2011-03-27 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / config / arm / arm.h
blobadd8eced3ed567429aa098479051bd52556e72e9
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
6 and Martin Simmons (@harleqn.co.uk).
7 More major hacks by Richard Earnshaw (rearnsha@arm.com)
8 Minor hacks by Nick Clifton (nickc@cygnus.com)
10 This file is part of GCC.
12 GCC is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published
14 by the Free Software Foundation; either version 3, or (at your
15 option) any later version.
17 GCC is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
20 License for more details.
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
26 #ifndef GCC_ARM_H
27 #define GCC_ARM_H
29 /* We can't use enum machine_mode inside a generator file because it
30 hasn't been created yet; we shouldn't be using any code that
31 needs the real definition though, so this ought to be safe. */
32 #ifdef GENERATOR_FILE
33 #define MACHMODE int
34 #else
35 #include "insn-modes.h"
36 #define MACHMODE enum machine_mode
37 #endif
39 #include "config/vxworks-dummy.h"
41 /* The architecture define. */
42 extern char arm_arch_name[];
44 /* Target CPU builtins. */
45 #define TARGET_CPU_CPP_BUILTINS() \
46 do \
47 { \
48 /* Define __arm__ even when in thumb mode, for \
49 consistency with armcc. */ \
50 builtin_define ("__arm__"); \
51 builtin_define ("__APCS_32__"); \
52 if (TARGET_THUMB) \
53 builtin_define ("__thumb__"); \
54 if (TARGET_THUMB2) \
55 builtin_define ("__thumb2__"); \
57 if (TARGET_BIG_END) \
58 { \
59 builtin_define ("__ARMEB__"); \
60 if (TARGET_THUMB) \
61 builtin_define ("__THUMBEB__"); \
62 if (TARGET_LITTLE_WORDS) \
63 builtin_define ("__ARMWEL__"); \
64 } \
65 else \
66 { \
67 builtin_define ("__ARMEL__"); \
68 if (TARGET_THUMB) \
69 builtin_define ("__THUMBEL__"); \
70 } \
72 if (TARGET_SOFT_FLOAT) \
73 builtin_define ("__SOFTFP__"); \
75 if (TARGET_VFP) \
76 builtin_define ("__VFP_FP__"); \
78 if (TARGET_NEON) \
79 builtin_define ("__ARM_NEON__"); \
81 /* Add a define for interworking. \
82 Needed when building libgcc.a. */ \
83 if (arm_cpp_interwork) \
84 builtin_define ("__THUMB_INTERWORK__"); \
86 builtin_assert ("cpu=arm"); \
87 builtin_assert ("machine=arm"); \
89 builtin_define (arm_arch_name); \
90 if (arm_arch_cirrus) \
91 builtin_define ("__MAVERICK__"); \
92 if (arm_arch_xscale) \
93 builtin_define ("__XSCALE__"); \
94 if (arm_arch_iwmmxt) \
95 builtin_define ("__IWMMXT__"); \
96 if (TARGET_AAPCS_BASED) \
97 { \
98 if (arm_pcs_default == ARM_PCS_AAPCS_VFP) \
99 builtin_define ("__ARM_PCS_VFP"); \
100 else if (arm_pcs_default == ARM_PCS_AAPCS) \
101 builtin_define ("__ARM_PCS"); \
102 builtin_define ("__ARM_EABI__"); \
104 } while (0)
106 /* The various ARM cores. */
107 enum processor_type
109 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
110 IDENT,
111 #include "arm-cores.def"
112 #undef ARM_CORE
113 /* Used to indicate that no processor has been specified. */
114 arm_none
117 enum target_cpus
119 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
120 TARGET_CPU_##IDENT,
121 #include "arm-cores.def"
122 #undef ARM_CORE
123 TARGET_CPU_generic
126 /* The processor for which instructions should be scheduled. */
127 extern enum processor_type arm_tune;
129 enum arm_sync_generator_tag
131 arm_sync_generator_omn,
132 arm_sync_generator_omrn
135 /* Wrapper to pass around a polymorphic pointer to a sync instruction
136 generator and. */
137 struct arm_sync_generator
139 enum arm_sync_generator_tag op;
140 union
142 rtx (* omn) (rtx, rtx, rtx);
143 rtx (* omrn) (rtx, rtx, rtx, rtx);
144 } u;
147 typedef enum arm_cond_code
149 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
150 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
152 arm_cc;
154 extern arm_cc arm_current_cc;
156 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
158 extern int arm_target_label;
159 extern int arm_ccfsm_state;
160 extern GTY(()) rtx arm_target_insn;
161 /* The label of the current constant pool. */
162 extern rtx pool_vector_label;
163 /* Set to 1 when a return insn is output, this means that the epilogue
164 is not needed. */
165 extern int return_used_this_function;
166 /* Callback to output language specific object attributes. */
167 extern void (*arm_lang_output_object_attributes_hook)(void);
169 /* Just in case configure has failed to define anything. */
170 #ifndef TARGET_CPU_DEFAULT
171 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
172 #endif
175 #undef CPP_SPEC
176 #define CPP_SPEC "%(subtarget_cpp_spec) \
177 %{mfloat-abi=soft:%{mfloat-abi=hard: \
178 %e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
179 %{mbig-endian:%{mlittle-endian: \
180 %e-mbig-endian and -mlittle-endian may not be used together}}"
182 #ifndef CC1_SPEC
183 #define CC1_SPEC ""
184 #endif
186 /* This macro defines names of additional specifications to put in the specs
187 that can be used in various specifications like CC1_SPEC. Its definition
188 is an initializer with a subgrouping for each command option.
190 Each subgrouping contains a string constant, that defines the
191 specification name, and a string constant that used by the GCC driver
192 program.
194 Do not define this macro if it does not need to do anything. */
195 #define EXTRA_SPECS \
196 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
197 SUBTARGET_EXTRA_SPECS
199 #ifndef SUBTARGET_EXTRA_SPECS
200 #define SUBTARGET_EXTRA_SPECS
201 #endif
203 #ifndef SUBTARGET_CPP_SPEC
204 #define SUBTARGET_CPP_SPEC ""
205 #endif
207 /* Run-time Target Specification. */
208 #ifndef TARGET_VERSION
209 #define TARGET_VERSION fputs (" (ARM/generic)", stderr);
210 #endif
212 #define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT)
213 /* Use hardware floating point instructions. */
214 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
215 /* Use hardware floating point calling convention. */
216 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
217 #define TARGET_FPA (arm_fpu_desc->model == ARM_FP_MODEL_FPA)
218 #define TARGET_MAVERICK (arm_fpu_desc->model == ARM_FP_MODEL_MAVERICK)
219 #define TARGET_VFP (arm_fpu_desc->model == ARM_FP_MODEL_VFP)
220 #define TARGET_IWMMXT (arm_arch_iwmmxt)
221 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
222 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
223 #define TARGET_ARM (! TARGET_THUMB)
224 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
225 #define TARGET_BACKTRACE (leaf_function_p () \
226 ? TARGET_TPCS_LEAF_FRAME \
227 : TARGET_TPCS_FRAME)
228 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN)
229 #define TARGET_AAPCS_BASED \
230 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
232 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
233 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
235 /* Only 16-bit thumb code. */
236 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
237 /* Arm or Thumb-2 32-bit code. */
238 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
239 /* 32-bit Thumb-2 code. */
240 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
241 /* Thumb-1 only. */
242 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
243 /* FPA emulator without LFM. */
244 #define TARGET_FPA_EMU2 (TARGET_FPA && arm_fpu_desc->rev == 2)
246 /* The following two macros concern the ability to execute coprocessor
247 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
248 only ever tested when we know we are generating for VFP hardware; we need
249 to be more careful with TARGET_NEON as noted below. */
251 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
252 #define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32)
254 /* FPU supports VFPv3 instructions. */
255 #define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3)
257 /* FPU only supports VFP single-precision instructions. */
258 #define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE)
260 /* FPU supports VFP double-precision instructions. */
261 #define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE)
263 /* FPU supports half-precision floating-point with NEON element load/store. */
264 #define TARGET_NEON_FP16 \
265 (TARGET_VFP && arm_fpu_desc->neon && arm_fpu_desc->fp16)
267 /* FPU supports VFP half-precision floating-point. */
268 #define TARGET_FP16 (TARGET_VFP && arm_fpu_desc->fp16)
270 /* FPU supports Neon instructions. The setting of this macro gets
271 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
272 and TARGET_HARD_FLOAT to ensure that NEON instructions are
273 available. */
274 #define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \
275 && TARGET_VFP && arm_fpu_desc->neon)
277 /* "DSP" multiply instructions, eg. SMULxy. */
278 #define TARGET_DSP_MULTIPLY \
279 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
280 /* Integer SIMD instructions, and extend-accumulate instructions. */
281 #define TARGET_INT_SIMD \
282 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
284 /* Should MOVW/MOVT be used in preference to a constant pool. */
285 #define TARGET_USE_MOVT (arm_arch_thumb2 && !optimize_size)
287 /* We could use unified syntax for arm mode, but for now we just use it
288 for Thumb-2. */
289 #define TARGET_UNIFIED_ASM TARGET_THUMB2
291 /* Nonzero if this chip provides the DMB instruction. */
292 #define TARGET_HAVE_DMB (arm_arch7)
294 /* Nonzero if this chip implements a memory barrier via CP15. */
295 #define TARGET_HAVE_DMB_MCR (arm_arch6k && ! TARGET_HAVE_DMB)
297 /* Nonzero if this chip implements a memory barrier instruction. */
298 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
300 /* Nonzero if this chip supports ldrex and strex */
301 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) || arm_arch7)
303 /* Nonzero if this chip supports ldrex{bhd} and strex{bhd}. */
304 #define TARGET_HAVE_LDREXBHD ((arm_arch6k && TARGET_ARM) || arm_arch7)
306 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
307 then TARGET_AAPCS_BASED must be true -- but the converse does not
308 hold. TARGET_BPABI implies the use of the BPABI runtime library,
309 etc., in addition to just the AAPCS calling conventions. */
310 #ifndef TARGET_BPABI
311 #define TARGET_BPABI false
312 #endif
314 /* Support for a compile-time default CPU, et cetera. The rules are:
315 --with-arch is ignored if -march or -mcpu are specified.
316 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
317 by --with-arch.
318 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
319 by -march).
320 --with-float is ignored if -mfloat-abi is specified.
321 --with-fpu is ignored if -mfpu is specified.
