1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
28 #include "double-int.h"
35 #include "fold-const.h"
36 #include "stringpool.h"
37 #include "stor-layout.h"
42 #include "hard-reg-set.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
48 #include "statistics.h"
50 #include "fixed-value.h"
57 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
59 #include "insn-codes.h"
64 #include "typeclass.h"
66 #include "langhooks.h"
69 #include "tree-iterator.h"
71 #include "dominance.h"
73 #include "basic-block.h"
74 #include "tree-ssa-alias.h"
75 #include "internal-fn.h"
76 #include "gimple-expr.h"
79 #include "gimple-ssa.h"
81 #include "plugin-api.h"
84 #include "tree-ssanames.h"
86 #include "common/common-target.h"
89 #include "diagnostic.h"
90 #include "tree-ssa-live.h"
91 #include "tree-outof-ssa.h"
92 #include "target-globals.h"
94 #include "tree-ssa-address.h"
95 #include "cfgexpand.h"
97 #include "tree-chkp.h"
101 #ifndef STACK_PUSH_CODE
102 #ifdef STACK_GROWS_DOWNWARD
103 #define STACK_PUSH_CODE PRE_DEC
105 #define STACK_PUSH_CODE PRE_INC
110 /* If this is nonzero, we do not bother generating VOLATILE
111 around volatile memory references, and we are willing to
112 output indirect addresses. If cse is to follow, we reject
113 indirect addresses so a useful potential cse is generated;
114 if it is used only once, instruction combination will produce
115 the same indirect address eventually. */
116 int cse_not_expected
;
118 /* This structure is used by move_by_pieces to describe the move to
120 struct move_by_pieces_d
129 int explicit_inc_from
;
130 unsigned HOST_WIDE_INT len
;
131 HOST_WIDE_INT offset
;
135 /* This structure is used by store_by_pieces to describe the clear to
138 struct store_by_pieces_d
144 unsigned HOST_WIDE_INT len
;
145 HOST_WIDE_INT offset
;
146 rtx (*constfun
) (void *, HOST_WIDE_INT
, machine_mode
);
151 static void move_by_pieces_1 (insn_gen_fn
, machine_mode
,
152 struct move_by_pieces_d
*);
153 static bool block_move_libcall_safe_for_call_parm (void);
154 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned, unsigned, HOST_WIDE_INT
,
155 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
156 unsigned HOST_WIDE_INT
);
157 static tree
emit_block_move_libcall_fn (int);
158 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
159 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, machine_mode
);
160 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
161 static void store_by_pieces_1 (struct store_by_pieces_d
*, unsigned int);
162 static void store_by_pieces_2 (insn_gen_fn
, machine_mode
,
163 struct store_by_pieces_d
*);
164 static tree
clear_storage_libcall_fn (int);
165 static rtx_insn
*compress_float_constant (rtx
, rtx
);
166 static rtx
get_subtarget (rtx
);
167 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
168 HOST_WIDE_INT
, machine_mode
,
169 tree
, int, alias_set_type
);
170 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
171 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
,
172 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
173 machine_mode
, tree
, alias_set_type
, bool);
175 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
177 static int is_aligning_offset (const_tree
, const_tree
);
178 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
179 static rtx
do_store_flag (sepops
, rtx
, machine_mode
);
181 static void emit_single_push_insn (machine_mode
, rtx
, tree
);
183 static void do_tablejump (rtx
, machine_mode
, rtx
, rtx
, rtx
, int);
184 static rtx
const_vector_from_tree (tree
);
185 static tree
tree_expr_size (const_tree
);
186 static HOST_WIDE_INT
int_expr_size (tree
);
189 /* This is run to set up which modes can be used
190 directly in memory and to initialize the block move optab. It is run
191 at the beginning of compilation and when the target is reinitialized. */
194 init_expr_target (void)
202 /* Try indexing by frame ptr and try by stack ptr.
203 It is known that on the Convex the stack ptr isn't a valid index.
204 With luck, one or the other is valid on any machine. */
205 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
206 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
208 /* A scratch register we can modify in-place below to avoid
209 useless RTL allocations. */
210 reg
= gen_rtx_REG (VOIDmode
, -1);
212 insn
= rtx_alloc (INSN
);
213 pat
= gen_rtx_SET (VOIDmode
, NULL_RTX
, NULL_RTX
);
214 PATTERN (insn
) = pat
;
216 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
217 mode
= (machine_mode
) ((int) mode
+ 1))
221 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
222 PUT_MODE (mem
, mode
);
223 PUT_MODE (mem1
, mode
);
224 PUT_MODE (reg
, mode
);
226 /* See if there is some register that can be used in this mode and
227 directly loaded or stored from memory. */
229 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
230 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
231 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
234 if (! HARD_REGNO_MODE_OK (regno
, mode
))
237 SET_REGNO (reg
, regno
);
240 SET_DEST (pat
) = reg
;
241 if (recog (pat
, insn
, &num_clobbers
) >= 0)
242 direct_load
[(int) mode
] = 1;
244 SET_SRC (pat
) = mem1
;
245 SET_DEST (pat
) = reg
;
246 if (recog (pat
, insn
, &num_clobbers
) >= 0)
247 direct_load
[(int) mode
] = 1;
250 SET_DEST (pat
) = mem
;
251 if (recog (pat
, insn
, &num_clobbers
) >= 0)
252 direct_store
[(int) mode
] = 1;
255 SET_DEST (pat
) = mem1
;
256 if (recog (pat
, insn
, &num_clobbers
) >= 0)
257 direct_store
[(int) mode
] = 1;
261 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
263 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
264 mode
= GET_MODE_WIDER_MODE (mode
))
266 machine_mode srcmode
;
267 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
268 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
272 ic
= can_extend_p (mode
, srcmode
, 0);
273 if (ic
== CODE_FOR_nothing
)
276 PUT_MODE (mem
, srcmode
);
278 if (insn_operand_matches (ic
, 1, mem
))
279 float_extend_from_mem
[mode
][srcmode
] = true;
284 /* This is run at the start of compiling a function. */
289 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
292 /* Copy data from FROM to TO, where the machine modes are not the same.
293 Both modes may be integer, or both may be floating, or both may be
295 UNSIGNEDP should be nonzero if FROM is an unsigned type.
296 This causes zero-extension instead of sign-extension. */
299 convert_move (rtx to
, rtx from
, int unsignedp
)
301 machine_mode to_mode
= GET_MODE (to
);
302 machine_mode from_mode
= GET_MODE (from
);
303 int to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
304 int from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
308 /* rtx code for making an equivalent value. */
309 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
310 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
313 gcc_assert (to_real
== from_real
);
314 gcc_assert (to_mode
!= BLKmode
);
315 gcc_assert (from_mode
!= BLKmode
);
317 /* If the source and destination are already the same, then there's
322 /* If FROM is a SUBREG that indicates that we have already done at least
323 the required extension, strip it. We don't handle such SUBREGs as
326 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
327 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from
)))
328 >= GET_MODE_PRECISION (to_mode
))
329 && SUBREG_CHECK_PROMOTED_SIGN (from
, unsignedp
))
330 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
332 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
334 if (to_mode
== from_mode
335 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
337 emit_move_insn (to
, from
);
341 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
343 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
345 if (VECTOR_MODE_P (to_mode
))
346 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
348 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
350 emit_move_insn (to
, from
);
354 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
356 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
357 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
367 gcc_assert ((GET_MODE_PRECISION (from_mode
)
368 != GET_MODE_PRECISION (to_mode
))
369 || (DECIMAL_FLOAT_MODE_P (from_mode
)
370 != DECIMAL_FLOAT_MODE_P (to_mode
)));
372 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
373 /* Conversion between decimal float and binary float, same size. */
374 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
375 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
380 /* Try converting directly if the insn is supported. */
382 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
383 if (code
!= CODE_FOR_nothing
)
385 emit_unop_insn (code
, to
, from
,
386 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
390 /* Otherwise use a libcall. */
391 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
393 /* Is this conversion implemented yet? */
394 gcc_assert (libcall
);
397 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
399 insns
= get_insns ();
401 emit_libcall_block (insns
, to
, value
,
402 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
404 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
408 /* Handle pointer conversion. */ /* SPEE 900220. */
409 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
413 if (GET_MODE_PRECISION (from_mode
) > GET_MODE_PRECISION (to_mode
))
420 if (convert_optab_handler (ctab
, to_mode
, from_mode
)
423 emit_unop_insn (convert_optab_handler (ctab
, to_mode
, from_mode
),
429 /* Targets are expected to provide conversion insns between PxImode and
430 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
431 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
433 machine_mode full_mode
434 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
436 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)
437 != CODE_FOR_nothing
);
439 if (full_mode
!= from_mode
)
440 from
= convert_to_mode (full_mode
, from
, unsignedp
);
441 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
),
445 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
448 machine_mode full_mode
449 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
450 convert_optab ctab
= unsignedp
? zext_optab
: sext_optab
;
451 enum insn_code icode
;
453 icode
= convert_optab_handler (ctab
, full_mode
, from_mode
);
454 gcc_assert (icode
!= CODE_FOR_nothing
);
456 if (to_mode
== full_mode
)
458 emit_unop_insn (icode
, to
, from
, UNKNOWN
);
462 new_from
= gen_reg_rtx (full_mode
);
463 emit_unop_insn (icode
, new_from
, from
, UNKNOWN
);
465 /* else proceed to integer conversions below. */
466 from_mode
= full_mode
;
470 /* Make sure both are fixed-point modes or both are not. */
471 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
472 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
473 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
475 /* If we widen from_mode to to_mode and they are in the same class,
476 we won't saturate the result.
477 Otherwise, always saturate the result to play safe. */
478 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
479 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
480 expand_fixed_convert (to
, from
, 0, 0);
482 expand_fixed_convert (to
, from
, 0, 1);
486 /* Now both modes are integers. */
488 /* Handle expanding beyond a word. */
489 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
)
490 && GET_MODE_PRECISION (to_mode
) > BITS_PER_WORD
)
497 machine_mode lowpart_mode
;
498 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
500 /* Try converting directly if the insn is supported. */
501 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
504 /* If FROM is a SUBREG, put it into a register. Do this
505 so that we always generate the same set of insns for
506 better cse'ing; if an intermediate assignment occurred,
507 we won't be doing the operation directly on the SUBREG. */
508 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
509 from
= force_reg (from_mode
, from
);
510 emit_unop_insn (code
, to
, from
, equiv_code
);
513 /* Next, try converting via full word. */
514 else if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
515 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
516 != CODE_FOR_nothing
))
518 rtx word_to
= gen_reg_rtx (word_mode
);
521 if (reg_overlap_mentioned_p (to
, from
))
522 from
= force_reg (from_mode
, from
);
525 convert_move (word_to
, from
, unsignedp
);
526 emit_unop_insn (code
, to
, word_to
, equiv_code
);
530 /* No special multiword conversion insn; do it by hand. */
533 /* Since we will turn this into a no conflict block, we must ensure the
534 the source does not overlap the target so force it into an isolated
535 register when maybe so. Likewise for any MEM input, since the
536 conversion sequence might require several references to it and we
537 must ensure we're getting the same value every time. */
539 if (MEM_P (from
) || reg_overlap_mentioned_p (to
, from
))
540 from
= force_reg (from_mode
, from
);
542 /* Get a copy of FROM widened to a word, if necessary. */
543 if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
)
544 lowpart_mode
= word_mode
;
546 lowpart_mode
= from_mode
;
548 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
550 lowpart
= gen_lowpart (lowpart_mode
, to
);
551 emit_move_insn (lowpart
, lowfrom
);
553 /* Compute the value to put in each remaining word. */
555 fill_value
= const0_rtx
;
557 fill_value
= emit_store_flag_force (gen_reg_rtx (word_mode
),
558 LT
, lowfrom
, const0_rtx
,
559 lowpart_mode
, 0, -1);
561 /* Fill the remaining words. */
562 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
564 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
565 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
567 gcc_assert (subword
);
569 if (fill_value
!= subword
)
570 emit_move_insn (subword
, fill_value
);
573 insns
= get_insns ();
580 /* Truncating multi-word to a word or less. */
581 if (GET_MODE_PRECISION (from_mode
) > BITS_PER_WORD
582 && GET_MODE_PRECISION (to_mode
) <= BITS_PER_WORD
)
585 && ! MEM_VOLATILE_P (from
)
586 && direct_load
[(int) to_mode
]
587 && ! mode_dependent_address_p (XEXP (from
, 0),
588 MEM_ADDR_SPACE (from
)))
590 || GET_CODE (from
) == SUBREG
))
591 from
= force_reg (from_mode
, from
);
592 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
596 /* Now follow all the conversions between integers
597 no more than a word long. */
599 /* For truncation, usually we can just refer to FROM in a narrower mode. */
600 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
601 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, from_mode
))
604 && ! MEM_VOLATILE_P (from
)
605 && direct_load
[(int) to_mode
]
606 && ! mode_dependent_address_p (XEXP (from
, 0),
607 MEM_ADDR_SPACE (from
)))
609 || GET_CODE (from
) == SUBREG
))
610 from
= force_reg (from_mode
, from
);
611 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
612 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
613 from
= copy_to_reg (from
);
614 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
618 /* Handle extension. */
619 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (from_mode
))
621 /* Convert directly if that works. */
622 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
625 emit_unop_insn (code
, to
, from
, equiv_code
);
630 machine_mode intermediate
;
634 /* Search for a mode to convert via. */
635 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
636 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
637 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
639 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
640 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, intermediate
)))
641 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
642 != CODE_FOR_nothing
))
644 convert_move (to
, convert_to_mode (intermediate
, from
,
645 unsignedp
), unsignedp
);
649 /* No suitable intermediate mode.
650 Generate what we need with shifts. */
651 shift_amount
= (GET_MODE_PRECISION (to_mode
)
652 - GET_MODE_PRECISION (from_mode
));
653 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
654 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
656 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
659 emit_move_insn (to
, tmp
);
664 /* Support special truncate insns for certain modes. */
665 if (convert_optab_handler (trunc_optab
, to_mode
,
666 from_mode
) != CODE_FOR_nothing
)
668 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
),
673 /* Handle truncation of volatile memrefs, and so on;
674 the things that couldn't be truncated directly,
675 and for which there was no special instruction.
677 ??? Code above formerly short-circuited this, for most integer
678 mode pairs, with a force_reg in from_mode followed by a recursive
679 call to this routine. Appears always to have been wrong. */
680 if (GET_MODE_PRECISION (to_mode
) < GET_MODE_PRECISION (from_mode
))
682 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
683 emit_move_insn (to
, temp
);
687 /* Mode combination is not recognized. */
691 /* Return an rtx for a value that would result
692 from converting X to mode MODE.
693 Both X and MODE may be floating, or both integer.
694 UNSIGNEDP is nonzero if X is an unsigned value.
695 This can be done by referring to a part of X in place
696 or by copying to a new temporary with conversion. */
699 convert_to_mode (machine_mode mode
, rtx x
, int unsignedp
)
701 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
704 /* Return an rtx for a value that would result
705 from converting X from mode OLDMODE to mode MODE.
706 Both modes may be floating, or both integer.
707 UNSIGNEDP is nonzero if X is an unsigned value.
709 This can be done by referring to a part of X in place
710 or by copying to a new temporary with conversion.
