* invoke.texi: Fix typo.
[official-gcc.git] / gcc / cfgloop.c
blobc85d053cc6c3aeb3f7223aaf7110f48066370ca4
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000, 2001, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "basic-block.h"
28 #include "toplev.h"
29 #include "cfgloop.h"
30 #include "flags.h"
31 #include "tree.h"
32 #include "tree-flow.h"
34 /* Ratio of frequencies of edges so that one of more latch edges is
35 considered to belong to inner loop with same header. */
36 #define HEAVY_EDGE_RATIO 8
38 #define HEADER_BLOCK(B) (* (int *) (B)->aux)
39 #define LATCH_EDGE(E) (*(int *) (E)->aux)
41 static void flow_loops_cfg_dump (const struct loops *, FILE *);
42 static void flow_loop_entry_edges_find (struct loop *);
43 static void flow_loop_exit_edges_find (struct loop *);
44 static int flow_loop_nodes_find (basic_block, struct loop *);
45 static void flow_loop_pre_header_scan (struct loop *);
46 static basic_block flow_loop_pre_header_find (basic_block);
47 static int flow_loop_level_compute (struct loop *);
48 static int flow_loops_level_compute (struct loops *);
49 static void establish_preds (struct loop *);
50 static void canonicalize_loop_headers (void);
51 static bool glb_enum_p (basic_block, void *);
53 /* Dump loop related CFG information. */
55 static void
56 flow_loops_cfg_dump (const struct loops *loops, FILE *file)
58 int i;
59 basic_block bb;
61 if (! loops->num || ! file)
62 return;
64 FOR_EACH_BB (bb)
66 edge succ;
67 edge_iterator ei;
69 fprintf (file, ";; %d succs { ", bb->index);
70 FOR_EACH_EDGE (succ, ei, bb->succs)
71 fprintf (file, "%d ", succ->dest->index);
72 fprintf (file, "}\n");
75 /* Dump the DFS node order. */
76 if (loops->cfg.dfs_order)
78 fputs (";; DFS order: ", file);
79 for (i = 0; i < n_basic_blocks; i++)
80 fprintf (file, "%d ", loops->cfg.dfs_order[i]);
82 fputs ("\n", file);
85 /* Dump the reverse completion node order. */
86 if (loops->cfg.rc_order)
88 fputs (";; RC order: ", file);
89 for (i = 0; i < n_basic_blocks; i++)
90 fprintf (file, "%d ", loops->cfg.rc_order[i]);
92 fputs ("\n", file);
96 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
98 bool
99 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
101 return (loop->depth > outer->depth
102 && loop->pred[outer->depth] == outer);
105 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
106 loops within LOOP. */
108 struct loop *
109 superloop_at_depth (struct loop *loop, unsigned depth)
111 gcc_assert (depth <= (unsigned) loop->depth);
113 if (depth == (unsigned) loop->depth)
114 return loop;
116 return loop->pred[depth];
119 /* Dump the loop information specified by LOOP to the stream FILE
120 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
122 void
123 flow_loop_dump (const struct loop *loop, FILE *file,
124 void (*loop_dump_aux) (const struct loop *, FILE *, int),
125 int verbose)
127 basic_block *bbs;
128 unsigned i;
130 if (! loop || ! loop->header)
131 return;
133 fprintf (file, ";;\n;; Loop %d:%s\n", loop->num,
134 loop->invalid ? " invalid" : "");
136 fprintf (file, ";; header %d, latch %d, pre-header %d\n",
137 loop->header->index, loop->latch->index,
138 loop->pre_header ? loop->pre_header->index : -1);
139 fprintf (file, ";; depth %d, level %d, outer %ld\n",
140 loop->depth, loop->level,
141 (long) (loop->outer ? loop->outer->num : -1));
143 if (loop->pre_header_edges)
144 flow_edge_list_print (";; pre-header edges", loop->pre_header_edges,
145 loop->num_pre_header_edges, file);
147 flow_edge_list_print (";; entry edges", loop->entry_edges,
148 loop->num_entries, file);
149 fprintf (file, ";; nodes:");
150 bbs = get_loop_body (loop);
151 for (i = 0; i < loop->num_nodes; i++)
152 fprintf (file, " %d", bbs[i]->index);
153 free (bbs);
154 fprintf (file, "\n");
155 flow_edge_list_print (";; exit edges", loop->exit_edges,
156 loop->num_exits, file);
158 if (loop_dump_aux)
159 loop_dump_aux (loop, file, verbose);
162 /* Dump the loop information specified by LOOPS to the stream FILE,
163 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
165 void
166 flow_loops_dump (const struct loops *loops, FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
168 int i;
169 int num_loops;
171 num_loops = loops->num;
172 if (! num_loops || ! file)
173 return;
175 fprintf (file, ";; %d loops found, %d levels\n",
176 num_loops, loops->levels);
178 for (i = 0; i < num_loops; i++)
180 struct loop *loop = loops->parray[i];
182 if (!loop)
183 continue;
185 flow_loop_dump (loop, file, loop_dump_aux, verbose);
188 if (verbose)
189 flow_loops_cfg_dump (loops, file);
192 /* Free data allocated for LOOP. */
