2010-10-15 Tobias Burnus <burnus@net-b.de>
[official-gcc.git] / gcc / stor-layout.c
blob5796ea1f09a1641185fa0baf3eed1fa598688b0b
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "output.h"
34 #include "diagnostic-core.h"
35 #include "toplev.h"
36 #include "ggc.h"
37 #include "target.h"
38 #include "langhooks.h"
39 #include "regs.h"
40 #include "params.h"
41 #include "cgraph.h"
42 #include "tree-inline.h"
43 #include "tree-dump.h"
44 #include "gimple.h"
46 /* Data type for the expressions representing sizes of data types.
47 It is the first integer type laid out. */
48 tree sizetype_tab[(int) TYPE_KIND_LAST];
50 /* If nonzero, this is an upper limit on alignment of structure fields.
51 The value is measured in bits. */
52 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
53 /* ... and its original value in bytes, specified via -fpack-struct=<value>. */
54 unsigned int initial_max_fld_align = TARGET_DEFAULT_PACK_STRUCT;
56 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
57 in the address spaces' address_mode, not pointer_mode. Set only by
58 internal_reference_types called only by a front end. */
59 static int reference_types_internal = 0;
61 static tree self_referential_size (tree);
62 static void finalize_record_size (record_layout_info);
63 static void finalize_type_size (tree);
64 static void place_union_field (record_layout_info, tree);
65 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
66 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
67 HOST_WIDE_INT, tree);
68 #endif
69 extern void debug_rli (record_layout_info);
71 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
73 static GTY(()) VEC(tree,gc) *pending_sizes;
75 /* Show that REFERENCE_TYPES are internal and should use address_mode.
76 Called only by front end. */
78 void
79 internal_reference_types (void)
81 reference_types_internal = 1;
84 /* Get a VEC of all the objects put on the pending sizes list. */
86 VEC(tree,gc) *
87 get_pending_sizes (void)
89 VEC(tree,gc) *chain = pending_sizes;
91 pending_sizes = 0;
92 return chain;
95 /* Add EXPR to the pending sizes list. */
97 void
98 put_pending_size (tree expr)
100 /* Strip any simple arithmetic from EXPR to see if it has an underlying
101 SAVE_EXPR. */
102 expr = skip_simple_arithmetic (expr);
104 if (TREE_CODE (expr) == SAVE_EXPR)
105 VEC_safe_push (tree, gc, pending_sizes, expr);
108 /* Put a chain of objects into the pending sizes list, which must be
109 empty. */
111 void
112 put_pending_sizes (VEC(tree,gc) *chain)
114 gcc_assert (!pending_sizes);
115 pending_sizes = chain;
118 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
119 to serve as the actual size-expression for a type or decl. */
121 tree
122 variable_size (tree size)
124 tree save;
126 /* Obviously. */
127 if (TREE_CONSTANT (size))
128 return size;
130 /* If the size is self-referential, we can't make a SAVE_EXPR (see
131 save_expr for the rationale). But we can do something else. */
132 if (CONTAINS_PLACEHOLDER_P (size))
133 return self_referential_size (size);
135 /* If the language-processor is to take responsibility for variable-sized
136 items (e.g., languages which have elaboration procedures like Ada),
137 just return SIZE unchanged. */
138 if (lang_hooks.decls.global_bindings_p () < 0)
139 return size;
141 size = save_expr (size);
143 /* If an array with a variable number of elements is declared, and
144 the elements require destruction, we will emit a cleanup for the
145 array. That cleanup is run both on normal exit from the block
146 and in the exception-handler for the block. Normally, when code
147 is used in both ordinary code and in an exception handler it is
148 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
149 not wish to do that here; the array-size is the same in both
150 places. */
151 save = skip_simple_arithmetic (size);
153 if (cfun && cfun->dont_save_pending_sizes_p)
154 /* The front-end doesn't want us to keep a list of the expressions
155 that determine sizes for variable size objects. Trust it. */
156 return size;
158 if (lang_hooks.decls.global_bindings_p ())
160 if (TREE_CONSTANT (size))
161 error ("type size can%'t be explicitly evaluated");
162 else
163 error ("variable-size type declared outside of any function");
165 return size_one_node;
168 put_pending_size (save);
170 return size;
173 /* An array of functions used for self-referential size computation. */
174 static GTY(()) VEC (tree, gc) *size_functions;
176 /* Similar to copy_tree_r but do not copy component references involving
177 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
178 and substituted in substitute_in_expr. */
180 static tree
181 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
183 enum tree_code code = TREE_CODE (*tp);
185 /* Stop at types, decls, constants like copy_tree_r. */
186 if (TREE_CODE_CLASS (code) == tcc_type
187 || TREE_CODE_CLASS (code) == tcc_declaration
188 || TREE_CODE_CLASS (code) == tcc_constant)
190 *walk_subtrees = 0;
191 return NULL_TREE;
194 /* This is the pattern built in ada/make_aligning_type. */
195 else if (code == ADDR_EXPR
196 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
198 *walk_subtrees = 0;
199 return NULL_TREE;
202 /* Default case: the component reference. */
203 else if (code == COMPONENT_REF)
205 tree inner;
206 for (inner = TREE_OPERAND (*tp, 0);
207 REFERENCE_CLASS_P (inner);
208 inner = TREE_OPERAND (inner, 0))
211 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
213 *walk_subtrees = 0;
214 return NULL_TREE;
218 /* We're not supposed to have them in self-referential size trees
219 because we wouldn't properly control when they are evaluated.
220 However, not creating superfluous SAVE_EXPRs requires accurate
221 tracking of readonly-ness all the way down to here, which we
222 cannot always guarantee in practice. So punt in this case. */
223 else if (code == SAVE_EXPR)
224 return error_mark_node;
226 return copy_tree_r (tp, walk_subtrees, data);
229 /* Given a SIZE expression that is self-referential, return an equivalent
230 expression to serve as the actual size expression for a type. */
232 static tree
233 self_referential_size (tree size)
235 static unsigned HOST_WIDE_INT fnno = 0;
236 VEC (tree, heap) *self_refs = NULL;
237 tree param_type_list = NULL, param_decl_list = NULL;
238 tree t, ref, return_type, fntype, fnname, fndecl;
239 unsigned int i;
240 char buf[128];
241 VEC(tree,gc) *args = NULL;
243 /* Do not factor out simple operations. */
244 t = skip_simple_arithmetic (size);
245 if (TREE_CODE (t) == CALL_EXPR)
246 return size;
248 /* Collect the list of self-references in the expression. */
249 find_placeholder_in_expr (size, &self_refs);
250 gcc_assert (VEC_length (tree, self_refs) > 0);
252 /* Obtain a private copy of the expression. */
253 t = size;
254 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
255 return size;
256 size = t;
258 /* Build the parameter and argument lists in parallel; also
259 substitute the former for the latter in the expression. */
260 args = VEC_alloc (tree, gc, VEC_length (tree, self_refs));
261 FOR_EACH_VEC_ELT (tree, self_refs, i, ref)
263 tree subst, param_name, param_type, param_decl;
265 if (DECL_P (ref))
267 /* We shouldn't have true variables here. */
268 gcc_assert (TREE_READONLY (ref));
269 subst = ref;
271 /* This is the pattern built in ada/make_aligning_type. */
272 else if (TREE_CODE (ref) == ADDR_EXPR)
273 subst = ref;
274 /* Default case: the component reference. */
275 else
276 subst = TREE_OPERAND (ref, 1);
278 sprintf (buf, "p%d", i);
279 param_name = get_identifier (buf);
280 param_type = TREE_TYPE (ref);
281 param_decl
282 = build_decl (input_location, PARM_DECL, param_name, param_type);
283 if (targetm.calls.promote_prototypes (NULL_TREE)
284 && INTEGRAL_TYPE_P (param_type)
285 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
286 DECL_ARG_TYPE (param_decl) = integer_type_node;
287 else
288 DECL_ARG_TYPE (param_decl) = param_type;
289 DECL_ARTIFICIAL (param_decl) = 1;
290 TREE_READONLY (param_decl) = 1;
292 size = substitute_in_expr (size, subst, param_decl);
294 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
295 param_decl_list = chainon (param_decl, param_decl_list);
296 VEC_quick_push (tree, args, ref);
299 VEC_free (tree, heap, self_refs);
301 /* Append 'void' to indicate that the number of parameters is fixed. */
302 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
304 /* The 3 lists have been created in reverse order. */
305 param_type_list = nreverse (param_type_list);
306 param_decl_list = nreverse (param_decl_list);
308 /* Build the function type. */
309 return_type = TREE_TYPE (size);
310 fntype = build_function_type (return_type, param_type_list);
312 /* Build the function declaration. */
313 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
314 fnname = get_file_function_name (buf);
315 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
316 for (t = param_decl_list; t; t = DECL_CHAIN (t))
317 DECL_CONTEXT (t) = fndecl;
318 DECL_ARGUMENTS (fndecl) = param_decl_list;
319 DECL_RESULT (fndecl)
320 = build_decl (input_location, RESULT_DECL, 0, return_type);
321 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
323 /* The function has been created by the compiler and we don't
324 want to emit debug info for it. */
325 DECL_ARTIFICIAL (fndecl) = 1;
326 DECL_IGNORED_P (fndecl) = 1;
328 /* It is supposed to be "const" and never throw. */
329 TREE_READONLY (fndecl) = 1;
330 TREE_NOTHROW (fndecl) = 1;
332 /* We want it to be inlined when this is deemed profitable, as
333 well as discarded if every call has been integrated. */
334 DECL_DECLARED_INLINE_P (fndecl) = 1;
336 /* It is made up of a unique return statement. */
337 DECL_INITIAL (fndecl) = make_node (BLOCK);
338 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
339 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
340 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
341 TREE_STATIC (fndecl) = 1;
343 /* Put it onto the list of size functions. */
344 VEC_safe_push (tree, gc, size_functions, fndecl);
346 /* Replace the original expression with a call to the size function. */
347 return build_call_expr_loc_vec (input_location, fndecl, args);
350 /* Take, queue and compile all the size functions. It is essential that
351 the size functions be gimplified at the very end of the compilation
352 in order to guarantee transparent handling of self-referential sizes.
