1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992-2012 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
36 #include "coretypes.h"
38 #include "diagnostic-core.h"
46 #include "hard-reg-set.h"
48 #include "insn-config.h"
51 #include "basic-block.h"
54 #include "langhooks.h"
59 struct target_rtl default_target_rtl
;
61 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
64 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
66 /* Commonly used modes. */
68 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
69 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
70 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
71 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
73 /* Datastructures maintained for currently processed function in RTL form. */
75 struct rtl_data x_rtl
;
77 /* Indexed by pseudo register number, gives the rtx for that pseudo.
78 Allocated in parallel with regno_pointer_align.
79 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
80 with length attribute nested in top level structures. */
84 /* This is *not* reset after each function. It gives each CODE_LABEL
85 in the entire compilation a unique label number. */
87 static GTY(()) int label_num
= 1;
89 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
91 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
92 is set only for MODE_INT and MODE_VECTOR_INT modes. */
94 rtx const_tiny_rtx
[4][(int) MAX_MACHINE_MODE
];
98 REAL_VALUE_TYPE dconst0
;
99 REAL_VALUE_TYPE dconst1
;
100 REAL_VALUE_TYPE dconst2
;
101 REAL_VALUE_TYPE dconstm1
;
102 REAL_VALUE_TYPE dconsthalf
;
104 /* Record fixed-point constant 0 and 1. */
105 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
106 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
108 /* We make one copy of (const_int C) where C is in
109 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
110 to save space during the compilation and simplify comparisons of
113 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
115 /* Standard pieces of rtx, to be substituted directly into things. */
118 rtx simple_return_rtx
;
121 /* A hash table storing CONST_INTs whose absolute value is greater
122 than MAX_SAVED_CONST_INT. */
124 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
125 htab_t const_int_htab
;
127 /* A hash table storing memory attribute structures. */
128 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
129 htab_t mem_attrs_htab
;
131 /* A hash table storing register attribute structures. */
132 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
133 htab_t reg_attrs_htab
;
135 /* A hash table storing all CONST_DOUBLEs. */
136 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
137 htab_t const_double_htab
;
139 /* A hash table storing all CONST_FIXEDs. */
140 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
141 htab_t const_fixed_htab
;
143 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
144 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
145 #define first_label_num (crtl->emit.x_first_label_num)
147 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
148 static void set_used_decls (tree
);
149 static void mark_label_nuses (rtx
);
150 static hashval_t
const_int_htab_hash (const void *);
151 static int const_int_htab_eq (const void *, const void *);
152 static hashval_t
const_double_htab_hash (const void *);
153 static int const_double_htab_eq (const void *, const void *);
154 static rtx
lookup_const_double (rtx
);
155 static hashval_t
const_fixed_htab_hash (const void *);
156 static int const_fixed_htab_eq (const void *, const void *);
157 static rtx
lookup_const_fixed (rtx
);
158 static hashval_t
mem_attrs_htab_hash (const void *);
159 static int mem_attrs_htab_eq (const void *, const void *);
160 static hashval_t
reg_attrs_htab_hash (const void *);
161 static int reg_attrs_htab_eq (const void *, const void *);
162 static reg_attrs
*get_reg_attrs (tree
, int);
163 static rtx
gen_const_vector (enum machine_mode
, int);
164 static void copy_rtx_if_shared_1 (rtx
*orig
);
166 /* Probability of the conditional branch currently proceeded by try_split.
167 Set to -1 otherwise. */
168 int split_branch_probability
= -1;
170 /* Returns a hash code for X (which is a really a CONST_INT). */
173 const_int_htab_hash (const void *x
)
175 return (hashval_t
) INTVAL ((const_rtx
) x
);
178 /* Returns nonzero if the value represented by X (which is really a
179 CONST_INT) is the same as that given by Y (which is really a
183 const_int_htab_eq (const void *x
, const void *y
)
185 return (INTVAL ((const_rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
188 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
190 const_double_htab_hash (const void *x
)
192 const_rtx
const value
= (const_rtx
) x
;
195 if (GET_MODE (value
) == VOIDmode
)
196 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
199 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
200 /* MODE is used in the comparison, so it should be in the hash. */
201 h
^= GET_MODE (value
);
206 /* Returns nonzero if the value represented by X (really a ...)
207 is the same as that represented by Y (really a ...) */
209 const_double_htab_eq (const void *x
, const void *y
)
211 const_rtx
const a
= (const_rtx
)x
, b
= (const_rtx
)y
;
213 if (GET_MODE (a
) != GET_MODE (b
))
215 if (GET_MODE (a
) == VOIDmode
)
216 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
217 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
219 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
220 CONST_DOUBLE_REAL_VALUE (b
));
223 /* Returns a hash code for X (which is really a CONST_FIXED). */
226 const_fixed_htab_hash (const void *x
)
228 const_rtx
const value
= (const_rtx
) x
;
231 h
= fixed_hash (CONST_FIXED_VALUE (value
));
232 /* MODE is used in the comparison, so it should be in the hash. */
233 h
^= GET_MODE (value
);
237 /* Returns nonzero if the value represented by X (really a ...)
238 is the same as that represented by Y (really a ...). */
241 const_fixed_htab_eq (const void *x
, const void *y
)
243 const_rtx
const a
= (const_rtx
) x
, b
= (const_rtx
) y
;
245 if (GET_MODE (a
) != GET_MODE (b
))
247 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
250 /* Returns a hash code for X (which is a really a mem_attrs *). */
253 mem_attrs_htab_hash (const void *x
)
255 const mem_attrs
*const p
= (const mem_attrs
*) x
;
257 return (p
->alias
^ (p
->align
* 1000)
258 ^ (p
->addrspace
* 4000)
259 ^ ((p
->offset_known_p
? p
->offset
: 0) * 50000)
260 ^ ((p
->size_known_p
? p
->size
: 0) * 2500000)
261 ^ (size_t) iterative_hash_expr (p
->expr
, 0));
264 /* Return true if the given memory attributes are equal. */
267 mem_attrs_eq_p (const struct mem_attrs
*p
, const struct mem_attrs
*q
)
269 return (p
->alias
== q
->alias
270 && p
->offset_known_p
== q
->offset_known_p
271 && (!p
->offset_known_p
|| p
->offset
== q
->offset
)
272 && p
->size_known_p
== q
->size_known_p
273 && (!p
->size_known_p
|| p
->size
== q
->size
)
274 && p
->align
== q
->align
275 && p
->addrspace
== q
->addrspace
276 && (p
->expr
== q
->expr
277 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
278 && operand_equal_p (p
->expr
, q
->expr
, 0))));
281 /* Returns nonzero if the value represented by X (which is really a
282 mem_attrs *) is the same as that given by Y (which is also really a
286 mem_attrs_htab_eq (const void *x
, const void *y
)
288 return mem_attrs_eq_p ((const mem_attrs
*) x
, (const mem_attrs
*) y
);
291 /* Set MEM's memory attributes so that they are the same as ATTRS. */
294 set_mem_attrs (rtx mem
, mem_attrs
*attrs
)
298 /* If everything is the default, we can just clear the attributes. */
299 if (mem_attrs_eq_p (attrs
, mode_mem_attrs
[(int) GET_MODE (mem
)]))
305 slot
= htab_find_slot (mem_attrs_htab
, attrs
, INSERT
);
308 *slot
= ggc_alloc_mem_attrs ();
309 memcpy (*slot
, attrs
, sizeof (mem_attrs
));
312 MEM_ATTRS (mem
) = (mem_attrs
*) *slot
;
315 /* Returns a hash code for X (which is a really a reg_attrs *). */
318 reg_attrs_htab_hash (const void *x
)
320 const reg_attrs
*const p
= (const reg_attrs
*) x
;
322 return ((p
->offset
* 1000) ^ (intptr_t) p
->decl
);
325 /* Returns nonzero if the value represented by X (which is really a
326 reg_attrs *) is the same as that given by Y (which is also really a
330 reg_attrs_htab_eq (const void *x
, const void *y
)
332 const reg_attrs
*const p
= (const reg_attrs
*) x
;
333 const reg_attrs
*const q
= (const reg_attrs
*) y
;
335 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
337 /* Allocate a new reg_attrs structure and insert it into the hash table if
338 one identical to it is not already in the table. We are doing this for
342 get_reg_attrs (tree decl
, int offset
)
347 /* If everything is the default, we can just return zero. */
348 if (decl
== 0 && offset
== 0)
352 attrs
.offset
= offset
;
354 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
357 *slot
= ggc_alloc_reg_attrs ();
358 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
361 return (reg_attrs
*) *slot
;
366 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
367 and to block register equivalences to be seen across this insn. */
372 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
373 MEM_VOLATILE_P (x
) = true;
379 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
380 don't attempt to share with the various global pieces of rtl (such as
381 frame_pointer_rtx). */
384 gen_raw_REG (enum machine_mode mode
, int regno
)
386 rtx x
= gen_rtx_raw_REG (mode
, regno
);
387 ORIGINAL_REGNO (x
) = regno
;
391 /* There are some RTL codes that require special attention; the generation
392 functions do the raw handling. If you add to this list, modify
393 special_rtx in gengenrtl.c as well. */
396 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
400 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
401 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
403 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
404 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
405 return const_true_rtx
;
408 /* Look up the CONST_INT in the hash table. */
409 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
410 (hashval_t
) arg
, INSERT
);
412 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
418 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
420 return GEN_INT (trunc_int_for_mode (c
, mode
));
423 /* CONST_DOUBLEs might be created from pairs of integers, or from
424 REAL_VALUE_TYPEs. Also, their length is known only at run time,
425 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
427 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
428 hash table. If so, return its counterpart; otherwise add it
429 to the hash table and return it. */
431 lookup_const_double (rtx real
)
433 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
440 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
441 VALUE in mode MODE. */
443 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
445 rtx real
= rtx_alloc (CONST_DOUBLE
);
446 PUT_MODE (real
, mode
);
450 return lookup_const_double (real
);
453 /* Determine whether FIXED, a CONST_FIXED, already exists in the
454 hash table. If so, return its counterpart; otherwise add it
455 to the hash table and return it. */
458 lookup_const_fixed (rtx fixed
)
460 void **slot
= htab_find_slot (const_fixed_htab
, fixed
, INSERT
);
467 /* Return a CONST_FIXED rtx for a fixed-point value specified by
468 VALUE in mode MODE. */
471 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, enum machine_mode mode
)
473 rtx fixed
= rtx_alloc (CONST_FIXED
);
474 PUT_MODE (fixed
, mode
);
478 return lookup_const_fixed (fixed
);
481 /* Constructs double_int from rtx CST. */
484 rtx_to_double_int (const_rtx cst
)
488 if (CONST_INT_P (cst
))
489 r
= double_int::from_shwi (INTVAL (cst
));
490 else if (CONST_DOUBLE_AS_INT_P (cst
))
492 r
.low
= CONST_DOUBLE_LOW (cst
);
493 r
.high
= CONST_DOUBLE_HIGH (cst
);
502 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
506 immed_double_int_const (double_int i
, enum machine_mode mode
)
508 return immed_double_const (i
.low
, i
.high
, mode
);
511 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
512 of ints: I0 is the low-order word and I1 is the high-order word.
513 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
514 implied upper bits are copies of the high bit of i1. The value
515 itself is neither signed nor unsigned. Do not use this routine for
516 non-integer modes; convert to REAL_VALUE_TYPE and use
517 CONST_DOUBLE_FROM_REAL_VALUE. */
520 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
525 /* There are the following cases (note that there are no modes with
526 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
528 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
530 2) If the value of the integer fits into HOST_WIDE_INT anyway
531 (i.e., i1 consists only from copies of the sign bit, and sign
532 of i0 and i1 are the same), then we return a CONST_INT for i0.
533 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
534 if (mode
!= VOIDmode
)
536 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
537 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
538 /* We can get a 0 for an error mark. */
539 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
540 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
542 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
543 return gen_int_mode (i0
, mode
);
546 /* If this integer fits in one word, return a CONST_INT. */
547 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
550 /* We use VOIDmode for integers. */
551 value
= rtx_alloc (CONST_DOUBLE
);
552 PUT_MODE (value
, VOIDmode
);
554 CONST_DOUBLE_LOW (value
) = i0
;
555 CONST_DOUBLE_HIGH (value
) = i1
;
557 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
558 XWINT (value
, i
) = 0;
560 return lookup_const_double (value
);
564 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
566 /* In case the MD file explicitly references the frame pointer, have
567 all such references point to the same frame pointer. This is
568 used during frame pointer elimination to distinguish the explicit
569 references to these registers from pseudos that happened to be
572 If we have eliminated the frame pointer or arg pointer, we will
573 be using it as a normal register, for example as a spill
574 register. In such cases, we might be accessing it in a mode that
575 is not Pmode and therefore cannot use the pre-allocated rtx.
577 Also don't do this when we are making new REGs in reload, since
578 we don't want to get confused with the real pointers. */
580 if (mode
== Pmode
&& !reload_in_progress
&& !lra_in_progress
)
582 if (regno
== FRAME_POINTER_REGNUM
583 && (!reload_completed
|| frame_pointer_needed
))
584 return frame_pointer_rtx
;
585 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
586 if (regno
== HARD_FRAME_POINTER_REGNUM
587 && (!reload_completed
|| frame_pointer_needed
))
588 return hard_frame_pointer_rtx
;
590 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
591 if (regno
== ARG_POINTER_REGNUM
)
592 return arg_pointer_rtx
;
594 #ifdef RETURN_ADDRESS_POINTER_REGNUM
595 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
596 return return_address_pointer_rtx
;
598 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
599 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
600 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
601 return pic_offset_table_rtx
;
602 if (regno
== STACK_POINTER_REGNUM
)
603 return stack_pointer_rtx
;
607 /* If the per-function register table has been set up, try to re-use
608 an existing entry in that table to avoid useless generation of RTL.
610 This code is disabled for now until we can fix the various backends
611 which depend on having non-shared hard registers in some cases. Long
612 term we want to re-enable this code as it can significantly cut down
613 on the amount of useless RTL that gets generated.
615 We'll also need to fix some code that runs after reload that wants to
616 set ORIGINAL_REGNO. */
621 && regno
< FIRST_PSEUDO_REGISTER
622 && reg_raw_mode
[regno
] == mode
)
623 return regno_reg_rtx
[regno
];
626 return gen_raw_REG (mode
, regno
);
630 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
632 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
634 /* This field is not cleared by the mere allocation of the rtx, so
641 /* Generate a memory referring to non-trapping constant memory. */
644 gen_const_mem (enum machine_mode mode
, rtx addr
)
646 rtx mem
= gen_rtx_MEM (mode
, addr
);
647 MEM_READONLY_P (mem
) = 1;
648 MEM_NOTRAP_P (mem
) = 1;
652 /* Generate a MEM referring to fixed portions of the frame, e.g., register
656 gen_frame_mem (enum machine_mode mode
, rtx addr
)
658 rtx mem
= gen_rtx_MEM (mode
, addr
);
659 MEM_NOTRAP_P (mem
) = 1;
660 set_mem_alias_set (mem
, get_frame_alias_set ());
664 /* Generate a MEM referring to a temporary use of the stack, not part
665 of the fixed stack frame. For example, something which is pushed
666 by a target splitter. */
668 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
670 rtx mem
= gen_rtx_MEM (mode
, addr
);
671 MEM_NOTRAP_P (mem
) = 1;
672 if (!cfun
->calls_alloca
)
673 set_mem_alias_set (mem
, get_frame_alias_set ());
677 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
678 this construct would be valid, and false otherwise. */
681 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
682 const_rtx reg
, unsigned int offset
)
684 unsigned int isize
= GET_MODE_SIZE (imode
);
685 unsigned int osize
= GET_MODE_SIZE (omode
);
687 /* All subregs must be aligned. */
688 if (offset
% osize
!= 0)
691 /* The subreg offset cannot be outside the inner object. */
695 /* ??? This should not be here. Temporarily continue to allow word_mode
696 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
697 Generally, backends are doing something sketchy but it'll take time to
699 if (omode
== word_mode
)
701 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
702 is the culprit here, and not the backends. */
703 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
705 /* Allow component subregs of complex and vector. Though given the below
706 extraction rules, it's not always clear what that means. */
707 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
708 && GET_MODE_INNER (imode
) == omode
)
710 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
711 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
712 represent this. It's questionable if this ought to be represented at
713 all -- why can't this all be hidden in post-reload splitters that make
714 arbitrarily mode changes to the registers themselves. */
715 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
717 /* Subregs involving floating point modes are not allowed to
718 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
719 (subreg:SI (reg:DF) 0) isn't. */
720 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
722 if (! (isize
== osize
723 /* LRA can use subreg to store a floating point value in
724 an integer mode. Although the floating point and the
725 integer modes need the same number of hard registers,
726 the size of floating point mode can be less than the
727 integer mode. LRA also uses subregs for a register
728 should be used in different mode in on insn. */
733 /* Paradoxical subregs must have offset zero. */
737 /* This is a normal subreg. Verify that the offset is representable. */
739 /* For hard registers, we already have most of these rules collected in
740 subreg_offset_representable_p. */
741 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
743 unsigned int regno
= REGNO (reg
);
745 #ifdef CANNOT_CHANGE_MODE_CLASS
746 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
747 && GET_MODE_INNER (imode
) == omode
)
749 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
753 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
756 /* For pseudo registers, we want most of the same checks. Namely:
757 If the register no larger than a word, the subreg must be lowpart.
758 If the register is larger than a word, the subreg must be the lowpart
759 of a subword. A subreg does *not* perform arbitrary bit extraction.
