhs;
5662 ssa_op_iter iter;
5663 enum gimple_code code = gimple_code (stmt);
5664 lhs = gimple_get_lhs (stmt);
5666 /* We only keep track of ranges in integral and pointer types. */
5667 if (TREE_CODE (lhs) == SSA_NAME
5668 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5669 /* It is valid to have NULL MIN/MAX values on a type. See
5670 build_range_type. */
5671 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
5672 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
5673 || POINTER_TYPE_P (TREE_TYPE (lhs))))
5675 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5677 /* Try folding the statement to a constant first. */
5678 tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
5679 if (tem && !is_overflow_infinity (tem))
5680 set_value_range (&new_vr, VR_RANGE, tem, tem, NULL);
5681 /* Then dispatch to value-range extracting functions. */
5682 else if (code == GIMPLE_CALL)
5683 extract_range_basic (&new_vr, stmt);
5684 else
5685 extract_range_from_assignment (&new_vr, stmt);
5687 if (update_value_range (lhs, &new_vr))
5689 *output_p = lhs;
5691 if (dump_file && (dump_flags & TDF_DETAILS))
5693 fprintf (dump_file, "Found new range for ");
5694 print_generic_expr (dump_file, lhs, 0);
5695 fprintf (dump_file, ": ");
5696 dump_value_range (dump_file, &new_vr);
5697 fprintf (dump_file, "\n\n");
5700 if (new_vr.type == VR_VARYING)
5701 return SSA_PROP_VARYING;
5703 return SSA_PROP_INTERESTING;
5706 return SSA_PROP_NOT_INTERESTING;
5709 /* Every other statement produces no useful ranges. */
5710 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5711 set_value_range_to_varying (get_value_range (def));
5713 return SSA_PROP_VARYING;
5716 /* Helper that gets the value range of the SSA_NAME with version I
5717 or a symbolic range containing the SSA_NAME only if the value range
5718 is varying or undefined. */
5720 static inline value_range_t
5721 get_vr_for_comparison (int i)
5723 value_range_t vr = *get_value_range (ssa_name (i));
5725 /* If name N_i does not have a valid range, use N_i as its own
5726 range. This allows us to compare against names that may
5727 have N_i in their ranges. */
5728 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5730 vr.type = VR_RANGE;
5731 vr.min = ssa_name (i);
5732 vr.max = ssa_name (i);
5735 return vr;
5738 /* Compare all the value ranges for names equivalent to VAR with VAL
5739 using comparison code COMP. Return the same value returned by
5740 compare_range_with_value, including the setting of
5741 *STRICT_OVERFLOW_P. */
5743 static tree
5744 compare_name_with_value (enum tree_code comp, tree var, tree val,
5745 bool *strict_overflow_p)
5747 bitmap_iterator bi;
5748 unsigned i;
5749 bitmap e;
5750 tree retval, t;
5751 int used_strict_overflow;
5752 bool sop;
5753 value_range_t equiv_vr;
5755 /* Get the set of equivalences for VAR. */
5756 e = get_value_range (var)->equiv;
5758 /* Start at -1. Set it to 0 if we do a comparison without relying
5759 on overflow, or 1 if all comparisons rely on overflow. */
5760 used_strict_overflow = -1;
5762 /* Compare vars' value range with val. */
5763 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5764 sop = false;
5765 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
5766 if (retval)
5767 used_strict_overflow = sop ? 1 : 0;
5769 /* If the equiv set is empty we have done all work we need to do. */
5770 if (e == NULL)
5772 if (retval
5773 && used_strict_overflow > 0)
5774 *strict_overflow_p = true;
5775 return retval;
5778 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5780 equiv_vr = get_vr_for_comparison (i);
5781 sop = false;
5782 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
5783 if (t)
5785 /* If we get different answers from different members
5786 of the equivalence set this check must be in a dead
5787 code region. Folding it to a trap representation
5788 would be correct here. For now just return don't-know. */
5789 if (retval != NULL
5790 && t != retval)
5792 retval = NULL_TREE;
5793 break;
5795 retval = t;
5797 if (!sop)
5798 used_strict_overflow = 0;
5799 else if (used_strict_overflow < 0)
5800 used_strict_overflow = 1;
5804 if (retval
5805 && used_strict_overflow > 0)
5806 *strict_overflow_p = true;
5808 return retval;
5812 /* Given a comparison code COMP and names N1 and N2, compare all the
5813 ranges equivalent to N1 against all the ranges equivalent to N2
5814 to determine the value of N1 COMP N2. Return the same value
5815 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5816 whether we relied on an overflow infinity in the comparison. */
5819 static tree
5820 compare_names (enum tree_code comp, tree n1, tree n2,
5821 bool *strict_overflow_p)
5823 tree t, retval;
5824 bitmap e1, e2;
5825 bitmap_iterator bi1, bi2;
5826 unsigned i1, i2;
5827 int used_strict_overflow;
5828 static bitmap_obstack *s_obstack = NULL;
5829 static bitmap s_e1 = NULL, s_e2 = NULL;
5831 /* Compare the ranges of every name equivalent to N1 against the
5832 ranges of every name equivalent to N2. */
5833 e1 = get_value_range (n1)->equiv;
5834 e2 = get_value_range (n2)->equiv;
5836 /* Use the fake bitmaps if e1 or e2 are not available. */
5837 if (s_obstack == NULL)
5839 s_obstack = XNEW (bitmap_obstack);
5840 bitmap_obstack_initialize (s_obstack);
5841 s_e1 = BITMAP_ALLOC (s_obstack);
5842 s_e2 = BITMAP_ALLOC (s_obstack);
5844 if (e1 == NULL)
5845 e1 = s_e1;
5846 if (e2 == NULL)
5847 e2 = s_e2;
5849 /* Add N1 and N2 to their own set of equivalences to avoid
5850 duplicating the body of the loop just to check N1 and N2
5851 ranges. */
5852 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5853 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5855 /* If the equivalence sets have a common intersection, then the two
5856 names can be compared without checking their ranges. */
5857 if (bitmap_intersect_p (e1, e2))
5859 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5860 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5862 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5863 ? boolean_true_node
5864 : boolean_false_node;
5867 /* Start at -1. Set it to 0 if we do a comparison without relying
5868 on overflow, or 1 if all comparisons rely on overflow. */
5869 used_strict_overflow = -1;
5871 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5872 N2 to their own set of equivalences to avoid duplicating the body
5873 of the loop just to check N1 and N2 ranges. */
5874 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5876 value_range_t vr1 = get_vr_for_comparison (i1);
5878 t = retval = NULL_TREE;
5879 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5881 bool sop = false;
5883 value_range_t vr2 = get_vr_for_comparison (i2);
5885 t = compare_ranges (comp, &vr1, &vr2, &sop);
5886 if (t)
5888 /* If we get different answers from different members
5889 of the equivalence set this check must be in a dead
5890 code region. Folding it to a trap representation
5891 would be correct here. For now just return don't-know. */
5892 if (retval != NULL
5893 && t != retval)
5895 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5896 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5897 return NULL_TREE;
5899 retval = t;
5901 if (!sop)
5902 used_strict_overflow = 0;
5903 else if (used_strict_overflow < 0)
5904 used_strict_overflow = 1;
5908 if (retval)
5910 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5911 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5912 if (used_strict_overflow > 0)
5913 *strict_overflow_p = true;
5914 return retval;
5918 /* None of the equivalent ranges are useful in computing this
5919 comparison. */
5920 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5921 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5922 return NULL_TREE;
5925 /* Helper function for vrp_evaluate_conditional_warnv. */
5927 static tree
5928 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
5929 tree op0, tree op1,
5930 bool * strict_overflow_p)
5932 value_range_t *vr0, *vr1;
5934 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5935 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5937 if (vr0 && vr1)
5938 return compare_ranges (code, vr0, vr1, strict_overflow_p);
5939 else if (vr0 && vr1 == NULL)
5940 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
5941 else if (vr0 == NULL && vr1)
5942 return (compare_range_with_value
5943 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
5944 return NULL;
5947 /* Helper function for vrp_evaluate_conditional_warnv. */
5949 static tree
5950 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5951 tree op1, bool use_equiv_p,
5952 bool *strict_overflow_p, bool *only_ranges)
5954 tree ret;
5955 if (only_ranges)
5956 *only_ranges = true;
5958 /* We only deal with integral and pointer types. */
5959 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5960 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5961 return NULL_TREE;
5963 if (use_equiv_p)
5965 if (only_ranges
5966 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
5967 (code, op0, op1, strict_overflow_p)))
5968 return ret;
5969 *only_ranges = false;
5970 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
5971 return compare_names (code, op0, op1, strict_overflow_p);
5972 else if (TREE_CODE (op0) == SSA_NAME)
5973 return compare_name_with_value (code, op0, op1, strict_overflow_p);
5974 else if (TREE_CODE (op1) == SSA_NAME)
5975 return (compare_name_with_value
5976 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
5978 else
5979 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
5980 strict_overflow_p);
5981 return NULL_TREE;
5984 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5985 information. Return NULL if the conditional can not be evaluated.