353 Otherwise the GENERIC inliner would not be able to inline them back
354 at each of their call sites, thus creating artificial non-constant
355 size expressions which would trigger nasty problems later on. */
357 void
358 finalize_size_functions (void)
360 unsigned int i;
361 tree fndecl;
363 for (i = 0; VEC_iterate(tree, size_functions, i, fndecl); i++)
365 dump_function (TDI_original, fndecl);
366 gimplify_function_tree (fndecl);
367 dump_function (TDI_generic, fndecl);
368 cgraph_finalize_function (fndecl, false);
371 VEC_free (tree, gc, size_functions);
374 /* Return the machine mode to use for a nonscalar of SIZE bits. The
375 mode must be in class MCLASS, and have exactly that many value bits;
376 it may have padding as well. If LIMIT is nonzero, modes of wider
377 than MAX_FIXED_MODE_SIZE will not be used. */
379 enum machine_mode
380 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
382 enum machine_mode mode;
384 if (limit && size > MAX_FIXED_MODE_SIZE)
385 return BLKmode;
387 /* Get the first mode which has this size, in the specified class. */
388 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
389 mode = GET_MODE_WIDER_MODE (mode))
390 if (GET_MODE_PRECISION (mode) == size)
391 return mode;
393 return BLKmode;
396 /* Similar, except passed a tree node. */
398 enum machine_mode
399 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
401 unsigned HOST_WIDE_INT uhwi;
402 unsigned int ui;
404 if (!host_integerp (size, 1))
405 return BLKmode;
406 uhwi = tree_low_cst (size, 1);
407 ui = uhwi;
408 if (uhwi != ui)
409 return BLKmode;
410 return mode_for_size (ui, mclass, limit);
413 /* Similar, but never return BLKmode; return the narrowest mode that
414 contains at least the requested number of value bits. */
416 enum machine_mode
417 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
419 enum machine_mode mode;
421 /* Get the first mode which has at least this size, in the
422 specified class. */
423 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
424 mode = GET_MODE_WIDER_MODE (mode))
425 if (GET_MODE_PRECISION (mode) >= size)
426 return mode;
428 gcc_unreachable ();
431 /* Find an integer mode of the exact same size, or BLKmode on failure. */
433 enum machine_mode
434 int_mode_for_mode (enum machine_mode mode)
436 switch (GET_MODE_CLASS (mode))
438 case MODE_INT:
439 case MODE_PARTIAL_INT:
440 break;
442 case MODE_COMPLEX_INT:
443 case MODE_COMPLEX_FLOAT:
444 case MODE_FLOAT:
445 case MODE_DECIMAL_FLOAT:
446 case MODE_VECTOR_INT:
447 case MODE_VECTOR_FLOAT:
448 case MODE_FRACT:
449 case MODE_ACCUM:
450 case MODE_UFRACT:
451 case MODE_UACCUM:
452 case MODE_VECTOR_FRACT:
453 case MODE_VECTOR_ACCUM:
454 case MODE_VECTOR_UFRACT:
455 case MODE_VECTOR_UACCUM:
456 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
457 break;
459 case MODE_RANDOM:
460 if (mode == BLKmode)
461 break;
463 /* ... fall through ... */
465 case MODE_CC:
466 default:
467 gcc_unreachable ();
470 return mode;
473 /* Find a mode that is suitable for representing a vector with
474 NUNITS elements of mode INNERMODE. Returns BLKmode if there
475 is no suitable mode. */
477 enum machine_mode
478 mode_for_vector (enum machine_mode innermode, unsigned nunits)
480 enum machine_mode mode;
482 /* First, look for a supported vector type. */
483 if (SCALAR_FLOAT_MODE_P (innermode))
484 mode = MIN_MODE_VECTOR_FLOAT;
485 else if (SCALAR_FRACT_MODE_P (innermode))
486 mode = MIN_MODE_VECTOR_FRACT;
487 else if (SCALAR_UFRACT_MODE_P (innermode))
488 mode = MIN_MODE_VECTOR_UFRACT;
489 else if (SCALAR_ACCUM_MODE_P (innermode))
490 mode = MIN_MODE_VECTOR_ACCUM;
491 else if (SCALAR_UACCUM_MODE_P (innermode))
492 mode = MIN_MODE_VECTOR_UACCUM;
493 else
494 mode = MIN_MODE_VECTOR_INT;
496 /* Do not check vector_mode_supported_p here. We'll do that
497 later in vector_type_mode. */
498 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
499 if (GET_MODE_NUNITS (mode) == nunits
500 && GET_MODE_INNER (mode) == innermode)
501 break;
503 /* For integers, try mapping it to a same-sized scalar mode. */
504 if (mode == VOIDmode
505 && GET_MODE_CLASS (innermode) == MODE_INT)
506 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
507 MODE_INT, 0);
509 if (mode == VOIDmode
510 || (GET_MODE_CLASS (mode) == MODE_INT
511 && !have_regs_of_mode[mode]))
512 return BLKmode;
514 return mode;
517 /* Return the alignment of MODE. This will be bounded by 1 and
518 BIGGEST_ALIGNMENT. */
520 unsigned int
521 get_mode_alignment (enum machine_mode mode)
523 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
527 /* Subroutine of layout_decl: Force alignment required for the data type.
528 But if the decl itself wants greater alignment, don't override that. */
530 static inline void
531 do_type_align (tree type, tree decl)
533 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
535 DECL_ALIGN (decl) = TYPE_ALIGN (type);
536 if (TREE_CODE (decl) == FIELD_DECL)
537 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
541 /* Set the size, mode and alignment of a ..._DECL node.
542 TYPE_DECL does need this for C++.
543 Note that LABEL_DECL and CONST_DECL nodes do not need this,
544 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
545 Don't call layout_decl for them.
547 KNOWN_ALIGN is the amount of alignment we can assume this
548 decl has with no special effort. It is relevant only for FIELD_DECLs
549 and depends on the previous fields.
550 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
551 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
552 the record will be aligned to suit. */
554 void
555 layout_decl (tree decl, unsigned int known_align)
557 tree type = TREE_TYPE (decl);
558 enum tree_code code = TREE_CODE (decl);
559 rtx rtl = NULL_RTX;
560 location_t loc = DECL_SOURCE_LOCATION (decl);
562 if (code == CONST_DECL)
563 return;
565 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
566 || code == TYPE_DECL ||code == FIELD_DECL);
568 rtl = DECL_RTL_IF_SET (decl);
570 if (type == error_mark_node)
571 type = void_type_node;
573 /* Usually the size and mode come from the data type without change,
574 however, the front-end may set the explicit width of the field, so its
575 size may not be the same as the size of its type. This happens with
576 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
577 also happens with other fields. For example, the C++ front-end creates
578 zero-sized fields corresponding to empty base classes, and depends on
579 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
580 size in bytes from the size in bits. If we have already set the mode,
581 don't set it again since we can be called twice for FIELD_DECLs. */
583 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
584 if (DECL_MODE (decl) == VOIDmode)
585 DECL_MODE (decl) = TYPE_MODE (type);
587 if (DECL_SIZE (decl) == 0)
589 DECL_SIZE (decl) = TYPE_SIZE (type);
590 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
592 else if (DECL_SIZE_UNIT (decl) == 0)
593 DECL_SIZE_UNIT (decl)
594 = fold_convert_loc (loc, sizetype,
595 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
596 bitsize_unit_node));
598 if (code != FIELD_DECL)
599 /* For non-fields, update the alignment from the type. */
600 do_type_align (type, decl);
601 else
602 /* For fields, it's a bit more complicated... */
604 bool old_user_align = DECL_USER_ALIGN (decl);
605 bool zero_bitfield = false;
606 bool packed_p = DECL_PACKED (decl);
607 unsigned int mfa;
609 if (DECL_BIT_FIELD (decl))
611 DECL_BIT_FIELD_TYPE (decl) = type;
613 /* A zero-length bit-field affects the alignment of the next
614 field. In essence such bit-fields are not influenced by
615 any packing due to #pragma pack or attribute packed. */
616 if (integer_zerop (DECL_SIZE (decl))
617 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
619 zero_bitfield = true;
620 packed_p = false;
621 #ifdef PCC_BITFIELD_TYPE_MATTERS
622 if (PCC_BITFIELD_TYPE_MATTERS)
623 do_type_align (type, decl);
624 else
625 #endif
627 #ifdef EMPTY_FIELD_BOUNDARY
628 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
630 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
631 DECL_USER_ALIGN (decl) = 0;
633 #endif
637 /* See if we can use an ordinary integer mode for a bit-field.