193 void
194 flow_loop_free (struct loop *loop)
196 if (loop->pre_header_edges)
197 free (loop->pre_header_edges);
198 if (loop->entry_edges)
199 free (loop->entry_edges);
200 if (loop->exit_edges)
201 free (loop->exit_edges);
202 if (loop->pred)
203 free (loop->pred);
204 free (loop);
207 /* Free all the memory allocated for LOOPS. */
209 void
210 flow_loops_free (struct loops *loops)
212 if (loops->parray)
214 unsigned i;
216 gcc_assert (loops->num);
218 /* Free the loop descriptors. */
219 for (i = 0; i < loops->num; i++)
221 struct loop *loop = loops->parray[i];
223 if (!loop)
224 continue;
226 flow_loop_free (loop);
229 free (loops->parray);
230 loops->parray = NULL;
232 if (loops->cfg.dfs_order)
233 free (loops->cfg.dfs_order);
234 if (loops->cfg.rc_order)
235 free (loops->cfg.rc_order);
240 /* Find the entry edges into the LOOP. */
242 static void
243 flow_loop_entry_edges_find (struct loop *loop)
245 edge e;
246 edge_iterator ei;
247 int num_entries;
249 num_entries = 0;
250 FOR_EACH_EDGE (e, ei, loop->header->preds)
252 if (flow_loop_outside_edge_p (loop, e))
253 num_entries++;
256 gcc_assert (num_entries);
258 loop->entry_edges = xmalloc (num_entries * sizeof (edge *));
260 num_entries = 0;
261 FOR_EACH_EDGE (e, ei, loop->header->preds)
263 if (flow_loop_outside_edge_p (loop, e))
264 loop->entry_edges[num_entries++] = e;
267 loop->num_entries = num_entries;
270 /* Find the exit edges from the LOOP. */
272 static void
273 flow_loop_exit_edges_find (struct loop *loop)
275 edge e;
276 basic_block node, *bbs;
277 unsigned num_exits, i;
279 loop->exit_edges = NULL;
280 loop->num_exits = 0;
282 /* Check all nodes within the loop to see if there are any
283 successors not in the loop. Note that a node may have multiple
284 exiting edges. */
285 num_exits = 0;
286 bbs = get_loop_body (loop);
287 for (i = 0; i < loop->num_nodes; i++)
289 edge_iterator ei;
290 node = bbs[i];
291 FOR_EACH_EDGE (e, ei, node->succs)
293 basic_block dest = e->dest;
295 if (!flow_bb_inside_loop_p (loop, dest))
296 num_exits++;
300 if (! num_exits)
302 free (bbs);
303 return;
306 loop->exit_edges = xmalloc (num_exits * sizeof (edge *));
308 /* Store all exiting edges into an array. */
309 num_exits = 0;
310 for (i = 0; i < loop->num_nodes; i++)
312 edge_iterator ei;
313 node = bbs[i];
314 FOR_EACH_EDGE (e, ei, node->succs)
316 basic_block dest = e->dest;
318 if (!flow_bb_inside_loop_p (loop, dest))
320 e->flags |= EDGE_LOOP_EXIT;
321 loop->exit_edges[num_exits++] = e;
325 free (bbs);
326 loop->num_exits = num_exits;
329 /* Find the nodes contained within the LOOP with header HEADER.
330 Return the number of nodes within the loop. */
332 static int
333 flow_loop_nodes_find (basic_block header, struct loop *loop)
335 basic_block *stack;
336 int sp;
337 int num_nodes = 1;
339 header->loop_father = loop;
340 header->loop_depth = loop->depth;
342 if (loop->latch->loop_father != loop)
344 stack = xmalloc (n_basic_blocks * sizeof (basic_block));
345 sp = 0;
346 num_nodes++;
347 stack[sp++] = loop->latch;
348 loop->latch->loop_father = loop;
349 loop->latch->loop_depth = loop->depth;
351 while (sp)
353 basic_block node;
354 edge e;
355 edge_iterator ei;
357 node = stack[--sp];
359 FOR_EACH_EDGE (e, ei, node->preds)
361 basic_block ancestor = e->src;
363 if (ancestor != ENTRY_BLOCK_PTR
364 && ancestor->loop_father != loop)
366 ancestor->loop_father = loop;
367 ancestor->loop_depth = loop->depth;
368 num_nodes++;
369 stack[sp++] = ancestor;
373 free (stack);
375 return num_nodes;
378 /* For each loop in the lOOPS tree that has just a single exit
379 record the exit edge. */
381 void
382 mark_single_exit_loops (struct loops *loops)
384 basic_block bb;
385 edge e;
386 struct loop *loop;
387 unsigned i;
389 for (i = 1; i < loops->num; i++)
391 loop = loops->parray[i];
392 if (loop)
393 loop->single_exit = NULL;
396 FOR_EACH_BB (bb)
398 edge_iterator ei;
399 if (bb->loop_father == loops->tree_root)
400 continue;
401 FOR_EACH_EDGE (e, ei, bb->succs)
403 if (e->dest == EXIT_BLOCK_PTR)
404 continue;
406 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
407 continue;
409 for (loop = bb->loop_father;
410 loop != e->dest->loop_father;
411 loop = loop->outer)
413 /* If we have already seen an exit, mark this by the edge that
414 surely does not occur as any exit. */
415 if (loop->single_exit)
416 loop->single_exit = EDGE_SUCC (ENTRY_BLOCK_PTR, 0);
417 else
418 loop->single_exit = e;
423 for (i = 1; i < loops->num; i++)
425 loop = loops->parray[i];
426 if (!loop)
427 continue;
429 if (loop->single_exit == EDGE_SUCC (ENTRY_BLOCK_PTR, 0))