760 Given that we've already checked mode/offset alignment, we only have
761 to check subword subregs here. */
762 if (osize
< UNITS_PER_WORD
763 && ! (lra_in_progress
&& (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))))
765 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
766 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
767 if (offset
% UNITS_PER_WORD
!= low_off
)
774 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
776 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
777 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
780 /* Generate a SUBREG representing the least-significant part of REG if MODE
781 is smaller than mode of REG, otherwise paradoxical SUBREG. */
784 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
786 enum machine_mode inmode
;
788 inmode
= GET_MODE (reg
);
789 if (inmode
== VOIDmode
)
791 return gen_rtx_SUBREG (mode
, reg
,
792 subreg_lowpart_offset (mode
, inmode
));
796 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
799 gen_rtvec (int n
, ...)
807 /* Don't allocate an empty rtvec... */
814 rt_val
= rtvec_alloc (n
);
816 for (i
= 0; i
< n
; i
++)
817 rt_val
->elem
[i
] = va_arg (p
, rtx
);
824 gen_rtvec_v (int n
, rtx
*argp
)
829 /* Don't allocate an empty rtvec... */
833 rt_val
= rtvec_alloc (n
);
835 for (i
= 0; i
< n
; i
++)
836 rt_val
->elem
[i
] = *argp
++;
841 /* Return the number of bytes between the start of an OUTER_MODE
842 in-memory value and the start of an INNER_MODE in-memory value,
843 given that the former is a lowpart of the latter. It may be a
844 paradoxical lowpart, in which case the offset will be negative
845 on big-endian targets. */
848 byte_lowpart_offset (enum machine_mode outer_mode
,
849 enum machine_mode inner_mode
)
851 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
852 return subreg_lowpart_offset (outer_mode
, inner_mode
);
854 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
857 /* Generate a REG rtx for a new pseudo register of mode MODE.
858 This pseudo is assigned the next sequential register number. */
861 gen_reg_rtx (enum machine_mode mode
)
864 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
866 gcc_assert (can_create_pseudo_p ());
868 /* If a virtual register with bigger mode alignment is generated,
869 increase stack alignment estimation because it might be spilled
871 if (SUPPORTS_STACK_ALIGNMENT
872 && crtl
->stack_alignment_estimated
< align
873 && !crtl
->stack_realign_processed
)
875 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
876 if (crtl
->stack_alignment_estimated
< min_align
)
877 crtl
->stack_alignment_estimated
= min_align
;
880 if (generating_concat_p
881 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
882 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
884 /* For complex modes, don't make a single pseudo.
885 Instead, make a CONCAT of two pseudos.
886 This allows noncontiguous allocation of the real and imaginary parts,
887 which makes much better code. Besides, allocating DCmode
888 pseudos overstrains reload on some machines like the 386. */
889 rtx realpart
, imagpart
;
890 enum machine_mode partmode
= GET_MODE_INNER (mode
);
892 realpart
= gen_reg_rtx (partmode
);
893 imagpart
= gen_reg_rtx (partmode
);
894 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
897 /* Make sure regno_pointer_align, and regno_reg_rtx are large
898 enough to have an element for this pseudo reg number. */
900 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
902 int old_size
= crtl
->emit
.regno_pointer_align_length
;
906 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
907 memset (tmp
+ old_size
, 0, old_size
);
908 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
910 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
911 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
912 regno_reg_rtx
= new1
;
914 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
917 val
= gen_raw_REG (mode
, reg_rtx_no
);
918 regno_reg_rtx
[reg_rtx_no
++] = val
;
922 /* Update NEW with the same attributes as REG, but with OFFSET added
923 to the REG_OFFSET. */
926 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
928 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
929 REG_OFFSET (reg
) + offset
);
932 /* Generate a register with same attributes as REG, but with OFFSET
933 added to the REG_OFFSET. */
936 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
,
939 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
941 update_reg_offset (new_rtx
, reg
, offset
);
945 /* Generate a new pseudo-register with the same attributes as REG, but
946 with OFFSET added to the REG_OFFSET. */
949 gen_reg_rtx_offset (rtx reg
, enum machine_mode mode
, int offset
)
951 rtx new_rtx
= gen_reg_rtx (mode
);
953 update_reg_offset (new_rtx
, reg
, offset
);
957 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
958 new register is a (possibly paradoxical) lowpart of the old one. */
961 adjust_reg_mode (rtx reg
, enum machine_mode mode
)
963 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
964 PUT_MODE (reg
, mode
);
967 /* Copy REG's attributes from X, if X has any attributes. If REG and X
968 have different modes, REG is a (possibly paradoxical) lowpart of X. */
971 set_reg_attrs_from_value (rtx reg
, rtx x
)
974 bool can_be_reg_pointer
= true;
976 /* Don't call mark_reg_pointer for incompatible pointer sign
978 while (GET_CODE (x
) == SIGN_EXTEND
979 || GET_CODE (x
) == ZERO_EXTEND
980 || GET_CODE (x
) == TRUNCATE
981 || (GET_CODE (x
) == SUBREG
&& subreg_lowpart_p (x
)))
983 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
984 if ((GET_CODE (x
) == SIGN_EXTEND
&& POINTERS_EXTEND_UNSIGNED
)
985 || (GET_CODE (x
) != SIGN_EXTEND
&& ! POINTERS_EXTEND_UNSIGNED
))
986 can_be_reg_pointer
= false;
991 /* Hard registers can be reused for multiple purposes within the same
992 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
994 if (HARD_REGISTER_P (reg
))
997 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
1000 if (MEM_OFFSET_KNOWN_P (x
))
1001 REG_ATTRS (reg
) = get_reg_attrs (MEM_EXPR (x
),
1002 MEM_OFFSET (x
) + offset
);
1003 if (can_be_reg_pointer
&& MEM_POINTER (x
))
1004 mark_reg_pointer (reg
, 0);
1009 update_reg_offset (reg
, x
, offset
);
1010 if (can_be_reg_pointer
&& REG_POINTER (x
))
1011 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
1015 /* Generate a REG rtx for a new pseudo register, copying the mode
1016 and attributes from X. */
1019 gen_reg_rtx_and_attrs (rtx x
)
1021 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1022 set_reg_attrs_from_value (reg
, x
);
1026 /* Set the register attributes for registers contained in PARM_RTX.
1027 Use needed values from memory attributes of MEM. */
1030 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1032 if (REG_P (parm_rtx
))
1033 set_reg_attrs_from_value (parm_rtx
, mem
);
1034 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1036 /* Check for a NULL entry in the first slot, used to indicate that the
1037 parameter goes both on the stack and in registers. */
1038 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1039 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1041 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1042 if (REG_P (XEXP (x
, 0)))
1043 REG_ATTRS (XEXP (x
, 0))
1044 = get_reg_attrs (MEM_EXPR (mem
),
1045 INTVAL (XEXP (x
, 1)));
1050 /* Set the REG_ATTRS for registers in value X, given that X represents
1054 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1056 if (GET_CODE (x
) == SUBREG
)
1058 gcc_assert (subreg_lowpart_p (x
));
1063 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1065 if (GET_CODE (x
) == CONCAT
)
1067 if (REG_P (XEXP (x
, 0)))
1068 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1069 if (REG_P (XEXP (x
, 1)))
1070 REG_ATTRS (XEXP (x
, 1))
1071 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1073 if (GET_CODE (x
) == PARALLEL
)
1077 /* Check for a NULL entry, used to indicate that the parameter goes
1078 both on the stack and in registers. */
1079 if (XEXP (XVECEXP (x
, 0, 0), 0))
1084 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1086 rtx y
= XVECEXP (x
, 0, i
);
1087 if (REG_P (XEXP (y
, 0)))
1088 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1093 /* Assign the RTX X to declaration T. */
1096 set_decl_rtl (tree t
, rtx x
)
1098 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1100 set_reg_attrs_for_decl_rtl (t
, x
);
1103 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1104 if the ABI requires the parameter to be passed by reference. */
1107 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1109 DECL_INCOMING_RTL (t
) = x
;
1110 if (x
&& !by_reference_p
)
1111 set_reg_attrs_for_decl_rtl (t
, x
);
1114 /* Identify REG (which may be a CONCAT) as a user register. */
1117 mark_user_reg (rtx reg
)
1119 if (GET_CODE (reg
) == CONCAT
)
1121 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1122 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1126 gcc_assert (REG_P (reg
));
1127 REG_USERVAR_P (reg
) = 1;
1131 /* Identify REG as a probable pointer register and show its alignment
1132 as ALIGN, if nonzero. */
1135 mark_reg_pointer (rtx reg
, int align
)
1137 if (! REG_POINTER (reg
))
1139 REG_POINTER (reg
) = 1;
1142 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1144 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1145 /* We can no-longer be sure just how aligned this pointer is. */
1146 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1149 /* Return 1 plus largest pseudo reg number used in the current function. */
1157 /* Return 1 + the largest label number used so far in the current function. */
1160 max_label_num (void)
1165 /* Return first label number used in this function (if any were used). */
1168 get_first_label_num (void)
1170 return first_label_num
;
1173 /* If the rtx for label was created during the expansion of a nested
1174 function, then first_label_num won't include this label number.
1175 Fix this now so that array indices work later. */
1178 maybe_set_first_label_num (rtx x
)
1180 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1181 first_label_num
= CODE_LABEL_NUMBER (x
);
1184 /* Return a value representing some low-order bits of X, where the number
1185 of low-order bits is given by MODE. Note that no conversion is done
1186 between floating-point and fixed-point values, rather, the bit
1187 representation is returned.
1189 This function handles the cases in common between gen_lowpart, below,
1190 and two variants in cse.c and combine.c. These are the cases that can
1191 be safely handled at all points in the compilation.
1193 If this is not a case we can handle, return 0. */
1196 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1198 int msize
= GET_MODE_SIZE (mode
);
1201 enum machine_mode innermode
;
1203 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1204 so we have to make one up. Yuk. */
1205 innermode
= GET_MODE (x
);
1207 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1208 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1209 else if (innermode
== VOIDmode
)
1210 innermode
= mode_for_size (HOST_BITS_PER_DOUBLE_INT
, MODE_INT
, 0);
1212 xsize
= GET_MODE_SIZE (innermode
);
1214 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1216 if (innermode
== mode
)
1219 /* MODE must occupy no more words than the mode of X. */
1220 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1221 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1224 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1225 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1228 offset
= subreg_lowpart_offset (mode
, innermode
);
1230 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1231 && (GET_MODE_CLASS (mode
) == MODE_INT
1232 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1234 /* If we are getting the low-order part of something that has been
1235 sign- or zero-extended, we can either just use the object being
1236 extended or make a narrower extension. If we want an even smaller
1237 piece than the size of the object being extended, call ourselves
1240 This case is used mostly by combine and cse. */
1242 if (GET_MODE (XEXP (x
, 0)) == mode
)
1244 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1245 return gen_lowpart_common (mode
, XEXP (x
, 0));
1246 else if (msize
< xsize
)
1247 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1249 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1250 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1251 || CONST_DOUBLE_AS_FLOAT_P (x
) || CONST_SCALAR_INT_P (x
))
1252 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1254 /* Otherwise, we can't do this. */
1259 gen_highpart (enum machine_mode mode
, rtx x
)
1261 unsigned int msize
= GET_MODE_SIZE (mode
);
1264 /* This case loses if X is a subreg. To catch bugs early,
1265 complain if an invalid MODE is used even in other cases. */
1266 gcc_assert (msize
<= UNITS_PER_WORD
1267 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1269 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1270 subreg_highpart_offset (mode
, GET_MODE (x
)));
1271 gcc_assert (result
);
1273 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1274 the target if we have a MEM. gen_highpart must return a valid operand,
1275 emitting code if necessary to do so. */
1278 result
= validize_mem (result
);
1279 gcc_assert (result
);
1285 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1286 be VOIDmode constant. */
1288 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1290 if (GET_MODE (exp
) != VOIDmode
)
1292 gcc_assert (GET_MODE (exp
) == innermode
);
1293 return gen_highpart (outermode
, exp
);
1295 return simplify_gen_subreg (outermode
, exp
, innermode
,
1296 subreg_highpart_offset (outermode
, innermode
));
1299 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1302 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1304 unsigned int offset
= 0;
1305 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1309 if (WORDS_BIG_ENDIAN
)
1310 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1311 if (BYTES_BIG_ENDIAN
)
1312 offset
+= difference
% UNITS_PER_WORD
;
1318 /* Return offset in bytes to get OUTERMODE high part
1319 of the value in mode INNERMODE stored in memory in target format. */
1321 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1323 unsigned int offset
= 0;
1324 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1326 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1330 if (! WORDS_BIG_ENDIAN
)
1331 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1332 if (! BYTES_BIG_ENDIAN
)
1333 offset
+= difference
% UNITS_PER_WORD
;
1339 /* Return 1 iff X, assumed to be a SUBREG,
1340 refers to the least significant part of its containing reg.
1341 If X is not a SUBREG, always return 1 (it is its own low part!). */
1344 subreg_lowpart_p (const_rtx x
)
1346 if (GET_CODE (x
) != SUBREG
)
1348 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1351 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1352 == SUBREG_BYTE (x
));
1355 /* Return true if X is a paradoxical subreg, false otherwise. */
1357 paradoxical_subreg_p (const_rtx x
)
1359 if (GET_CODE (x
) != SUBREG
)
1361 return (GET_MODE_PRECISION (GET_MODE (x
))
1362 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))));
1365 /* Return subword OFFSET of operand OP.
1366 The word number, OFFSET, is interpreted as the word number starting
1367 at the low-order address. OFFSET 0 is the low-order word if not
1368 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1370 If we cannot extract the required word, we return zero. Otherwise,
1371 an rtx corresponding to the requested word will be returned.
1373 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1374 reload has completed, a valid address will always be returned. After
1375 reload, if a valid address cannot be returned, we return zero.
1377 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1378 it is the responsibility of the caller.
1380 MODE is the mode of OP in case it is a CONST_INT.
1382 ??? This is still rather broken for some cases. The problem for the
1383 moment is that all callers of this thing provide no 'goal mode' to
1384 tell us to work with. This exists because all callers were written
1385 in a word based SUBREG world.
1386 Now use of this function can be deprecated by simplify_subreg in most
1391 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1393 if (mode
== VOIDmode
)
1394 mode
= GET_MODE (op
);
1396 gcc_assert (mode
!= VOIDmode
);
1398 /* If OP is narrower than a word, fail. */
1400 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1403 /* If we want a word outside OP, return zero. */
1405 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1408 /* Form a new MEM at the requested address. */
1411 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1413 if (! validate_address
)
1416 else if (reload_completed
)
1418 if (! strict_memory_address_addr_space_p (word_mode
,
1420 MEM_ADDR_SPACE (op
)))
1424 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1427 /* Rest can be handled by simplify_subreg. */
1428 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1431 /* Similar to `operand_subword', but never return 0. If we can't
1432 extract the required subword, put OP into a register and try again.