322 --with-abi is ignored is -mabi is specified. */
323 #define OPTION_DEFAULT_SPECS \
324 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
325 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
326 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
327 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
328 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
329 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
330 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"},
332 /* Which floating point model to use. */
333 enum arm_fp_model
335 ARM_FP_MODEL_UNKNOWN,
336 /* FPA model (Hardware or software). */
337 ARM_FP_MODEL_FPA,
338 /* Cirrus Maverick floating point model. */
339 ARM_FP_MODEL_MAVERICK,
340 /* VFP floating point model. */
341 ARM_FP_MODEL_VFP
344 enum vfp_reg_type
346 VFP_NONE = 0,
347 VFP_REG_D16,
348 VFP_REG_D32,
349 VFP_REG_SINGLE
352 extern const struct arm_fpu_desc
354 const char *name;
355 enum arm_fp_model model;
356 int rev;
357 enum vfp_reg_type regs;
358 int neon;
359 int fp16;
360 } *arm_fpu_desc;
362 /* Which floating point hardware to schedule for. */
363 extern int arm_fpu_attr;
365 enum float_abi_type
367 ARM_FLOAT_ABI_SOFT,
368 ARM_FLOAT_ABI_SOFTFP,
369 ARM_FLOAT_ABI_HARD
372 extern enum float_abi_type arm_float_abi;
374 #ifndef TARGET_DEFAULT_FLOAT_ABI
375 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
376 #endif
378 /* Which __fp16 format to use.
379 The enumeration values correspond to the numbering for the
380 Tag_ABI_FP_16bit_format attribute.
382 enum arm_fp16_format_type
384 ARM_FP16_FORMAT_NONE = 0,
385 ARM_FP16_FORMAT_IEEE = 1,
386 ARM_FP16_FORMAT_ALTERNATIVE = 2
389 extern enum arm_fp16_format_type arm_fp16_format;
390 #define LARGEST_EXPONENT_IS_NORMAL(bits) \
391 ((bits) == 16 && arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE)
393 /* Which ABI to use. */
394 enum arm_abi_type
396 ARM_ABI_APCS,
397 ARM_ABI_ATPCS,
398 ARM_ABI_AAPCS,
399 ARM_ABI_IWMMXT,
400 ARM_ABI_AAPCS_LINUX
403 extern enum arm_abi_type arm_abi;
405 #ifndef ARM_DEFAULT_ABI
406 #define ARM_DEFAULT_ABI ARM_ABI_APCS
407 #endif
409 /* Which thread pointer access sequence to use. */
410 enum arm_tp_type {
411 TP_AUTO,
412 TP_SOFT,
413 TP_CP15
416 extern enum arm_tp_type target_thread_pointer;
418 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
419 extern int arm_arch3m;
421 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
422 extern int arm_arch4;
424 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
425 extern int arm_arch4t;
427 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
428 extern int arm_arch5;
430 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
431 extern int arm_arch5e;
433 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
434 extern int arm_arch6;
436 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */
437 extern int arm_arch6k;
439 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */
440 extern int arm_arch7;
442 /* Nonzero if instructions not present in the 'M' profile can be used. */
443 extern int arm_arch_notm;
445 /* Nonzero if instructions present in ARMv7E-M can be used. */
446 extern int arm_arch7em;
448 /* Nonzero if this chip can benefit from load scheduling. */
449 extern int arm_ld_sched;
451 /* Nonzero if generating Thumb code, either Thumb-1 or Thumb-2. */
452 extern int thumb_code;
454 /* Nonzero if generating Thumb-1 code. */
455 extern int thumb1_code;
457 /* Nonzero if this chip is a StrongARM. */
458 extern int arm_tune_strongarm;
460 /* Nonzero if this chip is a Cirrus variant. */
461 extern int arm_arch_cirrus;
463 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
464 extern int arm_arch_iwmmxt;
466 /* Nonzero if this chip is an XScale. */
467 extern int arm_arch_xscale;
469 /* Nonzero if tuning for XScale. */
470 extern int arm_tune_xscale;
472 /* Nonzero if tuning for stores via the write buffer. */
473 extern int arm_tune_wbuf;
475 /* Nonzero if tuning for Cortex-A9. */
476 extern int arm_tune_cortex_a9;
478 /* Nonzero if we should define __THUMB_INTERWORK__ in the
479 preprocessor.
480 XXX This is a bit of a hack, it's intended to help work around
481 problems in GLD which doesn't understand that armv5t code is
482 interworking clean. */
483 extern int arm_cpp_interwork;
485 /* Nonzero if chip supports Thumb 2. */
486 extern int arm_arch_thumb2;
488 /* Nonzero if chip supports integer division instruction. */
489 extern int arm_arch_hwdiv;
491 #ifndef TARGET_DEFAULT
492 #define TARGET_DEFAULT (MASK_APCS_FRAME)
493 #endif
495 /* Nonzero if PIC code requires explicit qualifiers to generate
496 PLT and GOT relocs rather than the assembler doing so implicitly.
497 Subtargets can override these if required. */
498 #ifndef NEED_GOT_RELOC
499 #define NEED_GOT_RELOC 0
500 #endif
501 #ifndef NEED_PLT_RELOC
502 #define NEED_PLT_RELOC 0
503 #endif
505 /* Nonzero if we need to refer to the GOT with a PC-relative
506 offset. In other words, generate
508 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
510 rather than
512 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
514 The default is true, which matches NetBSD. Subtargets can
515 override this if required. */
516 #ifndef GOT_PCREL
517 #define GOT_PCREL 1
518 #endif
520 /* Target machine storage Layout. */
523 /* Define this macro if it is advisable to hold scalars in registers
524 in a wider mode than that declared by the program. In such cases,
525 the value is constrained to be within the bounds of the declared
526 type, but kept valid in the wider mode. The signedness of the
527 extension may differ from that of the type. */
529 /* It is far faster to zero extend chars than to sign extend them */
531 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
532 if (GET_MODE_CLASS (MODE) == MODE_INT \
533 && GET_MODE_SIZE (MODE) < 4) \
535 if (MODE == QImode) \
536 UNSIGNEDP = 1; \
537 else if (MODE == HImode) \
538 UNSIGNEDP = 1; \
539 (MODE) = SImode; \
542 /* Define this if most significant bit is lowest numbered
543 in instructions that operate on numbered bit-fields. */
544 #define BITS_BIG_ENDIAN 0
546 /* Define this if most significant byte of a word is the lowest numbered.
547 Most ARM processors are run in little endian mode, so that is the default.
548 If you want to have it run-time selectable, change the definition in a
549 cover file to be TARGET_BIG_ENDIAN. */
550 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
552 /* Define this if most significant word of a multiword number is the lowest
553 numbered.
554 This is always false, even when in big-endian mode. */
555 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
557 /* Define this if most significant word of doubles is the lowest numbered.
558 The rules are different based on whether or not we use FPA-format,
559 VFP-format or some other floating point co-processor's format doubles. */
560 #define FLOAT_WORDS_BIG_ENDIAN (arm_float_words_big_endian ())
562 #define UNITS_PER_WORD 4
564 /* True if natural alignment is used for doubleword types. */
565 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
567 #define DOUBLEWORD_ALIGNMENT 64
569 #define PARM_BOUNDARY 32
571 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
573 #define PREFERRED_STACK_BOUNDARY \
574 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
576 #define FUNCTION_BOUNDARY ((TARGET_THUMB && optimize_size) ? 16 : 32)
578 /* The lowest bit is used to indicate Thumb-mode functions, so the
579 vbit must go into the delta field of pointers to member
580 functions. */
581 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
583 #define EMPTY_FIELD_BOUNDARY 32
585 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
587 /* XXX Blah -- this macro is used directly by libobjc. Since it
588 supports no vector modes, cut out the complexity and fall back
589 on BIGGEST_FIELD_ALIGNMENT. */
590 #ifdef IN_TARGET_LIBS
591 #define BIGGEST_FIELD_ALIGNMENT 64
592 #endif
594 /* Make strings word-aligned so strcpy from constants will be faster. */
595 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
597 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
598 ((TREE_CODE (EXP) == STRING_CST \
599 && !optimize_size \
600 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
601 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
603 /* Align definitions of arrays, unions and structures so that
604 initializations and copies can be made more efficient. This is not
605 ABI-changing, so it only affects places where we can see the
606 definition. Increasing the alignment tends to introduce padding,
607 so don't do this when optimizing for size/conserving stack space. */
608 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
609 (((COND) && ((ALIGN) < BITS_PER_WORD) \
610 && (TREE_CODE (EXP) == ARRAY_TYPE \
611 || TREE_CODE (EXP) == UNION_TYPE \
612 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
614 /* Align global data. */
615 #define DATA_ALIGNMENT(EXP, ALIGN) \
616 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
618 /* Similarly, make sure that objects on the stack are sensibly aligned. */
619 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
620 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
622 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
623 value set in previous versions of this toolchain was 8, which produces more
624 compact structures. The command line option -mstructure_size_boundary=<n>
625 can be used to change this value. For compatibility with the ARM SDK
626 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
627 0020D) page 2-20 says "Structures are aligned on word boundaries".
628 The AAPCS specifies a value of 8. */
629 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
630 extern int arm_structure_size_boundary;
632 /* This is the value used to initialize arm_structure_size_boundary. If a
633 particular arm target wants to change the default value it should change
634 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
635 for an example of this. */
636 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
637 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
638 #endif
640 /* Nonzero if move instructions will actually fail to work
641 when given unaligned data. */
642 #define STRICT_ALIGNMENT 1
644 /* wchar_t is unsigned under the AAPCS. */
645 #ifndef WCHAR_TYPE
646 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
648 #define WCHAR_TYPE_SIZE BITS_PER_WORD
649 #endif
651 #ifndef SIZE_TYPE
652 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
653 #endif
655 #ifndef PTRDIFF_TYPE
656 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
657 #endif
659 /* AAPCS requires that structure alignment is affected by bitfields. */
660 #ifndef PCC_BITFIELD_TYPE_MATTERS
661 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
662 #endif
665 /* Standard register usage. */
667 /* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
668 (S - saved over call).
670 r0 * argument word/integer result
671 r1-r3 argument word
673 r4-r8 S register variable
674 r9 S (rfp) register variable (real frame pointer)
676 r10 F S (sl) stack limit (used by -mapcs-stack-check)
677 r11 F S (fp) argument pointer
678 r12 (ip) temp workspace
679 r13 F S (sp) lower end of current stack frame
680 r14 (lr) link address/workspace
681 r15 F (pc) program counter
683 f0 floating point result
684 f1-f3 floating point scratch
686 f4-f7 S floating point variable
688 cc This is NOT a real register, but is used internally
689 to represent things that use or set the condition
690 codes.
691 sfp This isn't either. It is used during rtl generation
692 since the offset between the frame pointer and the
693 auto's isn't known until after register allocation.
694 afp Nor this, we only need this because of non-local
695 goto. Without it fp appears to be used and the
696 elimination code won't get rid of sfp. It tracks
697 fp exactly at all times.
699 *: See TARGET_CONDITIONAL_REGISTER_USAGE */
702 mvf0 Cirrus floating point result
703 mvf1-mvf3 Cirrus floating point scratch
704 mvf4-mvf15 S Cirrus floating point variable. */
706 /* s0-s15 VFP scratch (aka d0-d7).