712 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
715 convert_modes (machine_mode mode
, machine_mode oldmode
, rtx x
, int unsignedp
)
719 /* If FROM is a SUBREG that indicates that we have already done at least
720 the required extension, strip it. */
722 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
723 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
724 && SUBREG_CHECK_PROMOTED_SIGN (x
, unsignedp
))
725 x
= gen_lowpart (mode
, SUBREG_REG (x
));
727 if (GET_MODE (x
) != VOIDmode
)
728 oldmode
= GET_MODE (x
);
733 if (CONST_SCALAR_INT_P (x
) && GET_MODE_CLASS (mode
) == MODE_INT
)
735 /* If the caller did not tell us the old mode, then there is not
736 much to do with respect to canonicalization. We have to
737 assume that all the bits are significant. */
738 if (GET_MODE_CLASS (oldmode
) != MODE_INT
)
739 oldmode
= MAX_MODE_INT
;
740 wide_int w
= wide_int::from (std::make_pair (x
, oldmode
),
741 GET_MODE_PRECISION (mode
),
742 unsignedp
? UNSIGNED
: SIGNED
);
743 return immed_wide_int_const (w
, mode
);
746 /* We can do this with a gen_lowpart if both desired and current modes
747 are integer, and this is either a constant integer, a register, or a
749 if (GET_MODE_CLASS (mode
) == MODE_INT
750 && GET_MODE_CLASS (oldmode
) == MODE_INT
751 && GET_MODE_PRECISION (mode
) <= GET_MODE_PRECISION (oldmode
)
752 && ((MEM_P (x
) && !MEM_VOLATILE_P (x
) && direct_load
[(int) mode
])
754 && (!HARD_REGISTER_P (x
)
755 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
756 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (x
)))))
758 return gen_lowpart (mode
, x
);
760 /* Converting from integer constant into mode is always equivalent to an
762 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
764 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
765 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
768 temp
= gen_reg_rtx (mode
);
769 convert_move (temp
, x
, unsignedp
);
773 /* Return the largest alignment we can use for doing a move (or store)
774 of MAX_PIECES. ALIGN is the largest alignment we could use. */
777 alignment_for_piecewise_move (unsigned int max_pieces
, unsigned int align
)
781 tmode
= mode_for_size (max_pieces
* BITS_PER_UNIT
, MODE_INT
, 1);
782 if (align
>= GET_MODE_ALIGNMENT (tmode
))
783 align
= GET_MODE_ALIGNMENT (tmode
);
786 machine_mode tmode
, xmode
;
788 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
790 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
791 if (GET_MODE_SIZE (tmode
) > max_pieces
792 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
795 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
801 /* Return the widest integer mode no wider than SIZE. If no such mode
802 can be found, return VOIDmode. */
805 widest_int_mode_for_size (unsigned int size
)
807 machine_mode tmode
, mode
= VOIDmode
;
809 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
810 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
811 if (GET_MODE_SIZE (tmode
) < size
)
817 /* Determine whether the LEN bytes can be moved by using several move
818 instructions. Return nonzero if a call to move_by_pieces should
822 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
825 return targetm
.use_by_pieces_infrastructure_p (len
, align
, MOVE_BY_PIECES
,
826 optimize_insn_for_speed_p ());
829 /* Generate several move instructions to copy LEN bytes from block FROM to
830 block TO. (These are MEM rtx's with BLKmode).
832 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
833 used to push FROM to the stack.
835 ALIGN is maximum stack alignment we can assume.
837 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
838 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
842 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
843 unsigned int align
, int endp
)
845 struct move_by_pieces_d data
;
846 machine_mode to_addr_mode
;
847 machine_mode from_addr_mode
= get_address_mode (from
);
848 rtx to_addr
, from_addr
= XEXP (from
, 0);
849 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
850 enum insn_code icode
;
852 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
855 data
.from_addr
= from_addr
;
858 to_addr_mode
= get_address_mode (to
);
859 to_addr
= XEXP (to
, 0);
862 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
863 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
865 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
869 to_addr_mode
= VOIDmode
;
873 #ifdef STACK_GROWS_DOWNWARD
879 data
.to_addr
= to_addr
;
882 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
883 || GET_CODE (from_addr
) == POST_INC
884 || GET_CODE (from_addr
) == POST_DEC
);
886 data
.explicit_inc_from
= 0;
887 data
.explicit_inc_to
= 0;
888 if (data
.reverse
) data
.offset
= len
;
891 /* If copying requires more than two move insns,
892 copy addresses to registers (to make displacements shorter)
893 and use post-increment if available. */
894 if (!(data
.autinc_from
&& data
.autinc_to
)
895 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
897 /* Find the mode of the largest move...
898 MODE might not be used depending on the definitions of the
899 USE_* macros below. */
900 machine_mode mode ATTRIBUTE_UNUSED
901 = widest_int_mode_for_size (max_size
);
903 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
905 data
.from_addr
= copy_to_mode_reg (from_addr_mode
,
906 plus_constant (from_addr_mode
,
908 data
.autinc_from
= 1;
909 data
.explicit_inc_from
= -1;
911 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
913 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
914 data
.autinc_from
= 1;
915 data
.explicit_inc_from
= 1;
917 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
918 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
919 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
921 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
922 plus_constant (to_addr_mode
,
925 data
.explicit_inc_to
= -1;
927 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
929 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
931 data
.explicit_inc_to
= 1;
933 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
934 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
937 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
939 /* First move what we can in the largest integer mode, then go to
940 successively smaller modes. */
942 while (max_size
> 1 && data
.len
> 0)
944 machine_mode mode
= widest_int_mode_for_size (max_size
);
946 if (mode
== VOIDmode
)
949 icode
= optab_handler (mov_optab
, mode
);
950 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
951 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
953 max_size
= GET_MODE_SIZE (mode
);
956 /* The code above should have handled everything. */
957 gcc_assert (!data
.len
);
963 gcc_assert (!data
.reverse
);
968 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
969 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
971 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
972 plus_constant (to_addr_mode
,
976 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
983 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
991 /* Return number of insns required to move L bytes by pieces.
992 ALIGN (in bits) is maximum alignment we can assume. */
994 unsigned HOST_WIDE_INT
995 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
996 unsigned int max_size
)
998 unsigned HOST_WIDE_INT n_insns
= 0;
1000 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
1002 while (max_size
> 1 && l
> 0)
1005 enum insn_code icode
;
1007 mode
= widest_int_mode_for_size (max_size
);
1009 if (mode
== VOIDmode
)
1012 icode
= optab_handler (mov_optab
, mode
);
1013 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1014 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1016 max_size
= GET_MODE_SIZE (mode
);
1023 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1024 with move instructions for mode MODE. GENFUN is the gen_... function
1025 to make a move insn for that mode. DATA has all the other info. */
1028 move_by_pieces_1 (insn_gen_fn genfun
, machine_mode mode
,
1029 struct move_by_pieces_d
*data
)
1031 unsigned int size
= GET_MODE_SIZE (mode
);
1032 rtx to1
= NULL_RTX
, from1
;
1034 while (data
->len
>= size
)
1037 data
->offset
-= size
;
1041 if (data
->autinc_to
)
1042 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1045 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1048 if (data
->autinc_from
)
1049 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1052 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1054 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1055 emit_insn (gen_add2_insn (data
->to_addr
,
1056 gen_int_mode (-(HOST_WIDE_INT
) size
,
1057 GET_MODE (data
->to_addr
))));
1058 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1059 emit_insn (gen_add2_insn (data
->from_addr
,
1060 gen_int_mode (-(HOST_WIDE_INT
) size
,
1061 GET_MODE (data
->from_addr
))));
1064 emit_insn ((*genfun
) (to1
, from1
));
1067 #ifdef PUSH_ROUNDING
1068 emit_single_push_insn (mode
, from1
, NULL
);
1074 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1075 emit_insn (gen_add2_insn (data
->to_addr
,
1077 GET_MODE (data
->to_addr
))));
1078 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1079 emit_insn (gen_add2_insn (data
->from_addr
,
1081 GET_MODE (data
->from_addr
))));
1083 if (! data
->reverse
)
1084 data
->offset
+= size
;
1090 /* Emit code to move a block Y to a block X. This may be done with
1091 string-move instructions, with multiple scalar move instructions,
1092 or with a library call.
1094 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1095 SIZE is an rtx that says how long they are.
1096 ALIGN is the maximum alignment we can assume they have.
1097 METHOD describes what kind of copy this is, and what mechanisms may be used.
1098 MIN_SIZE is the minimal size of block to move
1099 MAX_SIZE is the maximal size of block to move, if it can not be represented
1100 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1102 Return the address of the new block, if memcpy is called and returns it,
1106 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1107 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1108 unsigned HOST_WIDE_INT min_size
,
1109 unsigned HOST_WIDE_INT max_size
,
1110 unsigned HOST_WIDE_INT probable_max_size
)
1117 if (CONST_INT_P (size
)
1118 && INTVAL (size
) == 0)
1123 case BLOCK_OP_NORMAL
:
1124 case BLOCK_OP_TAILCALL
:
1125 may_use_call
= true;
1128 case BLOCK_OP_CALL_PARM
:
1129 may_use_call
= block_move_libcall_safe_for_call_parm ();
1131 /* Make inhibit_defer_pop nonzero around the library call
1132 to force it to pop the arguments right away. */
1136 case BLOCK_OP_NO_LIBCALL
:
1137 may_use_call
= false;
1144 gcc_assert (MEM_P (x
) && MEM_P (y
));
1145 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1146 gcc_assert (align
>= BITS_PER_UNIT
);
1148 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1149 block copy is more efficient for other large modes, e.g. DCmode. */
1150 x
= adjust_address (x
, BLKmode
, 0);
1151 y
= adjust_address (y
, BLKmode
, 0);
1153 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1154 can be incorrect is coming from __builtin_memcpy. */
1155 if (CONST_INT_P (size
))
1157 x
= shallow_copy_rtx (x
);
1158 y
= shallow_copy_rtx (y
);
1159 set_mem_size (x
, INTVAL (size
));
1160 set_mem_size (y
, INTVAL (size
));
1163 if (CONST_INT_P (size
) && can_move_by_pieces (INTVAL (size
), align
))
1164 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1165 else if (emit_block_move_via_movmem (x
, y
, size
, align
,
1166 expected_align
, expected_size
,
1167 min_size
, max_size
, probable_max_size
))
1169 else if (may_use_call
1170 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x
))
1171 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y
)))
1173 /* Since x and y are passed to a libcall, mark the corresponding
1174 tree EXPR as addressable. */
1175 tree y_expr
= MEM_EXPR (y
);
1176 tree x_expr
= MEM_EXPR (x
);
1178 mark_addressable (y_expr
);
1180 mark_addressable (x_expr
);
1181 retval
= emit_block_move_via_libcall (x
, y
, size
,
1182 method
== BLOCK_OP_TAILCALL
);
1186 emit_block_move_via_loop (x
, y
, size
, align
);
1188 if (method
== BLOCK_OP_CALL_PARM
)
1195 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1197 unsigned HOST_WIDE_INT max
, min
= 0;
1198 if (GET_CODE (size
) == CONST_INT
)
1199 min
= max
= UINTVAL (size
);
1201 max
= GET_MODE_MASK (GET_MODE (size
));
1202 return emit_block_move_hints (x
, y
, size
, method
, 0, -1,
1206 /* A subroutine of emit_block_move. Returns true if calling the
1207 block move libcall will not clobber any parameters which may have
1208 already been placed on the stack. */
1211 block_move_libcall_safe_for_call_parm (void)
1213 #if defined (REG_PARM_STACK_SPACE)
1217 /* If arguments are pushed on the stack, then they're safe. */
1221 /* If registers go on the stack anyway, any argument is sure to clobber
1222 an outgoing argument. */
1223 #if defined (REG_PARM_STACK_SPACE)
1224 fn
= emit_block_move_libcall_fn (false);
1225 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1226 depend on its argument. */
1228 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
1229 && REG_PARM_STACK_SPACE (fn
) != 0)
1233 /* If any argument goes in memory, then it might clobber an outgoing
1236 CUMULATIVE_ARGS args_so_far_v
;
1237 cumulative_args_t args_so_far
;
1240 fn
= emit_block_move_libcall_fn (false);
1241 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1242 args_so_far
= pack_cumulative_args (&args_so_far_v
);
1244 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1245 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1247 machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1248 rtx tmp
= targetm
.calls
.function_arg (args_so_far
, mode
,
1250 if (!tmp
|| !REG_P (tmp
))
1252 if (targetm
.calls
.arg_partial_bytes (args_so_far
, mode
, NULL
, 1))
1254 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
1261 /* A subroutine of emit_block_move. Expand a movmem pattern;
1262 return true if successful. */
1265 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
,
1266 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1267 unsigned HOST_WIDE_INT min_size
,
1268 unsigned HOST_WIDE_INT max_size
,
1269 unsigned HOST_WIDE_INT probable_max_size
)
1271 int save_volatile_ok
= volatile_ok
;
1274 if (expected_align
< align
)
1275 expected_align
= align
;
1276 if (expected_size
!= -1)
1278 if ((unsigned HOST_WIDE_INT
)expected_size
> probable_max_size
)
1279 expected_size
= probable_max_size
;
1280 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
1281 expected_size
= min_size
;
1284 /* Since this is a move insn, we don't care about volatility. */
1287 /* Try the most limited insn first, because there's no point
1288 including more than one in the machine description unless
1289 the more limited one has some advantage. */
1291 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1292 mode
= GET_MODE_WIDER_MODE (mode
))
1294 enum insn_code code
= direct_optab_handler (movmem_optab
, mode
);
1296 if (code
!= CODE_FOR_nothing
1297 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1298 here because if SIZE is less than the mode mask, as it is
1299 returned by the macro, it will definitely be less than the
1300 actual mode mask. Since SIZE is within the Pmode address
1301 space, we limit MODE to Pmode. */
1302 && ((CONST_INT_P (size
)
1303 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1304 <= (GET_MODE_MASK (mode
) >> 1)))
1305 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
1306 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
1308 struct expand_operand ops
[9];
1311 /* ??? When called via emit_block_move_for_call, it'd be
1312 nice if there were some way to inform the backend, so
1313 that it doesn't fail the expansion because it thinks
1314 emitting the libcall would be more efficient. */
1315 nops
= insn_data
[(int) code
].n_generator_args
;
1316 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
1318 create_fixed_operand (&ops
[0], x
);
1319 create_fixed_operand (&ops
[1], y
);
1320 /* The check above guarantees that this size conversion is valid. */
1321 create_convert_operand_to (&ops
[2], size
, mode
, true);
1322 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
1325 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
1326 create_integer_operand (&ops
[5], expected_size
);
1330 create_integer_operand (&ops
[6], min_size
);
1331 /* If we can not represent the maximal size,
1332 make parameter NULL. */
1333 if ((HOST_WIDE_INT
) max_size
!= -1)
1334 create_integer_operand (&ops
[7], max_size
);
1336 create_fixed_operand (&ops
[7], NULL
);
1340 /* If we can not represent the maximal size,
1341 make parameter NULL. */
1342 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
1343 create_integer_operand (&ops
[8], probable_max_size
);
1345 create_fixed_operand (&ops
[8], NULL
);
1347 if (maybe_expand_insn (code
, nops
, ops
))
1349 volatile_ok
= save_volatile_ok
;
1355 volatile_ok
= save_volatile_ok
;
1359 /* A subroutine of emit_block_move. Expand a call to memcpy.
1360 Return the return value from memcpy, 0 otherwise. */
1363 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1365 rtx dst_addr
, src_addr
;
1366 tree call_expr
, fn
, src_tree
, dst_tree
, size_tree
;
1367 machine_mode size_mode
;
1370 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1371 pseudos. We can then place those new pseudos into a VAR_DECL and
1374 dst_addr
= copy_addr_to_reg (XEXP (dst
, 0));
1375 src_addr
= copy_addr_to_reg (XEXP (src
, 0));
1377 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1378 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1380 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1381 src_tree
= make_tree (ptr_type_node
, src_addr
);
1383 size_mode
= TYPE_MODE (sizetype
);
1385 size
= convert_to_mode (size_mode
, size
, 1);
1386 size
= copy_to_mode_reg (size_mode
, size
);
1388 /* It is incorrect to use the libcall calling conventions to call
1389 memcpy in this context. This could be a user call to memcpy and
1390 the user may wish to examine the return value from memcpy. For
1391 targets where libcalls and normal calls have different conventions
1392 for returning pointers, we could end up generating incorrect code. */
1394 size_tree
= make_tree (sizetype
, size
);
1396 fn
= emit_block_move_libcall_fn (true);
1397 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
1398 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1400 retval
= expand_normal (call_expr
);
1405 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1406 for the function we use for block copies. */
1408 static GTY(()) tree block_move_fn
;
1411 init_block_move_fn (const char *asmspec
)
1415 tree args
, fn
, attrs
, attr_args
;
1417 fn
= get_identifier ("memcpy");
1418 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1419 const_ptr_type_node
, sizetype
,
1422 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
1423 DECL_EXTERNAL (fn
) = 1;
1424 TREE_PUBLIC (fn
) = 1;
1425 DECL_ARTIFICIAL (fn
) = 1;
1426 TREE_NOTHROW (fn
) = 1;
1427 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
1428 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
1430 attr_args
= build_tree_list (NULL_TREE
, build_string (1, "1"));
1431 attrs
= tree_cons (get_identifier ("fn spec"), attr_args
, NULL
);
1433 decl_attributes (&fn
, attrs
, ATTR_FLAG_BUILT_IN
);
1439 set_user_assembler_name (block_move_fn
, asmspec
);
1443 emit_block_move_libcall_fn (int for_call
)
1445 static bool emitted_extern
;
1448 init_block_move_fn (NULL
);
1450 if (for_call
&& !emitted_extern
)
1452 emitted_extern
= true;
1453 make_decl_rtl (block_move_fn
);
1456 return block_move_fn
;
1459 /* A subroutine of emit_block_move. Copy the data via an explicit
1460 loop. This is used only when libcalls are forbidden. */
1461 /* ??? It'd be nice to copy in hunks larger than QImode. */
1464 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1465 unsigned int align ATTRIBUTE_UNUSED
)
1467 rtx_code_label
*cmp_label
, *top_label
;
1468 rtx iter
, x_addr
, y_addr
, tmp
;
1469 machine_mode x_addr_mode
= get_address_mode (x
);
1470 machine_mode y_addr_mode
= get_address_mode (y
);
1471 machine_mode iter_mode
;
1473 iter_mode
= GET_MODE (size
);
1474 if (iter_mode
== VOIDmode
)
1475 iter_mode
= word_mode
;
1477 top_label
= gen_label_rtx ();
1478 cmp_label
= gen_label_rtx ();
1479 iter
= gen_reg_rtx (iter_mode
);
1481 emit_move_insn (iter
, const0_rtx
);
1483 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1484 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1485 do_pending_stack_adjust ();
1487 emit_jump (cmp_label
);
1488 emit_label (top_label
);
1490 tmp
= convert_modes (x_addr_mode
, iter_mode
, iter
, true);
1491 x_addr
= simplify_gen_binary (PLUS
, x_addr_mode
, x_addr
, tmp
);
1493 if (x_addr_mode
!= y_addr_mode
)
1494 tmp
= convert_modes (y_addr_mode
, iter_mode
, iter
, true);
1495 y_addr
= simplify_gen_binary (PLUS
, y_addr_mode
, y_addr
, tmp
);
1497 x
= change_address (x
, QImode
, x_addr
);
1498 y
= change_address (y
, QImode
, y_addr
);
1500 emit_move_insn (x
, y
);
1502 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1503 true, OPTAB_LIB_WIDEN
);
1505 emit_move_insn (iter
, tmp
);
1507 emit_label (cmp_label
);
1509 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1510 true, top_label
, REG_BR_PROB_BASE
* 90 / 100);
1513 /* Copy all or part of a value X into registers starting at REGNO.