638 Conditions are: a fixed size that is correct for another mode
639 and occupying a complete byte or bytes on proper boundary. */
640 if (TYPE_SIZE (type) != 0
641 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
642 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
644 enum machine_mode xmode
645 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
646 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
648 if (xmode != BLKmode
649 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
650 && (known_align == 0 || known_align >= xalign))
652 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
653 DECL_MODE (decl) = xmode;
654 DECL_BIT_FIELD (decl) = 0;
658 /* Turn off DECL_BIT_FIELD if we won't need it set. */
659 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
660 && known_align >= TYPE_ALIGN (type)
661 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
662 DECL_BIT_FIELD (decl) = 0;
664 else if (packed_p && DECL_USER_ALIGN (decl))
665 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
666 round up; we'll reduce it again below. We want packing to
667 supersede USER_ALIGN inherited from the type, but defer to
668 alignment explicitly specified on the field decl. */;
669 else
670 do_type_align (type, decl);
672 /* If the field is packed and not explicitly aligned, give it the
673 minimum alignment. Note that do_type_align may set
674 DECL_USER_ALIGN, so we need to check old_user_align instead. */
675 if (packed_p
676 && !old_user_align)
677 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
679 if (! packed_p && ! DECL_USER_ALIGN (decl))
681 /* Some targets (i.e. i386, VMS) limit struct field alignment
682 to a lower boundary than alignment of variables unless
683 it was overridden by attribute aligned. */
684 #ifdef BIGGEST_FIELD_ALIGNMENT
685 DECL_ALIGN (decl)
686 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
687 #endif
688 #ifdef ADJUST_FIELD_ALIGN
689 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
690 #endif
693 if (zero_bitfield)
694 mfa = initial_max_fld_align * BITS_PER_UNIT;
695 else
696 mfa = maximum_field_alignment;
697 /* Should this be controlled by DECL_USER_ALIGN, too? */
698 if (mfa != 0)
699 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
702 /* Evaluate nonconstant size only once, either now or as soon as safe. */
703 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
704 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
705 if (DECL_SIZE_UNIT (decl) != 0
706 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
707 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
709 /* If requested, warn about definitions of large data objects. */
710 if (warn_larger_than
711 && (code == VAR_DECL || code == PARM_DECL)
712 && ! DECL_EXTERNAL (decl))
714 tree size = DECL_SIZE_UNIT (decl);
716 if (size != 0 && TREE_CODE (size) == INTEGER_CST
717 && compare_tree_int (size, larger_than_size) > 0)
719 int size_as_int = TREE_INT_CST_LOW (size);
721 if (compare_tree_int (size, size_as_int) == 0)
722 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
723 else
724 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
725 decl, larger_than_size);
729 /* If the RTL was already set, update its mode and mem attributes. */
730 if (rtl)
732 PUT_MODE (rtl, DECL_MODE (decl));
733 SET_DECL_RTL (decl, 0);
734 set_mem_attributes (rtl, decl, 1);
735 SET_DECL_RTL (decl, rtl);
739 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
740 a previous call to layout_decl and calls it again. */
742 void
743 relayout_decl (tree decl)
745 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
746 DECL_MODE (decl) = VOIDmode;
747 if (!DECL_USER_ALIGN (decl))
748 DECL_ALIGN (decl) = 0;
749 SET_DECL_RTL (decl, 0);
751 layout_decl (decl, 0);
754 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
755 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
756 is to be passed to all other layout functions for this record. It is the
757 responsibility of the caller to call `free' for the storage returned.
758 Note that garbage collection is not permitted until we finish laying
759 out the record. */
761 record_layout_info
762 start_record_layout (tree t)
764 record_layout_info rli = XNEW (struct record_layout_info_s);
766 rli->t = t;
768 /* If the type has a minimum specified alignment (via an attribute
769 declaration, for example) use it -- otherwise, start with a
770 one-byte alignment. */
771 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
772 rli->unpacked_align = rli->record_align;
773 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
775 #ifdef STRUCTURE_SIZE_BOUNDARY
776 /* Packed structures don't need to have minimum size. */
777 if (! TYPE_PACKED (t))
779 unsigned tmp;
781 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
782 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
783 if (maximum_field_alignment != 0)
784 tmp = MIN (tmp, maximum_field_alignment);
785 rli->record_align = MAX (rli->record_align, tmp);
787 #endif
789 rli->offset = size_zero_node;
790 rli->bitpos = bitsize_zero_node;
791 rli->prev_field = 0;
792 rli->pending_statics = NULL;
793 rli->packed_maybe_necessary = 0;
794 rli->remaining_in_alignment = 0;
796 return rli;
799 /* These four routines perform computations that convert between
800 the offset/bitpos forms and byte and bit offsets. */
802 tree
803 bit_from_pos (tree offset, tree bitpos)
805 return size_binop (PLUS_EXPR, bitpos,
806 size_binop (MULT_EXPR,
807 fold_convert (bitsizetype, offset),
808 bitsize_unit_node));
811 tree
812 byte_from_pos (tree offset, tree bitpos)
814 return size_binop (PLUS_EXPR, offset,
815 fold_convert (sizetype,
816 size_binop (TRUNC_DIV_EXPR, bitpos,
817 bitsize_unit_node)));
820 void
821 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
822 tree pos)
824 *poffset = size_binop (MULT_EXPR,
825 fold_convert (sizetype,
826 size_binop (FLOOR_DIV_EXPR, pos,
827 bitsize_int (off_align))),
828 size_int (off_align / BITS_PER_UNIT));
829 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
832 /* Given a pointer to bit and byte offsets and an offset alignment,
833 normalize the offsets so they are within the alignment. */
835 void
836 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
838 /* If the bit position is now larger than it should be, adjust it
839 downwards. */
840 if (compare_tree_int (*pbitpos, off_align) >= 0)
842 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
843 bitsize_int (off_align));
845 *poffset
846 = size_binop (PLUS_EXPR, *poffset,
847 size_binop (MULT_EXPR,
848 fold_convert (sizetype, extra_aligns),
849 size_int (off_align / BITS_PER_UNIT)));
851 *pbitpos
852 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
856 /* Print debugging information about the information in RLI. */
858 DEBUG_FUNCTION void
859 debug_rli (record_layout_info rli)
861 print_node_brief (stderr, "type", rli->t, 0);
862 print_node_brief (stderr, "\noffset", rli->offset, 0);
863 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
865 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
866 rli->record_align, rli->unpacked_align,
867 rli->offset_align);
869 /* The ms_struct code is the only that uses this. */
870 if (targetm.ms_bitfield_layout_p (rli->t))
871 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
873 if (rli->packed_maybe_necessary)
874 fprintf (stderr, "packed may be necessary\n");
876 if (!VEC_empty (tree, rli->pending_statics))
878 fprintf (stderr, "pending statics:\n");
879 debug_vec_tree (rli->pending_statics);
883 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
884 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
886 void
887 normalize_rli (record_layout_info rli)
889 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
892 /* Returns the size in bytes allocated so far. */
894 tree
895 rli_size_unit_so_far (record_layout_info rli)
897 return byte_from_pos (rli->offset, rli->bitpos);
900 /* Returns the size in bits allocated so far. */
902 tree
903 rli_size_so_far (record_layout_info rli)
905 return bit_from_pos (rli->offset, rli->bitpos);
908 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
909 the next available location within the record is given by KNOWN_ALIGN.
910 Update the variable alignment fields in RLI, and return the alignment
911 to give the FIELD. */
913 unsigned int
914 update_alignment_for_field (record_layout_info rli, tree field,
915 unsigned int known_align)
917 /* The alignment required for FIELD. */
918 unsigned int desired_align;
919 /* The type of this field. */
920 tree type = TREE_TYPE (field);
921 /* True if the field was explicitly aligned by the user. */
922 bool user_align;
923 bool is_bitfield;
925 /* Do not attempt to align an ERROR_MARK node */
926 if (TREE_CODE (type) == ERROR_MARK)
927 return 0;
929 /* Lay out the field so we know what alignment it needs. */
930 layout_decl (field, known_align);
931 desired_align = DECL_ALIGN (field);
932 user_align = DECL_USER_ALIGN (field);
934 is_bitfield = (type != error_mark_node
935 && DECL_BIT_FIELD_TYPE (field)
936 && ! integer_zerop (TYPE_SIZE (type)));
938 /* Record must have at least as much alignment as any field.