1433 The second attempt must succeed. We always validate the address in
1436 MODE is the mode of OP, in case it is CONST_INT. */
1439 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1441 rtx result
= operand_subword (op
, offset
, 1, mode
);
1446 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1448 /* If this is a register which can not be accessed by words, copy it
1449 to a pseudo register. */
1451 op
= copy_to_reg (op
);
1453 op
= force_reg (mode
, op
);
1456 result
= operand_subword (op
, offset
, 1, mode
);
1457 gcc_assert (result
);
1462 /* Returns 1 if both MEM_EXPR can be considered equal
1466 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1471 if (! expr1
|| ! expr2
)
1474 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1477 return operand_equal_p (expr1
, expr2
, 0);
1480 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1481 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1485 get_mem_align_offset (rtx mem
, unsigned int align
)
1488 unsigned HOST_WIDE_INT offset
;
1490 /* This function can't use
1491 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1492 || (MAX (MEM_ALIGN (mem),
1493 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1497 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1499 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1500 for <variable>. get_inner_reference doesn't handle it and
1501 even if it did, the alignment in that case needs to be determined
1502 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1503 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1504 isn't sufficiently aligned, the object it is in might be. */
1505 gcc_assert (MEM_P (mem
));
1506 expr
= MEM_EXPR (mem
);
1507 if (expr
== NULL_TREE
|| !MEM_OFFSET_KNOWN_P (mem
))
1510 offset
= MEM_OFFSET (mem
);
1513 if (DECL_ALIGN (expr
) < align
)
1516 else if (INDIRECT_REF_P (expr
))
1518 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1521 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1525 tree inner
= TREE_OPERAND (expr
, 0);
1526 tree field
= TREE_OPERAND (expr
, 1);
1527 tree byte_offset
= component_ref_field_offset (expr
);
1528 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1531 || !host_integerp (byte_offset
, 1)
1532 || !host_integerp (bit_offset
, 1))
1535 offset
+= tree_low_cst (byte_offset
, 1);
1536 offset
+= tree_low_cst (bit_offset
, 1) / BITS_PER_UNIT
;
1538 if (inner
== NULL_TREE
)
1540 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1541 < (unsigned int) align
)
1545 else if (DECL_P (inner
))
1547 if (DECL_ALIGN (inner
) < align
)
1551 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1559 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1562 /* Given REF (a MEM) and T, either the type of X or the expression
1563 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1564 if we are making a new object of this type. BITPOS is nonzero if
1565 there is an offset outstanding on T that will be applied later. */
1568 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1569 HOST_WIDE_INT bitpos
)
1571 HOST_WIDE_INT apply_bitpos
= 0;
1573 struct mem_attrs attrs
, *defattrs
, *refattrs
;
1576 /* It can happen that type_for_mode was given a mode for which there
1577 is no language-level type. In which case it returns NULL, which
1582 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1583 if (type
== error_mark_node
)
1586 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1587 wrong answer, as it assumes that DECL_RTL already has the right alias
1588 info. Callers should not set DECL_RTL until after the call to
1589 set_mem_attributes. */
1590 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1592 memset (&attrs
, 0, sizeof (attrs
));
1594 /* Get the alias set from the expression or type (perhaps using a
1595 front-end routine) and use it. */
1596 attrs
.alias
= get_alias_set (t
);
1598 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1599 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1601 /* Default values from pre-existing memory attributes if present. */
1602 refattrs
= MEM_ATTRS (ref
);
1605 /* ??? Can this ever happen? Calling this routine on a MEM that
1606 already carries memory attributes should probably be invalid. */
1607 attrs
.expr
= refattrs
->expr
;
1608 attrs
.offset_known_p
= refattrs
->offset_known_p
;
1609 attrs
.offset
= refattrs
->offset
;
1610 attrs
.size_known_p
= refattrs
->size_known_p
;
1611 attrs
.size
= refattrs
->size
;
1612 attrs
.align
= refattrs
->align
;
1615 /* Otherwise, default values from the mode of the MEM reference. */
1618 defattrs
= mode_mem_attrs
[(int) GET_MODE (ref
)];
1619 gcc_assert (!defattrs
->expr
);
1620 gcc_assert (!defattrs
->offset_known_p
);
1622 /* Respect mode size. */
1623 attrs
.size_known_p
= defattrs
->size_known_p
;
1624 attrs
.size
= defattrs
->size
;
1625 /* ??? Is this really necessary? We probably should always get
1626 the size from the type below. */
1628 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1629 if T is an object, always compute the object alignment below. */
1631 attrs
.align
= defattrs
->align
;
1633 attrs
.align
= BITS_PER_UNIT
;
1634 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1635 e.g. if the type carries an alignment attribute. Should we be
1636 able to simply always use TYPE_ALIGN? */
1639 /* We can set the alignment from the type if we are making an object,
1640 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1641 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
|| TYPE_ALIGN_OK (type
))
1642 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1644 else if (TREE_CODE (t
) == MEM_REF
)
1646 tree op0
= TREE_OPERAND (t
, 0);
1647 if (TREE_CODE (op0
) == ADDR_EXPR
1648 && (DECL_P (TREE_OPERAND (op0
, 0))
1649 || CONSTANT_CLASS_P (TREE_OPERAND (op0
, 0))))
1651 if (DECL_P (TREE_OPERAND (op0
, 0)))
1652 attrs
.align
= DECL_ALIGN (TREE_OPERAND (op0
, 0));
1653 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0
, 0)))
1655 attrs
.align
= TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0
, 0)));
1656 #ifdef CONSTANT_ALIGNMENT
1657 attrs
.align
= CONSTANT_ALIGNMENT (TREE_OPERAND (op0
, 0),
1661 if (TREE_INT_CST_LOW (TREE_OPERAND (t
, 1)) != 0)
1663 unsigned HOST_WIDE_INT ioff
1664 = TREE_INT_CST_LOW (TREE_OPERAND (t
, 1));
1665 unsigned HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1666 attrs
.align
= MIN (aoff
, attrs
.align
);
1670 /* ??? This isn't fully correct, we can't set the alignment from the
1671 type in all cases. */
1672 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1675 else if (TREE_CODE (t
) == TARGET_MEM_REF
)
1676 /* ??? This isn't fully correct, we can't set the alignment from the
1677 type in all cases. */
1678 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1680 /* If the size is known, we can set that. */
1681 tree new_size
= TYPE_SIZE_UNIT (type
);
1683 /* If T is not a type, we may be able to deduce some more information about
1688 bool align_computed
= false;
1690 if (TREE_THIS_VOLATILE (t
))
1691 MEM_VOLATILE_P (ref
) = 1;
1693 /* Now remove any conversions: they don't change what the underlying
1694 object is. Likewise for SAVE_EXPR. */
1695 while (CONVERT_EXPR_P (t
)
1696 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1697 || TREE_CODE (t
) == SAVE_EXPR
)
1698 t
= TREE_OPERAND (t
, 0);
1700 /* Note whether this expression can trap. */
1701 MEM_NOTRAP_P (ref
) = !tree_could_trap_p (t
);
1703 base
= get_base_address (t
);
1707 && TREE_READONLY (base
)
1708 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
))
1709 && !TREE_THIS_VOLATILE (base
))
1710 MEM_READONLY_P (ref
) = 1;
1712 /* Mark static const strings readonly as well. */
1713 if (TREE_CODE (base
) == STRING_CST
1714 && TREE_READONLY (base
)
1715 && TREE_STATIC (base
))
1716 MEM_READONLY_P (ref
) = 1;
1718 if (TREE_CODE (base
) == MEM_REF
1719 || TREE_CODE (base
) == TARGET_MEM_REF
)
1720 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base
,
1723 as
= TYPE_ADDR_SPACE (TREE_TYPE (base
));
1726 as
= TYPE_ADDR_SPACE (type
);
1728 /* If this expression uses it's parent's alias set, mark it such
1729 that we won't change it. */
1730 if (component_uses_parent_alias_set (t
))
1731 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1733 /* If this is a decl, set the attributes of the MEM from it. */
1737 attrs
.offset_known_p
= true;
1739 apply_bitpos
= bitpos
;
1740 new_size
= DECL_SIZE_UNIT (t
);
1741 attrs
.align
= DECL_ALIGN (t
);
1742 align_computed
= true;
1745 /* If this is a constant, we know the alignment. */
1746 else if (CONSTANT_CLASS_P (t
))
1748 attrs
.align
= TYPE_ALIGN (type
);
1749 #ifdef CONSTANT_ALIGNMENT
1750 attrs
.align
= CONSTANT_ALIGNMENT (t
, attrs
.align
);
1752 align_computed
= true;
1755 /* If this is a field reference, record it. */
1756 else if (TREE_CODE (t
) == COMPONENT_REF
)
1759 attrs
.offset_known_p
= true;
1761 apply_bitpos
= bitpos
;
1762 if (DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1763 new_size
= DECL_SIZE_UNIT (TREE_OPERAND (t
, 1));
1766 /* If this is an array reference, look for an outer field reference. */
1767 else if (TREE_CODE (t
) == ARRAY_REF
)
1769 tree off_tree
= size_zero_node
;
1770 /* We can't modify t, because we use it at the end of the
1776 tree index
= TREE_OPERAND (t2
, 1);
1777 tree low_bound
= array_ref_low_bound (t2
);
1778 tree unit_size
= array_ref_element_size (t2
);
1780 /* We assume all arrays have sizes that are a multiple of a byte.
1781 First subtract the lower bound, if any, in the type of the
1782 index, then convert to sizetype and multiply by the size of
1783 the array element. */
1784 if (! integer_zerop (low_bound
))
1785 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1788 off_tree
= size_binop (PLUS_EXPR
,
1789 size_binop (MULT_EXPR
,
1790 fold_convert (sizetype
,
1794 t2
= TREE_OPERAND (t2
, 0);
1796 while (TREE_CODE (t2
) == ARRAY_REF
);
1801 attrs
.offset_known_p
= false;
1802 if (host_integerp (off_tree
, 1))
1804 HOST_WIDE_INT ioff
= tree_low_cst (off_tree
, 1);
1805 HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1806 attrs
.align
= DECL_ALIGN (t2
);
1807 if (aoff
&& (unsigned HOST_WIDE_INT
) aoff
< attrs
.align
)
1809 align_computed
= true;
1810 attrs
.offset_known_p
= true;
1811 attrs
.offset
= ioff
;
1812 apply_bitpos
= bitpos
;
1815 else if (TREE_CODE (t2
) == COMPONENT_REF
)
1818 attrs
.offset_known_p
= false;
1819 if (host_integerp (off_tree
, 1))
1821 attrs
.offset_known_p
= true;
1822 attrs
.offset
= tree_low_cst (off_tree
, 1);
1823 apply_bitpos
= bitpos
;
1825 /* ??? Any reason the field size would be different than
1826 the size we got from the type? */
1830 /* If this is an indirect reference, record it. */
1831 else if (TREE_CODE (t
) == MEM_REF
1832 || TREE_CODE (t
) == TARGET_MEM_REF
)
1835 attrs
.offset_known_p
= true;
1837 apply_bitpos
= bitpos
;
1840 if (!align_computed
)
1842 unsigned int obj_align
= get_object_alignment (t
);
1843 attrs
.align
= MAX (attrs
.align
, obj_align
);
1847 as
= TYPE_ADDR_SPACE (type
);
1849 if (host_integerp (new_size
, 1))
1851 attrs
.size_known_p
= true;
1852 attrs
.size
= tree_low_cst (new_size
, 1);
1855 /* If we modified OFFSET based on T, then subtract the outstanding
1856 bit position offset. Similarly, increase the size of the accessed
1857 object to contain the negative offset. */
1860 gcc_assert (attrs
.offset_known_p
);
1861 attrs
.offset
-= apply_bitpos
/ BITS_PER_UNIT
;
1862 if (attrs
.size_known_p
)
1863 attrs
.size
+= apply_bitpos
/ BITS_PER_UNIT
;
1866 /* Now set the attributes we computed above. */
1867 attrs
.addrspace
= as
;
1868 set_mem_attrs (ref
, &attrs
);
1872 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1874 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1877 /* Set the alias set of MEM to SET. */
1880 set_mem_alias_set (rtx mem
, alias_set_type set
)
1882 struct mem_attrs attrs
;
1884 /* If the new and old alias sets don't conflict, something is wrong. */
1885 gcc_checking_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1886 attrs
= *get_mem_attrs (mem
);
1888 set_mem_attrs (mem
, &attrs
);
1891 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1894 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
1896 struct mem_attrs attrs
;
1898 attrs
= *get_mem_attrs (mem
);
1899 attrs
.addrspace
= addrspace
;
1900 set_mem_attrs (mem
, &attrs
);
1903 /* Set the alignment of MEM to ALIGN bits. */
1906 set_mem_align (rtx mem
, unsigned int align
)
1908 struct mem_attrs attrs
;
1910 attrs
= *get_mem_attrs (mem
);
1911 attrs
.align
= align
;
1912 set_mem_attrs (mem
, &attrs
);
1915 /* Set the expr for MEM to EXPR. */
1918 set_mem_expr (rtx mem
, tree expr
)
1920 struct mem_attrs attrs
;
1922 attrs
= *get_mem_attrs (mem
);
1924 set_mem_attrs (mem
, &attrs
);
1927 /* Set the offset of MEM to OFFSET. */
1930 set_mem_offset (rtx mem
, HOST_WIDE_INT offset
)
1932 struct mem_attrs attrs
;
1934 attrs
= *get_mem_attrs (mem
);
1935 attrs
.offset_known_p
= true;
1936 attrs
.offset
= offset
;
1937 set_mem_attrs (mem
, &attrs
);
1940 /* Clear the offset of MEM. */
1943 clear_mem_offset (rtx mem
)
1945 struct mem_attrs attrs
;
1947 attrs
= *get_mem_attrs (mem
);
1948 attrs
.offset_known_p
= false;
1949 set_mem_attrs (mem
, &attrs
);
1952 /* Set the size of MEM to SIZE. */
1955 set_mem_size (rtx mem
, HOST_WIDE_INT size
)
1957 struct mem_attrs attrs
;
1959 attrs
= *get_mem_attrs (mem
);
1960 attrs
.size_known_p
= true;
1962 set_mem_attrs (mem
, &attrs
);
1965 /* Clear the size of MEM. */
1968 clear_mem_size (rtx mem
)
1970 struct mem_attrs attrs
;
1972 attrs
= *get_mem_attrs (mem
);
1973 attrs
.size_known_p
= false;
1974 set_mem_attrs (mem
, &attrs
);
1977 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1978 and its address changed to ADDR. (VOIDmode means don't change the mode.
1979 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1980 returned memory location is required to be valid. The memory
1981 attributes are not changed. */
1984 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1989 gcc_assert (MEM_P (memref
));
1990 as
= MEM_ADDR_SPACE (memref
);
1991 if (mode
== VOIDmode
)
1992 mode
= GET_MODE (memref
);
1994 addr
= XEXP (memref
, 0);
1995 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1996 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
2001 if (reload_in_progress
|| reload_completed
)
2002 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
2004 addr
= memory_address_addr_space (mode
, addr
, as
);
2007 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
2010 new_rtx
= gen_rtx_MEM (mode
, addr
);
2011 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2015 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2016 way we are changing MEMREF, so we only preserve the alias set. */
2019 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
2021 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1);
2022 enum machine_mode mmode
= GET_MODE (new_rtx
);
2023 struct mem_attrs attrs
, *defattrs
;
2025 attrs
= *get_mem_attrs (memref
);
2026 defattrs
= mode_mem_attrs
[(int) mmode
];
2027 attrs
.expr
= NULL_TREE
;
2028 attrs
.offset_known_p
= false;
2029 attrs
.size_known_p
= defattrs
->size_known_p
;
2030 attrs
.size
= defattrs
->size
;
2031 attrs
.align
= defattrs
->align
;
2033 /* If there are no changes, just return the original memory reference. */
2034 if (new_rtx
== memref
)
2036 if (mem_attrs_eq_p (get_mem_attrs (memref
), &attrs
))
2039 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
2040 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2043 set_mem_attrs (new_rtx
, &attrs
);
2047 /* Return a memory reference like MEMREF, but with its mode changed
2048 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2049 nonzero, the memory address is forced to be valid.