1514 The number of registers to be filled is NREGS. */
1517 move_block_to_reg (int regno
, rtx x
, int nregs
, machine_mode mode
)
1520 #ifdef HAVE_load_multiple
1528 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
1529 x
= validize_mem (force_const_mem (mode
, x
));
1531 /* See if the machine can do this with a load multiple insn. */
1532 #ifdef HAVE_load_multiple
1533 if (HAVE_load_multiple
)
1535 last
= get_last_insn ();
1536 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1544 delete_insns_since (last
);
1548 for (i
= 0; i
< nregs
; i
++)
1549 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1550 operand_subword_force (x
, i
, mode
));
1553 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1554 The number of registers to be filled is NREGS. */
1557 move_block_from_reg (int regno
, rtx x
, int nregs
)
1564 /* See if the machine can do this with a store multiple insn. */
1565 #ifdef HAVE_store_multiple
1566 if (HAVE_store_multiple
)
1568 rtx_insn
*last
= get_last_insn ();
1569 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1577 delete_insns_since (last
);
1581 for (i
= 0; i
< nregs
; i
++)
1583 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1587 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1591 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1592 ORIG, where ORIG is a non-consecutive group of registers represented by
1593 a PARALLEL. The clone is identical to the original except in that the
1594 original set of registers is replaced by a new set of pseudo registers.
1595 The new set has the same modes as the original set. */
1598 gen_group_rtx (rtx orig
)
1603 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1605 length
= XVECLEN (orig
, 0);
1606 tmps
= XALLOCAVEC (rtx
, length
);
1608 /* Skip a NULL entry in first slot. */
1609 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1614 for (; i
< length
; i
++)
1616 machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1617 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1619 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1622 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1625 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1626 except that values are placed in TMPS[i], and must later be moved
1627 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1630 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1634 machine_mode m
= GET_MODE (orig_src
);
1636 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1639 && !SCALAR_INT_MODE_P (m
)
1640 && !MEM_P (orig_src
)
1641 && GET_CODE (orig_src
) != CONCAT
)
1643 machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1644 if (imode
== BLKmode
)
1645 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
);
1647 src
= gen_reg_rtx (imode
);
1648 if (imode
!= BLKmode
)
1649 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1650 emit_move_insn (src
, orig_src
);
1651 /* ...and back again. */
1652 if (imode
!= BLKmode
)
1653 src
= gen_lowpart (imode
, src
);
1654 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1658 /* Check for a NULL entry, used to indicate that the parameter goes
1659 both on the stack and in registers. */
1660 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1665 /* Process the pieces. */
1666 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1668 machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1669 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1670 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1673 /* Handle trailing fragments that run over the size of the struct. */
1674 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1676 /* Arrange to shift the fragment to where it belongs.
1677 extract_bit_field loads to the lsb of the reg. */
1679 #ifdef BLOCK_REG_PADDING
1680 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1681 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1686 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1687 bytelen
= ssize
- bytepos
;
1688 gcc_assert (bytelen
> 0);
1691 /* If we won't be loading directly from memory, protect the real source
1692 from strange tricks we might play; but make sure that the source can
1693 be loaded directly into the destination. */
1695 if (!MEM_P (orig_src
)
1696 && (!CONSTANT_P (orig_src
)
1697 || (GET_MODE (orig_src
) != mode
1698 && GET_MODE (orig_src
) != VOIDmode
)))
1700 if (GET_MODE (orig_src
) == VOIDmode
)
1701 src
= gen_reg_rtx (mode
);
1703 src
= gen_reg_rtx (GET_MODE (orig_src
));
1705 emit_move_insn (src
, orig_src
);
1708 /* Optimize the access just a bit. */
1710 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1711 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1712 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1713 && bytelen
== GET_MODE_SIZE (mode
))
1715 tmps
[i
] = gen_reg_rtx (mode
);
1716 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1718 else if (COMPLEX_MODE_P (mode
)
1719 && GET_MODE (src
) == mode
1720 && bytelen
== GET_MODE_SIZE (mode
))
1721 /* Let emit_move_complex do the bulk of the work. */
1723 else if (GET_CODE (src
) == CONCAT
)
1725 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1726 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1728 if ((bytepos
== 0 && bytelen
== slen0
)
1729 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1731 /* The following assumes that the concatenated objects all
1732 have the same size. In this case, a simple calculation
1733 can be used to determine the object and the bit field
1735 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1736 if (! CONSTANT_P (tmps
[i
])
1737 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1738 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1739 (bytepos
% slen0
) * BITS_PER_UNIT
,
1740 1, NULL_RTX
, mode
, mode
);
1746 gcc_assert (!bytepos
);
1747 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1748 emit_move_insn (mem
, src
);
1749 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1750 0, 1, NULL_RTX
, mode
, mode
);
1753 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1754 SIMD register, which is currently broken. While we get GCC
1755 to emit proper RTL for these cases, let's dump to memory. */
1756 else if (VECTOR_MODE_P (GET_MODE (dst
))
1759 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1762 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1763 emit_move_insn (mem
, src
);
1764 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1766 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1767 && XVECLEN (dst
, 0) > 1)
1768 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE (dst
), bytepos
);
1769 else if (CONSTANT_P (src
))
1771 HOST_WIDE_INT len
= (HOST_WIDE_INT
) bytelen
;
1779 /* TODO: const_wide_int can have sizes other than this... */
1780 gcc_assert (2 * len
== ssize
);
1781 split_double (src
, &first
, &second
);
1788 else if (REG_P (src
) && GET_MODE (src
) == mode
)
1791 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1792 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1796 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1801 /* Emit code to move a block SRC of type TYPE to a block DST,
1802 where DST is non-consecutive registers represented by a PARALLEL.
1803 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1807 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1812 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
1813 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1815 /* Copy the extracted pieces into the proper (probable) hard regs. */
1816 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1818 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1821 emit_move_insn (d
, tmps
[i
]);
1825 /* Similar, but load SRC into new pseudos in a format that looks like
1826 PARALLEL. This can later be fed to emit_group_move to get things
1827 in the right place. */
1830 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1835 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1836 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1838 /* Convert the vector to look just like the original PARALLEL, except
1839 with the computed values. */
1840 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1842 rtx e
= XVECEXP (parallel
, 0, i
);
1843 rtx d
= XEXP (e
, 0);
1847 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1848 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1850 RTVEC_ELT (vec
, i
) = e
;
1853 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1856 /* Emit code to move a block SRC to block DST, where SRC and DST are
1857 non-consecutive groups of registers, each represented by a PARALLEL. */
1860 emit_group_move (rtx dst
, rtx src
)
1864 gcc_assert (GET_CODE (src
) == PARALLEL
1865 && GET_CODE (dst
) == PARALLEL
1866 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1868 /* Skip first entry if NULL. */
1869 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1870 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1871 XEXP (XVECEXP (src
, 0, i
), 0));
1874 /* Move a group of registers represented by a PARALLEL into pseudos. */
1877 emit_group_move_into_temps (rtx src
)
1879 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1882 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1884 rtx e
= XVECEXP (src
, 0, i
);
1885 rtx d
= XEXP (e
, 0);
1888 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1889 RTVEC_ELT (vec
, i
) = e
;
1892 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1895 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1896 where SRC is non-consecutive registers represented by a PARALLEL.
1897 SSIZE represents the total size of block ORIG_DST, or -1 if not
1901 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1904 int start
, finish
, i
;
1905 machine_mode m
= GET_MODE (orig_dst
);
1907 gcc_assert (GET_CODE (src
) == PARALLEL
);
1909 if (!SCALAR_INT_MODE_P (m
)
1910 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1912 machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1913 if (imode
== BLKmode
)
1914 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
);
1916 dst
= gen_reg_rtx (imode
);
1917 emit_group_store (dst
, src
, type
, ssize
);
1918 if (imode
!= BLKmode
)
1919 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1920 emit_move_insn (orig_dst
, dst
);
1924 /* Check for a NULL entry, used to indicate that the parameter goes
1925 both on the stack and in registers. */
1926 if (XEXP (XVECEXP (src
, 0, 0), 0))
1930 finish
= XVECLEN (src
, 0);
1932 tmps
= XALLOCAVEC (rtx
, finish
);
1934 /* Copy the (probable) hard regs into pseudos. */
1935 for (i
= start
; i
< finish
; i
++)
1937 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1938 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1940 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1941 emit_move_insn (tmps
[i
], reg
);
1947 /* If we won't be storing directly into memory, protect the real destination
1948 from strange tricks we might play. */
1950 if (GET_CODE (dst
) == PARALLEL
)
1954 /* We can get a PARALLEL dst if there is a conditional expression in
1955 a return statement. In that case, the dst and src are the same,
1956 so no action is necessary. */
1957 if (rtx_equal_p (dst
, src
))
1960 /* It is unclear if we can ever reach here, but we may as well handle
1961 it. Allocate a temporary, and split this into a store/load to/from
1963 temp
= assign_stack_temp (GET_MODE (dst
), ssize
);
1964 emit_group_store (temp
, src
, type
, ssize
);
1965 emit_group_load (dst
, temp
, type
, ssize
);
1968 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1970 machine_mode outer
= GET_MODE (dst
);
1972 HOST_WIDE_INT bytepos
;
1976 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
1977 dst
= gen_reg_rtx (outer
);
1979 /* Make life a bit easier for combine. */
1980 /* If the first element of the vector is the low part
1981 of the destination mode, use a paradoxical subreg to
1982 initialize the destination. */
1985 inner
= GET_MODE (tmps
[start
]);
1986 bytepos
= subreg_lowpart_offset (inner
, outer
);
1987 if (INTVAL (XEXP (XVECEXP (src
, 0, start
), 1)) == bytepos
)
1989 temp
= simplify_gen_subreg (outer
, tmps
[start
],
1993 emit_move_insn (dst
, temp
);
2000 /* If the first element wasn't the low part, try the last. */
2002 && start
< finish
- 1)
2004 inner
= GET_MODE (tmps
[finish
- 1]);
2005 bytepos
= subreg_lowpart_offset (inner
, outer
);
2006 if (INTVAL (XEXP (XVECEXP (src
, 0, finish
- 1), 1)) == bytepos
)
2008 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
2012 emit_move_insn (dst
, temp
);
2019 /* Otherwise, simply initialize the result to zero. */
2021 emit_move_insn (dst
, CONST0_RTX (outer
));
2024 /* Process the pieces. */
2025 for (i
= start
; i
< finish
; i
++)
2027 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
2028 machine_mode mode
= GET_MODE (tmps
[i
]);
2029 unsigned int bytelen
= GET_MODE_SIZE (mode
);
2030 unsigned int adj_bytelen
;
2033 /* Handle trailing fragments that run over the size of the struct. */
2034 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2035 adj_bytelen
= ssize
- bytepos
;
2037 adj_bytelen
= bytelen
;
2039 if (GET_CODE (dst
) == CONCAT
)
2041 if (bytepos
+ adj_bytelen
2042 <= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2043 dest
= XEXP (dst
, 0);
2044 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2046 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2047 dest
= XEXP (dst
, 1);
2051 machine_mode dest_mode
= GET_MODE (dest
);
2052 machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2054 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
2056 if (GET_MODE_ALIGNMENT (dest_mode
)
2057 >= GET_MODE_ALIGNMENT (tmp_mode
))
2059 dest
= assign_stack_temp (dest_mode
,
2060 GET_MODE_SIZE (dest_mode
));
2061 emit_move_insn (adjust_address (dest
,
2069 dest
= assign_stack_temp (tmp_mode
,
2070 GET_MODE_SIZE (tmp_mode
));
2071 emit_move_insn (dest
, tmps
[i
]);
2072 dst
= adjust_address (dest
, dest_mode
, bytepos
);
2078 /* Handle trailing fragments that run over the size of the struct. */
2079 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2081 /* store_bit_field always takes its value from the lsb.
2082 Move the fragment to the lsb if it's not already there. */
2084 #ifdef BLOCK_REG_PADDING
2085 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2086 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2092 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2093 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2097 /* Make sure not to write past the end of the struct. */
2098 store_bit_field (dest
,
2099 adj_bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2100 bytepos
* BITS_PER_UNIT
, ssize
* BITS_PER_UNIT
- 1,
2104 /* Optimize the access just a bit. */
2105 else if (MEM_P (dest
)
2106 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
2107 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2108 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2109 && bytelen
== GET_MODE_SIZE (mode
))
2110 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2113 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2114 0, 0, mode
, tmps
[i
]);
2117 /* Copy from the pseudo into the (probable) hard reg. */
2118 if (orig_dst
!= dst
)
2119 emit_move_insn (orig_dst
, dst
);
2122 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2123 of the value stored in X. */
2126 maybe_emit_group_store (rtx x
, tree type
)
2128 machine_mode mode
= TYPE_MODE (type
);
2129 gcc_checking_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
2130 if (GET_CODE (x
) == PARALLEL
)
2132 rtx result
= gen_reg_rtx (mode
);
2133 emit_group_store (result
, x
, type
, int_size_in_bytes (type
));
2139 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2141 This is used on targets that return BLKmode values in registers. */
2144 copy_blkmode_from_reg (rtx target
, rtx srcreg
, tree type
)
2146 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2147 rtx src
= NULL
, dst
= NULL
;
2148 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2149 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2150 machine_mode mode
= GET_MODE (srcreg
);
2151 machine_mode tmode
= GET_MODE (target
);
2152 machine_mode copy_mode
;
2154 /* BLKmode registers created in the back-end shouldn't have survived. */
2155 gcc_assert (mode
!= BLKmode
);
2157 /* If the structure doesn't take up a whole number of words, see whether
2158 SRCREG is padded on the left or on the right. If it's on the left,
2159 set PADDING_CORRECTION to the number of bits to skip.
2161 In most ABIs, the structure will be returned at the least end of
2162 the register, which translates to right padding on little-endian
2163 targets and left padding on big-endian targets. The opposite
2164 holds if the structure is returned at the most significant
2165 end of the register. */
2166 if (bytes
% UNITS_PER_WORD
!= 0
2167 && (targetm
.calls
.return_in_msb (type
)
2169 : BYTES_BIG_ENDIAN
))
2171 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2173 /* We can use a single move if we have an exact mode for the size. */
2174 else if (MEM_P (target
)
2175 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
))
2176 || MEM_ALIGN (target
) >= GET_MODE_ALIGNMENT (mode
))
2177 && bytes
== GET_MODE_SIZE (mode
))
2179 emit_move_insn (adjust_address (target
, mode
, 0), srcreg
);
2183 /* And if we additionally have the same mode for a register. */
2184 else if (REG_P (target
)
2185 && GET_MODE (target
) == mode
2186 && bytes
== GET_MODE_SIZE (mode
))
2188 emit_move_insn (target
, srcreg
);
2192 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2193 into a new pseudo which is a full word. */
2194 if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
2196 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2200 /* Copy the structure BITSIZE bits at a time. If the target lives in
2201 memory, take care of not reading/writing past its end by selecting
2202 a copy mode suited to BITSIZE. This should always be possible given
2205 If the target lives in register, make sure not to select a copy mode
2206 larger than the mode of the register.