939 Otherwise, the alignment of the field within the record is
940 meaningless. */
941 if (targetm.ms_bitfield_layout_p (rli->t))
943 /* Here, the alignment of the underlying type of a bitfield can
944 affect the alignment of a record; even a zero-sized field
945 can do this. The alignment should be to the alignment of
946 the type, except that for zero-size bitfields this only
947 applies if there was an immediately prior, nonzero-size
948 bitfield. (That's the way it is, experimentally.) */
949 if ((!is_bitfield && !DECL_PACKED (field))
950 || (!integer_zerop (DECL_SIZE (field))
951 ? !DECL_PACKED (field)
952 : (rli->prev_field
953 && DECL_BIT_FIELD_TYPE (rli->prev_field)
954 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
956 unsigned int type_align = TYPE_ALIGN (type);
957 type_align = MAX (type_align, desired_align);
958 if (maximum_field_alignment != 0)
959 type_align = MIN (type_align, maximum_field_alignment);
960 rli->record_align = MAX (rli->record_align, type_align);
961 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
964 #ifdef PCC_BITFIELD_TYPE_MATTERS
965 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
967 /* Named bit-fields cause the entire structure to have the
968 alignment implied by their type. Some targets also apply the same
969 rules to unnamed bitfields. */
970 if (DECL_NAME (field) != 0
971 || targetm.align_anon_bitfield ())
973 unsigned int type_align = TYPE_ALIGN (type);
975 #ifdef ADJUST_FIELD_ALIGN
976 if (! TYPE_USER_ALIGN (type))
977 type_align = ADJUST_FIELD_ALIGN (field, type_align);
978 #endif
980 /* Targets might chose to handle unnamed and hence possibly
981 zero-width bitfield. Those are not influenced by #pragmas
982 or packed attributes. */
983 if (integer_zerop (DECL_SIZE (field)))
985 if (initial_max_fld_align)
986 type_align = MIN (type_align,
987 initial_max_fld_align * BITS_PER_UNIT);
989 else if (maximum_field_alignment != 0)
990 type_align = MIN (type_align, maximum_field_alignment);
991 else if (DECL_PACKED (field))
992 type_align = MIN (type_align, BITS_PER_UNIT);
994 /* The alignment of the record is increased to the maximum
995 of the current alignment, the alignment indicated on the
996 field (i.e., the alignment specified by an __aligned__
997 attribute), and the alignment indicated by the type of
998 the field. */
999 rli->record_align = MAX (rli->record_align, desired_align);
1000 rli->record_align = MAX (rli->record_align, type_align);
1002 if (warn_packed)
1003 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1004 user_align |= TYPE_USER_ALIGN (type);
1007 #endif
1008 else
1010 rli->record_align = MAX (rli->record_align, desired_align);
1011 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1014 TYPE_USER_ALIGN (rli->t) |= user_align;
1016 return desired_align;
1019 /* Called from place_field to handle unions. */
1021 static void
1022 place_union_field (record_layout_info rli, tree field)
1024 update_alignment_for_field (rli, field, /*known_align=*/0);
1026 DECL_FIELD_OFFSET (field) = size_zero_node;
1027 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1028 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1030 /* If this is an ERROR_MARK return *after* having set the
1031 field at the start of the union. This helps when parsing
1032 invalid fields. */
1033 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1034 return;
1036 /* We assume the union's size will be a multiple of a byte so we don't
1037 bother with BITPOS. */
1038 if (TREE_CODE (rli->t) == UNION_TYPE)
1039 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1040 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1041 rli->offset = fold_build3_loc (input_location, COND_EXPR, sizetype,
1042 DECL_QUALIFIER (field),
1043 DECL_SIZE_UNIT (field), rli->offset);
1046 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1047 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1048 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1049 units of alignment than the underlying TYPE. */
1050 static int
1051 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1052 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1054 /* Note that the calculation of OFFSET might overflow; we calculate it so
1055 that we still get the right result as long as ALIGN is a power of two. */
1056 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1058 offset = offset % align;
1059 return ((offset + size + align - 1) / align
1060 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
1061 / align));
1063 #endif
1065 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1066 is a FIELD_DECL to be added after those fields already present in
1067 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1068 callers that desire that behavior must manually perform that step.) */
1070 void
1071 place_field (record_layout_info rli, tree field)
1073 /* The alignment required for FIELD. */
1074 unsigned int desired_align;
1075 /* The alignment FIELD would have if we just dropped it into the
1076 record as it presently stands. */
1077 unsigned int known_align;
1078 unsigned int actual_align;
1079 /* The type of this field. */
1080 tree type = TREE_TYPE (field);
1082 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1084 /* If FIELD is static, then treat it like a separate variable, not
1085 really like a structure field. If it is a FUNCTION_DECL, it's a
1086 method. In both cases, all we do is lay out the decl, and we do
1087 it *after* the record is laid out. */
1088 if (TREE_CODE (field) == VAR_DECL)
1090 VEC_safe_push (tree, gc, rli->pending_statics, field);
1091 return;
1094 /* Enumerators and enum types which are local to this class need not
1095 be laid out. Likewise for initialized constant fields. */
1096 else if (TREE_CODE (field) != FIELD_DECL)
1097 return;
1099 /* Unions are laid out very differently than records, so split
1100 that code off to another function. */
1101 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1103 place_union_field (rli, field);
1104 return;
1107 else if (TREE_CODE (type) == ERROR_MARK)
1109 /* Place this field at the current allocation position, so we
1110 maintain monotonicity. */
1111 DECL_FIELD_OFFSET (field) = rli->offset;
1112 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1113 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1114 return;
1117 /* Work out the known alignment so far. Note that A & (-A) is the
1118 value of the least-significant bit in A that is one. */
1119 if (! integer_zerop (rli->bitpos))
1120 known_align = (tree_low_cst (rli->bitpos, 1)
1121 & - tree_low_cst (rli->bitpos, 1));
1122 else if (integer_zerop (rli->offset))
1123 known_align = 0;
1124 else if (host_integerp (rli->offset, 1))
1125 known_align = (BITS_PER_UNIT
1126 * (tree_low_cst (rli->offset, 1)
1127 & - tree_low_cst (rli->offset, 1)));
1128 else
1129 known_align = rli->offset_align;
1131 desired_align = update_alignment_for_field (rli, field, known_align);
1132 if (known_align == 0)
1133 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1135 if (warn_packed && DECL_PACKED (field))
1137 if (known_align >= TYPE_ALIGN (type))
1139 if (TYPE_ALIGN (type) > desired_align)
1141 if (STRICT_ALIGNMENT)
1142 warning (OPT_Wattributes, "packed attribute causes "
1143 "inefficient alignment for %q+D", field);
1144 /* Don't warn if DECL_PACKED was set by the type. */
1145 else if (!TYPE_PACKED (rli->t))
1146 warning (OPT_Wattributes, "packed attribute is "
1147 "unnecessary for %q+D", field);
1150 else
1151 rli->packed_maybe_necessary = 1;
1154 /* Does this field automatically have alignment it needs by virtue
1155 of the fields that precede it and the record's own alignment?
1156 We already align ms_struct fields, so don't re-align them. */
1157 if (known_align < desired_align
1158 && !targetm.ms_bitfield_layout_p (rli->t))
1160 /* No, we need to skip space before this field.
1161 Bump the cumulative size to multiple of field alignment. */
1163 if (DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1164 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1166 /* If the alignment is still within offset_align, just align
1167 the bit position. */
1168 if (desired_align < rli->offset_align)
1169 rli->bitpos = round_up (rli->bitpos, desired_align);
1170 else
1172 /* First adjust OFFSET by the partial bits, then align. */
1173 rli->offset
1174 = size_binop (PLUS_EXPR, rli->offset,
1175 fold_convert (sizetype,
1176 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1177 bitsize_unit_node)));
1178 rli->bitpos = bitsize_zero_node;
1180 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1183 if (! TREE_CONSTANT (rli->offset))
1184 rli->offset_align = desired_align;
1188 /* Handle compatibility with PCC. Note that if the record has any
1189 variable-sized fields, we need not worry about compatibility. */
1190 #ifdef PCC_BITFIELD_TYPE_MATTERS
1191 if (PCC_BITFIELD_TYPE_MATTERS
1192 && ! targetm.ms_bitfield_layout_p (rli->t)
1193 && TREE_CODE (field) == FIELD_DECL
1194 && type != error_mark_node
1195 && DECL_BIT_FIELD (field)
1196 && (! DECL_PACKED (field)
1197 /* Enter for these packed fields only to issue a warning. */
1198 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1199 && maximum_field_alignment == 0
1200 && ! integer_zerop (DECL_SIZE (field))
1201 && host_integerp (DECL_SIZE (field), 1)
1202 && host_integerp (rli->offset, 1)
1203 && host_integerp (TYPE_SIZE (type), 1))
1205 unsigned int type_align = TYPE_ALIGN (type);
1206 tree dsize = DECL_SIZE (field);
1207 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1208 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1209 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1211 #ifdef ADJUST_FIELD_ALIGN
1212 if (! TYPE_USER_ALIGN (type))
1213 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1214 #endif
1216 /* A bit field may not span more units of alignment of its type
1217 than its type itself. Advance to next boundary if necessary. */
1218 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1220 if (DECL_PACKED (field))
1222 if (warn_packed_bitfield_compat == 1)
1223 inform
1224 (input_location,
1225 "Offset of packed bit-field %qD has changed in GCC 4.4",
1226 field);
1228 else
1229 rli->bitpos = round_up_loc (input_location, rli->bitpos, type_align);
1232 if (! DECL_PACKED (field))
1233 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1235 #endif
1237 #ifdef BITFIELD_NBYTES_LIMITED
1238 if (BITFIELD_NBYTES_LIMITED
1239 && ! targetm.ms_bitfield_layout_p (rli->t)
1240 && TREE_CODE (field) == FIELD_DECL
1241 && type != error_mark_node
1242 && DECL_BIT_FIELD_TYPE (field)
1243 && ! DECL_PACKED (field)
1244 && ! integer_zerop (DECL_SIZE (field))
1245 && host_integerp (DECL_SIZE (field), 1)
1246 && host_integerp (rli->offset, 1)
1247 && host_integerp (TYPE_SIZE (type), 1))
1249 unsigned int type_align = TYPE_ALIGN (type);
1250 tree dsize = DECL_SIZE (field);
1251 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1252 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1253 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1255 #ifdef ADJUST_FIELD_ALIGN
1256 if (! TYPE_USER_ALIGN (type))
1257 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1258 #endif
1260 if (maximum_field_alignment != 0)
1261 type_align = MIN (type_align, maximum_field_alignment);
1262 /* ??? This test is opposite the test in the containing if
1263 statement, so this code is unreachable currently. */
1264 else if (DECL_PACKED (field))
1265 type_align = MIN (type_align, BITS_PER_UNIT);
1267 /* A bit field may not span the unit of alignment of its type.