5986 The ranges of all the names equivalent with the operands in COND
5987 will be used when trying to compute the value. If the result is
5988 based on undefined signed overflow, issue a warning if
5989 appropriate. */
5991 static tree
5992 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
5994 bool sop;
5995 tree ret;
5996 bool only_ranges;
5998 /* Some passes and foldings leak constants with overflow flag set
5999 into the IL. Avoid doing wrong things with these and bail out. */
6000 if ((TREE_CODE (op0) == INTEGER_CST
6001 && TREE_OVERFLOW (op0))
6002 || (TREE_CODE (op1) == INTEGER_CST
6003 && TREE_OVERFLOW (op1)))
6004 return NULL_TREE;
6006 sop = false;
6007 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
6008 &only_ranges);
6010 if (ret && sop)
6012 enum warn_strict_overflow_code wc;
6013 const char* warnmsg;
6015 if (is_gimple_min_invariant (ret))
6017 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
6018 warnmsg = G_("assuming signed overflow does not occur when "
6019 "simplifying conditional to constant");
6021 else
6023 wc = WARN_STRICT_OVERFLOW_COMPARISON;
6024 warnmsg = G_("assuming signed overflow does not occur when "
6025 "simplifying conditional");
6028 if (issue_strict_overflow_warning (wc))
6030 location_t location;
6032 if (!gimple_has_location (stmt))
6033 location = input_location;
6034 else
6035 location = gimple_location (stmt);
6036 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
6040 if (warn_type_limits
6041 && ret && only_ranges
6042 && TREE_CODE_CLASS (code) == tcc_comparison
6043 && TREE_CODE (op0) == SSA_NAME)
6045 /* If the comparison is being folded and the operand on the LHS
6046 is being compared against a constant value that is outside of
6047 the natural range of OP0's type, then the predicate will
6048 always fold regardless of the value of OP0. If -Wtype-limits
6049 was specified, emit a warning. */
6050 tree type = TREE_TYPE (op0);
6051 value_range_t *vr0 = get_value_range (op0);
6053 if (vr0->type != VR_VARYING
6054 && INTEGRAL_TYPE_P (type)
6055 && vrp_val_is_min (vr0->min)
6056 && vrp_val_is_max (vr0->max)
6057 && is_gimple_min_invariant (op1))
6059 location_t location;
6061 if (!gimple_has_location (stmt))
6062 location = input_location;
6063 else
6064 location = gimple_location (stmt);
6066 warning_at (location, OPT_Wtype_limits,
6067 integer_zerop (ret)
6068 ? G_("comparison always false "
6069 "due to limited range of data type")
6070 : G_("comparison always true "
6071 "due to limited range of data type"));
6075 return ret;
6079 /* Visit conditional statement STMT. If we can determine which edge
6080 will be taken out of STMT's basic block, record it in
6081 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6082 SSA_PROP_VARYING. */
6084 static enum ssa_prop_result
6085 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
6087 tree val;
6088 bool sop;
6090 *taken_edge_p = NULL;
6092 if (dump_file && (dump_flags & TDF_DETAILS))
6094 tree use;
6095 ssa_op_iter i;
6097 fprintf (dump_file, "\nVisiting conditional with predicate: ");
6098 print_gimple_stmt (dump_file, stmt, 0, 0);
6099 fprintf (dump_file, "\nWith known ranges\n");
6101 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
6103 fprintf (dump_file, "\t");
6104 print_generic_expr (dump_file, use, 0);
6105 fprintf (dump_file, ": ");
6106 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
6109 fprintf (dump_file, "\n");
6112 /* Compute the value of the predicate COND by checking the known
6113 ranges of each of its operands.
6115 Note that we cannot evaluate all the equivalent ranges here
6116 because those ranges may not yet be final and with the current
6117 propagation strategy, we cannot determine when the value ranges
6118 of the names in the equivalence set have changed.
6120 For instance, given the following code fragment
6122 i_5 = PHI <8, i_13>
6124 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
6125 if (i_14 == 1)
6128 Assume that on the first visit to i_14, i_5 has the temporary
6129 range [8, 8] because the second argument to the PHI function is
6130 not yet executable. We derive the range ~[0, 0] for i_14 and the
6131 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
6132 the first time, since i_14 is equivalent to the range [8, 8], we
6133 determine that the predicate is always false.
6135 On the next round of propagation, i_13 is determined to be
6136 VARYING, which causes i_5 to drop down to VARYING. So, another
6137 visit to i_14 is scheduled. In this second visit, we compute the
6138 exact same range and equivalence set for i_14, namely ~[0, 0] and
6139 { i_5 }. But we did not have the previous range for i_5
6140 registered, so vrp_visit_assignment thinks that the range for
6141 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
6142 is not visited again, which stops propagation from visiting
6143 statements in the THEN clause of that if().
6145 To properly fix this we would need to keep the previous range
6146 value for the names in the equivalence set. This way we would've
6147 discovered that from one visit to the other i_5 changed from
6148 range [8, 8] to VR_VARYING.
6150 However, fixing this apparent limitation may not be worth the
6151 additional checking. Testing on several code bases (GCC, DLV,
6152 MICO, TRAMP3D and SPEC2000) showed that doing this results in
6153 4 more predicates folded in SPEC. */
6154 sop = false;
6156 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
6157 gimple_cond_lhs (stmt),
6158 gimple_cond_rhs (stmt),
6159 false, &sop, NULL);
6160 if (val)
6162 if (!sop)
6163 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
6164 else
6166 if (dump_file && (dump_flags & TDF_DETAILS))
6167 fprintf (dump_file,
6168 "\nIgnoring predicate evaluation because "
6169 "it assumes that signed overflow is undefined");
6170 val = NULL_TREE;
6174 if (dump_file && (dump_flags & TDF_DETAILS))
6176 fprintf (dump_file, "\nPredicate evaluates to: ");
6177 if (val == NULL_TREE)
6178 fprintf (dump_file, "DON'T KNOW\n");
6179 else
6180 print_generic_stmt (dump_file, val, 0);
6183 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
6186 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
6187 that includes the value VAL. The search is restricted to the range
6188 [START_IDX, n - 1] where n is the size of VEC.
6190 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
6191 returned.
6193 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
6194 it is placed in IDX and false is returned.
6196 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
6197 returned. */
6199 static bool
6200 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
6202 size_t n = gimple_switch_num_labels (stmt);
6203 size_t low, high;
6205 /* Find case label for minimum of the value range or the next one.
6206 At each iteration we are searching in [low, high - 1]. */
6208 for (low = start_idx, high = n; high != low; )
6210 tree t;
6211 int cmp;
6212 /* Note that i != high, so we never ask for n. */
6213 size_t i = (high + low) / 2;
6214 t = gimple_switch_label (stmt, i);
6216 /* Cache the result of comparing CASE_LOW and val. */
6217 cmp = tree_int_cst_compare (CASE_LOW (t), val);
6219 if (cmp == 0)
6221 /* Ranges cannot be empty. */
6222 *idx = i;
6223 return true;
6225 else if (cmp > 0)
6226 high = i;
6227 else
6229 low = i + 1;
6230 if (CASE_HIGH (t) != NULL
6231 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
6233 *idx = i;
6234 return true;
6239 *idx = high;
6240 return false;
6243 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
6244 for values between MIN and MAX. The first index is placed in MIN_IDX. The
6245 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
6246 then MAX_IDX < MIN_IDX.
6247 Returns true if the default label is not needed. */
6249 static bool
6250 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
6251 size_t *max_idx)
6253 size_t i, j;
6254 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
6255 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
6257 if (i == j
6258 && min_take_default
6259 && max_take_default)
6261 /* Only the default case label reached.