2208 We could probably emit more efficient code for machines which do not use
2209 strict alignment, but it doesn't seem worth the effort at the current
2212 copy_mode
= word_mode
;
2215 machine_mode mem_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
2216 if (mem_mode
!= BLKmode
)
2217 copy_mode
= mem_mode
;
2219 else if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2222 for (bitpos
= 0, xbitpos
= padding_correction
;
2223 bitpos
< bytes
* BITS_PER_UNIT
;
2224 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2226 /* We need a new source operand each time xbitpos is on a
2227 word boundary and when xbitpos == padding_correction
2228 (the first time through). */
2229 if (xbitpos
% BITS_PER_WORD
== 0 || xbitpos
== padding_correction
)
2230 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
, mode
);
2232 /* We need a new destination operand each time bitpos is on
2234 if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2236 else if (bitpos
% BITS_PER_WORD
== 0)
2237 dst
= operand_subword (target
, bitpos
/ BITS_PER_WORD
, 1, tmode
);
2239 /* Use xbitpos for the source extraction (right justified) and
2240 bitpos for the destination store (left justified). */
2241 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, 0, 0, copy_mode
,
2242 extract_bit_field (src
, bitsize
,
2243 xbitpos
% BITS_PER_WORD
, 1,
2244 NULL_RTX
, copy_mode
, copy_mode
));
2248 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2249 register if it contains any data, otherwise return null.
2251 This is used on targets that return BLKmode values in registers. */
2254 copy_blkmode_to_reg (machine_mode mode
, tree src
)
2257 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0, bytes
;
2258 unsigned int bitsize
;
2259 rtx
*dst_words
, dst
, x
, src_word
= NULL_RTX
, dst_word
= NULL_RTX
;
2260 machine_mode dst_mode
;
2262 gcc_assert (TYPE_MODE (TREE_TYPE (src
)) == BLKmode
);
2264 x
= expand_normal (src
);
2266 bytes
= int_size_in_bytes (TREE_TYPE (src
));
2270 /* If the structure doesn't take up a whole number of words, see
2271 whether the register value should be padded on the left or on
2272 the right. Set PADDING_CORRECTION to the number of padding
2273 bits needed on the left side.
2275 In most ABIs, the structure will be returned at the least end of
2276 the register, which translates to right padding on little-endian
2277 targets and left padding on big-endian targets. The opposite
2278 holds if the structure is returned at the most significant
2279 end of the register. */
2280 if (bytes
% UNITS_PER_WORD
!= 0
2281 && (targetm
.calls
.return_in_msb (TREE_TYPE (src
))
2283 : BYTES_BIG_ENDIAN
))
2284 padding_correction
= (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
)
2287 n_regs
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
2288 dst_words
= XALLOCAVEC (rtx
, n_regs
);
2289 bitsize
= MIN (TYPE_ALIGN (TREE_TYPE (src
)), BITS_PER_WORD
);
2291 /* Copy the structure BITSIZE bits at a time. */
2292 for (bitpos
= 0, xbitpos
= padding_correction
;
2293 bitpos
< bytes
* BITS_PER_UNIT
;
2294 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2296 /* We need a new destination pseudo each time xbitpos is
2297 on a word boundary and when xbitpos == padding_correction
2298 (the first time through). */
2299 if (xbitpos
% BITS_PER_WORD
== 0
2300 || xbitpos
== padding_correction
)
2302 /* Generate an appropriate register. */
2303 dst_word
= gen_reg_rtx (word_mode
);
2304 dst_words
[xbitpos
/ BITS_PER_WORD
] = dst_word
;
2306 /* Clear the destination before we move anything into it. */
2307 emit_move_insn (dst_word
, CONST0_RTX (word_mode
));
2310 /* We need a new source operand each time bitpos is on a word
2312 if (bitpos
% BITS_PER_WORD
== 0)
2313 src_word
= operand_subword_force (x
, bitpos
/ BITS_PER_WORD
, BLKmode
);
2315 /* Use bitpos for the source extraction (left justified) and
2316 xbitpos for the destination store (right justified). */
2317 store_bit_field (dst_word
, bitsize
, xbitpos
% BITS_PER_WORD
,
2319 extract_bit_field (src_word
, bitsize
,
2320 bitpos
% BITS_PER_WORD
, 1,
2321 NULL_RTX
, word_mode
, word_mode
));
2324 if (mode
== BLKmode
)
2326 /* Find the smallest integer mode large enough to hold the
2327 entire structure. */
2328 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2330 mode
= GET_MODE_WIDER_MODE (mode
))
2331 /* Have we found a large enough mode? */
2332 if (GET_MODE_SIZE (mode
) >= bytes
)
2335 /* A suitable mode should have been found. */
2336 gcc_assert (mode
!= VOIDmode
);
2339 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (word_mode
))
2340 dst_mode
= word_mode
;
2343 dst
= gen_reg_rtx (dst_mode
);
2345 for (i
= 0; i
< n_regs
; i
++)
2346 emit_move_insn (operand_subword (dst
, i
, 0, dst_mode
), dst_words
[i
]);
2348 if (mode
!= dst_mode
)
2349 dst
= gen_lowpart (mode
, dst
);
2354 /* Add a USE expression for REG to the (possibly empty) list pointed
2355 to by CALL_FUSAGE. REG must denote a hard register. */
2358 use_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
2360 gcc_assert (REG_P (reg
));
2362 if (!HARD_REGISTER_P (reg
))
2366 = gen_rtx_EXPR_LIST (mode
, gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2369 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2370 to by CALL_FUSAGE. REG must denote a hard register. */
2373 clobber_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
2375 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2378 = gen_rtx_EXPR_LIST (mode
, gen_rtx_CLOBBER (VOIDmode
, reg
), *call_fusage
);
2381 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2382 starting at REGNO. All of these registers must be hard registers. */
2385 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2389 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2391 for (i
= 0; i
< nregs
; i
++)
2392 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2395 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2396 PARALLEL REGS. This is for calls that pass values in multiple
2397 non-contiguous locations. The Irix 6 ABI has examples of this. */
2400 use_group_regs (rtx
*call_fusage
, rtx regs
)
2404 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2406 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2408 /* A NULL entry means the parameter goes both on the stack and in
2409 registers. This can also be a MEM for targets that pass values
2410 partially on the stack and partially in registers. */
2411 if (reg
!= 0 && REG_P (reg
))
2412 use_reg (call_fusage
, reg
);
2416 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2417 assigment and the code of the expresion on the RHS is CODE. Return
2421 get_def_for_expr (tree name
, enum tree_code code
)
2425 if (TREE_CODE (name
) != SSA_NAME
)
2428 def_stmt
= get_gimple_for_ssa_name (name
);
2430 || gimple_assign_rhs_code (def_stmt
) != code
)
2436 #ifdef HAVE_conditional_move
2437 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2438 assigment and the class of the expresion on the RHS is CLASS. Return
2442 get_def_for_expr_class (tree name
, enum tree_code_class tclass
)
2446 if (TREE_CODE (name
) != SSA_NAME
)
2449 def_stmt
= get_gimple_for_ssa_name (name
);
2451 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)) != tclass
)
2459 /* Determine whether the LEN bytes generated by CONSTFUN can be
2460 stored to memory using several move instructions. CONSTFUNDATA is
2461 a pointer which will be passed as argument in every CONSTFUN call.
2462 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2463 a memset operation and false if it's a copy of a constant string.
2464 Return nonzero if a call to store_by_pieces should succeed. */
2467 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2468 rtx (*constfun
) (void *, HOST_WIDE_INT
, machine_mode
),
2469 void *constfundata
, unsigned int align
, bool memsetp
)
2471 unsigned HOST_WIDE_INT l
;
2472 unsigned int max_size
;
2473 HOST_WIDE_INT offset
= 0;
2475 enum insn_code icode
;
2477 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2478 rtx cst ATTRIBUTE_UNUSED
;
2483 if (!targetm
.use_by_pieces_infrastructure_p (len
, align
,
2487 optimize_insn_for_speed_p ()))
2490 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2492 /* We would first store what we can in the largest integer mode, then go to
2493 successively smaller modes. */
2496 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2500 max_size
= STORE_MAX_PIECES
+ 1;
2501 while (max_size
> 1 && l
> 0)
2503 mode
= widest_int_mode_for_size (max_size
);
2505 if (mode
== VOIDmode
)
2508 icode
= optab_handler (mov_optab
, mode
);
2509 if (icode
!= CODE_FOR_nothing
2510 && align
>= GET_MODE_ALIGNMENT (mode
))
2512 unsigned int size
= GET_MODE_SIZE (mode
);
2519 cst
= (*constfun
) (constfundata
, offset
, mode
);
2520 if (!targetm
.legitimate_constant_p (mode
, cst
))
2530 max_size
= GET_MODE_SIZE (mode
);
2533 /* The code above should have handled everything. */
2540 /* Generate several move instructions to store LEN bytes generated by
2541 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2542 pointer which will be passed as argument in every CONSTFUN call.
2543 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2544 a memset operation and false if it's a copy of a constant string.
2545 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2546 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2550 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2551 rtx (*constfun
) (void *, HOST_WIDE_INT
, machine_mode
),
2552 void *constfundata
, unsigned int align
, bool memsetp
, int endp
)
2554 machine_mode to_addr_mode
= get_address_mode (to
);
2555 struct store_by_pieces_d data
;
2559 gcc_assert (endp
!= 2);
2563 gcc_assert (targetm
.use_by_pieces_infrastructure_p
2568 optimize_insn_for_speed_p ()));
2570 data
.constfun
= constfun
;
2571 data
.constfundata
= constfundata
;
2574 store_by_pieces_1 (&data
, align
);
2579 gcc_assert (!data
.reverse
);
2584 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2585 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2587 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
2588 plus_constant (to_addr_mode
,
2592 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2599 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2607 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2608 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2611 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2613 struct store_by_pieces_d data
;
2618 data
.constfun
= clear_by_pieces_1
;
2619 data
.constfundata
= NULL
;
2622 store_by_pieces_1 (&data
, align
);
2625 /* Callback routine for clear_by_pieces.
2626 Return const0_rtx unconditionally. */
2629 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2630 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2631 machine_mode mode ATTRIBUTE_UNUSED
)
2636 /* Subroutine of clear_by_pieces and store_by_pieces.
2637 Generate several move instructions to store LEN bytes of block TO. (A MEM
2638 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2641 store_by_pieces_1 (struct store_by_pieces_d
*data ATTRIBUTE_UNUSED
,
2642 unsigned int align ATTRIBUTE_UNUSED
)
2644 machine_mode to_addr_mode
= get_address_mode (data
->to
);
2645 rtx to_addr
= XEXP (data
->to
, 0);
2646 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2647 enum insn_code icode
;
2650 data
->to_addr
= to_addr
;
2652 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2653 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2655 data
->explicit_inc_to
= 0;
2657 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2659 data
->offset
= data
->len
;
2661 /* If storing requires more than two move insns,
2662 copy addresses to registers (to make displacements shorter)
2663 and use post-increment if available. */
2664 if (!data
->autinc_to
2665 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2667 /* Determine the main mode we'll be using.
2668 MODE might not be used depending on the definitions of the
2669 USE_* macros below. */
2670 machine_mode mode ATTRIBUTE_UNUSED
2671 = widest_int_mode_for_size (max_size
);
2673 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2675 data
->to_addr
= copy_to_mode_reg (to_addr_mode
,
2676 plus_constant (to_addr_mode
,
2679 data
->autinc_to
= 1;
2680 data
->explicit_inc_to
= -1;
2683 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2684 && ! data
->autinc_to
)
2686 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2687 data
->autinc_to
= 1;
2688 data
->explicit_inc_to
= 1;
2691 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2692 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2695 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2697 /* First store what we can in the largest integer mode, then go to
2698 successively smaller modes. */
2700 while (max_size
> 1 && data
->len
> 0)
2702 machine_mode mode
= widest_int_mode_for_size (max_size
);
2704 if (mode
== VOIDmode
)
2707 icode
= optab_handler (mov_optab
, mode
);
2708 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2709 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2711 max_size
= GET_MODE_SIZE (mode
);
2714 /* The code above should have handled everything. */
2715 gcc_assert (!data
->len
);
2718 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2719 with move instructions for mode MODE. GENFUN is the gen_... function
2720 to make a move insn for that mode. DATA has all the other info. */
2723 store_by_pieces_2 (insn_gen_fn genfun
, machine_mode mode
,
2724 struct store_by_pieces_d
*data
)
2726 unsigned int size
= GET_MODE_SIZE (mode
);
2729 while (data
->len
>= size
)
2732 data
->offset
-= size
;
2734 if (data
->autinc_to
)
2735 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2738 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2740 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2741 emit_insn (gen_add2_insn (data
->to_addr
,
2742 gen_int_mode (-(HOST_WIDE_INT
) size
,
2743 GET_MODE (data
->to_addr
))));
2745 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2746 emit_insn ((*genfun
) (to1
, cst
));
2748 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2749 emit_insn (gen_add2_insn (data
->to_addr
,
2751 GET_MODE (data
->to_addr
))));
2753 if (! data
->reverse
)
2754 data
->offset
+= size
;
2760 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2761 its length in bytes. */
2764 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
2765 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
2766 unsigned HOST_WIDE_INT min_size
,
2767 unsigned HOST_WIDE_INT max_size
,
2768 unsigned HOST_WIDE_INT probable_max_size
)
2770 machine_mode mode
= GET_MODE (object
);
2773 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2775 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2776 just move a zero. Otherwise, do this a piece at a time. */
2778 && CONST_INT_P (size
)
2779 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2781 rtx zero
= CONST0_RTX (mode
);
2784 emit_move_insn (object
, zero
);
2788 if (COMPLEX_MODE_P (mode
))
2790 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2793 write_complex_part (object
, zero
, 0);
2794 write_complex_part (object
, zero
, 1);
2800 if (size
== const0_rtx
)
2803 align
= MEM_ALIGN (object
);
2805 if (CONST_INT_P (size
)
2806 && targetm
.use_by_pieces_infrastructure_p (INTVAL (size
), align
,
2808 optimize_insn_for_speed_p ()))
2809 clear_by_pieces (object
, INTVAL (size
), align
);
2810 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
2811 expected_align
, expected_size
,
2812 min_size
, max_size
, probable_max_size
))
2814 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object
)))
2815 return set_storage_via_libcall (object
, size
, const0_rtx
,
2816 method
== BLOCK_OP_TAILCALL
);
2824 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2826 unsigned HOST_WIDE_INT max
, min
= 0;
2827 if (GET_CODE (size
) == CONST_INT
)
2828 min
= max
= UINTVAL (size
);
2830 max
= GET_MODE_MASK (GET_MODE (size
));
2831 return clear_storage_hints (object
, size
, method
, 0, -1, min
, max
, max
);
2835 /* A subroutine of clear_storage. Expand a call to memset.