1268 Advance to next boundary if necessary. */
1269 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1270 rli->bitpos = round_up (rli->bitpos, type_align);
1272 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1274 #endif
1276 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1277 A subtlety:
1278 When a bit field is inserted into a packed record, the whole
1279 size of the underlying type is used by one or more same-size
1280 adjacent bitfields. (That is, if its long:3, 32 bits is
1281 used in the record, and any additional adjacent long bitfields are
1282 packed into the same chunk of 32 bits. However, if the size
1283 changes, a new field of that size is allocated.) In an unpacked
1284 record, this is the same as using alignment, but not equivalent
1285 when packing.
1287 Note: for compatibility, we use the type size, not the type alignment
1288 to determine alignment, since that matches the documentation */
1290 if (targetm.ms_bitfield_layout_p (rli->t))
1292 tree prev_saved = rli->prev_field;
1293 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1295 /* This is a bitfield if it exists. */
1296 if (rli->prev_field)
1298 /* If both are bitfields, nonzero, and the same size, this is
1299 the middle of a run. Zero declared size fields are special
1300 and handled as "end of run". (Note: it's nonzero declared
1301 size, but equal type sizes!) (Since we know that both
1302 the current and previous fields are bitfields by the
1303 time we check it, DECL_SIZE must be present for both.) */
1304 if (DECL_BIT_FIELD_TYPE (field)
1305 && !integer_zerop (DECL_SIZE (field))
1306 && !integer_zerop (DECL_SIZE (rli->prev_field))
1307 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1308 && host_integerp (TYPE_SIZE (type), 0)
1309 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1311 /* We're in the middle of a run of equal type size fields; make
1312 sure we realign if we run out of bits. (Not decl size,
1313 type size!) */
1314 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 1);
1316 if (rli->remaining_in_alignment < bitsize)
1318 HOST_WIDE_INT typesize = tree_low_cst (TYPE_SIZE (type), 1);
1320 /* out of bits; bump up to next 'word'. */
1321 rli->bitpos
1322 = size_binop (PLUS_EXPR, rli->bitpos,
1323 bitsize_int (rli->remaining_in_alignment));
1324 rli->prev_field = field;
1325 if (typesize < bitsize)
1326 rli->remaining_in_alignment = 0;
1327 else
1328 rli->remaining_in_alignment = typesize - bitsize;
1330 else
1331 rli->remaining_in_alignment -= bitsize;
1333 else
1335 /* End of a run: if leaving a run of bitfields of the same type
1336 size, we have to "use up" the rest of the bits of the type
1337 size.
1339 Compute the new position as the sum of the size for the prior
1340 type and where we first started working on that type.
1341 Note: since the beginning of the field was aligned then
1342 of course the end will be too. No round needed. */
1344 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1346 rli->bitpos
1347 = size_binop (PLUS_EXPR, rli->bitpos,
1348 bitsize_int (rli->remaining_in_alignment));
1350 else
1351 /* We "use up" size zero fields; the code below should behave
1352 as if the prior field was not a bitfield. */
1353 prev_saved = NULL;
1355 /* Cause a new bitfield to be captured, either this time (if
1356 currently a bitfield) or next time we see one. */
1357 if (!DECL_BIT_FIELD_TYPE(field)
1358 || integer_zerop (DECL_SIZE (field)))
1359 rli->prev_field = NULL;
1362 normalize_rli (rli);
1365 /* If we're starting a new run of same size type bitfields
1366 (or a run of non-bitfields), set up the "first of the run"
1367 fields.
1369 That is, if the current field is not a bitfield, or if there
1370 was a prior bitfield the type sizes differ, or if there wasn't
1371 a prior bitfield the size of the current field is nonzero.
1373 Note: we must be sure to test ONLY the type size if there was
1374 a prior bitfield and ONLY for the current field being zero if
1375 there wasn't. */
1377 if (!DECL_BIT_FIELD_TYPE (field)
1378 || (prev_saved != NULL
1379 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1380 : !integer_zerop (DECL_SIZE (field)) ))
1382 /* Never smaller than a byte for compatibility. */
1383 unsigned int type_align = BITS_PER_UNIT;
1385 /* (When not a bitfield), we could be seeing a flex array (with
1386 no DECL_SIZE). Since we won't be using remaining_in_alignment
1387 until we see a bitfield (and come by here again) we just skip
1388 calculating it. */
1389 if (DECL_SIZE (field) != NULL
1390 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 1)
1391 && host_integerp (DECL_SIZE (field), 1))
1393 unsigned HOST_WIDE_INT bitsize
1394 = tree_low_cst (DECL_SIZE (field), 1);
1395 unsigned HOST_WIDE_INT typesize
1396 = tree_low_cst (TYPE_SIZE (TREE_TYPE (field)), 1);
1398 if (typesize < bitsize)
1399 rli->remaining_in_alignment = 0;
1400 else
1401 rli->remaining_in_alignment = typesize - bitsize;
1404 /* Now align (conventionally) for the new type. */
1405 type_align = TYPE_ALIGN (TREE_TYPE (field));
1407 if (maximum_field_alignment != 0)
1408 type_align = MIN (type_align, maximum_field_alignment);
1410 rli->bitpos = round_up_loc (input_location, rli->bitpos, type_align);
1412 /* If we really aligned, don't allow subsequent bitfields
1413 to undo that. */
1414 rli->prev_field = NULL;
1418 /* Offset so far becomes the position of this field after normalizing. */
1419 normalize_rli (rli);
1420 DECL_FIELD_OFFSET (field) = rli->offset;
1421 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1422 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1424 /* If this field ended up more aligned than we thought it would be (we
1425 approximate this by seeing if its position changed), lay out the field
1426 again; perhaps we can use an integral mode for it now. */
1427 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1428 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1429 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1430 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1431 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1432 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1433 actual_align = (BITS_PER_UNIT
1434 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1435 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1436 else
1437 actual_align = DECL_OFFSET_ALIGN (field);
1438 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1439 store / extract bit field operations will check the alignment of the
1440 record against the mode of bit fields. */
1442 if (known_align != actual_align)
1443 layout_decl (field, actual_align);
1445 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1446 rli->prev_field = field;
1448 /* Now add size of this field to the size of the record. If the size is
1449 not constant, treat the field as being a multiple of bytes and just
1450 adjust the offset, resetting the bit position. Otherwise, apportion the
1451 size amongst the bit position and offset. First handle the case of an
1452 unspecified size, which can happen when we have an invalid nested struct
1453 definition, such as struct j { struct j { int i; } }. The error message
1454 is printed in finish_struct. */
1455 if (DECL_SIZE (field) == 0)
1456 /* Do nothing. */;
1457 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1458 || TREE_OVERFLOW (DECL_SIZE (field)))
1460 rli->offset
1461 = size_binop (PLUS_EXPR, rli->offset,
1462 fold_convert (sizetype,
1463 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1464 bitsize_unit_node)));
1465 rli->offset
1466 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1467 rli->bitpos = bitsize_zero_node;
1468 rli->offset_align = MIN (rli->offset_align, desired_align);
1470 else if (targetm.ms_bitfield_layout_p (rli->t))
1472 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1474 /* If we ended a bitfield before the full length of the type then
1475 pad the struct out to the full length of the last type. */
1476 if ((DECL_CHAIN (field) == NULL
1477 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1478 && DECL_BIT_FIELD_TYPE (field)
1479 && !integer_zerop (DECL_SIZE (field)))
1480 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1481 bitsize_int (rli->remaining_in_alignment));
1483 normalize_rli (rli);
1485 else
1487 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1488 normalize_rli (rli);
1492 /* Assuming that all the fields have been laid out, this function uses
1493 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1494 indicated by RLI. */
1496 static void
1497 finalize_record_size (record_layout_info rli)
1499 tree unpadded_size, unpadded_size_unit;
1501 /* Now we want just byte and bit offsets, so set the offset alignment
1502 to be a byte and then normalize. */
1503 rli->offset_align = BITS_PER_UNIT;
1504 normalize_rli (rli);
1506 /* Determine the desired alignment. */
1507 #ifdef ROUND_TYPE_ALIGN
1508 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1509 rli->record_align);
1510 #else
1511 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1512 #endif
1514 /* Compute the size so far. Be sure to allow for extra bits in the
1515 size in bytes. We have guaranteed above that it will be no more
1516 than a single byte. */
1517 unpadded_size = rli_size_so_far (rli);
1518 unpadded_size_unit = rli_size_unit_so_far (rli);
1519 if (! integer_zerop (rli->bitpos))
1520 unpadded_size_unit
1521 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1523 /* Round the size up to be a multiple of the required alignment. */
1524 TYPE_SIZE (rli->t) = round_up_loc (input_location, unpadded_size,