6262 Return an empty range. */
6263 *min_idx = 1;
6264 *max_idx = 0;
6265 return false;
6267 else
6269 bool take_default = min_take_default || max_take_default;
6270 tree low, high;
6271 size_t k;
6273 if (max_take_default)
6274 j--;
6276 /* If the case label range is continuous, we do not need
6277 the default case label. Verify that. */
6278 high = CASE_LOW (gimple_switch_label (stmt, i));
6279 if (CASE_HIGH (gimple_switch_label (stmt, i)))
6280 high = CASE_HIGH (gimple_switch_label (stmt, i));
6281 for (k = i + 1; k <= j; ++k)
6283 low = CASE_LOW (gimple_switch_label (stmt, k));
6284 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
6286 take_default = true;
6287 break;
6289 high = low;
6290 if (CASE_HIGH (gimple_switch_label (stmt, k)))
6291 high = CASE_HIGH (gimple_switch_label (stmt, k));
6294 *min_idx = i;
6295 *max_idx = j;
6296 return !take_default;
6300 /* Visit switch statement STMT. If we can determine which edge
6301 will be taken out of STMT's basic block, record it in
6302 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6303 SSA_PROP_VARYING. */
6305 static enum ssa_prop_result
6306 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
6308 tree op, val;
6309 value_range_t *vr;
6310 size_t i = 0, j = 0;
6311 bool take_default;
6313 *taken_edge_p = NULL;
6314 op = gimple_switch_index (stmt);
6315 if (TREE_CODE (op) != SSA_NAME)
6316 return SSA_PROP_VARYING;
6318 vr = get_value_range (op);
6319 if (dump_file && (dump_flags & TDF_DETAILS))
6321 fprintf (dump_file, "\nVisiting switch expression with operand ");
6322 print_generic_expr (dump_file, op, 0);
6323 fprintf (dump_file, " with known range ");
6324 dump_value_range (dump_file, vr);
6325 fprintf (dump_file, "\n");
6328 if (vr->type != VR_RANGE
6329 || symbolic_range_p (vr))
6330 return SSA_PROP_VARYING;
6332 /* Find the single edge that is taken from the switch expression. */
6333 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6335 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6336 label */
6337 if (j < i)
6339 gcc_assert (take_default);
6340 val = gimple_switch_default_label (stmt);
6342 else
6344 /* Check if labels with index i to j and maybe the default label
6345 are all reaching the same label. */
6347 val = gimple_switch_label (stmt, i);
6348 if (take_default
6349 && CASE_LABEL (gimple_switch_default_label (stmt))
6350 != CASE_LABEL (val))
6352 if (dump_file && (dump_flags & TDF_DETAILS))
6353 fprintf (dump_file, " not a single destination for this "
6354 "range\n");
6355 return SSA_PROP_VARYING;
6357 for (++i; i <= j; ++i)
6359 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
6361 if (dump_file && (dump_flags & TDF_DETAILS))
6362 fprintf (dump_file, " not a single destination for this "
6363 "range\n");
6364 return SSA_PROP_VARYING;
6369 *taken_edge_p = find_edge (gimple_bb (stmt),
6370 label_to_block (CASE_LABEL (val)));
6372 if (dump_file && (dump_flags & TDF_DETAILS))
6374 fprintf (dump_file, " will take edge to ");
6375 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
6378 return SSA_PROP_INTERESTING;
6382 /* Evaluate statement STMT. If the statement produces a useful range,
6383 return SSA_PROP_INTERESTING and record the SSA name with the
6384 interesting range into *OUTPUT_P.
6386 If STMT is a conditional branch and we can determine its truth
6387 value, the taken edge is recorded in *TAKEN_EDGE_P.
6389 If STMT produces a varying value, return SSA_PROP_VARYING. */
6391 static enum ssa_prop_result
6392 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
6394 tree def;
6395 ssa_op_iter iter;
6397 if (dump_file && (dump_flags & TDF_DETAILS))
6399 fprintf (dump_file, "\nVisiting statement:\n");
6400 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
6401 fprintf (dump_file, "\n");
6404 if (!stmt_interesting_for_vrp (stmt))
6405 gcc_assert (stmt_ends_bb_p (stmt));
6406 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6408 /* In general, assignments with virtual operands are not useful
6409 for deriving ranges, with the obvious exception of calls to
6410 builtin functions. */
6411 if ((is_gimple_call (stmt)
6412 && gimple_call_fndecl (stmt) != NULL_TREE
6413 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
6414 || !gimple_vuse (stmt))
6415 return vrp_visit_assignment_or_call (stmt, output_p);
6417 else if (gimple_code (stmt) == GIMPLE_COND)
6418 return vrp_visit_cond_stmt (stmt, taken_edge_p);
6419 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6420 return vrp_visit_switch_stmt (stmt, taken_edge_p);
6422 /* All other statements produce nothing of interest for VRP, so mark
6423 their outputs varying and prevent further simulation. */
6424 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6425 set_value_range_to_varying (get_value_range (def));
6427 return SSA_PROP_VARYING;
6431 /* Meet operation for value ranges. Given two value ranges VR0 and
6432 VR1, store in VR0 a range that contains both VR0 and VR1. This
6433 may not be the smallest possible such range. */
6435 static void
6436 vrp_meet (value_range_t *vr0, value_range_t *vr1)
6438 if (vr0->type == VR_UNDEFINED)
6440 copy_value_range (vr0, vr1);
6441 return;
6444 if (vr1->type == VR_UNDEFINED)
6446 /* Nothing to do. VR0 already has the resulting range. */
6447 return;
6450 if (vr0->type == VR_VARYING)
6452 /* Nothing to do. VR0 already has the resulting range. */
6453 return;
6456 if (vr1->type == VR_VARYING)
6458 set_value_range_to_varying (vr0);
6459 return;
6462 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
6464 int cmp;
6465 tree min, max;
6467 /* Compute the convex hull of the ranges. The lower limit of
6468 the new range is the minimum of the two ranges. If they
6469 cannot be compared, then give up. */
6470 cmp = compare_values (vr0->min, vr1->min);
6471 if (cmp == 0 || cmp == 1)
6472 min = vr1->min;
6473 else if (cmp == -1)
6474 min = vr0->min;
6475 else
6476 goto give_up;
6478 /* Similarly, the upper limit of the new range is the maximum
6479 of the two ranges. If they cannot be compared, then
6480 give up. */
6481 cmp = compare_values (vr0->max, vr1->max);
6482 if (cmp == 0 || cmp == -1)
6483 max = vr1->max;
6484 else if (cmp == 1)
6485 max = vr0->max;
6486 else
6487 goto give_up;
6489 /* Check for useless ranges. */
6490 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
6491 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
6492 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
6493 goto give_up;
6495 /* The resulting set of equivalences is the intersection of
6496 the two sets. */
6497 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6498 bitmap_and_into (vr0->equiv, vr1->equiv);
6499 else if (vr0->equiv && !vr1->equiv)
6500 bitmap_clear (vr0->equiv);
6502 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
6504 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
6506 /* Two anti-ranges meet only if their complements intersect.
6507 Only handle the case of identical ranges. */
6508 if (compare_values (vr0->min, vr1->min) == 0
6509 && compare_values (vr0->max, vr1->max) == 0
6510 && compare_values (vr0->min, vr0->max) == 0)
6512 /* The resulting set of equivalences is the intersection of
6513 the two sets. */
6514 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6515 bitmap_and_into (vr0->equiv, vr1->equiv);
6516 else if (vr0->equiv && !vr1->equiv)
6517 bitmap_clear (vr0->equiv);
6519 else
6520 goto give_up;
6522 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
6524 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6525 only handle the case where the ranges have an empty intersection.