707 s16-s31 S VFP variable (aka d8-d15).
708 vfpcc Not a real register. Represents the VFP condition
709 code flags. */
711 /* The stack backtrace structure is as follows:
712 fp points to here: | save code pointer | [fp]
713 | return link value | [fp, #-4]
714 | return sp value | [fp, #-8]
715 | return fp value | [fp, #-12]
716 [| saved r10 value |]
717 [| saved r9 value |]
718 [| saved r8 value |]
719 [| saved r7 value |]
720 [| saved r6 value |]
721 [| saved r5 value |]
722 [| saved r4 value |]
723 [| saved r3 value |]
724 [| saved r2 value |]
725 [| saved r1 value |]
726 [| saved r0 value |]
727 [| saved f7 value |] three words
728 [| saved f6 value |] three words
729 [| saved f5 value |] three words
730 [| saved f4 value |] three words
731 r0-r3 are not normally saved in a C function. */
733 /* 1 for registers that have pervasive standard uses
734 and are not available for the register allocator. */
735 #define FIXED_REGISTERS \
737 0,0,0,0,0,0,0,0, \
738 0,0,0,0,0,1,0,1, \
739 0,0,0,0,0,0,0,0, \
740 1,1,1, \
741 1,1,1,1,1,1,1,1, \
742 1,1,1,1,1,1,1,1, \
743 1,1,1,1,1,1,1,1, \
744 1,1,1,1,1,1,1,1, \
745 1,1,1,1, \
746 1,1,1,1,1,1,1,1, \
747 1,1,1,1,1,1,1,1, \
748 1,1,1,1,1,1,1,1, \
749 1,1,1,1,1,1,1,1, \
750 1,1,1,1,1,1,1,1, \
751 1,1,1,1,1,1,1,1, \
752 1,1,1,1,1,1,1,1, \
753 1,1,1,1,1,1,1,1, \
757 /* 1 for registers not available across function calls.
758 These must include the FIXED_REGISTERS and also any
759 registers that can be used without being saved.
760 The latter must include the registers where values are returned
761 and the register where structure-value addresses are passed.
762 Aside from that, you can include as many other registers as you like.
763 The CC is not preserved over function calls on the ARM 6, so it is
764 easier to assume this for all. SFP is preserved, since FP is. */
765 #define CALL_USED_REGISTERS \
767 1,1,1,1,0,0,0,0, \
768 0,0,0,0,1,1,1,1, \
769 1,1,1,1,0,0,0,0, \
770 1,1,1, \
771 1,1,1,1,1,1,1,1, \
772 1,1,1,1,1,1,1,1, \
773 1,1,1,1,1,1,1,1, \
774 1,1,1,1,1,1,1,1, \
775 1,1,1,1, \
776 1,1,1,1,1,1,1,1, \
777 1,1,1,1,1,1,1,1, \
778 1,1,1,1,1,1,1,1, \
779 1,1,1,1,1,1,1,1, \
780 1,1,1,1,1,1,1,1, \
781 1,1,1,1,1,1,1,1, \
782 1,1,1,1,1,1,1,1, \
783 1,1,1,1,1,1,1,1, \
787 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
788 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
789 #endif
791 /* These are a couple of extensions to the formats accepted
792 by asm_fprintf:
793 %@ prints out ASM_COMMENT_START
794 %r prints out REGISTER_PREFIX reg_names[arg] */
795 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
796 case '@': \
797 fputs (ASM_COMMENT_START, FILE); \
798 break; \
800 case 'r': \
801 fputs (REGISTER_PREFIX, FILE); \
802 fputs (reg_names [va_arg (ARGS, int)], FILE); \
803 break;
805 /* Round X up to the nearest word. */
806 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
808 /* Convert fron bytes to ints. */
809 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
811 /* The number of (integer) registers required to hold a quantity of type MODE.
812 Also used for VFP registers. */
813 #define ARM_NUM_REGS(MODE) \
814 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
816 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
817 #define ARM_NUM_REGS2(MODE, TYPE) \
818 ARM_NUM_INTS ((MODE) == BLKmode ? \
819 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
821 /* The number of (integer) argument register available. */
822 #define NUM_ARG_REGS 4
824 /* And similarly for the VFP. */
825 #define NUM_VFP_ARG_REGS 16
827 /* Return the register number of the N'th (integer) argument. */
828 #define ARG_REGISTER(N) (N - 1)
830 /* Specify the registers used for certain standard purposes.
831 The values of these macros are register numbers. */
833 /* The number of the last argument register. */
834 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
836 /* The numbers of the Thumb register ranges. */
837 #define FIRST_LO_REGNUM 0
838 #define LAST_LO_REGNUM 7
839 #define FIRST_HI_REGNUM 8
840 #define LAST_HI_REGNUM 11
842 /* Overridden by config/arm/bpabi.h. */
843 #ifndef ARM_UNWIND_INFO
844 #define ARM_UNWIND_INFO 0
845 #endif
847 /* Use r0 and r1 to pass exception handling information. */
848 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
850 /* The register that holds the return address in exception handlers. */
851 #define ARM_EH_STACKADJ_REGNUM 2
852 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
854 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
855 as an invisible last argument (possible since varargs don't exist in
856 Pascal), so the following is not true. */
857 #define STATIC_CHAIN_REGNUM 12
859 /* Define this to be where the real frame pointer is if it is not possible to
860 work out the offset between the frame pointer and the automatic variables
861 until after register allocation has taken place. FRAME_POINTER_REGNUM
862 should point to a special register that we will make sure is eliminated.
864 For the Thumb we have another problem. The TPCS defines the frame pointer
865 as r11, and GCC believes that it is always possible to use the frame pointer
866 as base register for addressing purposes. (See comments in
867 find_reloads_address()). But - the Thumb does not allow high registers,
868 including r11, to be used as base address registers. Hence our problem.
870 The solution used here, and in the old thumb port is to use r7 instead of
871 r11 as the hard frame pointer and to have special code to generate
872 backtrace structures on the stack (if required to do so via a command line
873 option) using r11. This is the only 'user visible' use of r11 as a frame
874 pointer. */
875 #define ARM_HARD_FRAME_POINTER_REGNUM 11
876 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
878 #define HARD_FRAME_POINTER_REGNUM \
879 (TARGET_ARM \
880 ? ARM_HARD_FRAME_POINTER_REGNUM \
881 : THUMB_HARD_FRAME_POINTER_REGNUM)
883 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
884 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
886 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
888 /* Register to use for pushing function arguments. */
889 #define STACK_POINTER_REGNUM SP_REGNUM
891 /* ARM floating pointer registers. */
892 #define FIRST_FPA_REGNUM 16
893 #define LAST_FPA_REGNUM 23
894 #define IS_FPA_REGNUM(REGNUM) \
895 (((REGNUM) >= FIRST_FPA_REGNUM) && ((REGNUM) <= LAST_FPA_REGNUM))
897 #define FIRST_IWMMXT_GR_REGNUM 43
898 #define LAST_IWMMXT_GR_REGNUM 46
899 #define FIRST_IWMMXT_REGNUM 47
900 #define LAST_IWMMXT_REGNUM 62
901 #define IS_IWMMXT_REGNUM(REGNUM) \
902 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
903 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
904 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
906 /* Base register for access to local variables of the function. */
907 #define FRAME_POINTER_REGNUM 25
909 /* Base register for access to arguments of the function. */
910 #define ARG_POINTER_REGNUM 26
912 #define FIRST_CIRRUS_FP_REGNUM 27
913 #define LAST_CIRRUS_FP_REGNUM 42
914 #define IS_CIRRUS_REGNUM(REGNUM) \
915 (((REGNUM) >= FIRST_CIRRUS_FP_REGNUM) && ((REGNUM) <= LAST_CIRRUS_FP_REGNUM))
917 #define FIRST_VFP_REGNUM 63
918 #define D7_VFP_REGNUM 78 /* Registers 77 and 78 == VFP reg D7. */
919 #define LAST_VFP_REGNUM \
920 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
922 #define IS_VFP_REGNUM(REGNUM) \
923 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
925 /* VFP registers are split into two types: those defined by VFP versions < 3
926 have D registers overlaid on consecutive pairs of S registers. VFP version 3
927 defines 16 new D registers (d16-d31) which, for simplicity and correctness
928 in various parts of the backend, we implement as "fake" single-precision
929 registers (which would be S32-S63, but cannot be used in that way). The
930 following macros define these ranges of registers. */
931 #define LAST_LO_VFP_REGNUM 94
932 #define FIRST_HI_VFP_REGNUM 95
933 #define LAST_HI_VFP_REGNUM 126
935 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
936 ((REGNUM) <= LAST_LO_VFP_REGNUM)
938 /* DFmode values are only valid in even register pairs. */
939 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
940 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
942 /* Neon Quad values must start at a multiple of four registers. */
943 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
944 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
946 /* Neon structures of vectors must be in even register pairs and there
947 must be enough registers available. Because of various patterns
948 requiring quad registers, we require them to start at a multiple of
949 four. */
950 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
951 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
952 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
954 /* The number of hard registers is 16 ARM + 8 FPA + 1 CC + 1 SFP + 1 AFP. */
955 /* + 16 Cirrus registers take us up to 43. */
956 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
957 /* VFP (VFP3) adds 32 (64) + 1 more. */
958 #define FIRST_PSEUDO_REGISTER 128
960 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
962 /* Value should be nonzero if functions must have frame pointers.
963 Zero means the frame pointer need not be set up (and parms may be accessed
964 via the stack pointer) in functions that seem suitable.
965 If we have to have a frame pointer we might as well make use of it.
966 APCS says that the frame pointer does not need to be pushed in leaf
967 functions, or simple tail call functions. */
969 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
970 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
971 #endif
973 /* Return number of consecutive hard regs needed starting at reg REGNO
974 to hold something of mode MODE.
975 This is ordinarily the length in words of a value of mode MODE
976 but can be less for certain modes in special long registers.
978 On the ARM regs are UNITS_PER_WORD bits wide; FPA regs can hold any FP
979 mode. */
980 #define HARD_REGNO_NREGS(REGNO, MODE) \
981 ((TARGET_32BIT \
982 && REGNO >= FIRST_FPA_REGNUM \
983 && REGNO != FRAME_POINTER_REGNUM \
984 && REGNO != ARG_POINTER_REGNUM) \
985 && !IS_VFP_REGNUM (REGNO) \
986 ? 1 : ARM_NUM_REGS (MODE))
988 /* Return true if REGNO is suitable for holding a quantity of type MODE. */
989 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
990 arm_hard_regno_mode_ok ((REGNO), (MODE))
992 /* Value is 1 if it is a good idea to tie two pseudo registers
993 when one has mode MODE1 and one has mode MODE2.