1525 TYPE_ALIGN (rli->t));
1526 TYPE_SIZE_UNIT (rli->t)
1527 = round_up_loc (input_location, unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1529 if (TREE_CONSTANT (unpadded_size)
1530 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1531 && input_location != BUILTINS_LOCATION)
1532 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1534 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1535 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1536 && TREE_CONSTANT (unpadded_size))
1538 tree unpacked_size;
1540 #ifdef ROUND_TYPE_ALIGN
1541 rli->unpacked_align
1542 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1543 #else
1544 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1545 #endif
1547 unpacked_size = round_up_loc (input_location, TYPE_SIZE (rli->t), rli->unpacked_align);
1548 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1550 if (TYPE_NAME (rli->t))
1552 tree name;
1554 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1555 name = TYPE_NAME (rli->t);
1556 else
1557 name = DECL_NAME (TYPE_NAME (rli->t));
1559 if (STRICT_ALIGNMENT)
1560 warning (OPT_Wpacked, "packed attribute causes inefficient "
1561 "alignment for %qE", name);
1562 else
1563 warning (OPT_Wpacked,
1564 "packed attribute is unnecessary for %qE", name);
1566 else
1568 if (STRICT_ALIGNMENT)
1569 warning (OPT_Wpacked,
1570 "packed attribute causes inefficient alignment");
1571 else
1572 warning (OPT_Wpacked, "packed attribute is unnecessary");
1578 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1580 void
1581 compute_record_mode (tree type)
1583 tree field;
1584 enum machine_mode mode = VOIDmode;
1586 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1587 However, if possible, we use a mode that fits in a register
1588 instead, in order to allow for better optimization down the
1589 line. */
1590 SET_TYPE_MODE (type, BLKmode);
1592 if (! host_integerp (TYPE_SIZE (type), 1))
1593 return;
1595 /* A record which has any BLKmode members must itself be
1596 BLKmode; it can't go in a register. Unless the member is
1597 BLKmode only because it isn't aligned. */
1598 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1600 if (TREE_CODE (field) != FIELD_DECL)
1601 continue;
1603 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1604 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1605 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1606 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1607 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1608 || ! host_integerp (bit_position (field), 1)
1609 || DECL_SIZE (field) == 0
1610 || ! host_integerp (DECL_SIZE (field), 1))
1611 return;
1613 /* If this field is the whole struct, remember its mode so
1614 that, say, we can put a double in a class into a DF
1615 register instead of forcing it to live in the stack. */
1616 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1617 mode = DECL_MODE (field);
1619 #ifdef MEMBER_TYPE_FORCES_BLK
1620 /* With some targets, eg. c4x, it is sub-optimal
1621 to access an aligned BLKmode structure as a scalar. */
1623 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1624 return;
1625 #endif /* MEMBER_TYPE_FORCES_BLK */
1628 /* If we only have one real field; use its mode if that mode's size
1629 matches the type's size. This only applies to RECORD_TYPE. This
1630 does not apply to unions. */
1631 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1632 && host_integerp (TYPE_SIZE (type), 1)
1633 && GET_MODE_BITSIZE (mode) == TREE_INT_CST_LOW (TYPE_SIZE (type)))
1634 SET_TYPE_MODE (type, mode);
1635 else
1636 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1638 /* If structure's known alignment is less than what the scalar
1639 mode would need, and it matters, then stick with BLKmode. */
1640 if (TYPE_MODE (type) != BLKmode
1641 && STRICT_ALIGNMENT
1642 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1643 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1645 /* If this is the only reason this type is BLKmode, then
1646 don't force containing types to be BLKmode. */
1647 TYPE_NO_FORCE_BLK (type) = 1;
1648 SET_TYPE_MODE (type, BLKmode);
1652 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1653 out. */
1655 static void
1656 finalize_type_size (tree type)
1658 /* Normally, use the alignment corresponding to the mode chosen.
1659 However, where strict alignment is not required, avoid
1660 over-aligning structures, since most compilers do not do this
1661 alignment. */
1663 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1664 && (STRICT_ALIGNMENT
1665 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1666 && TREE_CODE (type) != QUAL_UNION_TYPE
1667 && TREE_CODE (type) != ARRAY_TYPE)))
1669 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1671 /* Don't override a larger alignment requirement coming from a user
1672 alignment of one of the fields. */
1673 if (mode_align >= TYPE_ALIGN (type))
1675 TYPE_ALIGN (type) = mode_align;
1676 TYPE_USER_ALIGN (type) = 0;
1680 /* Do machine-dependent extra alignment. */
1681 #ifdef ROUND_TYPE_ALIGN
1682 TYPE_ALIGN (type)
1683 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1684 #endif
1686 /* If we failed to find a simple way to calculate the unit size
1687 of the type, find it by division. */
1688 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1689 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1690 result will fit in sizetype. We will get more efficient code using
1691 sizetype, so we force a conversion. */
1692 TYPE_SIZE_UNIT (type)
1693 = fold_convert (sizetype,
1694 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1695 bitsize_unit_node));
1697 if (TYPE_SIZE (type) != 0)
1699 TYPE_SIZE (type) = round_up_loc (input_location,
1700 TYPE_SIZE (type), TYPE_ALIGN (type));
1701 TYPE_SIZE_UNIT (type) = round_up_loc (input_location, TYPE_SIZE_UNIT (type),
1702 TYPE_ALIGN_UNIT (type));
1705 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1706 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1707 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1708 if (TYPE_SIZE_UNIT (type) != 0
1709 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1710 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1712 /* Also layout any other variants of the type. */
1713 if (TYPE_NEXT_VARIANT (type)
1714 || type != TYPE_MAIN_VARIANT (type))
1716 tree variant;
1717 /* Record layout info of this variant. */
1718 tree size = TYPE_SIZE (type);
1719 tree size_unit = TYPE_SIZE_UNIT (type);
1720 unsigned int align = TYPE_ALIGN (type);
1721 unsigned int user_align = TYPE_USER_ALIGN (type);
1722 enum machine_mode mode = TYPE_MODE (type);
1724 /* Copy it into all variants. */
1725 for (variant = TYPE_MAIN_VARIANT (type);
1726 variant != 0;
1727 variant = TYPE_NEXT_VARIANT (variant))
1729 TYPE_SIZE (variant) = size;
1730 TYPE_SIZE_UNIT (variant) = size_unit;
1731 TYPE_ALIGN (variant) = align;
1732 TYPE_USER_ALIGN (variant) = user_align;
1733 SET_TYPE_MODE (variant, mode);
1738 /* Do all of the work required to layout the type indicated by RLI,
1739 once the fields have been laid out. This function will call `free'
1740 for RLI, unless FREE_P is false. Passing a value other than false
1741 for FREE_P is bad practice; this option only exists to support the
1742 G++ 3.2 ABI. */
1744 void
1745 finish_record_layout (record_layout_info rli, int free_p)
1747 tree variant;
1749 /* Compute the final size. */
1750 finalize_record_size (rli);
1752 /* Compute the TYPE_MODE for the record. */
1753 compute_record_mode (rli->t);
1755 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1756 finalize_type_size (rli->t);
1758 /* Propagate TYPE_PACKED to variants. With C++ templates,
1759 handle_packed_attribute is too early to do this. */
1760 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
1761 variant = TYPE_NEXT_VARIANT (variant))
1762 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
1764 /* Lay out any static members. This is done now because their type
1765 may use the record's type. */
1766 while (!VEC_empty (tree, rli->pending_statics))
1767 layout_decl (VEC_pop (tree, rli->pending_statics), 0);
1769 /* Clean up. */
1770 if (free_p)
1772 VEC_free (tree, gc, rli->pending_statics);
1773 free (rli);
1778 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1779 NAME, its fields are chained in reverse on FIELDS.
1781 If ALIGN_TYPE is non-null, it is given the same alignment as
1782 ALIGN_TYPE. */
1784 void
1785 finish_builtin_struct (tree type, const char *name, tree fields,
1786 tree align_type)
1788 tree tail, next;
1790 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1792 DECL_FIELD_CONTEXT (fields) = type;
1793 next = DECL_CHAIN (fields);
1794 DECL_CHAIN (fields) = tail;
1796 TYPE_FIELDS (type) = tail;
1798 if (align_type)
1800 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
1801 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
1804 layout_type (type);
1805 #if 0 /* not yet, should get fixed properly later */
1806 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
1807 #else
1808 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
1809 TYPE_DECL, get_identifier (name), type);
1810 #endif
1811 TYPE_STUB_DECL (type) = TYPE_NAME (type);
1812 layout_decl (TYPE_NAME (type), 0);
1815 /* Calculate the mode, size, and alignment for TYPE.
1816 For an array type, calculate the element separation as well.
1817 Record TYPE on the chain of permanent or temporary types
1818 so that dbxout will find out about it.
1820 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1821 layout_type does nothing on such a type.