2050 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2051 and the caller is responsible for adjusting MEMREF base register.
2052 If ADJUST_OBJECT is zero, the underlying object associated with the
2053 memory reference is left unchanged and the caller is responsible for
2054 dealing with it. Otherwise, if the new memory reference is outside
2055 the underlying object, even partially, then the object is dropped.
2056 SIZE, if nonzero, is the size of an access in cases where MODE
2057 has no inherent size. */
2060 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
2061 int validate
, int adjust_address
, int adjust_object
,
2064 rtx addr
= XEXP (memref
, 0);
2066 enum machine_mode address_mode
;
2068 struct mem_attrs attrs
= *get_mem_attrs (memref
), *defattrs
;
2069 unsigned HOST_WIDE_INT max_align
;
2070 #ifdef POINTERS_EXTEND_UNSIGNED
2071 enum machine_mode pointer_mode
2072 = targetm
.addr_space
.pointer_mode (attrs
.addrspace
);
2075 /* VOIDmode means no mode change for change_address_1. */
2076 if (mode
== VOIDmode
)
2077 mode
= GET_MODE (memref
);
2079 /* Take the size of non-BLKmode accesses from the mode. */
2080 defattrs
= mode_mem_attrs
[(int) mode
];
2081 if (defattrs
->size_known_p
)
2082 size
= defattrs
->size
;
2084 /* If there are no changes, just return the original memory reference. */
2085 if (mode
== GET_MODE (memref
) && !offset
2086 && (size
== 0 || (attrs
.size_known_p
&& attrs
.size
== size
))
2087 && (!validate
|| memory_address_addr_space_p (mode
, addr
,
2091 /* ??? Prefer to create garbage instead of creating shared rtl.
2092 This may happen even if offset is nonzero -- consider
2093 (plus (plus reg reg) const_int) -- so do this always. */
2094 addr
= copy_rtx (addr
);
2096 /* Convert a possibly large offset to a signed value within the
2097 range of the target address space. */
2098 address_mode
= get_address_mode (memref
);
2099 pbits
= GET_MODE_BITSIZE (address_mode
);
2100 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2102 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2103 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2109 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2110 object, we can merge it into the LO_SUM. */
2111 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2113 && (unsigned HOST_WIDE_INT
) offset
2114 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2115 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2116 plus_constant (address_mode
,
2117 XEXP (addr
, 1), offset
));
2118 #ifdef POINTERS_EXTEND_UNSIGNED
2119 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2120 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2121 the fact that pointers are not allowed to overflow. */
2122 else if (POINTERS_EXTEND_UNSIGNED
> 0
2123 && GET_CODE (addr
) == ZERO_EXTEND
2124 && GET_MODE (XEXP (addr
, 0)) == pointer_mode
2125 && trunc_int_for_mode (offset
, pointer_mode
) == offset
)
2126 addr
= gen_rtx_ZERO_EXTEND (address_mode
,
2127 plus_constant (pointer_mode
,
2128 XEXP (addr
, 0), offset
));
2131 addr
= plus_constant (address_mode
, addr
, offset
);
2134 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
);
2136 /* If the address is a REG, change_address_1 rightfully returns memref,
2137 but this would destroy memref's MEM_ATTRS. */
2138 if (new_rtx
== memref
&& offset
!= 0)
2139 new_rtx
= copy_rtx (new_rtx
);
2141 /* Conservatively drop the object if we don't know where we start from. */
2142 if (adjust_object
&& (!attrs
.offset_known_p
|| !attrs
.size_known_p
))
2144 attrs
.expr
= NULL_TREE
;
2148 /* Compute the new values of the memory attributes due to this adjustment.
2149 We add the offsets and update the alignment. */
2150 if (attrs
.offset_known_p
)
2152 attrs
.offset
+= offset
;
2154 /* Drop the object if the new left end is not within its bounds. */
2155 if (adjust_object
&& attrs
.offset
< 0)
2157 attrs
.expr
= NULL_TREE
;
2162 /* Compute the new alignment by taking the MIN of the alignment and the
2163 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2167 max_align
= (offset
& -offset
) * BITS_PER_UNIT
;
2168 attrs
.align
= MIN (attrs
.align
, max_align
);
2173 /* Drop the object if the new right end is not within its bounds. */
2174 if (adjust_object
&& (offset
+ size
) > attrs
.size
)
2176 attrs
.expr
= NULL_TREE
;
2179 attrs
.size_known_p
= true;
2182 else if (attrs
.size_known_p
)
2184 gcc_assert (!adjust_object
);
2185 attrs
.size
-= offset
;
2186 /* ??? The store_by_pieces machinery generates negative sizes,
2187 so don't assert for that here. */
2190 set_mem_attrs (new_rtx
, &attrs
);
2195 /* Return a memory reference like MEMREF, but with its mode changed
2196 to MODE and its address changed to ADDR, which is assumed to be
2197 MEMREF offset by OFFSET bytes. If VALIDATE is
2198 nonzero, the memory address is forced to be valid. */
2201 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
2202 HOST_WIDE_INT offset
, int validate
)
2204 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
2205 return adjust_address_1 (memref
, mode
, offset
, validate
, 0, 0, 0);
2208 /* Return a memory reference like MEMREF, but whose address is changed by
2209 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2210 known to be in OFFSET (possibly 1). */
2213 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2215 rtx new_rtx
, addr
= XEXP (memref
, 0);
2216 enum machine_mode address_mode
;
2217 struct mem_attrs attrs
, *defattrs
;
2219 attrs
= *get_mem_attrs (memref
);
2220 address_mode
= get_address_mode (memref
);
2221 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2223 /* At this point we don't know _why_ the address is invalid. It
2224 could have secondary memory references, multiplies or anything.
2226 However, if we did go and rearrange things, we can wind up not
2227 being able to recognize the magic around pic_offset_table_rtx.
2228 This stuff is fragile, and is yet another example of why it is
2229 bad to expose PIC machinery too early. */
2230 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
,
2232 && GET_CODE (addr
) == PLUS
2233 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2235 addr
= force_reg (GET_MODE (addr
), addr
);
2236 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2239 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2240 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1);
2242 /* If there are no changes, just return the original memory reference. */
2243 if (new_rtx
== memref
)
2246 /* Update the alignment to reflect the offset. Reset the offset, which
2248 defattrs
= mode_mem_attrs
[(int) GET_MODE (new_rtx
)];
2249 attrs
.offset_known_p
= false;
2250 attrs
.size_known_p
= defattrs
->size_known_p
;
2251 attrs
.size
= defattrs
->size
;
2252 attrs
.align
= MIN (attrs
.align
, pow2
* BITS_PER_UNIT
);
2253 set_mem_attrs (new_rtx
, &attrs
);
2257 /* Return a memory reference like MEMREF, but with its address changed to
2258 ADDR. The caller is asserting that the actual piece of memory pointed
2259 to is the same, just the form of the address is being changed, such as
2260 by putting something into a register. */
2263 replace_equiv_address (rtx memref
, rtx addr
)
2265 /* change_address_1 copies the memory attribute structure without change
2266 and that's exactly what we want here. */
2267 update_temp_slot_address (XEXP (memref
, 0), addr
);
2268 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2271 /* Likewise, but the reference is not required to be valid. */
2274 replace_equiv_address_nv (rtx memref
, rtx addr
)
2276 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2279 /* Return a memory reference like MEMREF, but with its mode widened to
2280 MODE and offset by OFFSET. This would be used by targets that e.g.
2281 cannot issue QImode memory operations and have to use SImode memory
2282 operations plus masking logic. */
2285 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2287 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1, 0, 0);
2288 struct mem_attrs attrs
;
2289 unsigned int size
= GET_MODE_SIZE (mode
);
2291 /* If there are no changes, just return the original memory reference. */
2292 if (new_rtx
== memref
)
2295 attrs
= *get_mem_attrs (new_rtx
);
2297 /* If we don't know what offset we were at within the expression, then
2298 we can't know if we've overstepped the bounds. */
2299 if (! attrs
.offset_known_p
)
2300 attrs
.expr
= NULL_TREE
;
2304 if (TREE_CODE (attrs
.expr
) == COMPONENT_REF
)
2306 tree field
= TREE_OPERAND (attrs
.expr
, 1);
2307 tree offset
= component_ref_field_offset (attrs
.expr
);
2309 if (! DECL_SIZE_UNIT (field
))
2311 attrs
.expr
= NULL_TREE
;
2315 /* Is the field at least as large as the access? If so, ok,
2316 otherwise strip back to the containing structure. */
2317 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2318 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2319 && attrs
.offset
>= 0)
2322 if (! host_integerp (offset
, 1))
2324 attrs
.expr
= NULL_TREE
;
2328 attrs
.expr
= TREE_OPERAND (attrs
.expr
, 0);
2329 attrs
.offset
+= tree_low_cst (offset
, 1);
2330 attrs
.offset
+= (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2333 /* Similarly for the decl. */
2334 else if (DECL_P (attrs
.expr
)
2335 && DECL_SIZE_UNIT (attrs
.expr
)
2336 && TREE_CODE (DECL_SIZE_UNIT (attrs
.expr
)) == INTEGER_CST
2337 && compare_tree_int (DECL_SIZE_UNIT (attrs
.expr
), size
) >= 0
2338 && (! attrs
.offset_known_p
|| attrs
.offset
>= 0))
2342 /* The widened memory access overflows the expression, which means
2343 that it could alias another expression. Zap it. */
2344 attrs
.expr
= NULL_TREE
;
2350 attrs
.offset_known_p
= false;
2352 /* The widened memory may alias other stuff, so zap the alias set. */
2353 /* ??? Maybe use get_alias_set on any remaining expression. */
2355 attrs
.size_known_p
= true;
2357 set_mem_attrs (new_rtx
, &attrs
);
2361 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2362 static GTY(()) tree spill_slot_decl
;
2365 get_spill_slot_decl (bool force_build_p
)
2367 tree d
= spill_slot_decl
;
2369 struct mem_attrs attrs
;
2371 if (d
|| !force_build_p
)
2374 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2375 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2376 DECL_ARTIFICIAL (d
) = 1;
2377 DECL_IGNORED_P (d
) = 1;
2379 spill_slot_decl
= d
;
2381 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2382 MEM_NOTRAP_P (rd
) = 1;
2383 attrs
= *mode_mem_attrs
[(int) BLKmode
];
2384 attrs
.alias
= new_alias_set ();
2386 set_mem_attrs (rd
, &attrs
);
2387 SET_DECL_RTL (d
, rd
);
2392 /* Given MEM, a result from assign_stack_local, fill in the memory
2393 attributes as appropriate for a register allocator spill slot.
2394 These slots are not aliasable by other memory. We arrange for
2395 them all to use a single MEM_EXPR, so that the aliasing code can
2396 work properly in the case of shared spill slots. */
2399 set_mem_attrs_for_spill (rtx mem
)
2401 struct mem_attrs attrs
;
2404 attrs
= *get_mem_attrs (mem
);
2405 attrs
.expr
= get_spill_slot_decl (true);
2406 attrs
.alias
= MEM_ALIAS_SET (DECL_RTL (attrs
.expr
));
2407 attrs
.addrspace
= ADDR_SPACE_GENERIC
;
2409 /* We expect the incoming memory to be of the form:
2410 (mem:MODE (plus (reg sfp) (const_int offset)))
2411 with perhaps the plus missing for offset = 0. */
2412 addr
= XEXP (mem
, 0);
2413 attrs
.offset_known_p
= true;
2415 if (GET_CODE (addr
) == PLUS
2416 && CONST_INT_P (XEXP (addr
, 1)))
2417 attrs
.offset
= INTVAL (XEXP (addr
, 1));
2419 set_mem_attrs (mem
, &attrs
);
2420 MEM_NOTRAP_P (mem
) = 1;
2423 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2426 gen_label_rtx (void)
2428 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2429 NULL
, label_num
++, NULL
);
2432 /* For procedure integration. */
2434 /* Install new pointers to the first and last insns in the chain.
2435 Also, set cur_insn_uid to one higher than the last in use.
2436 Used for an inline-procedure after copying the insn chain. */
2439 set_new_first_and_last_insn (rtx first
, rtx last
)
2443 set_first_insn (first
);
2444 set_last_insn (last
);
2447 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2449 int debug_count
= 0;
2451 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2452 cur_debug_insn_uid
= 0;
2454 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2455 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2456 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2459 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2460 if (DEBUG_INSN_P (insn
))
2465 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2467 cur_debug_insn_uid
++;
2470 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2471 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2476 /* Go through all the RTL insn bodies and copy any invalid shared
2477 structure. This routine should only be called once. */
2480 unshare_all_rtl_1 (rtx insn
)
2482 /* Unshare just about everything else. */
2483 unshare_all_rtl_in_chain (insn
);
2485 /* Make sure the addresses of stack slots found outside the insn chain
2486 (such as, in DECL_RTL of a variable) are not shared
2487 with the insn chain.
2489 This special care is necessary when the stack slot MEM does not
2490 actually appear in the insn chain. If it does appear, its address
2491 is unshared from all else at that point. */
2492 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2495 /* Go through all the RTL insn bodies and copy any invalid shared
2496 structure, again. This is a fairly expensive thing to do so it
2497 should be done sparingly. */
2500 unshare_all_rtl_again (rtx insn
)
2505 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2508 reset_used_flags (PATTERN (p
));
2509 reset_used_flags (REG_NOTES (p
));
2511 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2514 /* Make sure that virtual stack slots are not shared. */
2515 set_used_decls (DECL_INITIAL (cfun
->decl
));
2517 /* Make sure that virtual parameters are not shared. */
2518 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2519 set_used_flags (DECL_RTL (decl
));
2521 reset_used_flags (stack_slot_list
);
2523 unshare_all_rtl_1 (insn
);
2527 unshare_all_rtl (void)
2529 unshare_all_rtl_1 (get_insns ());
2534 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2535 Recursively does the same for subexpressions. */
2538 verify_rtx_sharing (rtx orig
, rtx insn
)
2543 const char *format_ptr
;
2548 code
= GET_CODE (x
);
2550 /* These types may be freely shared. */
2567 /* SCRATCH must be shared because they represent distinct values. */
2569 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2574 if (shared_const_p (orig
))
2579 /* A MEM is allowed to be shared if its address is constant. */
2580 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2581 || reload_completed
|| reload_in_progress
)
2590 /* This rtx may not be shared. If it has already been seen,
2591 replace it with a copy of itself. */
2592 #ifdef ENABLE_CHECKING
2593 if (RTX_FLAG (x
, used
))
2595 error ("invalid rtl sharing found in the insn");
2597 error ("shared rtx");
2599 internal_error ("internal consistency failure");
2602 gcc_assert (!RTX_FLAG (x
, used
));
2604 RTX_FLAG (x
, used
) = 1;
2606 /* Now scan the subexpressions recursively. */
2608 format_ptr
= GET_RTX_FORMAT (code
);
2610 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2612 switch (*format_ptr
++)
2615 verify_rtx_sharing (XEXP (x
, i
), insn
);
2619 if (XVEC (x
, i
) != NULL
)
2622 int len
= XVECLEN (x
, i
);
2624 for (j
= 0; j
< len
; j
++)
2626 /* We allow sharing of ASM_OPERANDS inside single
2628 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2629 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2631 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2633 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2642 /* Go through all the RTL insn bodies and check that there is no unexpected
2643 sharing in between the subexpressions. */
2646 verify_rtl_sharing (void)
2650 timevar_push (TV_VERIFY_RTL_SHARING
);
2652 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2655 reset_used_flags (PATTERN (p
));
2656 reset_used_flags (REG_NOTES (p
));
2658 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2659 if (GET_CODE (PATTERN (p
)) == SEQUENCE
)
2662 rtx q
, sequence
= PATTERN (p
);
2664 for (i
= 0; i
< XVECLEN (sequence
, 0); i
++)
2666 q
= XVECEXP (sequence
, 0, i
);
2667 gcc_assert (INSN_P (q
));
2668 reset_used_flags (PATTERN (q
));
2669 reset_used_flags (REG_NOTES (q
));
2671 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q
));
2676 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2679 verify_rtx_sharing (PATTERN (p
), p
);
2680 verify_rtx_sharing (REG_NOTES (p
), p
);
2682 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p
), p
);
2685 timevar_pop (TV_VERIFY_RTL_SHARING
);
2688 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2689 Assumes the mark bits are cleared at entry. */
2692 unshare_all_rtl_in_chain (rtx insn
)
2694 for (; insn
; insn
= NEXT_INSN (insn
))
2697 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2698 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2700 CALL_INSN_FUNCTION_USAGE (insn
)
2701 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn
));
2705 /* Go through all virtual stack slots of a function and mark them as
2706 shared. We never replace the DECL_RTLs themselves with a copy,
2707 but expressions mentioned into a DECL_RTL cannot be shared with
2708 expressions in the instruction stream.
