2006-10-14 Tobias Burnus <burnus@net-b.de>
[official-gcc.git] / gcc / tree-vrp.c
blob8e67e8a3d2b327f3ee0ba1ab25f946a61a040803
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph;
44 /* Local functions. */
45 static int compare_values (tree val1, tree val2);
47 /* Location information for ASSERT_EXPRs. Each instance of this
48 structure describes an ASSERT_EXPR for an SSA name. Since a single
49 SSA name may have more than one assertion associated with it, these
50 locations are kept in a linked list attached to the corresponding
51 SSA name. */
52 struct assert_locus_d
54 /* Basic block where the assertion would be inserted. */
55 basic_block bb;
57 /* Some assertions need to be inserted on an edge (e.g., assertions
58 generated by COND_EXPRs). In those cases, BB will be NULL. */
59 edge e;
61 /* Pointer to the statement that generated this assertion. */
62 block_stmt_iterator si;
64 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
65 enum tree_code comp_code;
67 /* Value being compared against. */
68 tree val;
70 /* Next node in the linked list. */
71 struct assert_locus_d *next;
74 typedef struct assert_locus_d *assert_locus_t;
76 /* If bit I is present, it means that SSA name N_i has a list of
77 assertions that should be inserted in the IL. */
78 static bitmap need_assert_for;
80 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
81 holds a list of ASSERT_LOCUS_T nodes that describe where
82 ASSERT_EXPRs for SSA name N_I should be inserted. */
83 static assert_locus_t *asserts_for;
85 /* Set of blocks visited in find_assert_locations. Used to avoid
86 visiting the same block more than once. */
87 static sbitmap blocks_visited;
89 /* Value range array. After propagation, VR_VALUE[I] holds the range
90 of values that SSA name N_I may take. */
91 static value_range_t **vr_value;
94 /* Return true if ARG is marked with the nonnull attribute in the
95 current function signature. */
97 static bool
98 nonnull_arg_p (tree arg)
100 tree t, attrs, fntype;
101 unsigned HOST_WIDE_INT arg_num;
103 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
105 fntype = TREE_TYPE (current_function_decl);
106 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
108 /* If "nonnull" wasn't specified, we know nothing about the argument. */
109 if (attrs == NULL_TREE)
110 return false;
112 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
113 if (TREE_VALUE (attrs) == NULL_TREE)
114 return true;
116 /* Get the position number for ARG in the function signature. */
117 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
119 t = TREE_CHAIN (t), arg_num++)
121 if (t == arg)
122 break;
125 gcc_assert (t == arg);
127 /* Now see if ARG_NUM is mentioned in the nonnull list. */
128 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
130 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
131 return true;
134 return false;
138 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
140 static void
141 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
142 tree max, bitmap equiv)
144 #if defined ENABLE_CHECKING
145 /* Check the validity of the range. */
146 if (t == VR_RANGE || t == VR_ANTI_RANGE)
148 int cmp;
150 gcc_assert (min && max);
152 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
153 gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
154 || max != TYPE_MAX_VALUE (TREE_TYPE (max)));
156 cmp = compare_values (min, max);
157 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
160 if (t == VR_UNDEFINED || t == VR_VARYING)
161 gcc_assert (min == NULL_TREE && max == NULL_TREE);
163 if (t == VR_UNDEFINED || t == VR_VARYING)
164 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
165 #endif
167 vr->type = t;
168 vr->min = min;
169 vr->max = max;
171 /* Since updating the equivalence set involves deep copying the
172 bitmaps, only do it if absolutely necessary. */
173 if (vr->equiv == NULL)
174 vr->equiv = BITMAP_ALLOC (NULL);
176 if (equiv != vr->equiv)
178 if (equiv && !bitmap_empty_p (equiv))
179 bitmap_copy (vr->equiv, equiv);
180 else
181 bitmap_clear (vr->equiv);
186 /* Copy value range FROM into value range TO. */
188 static inline void
189 copy_value_range (value_range_t *to, value_range_t *from)
191 set_value_range (to, from->type, from->min, from->max, from->equiv);
194 /* Set value range VR to a non-negative range of type TYPE. */
196 static inline void
197 set_value_range_to_nonnegative (value_range_t *vr, tree type)
199 tree zero = build_int_cst (type, 0);
200 set_value_range (vr, VR_RANGE, zero, TYPE_MAX_VALUE (type), vr->equiv);
203 /* Set value range VR to a non-NULL range of type TYPE. */
205 static inline void
206 set_value_range_to_nonnull (value_range_t *vr, tree type)
208 tree zero = build_int_cst (type, 0);
209 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
213 /* Set value range VR to a NULL range of type TYPE. */
215 static inline void
216 set_value_range_to_null (value_range_t *vr, tree type)
218 tree zero = build_int_cst (type, 0);
219 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
223 /* Set value range VR to VR_VARYING. */
225 static inline void
226 set_value_range_to_varying (value_range_t *vr)
228 vr->type = VR_VARYING;
229 vr->min = vr->max = NULL_TREE;
230 if (vr->equiv)
231 bitmap_clear (vr->equiv);
235 /* Set value range VR to VR_UNDEFINED. */
237 static inline void
238 set_value_range_to_undefined (value_range_t *vr)
240 vr->type = VR_UNDEFINED;
241 vr->min = vr->max = NULL_TREE;
242 if (vr->equiv)
243 bitmap_clear (vr->equiv);
247 /* Return value range information for VAR.
249 If we have no values ranges recorded (ie, VRP is not running), then
250 return NULL. Otherwise create an empty range if none existed for VAR. */
252 static value_range_t *
253 get_value_range (tree var)
255 value_range_t *vr;
256 tree sym;
257 unsigned ver = SSA_NAME_VERSION (var);
259 /* If we have no recorded ranges, then return NULL. */
260 if (! vr_value)
261 return NULL;
263 vr = vr_value[ver];
264 if (vr)
265 return vr;
267 /* Create a default value range. */
268 vr_value[ver] = vr = XNEW (value_range_t);
269 memset (vr, 0, sizeof (*vr));
271 /* Allocate an equivalence set. */
272 vr->equiv = BITMAP_ALLOC (NULL);
274 /* If VAR is a default definition, the variable can take any value
275 in VAR's type. */
276 sym = SSA_NAME_VAR (var);
277 if (var == default_def (sym))
279 /* Try to use the "nonnull" attribute to create ~[0, 0]
280 anti-ranges for pointers. Note that this is only valid with
281 default definitions of PARM_DECLs. */
282 if (TREE_CODE (sym) == PARM_DECL
283 && POINTER_TYPE_P (TREE_TYPE (sym))
284 && nonnull_arg_p (sym))
285 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
286 else
287 set_value_range_to_varying (vr);
290 return vr;
293 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
295 static inline bool
296 vrp_operand_equal_p (tree val1, tree val2)
298 return (val1 == val2
299 || (val1 && val2
300 && operand_equal_p (val1, val2, 0)));
303 /* Return true, if the bitmaps B1 and B2 are equal. */
305 static inline bool
306 vrp_bitmap_equal_p (bitmap b1, bitmap b2)
308 return (b1 == b2
309 || (b1 && b2
310 && bitmap_equal_p (b1, b2)));
313 /* Update the value range and equivalence set for variable VAR to
314 NEW_VR. Return true if NEW_VR is different from VAR's previous
315 value.
317 NOTE: This function assumes that NEW_VR is a temporary value range
318 object created for the sole purpose of updating VAR's range. The
319 storage used by the equivalence set from NEW_VR will be freed by
320 this function. Do not call update_value_range when NEW_VR
321 is the range object associated with another SSA name. */
323 static inline bool
324 update_value_range (tree var, value_range_t *new_vr)
326 value_range_t *old_vr;
327 bool is_new;
329 /* Update the value range, if necessary. */
330 old_vr = get_value_range (var);
331 is_new = old_vr->type != new_vr->type
332 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
333 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
334 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
336 if (is_new)
337 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
338 new_vr->equiv);
340 BITMAP_FREE (new_vr->equiv);
341 new_vr->equiv = NULL;
343 return is_new;
347 /* Add VAR and VAR's equivalence set to EQUIV. */
349 static void
350 add_equivalence (bitmap equiv, tree var)
352 unsigned ver = SSA_NAME_VERSION (var);
353 value_range_t *vr = vr_value[ver];
355 bitmap_set_bit (equiv, ver);
356 if (vr && vr->equiv)
357 bitmap_ior_into (equiv, vr->equiv);
361 /* Return true if VR is ~[0, 0]. */
363 static inline bool
364 range_is_nonnull (value_range_t *vr)
366 return vr->type == VR_ANTI_RANGE
367 && integer_zerop (vr->min)
368 && integer_zerop (vr->max);
372 /* Return true if VR is [0, 0]. */
374 static inline bool
375 range_is_null (value_range_t *vr)
377 return vr->type == VR_RANGE
378 && integer_zerop (vr->min)
379 && integer_zerop (vr->max);
383 /* Return true if value range VR involves at least one symbol. */
385 static inline bool
386 symbolic_range_p (value_range_t *vr)
388 return (!is_gimple_min_invariant (vr->min)
389 || !is_gimple_min_invariant (vr->max));
392 /* Like tree_expr_nonnegative_p, but this function uses value ranges
393 obtained so far. */
395 static bool
396 vrp_expr_computes_nonnegative (tree expr)
398 return tree_expr_nonnegative_p (expr);
401 /* Like tree_expr_nonzero_p, but this function uses value ranges
402 obtained so far. */
404 static bool
405 vrp_expr_computes_nonzero (tree expr)
407 if (tree_expr_nonzero_p (expr))
408 return true;
410 /* If we have an expression of the form &X->a, then the expression
411 is nonnull if X is nonnull. */
412 if (TREE_CODE (expr) == ADDR_EXPR)
414 tree base = get_base_address (TREE_OPERAND (expr, 0));
416 if (base != NULL_TREE
417 && TREE_CODE (base) == INDIRECT_REF
418 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
420 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
421 if (range_is_nonnull (vr))
422 return true;
426 return false;
429 /* Returns true if EXPR is a valid value (as expected by compare_values) --
430 a gimple invariant, or SSA_NAME +- CST. */
432 static bool
433 valid_value_p (tree expr)
435 if (TREE_CODE (expr) == SSA_NAME)
436 return true;
438 if (TREE_CODE (expr) == PLUS_EXPR
439 || TREE_CODE (expr) == MINUS_EXPR)
440 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
441 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
443 return is_gimple_min_invariant (expr);
446 /* Compare two values VAL1 and VAL2. Return
448 -2 if VAL1 and VAL2 cannot be compared at compile-time,
449 -1 if VAL1 < VAL2,
450 0 if VAL1 == VAL2,
451 +1 if VAL1 > VAL2, and
452 +2 if VAL1 != VAL2
454 This is similar to tree_int_cst_compare but supports pointer values
455 and values that cannot be compared at compile time. */
457 static int
458 compare_values (tree val1, tree val2)
460 if (val1 == val2)
461 return 0;
463 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
464 both integers. */
465 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
466 == POINTER_TYPE_P (TREE_TYPE (val2)));
468 if ((TREE_CODE (val1) == SSA_NAME
469 || TREE_CODE (val1) == PLUS_EXPR
470 || TREE_CODE (val1) == MINUS_EXPR)
471 && (TREE_CODE (val2) == SSA_NAME
472 || TREE_CODE (val2) == PLUS_EXPR
473 || TREE_CODE (val2) == MINUS_EXPR))
475 tree n1, c1, n2, c2;
476 enum tree_code code1, code2;
478 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
479 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
480 same name, return -2. */
481 if (TREE_CODE (val1) == SSA_NAME)
483 code1 = SSA_NAME;
484 n1 = val1;
485 c1 = NULL_TREE;
487 else
489 code1 = TREE_CODE (val1);
490 n1 = TREE_OPERAND (val1, 0);
491 c1 = TREE_OPERAND (val1, 1);
492 if (tree_int_cst_sgn (c1) == -1)
494 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
495 if (!c1)
496 return -2;
497 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
501 if (TREE_CODE (val2) == SSA_NAME)
503 code2 = SSA_NAME;
504 n2 = val2;
505 c2 = NULL_TREE;
507 else
509 code2 = TREE_CODE (val2);
510 n2 = TREE_OPERAND (val2, 0);
511 c2 = TREE_OPERAND (val2, 1);
512 if (tree_int_cst_sgn (c2) == -1)
514 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
515 if (!c2)
516 return -2;
517 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
521 /* Both values must use the same name. */
522 if (n1 != n2)
523 return -2;
525 if (code1 == SSA_NAME
526 && code2 == SSA_NAME)
527 /* NAME == NAME */
528 return 0;
530 /* If overflow is defined we cannot simplify more. */
531 if (TYPE_UNSIGNED (TREE_TYPE (val1))
532 || flag_wrapv)
533 return -2;
535 if (code1 == SSA_NAME)
537 if (code2 == PLUS_EXPR)
538 /* NAME < NAME + CST */
539 return -1;
540 else if (code2 == MINUS_EXPR)
541 /* NAME > NAME - CST */
542 return 1;
544 else if (code1 == PLUS_EXPR)
546 if (code2 == SSA_NAME)
547 /* NAME + CST > NAME */
548 return 1;
549 else if (code2 == PLUS_EXPR)
550 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
551 return compare_values (c1, c2);
552 else if (code2 == MINUS_EXPR)
553 /* NAME + CST1 > NAME - CST2 */
554 return 1;
556 else if (code1 == MINUS_EXPR)
558 if (code2 == SSA_NAME)
559 /* NAME - CST < NAME */
560 return -1;
561 else if (code2 == PLUS_EXPR)
562 /* NAME - CST1 < NAME + CST2 */
563 return -1;
564 else if (code2 == MINUS_EXPR)
565 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
566 C1 and C2 are swapped in the call to compare_values. */
567 return compare_values (c2, c1);
570 gcc_unreachable ();
573 /* We cannot compare non-constants. */
574 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
575 return -2;
577 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
579 /* We cannot compare overflowed values. */
580 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
581 return -2;
583 return tree_int_cst_compare (val1, val2);
585 else
587 tree t;
589 /* First see if VAL1 and VAL2 are not the same. */
590 if (val1 == val2 || operand_equal_p (val1, val2, 0))
591 return 0;
593 /* If VAL1 is a lower address than VAL2, return -1. */
594 t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
595 if (t == boolean_true_node)
596 return -1;
598 /* If VAL1 is a higher address than VAL2, return +1. */
599 t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
600 if (t == boolean_true_node)
601 return 1;
603 /* If VAL1 is different than VAL2, return +2. */
604 t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
605 if (t == boolean_true_node)
606 return 2;
608 return -2;
613 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
614 0 if VAL is not inside VR,
615 -2 if we cannot tell either way.
617 FIXME, the current semantics of this functions are a bit quirky
618 when taken in the context of VRP. In here we do not care
619 about VR's type. If VR is the anti-range ~[3, 5] the call
620 value_inside_range (4, VR) will return 1.
622 This is counter-intuitive in a strict sense, but the callers
623 currently expect this. They are calling the function
624 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
625 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
626 themselves.
628 This also applies to value_ranges_intersect_p and
629 range_includes_zero_p. The semantics of VR_RANGE and
630 VR_ANTI_RANGE should be encoded here, but that also means
631 adapting the users of these functions to the new semantics. */
633 static inline int
634 value_inside_range (tree val, value_range_t *vr)
636 tree cmp1, cmp2;
638 cmp1 = fold_binary_to_constant (GE_EXPR, boolean_type_node, val, vr->min);
639 if (!cmp1)
640 return -2;
642 cmp2 = fold_binary_to_constant (LE_EXPR, boolean_type_node, val, vr->max);
643 if (!cmp2)
644 return -2;
646 return cmp1 == boolean_true_node && cmp2 == boolean_true_node;
650 /* Return true if value ranges VR0 and VR1 have a non-empty
651 intersection. */
653 static inline bool
654 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
656 return (value_inside_range (vr1->min, vr0) == 1
657 || value_inside_range (vr1->max, vr0) == 1
658 || value_inside_range (vr0->min, vr1) == 1
659 || value_inside_range (vr0->max, vr1) == 1);
663 /* Return true if VR includes the value zero, false otherwise. FIXME,
664 currently this will return false for an anti-range like ~[-4, 3].