2836 Return the return value of memset, 0 otherwise. */
2839 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
2841 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
2842 machine_mode size_mode
;
2845 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2846 place those into new pseudos into a VAR_DECL and use them later. */
2848 object
= copy_addr_to_reg (XEXP (object
, 0));
2850 size_mode
= TYPE_MODE (sizetype
);
2851 size
= convert_to_mode (size_mode
, size
, 1);
2852 size
= copy_to_mode_reg (size_mode
, size
);
2854 /* It is incorrect to use the libcall calling conventions to call
2855 memset in this context. This could be a user call to memset and
2856 the user may wish to examine the return value from memset. For
2857 targets where libcalls and normal calls have different conventions
2858 for returning pointers, we could end up generating incorrect code. */
2860 object_tree
= make_tree (ptr_type_node
, object
);
2861 if (!CONST_INT_P (val
))
2862 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
2863 size_tree
= make_tree (sizetype
, size
);
2864 val_tree
= make_tree (integer_type_node
, val
);
2866 fn
= clear_storage_libcall_fn (true);
2867 call_expr
= build_call_expr (fn
, 3, object_tree
, val_tree
, size_tree
);
2868 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2870 retval
= expand_normal (call_expr
);
2875 /* A subroutine of set_storage_via_libcall. Create the tree node
2876 for the function we use for block clears. */
2878 tree block_clear_fn
;
2881 init_block_clear_fn (const char *asmspec
)
2883 if (!block_clear_fn
)
2887 fn
= get_identifier ("memset");
2888 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2889 integer_type_node
, sizetype
,
2892 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
2893 DECL_EXTERNAL (fn
) = 1;
2894 TREE_PUBLIC (fn
) = 1;
2895 DECL_ARTIFICIAL (fn
) = 1;
2896 TREE_NOTHROW (fn
) = 1;
2897 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
2898 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
2900 block_clear_fn
= fn
;
2904 set_user_assembler_name (block_clear_fn
, asmspec
);
2908 clear_storage_libcall_fn (int for_call
)
2910 static bool emitted_extern
;
2912 if (!block_clear_fn
)
2913 init_block_clear_fn (NULL
);
2915 if (for_call
&& !emitted_extern
)
2917 emitted_extern
= true;
2918 make_decl_rtl (block_clear_fn
);
2921 return block_clear_fn
;
2924 /* Expand a setmem pattern; return true if successful. */
2927 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
2928 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
2929 unsigned HOST_WIDE_INT min_size
,
2930 unsigned HOST_WIDE_INT max_size
,
2931 unsigned HOST_WIDE_INT probable_max_size
)
2933 /* Try the most limited insn first, because there's no point
2934 including more than one in the machine description unless
2935 the more limited one has some advantage. */
2939 if (expected_align
< align
)
2940 expected_align
= align
;
2941 if (expected_size
!= -1)
2943 if ((unsigned HOST_WIDE_INT
)expected_size
> max_size
)
2944 expected_size
= max_size
;
2945 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
2946 expected_size
= min_size
;
2949 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2950 mode
= GET_MODE_WIDER_MODE (mode
))
2952 enum insn_code code
= direct_optab_handler (setmem_optab
, mode
);
2954 if (code
!= CODE_FOR_nothing
2955 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2956 here because if SIZE is less than the mode mask, as it is
2957 returned by the macro, it will definitely be less than the
2958 actual mode mask. Since SIZE is within the Pmode address
2959 space, we limit MODE to Pmode. */
2960 && ((CONST_INT_P (size
)
2961 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2962 <= (GET_MODE_MASK (mode
) >> 1)))
2963 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
2964 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
2966 struct expand_operand ops
[9];
2969 nops
= insn_data
[(int) code
].n_generator_args
;
2970 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
2972 create_fixed_operand (&ops
[0], object
);
2973 /* The check above guarantees that this size conversion is valid. */
2974 create_convert_operand_to (&ops
[1], size
, mode
, true);
2975 create_convert_operand_from (&ops
[2], val
, byte_mode
, true);
2976 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
2979 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
2980 create_integer_operand (&ops
[5], expected_size
);
2984 create_integer_operand (&ops
[6], min_size
);
2985 /* If we can not represent the maximal size,
2986 make parameter NULL. */
2987 if ((HOST_WIDE_INT
) max_size
!= -1)
2988 create_integer_operand (&ops
[7], max_size
);
2990 create_fixed_operand (&ops
[7], NULL
);
2994 /* If we can not represent the maximal size,
2995 make parameter NULL. */
2996 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
2997 create_integer_operand (&ops
[8], probable_max_size
);
2999 create_fixed_operand (&ops
[8], NULL
);
3001 if (maybe_expand_insn (code
, nops
, ops
))
3010 /* Write to one of the components of the complex value CPLX. Write VAL to
3011 the real part if IMAG_P is false, and the imaginary part if its true. */
3014 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
3020 if (GET_CODE (cplx
) == CONCAT
)
3022 emit_move_insn (XEXP (cplx
, imag_p
), val
);
3026 cmode
= GET_MODE (cplx
);
3027 imode
= GET_MODE_INNER (cmode
);
3028 ibitsize
= GET_MODE_BITSIZE (imode
);
3030 /* For MEMs simplify_gen_subreg may generate an invalid new address
3031 because, e.g., the original address is considered mode-dependent
3032 by the target, which restricts simplify_subreg from invoking
3033 adjust_address_nv. Instead of preparing fallback support for an
3034 invalid address, we call adjust_address_nv directly. */
3037 emit_move_insn (adjust_address_nv (cplx
, imode
,
3038 imag_p
? GET_MODE_SIZE (imode
) : 0),
3043 /* If the sub-object is at least word sized, then we know that subregging
3044 will work. This special case is important, since store_bit_field
3045 wants to operate on integer modes, and there's rarely an OImode to
3046 correspond to TCmode. */
3047 if (ibitsize
>= BITS_PER_WORD
3048 /* For hard regs we have exact predicates. Assume we can split
3049 the original object if it spans an even number of hard regs.
3050 This special case is important for SCmode on 64-bit platforms
3051 where the natural size of floating-point regs is 32-bit. */
3053 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3054 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
3056 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
3057 imag_p
? GET_MODE_SIZE (imode
) : 0);
3060 emit_move_insn (part
, val
);
3064 /* simplify_gen_subreg may fail for sub-word MEMs. */
3065 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3068 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, 0, 0, imode
, val
);
3071 /* Extract one of the components of the complex value CPLX. Extract the
3072 real part if IMAG_P is false, and the imaginary part if it's true. */
3075 read_complex_part (rtx cplx
, bool imag_p
)
3077 machine_mode cmode
, imode
;
3080 if (GET_CODE (cplx
) == CONCAT
)
3081 return XEXP (cplx
, imag_p
);
3083 cmode
= GET_MODE (cplx
);
3084 imode
= GET_MODE_INNER (cmode
);
3085 ibitsize
= GET_MODE_BITSIZE (imode
);
3087 /* Special case reads from complex constants that got spilled to memory. */
3088 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
3090 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
3091 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
3093 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
3094 if (CONSTANT_CLASS_P (part
))
3095 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
3099 /* For MEMs simplify_gen_subreg may generate an invalid new address
3100 because, e.g., the original address is considered mode-dependent
3101 by the target, which restricts simplify_subreg from invoking
3102 adjust_address_nv. Instead of preparing fallback support for an
3103 invalid address, we call adjust_address_nv directly. */
3105 return adjust_address_nv (cplx
, imode
,
3106 imag_p
? GET_MODE_SIZE (imode
) : 0);
3108 /* If the sub-object is at least word sized, then we know that subregging
3109 will work. This special case is important, since extract_bit_field
3110 wants to operate on integer modes, and there's rarely an OImode to
3111 correspond to TCmode. */
3112 if (ibitsize
>= BITS_PER_WORD
3113 /* For hard regs we have exact predicates. Assume we can split
3114 the original object if it spans an even number of hard regs.
3115 This special case is important for SCmode on 64-bit platforms
3116 where the natural size of floating-point regs is 32-bit. */
3118 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3119 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
3121 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
3122 imag_p
? GET_MODE_SIZE (imode
) : 0);
3126 /* simplify_gen_subreg may fail for sub-word MEMs. */
3127 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3130 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
3131 true, NULL_RTX
, imode
, imode
);
3134 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3135 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3136 represented in NEW_MODE. If FORCE is true, this will never happen, as
3137 we'll force-create a SUBREG if needed. */
3140 emit_move_change_mode (machine_mode new_mode
,
3141 machine_mode old_mode
, rtx x
, bool force
)
3145 if (push_operand (x
, GET_MODE (x
)))
3147 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
3148 MEM_COPY_ATTRIBUTES (ret
, x
);
3152 /* We don't have to worry about changing the address since the
3153 size in bytes is supposed to be the same. */
3154 if (reload_in_progress
)
3156 /* Copy the MEM to change the mode and move any
3157 substitutions from the old MEM to the new one. */
3158 ret
= adjust_address_nv (x
, new_mode
, 0);
3159 copy_replacements (x
, ret
);
3162 ret
= adjust_address (x
, new_mode
, 0);
3166 /* Note that we do want simplify_subreg's behavior of validating
3167 that the new mode is ok for a hard register. If we were to use
3168 simplify_gen_subreg, we would create the subreg, but would
3169 probably run into the target not being able to implement it. */
3170 /* Except, of course, when FORCE is true, when this is exactly what
3171 we want. Which is needed for CCmodes on some targets. */
3173 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
3175 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
3181 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3182 an integer mode of the same size as MODE. Returns the instruction
3183 emitted, or NULL if such a move could not be generated. */
3186 emit_move_via_integer (machine_mode mode
, rtx x
, rtx y
, bool force
)
3189 enum insn_code code
;
3191 /* There must exist a mode of the exact size we require. */
3192 imode
= int_mode_for_mode (mode
);
3193 if (imode
== BLKmode
)
3196 /* The target must support moves in this mode. */
3197 code
= optab_handler (mov_optab
, imode
);
3198 if (code
== CODE_FOR_nothing
)
3201 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3204 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3207 return emit_insn (GEN_FCN (code
) (x
, y
));
3210 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3211 Return an equivalent MEM that does not use an auto-increment. */
3214 emit_move_resolve_push (machine_mode mode
, rtx x
)
3216 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3217 HOST_WIDE_INT adjust
;
3220 adjust
= GET_MODE_SIZE (mode
);
3221 #ifdef PUSH_ROUNDING
3222 adjust
= PUSH_ROUNDING (adjust
);
3224 if (code
== PRE_DEC
|| code
== POST_DEC
)
3226 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3228 rtx expr
= XEXP (XEXP (x
, 0), 1);
3231 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3232 gcc_assert (CONST_INT_P (XEXP (expr
, 1)));
3233 val
= INTVAL (XEXP (expr
, 1));
3234 if (GET_CODE (expr
) == MINUS
)
3236 gcc_assert (adjust
== val
|| adjust
== -val
);
3240 /* Do not use anti_adjust_stack, since we don't want to update
3241 stack_pointer_delta. */
3242 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3243 gen_int_mode (adjust
, Pmode
), stack_pointer_rtx
,
3244 0, OPTAB_LIB_WIDEN
);
3245 if (temp
!= stack_pointer_rtx
)
3246 emit_move_insn (stack_pointer_rtx
, temp
);
3253 temp
= stack_pointer_rtx
;
3258 temp
= plus_constant (Pmode
, stack_pointer_rtx
, -adjust
);
3264 return replace_equiv_address (x
, temp
);
3267 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3268 X is known to satisfy push_operand, and MODE is known to be complex.
3269 Returns the last instruction emitted. */
3272 emit_move_complex_push (machine_mode mode
, rtx x
, rtx y
)
3274 machine_mode submode
= GET_MODE_INNER (mode
);
3277 #ifdef PUSH_ROUNDING
3278 unsigned int submodesize
= GET_MODE_SIZE (submode
);
3280 /* In case we output to the stack, but the size is smaller than the
3281 machine can push exactly, we need to use move instructions. */
3282 if (PUSH_ROUNDING (submodesize
) != submodesize
)
3284 x
= emit_move_resolve_push (mode
, x
);
3285 return emit_move_insn (x
, y
);
3289 /* Note that the real part always precedes the imag part in memory
3290 regardless of machine's endianness. */
3291 switch (GET_CODE (XEXP (x
, 0)))
3305 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3306 read_complex_part (y
, imag_first
));
3307 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3308 read_complex_part (y
, !imag_first
));
3311 /* A subroutine of emit_move_complex. Perform the move from Y to X
3312 via two moves of the parts. Returns the last instruction emitted. */
3315 emit_move_complex_parts (rtx x
, rtx y
)
3317 /* Show the output dies here. This is necessary for SUBREGs
3318 of pseudos since we cannot track their lifetimes correctly;
3319 hard regs shouldn't appear here except as return values. */
3320 if (!reload_completed
&& !reload_in_progress
3321 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3324 write_complex_part (x
, read_complex_part (y
, false), false);
3325 write_complex_part (x
, read_complex_part (y
, true), true);
3327 return get_last_insn ();
3330 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3331 MODE is known to be complex. Returns the last instruction emitted. */
3334 emit_move_complex (machine_mode mode
, rtx x
, rtx y
)
3338 /* Need to take special care for pushes, to maintain proper ordering
3339 of the data, and possibly extra padding. */
3340 if (push_operand (x
, mode
))
3341 return emit_move_complex_push (mode
, x
, y
);
3343 /* See if we can coerce the target into moving both values at once, except
3344 for floating point where we favor moving as parts if this is easy. */
3345 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3346 && optab_handler (mov_optab
, GET_MODE_INNER (mode
)) != CODE_FOR_nothing
3348 && HARD_REGISTER_P (x
)
3349 && hard_regno_nregs
[REGNO (x
)][mode
] == 1)
3351 && HARD_REGISTER_P (y
)
3352 && hard_regno_nregs
[REGNO (y
)][mode
] == 1))
3354 /* Not possible if the values are inherently not adjacent. */
3355 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3357 /* Is possible if both are registers (or subregs of registers). */
3358 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3360 /* If one of the operands is a memory, and alignment constraints
3361 are friendly enough, we may be able to do combined memory operations.
3362 We do not attempt this if Y is a constant because that combination is
3363 usually better with the by-parts thing below. */
3364 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3365 && (!STRICT_ALIGNMENT
3366 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3375 /* For memory to memory moves, optimal behavior can be had with the
3376 existing block move logic. */
3377 if (MEM_P (x
) && MEM_P (y
))
3379 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
3380 BLOCK_OP_NO_LIBCALL
);
3381 return get_last_insn ();
3384 ret
= emit_move_via_integer (mode
, x
, y
, true);
3389 return emit_move_complex_parts (x
, y
);
3392 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3393 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3396 emit_move_ccmode (machine_mode mode
, rtx x
, rtx y
)
3400 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3403 enum insn_code code
= optab_handler (mov_optab
, CCmode
);
3404 if (code
!= CODE_FOR_nothing
)
3406 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3407 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3408 return emit_insn (GEN_FCN (code
) (x
, y
));
3412 /* Otherwise, find the MODE_INT mode of the same width. */
3413 ret
= emit_move_via_integer (mode
, x
, y
, false);
3414 gcc_assert (ret
!= NULL
);
3418 /* Return true if word I of OP lies entirely in the
3419 undefined bits of a paradoxical subreg. */
3422 undefined_operand_subword_p (const_rtx op
, int i
)
3424 machine_mode innermode
, innermostmode
;
3426 if (GET_CODE (op
) != SUBREG
)
3428 innermode
= GET_MODE (op
);
3429 innermostmode
= GET_MODE (SUBREG_REG (op
));
3430 offset
= i
* UNITS_PER_WORD
+ SUBREG_BYTE (op
);
3431 /* The SUBREG_BYTE represents offset, as if the value were stored in
3432 memory, except for a paradoxical subreg where we define
3433 SUBREG_BYTE to be 0; undo this exception as in
3435 if (SUBREG_BYTE (op
) == 0
3436 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
3438 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
3439 if (WORDS_BIG_ENDIAN
)
3440 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3441 if (BYTES_BIG_ENDIAN
)
3442 offset
+= difference
% UNITS_PER_WORD
;
3444 if (offset
>= GET_MODE_SIZE (innermostmode
)
3445 || offset
<= -GET_MODE_SIZE (word_mode
))
3450 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3451 MODE is any multi-word or full-word mode that lacks a move_insn
3452 pattern. Note that you will get better code if you define such
3453 patterns, even if they must turn into multiple assembler instructions. */
3456 emit_move_multi_word (machine_mode mode
, rtx x
, rtx y
)
3458 rtx_insn
*last_insn
= 0;
3464 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3466 /* If X is a push on the stack, do the push now and replace
3467 X with a reference to the stack pointer. */
3468 if (push_operand (x
, mode
))
3469 x
= emit_move_resolve_push (mode
, x
);
3471 /* If we are in reload, see if either operand is a MEM whose address
3472 is scheduled for replacement. */
3473 if (reload_in_progress
&& MEM_P (x
)
3474 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3475 x
= replace_equiv_address_nv (x
, inner
);
3476 if (reload_in_progress
&& MEM_P (y
)
3477 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3478 y
= replace_equiv_address_nv (y
, inner
);
3482 need_clobber
= false;
3484 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3487 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3490 /* Do not generate code for a move if it would come entirely
3491 from the undefined bits of a paradoxical subreg. */
3492 if (undefined_operand_subword_p (y
, i
))
3495 ypart
= operand_subword (y
, i
, 1, mode
);
3497 /* If we can't get a part of Y, put Y into memory if it is a
3498 constant. Otherwise, force it into a register. Then we must
3499 be able to get a part of Y. */
3500 if (ypart
== 0 && CONSTANT_P (y
))
3502 y
= use_anchored_address (force_const_mem (mode
, y
));
3503 ypart
= operand_subword (y
, i
, 1, mode
);
3505 else if (ypart
== 0)
3506 ypart
= operand_subword_force (y
, i
, mode
);
3508 gcc_assert (xpart
&& ypart
);
3510 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3512 last_insn
= emit_move_insn (xpart
, ypart
);
3518 /* Show the output dies here. This is necessary for SUBREGs
3519 of pseudos since we cannot track their lifetimes correctly;
3520 hard regs shouldn't appear here except as return values.