430 loop->single_exit = NULL;
433 loops->state |= LOOPS_HAVE_MARKED_SINGLE_EXITS;
436 /* Find the root node of the loop pre-header extended basic block and
437 the edges along the trace from the root node to the loop header. */
439 static void
440 flow_loop_pre_header_scan (struct loop *loop)
442 int num;
443 basic_block ebb;
444 edge e;
446 loop->num_pre_header_edges = 0;
447 if (loop->num_entries != 1)
448 return;
450 ebb = loop->entry_edges[0]->src;
451 if (ebb == ENTRY_BLOCK_PTR)
452 return;
454 /* Count number of edges along trace from loop header to
455 root of pre-header extended basic block. Usually this is
456 only one or two edges. */
457 for (num = 1;
458 EDGE_PRED (ebb, 0)->src != ENTRY_BLOCK_PTR && EDGE_COUNT (ebb->preds) == 1;
459 num++)
460 ebb = EDGE_PRED (ebb, 0)->src;
462 loop->pre_header_edges = xmalloc (num * sizeof (edge));
463 loop->num_pre_header_edges = num;
465 /* Store edges in order that they are followed. The source of the first edge
466 is the root node of the pre-header extended basic block and the
467 destination of the last last edge is the loop header. */
468 for (e = loop->entry_edges[0]; num; e = EDGE_PRED (e->src, 0))
469 loop->pre_header_edges[--num] = e;
472 /* Return the block for the pre-header of the loop with header
473 HEADER. Return NULL if there is no pre-header. */
475 static basic_block
476 flow_loop_pre_header_find (basic_block header)
478 basic_block pre_header;
479 edge e;
480 edge_iterator ei;
482 /* If block p is a predecessor of the header and is the only block
483 that the header does not dominate, then it is the pre-header. */
484 pre_header = NULL;
485 FOR_EACH_EDGE (e, ei, header->preds)
487 basic_block node = e->src;
489 if (node != ENTRY_BLOCK_PTR
490 && ! dominated_by_p (CDI_DOMINATORS, node, header))
492 if (pre_header == NULL)
493 pre_header = node;
494 else
496 /* There are multiple edges into the header from outside
497 the loop so there is no pre-header block. */
498 pre_header = NULL;
499 break;
504 return pre_header;
507 static void
508 establish_preds (struct loop *loop)
510 struct loop *ploop, *father = loop->outer;
512 loop->depth = father->depth + 1;
513 if (loop->pred)
514 free (loop->pred);
515 loop->pred = xmalloc (sizeof (struct loop *) * loop->depth);
516 memcpy (loop->pred, father->pred, sizeof (struct loop *) * father->depth);
517 loop->pred[father->depth] = father;
519 for (ploop = loop->inner; ploop; ploop = ploop->next)
520 establish_preds (ploop);
523 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
524 added loop. If LOOP has some children, take care of that their
525 pred field will be initialized correctly. */
527 void
528 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
530 loop->next = father->inner;
531 father->inner = loop;
532 loop->outer = father;
534 establish_preds (loop);
537 /* Remove LOOP from the loop hierarchy tree. */
539 void
540 flow_loop_tree_node_remove (struct loop *loop)
542 struct loop *prev, *father;
544 father = loop->outer;
545 loop->outer = NULL;
547 /* Remove loop from the list of sons. */
548 if (father->inner == loop)
549 father->inner = loop->next;
550 else
552 for (prev = father->inner; prev->next != loop; prev = prev->next);
553 prev->next = loop->next;
556 loop->depth = -1;
557 free (loop->pred);
558 loop->pred = NULL;
561 /* Helper function to compute loop nesting depth and enclosed loop level
562 for the natural loop specified by LOOP. Returns the loop level. */
564 static int
565 flow_loop_level_compute (struct loop *loop)
567 struct loop *inner;
568 int level = 1;
570 if (! loop)
571 return 0;
573 /* Traverse loop tree assigning depth and computing level as the
574 maximum level of all the inner loops of this loop. The loop
575 level is equivalent to the height of the loop in the loop tree
576 and corresponds to the number of enclosed loop levels (including
577 itself). */
578 for (inner = loop->inner; inner; inner = inner->next)
580 int ilevel = flow_loop_level_compute (inner) + 1;
582 if (ilevel > level)
583 level = ilevel;
586 loop->level = level;
587 return level;
590 /* Compute the loop nesting depth and enclosed loop level for the loop
591 hierarchy tree specified by LOOPS. Return the maximum enclosed loop
592 level. */
594 static int
595 flow_loops_level_compute (struct loops *loops)
597 return flow_loop_level_compute (loops->tree_root);
600 /* Scan a single natural loop specified by LOOP collecting information
601 about it specified by FLAGS. */
604 flow_loop_scan (struct loop *loop, int flags)
606 if (flags & LOOP_ENTRY_EDGES)
608 /* Find edges which enter the loop header.