994 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
995 for any hard reg, then this must be 0 for correct output. */
996 #define MODES_TIEABLE_P(MODE1, MODE2) \
997 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
999 #define VALID_IWMMXT_REG_MODE(MODE) \
1000 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1002 /* Modes valid for Neon D registers. */
1003 #define VALID_NEON_DREG_MODE(MODE) \
1004 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1005 || (MODE) == V2SFmode || (MODE) == DImode)
1007 /* Modes valid for Neon Q registers. */
1008 #define VALID_NEON_QREG_MODE(MODE) \
1009 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1010 || (MODE) == V4SFmode || (MODE) == V2DImode)
1012 /* Structure modes valid for Neon registers. */
1013 #define VALID_NEON_STRUCT_MODE(MODE) \
1014 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1015 || (MODE) == CImode || (MODE) == XImode)
1017 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */
1018 extern int arm_regs_in_sequence[];
1020 /* The order in which register should be allocated. It is good to use ip
1021 since no saving is required (though calls clobber it) and it never contains
1022 function parameters. It is quite good to use lr since other calls may
1023 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
1024 least likely to contain a function parameter; in addition results are
1025 returned in r0.
1026 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1027 then D8-D15. The reason for doing this is to attempt to reduce register
1028 pressure when both single- and double-precision registers are used in a
1029 function. */
1031 #define REG_ALLOC_ORDER \
1033 3, 2, 1, 0, 12, 14, 4, 5, \
1034 6, 7, 8, 10, 9, 11, 13, 15, \
1035 16, 17, 18, 19, 20, 21, 22, 23, \
1036 27, 28, 29, 30, 31, 32, 33, 34, \
1037 35, 36, 37, 38, 39, 40, 41, 42, \
1038 43, 44, 45, 46, 47, 48, 49, 50, \
1039 51, 52, 53, 54, 55, 56, 57, 58, \
1040 59, 60, 61, 62, \
1041 24, 25, 26, \
1042 95, 96, 97, 98, 99, 100, 101, 102, \
1043 103, 104, 105, 106, 107, 108, 109, 110, \
1044 111, 112, 113, 114, 115, 116, 117, 118, \
1045 119, 120, 121, 122, 123, 124, 125, 126, \
1046 78, 77, 76, 75, 74, 73, 72, 71, \
1047 70, 69, 68, 67, 66, 65, 64, 63, \
1048 79, 80, 81, 82, 83, 84, 85, 86, \
1049 87, 88, 89, 90, 91, 92, 93, 94, \
1050 127 \
1053 /* Use different register alloc ordering for Thumb. */
1054 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1056 /* Tell IRA to use the order we define rather than messing it up with its
1057 own cost calculations. */
1058 #define HONOR_REG_ALLOC_ORDER
1060 /* Interrupt functions can only use registers that have already been
1061 saved by the prologue, even if they would normally be
1062 call-clobbered. */
1063 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1064 (! IS_INTERRUPT (cfun->machine->func_type) || \
1065 df_regs_ever_live_p (DST))
1067 /* Register and constant classes. */
1069 /* Register classes: used to be simple, just all ARM regs or all FPA regs
1070 Now that the Thumb is involved it has become more complicated. */
1071 enum reg_class
1073 NO_REGS,
1074 FPA_REGS,
1075 CIRRUS_REGS,
1076 VFP_D0_D7_REGS,
1077 VFP_LO_REGS,
1078 VFP_HI_REGS,
1079 VFP_REGS,
1080 IWMMXT_GR_REGS,
1081 IWMMXT_REGS,
1082 LO_REGS,
1083 STACK_REG,
1084 BASE_REGS,
1085 HI_REGS,
1086 CC_REG,
1087 VFPCC_REG,
1088 GENERAL_REGS,
1089 CORE_REGS,
1090 ALL_REGS,
1091 LIM_REG_CLASSES
1094 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1096 /* Give names of register classes as strings for dump file. */
1097 #define REG_CLASS_NAMES \
1099 "NO_REGS", \
1100 "FPA_REGS", \
1101 "CIRRUS_REGS", \
1102 "VFP_D0_D7_REGS", \
1103 "VFP_LO_REGS", \
1104 "VFP_HI_REGS", \
1105 "VFP_REGS", \
1106 "IWMMXT_GR_REGS", \
1107 "IWMMXT_REGS", \
1108 "LO_REGS", \
1109 "STACK_REG", \
1110 "BASE_REGS", \
1111 "HI_REGS", \
1112 "CC_REG", \
1113 "VFPCC_REG", \
1114 "GENERAL_REGS", \
1115 "CORE_REGS", \
1116 "ALL_REGS", \
1119 /* Define which registers fit in which classes.
1120 This is an initializer for a vector of HARD_REG_SET
1121 of length N_REG_CLASSES. */
1122 #define REG_CLASS_CONTENTS \
1124 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1125 { 0x00FF0000, 0x00000000, 0x00000000, 0x00000000 }, /* FPA_REGS */ \
1126 { 0xF8000000, 0x000007FF, 0x00000000, 0x00000000 }, /* CIRRUS_REGS */ \
1127 { 0x00000000, 0x80000000, 0x00007FFF, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1128 { 0x00000000, 0x80000000, 0x7FFFFFFF, 0x00000000 }, /* VFP_LO_REGS */ \
1129 { 0x00000000, 0x00000000, 0x80000000, 0x7FFFFFFF }, /* VFP_HI_REGS */ \
1130 { 0x00000000, 0x80000000, 0xFFFFFFFF, 0x7FFFFFFF }, /* VFP_REGS */ \
1131 { 0x00000000, 0x00007800, 0x00000000, 0x00000000 }, /* IWMMXT_GR_REGS */ \
1132 { 0x00000000, 0x7FFF8000, 0x00000000, 0x00000000 }, /* IWMMXT_REGS */ \
1133 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1134 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1135 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1136 { 0x0000DF00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1137 { 0x01000000, 0x00000000, 0x00000000, 0x00000000 }, /* CC_REG */ \
1138 { 0x00000000, 0x00000000, 0x00000000, 0x80000000 }, /* VFPCC_REG */ \
1139 { 0x0000DFFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1140 { 0x0000FFFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1141 { 0xFAFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF } /* ALL_REGS */ \
1144 /* Any of the VFP register classes. */
1145 #define IS_VFP_CLASS(X) \
1146 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1147 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1149 /* The same information, inverted:
1150 Return the class number of the smallest class containing
1151 reg number REGNO. This could be a conditional expression
1152 or could index an array. */
1153 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1155 /* The following macro defines cover classes for Integrated Register
1156 Allocator. Cover classes is a set of non-intersected register
1157 classes covering all hard registers used for register allocation
1158 purpose. Any move between two registers of a cover class should be
1159 cheaper than load or store of the registers. The macro value is
1160 array of register classes with LIM_REG_CLASSES used as the end
1161 marker. */
1163 #define IRA_COVER_CLASSES \
1165 GENERAL_REGS, FPA_REGS, CIRRUS_REGS, VFP_REGS, IWMMXT_GR_REGS, IWMMXT_REGS,\
1166 LIM_REG_CLASSES \
1169 /* FPA registers can't do subreg as all values are reformatted to internal
1170 precision. In VFPv1, VFP registers could only be accessed in the mode
1171 they were set, so subregs would be invalid there too. However, we don't
1172 support VFPv1 at the moment, and the restriction was lifted in VFPv2. */
1173 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1174 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1175 ? reg_classes_intersect_p (FPA_REGS, (CLASS)) \
1176 : 0)
1178 /* The class value for index registers, and the one for base regs. */
1179 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1180 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1182 /* For the Thumb the high registers cannot be used as base registers
1183 when addressing quantities in QI or HI mode; if we don't know the
1184 mode, then we must be conservative. */
1185 #define MODE_BASE_REG_CLASS(MODE) \
1186 (TARGET_32BIT ? CORE_REGS : \
1187 (((MODE) == SImode) ? BASE_REGS : LO_REGS))
1189 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1190 instead of BASE_REGS. */
1191 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1193 /* When this hook returns true for MODE, the compiler allows
1194 registers explicitly used in the rtl to be used as spill registers
1195 but prevents the compiler from extending the lifetime of these
1196 registers. */
1197 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1198 arm_small_register_classes_for_mode_p
1200 /* Given an rtx X being reloaded into a reg required to be
1201 in class CLASS, return the class of reg to actually use.
1202 In general this is just CLASS, but for the Thumb core registers and
1203 immediate constants we prefer a LO_REGS class or a subset. */
1204 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1205 (TARGET_32BIT ? (CLASS) : \
1206 ((CLASS) == GENERAL_REGS || (CLASS) == HI_REGS \
1207 || (CLASS) == NO_REGS || (CLASS) == STACK_REG \
1208 ? LO_REGS : (CLASS)))
1210 /* Must leave BASE_REGS reloads alone */
1211 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1212 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1213 ? ((true_regnum (X) == -1 ? LO_REGS \
1214 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1215 : NO_REGS)) \
1216 : NO_REGS)
1218 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1219 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1220 ? ((true_regnum (X) == -1 ? LO_REGS \
1221 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1222 : NO_REGS)) \
1223 : NO_REGS)
1225 /* Return the register class of a scratch register needed to copy IN into
1226 or out of a register in CLASS in MODE. If it can be done directly,
1227 NO_REGS is returned. */
1228 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1229 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1230 ((TARGET_VFP && TARGET_HARD_FLOAT \
1231 && IS_VFP_CLASS (CLASS)) \
1232 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1233 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1234 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1235 : TARGET_32BIT \
1236 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1237 ? GENERAL_REGS : NO_REGS) \
1238 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1240 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1241 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1242 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1243 ((TARGET_VFP && TARGET_HARD_FLOAT \
1244 && IS_VFP_CLASS (CLASS)) \
1245 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1246 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1247 coproc_secondary_reload_class (MODE, X, TRUE) : \
1248 /* Cannot load constants into Cirrus registers. */ \
1249 (TARGET_MAVERICK && TARGET_HARD_FLOAT \
1250 && (CLASS) == CIRRUS_REGS \
1251 && (CONSTANT_P (X) || GET_CODE (X) == SYMBOL_REF)) \
1252 ? GENERAL_REGS : \
1253 (TARGET_32BIT ? \
1254 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1255 && CONSTANT_P (X)) \
1256 ? GENERAL_REGS : \
1257 (((MODE) == HImode && ! arm_arch4 \
1258 && (GET_CODE (X) == MEM \
1259 || ((GET_CODE (X) == REG || GET_CODE (X) == SUBREG) \
1260 && true_regnum (X) == -1))) \
1261 ? GENERAL_REGS : NO_REGS) \
1262 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1264 /* Try a machine-dependent way of reloading an illegitimate address
1265 operand. If we find one, push the reload and jump to WIN. This
1266 macro is used in only one place: `find_reloads_address' in reload.c.
1268 For the ARM, we wish to handle large displacements off a base
1269 register by splitting the addend across a MOV and the mem insn.