3521 We never want to emit such a clobber after reload. */
3523 && ! (reload_in_progress
|| reload_completed
)
3524 && need_clobber
!= 0)
3532 /* Low level part of emit_move_insn.
3533 Called just like emit_move_insn, but assumes X and Y
3534 are basically valid. */
3537 emit_move_insn_1 (rtx x
, rtx y
)
3539 machine_mode mode
= GET_MODE (x
);
3540 enum insn_code code
;
3542 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3544 code
= optab_handler (mov_optab
, mode
);
3545 if (code
!= CODE_FOR_nothing
)
3546 return emit_insn (GEN_FCN (code
) (x
, y
));
3548 /* Expand complex moves by moving real part and imag part. */
3549 if (COMPLEX_MODE_P (mode
))
3550 return emit_move_complex (mode
, x
, y
);
3552 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
3553 || ALL_FIXED_POINT_MODE_P (mode
))
3555 rtx_insn
*result
= emit_move_via_integer (mode
, x
, y
, true);
3557 /* If we can't find an integer mode, use multi words. */
3561 return emit_move_multi_word (mode
, x
, y
);
3564 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3565 return emit_move_ccmode (mode
, x
, y
);
3567 /* Try using a move pattern for the corresponding integer mode. This is
3568 only safe when simplify_subreg can convert MODE constants into integer
3569 constants. At present, it can only do this reliably if the value
3570 fits within a HOST_WIDE_INT. */
3571 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3573 rtx_insn
*ret
= emit_move_via_integer (mode
, x
, y
, lra_in_progress
);
3577 if (! lra_in_progress
|| recog (PATTERN (ret
), ret
, 0) >= 0)
3582 return emit_move_multi_word (mode
, x
, y
);
3585 /* Generate code to copy Y into X.
3586 Both Y and X must have the same mode, except that
3587 Y can be a constant with VOIDmode.
3588 This mode cannot be BLKmode; use emit_block_move for that.
3590 Return the last instruction emitted. */
3593 emit_move_insn (rtx x
, rtx y
)
3595 machine_mode mode
= GET_MODE (x
);
3596 rtx y_cst
= NULL_RTX
;
3597 rtx_insn
*last_insn
;
3600 gcc_assert (mode
!= BLKmode
3601 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3606 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3607 && (last_insn
= compress_float_constant (x
, y
)))
3612 if (!targetm
.legitimate_constant_p (mode
, y
))
3614 y
= force_const_mem (mode
, y
);
3616 /* If the target's cannot_force_const_mem prevented the spill,
3617 assume that the target's move expanders will also take care
3618 of the non-legitimate constant. */
3622 y
= use_anchored_address (y
);
3626 /* If X or Y are memory references, verify that their addresses are valid
3629 && (! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
3631 && ! push_operand (x
, GET_MODE (x
))))
3632 x
= validize_mem (x
);
3635 && ! memory_address_addr_space_p (GET_MODE (y
), XEXP (y
, 0),
3636 MEM_ADDR_SPACE (y
)))
3637 y
= validize_mem (y
);
3639 gcc_assert (mode
!= BLKmode
);
3641 last_insn
= emit_move_insn_1 (x
, y
);
3643 if (y_cst
&& REG_P (x
)
3644 && (set
= single_set (last_insn
)) != NULL_RTX
3645 && SET_DEST (set
) == x
3646 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3647 set_unique_reg_note (last_insn
, REG_EQUAL
, copy_rtx (y_cst
));
3652 /* Generate the body of an instruction to copy Y into X.
3653 It may be a list of insns, if one insn isn't enough. */
3656 gen_move_insn (rtx x
, rtx y
)
3661 emit_move_insn_1 (x
, y
);
3667 /* If Y is representable exactly in a narrower mode, and the target can
3668 perform the extension directly from constant or memory, then emit the
3669 move as an extension. */
3672 compress_float_constant (rtx x
, rtx y
)
3674 machine_mode dstmode
= GET_MODE (x
);
3675 machine_mode orig_srcmode
= GET_MODE (y
);
3676 machine_mode srcmode
;
3678 int oldcost
, newcost
;
3679 bool speed
= optimize_insn_for_speed_p ();
3681 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3683 if (targetm
.legitimate_constant_p (dstmode
, y
))
3684 oldcost
= set_src_cost (y
, speed
);
3686 oldcost
= set_src_cost (force_const_mem (dstmode
, y
), speed
);
3688 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3689 srcmode
!= orig_srcmode
;
3690 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3694 rtx_insn
*last_insn
;
3696 /* Skip if the target can't extend this way. */
3697 ic
= can_extend_p (dstmode
, srcmode
, 0);
3698 if (ic
== CODE_FOR_nothing
)
3701 /* Skip if the narrowed value isn't exact. */
3702 if (! exact_real_truncate (srcmode
, &r
))
3705 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3707 if (targetm
.legitimate_constant_p (srcmode
, trunc_y
))
3709 /* Skip if the target needs extra instructions to perform
3711 if (!insn_operand_matches (ic
, 1, trunc_y
))
3713 /* This is valid, but may not be cheaper than the original. */
3714 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3716 if (oldcost
< newcost
)
3719 else if (float_extend_from_mem
[dstmode
][srcmode
])
3721 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3722 /* This is valid, but may not be cheaper than the original. */
3723 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3725 if (oldcost
< newcost
)
3727 trunc_y
= validize_mem (trunc_y
);
3732 /* For CSE's benefit, force the compressed constant pool entry
3733 into a new pseudo. This constant may be used in different modes,
3734 and if not, combine will put things back together for us. */
3735 trunc_y
= force_reg (srcmode
, trunc_y
);
3737 /* If x is a hard register, perform the extension into a pseudo,
3738 so that e.g. stack realignment code is aware of it. */
3740 if (REG_P (x
) && HARD_REGISTER_P (x
))
3741 target
= gen_reg_rtx (dstmode
);
3743 emit_unop_insn (ic
, target
, trunc_y
, UNKNOWN
);
3744 last_insn
= get_last_insn ();
3747 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3750 return emit_move_insn (x
, target
);
3757 /* Pushing data onto the stack. */
3759 /* Push a block of length SIZE (perhaps variable)
3760 and return an rtx to address the beginning of the block.
3761 The value may be virtual_outgoing_args_rtx.
3763 EXTRA is the number of bytes of padding to push in addition to SIZE.
3764 BELOW nonzero means this padding comes at low addresses;
3765 otherwise, the padding comes at high addresses. */
3768 push_block (rtx size
, int extra
, int below
)
3772 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3773 if (CONSTANT_P (size
))
3774 anti_adjust_stack (plus_constant (Pmode
, size
, extra
));
3775 else if (REG_P (size
) && extra
== 0)
3776 anti_adjust_stack (size
);
3779 temp
= copy_to_mode_reg (Pmode
, size
);
3781 temp
= expand_binop (Pmode
, add_optab
, temp
,
3782 gen_int_mode (extra
, Pmode
),
3783 temp
, 0, OPTAB_LIB_WIDEN
);
3784 anti_adjust_stack (temp
);
3787 #ifndef STACK_GROWS_DOWNWARD
3793 temp
= virtual_outgoing_args_rtx
;
3794 if (extra
!= 0 && below
)
3795 temp
= plus_constant (Pmode
, temp
, extra
);
3799 if (CONST_INT_P (size
))
3800 temp
= plus_constant (Pmode
, virtual_outgoing_args_rtx
,
3801 -INTVAL (size
) - (below
? 0 : extra
));
3802 else if (extra
!= 0 && !below
)
3803 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3804 negate_rtx (Pmode
, plus_constant (Pmode
, size
,
3807 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3808 negate_rtx (Pmode
, size
));
3811 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3814 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3817 mem_autoinc_base (rtx mem
)
3821 rtx addr
= XEXP (mem
, 0);
3822 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
)
3823 return XEXP (addr
, 0);
3828 /* A utility routine used here, in reload, and in try_split. The insns
3829 after PREV up to and including LAST are known to adjust the stack,
3830 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3831 placing notes as appropriate. PREV may be NULL, indicating the
3832 entire insn sequence prior to LAST should be scanned.
3834 The set of allowed stack pointer modifications is small:
3835 (1) One or more auto-inc style memory references (aka pushes),
3836 (2) One or more addition/subtraction with the SP as destination,
3837 (3) A single move insn with the SP as destination,
3838 (4) A call_pop insn,
3839 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3841 Insns in the sequence that do not modify the SP are ignored,
3842 except for noreturn calls.
3844 The return value is the amount of adjustment that can be trivially
3845 verified, via immediate operand or auto-inc. If the adjustment
3846 cannot be trivially extracted, the return value is INT_MIN. */
3849 find_args_size_adjust (rtx_insn
*insn
)
3854 pat
= PATTERN (insn
);
3857 /* Look for a call_pop pattern. */
3860 /* We have to allow non-call_pop patterns for the case
3861 of emit_single_push_insn of a TLS address. */
3862 if (GET_CODE (pat
) != PARALLEL
)
3865 /* All call_pop have a stack pointer adjust in the parallel.
3866 The call itself is always first, and the stack adjust is
3867 usually last, so search from the end. */
3868 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; --i
)
3870 set
= XVECEXP (pat
, 0, i
);
3871 if (GET_CODE (set
) != SET
)
3873 dest
= SET_DEST (set
);
3874 if (dest
== stack_pointer_rtx
)
3877 /* We'd better have found the stack pointer adjust. */
3880 /* Fall through to process the extracted SET and DEST
3881 as if it was a standalone insn. */
3883 else if (GET_CODE (pat
) == SET
)
3885 else if ((set
= single_set (insn
)) != NULL
)
3887 else if (GET_CODE (pat
) == PARALLEL
)
3889 /* ??? Some older ports use a parallel with a stack adjust
3890 and a store for a PUSH_ROUNDING pattern, rather than a
3891 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3892 /* ??? See h8300 and m68k, pushqi1. */
3893 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; --i
)
3895 set
= XVECEXP (pat
, 0, i
);
3896 if (GET_CODE (set
) != SET
)
3898 dest
= SET_DEST (set
);
3899 if (dest
== stack_pointer_rtx
)
3902 /* We do not expect an auto-inc of the sp in the parallel. */
3903 gcc_checking_assert (mem_autoinc_base (dest
) != stack_pointer_rtx
);
3904 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3905 != stack_pointer_rtx
);
3913 dest
= SET_DEST (set
);
3915 /* Look for direct modifications of the stack pointer. */
3916 if (REG_P (dest
) && REGNO (dest
) == STACK_POINTER_REGNUM
)
3918 /* Look for a trivial adjustment, otherwise assume nothing. */
3919 /* Note that the SPU restore_stack_block pattern refers to
3920 the stack pointer in V4SImode. Consider that non-trivial. */
3921 if (SCALAR_INT_MODE_P (GET_MODE (dest
))
3922 && GET_CODE (SET_SRC (set
)) == PLUS
3923 && XEXP (SET_SRC (set
), 0) == stack_pointer_rtx
3924 && CONST_INT_P (XEXP (SET_SRC (set
), 1)))
3925 return INTVAL (XEXP (SET_SRC (set
), 1));
3926 /* ??? Reload can generate no-op moves, which will be cleaned
3927 up later. Recognize it and continue searching. */
3928 else if (rtx_equal_p (dest
, SET_SRC (set
)))
3931 return HOST_WIDE_INT_MIN
;
3937 /* Otherwise only think about autoinc patterns. */
3938 if (mem_autoinc_base (dest
) == stack_pointer_rtx
)
3941 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3942 != stack_pointer_rtx
);
3944 else if (mem_autoinc_base (SET_SRC (set
)) == stack_pointer_rtx
)
3945 mem
= SET_SRC (set
);
3949 addr
= XEXP (mem
, 0);
3950 switch (GET_CODE (addr
))
3954 return GET_MODE_SIZE (GET_MODE (mem
));
3957 return -GET_MODE_SIZE (GET_MODE (mem
));
3960 addr
= XEXP (addr
, 1);
3961 gcc_assert (GET_CODE (addr
) == PLUS
);
3962 gcc_assert (XEXP (addr
, 0) == stack_pointer_rtx
);
3963 gcc_assert (CONST_INT_P (XEXP (addr
, 1)));
3964 return INTVAL (XEXP (addr
, 1));
3972 fixup_args_size_notes (rtx_insn
*prev
, rtx_insn
*last
, int end_args_size
)
3974 int args_size
= end_args_size
;
3975 bool saw_unknown
= false;
3978 for (insn
= last
; insn
!= prev
; insn
= PREV_INSN (insn
))
3980 HOST_WIDE_INT this_delta
;
3982 if (!NONDEBUG_INSN_P (insn
))
3985 this_delta
= find_args_size_adjust (insn
);
3986 if (this_delta
== 0)
3989 || ACCUMULATE_OUTGOING_ARGS
3990 || find_reg_note (insn
, REG_NORETURN
, NULL_RTX
) == NULL_RTX
)
3994 gcc_assert (!saw_unknown
);
3995 if (this_delta
== HOST_WIDE_INT_MIN
)
3998 add_reg_note (insn
, REG_ARGS_SIZE
, GEN_INT (args_size
));
3999 #ifdef STACK_GROWS_DOWNWARD
4000 this_delta
= -(unsigned HOST_WIDE_INT
) this_delta
;
4002 args_size
-= this_delta
;
4005 return saw_unknown
? INT_MIN
: args_size
;
4008 #ifdef PUSH_ROUNDING
4009 /* Emit single push insn. */
4012 emit_single_push_insn_1 (machine_mode mode
, rtx x
, tree type
)
4015 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4017 enum insn_code icode
;
4019 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4020 /* If there is push pattern, use it. Otherwise try old way of throwing
4021 MEM representing push operation to move expander. */
4022 icode
= optab_handler (push_optab
, mode
);
4023 if (icode
!= CODE_FOR_nothing
)
4025 struct expand_operand ops
[1];
4027 create_input_operand (&ops
[0], x
, mode
);
4028 if (maybe_expand_insn (icode
, 1, ops
))
4031 if (GET_MODE_SIZE (mode
) == rounded_size
)
4032 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
4033 /* If we are to pad downward, adjust the stack pointer first and
4034 then store X into the stack location using an offset. This is
4035 because emit_move_insn does not know how to pad; it does not have
4037 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
4039 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
4040 HOST_WIDE_INT offset
;
4042 emit_move_insn (stack_pointer_rtx
,
4043 expand_binop (Pmode
,
4044 #ifdef STACK_GROWS_DOWNWARD
4050 gen_int_mode (rounded_size
, Pmode
),
4051 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
4053 offset
= (HOST_WIDE_INT
) padding_size
;
4054 #ifdef STACK_GROWS_DOWNWARD
4055 if (STACK_PUSH_CODE
== POST_DEC
)
4056 /* We have already decremented the stack pointer, so get the
4058 offset
+= (HOST_WIDE_INT
) rounded_size
;
4060 if (STACK_PUSH_CODE
== POST_INC
)
4061 /* We have already incremented the stack pointer, so get the
4063 offset
-= (HOST_WIDE_INT
) rounded_size
;
4065 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4066 gen_int_mode (offset
, Pmode
));
4070 #ifdef STACK_GROWS_DOWNWARD
4071 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4072 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4073 gen_int_mode (-(HOST_WIDE_INT
) rounded_size
,
4076 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4077 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4078 gen_int_mode (rounded_size
, Pmode
));
4080 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
4083 dest
= gen_rtx_MEM (mode
, dest_addr
);
4087 set_mem_attributes (dest
, type
, 1);
4089 if (cfun
->tail_call_marked
)
4090 /* Function incoming arguments may overlap with sibling call
4091 outgoing arguments and we cannot allow reordering of reads
4092 from function arguments with stores to outgoing arguments
4093 of sibling calls. */
4094 set_mem_alias_set (dest
, 0);
4096 emit_move_insn (dest
, x
);
4099 /* Emit and annotate a single push insn. */
4102 emit_single_push_insn (machine_mode mode
, rtx x
, tree type
)
4104 int delta
, old_delta
= stack_pointer_delta
;
4105 rtx_insn
*prev
= get_last_insn ();
4108 emit_single_push_insn_1 (mode
, x
, type
);
4110 last
= get_last_insn ();
4112 /* Notice the common case where we emitted exactly one insn. */
4113 if (PREV_INSN (last
) == prev
)
4115 add_reg_note (last
, REG_ARGS_SIZE
, GEN_INT (stack_pointer_delta
));
4119 delta
= fixup_args_size_notes (prev
, last
, stack_pointer_delta
);
4120 gcc_assert (delta
== INT_MIN
|| delta
== old_delta
);
4124 /* Generate code to push X onto the stack, assuming it has mode MODE and
4126 MODE is redundant except when X is a CONST_INT (since they don't
4128 SIZE is an rtx for the size of data to be copied (in bytes),
4129 needed only if X is BLKmode.