609 Note that the entry edges should only
610 enter the header of a natural loop. */
611 flow_loop_entry_edges_find (loop);
614 if (flags & LOOP_EXIT_EDGES)
616 /* Find edges which exit the loop. */
617 flow_loop_exit_edges_find (loop);
620 if (flags & LOOP_PRE_HEADER)
622 /* Look to see if the loop has a pre-header node. */
623 loop->pre_header = flow_loop_pre_header_find (loop->header);
625 /* Find the blocks within the extended basic block of
626 the loop pre-header. */
627 flow_loop_pre_header_scan (loop);
630 return 1;
633 /* A callback to update latch and header info for basic block JUMP created
634 by redirecting an edge. */
636 static void
637 update_latch_info (basic_block jump)
639 alloc_aux_for_block (jump, sizeof (int));
640 HEADER_BLOCK (jump) = 0;
641 alloc_aux_for_edge (EDGE_PRED (jump, 0), sizeof (int));
642 LATCH_EDGE (EDGE_PRED (jump, 0)) = 0;
643 set_immediate_dominator (CDI_DOMINATORS, jump, EDGE_PRED (jump, 0)->src);
646 /* A callback for make_forwarder block, to redirect all edges except for
647 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
648 whether to redirect it. */
650 static edge mfb_kj_edge;
651 static bool
652 mfb_keep_just (edge e)
654 return e != mfb_kj_edge;
657 /* A callback for make_forwarder block, to redirect the latch edges into an
658 entry part. E is the edge for that we should decide whether to redirect
659 it. */
661 static bool
662 mfb_keep_nonlatch (edge e)
664 return LATCH_EDGE (e);
667 /* Takes care of merging natural loops with shared headers. */
669 static void
670 canonicalize_loop_headers (void)
672 basic_block header;
673 edge e;
675 alloc_aux_for_blocks (sizeof (int));
676 alloc_aux_for_edges (sizeof (int));
678 /* Split blocks so that each loop has only single latch. */
679 FOR_EACH_BB (header)
681 edge_iterator ei;
682 int num_latches = 0;
683 int have_abnormal_edge = 0;
685 FOR_EACH_EDGE (e, ei, header->preds)
687 basic_block latch = e->src;
689 if (e->flags & EDGE_ABNORMAL)
690 have_abnormal_edge = 1;
692 if (latch != ENTRY_BLOCK_PTR
693 && dominated_by_p (CDI_DOMINATORS, latch, header))
695 num_latches++;
696 LATCH_EDGE (e) = 1;
699 if (have_abnormal_edge)
700 HEADER_BLOCK (header) = 0;
701 else
702 HEADER_BLOCK (header) = num_latches;
705 if (HEADER_BLOCK (EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest))
707 basic_block bb;
709 /* We could not redirect edges freely here. On the other hand,
710 we can simply split the edge from entry block. */
711 bb = split_edge (EDGE_SUCC (ENTRY_BLOCK_PTR, 0));
713 alloc_aux_for_edge (EDGE_SUCC (bb, 0), sizeof (int));
714 LATCH_EDGE (EDGE_SUCC (bb, 0)) = 0;
715 alloc_aux_for_block (bb, sizeof (int));
716 HEADER_BLOCK (bb) = 0;
719 FOR_EACH_BB (header)
721 int max_freq, is_heavy;
722 edge heavy, tmp_edge;
723 edge_iterator ei;
725 if (HEADER_BLOCK (header) <= 1)
726 continue;
728 /* Find a heavy edge. */
729 is_heavy = 1;
730 heavy = NULL;
731 max_freq = 0;
732 FOR_EACH_EDGE (e, ei, header->preds)
733 if (LATCH_EDGE (e) &&
734 EDGE_FREQUENCY (e) > max_freq)
735 max_freq = EDGE_FREQUENCY (e);
736 FOR_EACH_EDGE (e, ei, header->preds)
737 if (LATCH_EDGE (e) &&
738 EDGE_FREQUENCY (e) >= max_freq / HEAVY_EDGE_RATIO)
740 if (heavy)
742 is_heavy = 0;
743 break;
745 else
746 heavy = e;
749 if (is_heavy)
751 /* Split out the heavy edge, and create inner loop for it. */
752 mfb_kj_edge = heavy;
753 tmp_edge = make_forwarder_block (header, mfb_keep_just,
754 update_latch_info);
755 alloc_aux_for_block (tmp_edge->dest, sizeof (int));
756 HEADER_BLOCK (tmp_edge->dest) = 1;
757 alloc_aux_for_edge (tmp_edge, sizeof (int));
758 LATCH_EDGE (tmp_edge) = 0;
759 HEADER_BLOCK (header)--;
762 if (HEADER_BLOCK (header) > 1)
764 /* Create a new latch block. */
765 tmp_edge = make_forwarder_block (header, mfb_keep_nonlatch,
766 update_latch_info);
767 alloc_aux_for_block (tmp_edge->dest, sizeof (int));
768 HEADER_BLOCK (tmp_edge->src) = 0;
769 HEADER_BLOCK (tmp_edge->dest) = 1;
770 alloc_aux_for_edge (tmp_edge, sizeof (int));
771 LATCH_EDGE (tmp_edge) = 1;
775 free_aux_for_blocks ();
776 free_aux_for_edges ();
778 #ifdef ENABLE_CHECKING
779 verify_dominators (CDI_DOMINATORS);
780 #endif
783 /* Initialize all the parallel_p fields of the loops structure to true. */
785 static void
786 initialize_loops_parallel_p (struct loops *loops)
788 unsigned int i;
790 for (i = 0; i < loops->num; i++)
792 struct loop *loop = loops->parray[i];
793 loop->parallel_p = true;