6526 The result of the meet operation is the anti-range. */
6527 if (!symbolic_range_p (vr0)
6528 && !symbolic_range_p (vr1)
6529 && !value_ranges_intersect_p (vr0, vr1))
6531 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6532 set. We need to compute the intersection of the two
6533 equivalence sets. */
6534 if (vr1->type == VR_ANTI_RANGE)
6535 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
6537 /* The resulting set of equivalences is the intersection of
6538 the two sets. */
6539 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6540 bitmap_and_into (vr0->equiv, vr1->equiv);
6541 else if (vr0->equiv && !vr1->equiv)
6542 bitmap_clear (vr0->equiv);
6544 else
6545 goto give_up;
6547 else
6548 gcc_unreachable ();
6550 return;
6552 give_up:
6553 /* Failed to find an efficient meet. Before giving up and setting
6554 the result to VARYING, see if we can at least derive a useful
6555 anti-range. FIXME, all this nonsense about distinguishing
6556 anti-ranges from ranges is necessary because of the odd
6557 semantics of range_includes_zero_p and friends. */
6558 if (!symbolic_range_p (vr0)
6559 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
6560 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
6561 && !symbolic_range_p (vr1)
6562 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
6563 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
6565 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
6567 /* Since this meet operation did not result from the meeting of
6568 two equivalent names, VR0 cannot have any equivalences. */
6569 if (vr0->equiv)
6570 bitmap_clear (vr0->equiv);
6572 else
6573 set_value_range_to_varying (vr0);
6577 /* Visit all arguments for PHI node PHI that flow through executable
6578 edges. If a valid value range can be derived from all the incoming
6579 value ranges, set a new range for the LHS of PHI. */
6581 static enum ssa_prop_result
6582 vrp_visit_phi_node (gimple phi)
6584 size_t i;
6585 tree lhs = PHI_RESULT (phi);
6586 value_range_t *lhs_vr = get_value_range (lhs);
6587 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6588 int edges, old_edges;
6589 struct loop *l;
6591 if (dump_file && (dump_flags & TDF_DETAILS))
6593 fprintf (dump_file, "\nVisiting PHI node: ");
6594 print_gimple_stmt (dump_file, phi, 0, dump_flags);
6597 edges = 0;
6598 for (i = 0; i < gimple_phi_num_args (phi); i++)
6600 edge e = gimple_phi_arg_edge (phi, i);
6602 if (dump_file && (dump_flags & TDF_DETAILS))
6604 fprintf (dump_file,
6605 "\n Argument #%d (%d -> %d %sexecutable)\n",
6606 (int) i, e->src->index, e->dest->index,
6607 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
6610 if (e->flags & EDGE_EXECUTABLE)
6612 tree arg = PHI_ARG_DEF (phi, i);
6613 value_range_t vr_arg;
6615 ++edges;
6617 if (TREE_CODE (arg) == SSA_NAME)
6619 vr_arg = *(get_value_range (arg));
6621 else
6623 if (is_overflow_infinity (arg))
6625 arg = copy_node (arg);
6626 TREE_OVERFLOW (arg) = 0;
6629 vr_arg.type = VR_RANGE;
6630 vr_arg.min = arg;
6631 vr_arg.max = arg;
6632 vr_arg.equiv = NULL;
6635 if (dump_file && (dump_flags & TDF_DETAILS))
6637 fprintf (dump_file, "\t");
6638 print_generic_expr (dump_file, arg, dump_flags);
6639 fprintf (dump_file, "\n\tValue: ");
6640 dump_value_range (dump_file, &vr_arg);
6641 fprintf (dump_file, "\n");
6644 vrp_meet (&vr_result, &vr_arg);
6646 if (vr_result.type == VR_VARYING)
6647 break;
6651 if (vr_result.type == VR_VARYING)
6652 goto varying;
6653 else if (vr_result.type == VR_UNDEFINED)
6654 goto update_range;
6656 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
6657 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
6659 /* To prevent infinite iterations in the algorithm, derive ranges
6660 when the new value is slightly bigger or smaller than the
6661 previous one. We don't do this if we have seen a new executable
6662 edge; this helps us avoid an overflow infinity for conditionals
6663 which are not in a loop. */
6664 if (edges > 0
6665 && gimple_phi_num_args (phi) > 1
6666 && edges == old_edges)
6668 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
6669 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
6671 /* For non VR_RANGE or for pointers fall back to varying if
6672 the range changed. */
6673 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
6674 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6675 && (cmp_min != 0 || cmp_max != 0))
6676 goto varying;
6678 /* If the new minimum is smaller or larger than the previous
6679 one, go all the way to -INF. In the first case, to avoid
6680 iterating millions of times to reach -INF, and in the
6681 other case to avoid infinite bouncing between different
6682 minimums. */
6683 if (cmp_min > 0 || cmp_min < 0)
6685 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
6686 || !vrp_var_may_overflow (lhs, phi))
6687 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
6688 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
6689 vr_result.min =
6690 negative_overflow_infinity (TREE_TYPE (vr_result.min));
6693 /* Similarly, if the new maximum is smaller or larger than
6694 the previous one, go all the way to +INF. */
6695 if (cmp_max < 0 || cmp_max > 0)
6697 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6698 || !vrp_var_may_overflow (lhs, phi))
6699 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6700 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6701 vr_result.max =
6702 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6705 /* If we dropped either bound to +-INF then if this is a loop
6706 PHI node SCEV may known more about its value-range. */
6707 if ((cmp_min > 0 || cmp_min < 0
6708 || cmp_max < 0 || cmp_max > 0)
6709 && current_loops
6710 && (l = loop_containing_stmt (phi))
6711 && l->header == gimple_bb (phi))
6712 adjust_range_with_scev (&vr_result, l, phi, lhs);
6714 /* If we will end up with a (-INF, +INF) range, set it to
6715 VARYING. Same if the previous max value was invalid for
6716 the type and we end up with vr_result.min > vr_result.max. */
6717 if ((vrp_val_is_max (vr_result.max)
6718 && vrp_val_is_min (vr_result.min))
6719 || compare_values (vr_result.min,
6720 vr_result.max) > 0)
6721 goto varying;
6724 /* If the new range is different than the previous value, keep
6725 iterating. */
6726 update_range:
6727 if (update_value_range (lhs, &vr_result))
6729 if (dump_file && (dump_flags & TDF_DETAILS))
6731 fprintf (dump_file, "Found new range for ");
6732 print_generic_expr (dump_file, lhs, 0);
6733 fprintf (dump_file, ": ");
6734 dump_value_range (dump_file, &vr_result);
6735 fprintf (dump_file, "\n\n");
6738 return SSA_PROP_INTERESTING;
6741 /* Nothing changed, don't add outgoing edges. */
6742 return SSA_PROP_NOT_INTERESTING;
6744 /* No match found. Set the LHS to VARYING. */
6745 varying:
6746 set_value_range_to_varying (lhs_vr);
6747 return SSA_PROP_VARYING;
6750 /* Simplify boolean operations if the source is known
6751 to be already a boolean. */
6752 static bool
6753 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6755 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6756 tree val = NULL;
6757 tree op0, op1;
6758 value_range_t *vr;
6759 bool sop = false;
6760 bool need_conversion;
6762 /* We handle only !=/== case here. */
6763 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
6765 op0 = gimple_assign_rhs1 (stmt);
6766 if (TYPE_PRECISION (TREE_TYPE (op0)) != 1)
6768 if (TREE_CODE (op0) != SSA_NAME)
6769 return false;
6770 vr = get_value_range (op0);
6772 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6773 if (!val || !integer_onep (val))
6774 return false;
6776 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6777 if (!val || !integer_onep (val))
6778 return false;
6781 op1 = gimple_assign_rhs2 (stmt);
6783 /* Reduce number of cases to handle. */
6784 if (is_gimple_min_invariant (op1))
6786 if (!integer_zerop (op1)
6787 && !integer_onep (op1)
6788 && !integer_all_onesp (op1))
6789 return false;
6791 /* Limit the number of cases we have to consider. */
6792 if (rhs_code == EQ_EXPR)
6794 rhs_code = NE_EXPR;
6795 /* OP1 is a constant. */
6796 op1 = fold_unary (TRUTH_NOT_EXPR, TREE_TYPE (op1), op1);
6799 else
6801 /* Punt on A == B as there is no BIT_XNOR_EXPR. */