1270 This can cut the number of reloads needed. */
1271 #define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN) \
1272 do \
1274 if (arm_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND)) \
1275 goto WIN; \
1277 while (0)
1279 /* XXX If an HImode FP+large_offset address is converted to an HImode
1280 SP+large_offset address, then reload won't know how to fix it. It sees
1281 only that SP isn't valid for HImode, and so reloads the SP into an index
1282 register, but the resulting address is still invalid because the offset
1283 is too big. We fix it here instead by reloading the entire address. */
1284 /* We could probably achieve better results by defining PROMOTE_MODE to help
1285 cope with the variances between the Thumb's signed and unsigned byte and
1286 halfword load instructions. */
1287 /* ??? This should be safe for thumb2, but we may be able to do better. */
1288 #define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN) \
1289 do { \
1290 rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
1291 if (new_x) \
1293 X = new_x; \
1294 goto WIN; \
1296 } while (0)
1298 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
1299 if (TARGET_ARM) \
1300 ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1301 else \
1302 THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1304 /* Return the maximum number of consecutive registers
1305 needed to represent mode MODE in a register of class CLASS.
1306 ARM regs are UNITS_PER_WORD bits while FPA regs can hold any FP mode */
1307 #define CLASS_MAX_NREGS(CLASS, MODE) \
1308 (((CLASS) == FPA_REGS || (CLASS) == CIRRUS_REGS) ? 1 : ARM_NUM_REGS (MODE))
1310 /* If defined, gives a class of registers that cannot be used as the
1311 operand of a SUBREG that changes the mode of the object illegally. */
1313 /* Moves between FPA_REGS and GENERAL_REGS are two memory insns.
1314 Moves between VFP_REGS and GENERAL_REGS are a single insn, but
1315 it is typically more expensive than a single memory access. We set
1316 the cost to less than two memory accesses so that floating
1317 point to integer conversion does not go through memory. */
1318 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
1319 (TARGET_32BIT ? \
1320 ((FROM) == FPA_REGS && (TO) != FPA_REGS ? 20 : \
1321 (FROM) != FPA_REGS && (TO) == FPA_REGS ? 20 : \
1322 IS_VFP_CLASS (FROM) && !IS_VFP_CLASS (TO) ? 15 : \
1323 !IS_VFP_CLASS (FROM) && IS_VFP_CLASS (TO) ? 15 : \
1324 (FROM) == IWMMXT_REGS && (TO) != IWMMXT_REGS ? 4 : \
1325 (FROM) != IWMMXT_REGS && (TO) == IWMMXT_REGS ? 4 : \
1326 (FROM) == IWMMXT_GR_REGS || (TO) == IWMMXT_GR_REGS ? 20 : \
1327 (FROM) == CIRRUS_REGS && (TO) != CIRRUS_REGS ? 20 : \
1328 (FROM) != CIRRUS_REGS && (TO) == CIRRUS_REGS ? 20 : \
1329 2) \
1331 ((FROM) == HI_REGS || (TO) == HI_REGS) ? 4 : 2)
1333 /* Stack layout; function entry, exit and calling. */
1335 /* Define this if pushing a word on the stack
1336 makes the stack pointer a smaller address. */
1337 #define STACK_GROWS_DOWNWARD 1
1339 /* Define this to nonzero if the nominal address of the stack frame
1340 is at the high-address end of the local variables;
1341 that is, each additional local variable allocated
1342 goes at a more negative offset in the frame. */
1343 #define FRAME_GROWS_DOWNWARD 1
1345 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1346 When present, it is one word in size, and sits at the top of the frame,
1347 between the soft frame pointer and either r7 or r11.
1349 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1350 and only then if some outgoing arguments are passed on the stack. It would
1351 be tempting to also check whether the stack arguments are passed by indirect
1352 calls, but there seems to be no reason in principle why a post-reload pass
1353 couldn't convert a direct call into an indirect one. */
1354 #define CALLER_INTERWORKING_SLOT_SIZE \
1355 (TARGET_CALLER_INTERWORKING \
1356 && crtl->outgoing_args_size != 0 \
1357 ? UNITS_PER_WORD : 0)
1359 /* Offset within stack frame to start allocating local variables at.
1360 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1361 first local allocated. Otherwise, it is the offset to the BEGINNING
1362 of the first local allocated. */
1363 #define STARTING_FRAME_OFFSET 0
1365 /* If we generate an insn to push BYTES bytes,
1366 this says how many the stack pointer really advances by. */
1367 /* The push insns do not do this rounding implicitly.
1368 So don't define this. */
1369 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1371 /* Define this if the maximum size of all the outgoing args is to be
1372 accumulated and pushed during the prologue. The amount can be
1373 found in the variable crtl->outgoing_args_size. */
1374 #define ACCUMULATE_OUTGOING_ARGS 1
1376 /* Offset of first parameter from the argument pointer register value. */
1377 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1379 /* Define how to find the value returned by a library function
1380 assuming the value has mode MODE. */
1381 #define LIBCALL_VALUE(MODE) \
1382 (TARGET_AAPCS_BASED ? aapcs_libcall_value (MODE) \
1383 : (TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_FPA \
1384 && GET_MODE_CLASS (MODE) == MODE_FLOAT) \
1385 ? gen_rtx_REG (MODE, FIRST_FPA_REGNUM) \
1386 : TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK \
1387 && GET_MODE_CLASS (MODE) == MODE_FLOAT \
1388 ? gen_rtx_REG (MODE, FIRST_CIRRUS_FP_REGNUM) \
1389 : TARGET_IWMMXT_ABI && arm_vector_mode_supported_p (MODE) \
1390 ? gen_rtx_REG (MODE, FIRST_IWMMXT_REGNUM) \
1391 : gen_rtx_REG (MODE, ARG_REGISTER (1)))
1393 /* 1 if REGNO is a possible register number for a function value. */
1394 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1395 ((REGNO) == ARG_REGISTER (1) \
1396 || (TARGET_AAPCS_BASED && TARGET_32BIT \
1397 && TARGET_VFP && TARGET_HARD_FLOAT \
1398 && (REGNO) == FIRST_VFP_REGNUM) \
1399 || (TARGET_32BIT && ((REGNO) == FIRST_CIRRUS_FP_REGNUM) \
1400 && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK) \
1401 || ((REGNO) == FIRST_IWMMXT_REGNUM && TARGET_IWMMXT_ABI) \
1402 || (TARGET_32BIT && ((REGNO) == FIRST_FPA_REGNUM) \
1403 && TARGET_HARD_FLOAT_ABI && TARGET_FPA))
1405 /* Amount of memory needed for an untyped call to save all possible return
1406 registers. */
1407 #define APPLY_RESULT_SIZE arm_apply_result_size()
1409 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1410 values must be in memory. On the ARM, they need only do so if larger
1411 than a word, or if they contain elements offset from zero in the struct. */
1412 #define DEFAULT_PCC_STRUCT_RETURN 0
1414 /* These bits describe the different types of function supported
1415 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1416 normal function and an interworked function, for example. Knowing the
1417 type of a function is important for determining its prologue and
1418 epilogue sequences.
1419 Note value 7 is currently unassigned. Also note that the interrupt
1420 function types all have bit 2 set, so that they can be tested for easily.
1421 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1422 machine_function structure is initialized (to zero) func_type will
1423 default to unknown. This will force the first use of arm_current_func_type
1424 to call arm_compute_func_type. */
1425 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1426 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1427 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1428 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1429 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1430 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1432 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1434 /* In addition functions can have several type modifiers,
1435 outlined by these bit masks: */
1436 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1437 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1438 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1439 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1440 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1442 /* Some macros to test these flags. */
1443 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1444 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1445 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1446 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1447 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1448 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1451 /* Structure used to hold the function stack frame layout. Offsets are
1452 relative to the stack pointer on function entry. Positive offsets are
1453 in the direction of stack growth.
1454 Only soft_frame is used in thumb mode. */
1456 typedef struct GTY(()) arm_stack_offsets
1458 int saved_args; /* ARG_POINTER_REGNUM. */
1459 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1460 int saved_regs;
1461 int soft_frame; /* FRAME_POINTER_REGNUM. */
1462 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1463 int outgoing_args; /* STACK_POINTER_REGNUM. */
1464 unsigned int saved_regs_mask;
1466 arm_stack_offsets;
1468 #ifndef GENERATOR_FILE
1469 /* A C structure for machine-specific, per-function data.
1470 This is added to the cfun structure. */
1471 typedef struct GTY(()) machine_function
1473 /* Additional stack adjustment in __builtin_eh_throw. */
1474 rtx eh_epilogue_sp_ofs;
1475 /* Records if LR has to be saved for far jumps. */
1476 int far_jump_used;
1477 /* Records if ARG_POINTER was ever live. */
1478 int arg_pointer_live;
1479 /* Records if the save of LR has been eliminated. */
1480 int lr_save_eliminated;
1481 /* The size of the stack frame. Only valid after reload. */
1482 arm_stack_offsets stack_offsets;
1483 /* Records the type of the current function. */
1484 unsigned long func_type;
1485 /* Record if the function has a variable argument list. */
1486 int uses_anonymous_args;
1487 /* Records if sibcalls are blocked because an argument
1488 register is needed to preserve stack alignment. */
1489 int sibcall_blocked;
1490 /* The PIC register for this function. This might be a pseudo. */
1491 rtx pic_reg;
1492 /* Labels for per-function Thumb call-via stubs. One per potential calling
1493 register. We can never call via LR or PC. We can call via SP if a
1494 trampoline happens to be on the top of the stack. */
1495 rtx call_via[14];
1496 /* Set to 1 when a return insn is output, this means that the epilogue
1497 is not needed. */
1498 int return_used_this_function;
1499 /* When outputting Thumb-1 code, record the last insn that provides
1500 information about condition codes, and the comparison operands. */
1501 rtx thumb1_cc_insn;
1502 rtx thumb1_cc_op0;
1503 rtx thumb1_cc_op1;
1504 /* Also record the CC mode that is supported. */
1505 enum machine_mode thumb1_cc_mode;
1507 machine_function;
1508 #endif
1510 /* As in the machine_function, a global set of call-via labels, for code
1511 that is in text_section. */
1512 extern GTY(()) rtx thumb_call_via_label[14];
1514 /* The number of potential ways of assigning to a co-processor. */
1515 #define ARM_NUM_COPROC_SLOTS 1
1517 /* Enumeration of procedure calling standard variants. We don't really
1518 support all of these yet. */
1519 enum arm_pcs
1521 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1522 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1523 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1524 /* This must be the last AAPCS variant. */
1525 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1526 ARM_PCS_ATPCS, /* ATPCS. */
1527 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1528 ARM_PCS_UNKNOWN
1531 /* Default procedure calling standard of current compilation unit. */
1532 extern enum arm_pcs arm_pcs_default;
1534 /* A C type for declaring a variable that is used as the first argument of
1535 `FUNCTION_ARG' and other related values. */
1536 typedef struct
1538 /* This is the number of registers of arguments scanned so far. */
1539 int nregs;
1540 /* This is the number of iWMMXt register arguments scanned so far. */
1541 int iwmmxt_nregs;
1542 int named_count;
1543 int nargs;
1544 /* Which procedure call variant to use for this call. */
1545 enum arm_pcs pcs_variant;
1547 /* AAPCS related state tracking. */
1548 int aapcs_arg_processed; /* No need to lay out this argument again. */
1549 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1550 this argument, or -1 if using core
1551 registers. */
1552 int aapcs_ncrn;
1553 int aapcs_next_ncrn;
1554 rtx aapcs_reg; /* Register assigned to this argument. */
1555 int aapcs_partial; /* How many bytes are passed in regs (if
1556 split between core regs and stack.