1823 If the type is incomplete, its TYPE_SIZE remains zero. */
1825 void
1826 layout_type (tree type)
1828 gcc_assert (type);
1830 if (type == error_mark_node)
1831 return;
1833 /* Do nothing if type has been laid out before. */
1834 if (TYPE_SIZE (type))
1835 return;
1837 switch (TREE_CODE (type))
1839 case LANG_TYPE:
1840 /* This kind of type is the responsibility
1841 of the language-specific code. */
1842 gcc_unreachable ();
1844 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1845 if (TYPE_PRECISION (type) == 0)
1846 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1848 /* ... fall through ... */
1850 case INTEGER_TYPE:
1851 case ENUMERAL_TYPE:
1852 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1853 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1854 TYPE_UNSIGNED (type) = 1;
1856 SET_TYPE_MODE (type,
1857 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
1858 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1859 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1860 break;
1862 case REAL_TYPE:
1863 SET_TYPE_MODE (type,
1864 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
1865 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1866 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1867 break;
1869 case FIXED_POINT_TYPE:
1870 /* TYPE_MODE (type) has been set already. */
1871 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1872 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1873 break;
1875 case COMPLEX_TYPE:
1876 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1877 SET_TYPE_MODE (type,
1878 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1879 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
1880 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
1881 0));
1882 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1883 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1884 break;
1886 case VECTOR_TYPE:
1888 int nunits = TYPE_VECTOR_SUBPARTS (type);
1889 tree innertype = TREE_TYPE (type);
1891 gcc_assert (!(nunits & (nunits - 1)));
1893 /* Find an appropriate mode for the vector type. */
1894 if (TYPE_MODE (type) == VOIDmode)
1895 SET_TYPE_MODE (type,
1896 mode_for_vector (TYPE_MODE (innertype), nunits));
1898 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
1899 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1900 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
1901 TYPE_SIZE_UNIT (innertype),
1902 size_int (nunits), 0);
1903 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
1904 bitsize_int (nunits), 0);
1906 /* Always naturally align vectors. This prevents ABI changes
1907 depending on whether or not native vector modes are supported. */
1908 TYPE_ALIGN (type) = tree_low_cst (TYPE_SIZE (type), 0);
1909 break;
1912 case VOID_TYPE:
1913 /* This is an incomplete type and so doesn't have a size. */
1914 TYPE_ALIGN (type) = 1;
1915 TYPE_USER_ALIGN (type) = 0;
1916 SET_TYPE_MODE (type, VOIDmode);
1917 break;
1919 case OFFSET_TYPE:
1920 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1921 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1922 /* A pointer might be MODE_PARTIAL_INT,
1923 but ptrdiff_t must be integral. */
1924 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
1925 TYPE_PRECISION (type) = POINTER_SIZE;
1926 break;
1928 case FUNCTION_TYPE:
1929 case METHOD_TYPE:
1930 /* It's hard to see what the mode and size of a function ought to
1931 be, but we do know the alignment is FUNCTION_BOUNDARY, so
1932 make it consistent with that. */
1933 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
1934 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
1935 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
1936 break;
1938 case POINTER_TYPE:
1939 case REFERENCE_TYPE:
1941 enum machine_mode mode = TYPE_MODE (type);
1942 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
1944 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
1945 mode = targetm.addr_space.address_mode (as);
1948 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
1949 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
1950 TYPE_UNSIGNED (type) = 1;
1951 TYPE_PRECISION (type) = GET_MODE_BITSIZE (mode);
1953 break;
1955 case ARRAY_TYPE:
1957 tree index = TYPE_DOMAIN (type);
1958 tree element = TREE_TYPE (type);
1960 build_pointer_type (element);
1962 /* We need to know both bounds in order to compute the size. */
1963 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1964 && TYPE_SIZE (element))
1966 tree ub = TYPE_MAX_VALUE (index);
1967 tree lb = TYPE_MIN_VALUE (index);
1968 tree element_size = TYPE_SIZE (element);
1969 tree length;
1971 /* Make sure that an array of zero-sized element is zero-sized
1972 regardless of its extent. */
1973 if (integer_zerop (element_size))
1974 length = size_zero_node;
1976 /* The initial subtraction should happen in the original type so
1977 that (possible) negative values are handled appropriately. */
1978 else
1979 length
1980 = size_binop (PLUS_EXPR, size_one_node,
1981 fold_convert (sizetype,
1982 fold_build2_loc (input_location,
1983 MINUS_EXPR,
1984 TREE_TYPE (lb),
1985 ub, lb)));
1987 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1988 fold_convert (bitsizetype,
1989 length));
1991 /* If we know the size of the element, calculate the total size
1992 directly, rather than do some division thing below. This
1993 optimization helps Fortran assumed-size arrays (where the
1994 size of the array is determined at runtime) substantially. */
1995 if (TYPE_SIZE_UNIT (element))
1996 TYPE_SIZE_UNIT (type)
1997 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2000 /* Now round the alignment and size,
2001 using machine-dependent criteria if any. */
2003 #ifdef ROUND_TYPE_ALIGN
2004 TYPE_ALIGN (type)
2005 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2006 #else
2007 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2008 #endif
2009 if (!TYPE_SIZE (element))
2010 /* We don't know the size of the underlying element type, so
2011 our alignment calculations will be wrong, forcing us to
2012 fall back on structural equality. */
2013 SET_TYPE_STRUCTURAL_EQUALITY (type);
2014 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2015 SET_TYPE_MODE (type, BLKmode);
2016 if (TYPE_SIZE (type) != 0
2017 #ifdef MEMBER_TYPE_FORCES_BLK
2018 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
2019 #endif
2020 /* BLKmode elements force BLKmode aggregate;
2021 else extract/store fields may lose. */
2022 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2023 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2025 /* One-element arrays get the component type's mode. */
2026 if (simple_cst_equal (TYPE_SIZE (type),
2027 TYPE_SIZE (TREE_TYPE (type))))
2028 SET_TYPE_MODE (type, TYPE_MODE (TREE_TYPE (type)));
2029 else
2030 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type),
2031 MODE_INT, 1));
2033 if (TYPE_MODE (type) != BLKmode
2034 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2035 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2037 TYPE_NO_FORCE_BLK (type) = 1;
2038 SET_TYPE_MODE (type, BLKmode);
2041 /* When the element size is constant, check that it is at least as
2042 large as the element alignment. */
2043 if (TYPE_SIZE_UNIT (element)
2044 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2045 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2046 TYPE_ALIGN_UNIT. */
2047 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2048 && !integer_zerop (TYPE_SIZE_UNIT (element))
2049 && compare_tree_int (TYPE_SIZE_UNIT (element),
2050 TYPE_ALIGN_UNIT (element)) < 0)
2051 error ("alignment of array elements is greater than element size");
2052 break;
2055 case RECORD_TYPE:
2056 case UNION_TYPE:
2057 case QUAL_UNION_TYPE:
2059 tree field;
2060 record_layout_info rli;
2062 /* Initialize the layout information. */
2063 rli = start_record_layout (type);
2065 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2066 in the reverse order in building the COND_EXPR that denotes
2067 its size. We reverse them again later. */
2068 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2069 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2071 /* Place all the fields. */
2072 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2073 place_field (rli, field);
2075 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2076 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2078 /* Finish laying out the record. */
2079 finish_record_layout (rli, /*free_p=*/true);
2081 break;
2083 default:
2084 gcc_unreachable ();
2087 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2088 records and unions, finish_record_layout already called this
2089 function. */
2090 if (TREE_CODE (type) != RECORD_TYPE
2091 && TREE_CODE (type) != UNION_TYPE
2092 && TREE_CODE (type) != QUAL_UNION_TYPE)
2093 finalize_type_size (type);
2095 /* We should never see alias sets on incomplete aggregates. And we
2096 should not call layout_type on not incomplete aggregates. */
2097 if (AGGREGATE_TYPE_P (type))
2098 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2101 /* Vector types need to re-check the target flags each time we report
2102 the machine mode. We need to do this because attribute target can
2103 change the result of vector_mode_supported_p and have_regs_of_mode
2104 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2105 change on a per-function basis. */
2106 /* ??? Possibly a better solution is to run through all the types
2107 referenced by a function and re-compute the TYPE_MODE once, rather
2108 than make the TYPE_MODE macro call a function. */
2110 enum machine_mode
2111 vector_type_mode (const_tree t)
2113 enum machine_mode mode;
2115 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2117 mode = t->type.mode;
2118 if (VECTOR_MODE_P (mode)
2119 && (!targetm.vector_mode_supported_p (mode)
2120 || !have_regs_of_mode[mode]))
2122 enum machine_mode innermode = TREE_TYPE (t)->type.mode;
2124 /* For integers, try mapping it to a same-sized scalar mode. */
2125 if (GET_MODE_CLASS (innermode) == MODE_INT)
2127 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2128 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2130 if (mode != VOIDmode && have_regs_of_mode[mode])
2131 return mode;
2134 return BLKmode;
2137 return mode;
2140 /* Create and return a type for signed integers of PRECISION bits. */
2142 tree
2143 make_signed_type (int precision)
2145 tree type = make_node (INTEGER_TYPE);
2147 TYPE_PRECISION (type) = precision;
2149 fixup_signed_type (type);
2150 return type;
2153 /* Create and return a type for unsigned integers of PRECISION bits. */
2155 tree
2156 make_unsigned_type (int precision)
2158 tree type = make_node (INTEGER_TYPE);
2160 TYPE_PRECISION (type) = precision;
2162 fixup_unsigned_type (type);
2163 return type;
2166 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2167 and SATP. */
2169 tree
2170 make_fract_type (int precision, int unsignedp, int satp)
2172 tree type = make_node (FIXED_POINT_TYPE);
2174 TYPE_PRECISION (type) = precision;
2176 if (satp)
2177 TYPE_SATURATING (type) = 1;
2179 /* Lay out the type: set its alignment, size, etc. */
2180 if (unsignedp)
2182 TYPE_UNSIGNED (type) = 1;
2183 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2185 else
2186 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2187 layout_type (type);
2189 return type;
2192 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2193 and SATP. */
2195 tree
2196 make_accum_type (int precision, int unsignedp, int satp)
2198 tree type = make_node (FIXED_POINT_TYPE);
2200 TYPE_PRECISION (type) = precision;
2202 if (satp)
2203 TYPE_SATURATING (type) = 1;
2205 /* Lay out the type: set its alignment, size, etc. */
2206 if (unsignedp)
2208 TYPE_UNSIGNED (type) = 1;
2209 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2211 else
2212 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2213 layout_type (type);
2215 return type;
2218 /* Initialize sizetype and bitsizetype to a reasonable and temporary
2219 value to enable integer types to be created. */
2221 void
2222 initialize_sizetypes (void)
2224 tree t = make_node (INTEGER_TYPE);
2225 int precision = GET_MODE_BITSIZE (SImode);
2227 SET_TYPE_MODE (t, SImode);
2228 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
2229 TYPE_IS_SIZETYPE (t) = 1;
2230 TYPE_UNSIGNED (t) = 1;
2231 TYPE_SIZE (t) = build_int_cst (t, precision);
2232 TYPE_SIZE_UNIT (t) = build_int_cst (t, GET_MODE_SIZE (SImode));
2233 TYPE_PRECISION (t) = precision;
2235 set_min_and_max_values_for_integral_type (t, precision, true);
2237 sizetype = t;
2238 bitsizetype = build_distinct_type_copy (t);
2241 /* Make sizetype a version of TYPE, and initialize *sizetype accordingly.