6802 if (rhs_code == EQ_EXPR)
6803 return false;
6805 if (TYPE_PRECISION (TREE_TYPE (op1)) != 1)
6807 vr = get_value_range (op1);
6808 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6809 if (!val || !integer_onep (val))
6810 return false;
6812 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6813 if (!val || !integer_onep (val))
6814 return false;
6818 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6820 location_t location;
6822 if (!gimple_has_location (stmt))
6823 location = input_location;
6824 else
6825 location = gimple_location (stmt);
6827 warning_at (location, OPT_Wstrict_overflow,
6828 _("assuming signed overflow does not occur when "
6829 "simplifying ==, != or ! to identity or ^"));
6832 need_conversion =
6833 !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)),
6834 TREE_TYPE (op0));
6836 /* Make sure to not sign-extend -1 as a boolean value. */
6837 if (need_conversion
6838 && !TYPE_UNSIGNED (TREE_TYPE (op0))
6839 && TYPE_PRECISION (TREE_TYPE (op0)) == 1)
6840 return false;
6842 switch (rhs_code)
6844 case NE_EXPR:
6845 if (integer_zerop (op1))
6847 gimple_assign_set_rhs_with_ops (gsi,
6848 need_conversion ? NOP_EXPR : SSA_NAME,
6849 op0, NULL);
6850 update_stmt (gsi_stmt (*gsi));
6851 return true;
6854 rhs_code = BIT_XOR_EXPR;
6855 break;
6856 default:
6857 gcc_unreachable ();
6860 if (need_conversion)
6861 return false;
6863 gimple_assign_set_rhs_with_ops (gsi, rhs_code, op0, op1);
6864 update_stmt (gsi_stmt (*gsi));
6865 return true;
6868 /* Simplify a division or modulo operator to a right shift or
6869 bitwise and if the first operand is unsigned or is greater
6870 than zero and the second operand is an exact power of two. */
6872 static bool
6873 simplify_div_or_mod_using_ranges (gimple stmt)
6875 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6876 tree val = NULL;
6877 tree op0 = gimple_assign_rhs1 (stmt);
6878 tree op1 = gimple_assign_rhs2 (stmt);
6879 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
6881 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
6883 val = integer_one_node;
6885 else
6887 bool sop = false;
6889 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6891 if (val
6892 && sop
6893 && integer_onep (val)
6894 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6896 location_t location;
6898 if (!gimple_has_location (stmt))
6899 location = input_location;
6900 else
6901 location = gimple_location (stmt);
6902 warning_at (location, OPT_Wstrict_overflow,
6903 "assuming signed overflow does not occur when "
6904 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
6908 if (val && integer_onep (val))
6910 tree t;
6912 if (rhs_code == TRUNC_DIV_EXPR)
6914 t = build_int_cst (integer_type_node, tree_log2 (op1));
6915 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
6916 gimple_assign_set_rhs1 (stmt, op0);
6917 gimple_assign_set_rhs2 (stmt, t);
6919 else
6921 t = build_int_cst (TREE_TYPE (op1), 1);
6922 t = int_const_binop (MINUS_EXPR, op1, t);
6923 t = fold_convert (TREE_TYPE (op0), t);
6925 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
6926 gimple_assign_set_rhs1 (stmt, op0);
6927 gimple_assign_set_rhs2 (stmt, t);
6930 update_stmt (stmt);
6931 return true;
6934 return false;
6937 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6938 ABS_EXPR. If the operand is <= 0, then simplify the
6939 ABS_EXPR into a NEGATE_EXPR. */
6941 static bool
6942 simplify_abs_using_ranges (gimple stmt)
6944 tree val = NULL;
6945 tree op = gimple_assign_rhs1 (stmt);
6946 tree type = TREE_TYPE (op);
6947 value_range_t *vr = get_value_range (op);
6949 if (TYPE_UNSIGNED (type))
6951 val = integer_zero_node;
6953 else if (vr)
6955 bool sop = false;
6957 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
6958 if (!val)
6960 sop = false;
6961 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6962 &sop);
6964 if (val)
6966 if (integer_zerop (val))
6967 val = integer_one_node;
6968 else if (integer_onep (val))
6969 val = integer_zero_node;
6973 if (val
6974 && (integer_onep (val) || integer_zerop (val)))
6976 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6978 location_t location;
6980 if (!gimple_has_location (stmt))
6981 location = input_location;
6982 else
6983 location = gimple_location (stmt);
6984 warning_at (location, OPT_Wstrict_overflow,
6985 "assuming signed overflow does not occur when "
6986 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
6989 gimple_assign_set_rhs1 (stmt, op);
6990 if (integer_onep (val))
6991 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
6992 else
6993 gimple_assign_set_rhs_code (stmt, SSA_NAME);
6994 update_stmt (stmt);
6995 return true;
6999 return false;
7002 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
7003 If all the bits that are being cleared by & are already
7004 known to be zero from VR, or all the bits that are being
7005 set by | are already known to be one from VR, the bit
7006 operation is redundant. */
7008 static bool
7009 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
7011 tree op0 = gimple_assign_rhs1 (stmt);
7012 tree op1 = gimple_assign_rhs2 (stmt);
7013 tree op = NULL_TREE;
7014 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
7015 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
7016 double_int may_be_nonzero0, may_be_nonzero1;
7017 double_int must_be_nonzero0, must_be_nonzero1;
7018 double_int mask;
7020 if (TREE_CODE (op0) == SSA_NAME)
7021 vr0 = *(get_value_range (op0));
7022 else if (is_gimple_min_invariant (op0))
7023 set_value_range_to_value (&vr0, op0, NULL);
7024 else
7025 return false;
7027 if (TREE_CODE (op1) == SSA_NAME)
7028 vr1 = *(get_value_range (op1));
7029 else if (is_gimple_min_invariant (op1))
7030 set_value_range_to_value (&vr1, op1, NULL);
7031 else
7032 return false;
7034 if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
7035 return false;
7036 if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
7037 return false;
7039 switch (gimple_assign_rhs_code (stmt))
7041 case BIT_AND_EXPR:
7042 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
7043 if (double_int_zero_p (mask))
7045 op = op0;
7046 break;
7048 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
7049 if (double_int_zero_p (mask))
7051 op = op1;
7052 break;
7054 break;
7055 case BIT_IOR_EXPR:
7056 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
7057 if (double_int_zero_p (mask))
7059 op = op1;
7060 break;
7062 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
7063 if (double_int_zero_p (mask))
7065 op = op0;
7066 break;
7068 break;
7069 default:
7070 gcc_unreachable ();
7073 if (op == NULL_TREE)
7074 return false;
7076 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
7077 update_stmt (gsi_stmt (*gsi));
7078 return true;
7081 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
7082 a known value range VR.
7084 If there is one and only one value which will satisfy the
7085 conditional, then return that value. Else return NULL. */
7087 static tree
7088 test_for_singularity (enum tree_code cond_code, tree op0,
7089 tree op1, value_range_t *vr)
7091 tree min = NULL;
7092 tree max = NULL;
7094 /* Extract minimum/maximum values which satisfy the
7095 the conditional as it was written. */
7096 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
7098 /* This should not be negative infinity; there is no overflow
7099 here. */
7100 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
7102 max = op1;
7103 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
7105 tree one = build_int_cst (TREE_TYPE (op0), 1);
7106 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
7107 if (EXPR_P (max))
7108 TREE_NO_WARNING (max) = 1;
7111 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
7113 /* This should not be positive infinity; there is no overflow
7114 here. */
7115 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
7117 min = op1;
7118 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
7120 tree one = build_int_cst (TREE_TYPE (op0), 1);
7121 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
7122 if (EXPR_P (min))
7123 TREE_NO_WARNING (min) = 1;
7127 /* Now refine the minimum and maximum values using any
7128 value range information we have for op0. */
7129 if (min && max)