4131 ALIGN (in bits) is maximum alignment we can assume.
4133 If PARTIAL and REG are both nonzero, then copy that many of the first
4134 bytes of X into registers starting with REG, and push the rest of X.
4135 The amount of space pushed is decreased by PARTIAL bytes.
4136 REG must be a hard register in this case.
4137 If REG is zero but PARTIAL is not, take any all others actions for an
4138 argument partially in registers, but do not actually load any
4141 EXTRA is the amount in bytes of extra space to leave next to this arg.
4142 This is ignored if an argument block has already been allocated.
4144 On a machine that lacks real push insns, ARGS_ADDR is the address of
4145 the bottom of the argument block for this call. We use indexing off there
4146 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4147 argument block has not been preallocated.
4149 ARGS_SO_FAR is the size of args previously pushed for this call.
4151 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4152 for arguments passed in registers. If nonzero, it will be the number
4153 of bytes required. */
4156 emit_push_insn (rtx x
, machine_mode mode
, tree type
, rtx size
,
4157 unsigned int align
, int partial
, rtx reg
, int extra
,
4158 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
4162 enum direction stack_direction
4163 #ifdef STACK_GROWS_DOWNWARD
4169 /* Decide where to pad the argument: `downward' for below,
4170 `upward' for above, or `none' for don't pad it.
4171 Default is below for small data on big-endian machines; else above. */
4172 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
4174 /* Invert direction if stack is post-decrement.
4176 if (STACK_PUSH_CODE
== POST_DEC
)
4177 if (where_pad
!= none
)
4178 where_pad
= (where_pad
== downward
? upward
: downward
);
4183 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
4185 /* Copy a block into the stack, entirely or partially. */
4192 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4193 used
= partial
- offset
;
4195 if (mode
!= BLKmode
)
4197 /* A value is to be stored in an insufficiently aligned
4198 stack slot; copy via a suitably aligned slot if
4200 size
= GEN_INT (GET_MODE_SIZE (mode
));
4201 if (!MEM_P (xinner
))
4203 temp
= assign_temp (type
, 1, 1);
4204 emit_move_insn (temp
, xinner
);
4211 /* USED is now the # of bytes we need not copy to the stack
4212 because registers will take care of them. */
4215 xinner
= adjust_address (xinner
, BLKmode
, used
);
4217 /* If the partial register-part of the arg counts in its stack size,
4218 skip the part of stack space corresponding to the registers.
4219 Otherwise, start copying to the beginning of the stack space,
4220 by setting SKIP to 0. */
4221 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
4223 #ifdef PUSH_ROUNDING
4224 /* Do it with several push insns if that doesn't take lots of insns
4225 and if there is no difficulty with push insns that skip bytes
4226 on the stack for alignment purposes. */
4229 && CONST_INT_P (size
)
4231 && MEM_ALIGN (xinner
) >= align
4232 && can_move_by_pieces ((unsigned) INTVAL (size
) - used
, align
)
4233 /* Here we avoid the case of a structure whose weak alignment
4234 forces many pushes of a small amount of data,
4235 and such small pushes do rounding that causes trouble. */
4236 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
4237 || align
>= BIGGEST_ALIGNMENT
4238 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
4239 == (align
/ BITS_PER_UNIT
)))
4240 && (HOST_WIDE_INT
) PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
4242 /* Push padding now if padding above and stack grows down,
4243 or if padding below and stack grows up.
4244 But if space already allocated, this has already been done. */
4245 if (extra
&& args_addr
== 0
4246 && where_pad
!= none
&& where_pad
!= stack_direction
)
4247 anti_adjust_stack (GEN_INT (extra
));
4249 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
4252 #endif /* PUSH_ROUNDING */
4256 /* Otherwise make space on the stack and copy the data
4257 to the address of that space. */
4259 /* Deduct words put into registers from the size we must copy. */
4262 if (CONST_INT_P (size
))
4263 size
= GEN_INT (INTVAL (size
) - used
);
4265 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
4266 gen_int_mode (used
, GET_MODE (size
)),
4267 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4270 /* Get the address of the stack space.
4271 In this case, we do not deal with EXTRA separately.
4272 A single stack adjust will do. */
4275 temp
= push_block (size
, extra
, where_pad
== downward
);
4278 else if (CONST_INT_P (args_so_far
))
4279 temp
= memory_address (BLKmode
,
4280 plus_constant (Pmode
, args_addr
,
4281 skip
+ INTVAL (args_so_far
)));
4283 temp
= memory_address (BLKmode
,
4284 plus_constant (Pmode
,
4285 gen_rtx_PLUS (Pmode
,
4290 if (!ACCUMULATE_OUTGOING_ARGS
)
4292 /* If the source is referenced relative to the stack pointer,
4293 copy it to another register to stabilize it. We do not need
4294 to do this if we know that we won't be changing sp. */
4296 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
4297 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
4298 temp
= copy_to_reg (temp
);
4301 target
= gen_rtx_MEM (BLKmode
, temp
);
4303 /* We do *not* set_mem_attributes here, because incoming arguments
4304 may overlap with sibling call outgoing arguments and we cannot
4305 allow reordering of reads from function arguments with stores
4306 to outgoing arguments of sibling calls. We do, however, want
4307 to record the alignment of the stack slot. */
4308 /* ALIGN may well be better aligned than TYPE, e.g. due to
4309 PARM_BOUNDARY. Assume the caller isn't lying. */
4310 set_mem_align (target
, align
);
4312 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
4315 else if (partial
> 0)
4317 /* Scalar partly in registers. */
4319 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
4322 /* # bytes of start of argument
4323 that we must make space for but need not store. */
4324 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4325 int args_offset
= INTVAL (args_so_far
);
4328 /* Push padding now if padding above and stack grows down,
4329 or if padding below and stack grows up.
4330 But if space already allocated, this has already been done. */
4331 if (extra
&& args_addr
== 0
4332 && where_pad
!= none
&& where_pad
!= stack_direction
)
4333 anti_adjust_stack (GEN_INT (extra
));
4335 /* If we make space by pushing it, we might as well push
4336 the real data. Otherwise, we can leave OFFSET nonzero
4337 and leave the space uninitialized. */
4341 /* Now NOT_STACK gets the number of words that we don't need to
4342 allocate on the stack. Convert OFFSET to words too. */
4343 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
4344 offset
/= UNITS_PER_WORD
;
4346 /* If the partial register-part of the arg counts in its stack size,
4347 skip the part of stack space corresponding to the registers.
4348 Otherwise, start copying to the beginning of the stack space,
4349 by setting SKIP to 0. */
4350 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
4352 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
4353 x
= validize_mem (force_const_mem (mode
, x
));
4355 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4356 SUBREGs of such registers are not allowed. */
4357 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
4358 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
4359 x
= copy_to_reg (x
);
4361 /* Loop over all the words allocated on the stack for this arg. */
4362 /* We can do it by words, because any scalar bigger than a word
4363 has a size a multiple of a word. */
4364 for (i
= size
- 1; i
>= not_stack
; i
--)
4365 if (i
>= not_stack
+ offset
)
4366 emit_push_insn (operand_subword_force (x
, i
, mode
),
4367 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
4369 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
4371 reg_parm_stack_space
, alignment_pad
);
4378 /* Push padding now if padding above and stack grows down,
4379 or if padding below and stack grows up.
4380 But if space already allocated, this has already been done. */
4381 if (extra
&& args_addr
== 0
4382 && where_pad
!= none
&& where_pad
!= stack_direction
)
4383 anti_adjust_stack (GEN_INT (extra
));
4385 #ifdef PUSH_ROUNDING
4386 if (args_addr
== 0 && PUSH_ARGS
)
4387 emit_single_push_insn (mode
, x
, type
);
4391 if (CONST_INT_P (args_so_far
))
4393 = memory_address (mode
,
4394 plus_constant (Pmode
, args_addr
,
4395 INTVAL (args_so_far
)));
4397 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
4399 dest
= gen_rtx_MEM (mode
, addr
);
4401 /* We do *not* set_mem_attributes here, because incoming arguments
4402 may overlap with sibling call outgoing arguments and we cannot
4403 allow reordering of reads from function arguments with stores
4404 to outgoing arguments of sibling calls. We do, however, want
4405 to record the alignment of the stack slot. */
4406 /* ALIGN may well be better aligned than TYPE, e.g. due to
4407 PARM_BOUNDARY. Assume the caller isn't lying. */
4408 set_mem_align (dest
, align
);
4410 emit_move_insn (dest
, x
);
4414 /* If part should go in registers, copy that part
4415 into the appropriate registers. Do this now, at the end,
4416 since mem-to-mem copies above may do function calls. */
4417 if (partial
> 0 && reg
!= 0)
4419 /* Handle calls that pass values in multiple non-contiguous locations.
4420 The Irix 6 ABI has examples of this. */
4421 if (GET_CODE (reg
) == PARALLEL
)
4422 emit_group_load (reg
, x
, type
, -1);
4425 gcc_assert (partial
% UNITS_PER_WORD
== 0);
4426 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
4430 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
4431 anti_adjust_stack (GEN_INT (extra
));
4433 if (alignment_pad
&& args_addr
== 0)
4434 anti_adjust_stack (alignment_pad
);
4437 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4441 get_subtarget (rtx x
)
4445 /* Only registers can be subtargets. */
4447 /* Don't use hard regs to avoid extending their life. */
4448 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4452 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4453 FIELD is a bitfield. Returns true if the optimization was successful,
4454 and there's nothing else to do. */
4457 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
4458 unsigned HOST_WIDE_INT bitpos
,
4459 unsigned HOST_WIDE_INT bitregion_start
,
4460 unsigned HOST_WIDE_INT bitregion_end
,
4461 machine_mode mode1
, rtx str_rtx
,
4464 machine_mode str_mode
= GET_MODE (str_rtx
);
4465 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4470 enum tree_code code
;
4472 if (mode1
!= VOIDmode
4473 || bitsize
>= BITS_PER_WORD
4474 || str_bitsize
> BITS_PER_WORD
4475 || TREE_SIDE_EFFECTS (to
)
4476 || TREE_THIS_VOLATILE (to
))
4480 if (TREE_CODE (src
) != SSA_NAME
)
4482 if (TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
4485 srcstmt
= get_gimple_for_ssa_name (src
);
4487 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt
)) != tcc_binary
)
4490 code
= gimple_assign_rhs_code (srcstmt
);
4492 op0
= gimple_assign_rhs1 (srcstmt
);
4494 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4495 to find its initialization. Hopefully the initialization will
4496 be from a bitfield load. */
4497 if (TREE_CODE (op0
) == SSA_NAME
)
4499 gimple op0stmt
= get_gimple_for_ssa_name (op0
);
4501 /* We want to eventually have OP0 be the same as TO, which
4502 should be a bitfield. */
4504 || !is_gimple_assign (op0stmt
)
4505 || gimple_assign_rhs_code (op0stmt
) != TREE_CODE (to
))
4507 op0
= gimple_assign_rhs1 (op0stmt
);
4510 op1
= gimple_assign_rhs2 (srcstmt
);
4512 if (!operand_equal_p (to
, op0
, 0))
4515 if (MEM_P (str_rtx
))
4517 unsigned HOST_WIDE_INT offset1
;
4519 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
4520 str_mode
= word_mode
;
4521 str_mode
= get_best_mode (bitsize
, bitpos
,
4522 bitregion_start
, bitregion_end
,
4523 MEM_ALIGN (str_rtx
), str_mode
, 0);
4524 if (str_mode
== VOIDmode
)
4526 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4529 bitpos
%= str_bitsize
;
4530 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
4531 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
4533 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
4536 /* If the bit field covers the whole REG/MEM, store_field
4537 will likely generate better code. */
4538 if (bitsize
>= str_bitsize
)
4541 /* We can't handle fields split across multiple entities. */
4542 if (bitpos
+ bitsize
> str_bitsize
)
4545 if (BYTES_BIG_ENDIAN
)
4546 bitpos
= str_bitsize
- bitpos
- bitsize
;
4552 /* For now, just optimize the case of the topmost bitfield
4553 where we don't need to do any masking and also
4554 1 bit bitfields where xor can be used.
4555 We might win by one instruction for the other bitfields
4556 too if insv/extv instructions aren't used, so that
4557 can be added later. */
4558 if (bitpos
+ bitsize
!= str_bitsize
4559 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4562 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4563 value
= convert_modes (str_mode
,
4564 TYPE_MODE (TREE_TYPE (op1
)), value
,
4565 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4567 /* We may be accessing data outside the field, which means
4568 we can alias adjacent data. */
4569 if (MEM_P (str_rtx
))
4571 str_rtx
= shallow_copy_rtx (str_rtx
);
4572 set_mem_alias_set (str_rtx
, 0);
4573 set_mem_expr (str_rtx
, 0);
4576 binop
= code
== PLUS_EXPR
? add_optab
: sub_optab
;
4577 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
4579 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4582 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4583 result
= expand_binop (str_mode
, binop
, str_rtx
,
4584 value
, str_rtx
, 1, OPTAB_WIDEN
);
4585 if (result
!= str_rtx
)
4586 emit_move_insn (str_rtx
, result
);
4591 if (TREE_CODE (op1
) != INTEGER_CST
)
4593 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4594 value
= convert_modes (str_mode
,
4595 TYPE_MODE (TREE_TYPE (op1
)), value
,
4596 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4598 /* We may be accessing data outside the field, which means
4599 we can alias adjacent data. */
4600 if (MEM_P (str_rtx
))
4602 str_rtx
= shallow_copy_rtx (str_rtx
);
4603 set_mem_alias_set (str_rtx
, 0);
4604 set_mem_expr (str_rtx
, 0);
4607 binop
= code
== BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4608 if (bitpos
+ bitsize
!= str_bitsize
)
4610 rtx mask
= gen_int_mode (((unsigned HOST_WIDE_INT
) 1 << bitsize
) - 1,
4612 value
= expand_and (str_mode
, value
, mask
, NULL_RTX
);
4614 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4615 result
= expand_binop (str_mode
, binop
, str_rtx
,
4616 value
, str_rtx
, 1, OPTAB_WIDEN
);
4617 if (result
!= str_rtx
)
4618 emit_move_insn (str_rtx
, result
);
4628 /* In the C++ memory model, consecutive bit fields in a structure are
4629 considered one memory location.
4631 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4632 returns the bit range of consecutive bits in which this COMPONENT_REF
4633 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4634 and *OFFSET may be adjusted in the process.