665 This will be wrong when the semantics of value_inside_range are
666 modified (currently the users of this function expect these
667 semantics). */
669 static inline bool
670 range_includes_zero_p (value_range_t *vr)
672 tree zero;
674 gcc_assert (vr->type != VR_UNDEFINED
675 && vr->type != VR_VARYING
676 && !symbolic_range_p (vr));
678 zero = build_int_cst (TREE_TYPE (vr->min), 0);
679 return (value_inside_range (zero, vr) == 1);
682 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
683 false otherwise or if no value range information is available. */
685 bool
686 ssa_name_nonnegative_p (tree t)
688 value_range_t *vr = get_value_range (t);
690 if (!vr)
691 return false;
693 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
694 which would return a useful value should be encoded as a VR_RANGE. */
695 if (vr->type == VR_RANGE)
697 int result = compare_values (vr->min, integer_zero_node);
699 return (result == 0 || result == 1);
701 return false;
704 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
705 false otherwise or if no value range information is available. */
707 bool
708 ssa_name_nonzero_p (tree t)
710 value_range_t *vr = get_value_range (t);
712 if (!vr)
713 return false;
715 /* A VR_RANGE which does not include zero is a nonzero value. */
716 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
717 return ! range_includes_zero_p (vr);
719 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
720 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
721 return range_includes_zero_p (vr);
723 return false;
727 /* Extract value range information from an ASSERT_EXPR EXPR and store
728 it in *VR_P. */
730 static void
731 extract_range_from_assert (value_range_t *vr_p, tree expr)
733 tree var, cond, limit, min, max, type;
734 value_range_t *var_vr, *limit_vr;
735 enum tree_code cond_code;
737 var = ASSERT_EXPR_VAR (expr);
738 cond = ASSERT_EXPR_COND (expr);
740 gcc_assert (COMPARISON_CLASS_P (cond));
742 /* Find VAR in the ASSERT_EXPR conditional. */
743 if (var == TREE_OPERAND (cond, 0))
745 /* If the predicate is of the form VAR COMP LIMIT, then we just
746 take LIMIT from the RHS and use the same comparison code. */
747 limit = TREE_OPERAND (cond, 1);
748 cond_code = TREE_CODE (cond);
750 else
752 /* If the predicate is of the form LIMIT COMP VAR, then we need
753 to flip around the comparison code to create the proper range
754 for VAR. */
755 limit = TREE_OPERAND (cond, 0);
756 cond_code = swap_tree_comparison (TREE_CODE (cond));
759 type = TREE_TYPE (limit);
760 gcc_assert (limit != var);
762 /* For pointer arithmetic, we only keep track of pointer equality
763 and inequality. */
764 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
766 set_value_range_to_varying (vr_p);
767 return;
770 /* If LIMIT is another SSA name and LIMIT has a range of its own,
771 try to use LIMIT's range to avoid creating symbolic ranges
772 unnecessarily. */
773 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
775 /* LIMIT's range is only interesting if it has any useful information. */
776 if (limit_vr
777 && (limit_vr->type == VR_UNDEFINED
778 || limit_vr->type == VR_VARYING
779 || symbolic_range_p (limit_vr)))
780 limit_vr = NULL;
782 /* Initially, the new range has the same set of equivalences of
783 VAR's range. This will be revised before returning the final
784 value. Since assertions may be chained via mutually exclusive
785 predicates, we will need to trim the set of equivalences before
786 we are done. */
787 gcc_assert (vr_p->equiv == NULL);
788 vr_p->equiv = BITMAP_ALLOC (NULL);
789 add_equivalence (vr_p->equiv, var);
791 /* Extract a new range based on the asserted comparison for VAR and
792 LIMIT's value range. Notice that if LIMIT has an anti-range, we
793 will only use it for equality comparisons (EQ_EXPR). For any
794 other kind of assertion, we cannot derive a range from LIMIT's
795 anti-range that can be used to describe the new range. For
796 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
797 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
798 no single range for x_2 that could describe LE_EXPR, so we might
799 as well build the range [b_4, +INF] for it. */
800 if (cond_code == EQ_EXPR)
802 enum value_range_type range_type;
804 if (limit_vr)
806 range_type = limit_vr->type;
807 min = limit_vr->min;
808 max = limit_vr->max;
810 else
812 range_type = VR_RANGE;
813 min = limit;
814 max = limit;
817 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
819 /* When asserting the equality VAR == LIMIT and LIMIT is another
820 SSA name, the new range will also inherit the equivalence set
821 from LIMIT. */
822 if (TREE_CODE (limit) == SSA_NAME)
823 add_equivalence (vr_p->equiv, limit);
825 else if (cond_code == NE_EXPR)
827 /* As described above, when LIMIT's range is an anti-range and
828 this assertion is an inequality (NE_EXPR), then we cannot
829 derive anything from the anti-range. For instance, if
830 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
831 not imply that VAR's range is [0, 0]. So, in the case of
832 anti-ranges, we just assert the inequality using LIMIT and
833 not its anti-range.
835 If LIMIT_VR is a range, we can only use it to build a new
836 anti-range if LIMIT_VR is a single-valued range. For
837 instance, if LIMIT_VR is [0, 1], the predicate
838 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
839 Rather, it means that for value 0 VAR should be ~[0, 0]
840 and for value 1, VAR should be ~[1, 1]. We cannot
841 represent these ranges.
843 The only situation in which we can build a valid
844 anti-range is when LIMIT_VR is a single-valued range
845 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
846 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
847 if (limit_vr
848 && limit_vr->type == VR_RANGE
849 && compare_values (limit_vr->min, limit_vr->max) == 0)
851 min = limit_vr->min;
852 max = limit_vr->max;
854 else
856 /* In any other case, we cannot use LIMIT's range to build a
857 valid anti-range. */
858 min = max = limit;
861 /* If MIN and MAX cover the whole range for their type, then
862 just use the original LIMIT. */
863 if (INTEGRAL_TYPE_P (type)
864 && min == TYPE_MIN_VALUE (type)
865 && max == TYPE_MAX_VALUE (type))
866 min = max = limit;
868 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
870 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
872 min = TYPE_MIN_VALUE (type);
874 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
875 max = limit;
876 else
878 /* If LIMIT_VR is of the form [N1, N2], we need to build the
879 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
880 LT_EXPR. */
881 max = limit_vr->max;
884 /* If the maximum value forces us to be out of bounds, simply punt.
885 It would be pointless to try and do anything more since this
886 all should be optimized away above us. */
887 if (cond_code == LT_EXPR && compare_values (max, min) == 0)
888 set_value_range_to_varying (vr_p);
889 else
891 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
892 if (cond_code == LT_EXPR)
894 tree one = build_int_cst (type, 1);
895 max = fold_build2 (MINUS_EXPR, type, max, one);
898 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
901 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
903 max = TYPE_MAX_VALUE (type);
905 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
906 min = limit;
907 else
909 /* If LIMIT_VR is of the form [N1, N2], we need to build the
910 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
911 GT_EXPR. */
912 min = limit_vr->min;
915 /* If the minimum value forces us to be out of bounds, simply punt.
916 It would be pointless to try and do anything more since this
917 all should be optimized away above us. */
918 if (cond_code == GT_EXPR && compare_values (min, max) == 0)
919 set_value_range_to_varying (vr_p);
920 else
922 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
923 if (cond_code == GT_EXPR)
925 tree one = build_int_cst (type, 1);
926 min = fold_build2 (PLUS_EXPR, type, min, one);
929 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
932 else
933 gcc_unreachable ();
935 /* If VAR already had a known range, it may happen that the new
936 range we have computed and VAR's range are not compatible. For
937 instance,
939 if (p_5 == NULL)
940 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
941 x_7 = p_6->fld;
942 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
944 While the above comes from a faulty program, it will cause an ICE
945 later because p_8 and p_6 will have incompatible ranges and at
946 the same time will be considered equivalent. A similar situation
947 would arise from
949 if (i_5 > 10)
950 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
951 if (i_5 < 5)
952 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
954 Again i_6 and i_7 will have incompatible ranges. It would be
955 pointless to try and do anything with i_7's range because
956 anything dominated by 'if (i_5 < 5)' will be optimized away.
957 Note, due to the wa in which simulation proceeds, the statement
958 i_7 = ASSERT_EXPR <...> we would never be visited because the
959 conditional 'if (i_5 < 5)' always evaluates to false. However,
960 this extra check does not hurt and may protect against future
961 changes to VRP that may get into a situation similar to the
962 NULL pointer dereference example.
964 Note that these compatibility tests are only needed when dealing
965 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
966 are both anti-ranges, they will always be compatible, because two
967 anti-ranges will always have a non-empty intersection. */
969 var_vr = get_value_range (var);
971 /* We may need to make adjustments when VR_P and VAR_VR are numeric
972 ranges or anti-ranges. */
973 if (vr_p->type == VR_VARYING
974 || vr_p->type == VR_UNDEFINED
975 || var_vr->type == VR_VARYING
976 || var_vr->type == VR_UNDEFINED
977 || symbolic_range_p (vr_p)
978 || symbolic_range_p (var_vr))
979 return;
981 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
983 /* If the two ranges have a non-empty intersection, we can
984 refine the resulting range. Since the assert expression
985 creates an equivalency and at the same time it asserts a
986 predicate, we can take the intersection of the two ranges to
987 get better precision. */
988 if (value_ranges_intersect_p (var_vr, vr_p))
990 /* Use the larger of the two minimums. */
991 if (compare_values (vr_p->min, var_vr->min) == -1)
992 min = var_vr->min;
993 else
994 min = vr_p->min;
996 /* Use the smaller of the two maximums. */
997 if (compare_values (vr_p->max, var_vr->max) == 1)
998 max = var_vr->max;
999 else
1000 max = vr_p->max;
1002 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1004 else
1006 /* The two ranges do not intersect, set the new range to
1007 VARYING, because we will not be able to do anything
1008 meaningful with it. */
1009 set_value_range_to_varying (vr_p);
1012 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1013 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1015 /* A range and an anti-range will cancel each other only if
1016 their ends are the same. For instance, in the example above,
1017 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1018 so VR_P should be set to VR_VARYING. */
1019 if (compare_values (var_vr->min, vr_p->min) == 0
1020 && compare_values (var_vr->max, vr_p->max) == 0)
1021 set_value_range_to_varying (vr_p);
1022 else
1024 tree min, max, anti_min, anti_max, real_min, real_max;
1026 /* We want to compute the logical AND of the two ranges;
1027 there are three cases to consider.
1030 1. The VR_ANTI_RANGE range is completely within the
1031 VR_RANGE and the endpoints of the ranges are
1032 different. In that case the resulting range
1033 should be whichever range is more precise.
1034 Typically that will be the VR_RANGE.
1036 2. The VR_ANTI_RANGE is completely disjoint from
1037 the VR_RANGE. In this case the resulting range
1038 should be the VR_RANGE.
1040 3. There is some overlap between the VR_ANTI_RANGE
1041 and the VR_RANGE.
1043 3a. If the high limit of the VR_ANTI_RANGE resides
1044 within the VR_RANGE, then the result is a new
1045 VR_RANGE starting at the high limit of the
1046 the VR_ANTI_RANGE + 1 and extending to the
1047 high limit of the original VR_RANGE.
1049 3b. If the low limit of the VR_ANTI_RANGE resides
1050 within the VR_RANGE, then the result is a new
1051 VR_RANGE starting at the low limit of the original
1052 VR_RANGE and extending to the low limit of the
1053 VR_ANTI_RANGE - 1. */
1054 if (vr_p->type == VR_ANTI_RANGE)
1056 anti_min = vr_p->min;
1057 anti_max = vr_p->max;
1058 real_min = var_vr->min;
1059 real_max = var_vr->max;
1061 else
1063 anti_min = var_vr->min;
1064 anti_max = var_vr->max;
1065 real_min = vr_p->min;
1066 real_max = vr_p->max;
1070 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1071 not including any endpoints. */
1072 if (compare_values (anti_max, real_max) == -1
1073 && compare_values (anti_min, real_min) == 1)
1075 set_value_range (vr_p, VR_RANGE, real_min,
1076 real_max, vr_p->equiv);
1078 /* Case 2, VR_ANTI_RANGE completely disjoint from
1079 VR_RANGE. */
1080 else if (compare_values (anti_min, real_max) == 1
1081 || compare_values (anti_max, real_min) == -1)
1083 set_value_range (vr_p, VR_RANGE, real_min,
1084 real_max, vr_p->equiv);
1086 /* Case 3a, the anti-range extends into the low
1087 part of the real range. Thus creating a new
1088 low for the real range. */
1089 else if ((compare_values (anti_max, real_min) == 1
1090 || compare_values (anti_max, real_min) == 0)
1091 && compare_values (anti_max, real_max) == -1)
1093 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1094 anti_max,
1095 build_int_cst (TREE_TYPE (var_vr->min), 1));
1096 max = real_max;
1097 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1099 /* Case 3b, the anti-range extends into the high
1100 part of the real range. Thus creating a new
1101 higher for the real range. */
1102 else if (compare_values (anti_min, real_min) == 1
1103 && (compare_values (anti_min, real_max) == -1
1104 || compare_values (anti_min, real_max) == 0))
1106 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1107 anti_min,
1108 build_int_cst (TREE_TYPE (var_vr->min), 1));
1109 min = real_min;
1110 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1117 /* Extract range information from SSA name VAR and store it in VR. If
1118 VAR has an interesting range, use it. Otherwise, create the
1119 range [VAR, VAR] and return it. This is useful in situations where
1120 we may have conditionals testing values of VARYING names. For
1121 instance,
1123 x_3 = y_5;
1124 if (x_3 > y_5)
1127 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1128 always false. */
1130 static void
1131 extract_range_from_ssa_name (value_range_t *vr, tree var)
1133 value_range_t *var_vr = get_value_range (var);
1135 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1136 copy_value_range (vr, var_vr);
1137 else
1138 set_value_range (vr, VR_RANGE, var, var, NULL);
1140 add_equivalence (vr->equiv, var);
1144 /* Wrapper around int_const_binop. If the operation overflows and we
1145 are not using wrapping arithmetic, then adjust the result to be
1146 -INF or +INF depending on CODE, VAL1 and VAL2. */
1148 static inline tree
1149 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1151 tree res;
1153 res = int_const_binop (code, val1, val2, 0);
1155 /* If we are not using wrapping arithmetic, operate symbolically
1156 on -INF and +INF. */
1157 if (TYPE_UNSIGNED (TREE_TYPE (val1))
1158 || flag_wrapv)
1160 int checkz = compare_values (res, val1);
1161 bool overflow = false;
1163 /* Ensure that res = val1 [+*] val2 >= val1
1164 or that res = val1 - val2 <= val1. */
1165 if ((code == PLUS_EXPR
1166 && !(checkz == 1 || checkz == 0))
1167 || (code == MINUS_EXPR
1168 && !(checkz == 0 || checkz == -1)))
1170 overflow = true;
1172 /* Checking for multiplication overflow is done by dividing the
1173 output of the multiplication by the first input of the
1174 multiplication. If the result of that division operation is
1175 not equal to the second input of the multiplication, then the
1176 multiplication overflowed. */
1177 else if (code == MULT_EXPR && !integer_zerop (val1))
1179 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1180 TYPE_MAX_VALUE (TREE_TYPE (val1)),
1181 val1, 0);
1182 int check = compare_values (tmp, val2);
1184 if (check != 0)
1185 overflow = true;
1188 if (overflow)
1190 res = copy_node (res);
1191 TREE_OVERFLOW (res) = 1;
1195 else if (TREE_OVERFLOW (res)
1196 && !TREE_OVERFLOW (val1)
1197 && !TREE_OVERFLOW (val2))
1199 /* If the operation overflowed but neither VAL1 nor VAL2 are
1200 overflown, return -INF or +INF depending on the operation
1201 and the combination of signs of the operands. */
1202 int sgn1 = tree_int_cst_sgn (val1);
1203 int sgn2 = tree_int_cst_sgn (val2);
1205 /* Notice that we only need to handle the restricted set of
1206 operations handled by extract_range_from_binary_expr.