7131 if (compare_values (vr->min, min) == 1)
7132 min = vr->min;
7133 if (compare_values (vr->max, max) == -1)
7134 max = vr->max;
7136 /* If the new min/max values have converged to a single value,
7137 then there is only one value which can satisfy the condition,
7138 return that value. */
7139 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
7140 return min;
7142 return NULL;
7145 /* Simplify a conditional using a relational operator to an equality
7146 test if the range information indicates only one value can satisfy
7147 the original conditional. */
7149 static bool
7150 simplify_cond_using_ranges (gimple stmt)
7152 tree op0 = gimple_cond_lhs (stmt);
7153 tree op1 = gimple_cond_rhs (stmt);
7154 enum tree_code cond_code = gimple_cond_code (stmt);
7156 if (cond_code != NE_EXPR
7157 && cond_code != EQ_EXPR
7158 && TREE_CODE (op0) == SSA_NAME
7159 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7160 && is_gimple_min_invariant (op1))
7162 value_range_t *vr = get_value_range (op0);
7164 /* If we have range information for OP0, then we might be
7165 able to simplify this conditional. */
7166 if (vr->type == VR_RANGE)
7168 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
7170 if (new_tree)
7172 if (dump_file)
7174 fprintf (dump_file, "Simplified relational ");
7175 print_gimple_stmt (dump_file, stmt, 0, 0);
7176 fprintf (dump_file, " into ");
7179 gimple_cond_set_code (stmt, EQ_EXPR);
7180 gimple_cond_set_lhs (stmt, op0);
7181 gimple_cond_set_rhs (stmt, new_tree);
7183 update_stmt (stmt);
7185 if (dump_file)
7187 print_gimple_stmt (dump_file, stmt, 0, 0);
7188 fprintf (dump_file, "\n");
7191 return true;
7194 /* Try again after inverting the condition. We only deal
7195 with integral types here, so no need to worry about
7196 issues with inverting FP comparisons. */
7197 cond_code = invert_tree_comparison (cond_code, false);
7198 new_tree = test_for_singularity (cond_code, op0, op1, vr);
7200 if (new_tree)
7202 if (dump_file)
7204 fprintf (dump_file, "Simplified relational ");
7205 print_gimple_stmt (dump_file, stmt, 0, 0);
7206 fprintf (dump_file, " into ");
7209 gimple_cond_set_code (stmt, NE_EXPR);
7210 gimple_cond_set_lhs (stmt, op0);
7211 gimple_cond_set_rhs (stmt, new_tree);
7213 update_stmt (stmt);
7215 if (dump_file)
7217 print_gimple_stmt (dump_file, stmt, 0, 0);
7218 fprintf (dump_file, "\n");
7221 return true;
7226 return false;
7229 /* Simplify a switch statement using the value range of the switch
7230 argument. */
7232 static bool
7233 simplify_switch_using_ranges (gimple stmt)
7235 tree op = gimple_switch_index (stmt);
7236 value_range_t *vr;
7237 bool take_default;
7238 edge e;
7239 edge_iterator ei;
7240 size_t i = 0, j = 0, n, n2;
7241 tree vec2;
7242 switch_update su;
7244 if (TREE_CODE (op) == SSA_NAME)
7246 vr = get_value_range (op);
7248 /* We can only handle integer ranges. */
7249 if (vr->type != VR_RANGE
7250 || symbolic_range_p (vr))
7251 return false;
7253 /* Find case label for min/max of the value range. */
7254 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
7256 else if (TREE_CODE (op) == INTEGER_CST)
7258 take_default = !find_case_label_index (stmt, 1, op, &i);
7259 if (take_default)
7261 i = 1;
7262 j = 0;
7264 else
7266 j = i;
7269 else
7270 return false;
7272 n = gimple_switch_num_labels (stmt);
7274 /* Bail out if this is just all edges taken. */
7275 if (i == 1
7276 && j == n - 1
7277 && take_default)
7278 return false;
7280 /* Build a new vector of taken case labels. */
7281 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
7282 n2 = 0;
7284 /* Add the default edge, if necessary. */
7285 if (take_default)
7286 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
7288 for (; i <= j; ++i, ++n2)
7289 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
7291 /* Mark needed edges. */
7292 for (i = 0; i < n2; ++i)
7294 e = find_edge (gimple_bb (stmt),
7295 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
7296 e->aux = (void *)-1;
7299 /* Queue not needed edges for later removal. */
7300 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
7302 if (e->aux == (void *)-1)
7304 e->aux = NULL;
7305 continue;
7308 if (dump_file && (dump_flags & TDF_DETAILS))
7310 fprintf (dump_file, "removing unreachable case label\n");
7312 VEC_safe_push (edge, heap, to_remove_edges, e);
7313 e->flags &= ~EDGE_EXECUTABLE;
7316 /* And queue an update for the stmt. */
7317 su.stmt = stmt;
7318 su.vec = vec2;
7319 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
7320 return false;
7323 /* Simplify an integral conversion from an SSA name in STMT. */
7325 static bool
7326 simplify_conversion_using_ranges (gimple stmt)
7328 tree innerop, middleop, finaltype;
7329 gimple def_stmt;
7330 value_range_t *innervr;
7331 double_int innermin, innermax, middlemin, middlemax;
7333 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
7334 if (!INTEGRAL_TYPE_P (finaltype))
7335 return false;
7336 middleop = gimple_assign_rhs1 (stmt);
7337 def_stmt = SSA_NAME_DEF_STMT (middleop);
7338 if (!is_gimple_assign (def_stmt)
7339 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
7340 return false;
7341 innerop = gimple_assign_rhs1 (def_stmt);
7342 if (TREE_CODE (innerop) != SSA_NAME)
7343 return false;
7345 /* Get the value-range of the inner operand. */
7346 innervr = get_value_range (innerop);
7347 if (innervr->type != VR_RANGE
7348 || TREE_CODE (innervr->min) != INTEGER_CST
7349 || TREE_CODE (innervr->max) != INTEGER_CST)
7350 return false;
7352 /* Simulate the conversion chain to check if the result is equal if
7353 the middle conversion is removed. */
7354 innermin = tree_to_double_int (innervr->min);
7355 innermax = tree_to_double_int (innervr->max);
7356 middlemin = double_int_ext (innermin, TYPE_PRECISION (TREE_TYPE (middleop)),
7357 TYPE_UNSIGNED (TREE_TYPE (middleop)));
7358 middlemax = double_int_ext (innermax, TYPE_PRECISION (TREE_TYPE (middleop)),
7359 TYPE_UNSIGNED (TREE_TYPE (middleop)));
7360 /* If the middle values do not represent a proper range fail. */
7361 if (double_int_cmp (middlemin, middlemax,
7362 TYPE_UNSIGNED (TREE_TYPE (middleop))) > 0)
7363 return false;
7364 if (!double_int_equal_p (double_int_ext (middlemin,
7365 TYPE_PRECISION (finaltype),
7366 TYPE_UNSIGNED (finaltype)),
7367 double_int_ext (innermin,
7368 TYPE_PRECISION (finaltype),
7369 TYPE_UNSIGNED (finaltype)))
7370 || !double_int_equal_p (double_int_ext (middlemax,
7371 TYPE_PRECISION (finaltype),
7372 TYPE_UNSIGNED (finaltype)),
7373 double_int_ext (innermax,
7374 TYPE_PRECISION (finaltype),
7375 TYPE_UNSIGNED (finaltype))))
7376 return false;
7378 gimple_assign_set_rhs1 (stmt, innerop);
7379 update_stmt (stmt);
7380 return true;
7383 /* Return whether the value range *VR fits in an integer type specified
7384 by PRECISION and UNSIGNED_P. */
7386 static bool
7387 range_fits_type_p (value_range_t *vr, unsigned precision, bool unsigned_p)
7389 tree src_type;
7390 unsigned src_precision;
7391 double_int tem;
7393 /* We can only handle integral and pointer types. */
7394 src_type = TREE_TYPE (vr->min);
7395 if (!INTEGRAL_TYPE_P (src_type)
7396 && !POINTER_TYPE_P (src_type))
7397 return false;
7399 /* An extension is always fine, so is an identity transform. */
7400 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
7401 if (src_precision < precision
7402 || (src_precision == precision
7403 && TYPE_UNSIGNED (src_type) == unsigned_p))
7404 return true;
7406 /* Now we can only handle ranges with constant bounds. */
7407 if (vr->type != VR_RANGE
7408 || TREE_CODE (vr->min) != INTEGER_CST
7409 || TREE_CODE (vr->max) != INTEGER_CST)
7410 return false;
7412 /* For precision-preserving sign-changes the MSB of the double-int
7413 has to be clear. */
7414 if (src_precision == precision
7415 && (TREE_INT_CST_HIGH (vr->min) | TREE_INT_CST_HIGH (vr->max)) < 0)
7416 return false;
7418 /* Then we can perform the conversion on both ends and compare
7419 the result for equality. */
7420 tem = double_int_ext (tree_to_double_int (vr->min), precision, unsigned_p);
7421 if (!double_int_equal_p (tree_to_double_int (vr->min), tem))
7422 return false;
7423 tem = double_int_ext (tree_to_double_int (vr->max), precision, unsigned_p);
7424 if (!double_int_equal_p (tree_to_double_int (vr->max), tem))