797 /* Find all the natural loops in the function and save in LOOPS structure and
798 recalculate loop_depth information in basic block structures. FLAGS
799 controls which loop information is collected. Return the number of natural
800 loops found. */
803 flow_loops_find (struct loops *loops, int flags)
805 int i;
806 int b;
807 int num_loops;
808 edge e;
809 sbitmap headers;
810 int *dfs_order;
811 int *rc_order;
812 basic_block header;
813 basic_block bb;
815 /* This function cannot be repeatedly called with different
816 flags to build up the loop information. The loop tree
817 must always be built if this function is called. */
818 gcc_assert (flags & LOOP_TREE);
820 memset (loops, 0, sizeof *loops);
822 /* Taking care of this degenerate case makes the rest of
823 this code simpler. */
824 if (n_basic_blocks == 0)
825 return 0;
827 dfs_order = NULL;
828 rc_order = NULL;
830 /* Ensure that the dominators are computed. */
831 calculate_dominance_info (CDI_DOMINATORS);
833 /* Join loops with shared headers. */
834 canonicalize_loop_headers ();
836 /* Count the number of loop headers. This should be the
837 same as the number of natural loops. */
838 headers = sbitmap_alloc (last_basic_block);
839 sbitmap_zero (headers);
841 num_loops = 0;
842 FOR_EACH_BB (header)
844 edge_iterator ei;
845 int more_latches = 0;
847 header->loop_depth = 0;
849 /* If we have an abnormal predecessor, do not consider the
850 loop (not worth the problems). */
851 FOR_EACH_EDGE (e, ei, header->preds)
852 if (e->flags & EDGE_ABNORMAL)
853 break;
854 if (e)
855 continue;
857 FOR_EACH_EDGE (e, ei, header->preds)
859 basic_block latch = e->src;
861 gcc_assert (!(e->flags & EDGE_ABNORMAL));
863 /* Look for back edges where a predecessor is dominated
864 by this block. A natural loop has a single entry
865 node (header) that dominates all the nodes in the
866 loop. It also has single back edge to the header
867 from a latch node. */
868 if (latch != ENTRY_BLOCK_PTR
869 && dominated_by_p (CDI_DOMINATORS, latch, header))
871 /* Shared headers should be eliminated by now. */
872 gcc_assert (!more_latches);
873 more_latches = 1;
874 SET_BIT (headers, header->index);
875 num_loops++;
880 /* Allocate loop structures. */
881 loops->parray = xcalloc (num_loops + 1, sizeof (struct loop *));
883 /* Dummy loop containing whole function. */
884 loops->parray[0] = xcalloc (1, sizeof (struct loop));
885 loops->parray[0]->next = NULL;
886 loops->parray[0]->inner = NULL;
887 loops->parray[0]->outer = NULL;
888 loops->parray[0]->depth = 0;
889 loops->parray[0]->pred = NULL;
890 loops->parray[0]->num_nodes = n_basic_blocks + 2;
891 loops->parray[0]->latch = EXIT_BLOCK_PTR;
892 loops->parray[0]->header = ENTRY_BLOCK_PTR;
893 ENTRY_BLOCK_PTR->loop_father = loops->parray[0];
894 EXIT_BLOCK_PTR->loop_father = loops->parray[0];
896 loops->tree_root = loops->parray[0];
898 /* Find and record information about all the natural loops
899 in the CFG. */
900 loops->num = 1;
901 FOR_EACH_BB (bb)
902 bb->loop_father = loops->tree_root;
904 if (num_loops)
906 /* Compute depth first search order of the CFG so that outer
907 natural loops will be found before inner natural loops. */
908 dfs_order = xmalloc (n_basic_blocks * sizeof (int));
909 rc_order = xmalloc (n_basic_blocks * sizeof (int));
910 flow_depth_first_order_compute (dfs_order, rc_order);
912 /* Save CFG derived information to avoid recomputing it. */
913 loops->cfg.dfs_order = dfs_order;
914 loops->cfg.rc_order = rc_order;
916 num_loops = 1;
918 for (b = 0; b < n_basic_blocks; b++)
920 struct loop *loop;
921 edge_iterator ei;
923 /* Search the nodes of the CFG in reverse completion order
924 so that we can find outer loops first. */
925 if (!TEST_BIT (headers, rc_order[b]))
926 continue;
928 header = BASIC_BLOCK (rc_order[b]);
930 loop = loops->parray[num_loops] = xcalloc (1, sizeof (struct loop));
932 loop->header = header;
933 loop->num = num_loops;
934 num_loops++;
936 /* Look for the latch for this header block. */
937 FOR_EACH_EDGE (e, ei, header->preds)
939 basic_block latch = e->src;
941 if (latch != ENTRY_BLOCK_PTR
942 && dominated_by_p (CDI_DOMINATORS, latch, header))
944 loop->latch = latch;
945 break;
949 flow_loop_tree_node_add (header->loop_father, loop);
950 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
953 /* Assign the loop nesting depth and enclosed loop level for each
954 loop. */