2710 Note that reload may convert pseudo registers into memories in-place.
2711 Pseudo registers are always shared, but MEMs never are. Thus if we
2712 reset the used flags on MEMs in the instruction stream, we must set
2713 them again on MEMs that appear in DECL_RTLs. */
2716 set_used_decls (tree blk
)
2721 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
2722 if (DECL_RTL_SET_P (t
))
2723 set_used_flags (DECL_RTL (t
));
2725 /* Now process sub-blocks. */
2726 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2730 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2731 Recursively does the same for subexpressions. Uses
2732 copy_rtx_if_shared_1 to reduce stack space. */
2735 copy_rtx_if_shared (rtx orig
)
2737 copy_rtx_if_shared_1 (&orig
);
2741 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2742 use. Recursively does the same for subexpressions. */
2745 copy_rtx_if_shared_1 (rtx
*orig1
)
2751 const char *format_ptr
;
2755 /* Repeat is used to turn tail-recursion into iteration. */
2762 code
= GET_CODE (x
);
2764 /* These types may be freely shared. */
2780 /* SCRATCH must be shared because they represent distinct values. */
2783 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2788 if (shared_const_p (x
))
2798 /* The chain of insns is not being copied. */
2805 /* This rtx may not be shared. If it has already been seen,
2806 replace it with a copy of itself. */
2808 if (RTX_FLAG (x
, used
))
2810 x
= shallow_copy_rtx (x
);
2813 RTX_FLAG (x
, used
) = 1;
2815 /* Now scan the subexpressions recursively.
2816 We can store any replaced subexpressions directly into X
2817 since we know X is not shared! Any vectors in X
2818 must be copied if X was copied. */
2820 format_ptr
= GET_RTX_FORMAT (code
);
2821 length
= GET_RTX_LENGTH (code
);
2824 for (i
= 0; i
< length
; i
++)
2826 switch (*format_ptr
++)
2830 copy_rtx_if_shared_1 (last_ptr
);
2831 last_ptr
= &XEXP (x
, i
);
2835 if (XVEC (x
, i
) != NULL
)
2838 int len
= XVECLEN (x
, i
);
2840 /* Copy the vector iff I copied the rtx and the length
2842 if (copied
&& len
> 0)
2843 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2845 /* Call recursively on all inside the vector. */
2846 for (j
= 0; j
< len
; j
++)
2849 copy_rtx_if_shared_1 (last_ptr
);
2850 last_ptr
= &XVECEXP (x
, i
, j
);
2865 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2868 mark_used_flags (rtx x
, int flag
)
2872 const char *format_ptr
;
2875 /* Repeat is used to turn tail-recursion into iteration. */
2880 code
= GET_CODE (x
);
2882 /* These types may be freely shared so we needn't do any resetting
2906 /* The chain of insns is not being copied. */
2913 RTX_FLAG (x
, used
) = flag
;
2915 format_ptr
= GET_RTX_FORMAT (code
);
2916 length
= GET_RTX_LENGTH (code
);
2918 for (i
= 0; i
< length
; i
++)
2920 switch (*format_ptr
++)
2928 mark_used_flags (XEXP (x
, i
), flag
);
2932 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2933 mark_used_flags (XVECEXP (x
, i
, j
), flag
);
2939 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2940 to look for shared sub-parts. */
2943 reset_used_flags (rtx x
)
2945 mark_used_flags (x
, 0);
2948 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2949 to look for shared sub-parts. */
2952 set_used_flags (rtx x
)
2954 mark_used_flags (x
, 1);
2957 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2958 Return X or the rtx for the pseudo reg the value of X was copied into.
2959 OTHER must be valid as a SET_DEST. */
2962 make_safe_from (rtx x
, rtx other
)
2965 switch (GET_CODE (other
))
2968 other
= SUBREG_REG (other
);
2970 case STRICT_LOW_PART
:
2973 other
= XEXP (other
, 0);
2982 && GET_CODE (x
) != SUBREG
)
2984 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2985 || reg_mentioned_p (other
, x
))))
2987 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2988 emit_move_insn (temp
, x
);
2994 /* Emission of insns (adding them to the doubly-linked list). */
2996 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2999 get_last_insn_anywhere (void)
3001 struct sequence_stack
*stack
;
3002 if (get_last_insn ())
3003 return get_last_insn ();
3004 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
3005 if (stack
->last
!= 0)
3010 /* Return the first nonnote insn emitted in current sequence or current
3011 function. This routine looks inside SEQUENCEs. */
3014 get_first_nonnote_insn (void)
3016 rtx insn
= get_insns ();
3021 for (insn
= next_insn (insn
);
3022 insn
&& NOTE_P (insn
);
3023 insn
= next_insn (insn
))
3027 if (NONJUMP_INSN_P (insn
)
3028 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3029 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3036 /* Return the last nonnote insn emitted in current sequence or current
3037 function. This routine looks inside SEQUENCEs. */
3040 get_last_nonnote_insn (void)
3042 rtx insn
= get_last_insn ();
3047 for (insn
= previous_insn (insn
);
3048 insn
&& NOTE_P (insn
);
3049 insn
= previous_insn (insn
))
3053 if (NONJUMP_INSN_P (insn
)
3054 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3055 insn
= XVECEXP (PATTERN (insn
), 0,
3056 XVECLEN (PATTERN (insn
), 0) - 1);
3063 /* Return the number of actual (non-debug) insns emitted in this
3067 get_max_insn_count (void)
3069 int n
= cur_insn_uid
;
3071 /* The table size must be stable across -g, to avoid codegen
3072 differences due to debug insns, and not be affected by
3073 -fmin-insn-uid, to avoid excessive table size and to simplify
3074 debugging of -fcompare-debug failures. */
3075 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3076 n
-= cur_debug_insn_uid
;
3078 n
-= MIN_NONDEBUG_INSN_UID
;
3084 /* Return the next insn. If it is a SEQUENCE, return the first insn
3088 next_insn (rtx insn
)
3092 insn
= NEXT_INSN (insn
);
3093 if (insn
&& NONJUMP_INSN_P (insn
)
3094 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3095 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3101 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3105 previous_insn (rtx insn
)
3109 insn
= PREV_INSN (insn
);
3110 if (insn
&& NONJUMP_INSN_P (insn
)
3111 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3112 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
3118 /* Return the next insn after INSN that is not a NOTE. This routine does not
3119 look inside SEQUENCEs. */
3122 next_nonnote_insn (rtx insn
)
3126 insn
= NEXT_INSN (insn
);
3127 if (insn
== 0 || !NOTE_P (insn
))
3134 /* Return the next insn after INSN that is not a NOTE, but stop the
3135 search before we enter another basic block. This routine does not
3136 look inside SEQUENCEs. */
3139 next_nonnote_insn_bb (rtx insn
)
3143 insn
= NEXT_INSN (insn
);
3144 if (insn
== 0 || !NOTE_P (insn
))
3146 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3153 /* Return the previous insn before INSN that is not a NOTE. This routine does
3154 not look inside SEQUENCEs. */
3157 prev_nonnote_insn (rtx insn
)
3161 insn
= PREV_INSN (insn
);
3162 if (insn
== 0 || !NOTE_P (insn
))
3169 /* Return the previous insn before INSN that is not a NOTE, but stop
3170 the search before we enter another basic block. This routine does
3171 not look inside SEQUENCEs. */
3174 prev_nonnote_insn_bb (rtx insn
)
3178 insn
= PREV_INSN (insn
);
3179 if (insn
== 0 || !NOTE_P (insn
))
3181 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3188 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3189 routine does not look inside SEQUENCEs. */
3192 next_nondebug_insn (rtx insn
)
3196 insn
= NEXT_INSN (insn
);
3197 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3204 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3205 This routine does not look inside SEQUENCEs. */
3208 prev_nondebug_insn (rtx insn
)
3212 insn
= PREV_INSN (insn
);
3213 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3220 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3221 This routine does not look inside SEQUENCEs. */
3224 next_nonnote_nondebug_insn (rtx insn
)
3228 insn
= NEXT_INSN (insn
);
3229 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3236 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3237 This routine does not look inside SEQUENCEs. */
3240 prev_nonnote_nondebug_insn (rtx insn
)
3244 insn
= PREV_INSN (insn
);
3245 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3252 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3253 or 0, if there is none. This routine does not look inside
3257 next_real_insn (rtx insn
)
3261 insn
= NEXT_INSN (insn
);
3262 if (insn
== 0 || INSN_P (insn
))
3269 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3270 or 0, if there is none. This routine does not look inside
3274 prev_real_insn (rtx insn
)
3278 insn
= PREV_INSN (insn
);
3279 if (insn
== 0 || INSN_P (insn
))
3286 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3287 This routine does not look inside SEQUENCEs. */
3290 last_call_insn (void)
3294 for (insn
= get_last_insn ();
3295 insn
&& !CALL_P (insn
);
3296 insn
= PREV_INSN (insn
))
3302 /* Find the next insn after INSN that really does something. This routine
3303 does not look inside SEQUENCEs. After reload this also skips over
3304 standalone USE and CLOBBER insn. */
3307 active_insn_p (const_rtx insn
)
3309 return (CALL_P (insn
) || JUMP_P (insn
)
3310 || (NONJUMP_INSN_P (insn
)
3311 && (! reload_completed
3312 || (GET_CODE (PATTERN (insn
)) != USE
3313 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3317 next_active_insn (rtx insn
)
3321 insn
= NEXT_INSN (insn
);
3322 if (insn
== 0 || active_insn_p (insn
))
3329 /* Find the last insn before INSN that really does something. This routine
3330 does not look inside SEQUENCEs. After reload this also skips over
3331 standalone USE and CLOBBER insn. */
3334 prev_active_insn (rtx insn
)
3338 insn
= PREV_INSN (insn
);
3339 if (insn
== 0 || active_insn_p (insn
))
3346 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3349 next_label (rtx insn
)
3353 insn
= NEXT_INSN (insn
);
3354 if (insn
== 0 || LABEL_P (insn
))
3361 /* Return the last label to mark the same position as LABEL. Return LABEL
3362 itself if it is null or any return rtx. */
3365 skip_consecutive_labels (rtx label
)
3369 if (label
&& ANY_RETURN_P (label
))
3372 for (insn
= label
; insn
!= 0 && !INSN_P (insn
); insn
= NEXT_INSN (insn
))
3380 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3381 and REG_CC_USER notes so we can find it. */
3384 link_cc0_insns (rtx insn
)
3386 rtx user
= next_nonnote_insn (insn
);
3388 if (NONJUMP_INSN_P (user
) && GET_CODE (PATTERN (user
)) == SEQUENCE
)
3389 user
= XVECEXP (PATTERN (user
), 0, 0);
3391 add_reg_note (user
, REG_CC_SETTER
, insn
);
3392 add_reg_note (insn
, REG_CC_USER
, user
);
3395 /* Return the next insn that uses CC0 after INSN, which is assumed to
3396 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3397 applied to the result of this function should yield INSN).
3399 Normally, this is simply the next insn. However, if a REG_CC_USER note
3400 is present, it contains the insn that uses CC0.
3402 Return 0 if we can't find the insn. */
3405 next_cc0_user (rtx insn
)
3407 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3410 return XEXP (note
, 0);
3412 insn
= next_nonnote_insn (insn
);
3413 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3414 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3416 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3422 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3423 note, it is the previous insn. */
3426 prev_cc0_setter (rtx insn
)
3428 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3431 return XEXP (note
, 0);
3433 insn
= prev_nonnote_insn (insn
);
3434 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3441 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3444 find_auto_inc (rtx
*xp
, void *data
)
3447 rtx reg
= (rtx
) data
;
3449 if (GET_RTX_CLASS (GET_CODE (x
)) != RTX_AUTOINC
)
3452 switch (GET_CODE (x
))
3460 if (rtx_equal_p (reg
, XEXP (x
, 0)))
3471 /* Increment the label uses for all labels present in rtx. */
3474 mark_label_nuses (rtx x
)
3480 code
= GET_CODE (x
);
3481 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3482 LABEL_NUSES (XEXP (x
, 0))++;
3484 fmt
= GET_RTX_FORMAT (code
);
3485 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3488 mark_label_nuses (XEXP (x
, i
));
3489 else if (fmt
[i
] == 'E')
3490 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3491 mark_label_nuses (XVECEXP (x
, i
, j
));
3496 /* Try splitting insns that can be split for better scheduling.
3497 PAT is the pattern which might split.
3498 TRIAL is the insn providing PAT.
3499 LAST is nonzero if we should return the last insn of the sequence produced.
3501 If this routine succeeds in splitting, it returns the first or last
3502 replacement insn depending on the value of LAST. Otherwise, it
3503 returns TRIAL. If the insn to be returned can be split, it will be. */
3506 try_split (rtx pat
, rtx trial
, int last
)
3508 rtx before
= PREV_INSN (trial
);
3509 rtx after
= NEXT_INSN (trial
);
3510 int has_barrier
= 0;
3513 rtx insn_last
, insn
;
3516 /* We're not good at redistributing frame information. */
3517 if (RTX_FRAME_RELATED_P (trial
))
3520 if (any_condjump_p (trial
)
3521 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3522 split_branch_probability
= INTVAL (XEXP (note
, 0));
3523 probability
= split_branch_probability
;
3525 seq
= split_insns (pat
, trial
);
3527 split_branch_probability
= -1;
3529 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3530 We may need to handle this specially. */
3531 if (after
&& BARRIER_P (after
))
3534 after
= NEXT_INSN (after
);
3540 /* Avoid infinite loop if any insn of the result matches
3541 the original pattern. */
3545 if (INSN_P (insn_last
)
3546 && rtx_equal_p (PATTERN (insn_last
), pat
))
3548 if (!NEXT_INSN (insn_last
))
3550 insn_last
= NEXT_INSN (insn_last
);
3553 /* We will be adding the new sequence to the function. The splitters
3554 may have introduced invalid RTL sharing, so unshare the sequence now. */
3555 unshare_all_rtl_in_chain (seq
);
3558 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3562 mark_jump_label (PATTERN (insn
), insn
, 0);
3564 if (probability
!= -1
3565 && any_condjump_p (insn
)
3566 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3568 /* We can preserve the REG_BR_PROB notes only if exactly
3569 one jump is created, otherwise the machine description
3570 is responsible for this step using
3571 split_branch_probability variable. */
3572 gcc_assert (njumps
== 1);
3573 add_reg_note (insn
, REG_BR_PROB
, GEN_INT (probability
));
3578 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3579 in SEQ and copy any additional information across. */
3582 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3587 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3588 target may have explicitly specified. */
3589 p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3592 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3594 /* If the old call was a sibling call, the new one must
3596 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3598 /* If the new call is the last instruction in the sequence,
3599 it will effectively replace the old call in-situ. Otherwise
3600 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3601 so that it comes immediately after the new call. */
3602 if (NEXT_INSN (insn
))
3603 for (next
= NEXT_INSN (trial
);
3604 next
&& NOTE_P (next
);
3605 next
= NEXT_INSN (next
))
3606 if (NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
3609 add_insn_after (next
, insn
, NULL
);
3615 /* Copy notes, particularly those related to the CFG. */
3616 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3618 switch (REG_NOTE_KIND (note
))
3621 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3627 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3630 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3634 case REG_NON_LOCAL_GOTO
:
3635 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3638 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3644 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3646 rtx reg
= XEXP (note
, 0);
3647 if (!FIND_REG_INC_NOTE (insn
, reg
)
3648 && for_each_rtx (&PATTERN (insn
), find_auto_inc
, reg
) > 0)
3649 add_reg_note (insn
, REG_INC
, reg
);
3655 fixup_args_size_notes (NULL_RTX
, insn_last
, INTVAL (XEXP (note
, 0)));
3663 /* If there are LABELS inside the split insns increment the
3664 usage count so we don't delete the label. */
3668 while (insn
!= NULL_RTX
)
3670 /* JUMP_P insns have already been "marked" above. */
3671 if (NONJUMP_INSN_P (insn
))
3672 mark_label_nuses (PATTERN (insn
));
3674 insn
= PREV_INSN (insn
);
3678 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATION (trial
));
3680 delete_insn (trial
);
3682 emit_barrier_after (tem
);
3684 /* Recursively call try_split for each new insn created; by the
3685 time control returns here that insn will be fully split, so
3686 set LAST and continue from the insn after the one returned.