7425 return false;
7427 return true;
7430 /* Simplify a conversion from integral SSA name to float in STMT. */
7432 static bool
7433 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
7435 tree rhs1 = gimple_assign_rhs1 (stmt);
7436 value_range_t *vr = get_value_range (rhs1);
7437 enum machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
7438 enum machine_mode mode;
7439 tree tem;
7440 gimple conv;
7442 /* We can only handle constant ranges. */
7443 if (vr->type != VR_RANGE
7444 || TREE_CODE (vr->min) != INTEGER_CST
7445 || TREE_CODE (vr->max) != INTEGER_CST)
7446 return false;
7448 /* First check if we can use a signed type in place of an unsigned. */
7449 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
7450 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
7451 != CODE_FOR_nothing)
7452 && range_fits_type_p (vr, GET_MODE_PRECISION
7453 (TYPE_MODE (TREE_TYPE (rhs1))), 0))
7454 mode = TYPE_MODE (TREE_TYPE (rhs1));
7455 /* If we can do the conversion in the current input mode do nothing. */
7456 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
7457 TYPE_UNSIGNED (TREE_TYPE (rhs1))))
7458 return false;
7459 /* Otherwise search for a mode we can use, starting from the narrowest
7460 integer mode available. */
7461 else
7463 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
7466 /* If we cannot do a signed conversion to float from mode
7467 or if the value-range does not fit in the signed type
7468 try with a wider mode. */
7469 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
7470 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), 0))
7471 break;
7473 mode = GET_MODE_WIDER_MODE (mode);
7474 /* But do not widen the input. Instead leave that to the
7475 optabs expansion code. */
7476 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
7477 return false;
7479 while (mode != VOIDmode);
7480 if (mode == VOIDmode)
7481 return false;
7484 /* It works, insert a truncation or sign-change before the
7485 float conversion. */
7486 tem = create_tmp_var (build_nonstandard_integer_type
7487 (GET_MODE_PRECISION (mode), 0), NULL);
7488 conv = gimple_build_assign_with_ops (NOP_EXPR, tem, rhs1, NULL_TREE);
7489 tem = make_ssa_name (tem, conv);
7490 gimple_assign_set_lhs (conv, tem);
7491 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
7492 gimple_assign_set_rhs1 (stmt, tem);
7493 update_stmt (stmt);
7495 return true;
7498 /* Simplify STMT using ranges if possible. */
7500 static bool
7501 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
7503 gimple stmt = gsi_stmt (*gsi);
7504 if (is_gimple_assign (stmt))
7506 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
7507 tree rhs1 = gimple_assign_rhs1 (stmt);
7509 switch (rhs_code)
7511 case EQ_EXPR:
7512 case NE_EXPR:
7513 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
7514 if the RHS is zero or one, and the LHS are known to be boolean
7515 values. */
7516 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7517 return simplify_truth_ops_using_ranges (gsi, stmt);
7518 break;
7520 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
7521 and BIT_AND_EXPR respectively if the first operand is greater
7522 than zero and the second operand is an exact power of two. */
7523 case TRUNC_DIV_EXPR:
7524 case TRUNC_MOD_EXPR:
7525 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
7526 && integer_pow2p (gimple_assign_rhs2 (stmt)))
7527 return simplify_div_or_mod_using_ranges (stmt);
7528 break;
7530 /* Transform ABS (X) into X or -X as appropriate. */
7531 case ABS_EXPR:
7532 if (TREE_CODE (rhs1) == SSA_NAME
7533 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7534 return simplify_abs_using_ranges (stmt);
7535 break;
7537 case BIT_AND_EXPR:
7538 case BIT_IOR_EXPR:
7539 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
7540 if all the bits being cleared are already cleared or
7541 all the bits being set are already set. */
7542 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7543 return simplify_bit_ops_using_ranges (gsi, stmt);
7544 break;
7546 CASE_CONVERT:
7547 if (TREE_CODE (rhs1) == SSA_NAME
7548 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7549 return simplify_conversion_using_ranges (stmt);
7550 break;
7552 case FLOAT_EXPR:
7553 if (TREE_CODE (rhs1) == SSA_NAME
7554 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7555 return simplify_float_conversion_using_ranges (gsi, stmt);
7556 break;
7558 default:
7559 break;
7562 else if (gimple_code (stmt) == GIMPLE_COND)
7563 return simplify_cond_using_ranges (stmt);
7564 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7565 return simplify_switch_using_ranges (stmt);
7567 return false;
7570 /* If the statement pointed by SI has a predicate whose value can be
7571 computed using the value range information computed by VRP, compute
7572 its value and return true. Otherwise, return false. */
7574 static bool
7575 fold_predicate_in (gimple_stmt_iterator *si)
7577 bool assignment_p = false;
7578 tree val;
7579 gimple stmt = gsi_stmt (*si);
7581 if (is_gimple_assign (stmt)
7582 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
7584 assignment_p = true;
7585 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
7586 gimple_assign_rhs1 (stmt),
7587 gimple_assign_rhs2 (stmt),
7588 stmt);
7590 else if (gimple_code (stmt) == GIMPLE_COND)
7591 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
7592 gimple_cond_lhs (stmt),
7593 gimple_cond_rhs (stmt),
7594 stmt);
7595 else
7596 return false;
7598 if (val)
7600 if (assignment_p)
7601 val = fold_convert (gimple_expr_type (stmt), val);
7603 if (dump_file)
7605 fprintf (dump_file, "Folding predicate ");
7606 print_gimple_expr (dump_file, stmt, 0, 0);
7607 fprintf (dump_file, " to ");
7608 print_generic_expr (dump_file, val, 0);
7609 fprintf (dump_file, "\n");
7612 if (is_gimple_assign (stmt))
7613 gimple_assign_set_rhs_from_tree (si, val);
7614 else
7616 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
7617 if (integer_zerop (val))
7618 gimple_cond_make_false (stmt);
7619 else if (integer_onep (val))
7620 gimple_cond_make_true (stmt);
7621 else
7622 gcc_unreachable ();
7625 return true;
7628 return false;
7631 /* Callback for substitute_and_fold folding the stmt at *SI. */
7633 static bool
7634 vrp_fold_stmt (gimple_stmt_iterator *si)
7636 if (fold_predicate_in (si))
7637 return true;
7639 return simplify_stmt_using_ranges (si);
7642 /* Stack of dest,src equivalency pairs that need to be restored after
7643 each attempt to thread a block's incoming edge to an outgoing edge.
7645 A NULL entry is used to mark the end of pairs which need to be
7646 restored. */
7647 static VEC(tree,heap) *stack;
7649 /* A trivial wrapper so that we can present the generic jump threading
7650 code with a simple API for simplifying statements. STMT is the
7651 statement we want to simplify, WITHIN_STMT provides the location
7652 for any overflow warnings. */
7654 static tree
7655 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
7657 /* We only use VRP information to simplify conditionals. This is
7658 overly conservative, but it's unclear if doing more would be
7659 worth the compile time cost. */
7660 if (gimple_code (stmt) != GIMPLE_COND)
7661 return NULL;
7663 return vrp_evaluate_conditional (gimple_cond_code (stmt),
7664 gimple_cond_lhs (stmt),
7665 gimple_cond_rhs (stmt), within_stmt);
7668 /* Blocks which have more than one predecessor and more than
7669 one successor present jump threading opportunities, i.e.,
7670 when the block is reached from a specific predecessor, we
7671 may be able to determine which of the outgoing edges will
7672 be traversed. When this optimization applies, we are able
7673 to avoid conditionals at runtime and we may expose secondary
7674 optimization opportunities.
7676 This routine is effectively a driver for the generic jump
7677 threading code. It basically just presents the generic code
7678 with edges that may be suitable for jump threading.
7680 Unlike DOM, we do not iterate VRP if jump threading was successful.
7681 While iterating may expose new opportunities for VRP, it is expected
7682 those opportunities would be very limited and the compile time cost
7683 to expose those opportunities would be significant.