1207 Among them, only multiplication, addition and subtraction
1208 can yield overflow without overflown operands because we
1209 are working with integral types only... except in the
1210 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1211 for division too. */
1213 /* For multiplication, the sign of the overflow is given
1214 by the comparison of the signs of the operands. */
1215 if ((code == MULT_EXPR && sgn1 == sgn2)
1216 /* For addition, the operands must be of the same sign
1217 to yield an overflow. Its sign is therefore that
1218 of one of the operands, for example the first. */
1219 || (code == PLUS_EXPR && sgn1 > 0)
1220 /* For subtraction, the operands must be of different
1221 signs to yield an overflow. Its sign is therefore
1222 that of the first operand or the opposite of that
1223 of the second operand. A first operand of 0 counts
1224 as positive here, for the corner case 0 - (-INF),
1225 which overflows, but must yield +INF. */
1226 || (code == MINUS_EXPR && sgn1 >= 0)
1227 /* For division, the only case is -INF / -1 = +INF. */
1228 || code == TRUNC_DIV_EXPR
1229 || code == FLOOR_DIV_EXPR
1230 || code == CEIL_DIV_EXPR
1231 || code == EXACT_DIV_EXPR
1232 || code == ROUND_DIV_EXPR)
1233 return TYPE_MAX_VALUE (TREE_TYPE (res));
1234 else
1235 return TYPE_MIN_VALUE (TREE_TYPE (res));
1238 return res;
1242 /* Extract range information from a binary expression EXPR based on
1243 the ranges of each of its operands and the expression code. */
1245 static void
1246 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1248 enum tree_code code = TREE_CODE (expr);
1249 enum value_range_type type;
1250 tree op0, op1, min, max;
1251 int cmp;
1252 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1253 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1255 /* Not all binary expressions can be applied to ranges in a
1256 meaningful way. Handle only arithmetic operations. */
1257 if (code != PLUS_EXPR
1258 && code != MINUS_EXPR
1259 && code != MULT_EXPR
1260 && code != TRUNC_DIV_EXPR
1261 && code != FLOOR_DIV_EXPR
1262 && code != CEIL_DIV_EXPR
1263 && code != EXACT_DIV_EXPR
1264 && code != ROUND_DIV_EXPR
1265 && code != MIN_EXPR
1266 && code != MAX_EXPR
1267 && code != BIT_AND_EXPR
1268 && code != TRUTH_ANDIF_EXPR
1269 && code != TRUTH_ORIF_EXPR
1270 && code != TRUTH_AND_EXPR
1271 && code != TRUTH_OR_EXPR)
1273 set_value_range_to_varying (vr);
1274 return;
1277 /* Get value ranges for each operand. For constant operands, create
1278 a new value range with the operand to simplify processing. */
1279 op0 = TREE_OPERAND (expr, 0);
1280 if (TREE_CODE (op0) == SSA_NAME)
1281 vr0 = *(get_value_range (op0));
1282 else if (is_gimple_min_invariant (op0))
1283 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1284 else
1285 set_value_range_to_varying (&vr0);
1287 op1 = TREE_OPERAND (expr, 1);
1288 if (TREE_CODE (op1) == SSA_NAME)
1289 vr1 = *(get_value_range (op1));
1290 else if (is_gimple_min_invariant (op1))
1291 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1292 else
1293 set_value_range_to_varying (&vr1);
1295 /* If either range is UNDEFINED, so is the result. */
1296 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1298 set_value_range_to_undefined (vr);
1299 return;
1302 /* The type of the resulting value range defaults to VR0.TYPE. */
1303 type = vr0.type;
1305 /* Refuse to operate on VARYING ranges, ranges of different kinds
1306 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1307 because we may be able to derive a useful range even if one of
1308 the operands is VR_VARYING or symbolic range. TODO, we may be
1309 able to derive anti-ranges in some cases. */
1310 if (code != BIT_AND_EXPR
1311 && code != TRUTH_AND_EXPR
1312 && code != TRUTH_OR_EXPR
1313 && (vr0.type == VR_VARYING
1314 || vr1.type == VR_VARYING
1315 || vr0.type != vr1.type
1316 || symbolic_range_p (&vr0)
1317 || symbolic_range_p (&vr1)))
1319 set_value_range_to_varying (vr);
1320 return;
1323 /* Now evaluate the expression to determine the new range. */
1324 if (POINTER_TYPE_P (TREE_TYPE (expr))
1325 || POINTER_TYPE_P (TREE_TYPE (op0))
1326 || POINTER_TYPE_P (TREE_TYPE (op1)))
1328 /* For pointer types, we are really only interested in asserting
1329 whether the expression evaluates to non-NULL. FIXME, we used
1330 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1331 ivopts is generating expressions with pointer multiplication
1332 in them. */
1333 if (code == PLUS_EXPR)
1335 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1336 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1337 else if (range_is_null (&vr0) && range_is_null (&vr1))
1338 set_value_range_to_null (vr, TREE_TYPE (expr));
1339 else
1340 set_value_range_to_varying (vr);
1342 else
1344 /* Subtracting from a pointer, may yield 0, so just drop the
1345 resulting range to varying. */
1346 set_value_range_to_varying (vr);
1349 return;
1352 /* For integer ranges, apply the operation to each end of the
1353 range and see what we end up with. */
1354 if (code == TRUTH_ANDIF_EXPR
1355 || code == TRUTH_ORIF_EXPR
1356 || code == TRUTH_AND_EXPR
1357 || code == TRUTH_OR_EXPR)
1359 /* If one of the operands is zero, we know that the whole
1360 expression evaluates zero. */
1361 if (code == TRUTH_AND_EXPR
1362 && ((vr0.type == VR_RANGE
1363 && integer_zerop (vr0.min)
1364 && integer_zerop (vr0.max))
1365 || (vr1.type == VR_RANGE
1366 && integer_zerop (vr1.min)
1367 && integer_zerop (vr1.max))))
1369 type = VR_RANGE;
1370 min = max = build_int_cst (TREE_TYPE (expr), 0);
1372 /* If one of the operands is one, we know that the whole
1373 expression evaluates one. */
1374 else if (code == TRUTH_OR_EXPR
1375 && ((vr0.type == VR_RANGE
1376 && integer_onep (vr0.min)
1377 && integer_onep (vr0.max))
1378 || (vr1.type == VR_RANGE
1379 && integer_onep (vr1.min)
1380 && integer_onep (vr1.max))))
1382 type = VR_RANGE;
1383 min = max = build_int_cst (TREE_TYPE (expr), 1);
1385 else if (vr0.type != VR_VARYING
1386 && vr1.type != VR_VARYING
1387 && vr0.type == vr1.type
1388 && !symbolic_range_p (&vr0)
1389 && !symbolic_range_p (&vr1))
1391 /* Boolean expressions cannot be folded with int_const_binop. */
1392 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1393 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1395 else
1397 set_value_range_to_varying (vr);
1398 return;
1401 else if (code == PLUS_EXPR
1402 || code == MIN_EXPR
1403 || code == MAX_EXPR)
1405 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1406 VR_VARYING. It would take more effort to compute a precise
1407 range for such a case. For example, if we have op0 == 1 and
1408 op1 == -1 with their ranges both being ~[0,0], we would have
1409 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1410 Note that we are guaranteed to have vr0.type == vr1.type at
1411 this point. */
1412 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1414 set_value_range_to_varying (vr);
1415 return;
1418 /* For operations that make the resulting range directly
1419 proportional to the original ranges, apply the operation to
1420 the same end of each range. */
1421 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1422 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1424 else if (code == MULT_EXPR
1425 || code == TRUNC_DIV_EXPR
1426 || code == FLOOR_DIV_EXPR
1427 || code == CEIL_DIV_EXPR
1428 || code == EXACT_DIV_EXPR
1429 || code == ROUND_DIV_EXPR)
1431 tree val[4];
1432 size_t i;
1434 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1435 drop to VR_VARYING. It would take more effort to compute a
1436 precise range for such a case. For example, if we have
1437 op0 == 65536 and op1 == 65536 with their ranges both being
1438 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1439 we cannot claim that the product is in ~[0,0]. Note that we
1440 are guaranteed to have vr0.type == vr1.type at this
1441 point. */
1442 if (code == MULT_EXPR
1443 && vr0.type == VR_ANTI_RANGE
1444 && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
1446 set_value_range_to_varying (vr);
1447 return;
1450 /* Multiplications and divisions are a bit tricky to handle,
1451 depending on the mix of signs we have in the two ranges, we
1452 need to operate on different values to get the minimum and
1453 maximum values for the new range. One approach is to figure
1454 out all the variations of range combinations and do the
1455 operations.
1457 However, this involves several calls to compare_values and it
1458 is pretty convoluted. It's simpler to do the 4 operations
1459 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1460 MAX1) and then figure the smallest and largest values to form
1461 the new range. */
1463 /* Divisions by zero result in a VARYING value. */
1464 if (code != MULT_EXPR
1465 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1467 set_value_range_to_varying (vr);
1468 return;
1471 /* Compute the 4 cross operations. */
1472 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1474 val[1] = (vr1.max != vr1.min)
1475 ? vrp_int_const_binop (code, vr0.min, vr1.max)
1476 : NULL_TREE;
1478 val[2] = (vr0.max != vr0.min)
1479 ? vrp_int_const_binop (code, vr0.max, vr1.min)
1480 : NULL_TREE;
1482 val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
1483 ? vrp_int_const_binop (code, vr0.max, vr1.max)
1484 : NULL_TREE;
1486 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1487 of VAL[i]. */
1488 min = val[0];
1489 max = val[0];
1490 for (i = 1; i < 4; i++)
1492 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1493 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1494 break;
1496 if (val[i])
1498 if (!is_gimple_min_invariant (val[i]) || TREE_OVERFLOW (val[i]))
1500 /* If we found an overflowed value, set MIN and MAX
1501 to it so that we set the resulting range to
1502 VARYING. */
1503 min = max = val[i];
1504 break;
1507 if (compare_values (val[i], min) == -1)
1508 min = val[i];
1510 if (compare_values (val[i], max) == 1)
1511 max = val[i];
1515 else if (code == MINUS_EXPR)
1517 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1518 VR_VARYING. It would take more effort to compute a precise
1519 range for such a case. For example, if we have op0 == 1 and
1520 op1 == 1 with their ranges both being ~[0,0], we would have
1521 op0 - op1 == 0, so we cannot claim that the difference is in
1522 ~[0,0]. Note that we are guaranteed to have
1523 vr0.type == vr1.type at this point. */
1524 if (vr0.type == VR_ANTI_RANGE)
1526 set_value_range_to_varying (vr);
1527 return;
1530 /* For MINUS_EXPR, apply the operation to the opposite ends of
1531 each range. */
1532 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1533 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1535 else if (code == BIT_AND_EXPR)
1537 if (vr0.type == VR_RANGE
1538 && vr0.min == vr0.max
1539 && tree_expr_nonnegative_p (vr0.max)
1540 && TREE_CODE (vr0.max) == INTEGER_CST)
1542 min = build_int_cst (TREE_TYPE (expr), 0);
1543 max = vr0.max;
1545 else if (vr1.type == VR_RANGE
1546 && vr1.min == vr1.max
1547 && tree_expr_nonnegative_p (vr1.max)
1548 && TREE_CODE (vr1.max) == INTEGER_CST)
1550 type = VR_RANGE;
1551 min = build_int_cst (TREE_TYPE (expr), 0);
1552 max = vr1.max;
1554 else
1556 set_value_range_to_varying (vr);
1557 return;
1560 else
1561 gcc_unreachable ();
1563 /* If either MIN or MAX overflowed, then set the resulting range to
1564 VARYING. */
1565 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1566 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1568 set_value_range_to_varying (vr);
1569 return;
1572 cmp = compare_values (min, max);
1573 if (cmp == -2 || cmp == 1)
1575 /* If the new range has its limits swapped around (MIN > MAX),
1576 then the operation caused one of them to wrap around, mark
1577 the new range VARYING. */
1578 set_value_range_to_varying (vr);
1580 else
1581 set_value_range (vr, type, min, max, NULL);
1585 /* Extract range information from a unary expression EXPR based on
1586 the range of its operand and the expression code. */
1588 static void
1589 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1591 enum tree_code code = TREE_CODE (expr);
1592 tree min, max, op0;
1593 int cmp;
1594 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1596 /* Refuse to operate on certain unary expressions for which we
1597 cannot easily determine a resulting range. */
1598 if (code == FIX_TRUNC_EXPR
1599 || code == FIX_CEIL_EXPR
1600 || code == FIX_FLOOR_EXPR
1601 || code == FIX_ROUND_EXPR
1602 || code == FLOAT_EXPR
1603 || code == BIT_NOT_EXPR
1604 || code == NON_LVALUE_EXPR
1605 || code == CONJ_EXPR)
1607 set_value_range_to_varying (vr);
1608 return;
1611 /* Get value ranges for the operand. For constant operands, create
1612 a new value range with the operand to simplify processing. */
1613 op0 = TREE_OPERAND (expr, 0);
1614 if (TREE_CODE (op0) == SSA_NAME)
1615 vr0 = *(get_value_range (op0));
1616 else if (is_gimple_min_invariant (op0))
1617 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1618 else
1619 set_value_range_to_varying (&vr0);
1621 /* If VR0 is UNDEFINED, so is the result. */
1622 if (vr0.type == VR_UNDEFINED)
1624 set_value_range_to_undefined (vr);
1625 return;
1628 /* Refuse to operate on symbolic ranges, or if neither operand is
1629 a pointer or integral type. */
1630 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
1631 && !POINTER_TYPE_P (TREE_TYPE (op0)))
1632 || (vr0.type != VR_VARYING
1633 && symbolic_range_p (&vr0)))
1635 set_value_range_to_varying (vr);
1636 return;
1639 /* If the expression involves pointers, we are only interested in
1640 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1641 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
1643 if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
1644 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1645 else if (range_is_null (&vr0))
1646 set_value_range_to_null (vr, TREE_TYPE (expr));
1647 else
1648 set_value_range_to_varying (vr);
1650 return;
1653 /* Handle unary expressions on integer ranges. */
1654 if (code == NOP_EXPR || code == CONVERT_EXPR)
1656 tree inner_type = TREE_TYPE (op0);
1657 tree outer_type = TREE_TYPE (expr);
1659 /* If VR0 represents a simple range, then try to convert
1660 the min and max values for the range to the same type
1661 as OUTER_TYPE. If the results compare equal to VR0's
1662 min and max values and the new min is still less than
1663 or equal to the new max, then we can safely use the newly
1664 computed range for EXPR. This allows us to compute
1665 accurate ranges through many casts. */
1666 if (vr0.type == VR_RANGE
1667 || (vr0.type == VR_VARYING
1668 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
1670 tree new_min, new_max, orig_min, orig_max;
1672 /* Convert the input operand min/max to OUTER_TYPE. If
1673 the input has no range information, then use the min/max
1674 for the input's type. */
1675 if (vr0.type == VR_RANGE)
1677 orig_min = vr0.min;
1678 orig_max = vr0.max;
1680 else
1682 orig_min = TYPE_MIN_VALUE (inner_type);
1683 orig_max = TYPE_MAX_VALUE (inner_type);
1686 new_min = fold_convert (outer_type, orig_min);
1687 new_max = fold_convert (outer_type, orig_max);
1689 /* Verify the new min/max values are gimple values and
1690 that they compare equal to the original input's
1691 min/max values. */
1692 if (is_gimple_val (new_min)
1693 && is_gimple_val (new_max)
1694 && tree_int_cst_equal (new_min, orig_min)
1695 && tree_int_cst_equal (new_max, orig_max)
1696 && compare_values (new_min, new_max) <= 0
1697 && compare_values (new_min, new_max) >= -1)
1699 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
1700 return;
1704 /* When converting types of different sizes, set the result to
1705 VARYING. Things like sign extensions and precision loss may
1706 change the range. For instance, if x_3 is of type 'long long
1707 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1708 is impossible to know at compile time whether y_5 will be
1709 ~[0, 0]. */
1710 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
1711 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1713 set_value_range_to_varying (vr);
1714 return;
1718 /* Conversion of a VR_VARYING value to a wider type can result
1719 in a usable range. So wait until after we've handled conversions
1720 before dropping the result to VR_VARYING if we had a source
1721 operand that is VR_VARYING. */
1722 if (vr0.type == VR_VARYING)
1724 set_value_range_to_varying (vr);
1725 return;
1728 /* Apply the operation to each end of the range and see what we end
1729 up with. */
1730 if (code == NEGATE_EXPR
1731 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1733 /* NEGATE_EXPR flips the range around. We need to treat
1734 TYPE_MIN_VALUE specially dependent on wrapping, range type
1735 and if it was used as minimum or maximum value:
1736 -~[MIN, MIN] == ~[MIN, MIN]
1737 -[MIN, 0] == [0, MAX] for -fno-wrapv
1738 -[MIN, 0] == [0, MIN] for -fwrapv (will be set to varying later) */
1739 min = vr0.max == TYPE_MIN_VALUE (TREE_TYPE (expr))
1740 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1741 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1743 max = vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr))
1744 ? (vr0.type == VR_ANTI_RANGE || flag_wrapv
1745 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1746 : TYPE_MAX_VALUE (TREE_TYPE (expr)))
1747 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1750 else if (code == NEGATE_EXPR