3687 We can't use next_active_insn here since AFTER may be a note.
3688 Ignore deleted insns, which can be occur if not optimizing. */
3689 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3690 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3691 tem
= try_split (PATTERN (tem
), tem
, 1);
3693 /* Return either the first or the last insn, depending on which was
3696 ? (after
? PREV_INSN (after
) : get_last_insn ())
3697 : NEXT_INSN (before
);
3700 /* Make and return an INSN rtx, initializing all its slots.
3701 Store PATTERN in the pattern slots. */
3704 make_insn_raw (rtx pattern
)
3708 insn
= rtx_alloc (INSN
);
3710 INSN_UID (insn
) = cur_insn_uid
++;
3711 PATTERN (insn
) = pattern
;
3712 INSN_CODE (insn
) = -1;
3713 REG_NOTES (insn
) = NULL
;
3714 INSN_LOCATION (insn
) = curr_insn_location ();
3715 BLOCK_FOR_INSN (insn
) = NULL
;
3717 #ifdef ENABLE_RTL_CHECKING
3720 && (returnjump_p (insn
)
3721 || (GET_CODE (insn
) == SET
3722 && SET_DEST (insn
) == pc_rtx
)))
3724 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3732 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3735 make_debug_insn_raw (rtx pattern
)
3739 insn
= rtx_alloc (DEBUG_INSN
);
3740 INSN_UID (insn
) = cur_debug_insn_uid
++;
3741 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3742 INSN_UID (insn
) = cur_insn_uid
++;
3744 PATTERN (insn
) = pattern
;
3745 INSN_CODE (insn
) = -1;
3746 REG_NOTES (insn
) = NULL
;
3747 INSN_LOCATION (insn
) = curr_insn_location ();
3748 BLOCK_FOR_INSN (insn
) = NULL
;
3753 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3756 make_jump_insn_raw (rtx pattern
)
3760 insn
= rtx_alloc (JUMP_INSN
);
3761 INSN_UID (insn
) = cur_insn_uid
++;
3763 PATTERN (insn
) = pattern
;
3764 INSN_CODE (insn
) = -1;
3765 REG_NOTES (insn
) = NULL
;
3766 JUMP_LABEL (insn
) = NULL
;
3767 INSN_LOCATION (insn
) = curr_insn_location ();
3768 BLOCK_FOR_INSN (insn
) = NULL
;
3773 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3776 make_call_insn_raw (rtx pattern
)
3780 insn
= rtx_alloc (CALL_INSN
);
3781 INSN_UID (insn
) = cur_insn_uid
++;
3783 PATTERN (insn
) = pattern
;
3784 INSN_CODE (insn
) = -1;
3785 REG_NOTES (insn
) = NULL
;
3786 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3787 INSN_LOCATION (insn
) = curr_insn_location ();
3788 BLOCK_FOR_INSN (insn
) = NULL
;
3793 /* Add INSN to the end of the doubly-linked list.
3794 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3799 PREV_INSN (insn
) = get_last_insn();
3800 NEXT_INSN (insn
) = 0;
3802 if (NULL
!= get_last_insn())
3803 NEXT_INSN (get_last_insn ()) = insn
;
3805 if (NULL
== get_insns ())
3806 set_first_insn (insn
);
3808 set_last_insn (insn
);
3811 /* Add INSN into the doubly-linked list after insn AFTER. This and
3812 the next should be the only functions called to insert an insn once
3813 delay slots have been filled since only they know how to update a
3817 add_insn_after (rtx insn
, rtx after
, basic_block bb
)
3819 rtx next
= NEXT_INSN (after
);
3821 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3823 NEXT_INSN (insn
) = next
;
3824 PREV_INSN (insn
) = after
;
3828 PREV_INSN (next
) = insn
;
3829 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3830 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3832 else if (get_last_insn () == after
)
3833 set_last_insn (insn
);
3836 struct sequence_stack
*stack
= seq_stack
;
3837 /* Scan all pending sequences too. */
3838 for (; stack
; stack
= stack
->next
)
3839 if (after
== stack
->last
)
3848 if (!BARRIER_P (after
)
3849 && !BARRIER_P (insn
)
3850 && (bb
= BLOCK_FOR_INSN (after
)))
3852 set_block_for_insn (insn
, bb
);
3854 df_insn_rescan (insn
);
3855 /* Should not happen as first in the BB is always
3856 either NOTE or LABEL. */
3857 if (BB_END (bb
) == after
3858 /* Avoid clobbering of structure when creating new BB. */
3859 && !BARRIER_P (insn
)
3860 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
3864 NEXT_INSN (after
) = insn
;
3865 if (NONJUMP_INSN_P (after
) && GET_CODE (PATTERN (after
)) == SEQUENCE
)
3867 rtx sequence
= PATTERN (after
);
3868 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3872 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3873 the previous should be the only functions called to insert an insn
3874 once delay slots have been filled since only they know how to
3875 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3879 add_insn_before (rtx insn
, rtx before
, basic_block bb
)
3881 rtx prev
= PREV_INSN (before
);
3883 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3885 PREV_INSN (insn
) = prev
;
3886 NEXT_INSN (insn
) = before
;
3890 NEXT_INSN (prev
) = insn
;
3891 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3893 rtx sequence
= PATTERN (prev
);
3894 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3897 else if (get_insns () == before
)
3898 set_first_insn (insn
);
3901 struct sequence_stack
*stack
= seq_stack
;
3902 /* Scan all pending sequences too. */
3903 for (; stack
; stack
= stack
->next
)
3904 if (before
== stack
->first
)
3906 stack
->first
= insn
;
3914 && !BARRIER_P (before
)
3915 && !BARRIER_P (insn
))
3916 bb
= BLOCK_FOR_INSN (before
);
3920 set_block_for_insn (insn
, bb
);
3922 df_insn_rescan (insn
);
3923 /* Should not happen as first in the BB is always either NOTE or
3925 gcc_assert (BB_HEAD (bb
) != insn
3926 /* Avoid clobbering of structure when creating new BB. */
3928 || NOTE_INSN_BASIC_BLOCK_P (insn
));
3931 PREV_INSN (before
) = insn
;
3932 if (NONJUMP_INSN_P (before
) && GET_CODE (PATTERN (before
)) == SEQUENCE
)
3933 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3937 /* Replace insn with an deleted instruction note. */
3940 set_insn_deleted (rtx insn
)
3942 df_insn_delete (BLOCK_FOR_INSN (insn
), INSN_UID (insn
));
3943 PUT_CODE (insn
, NOTE
);
3944 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
3948 /* Remove an insn from its doubly-linked list. This function knows how
3949 to handle sequences. */
3951 remove_insn (rtx insn
)
3953 rtx next
= NEXT_INSN (insn
);
3954 rtx prev
= PREV_INSN (insn
);
3957 /* Later in the code, the block will be marked dirty. */
3958 df_insn_delete (NULL
, INSN_UID (insn
));
3962 NEXT_INSN (prev
) = next
;
3963 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3965 rtx sequence
= PATTERN (prev
);
3966 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3969 else if (get_insns () == insn
)
3972 PREV_INSN (next
) = NULL
;
3973 set_first_insn (next
);
3977 struct sequence_stack
*stack
= seq_stack
;
3978 /* Scan all pending sequences too. */
3979 for (; stack
; stack
= stack
->next
)
3980 if (insn
== stack
->first
)
3982 stack
->first
= next
;
3991 PREV_INSN (next
) = prev
;
3992 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3993 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3995 else if (get_last_insn () == insn
)
3996 set_last_insn (prev
);
3999 struct sequence_stack
*stack
= seq_stack
;
4000 /* Scan all pending sequences too. */
4001 for (; stack
; stack
= stack
->next
)
4002 if (insn
== stack
->last
)
4010 if (!BARRIER_P (insn
)
4011 && (bb
= BLOCK_FOR_INSN (insn
)))
4013 if (NONDEBUG_INSN_P (insn
))
4014 df_set_bb_dirty (bb
);
4015 if (BB_HEAD (bb
) == insn
)
4017 /* Never ever delete the basic block note without deleting whole
4019 gcc_assert (!NOTE_P (insn
));
4020 BB_HEAD (bb
) = next
;
4022 if (BB_END (bb
) == insn
)
4027 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4030 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
4032 gcc_assert (call_insn
&& CALL_P (call_insn
));
4034 /* Put the register usage information on the CALL. If there is already
4035 some usage information, put ours at the end. */
4036 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
4040 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
4041 link
= XEXP (link
, 1))
4044 XEXP (link
, 1) = call_fusage
;
4047 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
4050 /* Delete all insns made since FROM.
4051 FROM becomes the new last instruction. */
4054 delete_insns_since (rtx from
)
4059 NEXT_INSN (from
) = 0;
4060 set_last_insn (from
);
4063 /* This function is deprecated, please use sequences instead.
4065 Move a consecutive bunch of insns to a different place in the chain.
4066 The insns to be moved are those between FROM and TO.
4067 They are moved to a new position after the insn AFTER.
4068 AFTER must not be FROM or TO or any insn in between.
4070 This function does not know about SEQUENCEs and hence should not be
4071 called after delay-slot filling has been done. */
4074 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
4076 #ifdef ENABLE_CHECKING
4078 for (x
= from
; x
!= to
; x
= NEXT_INSN (x
))
4079 gcc_assert (after
!= x
);
4080 gcc_assert (after
!= to
);
4083 /* Splice this bunch out of where it is now. */
4084 if (PREV_INSN (from
))
4085 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
4087 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
4088 if (get_last_insn () == to
)
4089 set_last_insn (PREV_INSN (from
));
4090 if (get_insns () == from
)
4091 set_first_insn (NEXT_INSN (to
));
4093 /* Make the new neighbors point to it and it to them. */
4094 if (NEXT_INSN (after
))
4095 PREV_INSN (NEXT_INSN (after
)) = to
;
4097 NEXT_INSN (to
) = NEXT_INSN (after
);
4098 PREV_INSN (from
) = after
;
4099 NEXT_INSN (after
) = from
;
4100 if (after
== get_last_insn())
4104 /* Same as function above, but take care to update BB boundaries. */
4106 reorder_insns (rtx from
, rtx to
, rtx after
)
4108 rtx prev
= PREV_INSN (from
);
4109 basic_block bb
, bb2
;
4111 reorder_insns_nobb (from
, to
, after
);
4113 if (!BARRIER_P (after
)
4114 && (bb
= BLOCK_FOR_INSN (after
)))
4117 df_set_bb_dirty (bb
);
4119 if (!BARRIER_P (from
)
4120 && (bb2
= BLOCK_FOR_INSN (from
)))
4122 if (BB_END (bb2
) == to
)
4123 BB_END (bb2
) = prev
;
4124 df_set_bb_dirty (bb2
);
4127 if (BB_END (bb
) == after
)
4130 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4132 df_insn_change_bb (x
, bb
);
4137 /* Emit insn(s) of given code and pattern
4138 at a specified place within the doubly-linked list.
4140 All of the emit_foo global entry points accept an object
4141 X which is either an insn list or a PATTERN of a single
4144 There are thus a few canonical ways to generate code and
4145 emit it at a specific place in the instruction stream. For
4146 example, consider the instruction named SPOT and the fact that
4147 we would like to emit some instructions before SPOT. We might
4151 ... emit the new instructions ...