2242 We do this by overwriting the stub sizetype and bitsizetype nodes created
2243 by initialize_sizetypes. This makes sure that (a) anything stubby about
2244 them no longer exists and (b) any INTEGER_CSTs created with such a type,
2245 remain valid. */
2247 void
2248 set_sizetype (tree type)
2250 tree t, max;
2251 int oprecision = TYPE_PRECISION (type);
2252 /* The *bitsizetype types use a precision that avoids overflows when
2253 calculating signed sizes / offsets in bits. However, when
2254 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
2255 precision. */
2256 int precision
2257 = MIN (oprecision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2258 precision
2259 = GET_MODE_PRECISION (smallest_mode_for_size (precision, MODE_INT));
2260 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2261 precision = HOST_BITS_PER_WIDE_INT * 2;
2263 /* sizetype must be an unsigned type. */
2264 gcc_assert (TYPE_UNSIGNED (type));
2266 t = build_distinct_type_copy (type);
2267 /* We want to use sizetype's cache, as we will be replacing that type. */
2268 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (sizetype);
2269 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (sizetype);
2270 TREE_TYPE (TYPE_CACHED_VALUES (t)) = type;
2271 TYPE_UID (t) = TYPE_UID (sizetype);
2272 TYPE_IS_SIZETYPE (t) = 1;
2274 /* Replace our original stub sizetype. */
2275 memcpy (sizetype, t, tree_size (sizetype));
2276 TYPE_MAIN_VARIANT (sizetype) = sizetype;
2277 TYPE_CANONICAL (sizetype) = sizetype;
2279 /* sizetype is unsigned but we need to fix TYPE_MAX_VALUE so that it is
2280 sign-extended in a way consistent with force_fit_type. */
2281 max = TYPE_MAX_VALUE (sizetype);
2282 TYPE_MAX_VALUE (sizetype)
2283 = double_int_to_tree (sizetype, tree_to_double_int (max));
2285 t = make_node (INTEGER_TYPE);
2286 TYPE_NAME (t) = get_identifier ("bit_size_type");
2287 /* We want to use bitsizetype's cache, as we will be replacing that type. */
2288 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (bitsizetype);
2289 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (bitsizetype);
2290 TYPE_PRECISION (t) = precision;
2291 TYPE_UID (t) = TYPE_UID (bitsizetype);
2292 TYPE_IS_SIZETYPE (t) = 1;
2294 /* Replace our original stub bitsizetype. */
2295 memcpy (bitsizetype, t, tree_size (bitsizetype));
2296 TYPE_MAIN_VARIANT (bitsizetype) = bitsizetype;
2297 TYPE_CANONICAL (bitsizetype) = bitsizetype;
2299 fixup_unsigned_type (bitsizetype);
2301 /* Create the signed variants of *sizetype. */
2302 ssizetype = make_signed_type (oprecision);
2303 TYPE_IS_SIZETYPE (ssizetype) = 1;
2304 sbitsizetype = make_signed_type (precision);
2305 TYPE_IS_SIZETYPE (sbitsizetype) = 1;
2308 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2309 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2310 for TYPE, based on the PRECISION and whether or not the TYPE
2311 IS_UNSIGNED. PRECISION need not correspond to a width supported
2312 natively by the hardware; for example, on a machine with 8-bit,
2313 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2314 61. */
2316 void
2317 set_min_and_max_values_for_integral_type (tree type,
2318 int precision,
2319 bool is_unsigned)
2321 tree min_value;
2322 tree max_value;
2324 if (is_unsigned)
2326 min_value = build_int_cst (type, 0);
2327 max_value
2328 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2329 ? -1
2330 : ((HOST_WIDE_INT) 1 << precision) - 1,
2331 precision - HOST_BITS_PER_WIDE_INT > 0
2332 ? ((unsigned HOST_WIDE_INT) ~0
2333 >> (HOST_BITS_PER_WIDE_INT
2334 - (precision - HOST_BITS_PER_WIDE_INT)))
2335 : 0);
2337 else
2339 min_value
2340 = build_int_cst_wide (type,
2341 (precision - HOST_BITS_PER_WIDE_INT > 0
2343 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2344 (((HOST_WIDE_INT) (-1)
2345 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2346 ? precision - HOST_BITS_PER_WIDE_INT - 1
2347 : 0))));
2348 max_value
2349 = build_int_cst_wide (type,
2350 (precision - HOST_BITS_PER_WIDE_INT > 0
2351 ? -1
2352 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2353 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2354 ? (((HOST_WIDE_INT) 1
2355 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2356 : 0));
2359 TYPE_MIN_VALUE (type) = min_value;
2360 TYPE_MAX_VALUE (type) = max_value;
2363 /* Set the extreme values of TYPE based on its precision in bits,
2364 then lay it out. Used when make_signed_type won't do
2365 because the tree code is not INTEGER_TYPE.
2366 E.g. for Pascal, when the -fsigned-char option is given. */
2368 void
2369 fixup_signed_type (tree type)
2371 int precision = TYPE_PRECISION (type);
2373 /* We can not represent properly constants greater then
2374 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2375 as they are used by i386 vector extensions and friends. */
2376 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2377 precision = HOST_BITS_PER_WIDE_INT * 2;
2379 set_min_and_max_values_for_integral_type (type, precision,
2380 /*is_unsigned=*/false);
2382 /* Lay out the type: set its alignment, size, etc. */
2383 layout_type (type);
2386 /* Set the extreme values of TYPE based on its precision in bits,
2387 then lay it out. This is used both in `make_unsigned_type'
2388 and for enumeral types. */
2390 void
2391 fixup_unsigned_type (tree type)
2393 int precision = TYPE_PRECISION (type);
2395 /* We can not represent properly constants greater then
2396 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2397 as they are used by i386 vector extensions and friends. */
2398 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2399 precision = HOST_BITS_PER_WIDE_INT * 2;
2401 TYPE_UNSIGNED (type) = 1;
2403 set_min_and_max_values_for_integral_type (type, precision,
2404 /*is_unsigned=*/true);
2406 /* Lay out the type: set its alignment, size, etc. */
2407 layout_type (type);
2410 /* Find the best machine mode to use when referencing a bit field of length
2411 BITSIZE bits starting at BITPOS.
2413 The underlying object is known to be aligned to a boundary of ALIGN bits.
2414 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2415 larger than LARGEST_MODE (usually SImode).
2417 If no mode meets all these conditions, we return VOIDmode.
2419 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2420 smallest mode meeting these conditions.
2422 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2423 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2424 all the conditions.
2426 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2427 decide which of the above modes should be used. */
2429 enum machine_mode
2430 get_best_mode (int bitsize, int bitpos, unsigned int align,
2431 enum machine_mode largest_mode, int volatilep)
2433 enum machine_mode mode;
2434 unsigned int unit = 0;
2436 /* Find the narrowest integer mode that contains the bit field. */
2437 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2438 mode = GET_MODE_WIDER_MODE (mode))
2440 unit = GET_MODE_BITSIZE (mode);
2441 if ((bitpos % unit) + bitsize <= unit)
2442 break;
2445 if (mode == VOIDmode
2446 /* It is tempting to omit the following line
2447 if STRICT_ALIGNMENT is true.
2448 But that is incorrect, since if the bitfield uses part of 3 bytes
2449 and we use a 4-byte mode, we could get a spurious segv
2450 if the extra 4th byte is past the end of memory.
2451 (Though at least one Unix compiler ignores this problem:
2452 that on the Sequent 386 machine. */
2453 || MIN (unit, BIGGEST_ALIGNMENT) > align
2454 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2455 return VOIDmode;
2457 if ((SLOW_BYTE_ACCESS && ! volatilep)
2458 || (volatilep && !targetm.narrow_volatile_bitfield ()))
2460 enum machine_mode wide_mode = VOIDmode, tmode;
2462 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2463 tmode = GET_MODE_WIDER_MODE (tmode))
2465 unit = GET_MODE_BITSIZE (tmode);
2466 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2467 && unit <= BITS_PER_WORD
2468 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2469 && (largest_mode == VOIDmode
2470 || unit <= GET_MODE_BITSIZE (largest_mode)))
2471 wide_mode = tmode;
2474 if (wide_mode != VOIDmode)
2475 return wide_mode;
2478 return mode;
2481 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2482 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2484 void
2485 get_mode_bounds (enum machine_mode mode, int sign,
2486 enum machine_mode target_mode,
2487 rtx *mmin, rtx *mmax)
2489 unsigned size = GET_MODE_BITSIZE (mode);
2490 unsigned HOST_WIDE_INT min_val, max_val;
2492 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2494 if (sign)
2496 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2497 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2499 else
2501 min_val = 0;
2502 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2505 *mmin = gen_int_mode (min_val, target_mode);
2506 *mmax = gen_int_mode (max_val, target_mode);
2509 #include "gt-stor-layout.h"