7685 As jump threading opportunities are discovered, they are registered
7686 for later realization. */
7688 static void
7689 identify_jump_threads (void)
7691 basic_block bb;
7692 gimple dummy;
7693 int i;
7694 edge e;
7696 /* Ugh. When substituting values earlier in this pass we can
7697 wipe the dominance information. So rebuild the dominator
7698 information as we need it within the jump threading code. */
7699 calculate_dominance_info (CDI_DOMINATORS);
7701 /* We do not allow VRP information to be used for jump threading
7702 across a back edge in the CFG. Otherwise it becomes too
7703 difficult to avoid eliminating loop exit tests. Of course
7704 EDGE_DFS_BACK is not accurate at this time so we have to
7705 recompute it. */
7706 mark_dfs_back_edges ();
7708 /* Do not thread across edges we are about to remove. Just marking
7709 them as EDGE_DFS_BACK will do. */
7710 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7711 e->flags |= EDGE_DFS_BACK;
7713 /* Allocate our unwinder stack to unwind any temporary equivalences
7714 that might be recorded. */
7715 stack = VEC_alloc (tree, heap, 20);
7717 /* To avoid lots of silly node creation, we create a single
7718 conditional and just modify it in-place when attempting to
7719 thread jumps. */
7720 dummy = gimple_build_cond (EQ_EXPR,
7721 integer_zero_node, integer_zero_node,
7722 NULL, NULL);
7724 /* Walk through all the blocks finding those which present a
7725 potential jump threading opportunity. We could set this up
7726 as a dominator walker and record data during the walk, but
7727 I doubt it's worth the effort for the classes of jump
7728 threading opportunities we are trying to identify at this
7729 point in compilation. */
7730 FOR_EACH_BB (bb)
7732 gimple last;
7734 /* If the generic jump threading code does not find this block
7735 interesting, then there is nothing to do. */
7736 if (! potentially_threadable_block (bb))
7737 continue;
7739 /* We only care about blocks ending in a COND_EXPR. While there
7740 may be some value in handling SWITCH_EXPR here, I doubt it's
7741 terribly important. */
7742 last = gsi_stmt (gsi_last_bb (bb));
7744 /* We're basically looking for a switch or any kind of conditional with
7745 integral or pointer type arguments. Note the type of the second
7746 argument will be the same as the first argument, so no need to
7747 check it explicitly. */
7748 if (gimple_code (last) == GIMPLE_SWITCH
7749 || (gimple_code (last) == GIMPLE_COND
7750 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
7751 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
7752 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
7753 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
7754 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
7756 edge_iterator ei;
7758 /* We've got a block with multiple predecessors and multiple
7759 successors which also ends in a suitable conditional or
7760 switch statement. For each predecessor, see if we can thread
7761 it to a specific successor. */
7762 FOR_EACH_EDGE (e, ei, bb->preds)
7764 /* Do not thread across back edges or abnormal edges
7765 in the CFG. */
7766 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
7767 continue;
7769 thread_across_edge (dummy, e, true, &stack,
7770 simplify_stmt_for_jump_threading);
7775 /* We do not actually update the CFG or SSA graphs at this point as
7776 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7777 handle ASSERT_EXPRs gracefully. */
7780 /* We identified all the jump threading opportunities earlier, but could
7781 not transform the CFG at that time. This routine transforms the
7782 CFG and arranges for the dominator tree to be rebuilt if necessary.
7784 Note the SSA graph update will occur during the normal TODO
7785 processing by the pass manager. */
7786 static void
7787 finalize_jump_threads (void)
7789 thread_through_all_blocks (false);
7790 VEC_free (tree, heap, stack);
7794 /* Traverse all the blocks folding conditionals with known ranges. */
7796 static void
7797 vrp_finalize (void)
7799 size_t i;
7801 values_propagated = true;
7803 if (dump_file)
7805 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
7806 dump_all_value_ranges (dump_file);
7807 fprintf (dump_file, "\n");
7810 substitute_and_fold (op_with_constant_singleton_value_range,
7811 vrp_fold_stmt, false);
7813 if (warn_array_bounds)
7814 check_all_array_refs ();
7816 /* We must identify jump threading opportunities before we release
7817 the datastructures built by VRP. */
7818 identify_jump_threads ();
7820 /* Free allocated memory. */
7821 for (i = 0; i < num_vr_values; i++)
7822 if (vr_value[i])
7824 BITMAP_FREE (vr_value[i]->equiv);
7825 free (vr_value[i]);
7828 free (vr_value);
7829 free (vr_phi_edge_counts);
7831 /* So that we can distinguish between VRP data being available
7832 and not available. */
7833 vr_value = NULL;
7834 vr_phi_edge_counts = NULL;
7838 /* Main entry point to VRP (Value Range Propagation). This pass is
7839 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7840 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7841 Programming Language Design and Implementation, pp. 67-78, 1995.
7842 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7844 This is essentially an SSA-CCP pass modified to deal with ranges
7845 instead of constants.
7847 While propagating ranges, we may find that two or more SSA name
7848 have equivalent, though distinct ranges. For instance,
7850 1 x_9 = p_3->a;
7851 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7852 3 if (p_4 == q_2)
7853 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7854 5 endif
7855 6 if (q_2)
7857 In the code above, pointer p_5 has range [q_2, q_2], but from the
7858 code we can also determine that p_5 cannot be NULL and, if q_2 had
7859 a non-varying range, p_5's range should also be compatible with it.
7861 These equivalences are created by two expressions: ASSERT_EXPR and
7862 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7863 result of another assertion, then we can use the fact that p_5 and
7864 p_4 are equivalent when evaluating p_5's range.
7866 Together with value ranges, we also propagate these equivalences
7867 between names so that we can take advantage of information from
7868 multiple ranges when doing final replacement. Note that this
7869 equivalency relation is transitive but not symmetric.
7871 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7872 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7873 in contexts where that assertion does not hold (e.g., in line 6).
7875 TODO, the main difference between this pass and Patterson's is that
7876 we do not propagate edge probabilities. We only compute whether
7877 edges can be taken or not. That is, instead of having a spectrum
7878 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7879 DON'T KNOW. In the future, it may be worthwhile to propagate
7880 probabilities to aid branch prediction. */
7882 static unsigned int
7883 execute_vrp (void)
7885 int i;
7886 edge e;
7887 switch_update *su;
7889 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
7890 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
7891 scev_initialize ();
7893 insert_range_assertions ();
7895 /* Estimate number of iterations - but do not use undefined behavior
7896 for this. We can't do this lazily as other functions may compute
7897 this using undefined behavior. */
7898 free_numbers_of_iterations_estimates ();
7899 estimate_numbers_of_iterations (false);
7901 to_remove_edges = VEC_alloc (edge, heap, 10);
7902 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
7903 threadedge_initialize_values ();
7905 vrp_initialize ();
7906 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
7907 vrp_finalize ();
7909 free_numbers_of_iterations_estimates ();
7911 /* ASSERT_EXPRs must be removed before finalizing jump threads
7912 as finalizing jump threads calls the CFG cleanup code which
7913 does not properly handle ASSERT_EXPRs. */
7914 remove_range_assertions ();
7916 /* If we exposed any new variables, go ahead and put them into
7917 SSA form now, before we handle jump threading. This simplifies
7918 interactions between rewriting of _DECL nodes into SSA form
7919 and rewriting SSA_NAME nodes into SSA form after block
7920 duplication and CFG manipulation. */
7921 update_ssa (TODO_update_ssa);
7923 finalize_jump_threads ();
7925 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7926 CFG in a broken state and requires a cfg_cleanup run. */
7927 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7928 remove_edge (e);
7929 /* Update SWITCH_EXPR case label vector. */
7930 FOR_EACH_VEC_ELT (switch_update, to_update_switch_stmts, i, su)
7932 size_t j;
7933 size_t n = TREE_VEC_LENGTH (su->vec);
7934 tree label;
7935 gimple_switch_set_num_labels (su->stmt, n);
7936 for (j = 0; j < n; j++)
7937 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
7938 /* As we may have replaced the default label with a regular one
7939 make sure to make it a real default label again. This ensures
7940 optimal expansion. */
7941 label = gimple_switch_default_label (su->stmt);
7942 CASE_LOW (label) = NULL_TREE;
7943 CASE_HIGH (label) = NULL_TREE;
7946 if (VEC_length (edge, to_remove_edges) > 0)
7947 free_dominance_info (CDI_DOMINATORS);
7949 VEC_free (edge, heap, to_remove_edges);
7950 VEC_free (switch_update, heap, to_update_switch_stmts);
7951 threadedge_finalize_values ();
7953 scev_finalize ();
7954 loop_optimizer_finalize ();
7955 return 0;
7958 static bool
7959 gate_vrp (void)
7961 return flag_tree_vrp != 0;
7964 struct gimple_opt_pass pass_vrp =
7967 GIMPLE_PASS,
7968 "vrp", /* name */
7969 gate_vrp, /* gate */
7970 execute_vrp, /* execute */
7971 NULL, /* sub */
7972 NULL, /* next */
7973 0, /* static_pass_number */
7974 TV_TREE_VRP, /* tv_id */
7975 PROP_ssa, /* properties_required */
7976 0, /* properties_provided */
7977 0, /* properties_destroyed */
7978 0, /* todo_flags_start */
7979 TODO_cleanup_cfg
7980 | TODO_update_ssa
7981 | TODO_verify_ssa
7982 | TODO_verify_flow
7983 | TODO_ggc_collect /* todo_flags_finish */