4152 insns_head = get_insns ();
4155 emit_insn_before (insns_head, SPOT);
4157 It used to be common to generate SEQUENCE rtl instead, but that
4158 is a relic of the past which no longer occurs. The reason is that
4159 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4160 generated would almost certainly die right after it was created. */
4163 emit_pattern_before_noloc (rtx x
, rtx before
, rtx last
, basic_block bb
,
4164 rtx (*make_raw
) (rtx
))
4168 gcc_assert (before
);
4173 switch (GET_CODE (x
))
4185 rtx next
= NEXT_INSN (insn
);
4186 add_insn_before (insn
, before
, bb
);
4192 #ifdef ENABLE_RTL_CHECKING
4199 last
= (*make_raw
) (x
);
4200 add_insn_before (last
, before
, bb
);
4207 /* Make X be output before the instruction BEFORE. */
4210 emit_insn_before_noloc (rtx x
, rtx before
, basic_block bb
)
4212 return emit_pattern_before_noloc (x
, before
, before
, bb
, make_insn_raw
);
4215 /* Make an instruction with body X and code JUMP_INSN
4216 and output it before the instruction BEFORE. */
4219 emit_jump_insn_before_noloc (rtx x
, rtx before
)
4221 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4222 make_jump_insn_raw
);
4225 /* Make an instruction with body X and code CALL_INSN
4226 and output it before the instruction BEFORE. */
4229 emit_call_insn_before_noloc (rtx x
, rtx before
)
4231 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4232 make_call_insn_raw
);
4235 /* Make an instruction with body X and code DEBUG_INSN
4236 and output it before the instruction BEFORE. */
4239 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4241 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4242 make_debug_insn_raw
);
4245 /* Make an insn of code BARRIER
4246 and output it before the insn BEFORE. */
4249 emit_barrier_before (rtx before
)
4251 rtx insn
= rtx_alloc (BARRIER
);
4253 INSN_UID (insn
) = cur_insn_uid
++;
4255 add_insn_before (insn
, before
, NULL
);
4259 /* Emit the label LABEL before the insn BEFORE. */
4262 emit_label_before (rtx label
, rtx before
)
4264 gcc_checking_assert (INSN_UID (label
) == 0);
4265 INSN_UID (label
) = cur_insn_uid
++;
4266 add_insn_before (label
, before
, NULL
);
4270 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4273 emit_note_before (enum insn_note subtype
, rtx before
)
4275 rtx note
= rtx_alloc (NOTE
);
4276 INSN_UID (note
) = cur_insn_uid
++;
4277 NOTE_KIND (note
) = subtype
;
4278 BLOCK_FOR_INSN (note
) = NULL
;
4279 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4281 add_insn_before (note
, before
, NULL
);
4285 /* Helper for emit_insn_after, handles lists of instructions
4289 emit_insn_after_1 (rtx first
, rtx after
, basic_block bb
)
4293 if (!bb
&& !BARRIER_P (after
))
4294 bb
= BLOCK_FOR_INSN (after
);
4298 df_set_bb_dirty (bb
);
4299 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4300 if (!BARRIER_P (last
))
4302 set_block_for_insn (last
, bb
);
4303 df_insn_rescan (last
);
4305 if (!BARRIER_P (last
))
4307 set_block_for_insn (last
, bb
);
4308 df_insn_rescan (last
);
4310 if (BB_END (bb
) == after
)
4314 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4317 after_after
= NEXT_INSN (after
);
4319 NEXT_INSN (after
) = first
;
4320 PREV_INSN (first
) = after
;
4321 NEXT_INSN (last
) = after_after
;
4323 PREV_INSN (after_after
) = last
;
4325 if (after
== get_last_insn())
4326 set_last_insn (last
);
4332 emit_pattern_after_noloc (rtx x
, rtx after
, basic_block bb
,
4333 rtx (*make_raw
)(rtx
))
4342 switch (GET_CODE (x
))
4351 last
= emit_insn_after_1 (x
, after
, bb
);
4354 #ifdef ENABLE_RTL_CHECKING
4361 last
= (*make_raw
) (x
);
4362 add_insn_after (last
, after
, bb
);
4369 /* Make X be output after the insn AFTER and set the BB of insn. If
4370 BB is NULL, an attempt is made to infer the BB from AFTER. */
4373 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4375 return emit_pattern_after_noloc (x
, after
, bb
, make_insn_raw
);
4379 /* Make an insn of code JUMP_INSN with body X
4380 and output it after the insn AFTER. */
4383 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4385 return emit_pattern_after_noloc (x
, after
, NULL
, make_jump_insn_raw
);
4388 /* Make an instruction with body X and code CALL_INSN
4389 and output it after the instruction AFTER. */
4392 emit_call_insn_after_noloc (rtx x
, rtx after
)
4394 return emit_pattern_after_noloc (x
, after
, NULL
, make_call_insn_raw
);
4397 /* Make an instruction with body X and code CALL_INSN
4398 and output it after the instruction AFTER. */
4401 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4403 return emit_pattern_after_noloc (x
, after
, NULL
, make_debug_insn_raw
);
4406 /* Make an insn of code BARRIER
4407 and output it after the insn AFTER. */
4410 emit_barrier_after (rtx after
)
4412 rtx insn
= rtx_alloc (BARRIER
);
4414 INSN_UID (insn
) = cur_insn_uid
++;
4416 add_insn_after (insn
, after
, NULL
);
4420 /* Emit the label LABEL after the insn AFTER. */
4423 emit_label_after (rtx label
, rtx after
)
4425 gcc_checking_assert (INSN_UID (label
) == 0);
4426 INSN_UID (label
) = cur_insn_uid
++;
4427 add_insn_after (label
, after
, NULL
);
4431 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4434 emit_note_after (enum insn_note subtype
, rtx after
)
4436 rtx note
= rtx_alloc (NOTE
);
4437 INSN_UID (note
) = cur_insn_uid
++;
4438 NOTE_KIND (note
) = subtype
;
4439 BLOCK_FOR_INSN (note
) = NULL
;
4440 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4441 add_insn_after (note
, after
, NULL
);
4445 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4446 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4449 emit_pattern_after_setloc (rtx pattern
, rtx after
, int loc
,
4450 rtx (*make_raw
) (rtx
))
4452 rtx last
= emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4454 if (pattern
== NULL_RTX
|| !loc
)
4457 after
= NEXT_INSN (after
);
4460 if (active_insn_p (after
) && !INSN_LOCATION (after
))
4461 INSN_LOCATION (after
) = loc
;
4464 after
= NEXT_INSN (after
);
4469 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4470 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4474 emit_pattern_after (rtx pattern
, rtx after
, bool skip_debug_insns
,
4475 rtx (*make_raw
) (rtx
))
4479 if (skip_debug_insns
)
4480 while (DEBUG_INSN_P (prev
))
4481 prev
= PREV_INSN (prev
);
4484 return emit_pattern_after_setloc (pattern
, after
, INSN_LOCATION (prev
),
4487 return emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4490 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4492 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4494 return emit_pattern_after_setloc (pattern
, after
, loc
, make_insn_raw
);
4497 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4499 emit_insn_after (rtx pattern
, rtx after
)
4501 return emit_pattern_after (pattern
, after
, true, make_insn_raw
);
4504 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4506 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4508 return emit_pattern_after_setloc (pattern
, after
, loc
, make_jump_insn_raw
);
4511 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4513 emit_jump_insn_after (rtx pattern
, rtx after
)
4515 return emit_pattern_after (pattern
, after
, true, make_jump_insn_raw
);
4518 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4520 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4522 return emit_pattern_after_setloc (pattern
, after
, loc
, make_call_insn_raw
);
4525 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4527 emit_call_insn_after (rtx pattern
, rtx after
)
4529 return emit_pattern_after (pattern
, after
, true, make_call_insn_raw
);
4532 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4534 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4536 return emit_pattern_after_setloc (pattern
, after
, loc
, make_debug_insn_raw
);
4539 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4541 emit_debug_insn_after (rtx pattern
, rtx after
)
4543 return emit_pattern_after (pattern
, after
, false, make_debug_insn_raw
);
4546 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4547 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4548 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4552 emit_pattern_before_setloc (rtx pattern
, rtx before
, int loc
, bool insnp
,
4553 rtx (*make_raw
) (rtx
))
4555 rtx first
= PREV_INSN (before
);
4556 rtx last
= emit_pattern_before_noloc (pattern
, before
,
4557 insnp
? before
: NULL_RTX
,
4560 if (pattern
== NULL_RTX
|| !loc
)
4564 first
= get_insns ();
4566 first
= NEXT_INSN (first
);
4569 if (active_insn_p (first
) && !INSN_LOCATION (first
))
4570 INSN_LOCATION (first
) = loc
;
4573 first
= NEXT_INSN (first
);
4578 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4579 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4580 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4581 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4584 emit_pattern_before (rtx pattern
, rtx before
, bool skip_debug_insns
,
4585 bool insnp
, rtx (*make_raw
) (rtx
))
4589 if (skip_debug_insns
)
4590 while (DEBUG_INSN_P (next
))
4591 next
= PREV_INSN (next
);
4594 return emit_pattern_before_setloc (pattern
, before
, INSN_LOCATION (next
),
4597 return emit_pattern_before_noloc (pattern
, before
,
4598 insnp
? before
: NULL_RTX
,
4602 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4604 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4606 return emit_pattern_before_setloc (pattern
, before
, loc
, true,
4610 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4612 emit_insn_before (rtx pattern
, rtx before
)
4614 return emit_pattern_before (pattern
, before
, true, true, make_insn_raw
);
4617 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4619 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4621 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4622 make_jump_insn_raw
);
4625 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4627 emit_jump_insn_before (rtx pattern
, rtx before
)
4629 return emit_pattern_before (pattern
, before
, true, false,
4630 make_jump_insn_raw
);
4633 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4635 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4637 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4638 make_call_insn_raw
);
4641 /* Like emit_call_insn_before_noloc,
4642 but set insn_location according to BEFORE. */
4644 emit_call_insn_before (rtx pattern
, rtx before
)
4646 return emit_pattern_before (pattern
, before
, true, false,
4647 make_call_insn_raw
);
4650 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4652 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4654 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4655 make_debug_insn_raw
);
4658 /* Like emit_debug_insn_before_noloc,
4659 but set insn_location according to BEFORE. */
4661 emit_debug_insn_before (rtx pattern
, rtx before
)
4663 return emit_pattern_before (pattern
, before
, false, false,
4664 make_debug_insn_raw
);
4667 /* Take X and emit it at the end of the doubly-linked
4670 Returns the last insn emitted. */
4675 rtx last
= get_last_insn();
4681 switch (GET_CODE (x
))
4693 rtx next
= NEXT_INSN (insn
);
4700 #ifdef ENABLE_RTL_CHECKING
4707 last
= make_insn_raw (x
);
4715 /* Make an insn of code DEBUG_INSN with pattern X
4716 and add it to the end of the doubly-linked list. */
4719 emit_debug_insn (rtx x
)
4721 rtx last
= get_last_insn();
4727 switch (GET_CODE (x
))
4739 rtx next
= NEXT_INSN (insn
);
4746 #ifdef ENABLE_RTL_CHECKING
4753 last
= make_debug_insn_raw (x
);
4761 /* Make an insn of code JUMP_INSN with pattern X
4762 and add it to the end of the doubly-linked list. */
4765 emit_jump_insn (rtx x
)
4767 rtx last
= NULL_RTX
, insn
;
4769 switch (GET_CODE (x
))
4781 rtx next
= NEXT_INSN (insn
);
4788 #ifdef ENABLE_RTL_CHECKING
4795 last
= make_jump_insn_raw (x
);
4803 /* Make an insn of code CALL_INSN with pattern X
4804 and add it to the end of the doubly-linked list. */
4807 emit_call_insn (rtx x
)
4811 switch (GET_CODE (x
))
4820 insn
= emit_insn (x
);
4823 #ifdef ENABLE_RTL_CHECKING
4830 insn
= make_call_insn_raw (x
);
4838 /* Add the label LABEL to the end of the doubly-linked list. */
4841 emit_label (rtx label
)
4843 gcc_checking_assert (INSN_UID (label
) == 0);
4844 INSN_UID (label
) = cur_insn_uid
++;
4849 /* Make an insn of code BARRIER
4850 and add it to the end of the doubly-linked list. */
4855 rtx barrier
= rtx_alloc (BARRIER
);
4856 INSN_UID (barrier
) = cur_insn_uid
++;
4861 /* Emit a copy of note ORIG. */
4864 emit_note_copy (rtx orig
)
4868 note
= rtx_alloc (NOTE
);
4870 INSN_UID (note
) = cur_insn_uid
++;
4871 NOTE_DATA (note
) = NOTE_DATA (orig
);
4872 NOTE_KIND (note
) = NOTE_KIND (orig
);
4873 BLOCK_FOR_INSN (note
) = NULL
;
4879 /* Make an insn of code NOTE or type NOTE_NO
4880 and add it to the end of the doubly-linked list. */
4883 emit_note (enum insn_note kind
)
4887 note
= rtx_alloc (NOTE
);
4888 INSN_UID (note
) = cur_insn_uid
++;
4889 NOTE_KIND (note
) = kind
;
4890 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4891 BLOCK_FOR_INSN (note
) = NULL
;
4896 /* Emit a clobber of lvalue X. */
4899 emit_clobber (rtx x
)
4901 /* CONCATs should not appear in the insn stream. */
4902 if (GET_CODE (x
) == CONCAT
)
4904 emit_clobber (XEXP (x
, 0));
4905 return emit_clobber (XEXP (x
, 1));
4907 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
4910 /* Return a sequence of insns to clobber lvalue X. */
4924 /* Emit a use of rvalue X. */
4929 /* CONCATs should not appear in the insn stream. */
4930 if (GET_CODE (x
) == CONCAT
)
4932 emit_use (XEXP (x
, 0));
4933 return emit_use (XEXP (x
, 1));
4935 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
4938 /* Return a sequence of insns to use rvalue X. */
4952 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4953 note of this type already exists, remove it first. */
4956 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
4958 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4964 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4965 has multiple sets (some callers assume single_set
4966 means the insn only has one set, when in fact it
4967 means the insn only has one * useful * set). */
4968 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
4974 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4975 It serves no useful purpose and breaks eliminate_regs. */
4976 if (GET_CODE (datum
) == ASM_OPERANDS
)
4981 XEXP (note
, 0) = datum
;
4982 df_notes_rescan (insn
);
4990 XEXP (note
, 0) = datum
;
4996 add_reg_note (insn
, kind
, datum
);
5002 df_notes_rescan (insn
);
5008 return REG_NOTES (insn
);
5011 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5013 set_dst_reg_note (rtx insn
, enum reg_note kind
, rtx datum
, rtx dst
)
5015 rtx set
= single_set (insn
);
5017 if (set
&& SET_DEST (set
) == dst
)
5018 return set_unique_reg_note (insn
, kind
, datum
);
5022 /* Return an indication of which type of insn should have X as a body.
5023 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5025 static enum rtx_code
5026 classify_insn (rtx x
)
5030 if (GET_CODE (x
) == CALL
)
5032 if (ANY_RETURN_P (x
))
5034 if (GET_CODE (x
) == SET
)
5036 if (SET_DEST (x
) == pc_rtx
)
5038 else if (GET_CODE (SET_SRC (x
)) == CALL
)
5043 if (GET_CODE (x
) == PARALLEL
)
5046 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
5047 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
5049 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5050 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
5052 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5053 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
5059 /* Emit the rtl pattern X as an appropriate kind of insn.
5060 If X is a label, it is simply added into the insn chain. */
5065 enum rtx_code code
= classify_insn (x
);
5070 return emit_label (x
);
5072 return emit_insn (x
);
5075 rtx insn
= emit_jump_insn (x
);
5076 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
5077 return emit_barrier ();
5081 return emit_call_insn (x
);
5083 return emit_debug_insn (x
);
5089 /* Space for free sequence stack entries. */
5090 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5092 /* Begin emitting insns to a sequence. If this sequence will contain
5093 something that might cause the compiler to pop arguments to function
5094 calls (because those pops have previously been deferred; see
5095 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5096 before calling this function. That will ensure that the deferred
5097 pops are not accidentally emitted in the middle of this sequence. */
5100 start_sequence (void)
5102 struct sequence_stack
*tem
;
5104 if (free_sequence_stack
!= NULL
)
5106 tem
= free_sequence_stack
;
5107 free_sequence_stack
= tem
->next
;
5110 tem
= ggc_alloc_sequence_stack ();
5112 tem
->next
= seq_stack
;
5113 tem
->first
= get_insns ();
5114 tem
->last
= get_last_insn ();
5122 /* Set up the insn chain starting with FIRST as the current sequence,
5123 saving the previously current one. See the documentation for
5124 start_sequence for more information about how to use this function. */
5127 push_to_sequence (rtx first
)
5133 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
))
5136 set_first_insn (first
);
5137 set_last_insn (last
);
5140 /* Like push_to_sequence, but take the last insn as an argument to avoid
5141 looping through the list. */
5144 push_to_sequence2 (rtx first
, rtx last
)
5148 set_first_insn (first
);
5149 set_last_insn (last
);
5152 /* Set up the outer-level insn chain
5153 as the current sequence, saving the previously current one. */
5156 push_topmost_sequence (void)
5158 struct sequence_stack
*stack
, *top
= NULL
;
5162 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5165 set_first_insn (top
->first
);
5166 set_last_insn (top
->last
);
5169 /* After emitting to the outer-level insn chain, update the outer-level
5170 insn chain, and restore the previous saved state. */
5173 pop_topmost_sequence (void)
5175 struct sequence_stack
*stack
, *top
= NULL
;
5177 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5180 top
->first
= get_insns ();
5181 top
->last
= get_last_insn ();
5186 /* After emitting to a sequence, restore previous saved state.
5188 To get the contents of the sequence just made, you must call
5189 `get_insns' *before* calling here.
5191 If the compiler might have deferred popping arguments while
5192 generating this sequence, and this sequence will not be immediately
5193 inserted into the instruction stream, use do_pending_stack_adjust
5194 before calling get_insns. That will ensure that the deferred
5195 pops are inserted into this sequence, and not into some random
5196 location in the instruction stream. See INHIBIT_DEFER_POP for more
5197 information about deferred popping of arguments. */
5202 struct sequence_stack
*tem
= seq_stack
;
5204 set_first_insn (tem
->first
);
5205 set_last_insn (tem
->last
);
5206 seq_stack
= tem
->next
;
5208 memset (tem
, 0, sizeof (*tem
));
5209 tem
->next
= free_sequence_stack
;
5210 free_sequence_stack
= tem
;
5213 /* Return 1 if currently emitting into a sequence. */
5216 in_sequence_p (void)
5218 return seq_stack
!= 0;
5221 /* Put the various virtual registers into REGNO_REG_RTX. */
5224 init_virtual_regs (void)
5226 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5227 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5228 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5229 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5230 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5231 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5232 = virtual_preferred_stack_boundary_rtx
;
5236 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5237 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5238 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5239 static int copy_insn_n_scratches
;
5241 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5242 copied an ASM_OPERANDS.
5243 In that case, it is the original input-operand vector. */
5244 static rtvec orig_asm_operands_vector
;
5246 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5247 copied an ASM_OPERANDS.
5248 In that case, it is the copied input-operand vector. */
5249 static rtvec copy_asm_operands_vector
;
5251 /* Likewise for the constraints vector. */
5252 static rtvec orig_asm_constraints_vector
;
5253 static rtvec copy_asm_constraints_vector
;
5255 /* Recursively create a new copy of an rtx for copy_insn.