1751 && TYPE_UNSIGNED (TREE_TYPE (expr)))
1753 if (!range_includes_zero_p (&vr0))
1755 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1756 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1758 else
1760 if (range_is_null (&vr0))
1761 set_value_range_to_null (vr, TREE_TYPE (expr));
1762 else
1763 set_value_range_to_varying (vr);
1764 return;
1767 else if (code == ABS_EXPR
1768 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1770 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1771 useful range. */
1772 if (flag_wrapv
1773 && ((vr0.type == VR_RANGE
1774 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1775 || (vr0.type == VR_ANTI_RANGE
1776 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
1777 && !range_includes_zero_p (&vr0))))
1779 set_value_range_to_varying (vr);
1780 return;
1783 /* ABS_EXPR may flip the range around, if the original range
1784 included negative values. */
1785 min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1786 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1787 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1789 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1791 cmp = compare_values (min, max);
1793 /* If a VR_ANTI_RANGEs contains zero, then we have
1794 ~[-INF, min(MIN, MAX)]. */
1795 if (vr0.type == VR_ANTI_RANGE)
1797 if (range_includes_zero_p (&vr0))
1799 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
1801 /* Take the lower of the two values. */
1802 if (cmp != 1)
1803 max = min;
1805 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1806 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1807 flag_wrapv is set and the original anti-range doesn't include
1808 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1809 min = (flag_wrapv && vr0.min != type_min_value
1810 ? int_const_binop (PLUS_EXPR,
1811 type_min_value,
1812 integer_one_node, 0)
1813 : type_min_value);
1815 else
1817 /* All else has failed, so create the range [0, INF], even for
1818 flag_wrapv since TYPE_MIN_VALUE is in the original
1819 anti-range. */
1820 vr0.type = VR_RANGE;
1821 min = build_int_cst (TREE_TYPE (expr), 0);
1822 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
1826 /* If the range contains zero then we know that the minimum value in the
1827 range will be zero. */
1828 else if (range_includes_zero_p (&vr0))
1830 if (cmp == 1)
1831 max = min;
1832 min = build_int_cst (TREE_TYPE (expr), 0);
1834 else
1836 /* If the range was reversed, swap MIN and MAX. */
1837 if (cmp == 1)
1839 tree t = min;
1840 min = max;
1841 max = t;
1845 else
1847 /* Otherwise, operate on each end of the range. */
1848 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1849 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1852 cmp = compare_values (min, max);
1853 if (cmp == -2 || cmp == 1)
1855 /* If the new range has its limits swapped around (MIN > MAX),
1856 then the operation caused one of them to wrap around, mark
1857 the new range VARYING. */
1858 set_value_range_to_varying (vr);
1860 else
1861 set_value_range (vr, vr0.type, min, max, NULL);
1865 /* Extract range information from a comparison expression EXPR based
1866 on the range of its operand and the expression code. */
1868 static void
1869 extract_range_from_comparison (value_range_t *vr, tree expr)
1871 tree val = vrp_evaluate_conditional (expr, false);
1872 if (val)
1874 /* Since this expression was found on the RHS of an assignment,
1875 its type may be different from _Bool. Convert VAL to EXPR's
1876 type. */
1877 val = fold_convert (TREE_TYPE (expr), val);
1878 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
1880 else
1881 set_value_range_to_varying (vr);
1885 /* Try to compute a useful range out of expression EXPR and store it
1886 in *VR. */
1888 static void
1889 extract_range_from_expr (value_range_t *vr, tree expr)
1891 enum tree_code code = TREE_CODE (expr);
1893 if (code == ASSERT_EXPR)
1894 extract_range_from_assert (vr, expr);
1895 else if (code == SSA_NAME)
1896 extract_range_from_ssa_name (vr, expr);
1897 else if (TREE_CODE_CLASS (code) == tcc_binary
1898 || code == TRUTH_ANDIF_EXPR
1899 || code == TRUTH_ORIF_EXPR
1900 || code == TRUTH_AND_EXPR
1901 || code == TRUTH_OR_EXPR
1902 || code == TRUTH_XOR_EXPR)
1903 extract_range_from_binary_expr (vr, expr);
1904 else if (TREE_CODE_CLASS (code) == tcc_unary)
1905 extract_range_from_unary_expr (vr, expr);
1906 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1907 extract_range_from_comparison (vr, expr);
1908 else if (is_gimple_min_invariant (expr))
1909 set_value_range (vr, VR_RANGE, expr, expr, NULL);
1910 else
1911 set_value_range_to_varying (vr);
1913 /* If we got a varying range from the tests above, try a final
1914 time to derive a nonnegative or nonzero range. This time
1915 relying primarily on generic routines in fold in conjunction
1916 with range data. */
1917 if (vr->type == VR_VARYING)
1919 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
1920 && vrp_expr_computes_nonnegative (expr))
1921 set_value_range_to_nonnegative (vr, TREE_TYPE (expr));
1922 else if (vrp_expr_computes_nonzero (expr))
1923 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1927 /* Given a range VR, a LOOP and a variable VAR, determine whether it
1928 would be profitable to adjust VR using scalar evolution information
1929 for VAR. If so, update VR with the new limits. */
1931 static void
1932 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
1933 tree var)
1935 tree init, step, chrec, tmin, tmax, min, max, type;
1936 enum ev_direction dir;
1938 /* TODO. Don't adjust anti-ranges. An anti-range may provide
1939 better opportunities than a regular range, but I'm not sure. */
1940 if (vr->type == VR_ANTI_RANGE)
1941 return;
1943 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
1944 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1945 return;
1947 init = initial_condition_in_loop_num (chrec, loop->num);
1948 step = evolution_part_in_loop_num (chrec, loop->num);
1950 /* If STEP is symbolic, we can't know whether INIT will be the
1951 minimum or maximum value in the range. Also, unless INIT is
1952 a simple expression, compare_values and possibly other functions
1953 in tree-vrp won't be able to handle it. */
1954 if (step == NULL_TREE
1955 || !is_gimple_min_invariant (step)
1956 || !valid_value_p (init))
1957 return;
1959 dir = scev_direction (chrec);
1960 if (/* Do not adjust ranges if we do not know whether the iv increases
1961 or decreases, ... */
1962 dir == EV_DIR_UNKNOWN
1963 /* ... or if it may wrap. */
1964 || scev_probably_wraps_p (init, step, stmt,
1965 current_loops->parray[CHREC_VARIABLE (chrec)],
1966 true))
1967 return;
1969 type = TREE_TYPE (var);
1970 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
1971 tmin = lower_bound_in_type (type, type);
1972 else
1973 tmin = TYPE_MIN_VALUE (type);
1974 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
1975 tmax = upper_bound_in_type (type, type);
1976 else
1977 tmax = TYPE_MAX_VALUE (type);
1979 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
1981 min = tmin;
1982 max = tmax;
1984 /* For VARYING or UNDEFINED ranges, just about anything we get
1985 from scalar evolutions should be better. */
1987 if (dir == EV_DIR_DECREASES)
1988 max = init;
1989 else
1990 min = init;
1992 /* If we would create an invalid range, then just assume we
1993 know absolutely nothing. This may be over-conservative,
1994 but it's clearly safe, and should happen only in unreachable
1995 parts of code, or for invalid programs. */
1996 if (compare_values (min, max) == 1)
1997 return;
1999 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2001 else if (vr->type == VR_RANGE)
2003 min = vr->min;
2004 max = vr->max;
2006 if (dir == EV_DIR_DECREASES)
2008 /* INIT is the maximum value. If INIT is lower than VR->MAX
2009 but no smaller than VR->MIN, set VR->MAX to INIT. */
2010 if (compare_values (init, max) == -1)
2012 max = init;
2014 /* If we just created an invalid range with the minimum
2015 greater than the maximum, we fail conservatively.
2016 This should happen only in unreachable
2017 parts of code, or for invalid programs. */
2018 if (compare_values (min, max) == 1)
2019 return;
2022 else
2024 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2025 if (compare_values (init, min) == 1)
2027 min = init;
2029 /* Again, avoid creating invalid range by failing. */
2030 if (compare_values (min, max) == 1)
2031 return;
2035 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2040 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2042 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2043 all the values in the ranges.
2045 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2047 - Return NULL_TREE if it is not always possible to determine the
2048 value of the comparison. */
2051 static tree
2052 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
2054 /* VARYING or UNDEFINED ranges cannot be compared. */
2055 if (vr0->type == VR_VARYING
2056 || vr0->type == VR_UNDEFINED
2057 || vr1->type == VR_VARYING
2058 || vr1->type == VR_UNDEFINED)
2059 return NULL_TREE;
2061 /* Anti-ranges need to be handled separately. */
2062 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2064 /* If both are anti-ranges, then we cannot compute any
2065 comparison. */
2066 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2067 return NULL_TREE;
2069 /* These comparisons are never statically computable. */
2070 if (comp == GT_EXPR
2071 || comp == GE_EXPR
2072 || comp == LT_EXPR
2073 || comp == LE_EXPR)
2074 return NULL_TREE;
2076 /* Equality can be computed only between a range and an
2077 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2078 if (vr0->type == VR_RANGE)
2080 /* To simplify processing, make VR0 the anti-range. */
2081 value_range_t *tmp = vr0;
2082 vr0 = vr1;
2083 vr1 = tmp;
2086 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2088 if (compare_values (vr0->min, vr1->min) == 0
2089 && compare_values (vr0->max, vr1->max) == 0)
2090 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2092 return NULL_TREE;
2095 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2096 operands around and change the comparison code. */
2097 if (comp == GT_EXPR || comp == GE_EXPR)
2099 value_range_t *tmp;
2100 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2101 tmp = vr0;
2102 vr0 = vr1;
2103 vr1 = tmp;
2106 if (comp == EQ_EXPR)
2108 /* Equality may only be computed if both ranges represent
2109 exactly one value. */
2110 if (compare_values (vr0->min, vr0->max) == 0
2111 && compare_values (vr1->min, vr1->max) == 0)
2113 int cmp_min = compare_values (vr0->min, vr1->min);
2114 int cmp_max = compare_values (vr0->max, vr1->max);
2115 if (cmp_min == 0 && cmp_max == 0)
2116 return boolean_true_node;
2117 else if (cmp_min != -2 && cmp_max != -2)
2118 return boolean_false_node;
2120 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2121 else if (compare_values (vr0->min, vr1->max) == 1
2122 || compare_values (vr1->min, vr0->max) == 1)
2123 return boolean_false_node;
2125 return NULL_TREE;
2127 else if (comp == NE_EXPR)
2129 int cmp1, cmp2;
2131 /* If VR0 is completely to the left or completely to the right
2132 of VR1, they are always different. Notice that we need to
2133 make sure that both comparisons yield similar results to
2134 avoid comparing values that cannot be compared at
2135 compile-time. */
2136 cmp1 = compare_values (vr0->max, vr1->min);
2137 cmp2 = compare_values (vr0->min, vr1->max);
2138 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2139 return boolean_true_node;
2141 /* If VR0 and VR1 represent a single value and are identical,
2142 return false. */
2143 else if (compare_values (vr0->min, vr0->max) == 0
2144 && compare_values (vr1->min, vr1->max) == 0
2145 && compare_values (vr0->min, vr1->min) == 0
2146 && compare_values (vr0->max, vr1->max) == 0)
2147 return boolean_false_node;
2149 /* Otherwise, they may or may not be different. */
2150 else
2151 return NULL_TREE;
2153 else if (comp == LT_EXPR || comp == LE_EXPR)
2155 int tst;
2157 /* If VR0 is to the left of VR1, return true. */
2158 tst = compare_values (vr0->max, vr1->min);
2159 if ((comp == LT_EXPR && tst == -1)
2160 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2161 return boolean_true_node;
2163 /* If VR0 is to the right of VR1, return false. */
2164 tst = compare_values (vr0->min, vr1->max);
2165 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2166 || (comp == LE_EXPR && tst == 1))
2167 return boolean_false_node;
2169 /* Otherwise, we don't know. */
2170 return NULL_TREE;
2173 gcc_unreachable ();
2177 /* Given a value range VR, a value VAL and a comparison code COMP, return
2178 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2179 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2180 always returns false. Return NULL_TREE if it is not always
2181 possible to determine the value of the comparison. */
2183 static tree
2184 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
2186 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2187 return NULL_TREE;
2189 /* Anti-ranges need to be handled separately. */
2190 if (vr->type == VR_ANTI_RANGE)
2192 /* For anti-ranges, the only predicates that we can compute at
2193 compile time are equality and inequality. */
2194 if (comp == GT_EXPR
2195 || comp == GE_EXPR
2196 || comp == LT_EXPR
2197 || comp == LE_EXPR)
2198 return NULL_TREE;
2200 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2201 if (value_inside_range (val, vr) == 1)
2202 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2204 return NULL_TREE;
2207 if (comp == EQ_EXPR)
2209 /* EQ_EXPR may only be computed if VR represents exactly
2210 one value. */
2211 if (compare_values (vr->min, vr->max) == 0)
2213 int cmp = compare_values (vr->min, val);
2214 if (cmp == 0)
2215 return boolean_true_node;
2216 else if (cmp == -1 || cmp == 1 || cmp == 2)
2217 return boolean_false_node;
2219 else if (compare_values (val, vr->min) == -1
2220 || compare_values (vr->max, val) == -1)
2221 return boolean_false_node;
2223 return NULL_TREE;
2225 else if (comp == NE_EXPR)
2227 /* If VAL is not inside VR, then they are always different. */
2228 if (compare_values (vr->max, val) == -1
2229 || compare_values (vr->min, val) == 1)
2230 return boolean_true_node;
2232 /* If VR represents exactly one value equal to VAL, then return
2233 false. */
2234 if (compare_values (vr->min, vr->max) == 0
2235 && compare_values (vr->min, val) == 0)
2236 return boolean_false_node;
2238 /* Otherwise, they may or may not be different. */
2239 return NULL_TREE;
2241 else if (comp == LT_EXPR || comp == LE_EXPR)
2243 int tst;
2245 /* If VR is to the left of VAL, return true. */
2246 tst = compare_values (vr->max, val);
2247 if ((comp == LT_EXPR && tst == -1)
2248 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2249 return boolean_true_node;
2251 /* If VR is to the right of VAL, return false. */
2252 tst = compare_values (vr->min, val);
2253 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2254 || (comp == LE_EXPR && tst == 1))
2255 return boolean_false_node;
2257 /* Otherwise, we don't know. */
2258 return NULL_TREE;
2260 else if (comp == GT_EXPR || comp == GE_EXPR)
2262 int tst;
2264 /* If VR is to the right of VAL, return true. */
2265 tst = compare_values (vr->min, val);
2266 if ((comp == GT_EXPR && tst == 1)
2267 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2268 return boolean_true_node;
2270 /* If VR is to the left of VAL, return false. */
2271 tst = compare_values (vr->max, val);
2272 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2273 || (comp == GE_EXPR && tst == -1))
2274 return boolean_false_node;
2276 /* Otherwise, we don't know. */
2277 return NULL_TREE;
2280 gcc_unreachable ();
2284 /* Debugging dumps. */
2286 void dump_value_range (FILE *, value_range_t *);
2287 void debug_value_range (value_range_t *);
2288 void dump_all_value_ranges (FILE *);
2289 void debug_all_value_ranges (void);
2290 void dump_vr_equiv (FILE *, bitmap);
2291 void debug_vr_equiv (bitmap);
2294 /* Dump value range VR to FILE. */
2296 void
2297 dump_value_range (FILE *file, value_range_t *vr)
2299 if (vr == NULL)
2300 fprintf (file, "[]");
2301 else if (vr->type == VR_UNDEFINED)
2302 fprintf (file, "UNDEFINED");
2303 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2305 tree type = TREE_TYPE (vr->min);
2307 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2309 if (INTEGRAL_TYPE_P (type)
2310 && !TYPE_UNSIGNED (type)
2311 && vr->min == TYPE_MIN_VALUE (type))
2312 fprintf (file, "-INF");
2313 else
2314 print_generic_expr (file, vr->min, 0);
2316 fprintf (file, ", ");
2318 if (INTEGRAL_TYPE_P (type)
2319 && vr->max == TYPE_MAX_VALUE (type))
2320 fprintf (file, "+INF");
2321 else
2322 print_generic_expr (file, vr->max, 0);
2324 fprintf (file, "]");
2326 if (vr->equiv)
2328 bitmap_iterator bi;
2329 unsigned i, c = 0;
2331 fprintf (file, " EQUIVALENCES: { ");
2333 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2335 print_generic_expr (file, ssa_name (i), 0);
2336 fprintf (file, " ");
2337 c++;
2340 fprintf (file, "} (%u elements)", c);
2343 else if (vr->type == VR_VARYING)
2344 fprintf (file, "VARYING");
2345 else
2346 fprintf (file, "INVALID RANGE");
2350 /* Dump value range VR to stderr. */
2352 void
2353 debug_value_range (value_range_t *vr)
2355 dump_value_range (stderr, vr);
2356 fprintf (stderr, "\n");
2360 /* Dump value ranges of all SSA_NAMEs to FILE. */