955 loops->levels = flow_loops_level_compute (loops);
957 /* Scan the loops. */
958 for (i = 1; i < num_loops; i++)
959 flow_loop_scan (loops->parray[i], flags);
961 loops->num = num_loops;
962 initialize_loops_parallel_p (loops);
965 sbitmap_free (headers);
967 loops->state = 0;
968 #ifdef ENABLE_CHECKING
969 verify_flow_info ();
970 verify_loop_structure (loops);
971 #endif
973 return loops->num;
976 /* Return nonzero if basic block BB belongs to LOOP. */
977 bool
978 flow_bb_inside_loop_p (const struct loop *loop, const basic_block bb)
980 struct loop *source_loop;
982 if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
983 return 0;
985 source_loop = bb->loop_father;
986 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
989 /* Return nonzero if edge E enters header of LOOP from outside of LOOP. */
991 bool
992 flow_loop_outside_edge_p (const struct loop *loop, edge e)
994 gcc_assert (e->dest == loop->header);
995 return !flow_bb_inside_loop_p (loop, e->src);
998 /* Enumeration predicate for get_loop_body. */
999 static bool
1000 glb_enum_p (basic_block bb, void *glb_header)
1002 return bb != (basic_block) glb_header;
1005 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
1006 order against direction of edges from latch. Specially, if
1007 header != latch, latch is the 1-st block. */
1008 basic_block *
1009 get_loop_body (const struct loop *loop)
1011 basic_block *tovisit, bb;
1012 unsigned tv = 0;
1014 gcc_assert (loop->num_nodes);
1016 tovisit = xcalloc (loop->num_nodes, sizeof (basic_block));
1017 tovisit[tv++] = loop->header;
1019 if (loop->latch == EXIT_BLOCK_PTR)
1021 /* There may be blocks unreachable from EXIT_BLOCK. */
1022 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks + 2);
1023 FOR_EACH_BB (bb)
1024 tovisit[tv++] = bb;
1025 tovisit[tv++] = EXIT_BLOCK_PTR;
1027 else if (loop->latch != loop->header)
1029 tv = dfs_enumerate_from (loop->latch, 1, glb_enum_p,
1030 tovisit + 1, loop->num_nodes - 1,
1031 loop->header) + 1;
1034 gcc_assert (tv == loop->num_nodes);
1035 return tovisit;
1038 /* Fills dominance descendants inside LOOP of the basic block BB into
1039 array TOVISIT from index *TV. */
1041 static void
1042 fill_sons_in_loop (const struct loop *loop, basic_block bb,
1043 basic_block *tovisit, int *tv)
1045 basic_block son, postpone = NULL;
1047 tovisit[(*tv)++] = bb;
1048 for (son = first_dom_son (CDI_DOMINATORS, bb);
1049 son;
1050 son = next_dom_son (CDI_DOMINATORS, son))
1052 if (!flow_bb_inside_loop_p (loop, son))
1053 continue;
1055 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
1057 postpone = son;
1058 continue;
1060 fill_sons_in_loop (loop, son, tovisit, tv);
1063 if (postpone)
1064 fill_sons_in_loop (loop, postpone, tovisit, tv);
1067 /* Gets body of a LOOP (that must be different from the outermost loop)
1068 sorted by dominance relation. Additionally, if a basic block s dominates
1069 the latch, then only blocks dominated by s are be after it. */
1071 basic_block *
1072 get_loop_body_in_dom_order (const struct loop *loop)
1074 basic_block *tovisit;
1075 int tv;
1077 gcc_assert (loop->num_nodes);
1079 tovisit = xcalloc (loop->num_nodes, sizeof (basic_block));
1081 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1083 tv = 0;
1084 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
1086 gcc_assert (tv == (int) loop->num_nodes);
1088 return tovisit;
1091 /* Get body of a LOOP in breadth first sort order. */
1093 basic_block *
1094 get_loop_body_in_bfs_order (const struct loop *loop)
1096 basic_block *blocks;
1097 basic_block bb;
1098 bitmap visited;
1099 unsigned int i = 0;
1100 unsigned int vc = 1;
1102 gcc_assert (loop->num_nodes);
1103 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1105 blocks = xcalloc (loop->num_nodes, sizeof (basic_block));
1106 visited = BITMAP_XMALLOC ();
1108 bb = loop->header;
1109 while (i < loop->num_nodes)
1111 edge e;
1112 edge_iterator ei;
1114 if (!bitmap_bit_p (visited, bb->index))
1116 /* This basic block is now visited */
1117 bitmap_set_bit (visited, bb->index);
1118 blocks[i++] = bb;
1121 FOR_EACH_EDGE (e, ei, bb->succs)
1123 if (flow_bb_inside_loop_p (loop, e->dest))
1125 if (!bitmap_bit_p (visited, e->dest->index))
1127 bitmap_set_bit (visited, e->dest->index);
1128 blocks[i++] = e->dest;
1133 gcc_assert (i >= vc);
1135 bb = blocks[vc++];
1138 BITMAP_XFREE (visited);
1139 return blocks;
1142 /* Gets exit edges of a LOOP, returning their number in N_EDGES. */