1557 Zero otherwise. */
1558 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1559 int can_split; /* Argument can be split between core regs
1560 and the stack. */
1561 /* Private data for tracking VFP register allocation */
1562 unsigned aapcs_vfp_regs_free;
1563 unsigned aapcs_vfp_reg_alloc;
1564 int aapcs_vfp_rcount;
1565 MACHMODE aapcs_vfp_rmode;
1566 } CUMULATIVE_ARGS;
1568 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1569 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1571 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1572 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1574 /* For AAPCS, padding should never be below the argument. For other ABIs,
1575 * mimic the default. */
1576 #define PAD_VARARGS_DOWN \
1577 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1579 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1580 for a call to a function whose data type is FNTYPE.
1581 For a library call, FNTYPE is 0.
1582 On the ARM, the offset starts at 0. */
1583 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1584 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1586 /* 1 if N is a possible register number for function argument passing.
1587 On the ARM, r0-r3 are used to pass args. */
1588 #define FUNCTION_ARG_REGNO_P(REGNO) \
1589 (IN_RANGE ((REGNO), 0, 3) \
1590 || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT \
1591 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1592 || (TARGET_IWMMXT_ABI \
1593 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1596 /* If your target environment doesn't prefix user functions with an
1597 underscore, you may wish to re-define this to prevent any conflicts. */
1598 #ifndef ARM_MCOUNT_NAME
1599 #define ARM_MCOUNT_NAME "*mcount"
1600 #endif
1602 /* Call the function profiler with a given profile label. The Acorn
1603 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1604 On the ARM the full profile code will look like:
1605 .data
1607 .word 0
1608 .text
1609 mov ip, lr
1610 bl mcount
1611 .word LP1
1613 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1614 will output the .text section.
1616 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1617 ``prof'' doesn't seem to mind about this!
1619 Note - this version of the code is designed to work in both ARM and
1620 Thumb modes. */
1621 #ifndef ARM_FUNCTION_PROFILER
1622 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1624 char temp[20]; \
1625 rtx sym; \
1627 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1628 IP_REGNUM, LR_REGNUM); \
1629 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1630 fputc ('\n', STREAM); \
1631 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1632 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1633 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1635 #endif
1637 #ifdef THUMB_FUNCTION_PROFILER
1638 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1639 if (TARGET_ARM) \
1640 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1641 else \
1642 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1643 #else
1644 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1645 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1646 #endif
1648 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1649 the stack pointer does not matter. The value is tested only in
1650 functions that have frame pointers.
1651 No definition is equivalent to always zero.
1653 On the ARM, the function epilogue recovers the stack pointer from the
1654 frame. */
1655 #define EXIT_IGNORE_STACK 1
1657 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNUM)
1659 /* Determine if the epilogue should be output as RTL.
1660 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1661 #define USE_RETURN_INSN(ISCOND) \
1662 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1664 /* Definitions for register eliminations.
1666 This is an array of structures. Each structure initializes one pair
1667 of eliminable registers. The "from" register number is given first,
1668 followed by "to". Eliminations of the same "from" register are listed
1669 in order of preference.
1671 We have two registers that can be eliminated on the ARM. First, the
1672 arg pointer register can often be eliminated in favor of the stack
1673 pointer register. Secondly, the pseudo frame pointer register can always
1674 be eliminated; it is replaced with either the stack or the real frame
1675 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1676 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1678 #define ELIMINABLE_REGS \
1679 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1680 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1681 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1682 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1683 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1684 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1685 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1687 /* Define the offset between two registers, one to be eliminated, and the
1688 other its replacement, at the start of a routine. */
1689 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1690 if (TARGET_ARM) \
1691 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1692 else \
1693 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1695 /* Special case handling of the location of arguments passed on the stack. */
1696 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1698 /* Initialize data used by insn expanders. This is called from insn_emit,
1699 once for every function before code is generated. */
1700 #define INIT_EXPANDERS arm_init_expanders ()
1702 /* Length in units of the trampoline for entering a nested function. */
1703 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1705 /* Alignment required for a trampoline in bits. */
1706 #define TRAMPOLINE_ALIGNMENT 32
1708 /* Addressing modes, and classification of registers for them. */
1709 #define HAVE_POST_INCREMENT 1
1710 #define HAVE_PRE_INCREMENT TARGET_32BIT
1711 #define HAVE_POST_DECREMENT TARGET_32BIT
1712 #define HAVE_PRE_DECREMENT TARGET_32BIT
1713 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1714 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1715 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1716 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1718 /* Macros to check register numbers against specific register classes. */
1720 /* These assume that REGNO is a hard or pseudo reg number.
1721 They give nonzero only if REGNO is a hard reg of the suitable class
1722 or a pseudo reg currently allocated to a suitable hard reg.
1723 Since they use reg_renumber, they are safe only once reg_renumber
1724 has been allocated, which happens in local-alloc.c. */
1725 #define TEST_REGNO(R, TEST, VALUE) \
1726 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1728 /* Don't allow the pc to be used. */
1729 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1730 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1731 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1732 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1734 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1735 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1736 || (GET_MODE_SIZE (MODE) >= 4 \
1737 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1739 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1740 (TARGET_THUMB1 \
1741 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1742 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1744 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1745 For Thumb, we can not use SP + reg, so reject SP. */
1746 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1747 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1749 /* For ARM code, we don't care about the mode, but for Thumb, the index
1750 must be suitable for use in a QImode load. */
1751 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1752 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1753 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1755 /* Maximum number of registers that can appear in a valid memory address.
1756 Shifts in addresses can't be by a register. */
1757 #define MAX_REGS_PER_ADDRESS 2
1759 /* Recognize any constant value that is a valid address. */
1760 /* XXX We can address any constant, eventually... */
1761 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1762 #define CONSTANT_ADDRESS_P(X) \
1763 (GET_CODE (X) == SYMBOL_REF \
1764 && (CONSTANT_POOL_ADDRESS_P (X) \
1765 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1767 /* True if SYMBOL + OFFSET constants must refer to something within
1768 SYMBOL's section. */
1769 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1771 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1772 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1773 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1774 #endif
1776 /* Nonzero if the constant value X is a legitimate general operand.
1777 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1779 On the ARM, allow any integer (invalid ones are removed later by insn
1780 patterns), nice doubles and symbol_refs which refer to the function's
1781 constant pool XXX.
1783 When generating pic allow anything. */
1784 #define ARM_LEGITIMATE_CONSTANT_P(X) (flag_pic || ! label_mentioned_p (X))
1786 #define THUMB_LEGITIMATE_CONSTANT_P(X) \
1787 ( GET_CODE (X) == CONST_INT \
1788 || GET_CODE (X) == CONST_DOUBLE \
1789 || CONSTANT_ADDRESS_P (X) \
1790 || flag_pic)
1792 #define LEGITIMATE_CONSTANT_P(X) \
1793 (!arm_cannot_force_const_mem (X) \
1794 && (TARGET_32BIT ? ARM_LEGITIMATE_CONSTANT_P (X) \
1795 : THUMB_LEGITIMATE_CONSTANT_P (X)))
1797 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1798 #define SUBTARGET_NAME_ENCODING_LENGTHS
1799 #endif
1801 /* This is a C fragment for the inside of a switch statement.
1802 Each case label should return the number of characters to
1803 be stripped from the start of a function's name, if that
1804 name starts with the indicated character. */
1805 #define ARM_NAME_ENCODING_LENGTHS \
1806 case '*': return 1; \
1807 SUBTARGET_NAME_ENCODING_LENGTHS
1809 /* This is how to output a reference to a user-level label named NAME.
1810 `assemble_name' uses this. */
1811 #undef ASM_OUTPUT_LABELREF
1812 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1813 arm_asm_output_labelref (FILE, NAME)
1815 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1816 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1817 if (TARGET_THUMB2) \
1818 thumb2_asm_output_opcode (STREAM);
1820 /* The EABI specifies that constructors should go in .init_array.
1821 Other targets use .ctors for compatibility. */
1822 #ifndef ARM_EABI_CTORS_SECTION_OP
1823 #define ARM_EABI_CTORS_SECTION_OP \
1824 "\t.section\t.init_array,\"aw\",%init_array"
1825 #endif
1826 #ifndef ARM_EABI_DTORS_SECTION_OP
1827 #define ARM_EABI_DTORS_SECTION_OP \
1828 "\t.section\t.fini_array,\"aw\",%fini_array"
1829 #endif
1830 #define ARM_CTORS_SECTION_OP \
1831 "\t.section\t.ctors,\"aw\",%progbits"
1832 #define ARM_DTORS_SECTION_OP \
1833 "\t.section\t.dtors,\"aw\",%progbits"
1835 /* Define CTORS_SECTION_ASM_OP. */
1836 #undef CTORS_SECTION_ASM_OP
1837 #undef DTORS_SECTION_ASM_OP
1838 #ifndef IN_LIBGCC2
1839 # define CTORS_SECTION_ASM_OP \
1840 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1841 # define DTORS_SECTION_ASM_OP \
1842 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1843 #else /* !defined (IN_LIBGCC2) */
1844 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1845 so we cannot use the definition above. */
1846 # ifdef __ARM_EABI__
1847 /* The .ctors section is not part of the EABI, so we do not define
1848 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1849 from trying to use it. We do define it when doing normal
1850 compilation, as .init_array can be used instead of .ctors. */
1851 /* There is no need to emit begin or end markers when using
1852 init_array; the dynamic linker will compute the size of the
1853 array itself based on special symbols created by the static
1854 linker. However, we do need to arrange to set up
1855 exception-handling here. */
1856 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1857 # define CTOR_LIST_END /* empty */
1858 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1859 # define DTOR_LIST_END /* empty */
1860 # else /* !defined (__ARM_EABI__) */
1861 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1862 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1863 # endif /* !defined (__ARM_EABI__) */
1864 #endif /* !defined (IN_LIBCC2) */
1866 /* True if the operating system can merge entities with vague linkage
1867 (e.g., symbols in COMDAT group) during dynamic linking. */
1868 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1869 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1870 #endif
1872 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1874 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1875 and check its validity for a certain class.