2362 void
2363 dump_all_value_ranges (FILE *file)
2365 size_t i;
2367 for (i = 0; i < num_ssa_names; i++)
2369 if (vr_value[i])
2371 print_generic_expr (file, ssa_name (i), 0);
2372 fprintf (file, ": ");
2373 dump_value_range (file, vr_value[i]);
2374 fprintf (file, "\n");
2378 fprintf (file, "\n");
2382 /* Dump all value ranges to stderr. */
2384 void
2385 debug_all_value_ranges (void)
2387 dump_all_value_ranges (stderr);
2391 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2392 create a new SSA name N and return the assertion assignment
2393 'V = ASSERT_EXPR <V, V OP W>'. */
2395 static tree
2396 build_assert_expr_for (tree cond, tree v)
2398 tree n, assertion;
2400 gcc_assert (TREE_CODE (v) == SSA_NAME);
2401 n = duplicate_ssa_name (v, NULL_TREE);
2403 if (COMPARISON_CLASS_P (cond))
2405 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2406 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, a);
2408 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
2410 /* Given !V, build the assignment N = false. */
2411 tree op0 = TREE_OPERAND (cond, 0);
2412 gcc_assert (op0 == v);
2413 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
2415 else if (TREE_CODE (cond) == SSA_NAME)
2417 /* Given V, build the assignment N = true. */
2418 gcc_assert (v == cond);
2419 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
2421 else
2422 gcc_unreachable ();
2424 SSA_NAME_DEF_STMT (n) = assertion;
2426 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2427 operand of the ASSERT_EXPR. Register the new name and the old one
2428 in the replacement table so that we can fix the SSA web after
2429 adding all the ASSERT_EXPRs. */
2430 register_new_name_mapping (n, v);
2432 return assertion;
2436 /* Return false if EXPR is a predicate expression involving floating
2437 point values. */
2439 static inline bool
2440 fp_predicate (tree expr)
2442 return (COMPARISON_CLASS_P (expr)
2443 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
2447 /* If the range of values taken by OP can be inferred after STMT executes,
2448 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2449 describes the inferred range. Return true if a range could be
2450 inferred. */
2452 static bool
2453 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
2455 *val_p = NULL_TREE;
2456 *comp_code_p = ERROR_MARK;
2458 /* Do not attempt to infer anything in names that flow through
2459 abnormal edges. */
2460 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2461 return false;
2463 /* Similarly, don't infer anything from statements that may throw
2464 exceptions. */
2465 if (tree_could_throw_p (stmt))
2466 return false;
2468 /* If STMT is the last statement of a basic block with no
2469 successors, there is no point inferring anything about any of its
2470 operands. We would not be able to find a proper insertion point
2471 for the assertion, anyway. */
2472 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
2473 return false;
2475 /* We can only assume that a pointer dereference will yield
2476 non-NULL if -fdelete-null-pointer-checks is enabled. */
2477 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
2479 bool is_store;
2480 unsigned num_uses, num_derefs;
2482 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
2483 if (num_derefs > 0)
2485 *val_p = build_int_cst (TREE_TYPE (op), 0);
2486 *comp_code_p = NE_EXPR;
2487 return true;
2491 return false;
2495 void dump_asserts_for (FILE *, tree);
2496 void debug_asserts_for (tree);
2497 void dump_all_asserts (FILE *);
2498 void debug_all_asserts (void);
2500 /* Dump all the registered assertions for NAME to FILE. */
2502 void
2503 dump_asserts_for (FILE *file, tree name)
2505 assert_locus_t loc;
2507 fprintf (file, "Assertions to be inserted for ");
2508 print_generic_expr (file, name, 0);
2509 fprintf (file, "\n");
2511 loc = asserts_for[SSA_NAME_VERSION (name)];
2512 while (loc)
2514 fprintf (file, "\t");
2515 print_generic_expr (file, bsi_stmt (loc->si), 0);
2516 fprintf (file, "\n\tBB #%d", loc->bb->index);
2517 if (loc->e)
2519 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2520 loc->e->dest->index);
2521 dump_edge_info (file, loc->e, 0);
2523 fprintf (file, "\n\tPREDICATE: ");
2524 print_generic_expr (file, name, 0);
2525 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
2526 print_generic_expr (file, loc->val, 0);
2527 fprintf (file, "\n\n");
2528 loc = loc->next;
2531 fprintf (file, "\n");
2535 /* Dump all the registered assertions for NAME to stderr. */
2537 void
2538 debug_asserts_for (tree name)
2540 dump_asserts_for (stderr, name);
2544 /* Dump all the registered assertions for all the names to FILE. */
2546 void
2547 dump_all_asserts (FILE *file)
2549 unsigned i;
2550 bitmap_iterator bi;
2552 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2553 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2554 dump_asserts_for (file, ssa_name (i));
2555 fprintf (file, "\n");
2559 /* Dump all the registered assertions for all the names to stderr. */
2561 void
2562 debug_all_asserts (void)
2564 dump_all_asserts (stderr);
2568 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2569 'NAME COMP_CODE VAL' at a location that dominates block BB or
2570 E->DEST, then register this location as a possible insertion point
2571 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2573 BB, E and SI provide the exact insertion point for the new
2574 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2575 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2576 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2577 must not be NULL. */
2579 static void
2580 register_new_assert_for (tree name,
2581 enum tree_code comp_code,
2582 tree val,
2583 basic_block bb,
2584 edge e,
2585 block_stmt_iterator si)
2587 assert_locus_t n, loc, last_loc;
2588 bool found;
2589 basic_block dest_bb;
2591 #if defined ENABLE_CHECKING
2592 gcc_assert (bb == NULL || e == NULL);
2594 if (e == NULL)
2595 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
2596 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
2597 #endif
2599 /* The new assertion A will be inserted at BB or E. We need to
2600 determine if the new location is dominated by a previously
2601 registered location for A. If we are doing an edge insertion,
2602 assume that A will be inserted at E->DEST. Note that this is not
2603 necessarily true.
2605 If E is a critical edge, it will be split. But even if E is
2606 split, the new block will dominate the same set of blocks that
2607 E->DEST dominates.
2609 The reverse, however, is not true, blocks dominated by E->DEST
2610 will not be dominated by the new block created to split E. So,
2611 if the insertion location is on a critical edge, we will not use
2612 the new location to move another assertion previously registered
2613 at a block dominated by E->DEST. */
2614 dest_bb = (bb) ? bb : e->dest;
2616 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2617 VAL at a block dominating DEST_BB, then we don't need to insert a new
2618 one. Similarly, if the same assertion already exists at a block
2619 dominated by DEST_BB and the new location is not on a critical
2620 edge, then update the existing location for the assertion (i.e.,
2621 move the assertion up in the dominance tree).
2623 Note, this is implemented as a simple linked list because there
2624 should not be more than a handful of assertions registered per
2625 name. If this becomes a performance problem, a table hashed by
2626 COMP_CODE and VAL could be implemented. */
2627 loc = asserts_for[SSA_NAME_VERSION (name)];
2628 last_loc = loc;
2629 found = false;
2630 while (loc)
2632 if (loc->comp_code == comp_code
2633 && (loc->val == val
2634 || operand_equal_p (loc->val, val, 0)))
2636 /* If the assertion NAME COMP_CODE VAL has already been
2637 registered at a basic block that dominates DEST_BB, then
2638 we don't need to insert the same assertion again. Note
2639 that we don't check strict dominance here to avoid
2640 replicating the same assertion inside the same basic
2641 block more than once (e.g., when a pointer is
2642 dereferenced several times inside a block).
2644 An exception to this rule are edge insertions. If the
2645 new assertion is to be inserted on edge E, then it will
2646 dominate all the other insertions that we may want to
2647 insert in DEST_BB. So, if we are doing an edge
2648 insertion, don't do this dominance check. */
2649 if (e == NULL
2650 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
2651 return;
2653 /* Otherwise, if E is not a critical edge and DEST_BB
2654 dominates the existing location for the assertion, move
2655 the assertion up in the dominance tree by updating its
2656 location information. */
2657 if ((e == NULL || !EDGE_CRITICAL_P (e))
2658 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2660 loc->bb = dest_bb;
2661 loc->e = e;
2662 loc->si = si;
2663 return;
2667 /* Update the last node of the list and move to the next one. */
2668 last_loc = loc;
2669 loc = loc->next;
2672 /* If we didn't find an assertion already registered for
2673 NAME COMP_CODE VAL, add a new one at the end of the list of
2674 assertions associated with NAME. */
2675 n = XNEW (struct assert_locus_d);
2676 n->bb = dest_bb;
2677 n->e = e;
2678 n->si = si;
2679 n->comp_code = comp_code;
2680 n->val = val;
2681 n->next = NULL;
2683 if (last_loc)
2684 last_loc->next = n;
2685 else
2686 asserts_for[SSA_NAME_VERSION (name)] = n;
2688 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2692 /* Try to register an edge assertion for SSA name NAME on edge E for
2693 the conditional jump pointed to by SI. Return true if an assertion
2694 for NAME could be registered. */
2696 static bool
2697 register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
2699 tree val, stmt;
2700 enum tree_code comp_code;
2702 stmt = bsi_stmt (si);
2704 /* Do not attempt to infer anything in names that flow through
2705 abnormal edges. */
2706 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2707 return false;
2709 /* If NAME was not found in the sub-graph reachable from E, then
2710 there's nothing to do. */
2711 if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
2712 return false;
2714 /* We found a use of NAME in the sub-graph rooted at E->DEST.
2715 Register an assertion for NAME according to the value that NAME
2716 takes on edge E. */
2717 if (TREE_CODE (stmt) == COND_EXPR)
2719 /* If BB ends in a COND_EXPR then NAME then we should insert
2720 the original predicate on EDGE_TRUE_VALUE and the
2721 opposite predicate on EDGE_FALSE_VALUE. */
2722 tree cond = COND_EXPR_COND (stmt);
2723 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
2725 /* Predicates may be a single SSA name or NAME OP VAL. */
2726 if (cond == name)
2728 /* If the predicate is a name, it must be NAME, in which
2729 case we create the predicate NAME == true or
2730 NAME == false accordingly. */
2731 comp_code = EQ_EXPR;
2732 val = (is_else_edge) ? boolean_false_node : boolean_true_node;
2734 else
2736 /* Otherwise, we have a comparison of the form NAME COMP VAL
2737 or VAL COMP NAME. */
2738 if (name == TREE_OPERAND (cond, 1))
2740 /* If the predicate is of the form VAL COMP NAME, flip
2741 COMP around because we need to register NAME as the
2742 first operand in the predicate. */
2743 comp_code = swap_tree_comparison (TREE_CODE (cond));
2744 val = TREE_OPERAND (cond, 0);
2746 else
2748 /* The comparison is of the form NAME COMP VAL, so the
2749 comparison code remains unchanged. */
2750 comp_code = TREE_CODE (cond);
2751 val = TREE_OPERAND (cond, 1);
2754 /* If we are inserting the assertion on the ELSE edge, we
2755 need to invert the sign comparison. */
2756 if (is_else_edge)
2757 comp_code = invert_tree_comparison (comp_code, 0);
2759 /* Do not register always-false predicates. FIXME, this
2760 works around a limitation in fold() when dealing with
2761 enumerations. Given 'enum { N1, N2 } x;', fold will not
2762 fold 'if (x > N2)' to 'if (0)'. */
2763 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2764 && (INTEGRAL_TYPE_P (TREE_TYPE (val))
2765 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
2767 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2768 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2770 if (comp_code == GT_EXPR && compare_values (val, max) == 0)
2771 return false;
2773 if (comp_code == LT_EXPR && compare_values (val, min) == 0)
2774 return false;
2778 else
2780 /* FIXME. Handle SWITCH_EXPR. */
2781 gcc_unreachable ();
2784 register_new_assert_for (name, comp_code, val, NULL, e, si);
2785 return true;
2789 static bool find_assert_locations (basic_block bb);
2791 /* Determine whether the outgoing edges of BB should receive an
2792 ASSERT_EXPR for each of the operands of BB's last statement. The
2793 last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2795 If any of the sub-graphs rooted at BB have an interesting use of
2796 the predicate operands, an assert location node is added to the
2797 list of assertions for the corresponding operands. */
2799 static bool
2800 find_conditional_asserts (basic_block bb)
2802 bool need_assert;
2803 block_stmt_iterator last_si;
2804 tree op, last;
2805 edge_iterator ei;
2806 edge e;
2807 ssa_op_iter iter;
2809 need_assert = false;
2810 last_si = bsi_last (bb);
2811 last = bsi_stmt (last_si);
2813 /* Look for uses of the operands in each of the sub-graphs
2814 rooted at BB. We need to check each of the outgoing edges
2815 separately, so that we know what kind of ASSERT_EXPR to
2816 insert. */
2817 FOR_EACH_EDGE (e, ei, bb->succs)
2819 if (e->dest == bb)
2820 continue;
2822 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
2823 Otherwise, when we finish traversing each of the sub-graphs, we
2824 won't know whether the variables were found in the sub-graphs or
2825 if they had been found in a block upstream from BB.
2827 This is actually a bad idea is some cases, particularly jump
2828 threading. Consider a CFG like the following:
2838 Assume that one or more operands in the conditional at the
2839 end of block 0 are used in a conditional in block 2, but not
2840 anywhere in block 1. In this case we will not insert any
2841 assert statements in block 1, which may cause us to miss
2842 opportunities to optimize, particularly for jump threading. */
2843 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2844 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2846 /* Traverse the strictly dominated sub-graph rooted at E->DEST
2847 to determine if any of the operands in the conditional
2848 predicate are used. */
2849 if (e->dest != bb)
2850 need_assert |= find_assert_locations (e->dest);
2852 /* Register the necessary assertions for each operand in the
2853 conditional predicate. */
2854 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2855 need_assert |= register_edge_assert_for (op, e, last_si);
2858 /* Finally, indicate that we have found the operands in the
2859 conditional. */
2860 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2861 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2863 return need_assert;
2867 /* Traverse all the statements in block BB looking for statements that
2868 may generate useful assertions for the SSA names in their operand.
2869 If a statement produces a useful assertion A for name N_i, then the
2870 list of assertions already generated for N_i is scanned to
2871 determine if A is actually needed.
2873 If N_i already had the assertion A at a location dominating the
2874 current location, then nothing needs to be done. Otherwise, the
2875 new location for A is recorded instead.
2877 1- For every statement S in BB, all the variables used by S are
2878 added to bitmap FOUND_IN_SUBGRAPH.
2880 2- If statement S uses an operand N in a way that exposes a known
2881 value range for N, then if N was not already generated by an
2882 ASSERT_EXPR, create a new assert location for N. For instance,
2883 if N is a pointer and the statement dereferences it, we can
2884 assume that N is not NULL.
2886 3- COND_EXPRs are a special case of #2. We can derive range
2887 information from the predicate but need to insert different
2888 ASSERT_EXPRs for each of the sub-graphs rooted at the
2889 conditional block. If the last statement of BB is a conditional
2890 expression of the form 'X op Y', then
2892 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
2894 b) If the conditional is the only entry point to the sub-graph
2895 corresponding to the THEN_CLAUSE, recurse into it. On
2896 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
2897 an ASSERT_EXPR is added for the corresponding variable.
2899 c) Repeat step (b) on the ELSE_CLAUSE.
2901 d) Mark X and Y in FOUND_IN_SUBGRAPH.
2903 For instance,
2905 if (a == 9)
2906 b = a;
2907 else
2908 b = c + 1;
2910 In this case, an assertion on the THEN clause is useful to
2911 determine that 'a' is always 9 on that edge. However, an assertion
2912 on the ELSE clause would be unnecessary.
2914 4- If BB does not end in a conditional expression, then we recurse
2915 into BB's dominator children.
2917 At the end of the recursive traversal, every SSA name will have a
2918 list of locations where ASSERT_EXPRs should be added. When a new
2919 location for name N is found, it is registered by calling
2920 register_new_assert_for. That function keeps track of all the
2921 registered assertions to prevent adding unnecessary assertions.