1143 edge *
1144 get_loop_exit_edges (const struct loop *loop, unsigned int *n_edges)
1146 edge *edges, e;
1147 unsigned i, n;
1148 basic_block * body;
1149 edge_iterator ei;
1151 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1153 body = get_loop_body (loop);
1154 n = 0;
1155 for (i = 0; i < loop->num_nodes; i++)
1156 FOR_EACH_EDGE (e, ei, body[i]->succs)
1157 if (!flow_bb_inside_loop_p (loop, e->dest))
1158 n++;
1159 edges = xmalloc (n * sizeof (edge));
1160 *n_edges = n;
1161 n = 0;
1162 for (i = 0; i < loop->num_nodes; i++)
1163 FOR_EACH_EDGE (e, ei, body[i]->succs)
1164 if (!flow_bb_inside_loop_p (loop, e->dest))
1165 edges[n++] = e;
1166 free (body);
1168 return edges;
1171 /* Counts the number of conditional branches inside LOOP. */
1173 unsigned
1174 num_loop_branches (const struct loop *loop)
1176 unsigned i, n;
1177 basic_block * body;
1179 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1181 body = get_loop_body (loop);
1182 n = 0;
1183 for (i = 0; i < loop->num_nodes; i++)
1184 if (EDGE_COUNT (body[i]->succs) >= 2)
1185 n++;
1186 free (body);
1188 return n;
1191 /* Adds basic block BB to LOOP. */
1192 void
1193 add_bb_to_loop (basic_block bb, struct loop *loop)
1195 int i;
1197 bb->loop_father = loop;
1198 bb->loop_depth = loop->depth;
1199 loop->num_nodes++;
1200 for (i = 0; i < loop->depth; i++)
1201 loop->pred[i]->num_nodes++;
1204 /* Remove basic block BB from loops. */
1205 void
1206 remove_bb_from_loops (basic_block bb)
1208 int i;
1209 struct loop *loop = bb->loop_father;
1211 loop->num_nodes--;
1212 for (i = 0; i < loop->depth; i++)
1213 loop->pred[i]->num_nodes--;
1214 bb->loop_father = NULL;
1215 bb->loop_depth = 0;
1218 /* Finds nearest common ancestor in loop tree for given loops. */
1219 struct loop *
1220 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1222 if (!loop_s) return loop_d;
1223 if (!loop_d) return loop_s;
1225 if (loop_s->depth < loop_d->depth)
1226 loop_d = loop_d->pred[loop_s->depth];
1227 else if (loop_s->depth > loop_d->depth)
1228 loop_s = loop_s->pred[loop_d->depth];
1230 while (loop_s != loop_d)
1232 loop_s = loop_s->outer;
1233 loop_d = loop_d->outer;
1235 return loop_s;
1238 /* Cancels the LOOP; it must be innermost one. */
1239 void
1240 cancel_loop (struct loops *loops, struct loop *loop)
1242 basic_block *bbs;
1243 unsigned i;
1245 gcc_assert (!loop->inner);
1247 /* Move blocks up one level (they should be removed as soon as possible). */
1248 bbs = get_loop_body (loop);
1249 for (i = 0; i < loop->num_nodes; i++)
1250 bbs[i]->loop_father = loop->outer;
1252 /* Remove the loop from structure. */
1253 flow_loop_tree_node_remove (loop);
1255 /* Remove loop from loops array. */
1256 loops->parray[loop->num] = NULL;
1258 /* Free loop data. */
1259 flow_loop_free (loop);
1262 /* Cancels LOOP and all its subloops. */
1263 void
1264 cancel_loop_tree (struct loops *loops, struct loop *loop)
1266 while (loop->inner)
1267 cancel_loop_tree (loops, loop->inner);
1268 cancel_loop (loops, loop);
1271 /* Checks that LOOPS are all right:
1272 -- sizes of loops are all right
1273 -- results of get_loop_body really belong to the loop
1274 -- loop header have just single entry edge and single latch edge
1275 -- loop latches have only single successor that is header of their loop
1276 -- irreducible loops are correctly marked
1278 void
1279 verify_loop_structure (struct loops *loops)
1281 unsigned *sizes, i, j;
1282 sbitmap irreds;
1283 basic_block *bbs, bb;
1284 struct loop *loop;
1285 int err = 0;
1286 edge e;
1288 /* Check sizes. */
1289 sizes = xcalloc (loops->num, sizeof (int));
1290 sizes[0] = 2;
1292 FOR_EACH_BB (bb)
1293 for (loop = bb->loop_father; loop; loop = loop->outer)
1294 sizes[loop->num]++;
1296 for (i = 0; i < loops->num; i++)
1298 if (!loops->parray[i])
1299 continue;
1301 if (loops->parray[i]->num_nodes != sizes[i])
1303 error ("Size of loop %d should be %d, not %d.",
1304 i, sizes[i], loops->parray[i]->num_nodes);
1305 err = 1;
1309 /* Check get_loop_body. */
1310 for (i = 1; i < loops->num; i++)
1312 loop = loops->parray[i];
1313 if (!loop)
1314 continue;
1315 bbs = get_loop_body (loop);
1317 for (j = 0; j < loop->num_nodes; j++)
1318 if (!flow_bb_inside_loop_p (loop, bbs[j]))
1320 error ("Bb %d do not belong to loop %d.",
1321 bbs[j]->index, i);
1322 err = 1;
1324 free (bbs);
1327 /* Check headers and latches. */
1328 for (i = 1; i < loops->num; i++)