1876 We have two alternate definitions for each of them.
1877 The usual definition accepts all pseudo regs; the other rejects
1878 them unless they have been allocated suitable hard regs.
1879 The symbol REG_OK_STRICT causes the latter definition to be used.
1880 Thumb-2 has the same restrictions as arm. */
1881 #ifndef REG_OK_STRICT
1883 #define ARM_REG_OK_FOR_BASE_P(X) \
1884 (REGNO (X) <= LAST_ARM_REGNUM \
1885 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1886 || REGNO (X) == FRAME_POINTER_REGNUM \
1887 || REGNO (X) == ARG_POINTER_REGNUM)
1889 #define ARM_REG_OK_FOR_INDEX_P(X) \
1890 ((REGNO (X) <= LAST_ARM_REGNUM \
1891 && REGNO (X) != STACK_POINTER_REGNUM) \
1892 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1893 || REGNO (X) == FRAME_POINTER_REGNUM \
1894 || REGNO (X) == ARG_POINTER_REGNUM)
1896 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1897 (REGNO (X) <= LAST_LO_REGNUM \
1898 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1899 || (GET_MODE_SIZE (MODE) >= 4 \
1900 && (REGNO (X) == STACK_POINTER_REGNUM \
1901 || (X) == hard_frame_pointer_rtx \
1902 || (X) == arg_pointer_rtx)))
1904 #define REG_STRICT_P 0
1906 #else /* REG_OK_STRICT */
1908 #define ARM_REG_OK_FOR_BASE_P(X) \
1909 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1911 #define ARM_REG_OK_FOR_INDEX_P(X) \
1912 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1914 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1915 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1917 #define REG_STRICT_P 1
1919 #endif /* REG_OK_STRICT */
1921 /* Now define some helpers in terms of the above. */
1923 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1924 (TARGET_THUMB1 \
1925 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
1926 : ARM_REG_OK_FOR_BASE_P (X))
1928 /* For 16-bit Thumb, a valid index register is anything that can be used in
1929 a byte load instruction. */
1930 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1931 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1933 /* Nonzero if X is a hard reg that can be used as an index
1934 or if it is a pseudo reg. On the Thumb, the stack pointer
1935 is not suitable. */
1936 #define REG_OK_FOR_INDEX_P(X) \
1937 (TARGET_THUMB1 \
1938 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
1939 : ARM_REG_OK_FOR_INDEX_P (X))
1941 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1942 For Thumb, we can not use SP + reg, so reject SP. */
1943 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1944 REG_OK_FOR_INDEX_P (X)
1946 #define ARM_BASE_REGISTER_RTX_P(X) \
1947 (GET_CODE (X) == REG && ARM_REG_OK_FOR_BASE_P (X))
1949 #define ARM_INDEX_REGISTER_RTX_P(X) \
1950 (GET_CODE (X) == REG && ARM_REG_OK_FOR_INDEX_P (X))
1952 /* Specify the machine mode that this machine uses
1953 for the index in the tablejump instruction. */
1954 #define CASE_VECTOR_MODE Pmode
1956 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
1957 || (TARGET_THUMB1 \
1958 && (optimize_size || flag_pic)))
1960 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
1961 (TARGET_THUMB1 \
1962 ? (min >= 0 && max < 512 \
1963 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
1964 : min >= -256 && max < 256 \
1965 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
1966 : min >= 0 && max < 8192 \
1967 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
1968 : min >= -4096 && max < 4096 \
1969 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
1970 : SImode) \
1971 : ((min < 0 || max >= 0x2000 || !TARGET_THUMB2) ? SImode \
1972 : (max >= 0x200) ? HImode \
1973 : QImode))
1975 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1976 unsigned is probably best, but may break some code. */
1977 #ifndef DEFAULT_SIGNED_CHAR
1978 #define DEFAULT_SIGNED_CHAR 0
1979 #endif
1981 /* Max number of bytes we can move from memory to memory
1982 in one reasonably fast instruction. */
1983 #define MOVE_MAX 4
1985 #undef MOVE_RATIO
1986 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
1988 /* Define if operations between registers always perform the operation
1989 on the full register even if a narrower mode is specified. */
1990 #define WORD_REGISTER_OPERATIONS
1992 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1993 will either zero-extend or sign-extend. The value of this macro should
1994 be the code that says which one of the two operations is implicitly
1995 done, UNKNOWN if none. */
1996 #define LOAD_EXTEND_OP(MODE) \
1997 (TARGET_THUMB ? ZERO_EXTEND : \
1998 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
1999 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
2001 /* Nonzero if access to memory by bytes is slow and undesirable. */
2002 #define SLOW_BYTE_ACCESS 0
2004 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
2006 /* Immediate shift counts are truncated by the output routines (or was it
2007 the assembler?). Shift counts in a register are truncated by ARM. Note
2008 that the native compiler puts too large (> 32) immediate shift counts
2009 into a register and shifts by the register, letting the ARM decide what
2010 to do instead of doing that itself. */
2011 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
2012 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
2013 On the arm, Y in a register is used modulo 256 for the shift. Only for
2014 rotates is modulo 32 used. */
2015 /* #define SHIFT_COUNT_TRUNCATED 1 */
2017 /* All integers have the same format so truncation is easy. */
2018 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2020 /* Calling from registers is a massive pain. */
2021 #define NO_FUNCTION_CSE 1
2023 /* The machine modes of pointers and functions */
2024 #define Pmode SImode
2025 #define FUNCTION_MODE Pmode
2027 #define ARM_FRAME_RTX(X) \
2028 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
2029 || (X) == arg_pointer_rtx)
2031 /* Moves to and from memory are quite expensive */
2032 #define MEMORY_MOVE_COST(M, CLASS, IN) \
2033 (TARGET_32BIT ? 10 : \
2034 ((GET_MODE_SIZE (M) < 4 ? 8 : 2 * GET_MODE_SIZE (M)) \
2035 * (CLASS == LO_REGS ? 1 : 2)))
2037 /* Try to generate sequences that don't involve branches, we can then use
2038 conditional instructions */
2039 #define BRANCH_COST(speed_p, predictable_p) \
2040 (TARGET_32BIT ? 4 : (optimize > 0 ? 2 : 0))
2042 /* Position Independent Code. */
2043 /* We decide which register to use based on the compilation options and
2044 the assembler in use; this is more general than the APCS restriction of
2045 using sb (r9) all the time. */
2046 extern unsigned arm_pic_register;
2048 /* The register number of the register used to address a table of static
2049 data addresses in memory. */
2050 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2052 /* We can't directly access anything that contains a symbol,
2053 nor can we indirect via the constant pool. One exception is
2054 UNSPEC_TLS, which is always PIC. */
2055 #define LEGITIMATE_PIC_OPERAND_P(X) \
2056 (!(symbol_mentioned_p (X) \
2057 || label_mentioned_p (X) \
2058 || (GET_CODE (X) == SYMBOL_REF \
2059 && CONSTANT_POOL_ADDRESS_P (X) \
2060 && (symbol_mentioned_p (get_pool_constant (X)) \
2061 || label_mentioned_p (get_pool_constant (X))))) \
2062 || tls_mentioned_p (X))
2064 /* We need to know when we are making a constant pool; this determines
2065 whether data needs to be in the GOT or can be referenced via a GOT
2066 offset. */
2067 extern int making_const_table;
2069 /* Handle pragmas for compatibility with Intel's compilers. */
2070 /* Also abuse this to register additional C specific EABI attributes. */
2071 #define REGISTER_TARGET_PRAGMAS() do { \
2072 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
2073 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
2074 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
2075 arm_lang_object_attributes_init(); \
2076 } while (0)
2078 /* Condition code information. */
2079 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2080 return the mode to be used for the comparison. */
2082 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
2084 #define REVERSIBLE_CC_MODE(MODE) 1
2086 #define REVERSE_CONDITION(CODE,MODE) \
2087 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2088 ? reverse_condition_maybe_unordered (code) \
2089 : reverse_condition (code))
2091 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
2092 (CODE) = arm_canonicalize_comparison (CODE, &(OP0), &(OP1))
2094 /* The arm5 clz instruction returns 32. */
2095 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2096 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2098 #define CC_STATUS_INIT \
2099 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2101 #undef ASM_APP_OFF
2102 #define ASM_APP_OFF (TARGET_THUMB1 ? "\t.code\t16\n" : \
2103 TARGET_THUMB2 ? "\t.thumb\n" : "")
2105 /* Output a push or a pop instruction (only used when profiling).