2922 For instance, if a pointer P_4 is dereferenced more than once in a
2923 dominator tree, only the location dominating all the dereference of
2924 P_4 will receive an ASSERT_EXPR.
2926 If this function returns true, then it means that there are names
2927 for which we need to generate ASSERT_EXPRs. Those assertions are
2928 inserted by process_assert_insertions.
2930 TODO. Handle SWITCH_EXPR. */
2932 static bool
2933 find_assert_locations (basic_block bb)
2935 block_stmt_iterator si;
2936 tree last, phi;
2937 bool need_assert;
2938 basic_block son;
2940 if (TEST_BIT (blocks_visited, bb->index))
2941 return false;
2943 SET_BIT (blocks_visited, bb->index);
2945 need_assert = false;
2947 /* Traverse all PHI nodes in BB marking used operands. */
2948 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2950 use_operand_p arg_p;
2951 ssa_op_iter i;
2953 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
2955 tree arg = USE_FROM_PTR (arg_p);
2956 if (TREE_CODE (arg) == SSA_NAME)
2958 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
2959 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
2964 /* Traverse all the statements in BB marking used names and looking
2965 for statements that may infer assertions for their used operands. */
2966 last = NULL_TREE;
2967 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2969 tree stmt, op;
2970 ssa_op_iter i;
2972 stmt = bsi_stmt (si);
2974 /* See if we can derive an assertion for any of STMT's operands. */
2975 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
2977 tree value;
2978 enum tree_code comp_code;
2980 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
2981 the sub-graph of a conditional block, when we return from
2982 this recursive walk, our parent will use the
2983 FOUND_IN_SUBGRAPH bitset to determine if one of the
2984 operands it was looking for was present in the sub-graph. */
2985 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2987 /* If OP is used in such a way that we can infer a value
2988 range for it, and we don't find a previous assertion for
2989 it, create a new assertion location node for OP. */
2990 if (infer_value_range (stmt, op, &comp_code, &value))
2992 /* If we are able to infer a nonzero value range for OP,
2993 then walk backwards through the use-def chain to see if OP
2994 was set via a typecast.
2996 If so, then we can also infer a nonzero value range
2997 for the operand of the NOP_EXPR. */
2998 if (comp_code == NE_EXPR && integer_zerop (value))
3000 tree t = op;
3001 tree def_stmt = SSA_NAME_DEF_STMT (t);
3003 while (TREE_CODE (def_stmt) == MODIFY_EXPR
3004 && TREE_CODE (TREE_OPERAND (def_stmt, 1)) == NOP_EXPR
3005 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0)) == SSA_NAME
3006 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0))))
3008 t = TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0);
3009 def_stmt = SSA_NAME_DEF_STMT (t);
3011 /* Note we want to register the assert for the
3012 operand of the NOP_EXPR after SI, not after the
3013 conversion. */
3014 if (! has_single_use (t))
3016 register_new_assert_for (t, comp_code, value,
3017 bb, NULL, si);
3018 need_assert = true;
3023 /* If OP is used only once, namely in this STMT, don't
3024 bother creating an ASSERT_EXPR for it. Such an
3025 ASSERT_EXPR would do nothing but increase compile time. */
3026 if (!has_single_use (op))
3028 register_new_assert_for (op, comp_code, value, bb, NULL, si);
3029 need_assert = true;
3034 /* Remember the last statement of the block. */
3035 last = stmt;
3038 /* If BB's last statement is a conditional expression
3039 involving integer operands, recurse into each of the sub-graphs
3040 rooted at BB to determine if we need to add ASSERT_EXPRs. */
3041 if (last
3042 && TREE_CODE (last) == COND_EXPR
3043 && !fp_predicate (COND_EXPR_COND (last))
3044 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3045 need_assert |= find_conditional_asserts (bb);
3047 /* Recurse into the dominator children of BB. */
3048 for (son = first_dom_son (CDI_DOMINATORS, bb);
3049 son;
3050 son = next_dom_son (CDI_DOMINATORS, son))
3051 need_assert |= find_assert_locations (son);
3053 return need_assert;
3057 /* Create an ASSERT_EXPR for NAME and insert it in the location
3058 indicated by LOC. Return true if we made any edge insertions. */
3060 static bool
3061 process_assert_insertions_for (tree name, assert_locus_t loc)
3063 /* Build the comparison expression NAME_i COMP_CODE VAL. */
3064 tree stmt, cond, assert_expr;
3065 edge_iterator ei;
3066 edge e;
3068 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
3069 assert_expr = build_assert_expr_for (cond, name);
3071 if (loc->e)
3073 /* We have been asked to insert the assertion on an edge. This
3074 is used only by COND_EXPR and SWITCH_EXPR assertions. */
3075 #if defined ENABLE_CHECKING
3076 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
3077 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
3078 #endif
3080 bsi_insert_on_edge (loc->e, assert_expr);
3081 return true;
3084 /* Otherwise, we can insert right after LOC->SI iff the
3085 statement must not be the last statement in the block. */
3086 stmt = bsi_stmt (loc->si);
3087 if (!stmt_ends_bb_p (stmt))
3089 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
3090 return false;
3093 /* If STMT must be the last statement in BB, we can only insert new
3094 assertions on the non-abnormal edge out of BB. Note that since
3095 STMT is not control flow, there may only be one non-abnormal edge
3096 out of BB. */
3097 FOR_EACH_EDGE (e, ei, loc->bb->succs)
3098 if (!(e->flags & EDGE_ABNORMAL))
3100 bsi_insert_on_edge (e, assert_expr);
3101 return true;
3104 gcc_unreachable ();
3108 /* Process all the insertions registered for every name N_i registered
3109 in NEED_ASSERT_FOR. The list of assertions to be inserted are
3110 found in ASSERTS_FOR[i]. */
3112 static void
3113 process_assert_insertions (void)
3115 unsigned i;
3116 bitmap_iterator bi;
3117 bool update_edges_p = false;
3118 int num_asserts = 0;
3120 if (dump_file && (dump_flags & TDF_DETAILS))
3121 dump_all_asserts (dump_file);
3123 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3125 assert_locus_t loc = asserts_for[i];
3126 gcc_assert (loc);
3128 while (loc)
3130 assert_locus_t next = loc->next;
3131 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
3132 free (loc);
3133 loc = next;
3134 num_asserts++;
3138 if (update_edges_p)
3139 bsi_commit_edge_inserts ();
3141 if (dump_file && (dump_flags & TDF_STATS))
3142 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3143 num_asserts);
3147 /* Traverse the flowgraph looking for conditional jumps to insert range
3148 expressions. These range expressions are meant to provide information
3149 to optimizations that need to reason in terms of value ranges. They
3150 will not be expanded into RTL. For instance, given:
3152 x = ...
3153 y = ...
3154 if (x < y)
3155 y = x - 2;
3156 else
3157 x = y + 3;
3159 this pass will transform the code into:
3161 x = ...
3162 y = ...
3163 if (x < y)
3165 x = ASSERT_EXPR <x, x < y>
3166 y = x - 2
3168 else
3170 y = ASSERT_EXPR <y, x <= y>
3171 x = y + 3
3174 The idea is that once copy and constant propagation have run, other
3175 optimizations will be able to determine what ranges of values can 'x'
3176 take in different paths of the code, simply by checking the reaching
3177 definition of 'x'. */
3179 static void
3180 insert_range_assertions (void)
3182 edge e;
3183 edge_iterator ei;
3184 bool update_ssa_p;
3186 found_in_subgraph = sbitmap_alloc (num_ssa_names);
3187 sbitmap_zero (found_in_subgraph);
3189 blocks_visited = sbitmap_alloc (last_basic_block);
3190 sbitmap_zero (blocks_visited);
3192 need_assert_for = BITMAP_ALLOC (NULL);
3193 asserts_for = XNEWVEC (assert_locus_t, num_ssa_names);
3194 memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
3196 calculate_dominance_info (CDI_DOMINATORS);
3198 update_ssa_p = false;
3199 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3200 if (find_assert_locations (e->dest))
3201 update_ssa_p = true;
3203 if (update_ssa_p)
3205 process_assert_insertions ();
3206 update_ssa (TODO_update_ssa_no_phi);
3209 if (dump_file && (dump_flags & TDF_DETAILS))
3211 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
3212 dump_function_to_file (current_function_decl, dump_file, dump_flags);
3215 sbitmap_free (found_in_subgraph);
3216 free (asserts_for);
3217 BITMAP_FREE (need_assert_for);
3221 /* Convert range assertion expressions into the implied copies and
3222 copy propagate away the copies. Doing the trivial copy propagation
3223 here avoids the need to run the full copy propagation pass after
3224 VRP.
3226 FIXME, this will eventually lead to copy propagation removing the
3227 names that had useful range information attached to them. For
3228 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3229 then N_i will have the range [3, +INF].
3231 However, by converting the assertion into the implied copy
3232 operation N_i = N_j, we will then copy-propagate N_j into the uses
3233 of N_i and lose the range information. We may want to hold on to
3234 ASSERT_EXPRs a little while longer as the ranges could be used in
3235 things like jump threading.
3237 The problem with keeping ASSERT_EXPRs around is that passes after
3238 VRP need to handle them appropriately.
3240 Another approach would be to make the range information a first
3241 class property of the SSA_NAME so that it can be queried from
3242 any pass. This is made somewhat more complex by the need for
3243 multiple ranges to be associated with one SSA_NAME. */
3245 static void
3246 remove_range_assertions (void)
3248 basic_block bb;
3249 block_stmt_iterator si;
3251 /* Note that the BSI iterator bump happens at the bottom of the
3252 loop and no bump is necessary if we're removing the statement
3253 referenced by the current BSI. */
3254 FOR_EACH_BB (bb)
3255 for (si = bsi_start (bb); !bsi_end_p (si);)
3257 tree stmt = bsi_stmt (si);
3258 tree use_stmt;
3260 if (TREE_CODE (stmt) == MODIFY_EXPR
3261 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
3263 tree rhs = TREE_OPERAND (stmt, 1), var;
3264 tree cond = fold (ASSERT_EXPR_COND (rhs));
3265 use_operand_p use_p;
3266 imm_use_iterator iter;
3268 gcc_assert (cond != boolean_false_node);
3270 /* Propagate the RHS into every use of the LHS. */
3271 var = ASSERT_EXPR_VAR (rhs);
3272 FOR_EACH_IMM_USE_STMT (use_stmt, iter, TREE_OPERAND (stmt, 0))
3273 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3275 SET_USE (use_p, var);
3276 gcc_assert (TREE_CODE (var) == SSA_NAME);
3279 /* And finally, remove the copy, it is not needed. */
3280 bsi_remove (&si, true);
3282 else
3283 bsi_next (&si);
3286 sbitmap_free (blocks_visited);
3290 /* Return true if STMT is interesting for VRP. */
3292 static bool
3293 stmt_interesting_for_vrp (tree stmt)
3295 if (TREE_CODE (stmt) == PHI_NODE
3296 && is_gimple_reg (PHI_RESULT (stmt))
3297 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3298 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3299 return true;
3300 else if (TREE_CODE (stmt) == MODIFY_EXPR)
3302 tree lhs = TREE_OPERAND (stmt, 0);
3303 tree rhs = TREE_OPERAND (stmt, 1);
3305 /* In general, assignments with virtual operands are not useful
3306 for deriving ranges, with the obvious exception of calls to
3307 builtin functions. */
3308 if (TREE_CODE (lhs) == SSA_NAME
3309 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3310 || POINTER_TYPE_P (TREE_TYPE (lhs)))
3311 && ((TREE_CODE (rhs) == CALL_EXPR
3312 && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3313 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3314 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3315 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
3316 return true;
3318 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3319 return true;
3321 return false;
3325 /* Initialize local data structures for VRP. */
3327 static void
3328 vrp_initialize (void)
3330 basic_block bb;
3332 vr_value = XNEWVEC (value_range_t *, num_ssa_names);
3333 memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
3335 FOR_EACH_BB (bb)
3337 block_stmt_iterator si;
3338 tree phi;
3340 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3342 if (!stmt_interesting_for_vrp (phi))
3344 tree lhs = PHI_RESULT (phi);
3345 set_value_range_to_varying (get_value_range (lhs));
3346 DONT_SIMULATE_AGAIN (phi) = true;
3348 else
3349 DONT_SIMULATE_AGAIN (phi) = false;
3352 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3354 tree stmt = bsi_stmt (si);
3356 if (!stmt_interesting_for_vrp (stmt))
3358 ssa_op_iter i;
3359 tree def;
3360 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
3361 set_value_range_to_varying (get_value_range (def));
3362 DONT_SIMULATE_AGAIN (stmt) = true;
3364 else
3366 DONT_SIMULATE_AGAIN (stmt) = false;
3373 /* Visit assignment STMT. If it produces an interesting range, record
3374 the SSA name in *OUTPUT_P. */
3376 static enum ssa_prop_result
3377 vrp_visit_assignment (tree stmt, tree *output_p)
3379 tree lhs, rhs, def;
3380 ssa_op_iter iter;
3382 lhs = TREE_OPERAND (stmt, 0);
3383 rhs = TREE_OPERAND (stmt, 1);
3385 /* We only keep track of ranges in integral and pointer types. */
3386 if (TREE_CODE (lhs) == SSA_NAME
3387 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3388 /* It is valid to have NULL MIN/MAX values on a type. See
3389 build_range_type. */
3390 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
3391 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
3392 || POINTER_TYPE_P (TREE_TYPE (lhs))))
3394 struct loop *l;
3395 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3397 extract_range_from_expr (&new_vr, rhs);
3399 /* If STMT is inside a loop, we may be able to know something
3400 else about the range of LHS by examining scalar evolution
3401 information. */
3402 if (current_loops && (l = loop_containing_stmt (stmt)))
3403 adjust_range_with_scev (&new_vr, l, stmt, lhs);
3405 if (update_value_range (lhs, &new_vr))
3407 *output_p = lhs;
3409 if (dump_file && (dump_flags & TDF_DETAILS))
3411 fprintf (dump_file, "Found new range for ");
3412 print_generic_expr (dump_file, lhs, 0);
3413 fprintf (dump_file, ": ");
3414 dump_value_range (dump_file, &new_vr);
3415 fprintf (dump_file, "\n\n");
3418 if (new_vr.type == VR_VARYING)
3419 return SSA_PROP_VARYING;
3421 return SSA_PROP_INTERESTING;
3424 return SSA_PROP_NOT_INTERESTING;
3427 /* Every other statement produces no useful ranges. */
3428 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3429 set_value_range_to_varying (get_value_range (def));
3431 return SSA_PROP_VARYING;
3435 /* Compare all the value ranges for names equivalent to VAR with VAL
3436 using comparison code COMP. Return the same value returned by
3437 compare_range_with_value. */
3439 static tree
3440 compare_name_with_value (enum tree_code comp, tree var, tree val)
3442 bitmap_iterator bi;
3443 unsigned i;
3444 bitmap e;
3445 tree retval, t;
3447 t = retval = NULL_TREE;
3449 /* Get the set of equivalences for VAR. */
3450 e = get_value_range (var)->equiv;
3452 /* Add VAR to its own set of equivalences so that VAR's value range
3453 is processed by this loop (otherwise, we would have to replicate
3454 the body of the loop just to check VAR's value range). */
3455 bitmap_set_bit (e, SSA_NAME_VERSION (var));
3457 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
3459 value_range_t equiv_vr = *(vr_value[i]);
3461 /* If name N_i does not have a valid range, use N_i as its own
3462 range. This allows us to compare against names that may
3463 have N_i in their ranges. */
3464 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
3466 equiv_vr.type = VR_RANGE;
3467 equiv_vr.min = ssa_name (i);
3468 equiv_vr.max = ssa_name (i);
3471 t = compare_range_with_value (comp, &equiv_vr, val);
3472 if (t)
3474 /* If we get different answers from different members
3475 of the equivalence set this check must be in a dead
3476 code region. Folding it to a trap representation
3477 would be correct here. For now just return don't-know. */
3478 if (retval != NULL
3479 && t != retval)
3481 retval = NULL_TREE;
3482 break;
3484 retval = t;
3488 /* Remove VAR from its own equivalence set. */
3489 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
3491 if (retval)
3492 return retval;
3494 /* We couldn't find a non-NULL value for the predicate. */
3495 return NULL_TREE;
3499 /* Given a comparison code COMP and names N1 and N2, compare all the
3500 ranges equivalent to N1 against all the ranges equivalent to N2
3501 to determine the value of N1 COMP N2. Return the same value
3502 returned by compare_ranges. */
3504 static tree
3505 compare_names (enum tree_code comp, tree n1, tree n2)
3507 tree t, retval;
3508 bitmap e1, e2;
3509 bitmap_iterator bi1, bi2;
3510 unsigned i1, i2;
3512 /* Compare the ranges of every name equivalent to N1 against the
3513 ranges of every name equivalent to N2. */
3514 e1 = get_value_range (n1)->equiv;
3515 e2 = get_value_range (n2)->equiv;
3517 /* Add N1 and N2 to their own set of equivalences to avoid
3518 duplicating the body of the loop just to check N1 and N2
3519 ranges. */
3520 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
3521 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
3523 /* If the equivalence sets have a common intersection, then the two
3524 names can be compared without checking their ranges. */
3525 if (bitmap_intersect_p (e1, e2))
3527 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3528 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3530 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
3531 ? boolean_true_node
3532 : boolean_false_node;
3535 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3536 N2 to their own set of equivalences to avoid duplicating the body
3537 of the loop just to check N1 and N2 ranges. */
3538 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
3540 value_range_t vr1 = *(vr_value[i1]);
3542 /* If the range is VARYING or UNDEFINED, use the name itself. */
3543 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
3545 vr1.type = VR_RANGE;
3546 vr1.min = ssa_name (i1);
3547 vr1.max = ssa_name (i1);
3550 t = retval = NULL_TREE;
3551 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
3553 value_range_t vr2 = *(vr_value[i2]);
3555 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
3557 vr2.type = VR_RANGE;
3558 vr2.min = ssa_name (i2);
3559 vr2.max = ssa_name (i2);
3562 t = compare_ranges (comp, &vr1, &vr2);
3563 if (t)
3565 /* If we get different answers from different members
3566 of the equivalence set this check must be in a dead
3567 code region. Folding it to a trap representation
3568 would be correct here. For now just return don't-know. */
3569 if (retval != NULL
3570 && t != retval)
3572 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3573 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3574 return NULL_TREE;
3576 retval = t;
3580 if (retval)
3582 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3583 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3584 return retval;
3588 /* None of the equivalent ranges are useful in computing this
3589 comparison. */
3590 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3591 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3592 return NULL_TREE;
3596 /* Given a conditional predicate COND, try to determine if COND yields
3597 true or false based on the value ranges of its operands. Return
3598 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3599 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3600 NULL if the conditional cannot be evaluated at compile time.