1330 loop = loops->parray[i];
1331 if (!loop)
1332 continue;
1334 if ((loops->state & LOOPS_HAVE_PREHEADERS)
1335 && EDGE_COUNT (loop->header->preds) != 2)
1337 error ("Loop %d's header does not have exactly 2 entries.", i);
1338 err = 1;
1340 if (loops->state & LOOPS_HAVE_SIMPLE_LATCHES)
1342 if (EDGE_COUNT (loop->latch->succs) != 1)
1344 error ("Loop %d's latch does not have exactly 1 successor.", i);
1345 err = 1;
1347 if (EDGE_SUCC (loop->latch, 0)->dest != loop->header)
1349 error ("Loop %d's latch does not have header as successor.", i);
1350 err = 1;
1352 if (loop->latch->loop_father != loop)
1354 error ("Loop %d's latch does not belong directly to it.", i);
1355 err = 1;
1358 if (loop->header->loop_father != loop)
1360 error ("Loop %d's header does not belong directly to it.", i);
1361 err = 1;
1363 if ((loops->state & LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1364 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1366 error ("Loop %d's latch is marked as part of irreducible region.", i);
1367 err = 1;
1371 /* Check irreducible loops. */
1372 if (loops->state & LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1374 /* Record old info. */
1375 irreds = sbitmap_alloc (last_basic_block);
1376 FOR_EACH_BB (bb)
1378 edge_iterator ei;
1379 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1380 SET_BIT (irreds, bb->index);
1381 else
1382 RESET_BIT (irreds, bb->index);
1383 FOR_EACH_EDGE (e, ei, bb->succs)
1384 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1385 e->flags |= EDGE_ALL_FLAGS + 1;
1388 /* Recount it. */
1389 mark_irreducible_loops (loops);
1391 /* Compare. */
1392 FOR_EACH_BB (bb)
1394 edge_iterator ei;
1396 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1397 && !TEST_BIT (irreds, bb->index))
1399 error ("Basic block %d should be marked irreducible.", bb->index);
1400 err = 1;
1402 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1403 && TEST_BIT (irreds, bb->index))
1405 error ("Basic block %d should not be marked irreducible.", bb->index);
1406 err = 1;
1408 FOR_EACH_EDGE (e, ei, bb->succs)
1410 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1411 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1413 error ("Edge from %d to %d should be marked irreducible.",
1414 e->src->index, e->dest->index);
1415 err = 1;
1417 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1418 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1420 error ("Edge from %d to %d should not be marked irreducible.",
1421 e->src->index, e->dest->index);
1422 err = 1;
1424 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1427 free (irreds);
1430 /* Check the single_exit. */
1431 if (loops->state & LOOPS_HAVE_MARKED_SINGLE_EXITS)
1433 memset (sizes, 0, sizeof (unsigned) * loops->num);
1434 FOR_EACH_BB (bb)
1436 edge_iterator ei;
1437 if (bb->loop_father == loops->tree_root)
1438 continue;
1439 FOR_EACH_EDGE (e, ei, bb->succs)
1441 if (e->dest == EXIT_BLOCK_PTR)
1442 continue;
1444 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1445 continue;
1447 for (loop = bb->loop_father;
1448 loop != e->dest->loop_father;
1449 loop = loop->outer)
1451 sizes[loop->num]++;
1452 if (loop->single_exit
1453 && loop->single_exit != e)
1455 error ("Wrong single exit %d->%d recorded for loop %d.",
1456 loop->single_exit->src->index,
1457 loop->single_exit->dest->index,
1458 loop->num);
1459 error ("Right exit is %d->%d.",
1460 e->src->index, e->dest->index);
1461 err = 1;
1467 for (i = 1; i < loops->num; i++)
1469 loop = loops->parray[i];
1470 if (!loop)
1471 continue;
1473 if (sizes[i] == 1
1474 && !loop->single_exit)
1476 error ("Single exit not recorded for loop %d.", loop->num);
1477 err = 1;
1480 if (sizes[i] != 1
1481 && loop->single_exit)
1483 error ("Loop %d should not have single exit (%d -> %d).",
1484 loop->num,
1485 loop->single_exit->src->index,
1486 loop->single_exit->dest->index);
1487 err = 1;
1492 gcc_assert (!err);
1494 free (sizes);
1497 /* Returns latch edge of LOOP. */
1498 edge
1499 loop_latch_edge (const struct loop *loop)
1501 edge e;
1502 edge_iterator ei;
1504 FOR_EACH_EDGE (e, ei, loop->header->preds)
1505 if (e->src == loop->latch)
1506 break;
1508 return e;
1511 /* Returns preheader edge of LOOP. */
1512 edge
1513 loop_preheader_edge (const struct loop *loop)
1515 edge e;
1516 edge_iterator ei;
1518 FOR_EACH_EDGE (e, ei, loop->header->preds)
1519 if (e->src != loop->latch)
1520 break;
1522 return e;