5256 This function differs from copy_rtx in that it handles SCRATCHes and
5257 ASM_OPERANDs properly.
5258 Normally, this function is not used directly; use copy_insn as front end.
5259 However, you could first copy an insn pattern with copy_insn and then use
5260 this function afterwards to properly copy any REG_NOTEs containing
5264 copy_insn_1 (rtx orig
)
5269 const char *format_ptr
;
5274 code
= GET_CODE (orig
);
5289 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
)
5294 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5295 if (copy_insn_scratch_in
[i
] == orig
)
5296 return copy_insn_scratch_out
[i
];
5300 if (shared_const_p (orig
))
5304 /* A MEM with a constant address is not sharable. The problem is that
5305 the constant address may need to be reloaded. If the mem is shared,
5306 then reloading one copy of this mem will cause all copies to appear
5307 to have been reloaded. */
5313 /* Copy the various flags, fields, and other information. We assume
5314 that all fields need copying, and then clear the fields that should
5315 not be copied. That is the sensible default behavior, and forces
5316 us to explicitly document why we are *not* copying a flag. */
5317 copy
= shallow_copy_rtx (orig
);
5319 /* We do not copy the USED flag, which is used as a mark bit during
5320 walks over the RTL. */
5321 RTX_FLAG (copy
, used
) = 0;
5323 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5326 RTX_FLAG (copy
, jump
) = 0;
5327 RTX_FLAG (copy
, call
) = 0;
5328 RTX_FLAG (copy
, frame_related
) = 0;
5331 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5333 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5334 switch (*format_ptr
++)
5337 if (XEXP (orig
, i
) != NULL
)
5338 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5343 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5344 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5345 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5346 XVEC (copy
, i
) = copy_asm_operands_vector
;
5347 else if (XVEC (orig
, i
) != NULL
)
5349 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5350 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5351 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5362 /* These are left unchanged. */
5369 if (code
== SCRATCH
)
5371 i
= copy_insn_n_scratches
++;
5372 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5373 copy_insn_scratch_in
[i
] = orig
;
5374 copy_insn_scratch_out
[i
] = copy
;
5376 else if (code
== ASM_OPERANDS
)
5378 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5379 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5380 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5381 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5387 /* Create a new copy of an rtx.
5388 This function differs from copy_rtx in that it handles SCRATCHes and
5389 ASM_OPERANDs properly.
5390 INSN doesn't really have to be a full INSN; it could be just the
5393 copy_insn (rtx insn
)
5395 copy_insn_n_scratches
= 0;
5396 orig_asm_operands_vector
= 0;
5397 orig_asm_constraints_vector
= 0;
5398 copy_asm_operands_vector
= 0;
5399 copy_asm_constraints_vector
= 0;
5400 return copy_insn_1 (insn
);
5403 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5404 on that assumption that INSN itself remains in its original place. */
5407 copy_delay_slot_insn (rtx insn
)
5409 /* Copy INSN with its rtx_code, all its notes, location etc. */
5410 insn
= copy_rtx (insn
);
5411 INSN_UID (insn
) = cur_insn_uid
++;
5415 /* Initialize data structures and variables in this file
5416 before generating rtl for each function. */
5421 set_first_insn (NULL
);
5422 set_last_insn (NULL
);
5423 if (MIN_NONDEBUG_INSN_UID
)
5424 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5427 cur_debug_insn_uid
= 1;
5428 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5429 first_label_num
= label_num
;
5432 /* Init the tables that describe all the pseudo regs. */
5434 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5436 crtl
->emit
.regno_pointer_align
5437 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5439 regno_reg_rtx
= ggc_alloc_vec_rtx (crtl
->emit
.regno_pointer_align_length
);
5441 /* Put copies of all the hard registers into regno_reg_rtx. */
5442 memcpy (regno_reg_rtx
,
5443 initial_regno_reg_rtx
,
5444 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5446 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5447 init_virtual_regs ();
5449 /* Indicate that the virtual registers and stack locations are
5451 REG_POINTER (stack_pointer_rtx
) = 1;
5452 REG_POINTER (frame_pointer_rtx
) = 1;
5453 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5454 REG_POINTER (arg_pointer_rtx
) = 1;
5456 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5457 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5458 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5459 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5460 REG_POINTER (virtual_cfa_rtx
) = 1;
5462 #ifdef STACK_BOUNDARY
5463 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5464 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5465 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5466 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5468 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5469 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5470 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5471 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5472 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5475 #ifdef INIT_EXPANDERS
5480 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5483 gen_const_vector (enum machine_mode mode
, int constant
)
5488 enum machine_mode inner
;
5490 units
= GET_MODE_NUNITS (mode
);
5491 inner
= GET_MODE_INNER (mode
);
5493 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5495 v
= rtvec_alloc (units
);
5497 /* We need to call this function after we set the scalar const_tiny_rtx
5499 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5501 for (i
= 0; i
< units
; ++i
)
5502 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5504 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5508 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5509 all elements are zero, and the one vector when all elements are one. */
5511 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5513 enum machine_mode inner
= GET_MODE_INNER (mode
);
5514 int nunits
= GET_MODE_NUNITS (mode
);
5518 /* Check to see if all of the elements have the same value. */
5519 x
= RTVEC_ELT (v
, nunits
- 1);
5520 for (i
= nunits
- 2; i
>= 0; i
--)
5521 if (RTVEC_ELT (v
, i
) != x
)
5524 /* If the values are all the same, check to see if we can use one of the
5525 standard constant vectors. */
5528 if (x
== CONST0_RTX (inner
))
5529 return CONST0_RTX (mode
);
5530 else if (x
== CONST1_RTX (inner
))
5531 return CONST1_RTX (mode
);
5532 else if (x
== CONSTM1_RTX (inner
))
5533 return CONSTM1_RTX (mode
);
5536 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5539 /* Initialise global register information required by all functions. */
5542 init_emit_regs (void)
5545 enum machine_mode mode
;
5548 /* Reset register attributes */
5549 htab_empty (reg_attrs_htab
);
5551 /* We need reg_raw_mode, so initialize the modes now. */
5552 init_reg_modes_target ();
5554 /* Assign register numbers to the globally defined register rtx. */
5555 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5556 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5557 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5558 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5559 virtual_incoming_args_rtx
=
5560 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5561 virtual_stack_vars_rtx
=
5562 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5563 virtual_stack_dynamic_rtx
=
5564 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5565 virtual_outgoing_args_rtx
=
5566 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5567 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5568 virtual_preferred_stack_boundary_rtx
=
5569 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
5571 /* Initialize RTL for commonly used hard registers. These are
5572 copied into regno_reg_rtx as we begin to compile each function. */
5573 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5574 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5576 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5577 return_address_pointer_rtx
5578 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5581 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5582 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5584 pic_offset_table_rtx
= NULL_RTX
;
5586 for (i
= 0; i
< (int) MAX_MACHINE_MODE
; i
++)
5588 mode
= (enum machine_mode
) i
;
5589 attrs
= ggc_alloc_cleared_mem_attrs ();
5590 attrs
->align
= BITS_PER_UNIT
;
5591 attrs
->addrspace
= ADDR_SPACE_GENERIC
;
5592 if (mode
!= BLKmode
)
5594 attrs
->size_known_p
= true;
5595 attrs
->size
= GET_MODE_SIZE (mode
);
5596 if (STRICT_ALIGNMENT
)
5597 attrs
->align
= GET_MODE_ALIGNMENT (mode
);
5599 mode_mem_attrs
[i
] = attrs
;
5603 /* Create some permanent unique rtl objects shared between all functions. */
5606 init_emit_once (void)
5609 enum machine_mode mode
;
5610 enum machine_mode double_mode
;
5612 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5614 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5615 const_int_htab_eq
, NULL
);
5617 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5618 const_double_htab_eq
, NULL
);
5620 const_fixed_htab
= htab_create_ggc (37, const_fixed_htab_hash
,
5621 const_fixed_htab_eq
, NULL
);
5623 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5624 mem_attrs_htab_eq
, NULL
);
5625 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5626 reg_attrs_htab_eq
, NULL
);
5628 /* Compute the word and byte modes. */
5630 byte_mode
= VOIDmode
;
5631 word_mode
= VOIDmode
;
5632 double_mode
= VOIDmode
;
5634 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5636 mode
= GET_MODE_WIDER_MODE (mode
))
5638 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5639 && byte_mode
== VOIDmode
)
5642 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5643 && word_mode
== VOIDmode
)
5647 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5649 mode
= GET_MODE_WIDER_MODE (mode
))
5651 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5652 && double_mode
== VOIDmode
)
5656 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5658 #ifdef INIT_EXPANDERS
5659 /* This is to initialize {init|mark|free}_machine_status before the first
5660 call to push_function_context_to. This is needed by the Chill front
5661 end which calls push_function_context_to before the first call to
5662 init_function_start. */
5666 /* Create the unique rtx's for certain rtx codes and operand values. */
5668 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5669 tries to use these variables. */
5670 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5671 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5672 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5674 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5675 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5676 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5678 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5680 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5681 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5682 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5687 dconsthalf
= dconst1
;
5688 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5690 for (i
= 0; i
< 3; i
++)
5692 const REAL_VALUE_TYPE
*const r
=
5693 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5695 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5697 mode
= GET_MODE_WIDER_MODE (mode
))
5698 const_tiny_rtx
[i
][(int) mode
] =
5699 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5701 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5703 mode
= GET_MODE_WIDER_MODE (mode
))
5704 const_tiny_rtx
[i
][(int) mode
] =
5705 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5707 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5709 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5711 mode
= GET_MODE_WIDER_MODE (mode
))
5712 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5714 for (mode
= MIN_MODE_PARTIAL_INT
;
5715 mode
<= MAX_MODE_PARTIAL_INT
;
5716 mode
= (enum machine_mode
)((int)(mode
) + 1))
5717 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5720 const_tiny_rtx
[3][(int) VOIDmode
] = constm1_rtx
;
5722 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5724 mode
= GET_MODE_WIDER_MODE (mode
))
5725 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5727 for (mode
= MIN_MODE_PARTIAL_INT
;
5728 mode
<= MAX_MODE_PARTIAL_INT
;
5729 mode
= (enum machine_mode
)((int)(mode
) + 1))
5730 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5732 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5734 mode
= GET_MODE_WIDER_MODE (mode
))
5736 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5737 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5740 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5742 mode
= GET_MODE_WIDER_MODE (mode
))
5744 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5745 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5748 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5750 mode
= GET_MODE_WIDER_MODE (mode
))
5752 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5753 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5754 const_tiny_rtx
[3][(int) mode
] = gen_const_vector (mode
, 3);
5757 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5759 mode
= GET_MODE_WIDER_MODE (mode
))
5761 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5762 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5765 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
5767 mode
= GET_MODE_WIDER_MODE (mode
))
5769 FCONST0(mode
).data
.high
= 0;
5770 FCONST0(mode
).data
.low
= 0;
5771 FCONST0(mode
).mode
= mode
;
5772 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5773 FCONST0 (mode
), mode
);
5776 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
5778 mode
= GET_MODE_WIDER_MODE (mode
))
5780 FCONST0(mode
).data
.high
= 0;
5781 FCONST0(mode
).data
.low
= 0;
5782 FCONST0(mode
).mode
= mode
;
5783 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5784 FCONST0 (mode
), mode
);
5787 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
5789 mode
= GET_MODE_WIDER_MODE (mode
))
5791 FCONST0(mode
).data
.high
= 0;
5792 FCONST0(mode
).data
.low
= 0;
5793 FCONST0(mode
).mode
= mode
;
5794 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5795 FCONST0 (mode
), mode
);
5797 /* We store the value 1. */
5798 FCONST1(mode
).data
.high
= 0;
5799 FCONST1(mode
).data
.low
= 0;
5800 FCONST1(mode
).mode
= mode
;
5802 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5803 HOST_BITS_PER_DOUBLE_INT
,
5804 SIGNED_FIXED_POINT_MODE_P (mode
));
5805 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5806 FCONST1 (mode
), mode
);
5809 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
5811 mode
= GET_MODE_WIDER_MODE (mode
))
5813 FCONST0(mode
).data
.high
= 0;
5814 FCONST0(mode
).data
.low
= 0;
5815 FCONST0(mode
).mode
= mode
;
5816 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5817 FCONST0 (mode
), mode
);
5819 /* We store the value 1. */
5820 FCONST1(mode
).data
.high
= 0;
5821 FCONST1(mode
).data
.low
= 0;
5822 FCONST1(mode
).mode
= mode
;
5824 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5825 HOST_BITS_PER_DOUBLE_INT
,
5826 SIGNED_FIXED_POINT_MODE_P (mode
));
5827 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5828 FCONST1 (mode
), mode
);
5831 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
5833 mode
= GET_MODE_WIDER_MODE (mode
))
5835 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5838 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
5840 mode
= GET_MODE_WIDER_MODE (mode
))
5842 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5845 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
5847 mode
= GET_MODE_WIDER_MODE (mode
))
5849 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5850 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5853 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
5855 mode
= GET_MODE_WIDER_MODE (mode
))
5857 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5858 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5861 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5862 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5863 const_tiny_rtx
[0][i
] = const0_rtx
;
5865 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5866 if (STORE_FLAG_VALUE
== 1)
5867 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5869 pc_rtx
= gen_rtx_fmt_ (PC
, VOIDmode
);
5870 ret_rtx
= gen_rtx_fmt_ (RETURN
, VOIDmode
);
5871 simple_return_rtx
= gen_rtx_fmt_ (SIMPLE_RETURN
, VOIDmode
);
5872 cc0_rtx
= gen_rtx_fmt_ (CC0
, VOIDmode
);
5875 /* Produce exact duplicate of insn INSN after AFTER.
5876 Care updating of libcall regions if present. */
5879 emit_copy_of_insn_after (rtx insn
, rtx after
)
5883 switch (GET_CODE (insn
))
5886 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5890 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5894 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
5898 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5899 if (CALL_INSN_FUNCTION_USAGE (insn
))
5900 CALL_INSN_FUNCTION_USAGE (new_rtx
)
5901 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5902 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
5903 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
5904 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
5905 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
5906 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
5913 /* Update LABEL_NUSES. */
5914 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
5916 INSN_LOCATION (new_rtx
) = INSN_LOCATION (insn
);
5918 /* If the old insn is frame related, then so is the new one. This is
5919 primarily needed for IA-64 unwind info which marks epilogue insns,
5920 which may be duplicated by the basic block reordering code. */
5921 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
5923 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5924 will make them. REG_LABEL_TARGETs are created there too, but are
5925 supposed to be sticky, so we copy them. */
5926 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5927 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
5929 if (GET_CODE (link
) == EXPR_LIST
)
5930 add_reg_note (new_rtx
, REG_NOTE_KIND (link
),
5931 copy_insn_1 (XEXP (link
, 0)));
5933 add_reg_note (new_rtx
, REG_NOTE_KIND (link
), XEXP (link
, 0));
5936 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
5940 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
5942 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
5944 if (hard_reg_clobbers
[mode
][regno
])
5945 return hard_reg_clobbers
[mode
][regno
];
5947 return (hard_reg_clobbers
[mode
][regno
] =
5948 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
5951 location_t prologue_location
;
5952 location_t epilogue_location
;
5954 /* Hold current location information and last location information, so the
5955 datastructures are built lazily only when some instructions in given
5956 place are needed. */
5957 static location_t curr_location
;
5959 /* Allocate insn location datastructure. */
5961 insn_locations_init (void)
5963 prologue_location
= epilogue_location
= 0;
5964 curr_location
= UNKNOWN_LOCATION
;
5967 /* At the end of emit stage, clear current location. */
5969 insn_locations_finalize (void)
5971 epilogue_location
= curr_location
;
5972 curr_location
= UNKNOWN_LOCATION
;
5975 /* Set current location. */
5977 set_curr_insn_location (location_t location
)
5979 curr_location
= location
;
5982 /* Get current location. */
5984 curr_insn_location (void)
5986 return curr_location
;
5989 /* Return lexical scope block insn belongs to. */
5991 insn_scope (const_rtx insn
)
5993 return LOCATION_BLOCK (INSN_LOCATION (insn
));
5996 /* Return line number of the statement that produced this insn. */
5998 insn_line (const_rtx insn
)
6000 return LOCATION_LINE (INSN_LOCATION (insn
));
6003 /* Return source file of the statement that produced this insn. */
6005 insn_file (const_rtx insn
)
6007 return LOCATION_FILE (INSN_LOCATION (insn
));
6010 /* Return true if memory model MODEL requires a pre-operation (release-style)
6011 barrier or a post-operation (acquire-style) barrier. While not universal,
6012 this function matches behavior of several targets. */
6015 need_atomic_barrier_p (enum memmodel model
, bool pre
)
6019 case MEMMODEL_RELAXED
:
6020 case MEMMODEL_CONSUME
:
6022 case MEMMODEL_RELEASE
:
6024 case MEMMODEL_ACQUIRE
:
6026 case MEMMODEL_ACQ_REL
:
6027 case MEMMODEL_SEQ_CST
:
6034 #include "gt-emit-rtl.h"