3602 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3603 the operands in COND are used when trying to compute its value.
3604 This is only used during final substitution. During propagation,
3605 we only check the range of each variable and not its equivalents. */
3607 tree
3608 vrp_evaluate_conditional (tree cond, bool use_equiv_p)
3610 gcc_assert (TREE_CODE (cond) == SSA_NAME
3611 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
3613 if (TREE_CODE (cond) == SSA_NAME)
3615 value_range_t *vr;
3616 tree retval;
3618 if (use_equiv_p)
3619 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
3620 else
3622 value_range_t *vr = get_value_range (cond);
3623 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
3626 /* If COND has a known boolean range, return it. */
3627 if (retval)
3628 return retval;
3630 /* Otherwise, if COND has a symbolic range of exactly one value,
3631 return it. */
3632 vr = get_value_range (cond);
3633 if (vr->type == VR_RANGE && vr->min == vr->max)
3634 return vr->min;
3636 else
3638 tree op0 = TREE_OPERAND (cond, 0);
3639 tree op1 = TREE_OPERAND (cond, 1);
3641 /* We only deal with integral and pointer types. */
3642 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
3643 && !POINTER_TYPE_P (TREE_TYPE (op0)))
3644 return NULL_TREE;
3646 if (use_equiv_p)
3648 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
3649 return compare_names (TREE_CODE (cond), op0, op1);
3650 else if (TREE_CODE (op0) == SSA_NAME)
3651 return compare_name_with_value (TREE_CODE (cond), op0, op1);
3652 else if (TREE_CODE (op1) == SSA_NAME)
3653 return compare_name_with_value (
3654 swap_tree_comparison (TREE_CODE (cond)), op1, op0);
3656 else
3658 value_range_t *vr0, *vr1;
3660 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
3661 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
3663 if (vr0 && vr1)
3664 return compare_ranges (TREE_CODE (cond), vr0, vr1);
3665 else if (vr0 && vr1 == NULL)
3666 return compare_range_with_value (TREE_CODE (cond), vr0, op1);
3667 else if (vr0 == NULL && vr1)
3668 return compare_range_with_value (
3669 swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
3673 /* Anything else cannot be computed statically. */
3674 return NULL_TREE;
3678 /* Visit conditional statement STMT. If we can determine which edge
3679 will be taken out of STMT's basic block, record it in
3680 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3681 SSA_PROP_VARYING. */
3683 static enum ssa_prop_result
3684 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
3686 tree cond, val;
3688 *taken_edge_p = NULL;
3690 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3691 add ASSERT_EXPRs for them. */
3692 if (TREE_CODE (stmt) == SWITCH_EXPR)
3693 return SSA_PROP_VARYING;
3695 cond = COND_EXPR_COND (stmt);
3697 if (dump_file && (dump_flags & TDF_DETAILS))
3699 tree use;
3700 ssa_op_iter i;
3702 fprintf (dump_file, "\nVisiting conditional with predicate: ");
3703 print_generic_expr (dump_file, cond, 0);
3704 fprintf (dump_file, "\nWith known ranges\n");
3706 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
3708 fprintf (dump_file, "\t");
3709 print_generic_expr (dump_file, use, 0);
3710 fprintf (dump_file, ": ");
3711 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
3714 fprintf (dump_file, "\n");
3717 /* Compute the value of the predicate COND by checking the known
3718 ranges of each of its operands.
3720 Note that we cannot evaluate all the equivalent ranges here
3721 because those ranges may not yet be final and with the current
3722 propagation strategy, we cannot determine when the value ranges
3723 of the names in the equivalence set have changed.
3725 For instance, given the following code fragment
3727 i_5 = PHI <8, i_13>
3729 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3730 if (i_14 == 1)
3733 Assume that on the first visit to i_14, i_5 has the temporary
3734 range [8, 8] because the second argument to the PHI function is
3735 not yet executable. We derive the range ~[0, 0] for i_14 and the
3736 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3737 the first time, since i_14 is equivalent to the range [8, 8], we
3738 determine that the predicate is always false.
3740 On the next round of propagation, i_13 is determined to be
3741 VARYING, which causes i_5 to drop down to VARYING. So, another
3742 visit to i_14 is scheduled. In this second visit, we compute the
3743 exact same range and equivalence set for i_14, namely ~[0, 0] and
3744 { i_5 }. But we did not have the previous range for i_5
3745 registered, so vrp_visit_assignment thinks that the range for
3746 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3747 is not visited again, which stops propagation from visiting
3748 statements in the THEN clause of that if().
3750 To properly fix this we would need to keep the previous range
3751 value for the names in the equivalence set. This way we would've
3752 discovered that from one visit to the other i_5 changed from
3753 range [8, 8] to VR_VARYING.
3755 However, fixing this apparent limitation may not be worth the
3756 additional checking. Testing on several code bases (GCC, DLV,
3757 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3758 4 more predicates folded in SPEC. */
3759 val = vrp_evaluate_conditional (cond, false);
3760 if (val)
3761 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
3763 if (dump_file && (dump_flags & TDF_DETAILS))
3765 fprintf (dump_file, "\nPredicate evaluates to: ");
3766 if (val == NULL_TREE)
3767 fprintf (dump_file, "DON'T KNOW\n");
3768 else
3769 print_generic_stmt (dump_file, val, 0);
3772 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
3776 /* Evaluate statement STMT. If the statement produces a useful range,
3777 return SSA_PROP_INTERESTING and record the SSA name with the
3778 interesting range into *OUTPUT_P.
3780 If STMT is a conditional branch and we can determine its truth
3781 value, the taken edge is recorded in *TAKEN_EDGE_P.
3783 If STMT produces a varying value, return SSA_PROP_VARYING. */
3785 static enum ssa_prop_result
3786 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
3788 tree def;
3789 ssa_op_iter iter;
3790 stmt_ann_t ann;
3792 if (dump_file && (dump_flags & TDF_DETAILS))
3794 fprintf (dump_file, "\nVisiting statement:\n");
3795 print_generic_stmt (dump_file, stmt, dump_flags);
3796 fprintf (dump_file, "\n");
3799 ann = stmt_ann (stmt);
3800 if (TREE_CODE (stmt) == MODIFY_EXPR)
3802 tree rhs = TREE_OPERAND (stmt, 1);
3804 /* In general, assignments with virtual operands are not useful
3805 for deriving ranges, with the obvious exception of calls to
3806 builtin functions. */
3807 if ((TREE_CODE (rhs) == CALL_EXPR
3808 && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3809 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3810 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3811 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3812 return vrp_visit_assignment (stmt, output_p);
3814 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3815 return vrp_visit_cond_stmt (stmt, taken_edge_p);
3817 /* All other statements produce nothing of interest for VRP, so mark
3818 their outputs varying and prevent further simulation. */
3819 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3820 set_value_range_to_varying (get_value_range (def));
3822 return SSA_PROP_VARYING;
3826 /* Meet operation for value ranges. Given two value ranges VR0 and
3827 VR1, store in VR0 the result of meeting VR0 and VR1.
3829 The meeting rules are as follows:
3831 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
3833 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
3834 union of VR0 and VR1. */
3836 static void
3837 vrp_meet (value_range_t *vr0, value_range_t *vr1)
3839 if (vr0->type == VR_UNDEFINED)
3841 copy_value_range (vr0, vr1);
3842 return;
3845 if (vr1->type == VR_UNDEFINED)
3847 /* Nothing to do. VR0 already has the resulting range. */
3848 return;
3851 if (vr0->type == VR_VARYING)
3853 /* Nothing to do. VR0 already has the resulting range. */
3854 return;
3857 if (vr1->type == VR_VARYING)
3859 set_value_range_to_varying (vr0);
3860 return;
3863 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
3865 /* If VR0 and VR1 have a non-empty intersection, compute the
3866 union of both ranges. */
3867 if (value_ranges_intersect_p (vr0, vr1))
3869 int cmp;
3870 tree min, max;
3872 /* The lower limit of the new range is the minimum of the
3873 two ranges. If they cannot be compared, the result is
3874 VARYING. */
3875 cmp = compare_values (vr0->min, vr1->min);
3876 if (cmp == 0 || cmp == 1)
3877 min = vr1->min;
3878 else if (cmp == -1)
3879 min = vr0->min;
3880 else
3882 set_value_range_to_varying (vr0);
3883 return;
3886 /* Similarly, the upper limit of the new range is the
3887 maximum of the two ranges. If they cannot be compared,
3888 the result is VARYING. */
3889 cmp = compare_values (vr0->max, vr1->max);
3890 if (cmp == 0 || cmp == -1)
3891 max = vr1->max;
3892 else if (cmp == 1)
3893 max = vr0->max;
3894 else
3896 set_value_range_to_varying (vr0);
3897 return;
3900 /* The resulting set of equivalences is the intersection of
3901 the two sets. */
3902 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3903 bitmap_and_into (vr0->equiv, vr1->equiv);
3904 else if (vr0->equiv && !vr1->equiv)
3905 bitmap_clear (vr0->equiv);
3907 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
3909 else
3910 goto no_meet;
3912 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3914 /* Two anti-ranges meet only if they are both identical. */
3915 if (compare_values (vr0->min, vr1->min) == 0
3916 && compare_values (vr0->max, vr1->max) == 0
3917 && compare_values (vr0->min, vr0->max) == 0)
3919 /* The resulting set of equivalences is the intersection of
3920 the two sets. */
3921 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3922 bitmap_and_into (vr0->equiv, vr1->equiv);
3923 else if (vr0->equiv && !vr1->equiv)
3924 bitmap_clear (vr0->equiv);
3926 else
3927 goto no_meet;
3929 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3931 /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
3932 meet only if the ranges have an empty intersection. The
3933 result of the meet operation is the anti-range. */
3934 if (!symbolic_range_p (vr0)
3935 && !symbolic_range_p (vr1)
3936 && !value_ranges_intersect_p (vr0, vr1))
3938 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
3939 set. We need to compute the intersection of the two
3940 equivalence sets. */
3941 if (vr1->type == VR_ANTI_RANGE)
3942 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
3944 /* The resulting set of equivalences is the intersection of
3945 the two sets. */
3946 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3947 bitmap_and_into (vr0->equiv, vr1->equiv);
3948 else if (vr0->equiv && !vr1->equiv)
3949 bitmap_clear (vr0->equiv);
3951 else
3952 goto no_meet;
3954 else
3955 gcc_unreachable ();
3957 return;
3959 no_meet:
3960 /* The two range VR0 and VR1 do not meet. Before giving up and
3961 setting the result to VARYING, see if we can at least derive a
3962 useful anti-range. FIXME, all this nonsense about distinguishing
3963 anti-ranges from ranges is necessary because of the odd
3964 semantics of range_includes_zero_p and friends. */
3965 if (!symbolic_range_p (vr0)
3966 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
3967 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
3968 && !symbolic_range_p (vr1)
3969 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
3970 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
3972 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
3974 /* Since this meet operation did not result from the meeting of
3975 two equivalent names, VR0 cannot have any equivalences. */
3976 if (vr0->equiv)
3977 bitmap_clear (vr0->equiv);
3979 else
3980 set_value_range_to_varying (vr0);
3984 /* Visit all arguments for PHI node PHI that flow through executable
3985 edges. If a valid value range can be derived from all the incoming
3986 value ranges, set a new range for the LHS of PHI. */
3988 static enum ssa_prop_result
3989 vrp_visit_phi_node (tree phi)
3991 int i;
3992 tree lhs = PHI_RESULT (phi);
3993 value_range_t *lhs_vr = get_value_range (lhs);
3994 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3996 copy_value_range (&vr_result, lhs_vr);
3998 if (dump_file && (dump_flags & TDF_DETAILS))
4000 fprintf (dump_file, "\nVisiting PHI node: ");
4001 print_generic_expr (dump_file, phi, dump_flags);
4004 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
4006 edge e = PHI_ARG_EDGE (phi, i);
4008 if (dump_file && (dump_flags & TDF_DETAILS))
4010 fprintf (dump_file,
4011 "\n Argument #%d (%d -> %d %sexecutable)\n",
4012 i, e->src->index, e->dest->index,
4013 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
4016 if (e->flags & EDGE_EXECUTABLE)
4018 tree arg = PHI_ARG_DEF (phi, i);
4019 value_range_t vr_arg;
4021 if (TREE_CODE (arg) == SSA_NAME)
4022 vr_arg = *(get_value_range (arg));
4023 else
4025 vr_arg.type = VR_RANGE;
4026 vr_arg.min = arg;
4027 vr_arg.max = arg;
4028 vr_arg.equiv = NULL;
4031 if (dump_file && (dump_flags & TDF_DETAILS))
4033 fprintf (dump_file, "\t");
4034 print_generic_expr (dump_file, arg, dump_flags);
4035 fprintf (dump_file, "\n\tValue: ");
4036 dump_value_range (dump_file, &vr_arg);
4037 fprintf (dump_file, "\n");
4040 vrp_meet (&vr_result, &vr_arg);
4042 if (vr_result.type == VR_VARYING)
4043 break;
4047 if (vr_result.type == VR_VARYING)
4048 goto varying;
4050 /* To prevent infinite iterations in the algorithm, derive ranges
4051 when the new value is slightly bigger or smaller than the
4052 previous one. */
4053 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
4055 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
4057 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
4058 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
4060 /* If the new minimum is smaller or larger than the previous
4061 one, go all the way to -INF. In the first case, to avoid
4062 iterating millions of times to reach -INF, and in the
4063 other case to avoid infinite bouncing between different
4064 minimums. */
4065 if (cmp_min > 0 || cmp_min < 0)
4066 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
4068 /* Similarly, if the new maximum is smaller or larger than
4069 the previous one, go all the way to +INF. */
4070 if (cmp_max < 0 || cmp_max > 0)
4071 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
4073 /* If we ended up with a (-INF, +INF) range, set it to
4074 VARYING. */
4075 if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
4076 && vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
4077 goto varying;
4081 /* If the new range is different than the previous value, keep
4082 iterating. */
4083 if (update_value_range (lhs, &vr_result))
4084 return SSA_PROP_INTERESTING;
4086 /* Nothing changed, don't add outgoing edges. */
4087 return SSA_PROP_NOT_INTERESTING;
4089 /* No match found. Set the LHS to VARYING. */
4090 varying:
4091 set_value_range_to_varying (lhs_vr);
4092 return SSA_PROP_VARYING;
4095 /* Simplify a division or modulo operator to a right shift or
4096 bitwise and if the first operand is unsigned or is greater
4097 than zero and the second operand is an exact power of two. */
4099 static void
4100 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
4102 tree val = NULL;
4103 tree op = TREE_OPERAND (rhs, 0);
4104 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4106 if (TYPE_UNSIGNED (TREE_TYPE (op)))
4108 val = integer_one_node;
4110 else
4112 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
4115 if (val && integer_onep (val))
4117 tree t;
4118 tree op0 = TREE_OPERAND (rhs, 0);
4119 tree op1 = TREE_OPERAND (rhs, 1);
4121 if (rhs_code == TRUNC_DIV_EXPR)
4123 t = build_int_cst (NULL_TREE, tree_log2 (op1));
4124 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
4126 else
4128 t = build_int_cst (TREE_TYPE (op1), 1);
4129 t = int_const_binop (MINUS_EXPR, op1, t, 0);
4130 t = fold_convert (TREE_TYPE (op0), t);
4131 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
4134 TREE_OPERAND (stmt, 1) = t;
4135 update_stmt (stmt);
4139 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
4140 ABS_EXPR. If the operand is <= 0, then simplify the
4141 ABS_EXPR into a NEGATE_EXPR. */
4143 static void
4144 simplify_abs_using_ranges (tree stmt, tree rhs)
4146 tree val = NULL;
4147 tree op = TREE_OPERAND (rhs, 0);
4148 tree type = TREE_TYPE (op);
4149 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4151 if (TYPE_UNSIGNED (type))
4153 val = integer_zero_node;
4155 else if (vr)
4157 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
4158 if (!val)
4160 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
4162 if (val)
4164 if (integer_zerop (val))
4165 val = integer_one_node;
4166 else if (integer_onep (val))
4167 val = integer_zero_node;
4171 if (val
4172 && (integer_onep (val) || integer_zerop (val)))
4174 tree t;
4176 if (integer_onep (val))
4177 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
4178 else
4179 t = op;
4181 TREE_OPERAND (stmt, 1) = t;
4182 update_stmt (stmt);
4187 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
4188 a known value range VR.