2106 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
2107 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2108 that r7 isn't used by the function profiler, so we can use it as a
2109 scratch reg. WARNING: This isn't safe in the general case! It may be
2110 sensitive to future changes in final.c:profile_function. */
2111 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
2112 do \
2114 if (TARGET_ARM) \
2115 asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \
2116 STACK_POINTER_REGNUM, REGNO); \
2117 else if (TARGET_THUMB1 \
2118 && (REGNO) == STATIC_CHAIN_REGNUM) \
2120 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2121 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2122 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2124 else \
2125 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2126 } while (0)
2129 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2130 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2131 do \
2133 if (TARGET_ARM) \
2134 asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \
2135 STACK_POINTER_REGNUM, REGNO); \
2136 else if (TARGET_THUMB1 \
2137 && (REGNO) == STATIC_CHAIN_REGNUM) \
2139 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2140 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2141 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2143 else \
2144 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2145 } while (0)
2147 /* Jump table alignment is explicit in ASM_OUTPUT_CASE_LABEL. */
2148 #define ADDR_VEC_ALIGN(JUMPTABLE) 0
2150 /* This is how to output a label which precedes a jumptable. Since
2151 Thumb instructions are 2 bytes, we may need explicit alignment here. */
2152 #undef ASM_OUTPUT_CASE_LABEL
2153 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE) \
2154 do \
2156 if (TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) \
2157 ASM_OUTPUT_ALIGN (FILE, 2); \
2158 (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); \
2160 while (0)
2162 /* Make sure subsequent insns are aligned after a TBB. */
2163 #define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE) \
2164 do \
2166 if (GET_MODE (PATTERN (JUMPTABLE)) == QImode) \
2167 ASM_OUTPUT_ALIGN (FILE, 1); \
2169 while (0)
2171 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2172 do \
2174 if (TARGET_THUMB) \
2176 if (is_called_in_ARM_mode (DECL) \
2177 || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY \
2178 && cfun->is_thunk)) \
2179 fprintf (STREAM, "\t.code 32\n") ; \
2180 else if (TARGET_THUMB1) \
2181 fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ; \
2182 else \
2183 fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ; \
2185 if (TARGET_POKE_FUNCTION_NAME) \
2186 arm_poke_function_name (STREAM, (const char *) NAME); \
2188 while (0)
2190 /* For aliases of functions we use .thumb_set instead. */
2191 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2192 do \
2194 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2195 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2197 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2199 fprintf (FILE, "\t.thumb_set "); \
2200 assemble_name (FILE, LABEL1); \
2201 fprintf (FILE, ","); \
2202 assemble_name (FILE, LABEL2); \
2203 fprintf (FILE, "\n"); \
2205 else \
2206 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2208 while (0)
2210 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2211 /* To support -falign-* switches we need to use .p2align so
2212 that alignment directives in code sections will be padded
2213 with no-op instructions, rather than zeroes. */
2214 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2215 if ((LOG) != 0) \
2217 if ((MAX_SKIP) == 0) \
2218 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2219 else \
2220 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2221 (int) (LOG), (int) (MAX_SKIP)); \
2223 #endif
2225 /* Add two bytes to the length of conditionally executed Thumb-2
2226 instructions for the IT instruction. */
2227 #define ADJUST_INSN_LENGTH(insn, length) \
2228 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2229 length += 2;
2231 /* Only perform branch elimination (by making instructions conditional) if
2232 we're optimizing. For Thumb-2 check if any IT instructions need
2233 outputting. */
2234 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2235 if (TARGET_ARM && optimize) \
2236 arm_final_prescan_insn (INSN); \
2237 else if (TARGET_THUMB2) \
2238 thumb2_final_prescan_insn (INSN); \
2239 else if (TARGET_THUMB1) \
2240 thumb1_final_prescan_insn (INSN)
2242 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2243 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2244 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2245 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2246 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2247 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2248 : 0))))
2250 /* A C expression whose value is RTL representing the value of the return
2251 address for the frame COUNT steps up from the current frame. */
2253 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2254 arm_return_addr (COUNT, FRAME)
2256 /* Mask of the bits in the PC that contain the real return address
2257 when running in 26-bit mode. */
2258 #define RETURN_ADDR_MASK26 (0x03fffffc)
2260 /* Pick up the return address upon entry to a procedure. Used for
2261 dwarf2 unwind information. This also enables the table driven
2262 mechanism. */
2263 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2264 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2266 /* Used to mask out junk bits from the return address, such as
2267 processor state, interrupt status, condition codes and the like. */
2268 #define MASK_RETURN_ADDR \
2269 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2270 in 26 bit mode, the condition codes must be masked out of the \
2271 return address. This does not apply to ARM6 and later processors \
2272 when running in 32 bit mode. */ \
2273 ((arm_arch4 || TARGET_THUMB) \
2274 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2275 : arm_gen_return_addr_mask ())
2278 /* Neon defines builtins from ARM_BUILTIN_MAX upwards, though they don't have
2279 symbolic names defined here (which would require too much duplication).
2280 FIXME? */
2281 enum arm_builtins
2283 ARM_BUILTIN_GETWCX,
2284 ARM_BUILTIN_SETWCX,
2286 ARM_BUILTIN_WZERO,
2288 ARM_BUILTIN_WAVG2BR,
2289 ARM_BUILTIN_WAVG2HR,
2290 ARM_BUILTIN_WAVG2B,
2291 ARM_BUILTIN_WAVG2H,
2293 ARM_BUILTIN_WACCB,
2294 ARM_BUILTIN_WACCH,
2295 ARM_BUILTIN_WACCW,
2297 ARM_BUILTIN_WMACS,
2298 ARM_BUILTIN_WMACSZ,
2299 ARM_BUILTIN_WMACU,
2300 ARM_BUILTIN_WMACUZ,
2302 ARM_BUILTIN_WSADB,
2303 ARM_BUILTIN_WSADBZ,
2304 ARM_BUILTIN_WSADH,
2305 ARM_BUILTIN_WSADHZ,
2307 ARM_BUILTIN_WALIGN,
2309 ARM_BUILTIN_TMIA,
2310 ARM_BUILTIN_TMIAPH,
2311 ARM_BUILTIN_TMIABB,
2312 ARM_BUILTIN_TMIABT,
2313 ARM_BUILTIN_TMIATB,
2314 ARM_BUILTIN_TMIATT,
2316 ARM_BUILTIN_TMOVMSKB,
2317 ARM_BUILTIN_TMOVMSKH,
2318 ARM_BUILTIN_TMOVMSKW,
2320 ARM_BUILTIN_TBCSTB,
2321 ARM_BUILTIN_TBCSTH,
2322 ARM_BUILTIN_TBCSTW,
2324 ARM_BUILTIN_WMADDS,
2325 ARM_BUILTIN_WMADDU,
2327 ARM_BUILTIN_WPACKHSS,
2328 ARM_BUILTIN_WPACKWSS,
2329 ARM_BUILTIN_WPACKDSS,
2330 ARM_BUILTIN_WPACKHUS,
2331 ARM_BUILTIN_WPACKWUS,
2332 ARM_BUILTIN_WPACKDUS,
2334 ARM_BUILTIN_WADDB,
2335 ARM_BUILTIN_WADDH,
2336 ARM_BUILTIN_WADDW,
2337 ARM_BUILTIN_WADDSSB,
2338 ARM_BUILTIN_WADDSSH,
2339 ARM_BUILTIN_WADDSSW,
2340 ARM_BUILTIN_WADDUSB,
2341 ARM_BUILTIN_WADDUSH,
2342 ARM_BUILTIN_WADDUSW,
2343 ARM_BUILTIN_WSUBB,
2344 ARM_BUILTIN_WSUBH,
2345 ARM_BUILTIN_WSUBW,
2346 ARM_BUILTIN_WSUBSSB,
2347 ARM_BUILTIN_WSUBSSH,
2348 ARM_BUILTIN_WSUBSSW,
2349 ARM_BUILTIN_WSUBUSB,
2350 ARM_BUILTIN_WSUBUSH,
2351 ARM_BUILTIN_WSUBUSW,
2353 ARM_BUILTIN_WAND,
2354 ARM_BUILTIN_WANDN,
2355 ARM_BUILTIN_WOR,
2356 ARM_BUILTIN_WXOR,
2358 ARM_BUILTIN_WCMPEQB,
2359 ARM_BUILTIN_WCMPEQH,
2360 ARM_BUILTIN_WCMPEQW,
2361 ARM_BUILTIN_WCMPGTUB,
2362 ARM_BUILTIN_WCMPGTUH,
2363 ARM_BUILTIN_WCMPGTUW,
2364 ARM_BUILTIN_WCMPGTSB,
2365 ARM_BUILTIN_WCMPGTSH,
2366 ARM_BUILTIN_WCMPGTSW,
2368 ARM_BUILTIN_TEXTRMSB,
2369 ARM_BUILTIN_TEXTRMSH,
2370 ARM_BUILTIN_TEXTRMSW,
2371 ARM_BUILTIN_TEXTRMUB,
2372 ARM_BUILTIN_TEXTRMUH,
2373 ARM_BUILTIN_TEXTRMUW,
2374 ARM_BUILTIN_TINSRB,
2375 ARM_BUILTIN_TINSRH,
2376 ARM_BUILTIN_TINSRW,
2378 ARM_BUILTIN_WMAXSW,
2379 ARM_BUILTIN_WMAXSH,
2380 ARM_BUILTIN_WMAXSB,
2381 ARM_BUILTIN_WMAXUW,
2382 ARM_BUILTIN_WMAXUH,
2383 ARM_BUILTIN_WMAXUB,
2384 ARM_BUILTIN_WMINSW,
2385 ARM_BUILTIN_WMINSH,
2386 ARM_BUILTIN_WMINSB,
2387 ARM_BUILTIN_WMINUW,
2388 ARM_BUILTIN_WMINUH,
2389 ARM_BUILTIN_WMINUB,
2391 ARM_BUILTIN_WMULUM,
2392 ARM_BUILTIN_WMULSM,
2393 ARM_BUILTIN_WMULUL,
2395 ARM_BUILTIN_PSADBH,
2396 ARM_BUILTIN_WSHUFH,
2398 ARM_BUILTIN_WSLLH,
2399 ARM_BUILTIN_WSLLW,
2400 ARM_BUILTIN_WSLLD,
2401 ARM_BUILTIN_WSRAH,
2402 ARM_BUILTIN_WSRAW,
2403 ARM_BUILTIN_WSRAD,
2404 ARM_BUILTIN_WSRLH,
2405 ARM_BUILTIN_WSRLW,
2406 ARM_BUILTIN_WSRLD,
2407 ARM_BUILTIN_WRORH,
2408 ARM_BUILTIN_WRORW,
2409 ARM_BUILTIN_WRORD,
2410 ARM_BUILTIN_WSLLHI,
2411 ARM_BUILTIN_WSLLWI,
2412 ARM_BUILTIN_WSLLDI,
2413 ARM_BUILTIN_WSRAHI,
2414 ARM_BUILTIN_WSRAWI,
2415 ARM_BUILTIN_WSRADI,
2416 ARM_BUILTIN_WSRLHI,
2417 ARM_BUILTIN_WSRLWI,
2418 ARM_BUILTIN_WSRLDI,
2419 ARM_BUILTIN_WRORHI,
2420 ARM_BUILTIN_WRORWI,
2421 ARM_BUILTIN_WRORDI,
2423 ARM_BUILTIN_WUNPCKIHB,
2424 ARM_BUILTIN_WUNPCKIHH,
2425 ARM_BUILTIN_WUNPCKIHW,
2426 ARM_BUILTIN_WUNPCKILB,
2427 ARM_BUILTIN_WUNPCKILH,
2428 ARM_BUILTIN_WUNPCKILW,
2430 ARM_BUILTIN_WUNPCKEHSB,
2431 ARM_BUILTIN_WUNPCKEHSH,
2432 ARM_BUILTIN_WUNPCKEHSW,
2433 ARM_BUILTIN_WUNPCKEHUB,
2434 ARM_BUILTIN_WUNPCKEHUH,
2435 ARM_BUILTIN_WUNPCKEHUW,
2436 ARM_BUILTIN_WUNPCKELSB,
2437 ARM_BUILTIN_WUNPCKELSH,
2438 ARM_BUILTIN_WUNPCKELSW,
2439 ARM_BUILTIN_WUNPCKELUB,
2440 ARM_BUILTIN_WUNPCKELUH,
2441 ARM_BUILTIN_WUNPCKELUW,
2443 ARM_BUILTIN_THREAD_POINTER,
2445 ARM_BUILTIN_NEON_BASE,
2447 ARM_BUILTIN_MAX = ARM_BUILTIN_NEON_BASE /* FIXME: Wrong! */
2450 /* Do not emit .note.GNU-stack by default. */
2451 #ifndef NEED_INDICATE_EXEC_STACK
2452 #define NEED_INDICATE_EXEC_STACK 0
2453 #endif
2455 /* The maximum number of parallel loads or stores we support in an ldm/stm
2456 instruction. */
2457 #define MAX_LDM_STM_OPS 4
2459 #endif /* ! GCC_ARM_H */