4190 If there is one and only one value which will satisfy the
4191 conditional, then return that value. Else return NULL. */
4193 static tree
4194 test_for_singularity (enum tree_code cond_code, tree op0,
4195 tree op1, value_range_t *vr)
4197 tree min = NULL;
4198 tree max = NULL;
4200 /* Extract minimum/maximum values which satisfy the
4201 the conditional as it was written. */
4202 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
4204 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
4206 max = op1;
4207 if (cond_code == LT_EXPR)
4209 tree one = build_int_cst (TREE_TYPE (op0), 1);
4210 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
4213 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
4215 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
4217 min = op1;
4218 if (cond_code == GT_EXPR)
4220 tree one = build_int_cst (TREE_TYPE (op0), 1);
4221 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
4225 /* Now refine the minimum and maximum values using any
4226 value range information we have for op0. */
4227 if (min && max)
4229 if (compare_values (vr->min, min) == -1)
4230 min = min;
4231 else
4232 min = vr->min;
4233 if (compare_values (vr->max, max) == 1)
4234 max = max;
4235 else
4236 max = vr->max;
4238 /* If the new min/max values have converged to a single value,
4239 then there is only one value which can satisfy the condition,
4240 return that value. */
4241 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
4242 return min;
4244 return NULL;
4247 /* Simplify a conditional using a relational operator to an equality
4248 test if the range information indicates only one value can satisfy
4249 the original conditional. */
4251 static void
4252 simplify_cond_using_ranges (tree stmt)
4254 tree cond = COND_EXPR_COND (stmt);
4255 tree op0 = TREE_OPERAND (cond, 0);
4256 tree op1 = TREE_OPERAND (cond, 1);
4257 enum tree_code cond_code = TREE_CODE (cond);
4259 if (cond_code != NE_EXPR
4260 && cond_code != EQ_EXPR
4261 && TREE_CODE (op0) == SSA_NAME
4262 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
4263 && is_gimple_min_invariant (op1))
4265 value_range_t *vr = get_value_range (op0);
4267 /* If we have range information for OP0, then we might be
4268 able to simplify this conditional. */
4269 if (vr->type == VR_RANGE)
4271 tree new = test_for_singularity (cond_code, op0, op1, vr);
4273 if (new)
4275 if (dump_file)
4277 fprintf (dump_file, "Simplified relational ");
4278 print_generic_expr (dump_file, cond, 0);
4279 fprintf (dump_file, " into ");
4282 COND_EXPR_COND (stmt)
4283 = build2 (EQ_EXPR, boolean_type_node, op0, new);
4284 update_stmt (stmt);
4286 if (dump_file)
4288 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4289 fprintf (dump_file, "\n");
4291 return;
4295 /* Try again after inverting the condition. We only deal
4296 with integral types here, so no need to worry about
4297 issues with inverting FP comparisons. */
4298 cond_code = invert_tree_comparison (cond_code, false);
4299 new = test_for_singularity (cond_code, op0, op1, vr);
4301 if (new)
4303 if (dump_file)
4305 fprintf (dump_file, "Simplified relational ");
4306 print_generic_expr (dump_file, cond, 0);
4307 fprintf (dump_file, " into ");
4310 COND_EXPR_COND (stmt)
4311 = build2 (NE_EXPR, boolean_type_node, op0, new);
4312 update_stmt (stmt);
4314 if (dump_file)
4316 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4317 fprintf (dump_file, "\n");
4319 return;
4326 /* Simplify STMT using ranges if possible. */
4328 void
4329 simplify_stmt_using_ranges (tree stmt)
4331 if (TREE_CODE (stmt) == MODIFY_EXPR)
4333 tree rhs = TREE_OPERAND (stmt, 1);
4334 enum tree_code rhs_code = TREE_CODE (rhs);
4336 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4337 and BIT_AND_EXPR respectively if the first operand is greater
4338 than zero and the second operand is an exact power of two. */
4339 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
4340 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
4341 && integer_pow2p (TREE_OPERAND (rhs, 1)))
4342 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
4344 /* Transform ABS (X) into X or -X as appropriate. */
4345 if (rhs_code == ABS_EXPR
4346 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
4347 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
4348 simplify_abs_using_ranges (stmt, rhs);
4350 else if (TREE_CODE (stmt) == COND_EXPR
4351 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
4353 simplify_cond_using_ranges (stmt);
4357 /* Stack of dest,src equivalency pairs that need to be restored after
4358 each attempt to thread a block's incoming edge to an outgoing edge.
4360 A NULL entry is used to mark the end of pairs which need to be
4361 restored. */
4362 static VEC(tree,heap) *stack;
4364 /* A trivial wrapper so that we can present the generic jump
4365 threading code with a simple API for simplifying statements. */
4366 static tree
4367 simplify_stmt_for_jump_threading (tree stmt)
4369 /* We only use VRP information to simplify conditionals. This is
4370 overly conservative, but it's unclear if doing more would be
4371 worth the compile time cost. */
4372 if (TREE_CODE (stmt) != COND_EXPR)
4373 return NULL;
4375 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), true);
4378 /* Blocks which have more than one predecessor and more than
4379 one successor present jump threading opportunities. ie,
4380 when the block is reached from a specific predecessor, we
4381 may be able to determine which of the outgoing edges will
4382 be traversed. When this optimization applies, we are able
4383 to avoid conditionals at runtime and we may expose secondary
4384 optimization opportunities.
4386 This routine is effectively a driver for the generic jump
4387 threading code. It basically just presents the generic code
4388 with edges that may be suitable for jump threading.
4390 Unlike DOM, we do not iterate VRP if jump threading was successful.
4391 While iterating may expose new opportunities for VRP, it is expected
4392 those opportunities would be very limited and the compile time cost
4393 to expose those opportunities would be significant.
4395 As jump threading opportunities are discovered, they are registered
4396 for later realization. */
4398 static void
4399 identify_jump_threads (void)
4401 basic_block bb;
4402 tree dummy;
4404 /* Ugh. When substituting values earlier in this pass we can
4405 wipe the dominance information. So rebuild the dominator
4406 information as we need it within the jump threading code. */
4407 calculate_dominance_info (CDI_DOMINATORS);
4409 /* We do not allow VRP information to be used for jump threading
4410 across a back edge in the CFG. Otherwise it becomes too
4411 difficult to avoid eliminating loop exit tests. Of course
4412 EDGE_DFS_BACK is not accurate at this time so we have to
4413 recompute it. */
4414 mark_dfs_back_edges ();
4416 /* Allocate our unwinder stack to unwind any temporary equivalences
4417 that might be recorded. */
4418 stack = VEC_alloc (tree, heap, 20);
4420 /* To avoid lots of silly node creation, we create a single
4421 conditional and just modify it in-place when attempting to
4422 thread jumps. */
4423 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
4424 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
4426 /* Walk through all the blocks finding those which present a
4427 potential jump threading opportunity. We could set this up
4428 as a dominator walker and record data during the walk, but
4429 I doubt it's worth the effort for the classes of jump
4430 threading opportunities we are trying to identify at this
4431 point in compilation. */
4432 FOR_EACH_BB (bb)
4434 tree last, cond;
4436 /* If the generic jump threading code does not find this block
4437 interesting, then there is nothing to do. */
4438 if (! potentially_threadable_block (bb))
4439 continue;
4441 /* We only care about blocks ending in a COND_EXPR. While there
4442 may be some value in handling SWITCH_EXPR here, I doubt it's
4443 terribly important. */
4444 last = bsi_stmt (bsi_last (bb));
4445 if (TREE_CODE (last) != COND_EXPR)
4446 continue;
4448 /* We're basically looking for any kind of conditional with
4449 integral type arguments. */
4450 cond = COND_EXPR_COND (last);
4451 if ((TREE_CODE (cond) == SSA_NAME
4452 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
4453 || (COMPARISON_CLASS_P (cond)
4454 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
4455 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
4456 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
4457 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
4458 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
4460 edge_iterator ei;
4461 edge e;
4463 /* We've got a block with multiple predecessors and multiple
4464 successors which also ends in a suitable conditional. For
4465 each predecessor, see if we can thread it to a specific
4466 successor. */
4467 FOR_EACH_EDGE (e, ei, bb->preds)
4469 /* Do not thread across back edges or abnormal edges
4470 in the CFG. */
4471 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
4472 continue;
4474 thread_across_edge (dummy, e, true,
4475 &stack,
4476 simplify_stmt_for_jump_threading);
4481 /* We do not actually update the CFG or SSA graphs at this point as
4482 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
4483 handle ASSERT_EXPRs gracefully. */
4486 /* We identified all the jump threading opportunities earlier, but could
4487 not transform the CFG at that time. This routine transforms the
4488 CFG and arranges for the dominator tree to be rebuilt if necessary.
4490 Note the SSA graph update will occur during the normal TODO
4491 processing by the pass manager. */
4492 static void
4493 finalize_jump_threads (void)
4495 bool cfg_altered = false;
4496 cfg_altered = thread_through_all_blocks ();
4498 /* If we threaded jumps, then we need to recompute the dominance
4499 information, to safely do that we must clean up the CFG first. */
4500 if (cfg_altered)
4502 free_dominance_info (CDI_DOMINATORS);
4503 cleanup_tree_cfg ();
4504 calculate_dominance_info (CDI_DOMINATORS);
4506 VEC_free (tree, heap, stack);
4510 /* Traverse all the blocks folding conditionals with known ranges. */
4512 static void
4513 vrp_finalize (void)
4515 size_t i;
4516 prop_value_t *single_val_range;
4517 bool do_value_subst_p;
4519 if (dump_file)
4521 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
4522 dump_all_value_ranges (dump_file);
4523 fprintf (dump_file, "\n");
4526 /* We may have ended with ranges that have exactly one value. Those
4527 values can be substituted as any other copy/const propagated
4528 value using substitute_and_fold. */
4529 single_val_range = XNEWVEC (prop_value_t, num_ssa_names);
4530 memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
4532 do_value_subst_p = false;
4533 for (i = 0; i < num_ssa_names; i++)
4534 if (vr_value[i]
4535 && vr_value[i]->type == VR_RANGE
4536 && vr_value[i]->min == vr_value[i]->max)
4538 single_val_range[i].value = vr_value[i]->min;
4539 do_value_subst_p = true;
4542 if (!do_value_subst_p)
4544 /* We found no single-valued ranges, don't waste time trying to
4545 do single value substitution in substitute_and_fold. */
4546 free (single_val_range);
4547 single_val_range = NULL;
4550 substitute_and_fold (single_val_range, true);
4552 /* We must identify jump threading opportunities before we release
4553 the datastructures built by VRP. */
4554 identify_jump_threads ();
4556 /* Free allocated memory. */
4557 for (i = 0; i < num_ssa_names; i++)
4558 if (vr_value[i])
4560 BITMAP_FREE (vr_value[i]->equiv);
4561 free (vr_value[i]);
4564 free (single_val_range);
4565 free (vr_value);
4567 /* So that we can distinguish between VRP data being available
4568 and not available. */
4569 vr_value = NULL;
4573 /* Main entry point to VRP (Value Range Propagation). This pass is
4574 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4575 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4576 Programming Language Design and Implementation, pp. 67-78, 1995.
4577 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4579 This is essentially an SSA-CCP pass modified to deal with ranges
4580 instead of constants.
4582 While propagating ranges, we may find that two or more SSA name
4583 have equivalent, though distinct ranges. For instance,
4585 1 x_9 = p_3->a;
4586 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
4587 3 if (p_4 == q_2)
4588 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
4589 5 endif
4590 6 if (q_2)
4592 In the code above, pointer p_5 has range [q_2, q_2], but from the
4593 code we can also determine that p_5 cannot be NULL and, if q_2 had
4594 a non-varying range, p_5's range should also be compatible with it.
4596 These equivalences are created by two expressions: ASSERT_EXPR and
4597 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4598 result of another assertion, then we can use the fact that p_5 and
4599 p_4 are equivalent when evaluating p_5's range.
4601 Together with value ranges, we also propagate these equivalences
4602 between names so that we can take advantage of information from
4603 multiple ranges when doing final replacement. Note that this
4604 equivalency relation is transitive but not symmetric.
4606 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4607 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4608 in contexts where that assertion does not hold (e.g., in line 6).
4610 TODO, the main difference between this pass and Patterson's is that
4611 we do not propagate edge probabilities. We only compute whether
4612 edges can be taken or not. That is, instead of having a spectrum
4613 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4614 DON'T KNOW. In the future, it may be worthwhile to propagate
4615 probabilities to aid branch prediction. */
4617 static unsigned int
4618 execute_vrp (void)
4620 insert_range_assertions ();
4622 current_loops = loop_optimizer_init (LOOPS_NORMAL);
4623 if (current_loops)
4624 scev_initialize (current_loops);
4626 vrp_initialize ();
4627 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
4628 vrp_finalize ();
4630 if (current_loops)
4632 scev_finalize ();
4633 loop_optimizer_finalize (current_loops);
4634 current_loops = NULL;
4637 /* ASSERT_EXPRs must be removed before finalizing jump threads
4638 as finalizing jump threads calls the CFG cleanup code which
4639 does not properly handle ASSERT_EXPRs. */
4640 remove_range_assertions ();
4642 /* If we exposed any new variables, go ahead and put them into
4643 SSA form now, before we handle jump threading. This simplifies
4644 interactions between rewriting of _DECL nodes into SSA form
4645 and rewriting SSA_NAME nodes into SSA form after block
4646 duplication and CFG manipulation. */
4647 update_ssa (TODO_update_ssa);
4649 finalize_jump_threads ();
4650 return 0;
4653 static bool
4654 gate_vrp (void)
4656 return flag_tree_vrp != 0;
4659 struct tree_opt_pass pass_vrp =
4661 "vrp", /* name */
4662 gate_vrp, /* gate */
4663 execute_vrp, /* execute */
4664 NULL, /* sub */
4665 NULL, /* next */
4666 0, /* static_pass_number */
4667 TV_TREE_VRP, /* tv_id */
4668 PROP_ssa | PROP_alias, /* properties_required */
4669 0, /* properties_provided */
4670 PROP_smt_usage, /* properties_destroyed */
4671 0, /* todo_flags_start */
4672 TODO_cleanup_cfg
4673 | TODO_ggc_collect
4674 | TODO_verify_ssa
4675 | TODO_dump_func
4676 | TODO_update_ssa
4677 | TODO_update_smt_usage, /* todo_flags_finish */
4678 0 /* letter */