4636 If the access does not need to be restricted, 0 is returned in both
4637 *BITSTART and *BITEND. */
4640 get_bit_range (unsigned HOST_WIDE_INT
*bitstart
,
4641 unsigned HOST_WIDE_INT
*bitend
,
4643 HOST_WIDE_INT
*bitpos
,
4646 HOST_WIDE_INT bitoffset
;
4649 gcc_assert (TREE_CODE (exp
) == COMPONENT_REF
);
4651 field
= TREE_OPERAND (exp
, 1);
4652 repr
= DECL_BIT_FIELD_REPRESENTATIVE (field
);
4653 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4654 need to limit the range we can access. */
4657 *bitstart
= *bitend
= 0;
4661 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4662 part of a larger bit field, then the representative does not serve any
4663 useful purpose. This can occur in Ada. */
4664 if (handled_component_p (TREE_OPERAND (exp
, 0)))
4667 HOST_WIDE_INT rbitsize
, rbitpos
;
4671 get_inner_reference (TREE_OPERAND (exp
, 0), &rbitsize
, &rbitpos
,
4672 &roffset
, &rmode
, &unsignedp
, &volatilep
, false);
4673 if ((rbitpos
% BITS_PER_UNIT
) != 0)
4675 *bitstart
= *bitend
= 0;
4680 /* Compute the adjustment to bitpos from the offset of the field
4681 relative to the representative. DECL_FIELD_OFFSET of field and
4682 repr are the same by construction if they are not constants,
4683 see finish_bitfield_layout. */
4684 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
))
4685 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr
)))
4686 bitoffset
= (tree_to_uhwi (DECL_FIELD_OFFSET (field
))
4687 - tree_to_uhwi (DECL_FIELD_OFFSET (repr
))) * BITS_PER_UNIT
;
4690 bitoffset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
4691 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
4693 /* If the adjustment is larger than bitpos, we would have a negative bit
4694 position for the lower bound and this may wreak havoc later. Adjust
4695 offset and bitpos to make the lower bound non-negative in that case. */
4696 if (bitoffset
> *bitpos
)
4698 HOST_WIDE_INT adjust
= bitoffset
- *bitpos
;
4699 gcc_assert ((adjust
% BITS_PER_UNIT
) == 0);
4702 if (*offset
== NULL_TREE
)
4703 *offset
= size_int (-adjust
/ BITS_PER_UNIT
);
4706 = size_binop (MINUS_EXPR
, *offset
, size_int (adjust
/ BITS_PER_UNIT
));
4710 *bitstart
= *bitpos
- bitoffset
;
4712 *bitend
= *bitstart
+ tree_to_uhwi (DECL_SIZE (repr
)) - 1;
4715 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4716 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4717 DECL_RTL was not set yet, return NORTL. */
4720 addr_expr_of_non_mem_decl_p_1 (tree addr
, bool nortl
)
4722 if (TREE_CODE (addr
) != ADDR_EXPR
)
4725 tree base
= TREE_OPERAND (addr
, 0);
4728 || TREE_ADDRESSABLE (base
)
4729 || DECL_MODE (base
) == BLKmode
)
4732 if (!DECL_RTL_SET_P (base
))
4735 return (!MEM_P (DECL_RTL (base
)));
4738 /* Returns true if the MEM_REF REF refers to an object that does not
4739 reside in memory and has non-BLKmode. */
4742 mem_ref_refers_to_non_mem_p (tree ref
)
4744 tree base
= TREE_OPERAND (ref
, 0);
4745 return addr_expr_of_non_mem_decl_p_1 (base
, false);
4748 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4749 is true, try generating a nontemporal store. */
4752 expand_assignment (tree to
, tree from
, bool nontemporal
)
4758 enum insn_code icode
;
4760 /* Don't crash if the lhs of the assignment was erroneous. */
4761 if (TREE_CODE (to
) == ERROR_MARK
)
4763 expand_normal (from
);
4767 /* Optimize away no-op moves without side-effects. */
4768 if (operand_equal_p (to
, from
, 0))
4771 /* Handle misaligned stores. */
4772 mode
= TYPE_MODE (TREE_TYPE (to
));
4773 if ((TREE_CODE (to
) == MEM_REF
4774 || TREE_CODE (to
) == TARGET_MEM_REF
)
4776 && !mem_ref_refers_to_non_mem_p (to
)
4777 && ((align
= get_object_alignment (to
))
4778 < GET_MODE_ALIGNMENT (mode
))
4779 && (((icode
= optab_handler (movmisalign_optab
, mode
))
4780 != CODE_FOR_nothing
)
4781 || SLOW_UNALIGNED_ACCESS (mode
, align
)))
4785 reg
= expand_expr (from
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
4786 reg
= force_not_mem (reg
);
4787 mem
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4789 if (icode
!= CODE_FOR_nothing
)
4791 struct expand_operand ops
[2];
4793 create_fixed_operand (&ops
[0], mem
);
4794 create_input_operand (&ops
[1], reg
, mode
);
4795 /* The movmisalign<mode> pattern cannot fail, else the assignment
4796 would silently be omitted. */
4797 expand_insn (icode
, 2, ops
);
4800 store_bit_field (mem
, GET_MODE_BITSIZE (mode
), 0, 0, 0, mode
, reg
);
4804 /* Assignment of a structure component needs special treatment
4805 if the structure component's rtx is not simply a MEM.
4806 Assignment of an array element at a constant index, and assignment of
4807 an array element in an unaligned packed structure field, has the same
4808 problem. Same for (partially) storing into a non-memory object. */
4809 if (handled_component_p (to
)
4810 || (TREE_CODE (to
) == MEM_REF
4811 && mem_ref_refers_to_non_mem_p (to
))
4812 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
4815 HOST_WIDE_INT bitsize
, bitpos
;
4816 unsigned HOST_WIDE_INT bitregion_start
= 0;
4817 unsigned HOST_WIDE_INT bitregion_end
= 0;
4824 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
4825 &unsignedp
, &volatilep
, true);
4827 /* Make sure bitpos is not negative, it can wreak havoc later. */
4830 gcc_assert (offset
== NULL_TREE
);
4831 offset
= size_int (bitpos
>> (BITS_PER_UNIT
== 8
4832 ? 3 : exact_log2 (BITS_PER_UNIT
)));
4833 bitpos
&= BITS_PER_UNIT
- 1;
4836 if (TREE_CODE (to
) == COMPONENT_REF
4837 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to
, 1)))
4838 get_bit_range (&bitregion_start
, &bitregion_end
, to
, &bitpos
, &offset
);
4839 /* The C++ memory model naturally applies to byte-aligned fields.
4840 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
4841 BITSIZE are not byte-aligned, there is no need to limit the range
4842 we can access. This can occur with packed structures in Ada. */
4843 else if (bitsize
> 0
4844 && bitsize
% BITS_PER_UNIT
== 0
4845 && bitpos
% BITS_PER_UNIT
== 0)
4847 bitregion_start
= bitpos
;
4848 bitregion_end
= bitpos
+ bitsize
- 1;
4851 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4853 /* If the field has a mode, we want to access it in the
4854 field's mode, not the computed mode.
4855 If a MEM has VOIDmode (external with incomplete type),
4856 use BLKmode for it instead. */
4859 if (mode1
!= VOIDmode
)
4860 to_rtx
= adjust_address (to_rtx
, mode1
, 0);
4861 else if (GET_MODE (to_rtx
) == VOIDmode
)
4862 to_rtx
= adjust_address (to_rtx
, BLKmode
, 0);
4867 machine_mode address_mode
;
4870 if (!MEM_P (to_rtx
))
4872 /* We can get constant negative offsets into arrays with broken
4873 user code. Translate this to a trap instead of ICEing. */
4874 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
4875 expand_builtin_trap ();
4876 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
4879 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
4880 address_mode
= get_address_mode (to_rtx
);
4881 if (GET_MODE (offset_rtx
) != address_mode
)
4883 /* We cannot be sure that the RTL in offset_rtx is valid outside
4884 of a memory address context, so force it into a register
4885 before attempting to convert it to the desired mode. */
4886 offset_rtx
= force_operand (offset_rtx
, NULL_RTX
);
4887 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
4890 /* If we have an expression in OFFSET_RTX and a non-zero
4891 byte offset in BITPOS, adding the byte offset before the
4892 OFFSET_RTX results in better intermediate code, which makes
4893 later rtl optimization passes perform better.
4895 We prefer intermediate code like this:
4897 r124:DI=r123:DI+0x18
4902 r124:DI=r123:DI+0x10
4903 [r124:DI+0x8]=r121:DI
4905 This is only done for aligned data values, as these can
4906 be expected to result in single move instructions. */
4907 if (mode1
!= VOIDmode
4910 && (bitpos
% bitsize
) == 0
4911 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
4912 && MEM_ALIGN (to_rtx
) >= GET_MODE_ALIGNMENT (mode1
))
4914 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
4915 bitregion_start
= 0;
4916 if (bitregion_end
>= (unsigned HOST_WIDE_INT
) bitpos
)
4917 bitregion_end
-= bitpos
;
4921 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4922 highest_pow2_factor_for_target (to
,
4926 /* No action is needed if the target is not a memory and the field
4927 lies completely outside that target. This can occur if the source
4928 code contains an out-of-bounds access to a small array. */
4930 && GET_MODE (to_rtx
) != BLKmode
4931 && (unsigned HOST_WIDE_INT
) bitpos
4932 >= GET_MODE_PRECISION (GET_MODE (to_rtx
)))
4934 expand_normal (from
);
4937 /* Handle expand_expr of a complex value returning a CONCAT. */
4938 else if (GET_CODE (to_rtx
) == CONCAT
)
4940 unsigned short mode_bitsize
= GET_MODE_BITSIZE (GET_MODE (to_rtx
));
4941 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from
)))
4943 && bitsize
== mode_bitsize
)
4944 result
= store_expr (from
, to_rtx
, false, nontemporal
);
4945 else if (bitsize
== mode_bitsize
/ 2
4946 && (bitpos
== 0 || bitpos
== mode_bitsize
/ 2))
4947 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false,
4949 else if (bitpos
+ bitsize
<= mode_bitsize
/ 2)
4950 result
= store_field (XEXP (to_rtx
, 0), bitsize
, bitpos
,
4951 bitregion_start
, bitregion_end
,
4953 get_alias_set (to
), nontemporal
);
4954 else if (bitpos
>= mode_bitsize
/ 2)
4955 result
= store_field (XEXP (to_rtx
, 1), bitsize
,
4956 bitpos
- mode_bitsize
/ 2,
4957 bitregion_start
, bitregion_end
,
4959 get_alias_set (to
), nontemporal
);
4960 else if (bitpos
== 0 && bitsize
== mode_bitsize
)
4963 result
= expand_normal (from
);
4964 from_rtx
= simplify_gen_subreg (GET_MODE (to_rtx
), result
,
4965 TYPE_MODE (TREE_TYPE (from
)), 0);
4966 emit_move_insn (XEXP (to_rtx
, 0),
4967 read_complex_part (from_rtx
, false));
4968 emit_move_insn (XEXP (to_rtx
, 1),
4969 read_complex_part (from_rtx
, true));
4973 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
4974 GET_MODE_SIZE (GET_MODE (to_rtx
)));
4975 write_complex_part (temp
, XEXP (to_rtx
, 0), false);
4976 write_complex_part (temp
, XEXP (to_rtx
, 1), true);
4977 result
= store_field (temp
, bitsize
, bitpos
,
4978 bitregion_start
, bitregion_end
,
4980 get_alias_set (to
), nontemporal
);
4981 emit_move_insn (XEXP (to_rtx
, 0), read_complex_part (temp
, false));
4982 emit_move_insn (XEXP (to_rtx
, 1), read_complex_part (temp
, true));
4989 /* If the field is at offset zero, we could have been given the
4990 DECL_RTX of the parent struct. Don't munge it. */
4991 to_rtx
= shallow_copy_rtx (to_rtx
);
4992 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
4994 MEM_VOLATILE_P (to_rtx
) = 1;
4997 if (optimize_bitfield_assignment_op (bitsize
, bitpos
,
4998 bitregion_start
, bitregion_end
,
5003 result
= store_field (to_rtx
, bitsize
, bitpos
,
5004 bitregion_start
, bitregion_end
,
5006 get_alias_set (to
), nontemporal
);
5010 preserve_temp_slots (result
);
5015 /* If the rhs is a function call and its value is not an aggregate,
5016 call the function before we start to compute the lhs.
5017 This is needed for correct code for cases such as
5018 val = setjmp (buf) on machines where reference to val
5019 requires loading up part of an address in a separate insn.
5021 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5022 since it might be a promoted variable where the zero- or sign- extension
5023 needs to be done. Handling this in the normal way is safe because no
5024 computation is done before the call. The same is true for SSA names. */
5025 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
5026 && COMPLETE_TYPE_P (TREE_TYPE (from
))
5027 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
5028 && ! (((TREE_CODE (to
) == VAR_DECL
5029 || TREE_CODE (to
) == PARM_DECL
5030 || TREE_CODE (to
) == RESULT_DECL
)
5031 && REG_P (DECL_RTL (to
)))
5032 || TREE_CODE (to
) == SSA_NAME
))
5038 value
= expand_normal (from
);
5040 /* Split value and bounds to store them separately. */
5041 chkp_split_slot (value
, &value
, &bounds
);
5044 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5046 /* Handle calls that return values in multiple non-contiguous locations.
5047 The Irix 6 ABI has examples of this. */
5048 if (GET_CODE (to_rtx
) == PARALLEL
)
5050 if (GET_CODE (value
) == PARALLEL
)
5051 emit_group_move (to_rtx
, value
);
5053 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
5054 int_size_in_bytes (TREE_TYPE (from
)));
5056 else if (GET_CODE (value
) == PARALLEL
)
5057 emit_group_store (to_rtx
, value
, TREE_TYPE (from
),
5058 int_size_in_bytes (TREE_TYPE (from
)));
5059 else if (GET_MODE (to_rtx
) == BLKmode
)
5061 /* Handle calls that return BLKmode values in registers. */
5063 copy_blkmode_from_reg (to_rtx
, value
, TREE_TYPE (from
));
5065 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
5069 if (POINTER_TYPE_P (TREE_TYPE (to
)))
5070 value
= convert_memory_address_addr_space
5071 (GET_MODE (to_rtx
), value
,
5072 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to
))));
5074 emit_move_insn (to_rtx
, value
);
5077 /* Store bounds if required. */
5079 && (BOUNDED_P (to
) || chkp_type_has_pointer (TREE_TYPE (to
))))
5081 gcc_assert (MEM_P (to_rtx
));
5082 chkp_emit_bounds_store (bounds
, value
, to_rtx
);
5085 preserve_temp_slots (to_rtx
);
5090 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5091 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5093 /* Don't move directly into a return register. */
5094 if (TREE_CODE (to
) == RESULT_DECL
5095 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
5101 /* If the source is itself a return value, it still is in a pseudo at
5102 this point so we can move it back to the return register directly. */
5104 && TYPE_MODE (TREE_TYPE (from
)) == BLKmode
5105 && TREE_CODE (from
) != CALL_EXPR
)
5106 temp
= copy_blkmode_to_reg (GET_MODE (to_rtx
), from
);
5108 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
5110 /* Handle calls that return values in multiple non-contiguous locations.
5111 The Irix 6 ABI has examples of this. */
5112 if (GET_CODE (to_rtx
) == PARALLEL
)
5114 if (GET_CODE (temp
) == PARALLEL
)
5115 emit_group_move (to_rtx
, temp
);
5117 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
5118 int_size_in_bytes (TREE_TYPE (from
)));
5121 emit_move_insn (to_rtx
, temp
);
5123 preserve_temp_slots (to_rtx
);
5128 /* In case we are returning the contents of an object which overlaps
5129 the place the value is being stored, use a safe function when copying
5130 a value through a pointer into a structure value return block. */
5131 if (TREE_CODE (to
) == RESULT_DECL
5132 && TREE_CODE (from
) == INDIRECT_REF
5133 && ADDR_SPACE_GENERIC_P
5134 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from
, 0)))))
5135 && refs_may_alias_p (to
, from
)
5136 && cfun
->returns_struct
5137 && !cfun
->returns_pcc_struct
)
5142 size
= expr_size (from
);
5143 from_rtx
= expand_normal (from
);
5145 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
5146 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
5147 XEXP (from_rtx
, 0), Pmode
,
5148 convert_to_mode (TYPE_MODE (sizetype
),
5149 size
, TYPE_UNSIGNED (sizetype
)),
5150 TYPE_MODE (sizetype
));
5152 preserve_temp_slots (to_rtx
);
5157 /* Compute FROM and store the value in the rtx we got. */
5160 result
= store_expr_with_bounds (from
, to_rtx
, 0, nontemporal
, to
);
5161 preserve_temp_slots (result
);
5166 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5167 succeeded, false otherwise. */
5170 emit_storent_insn (rtx to
, rtx from
)
5172 struct expand_operand ops
[2];
5173 machine_mode mode
= GET_MODE (to
);
5174 enum insn_code code
= optab_handler (storent_optab
, mode
);
5176 if (code
== CODE_FOR_nothing
)
5179 create_fixed_operand (&ops
[0], to
);
5180 create_input_operand (&ops
[1], from
, mode
);
5181 return maybe_expand_insn (code
, 2, ops
);
5184 /* Generate code for computing expression EXP,
5185 and storing the value into TARGET.
5187 If the mode is BLKmode then we may return TARGET itself.
5188 It turns out that in BLKmode it doesn't cause a problem.
5189 because C has no operators that could combine two different
5190 assignments into the same BLKmode object with different values
5191 with no sequence point. Will other languages need this to
5194 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5195 stack, and block moves may need to be treated specially.
5197 If NONTEMPORAL is true, try using a nontemporal store instruction.
5199 If BTARGET is not NULL then computed bounds of EXP are
5200 associated with BTARGET. */
5203 store_expr_with_bounds (tree exp
, rtx target
, int call_param_p
,
5204 bool nontemporal
, tree btarget
)
5207 rtx alt_rtl
= NULL_RTX
;
5208 location_t loc
= curr_insn_location ();
5210 if (VOID_TYPE_P (TREE_TYPE (exp
)))
5212 /* C++ can generate ?: expressions with a throw expression in one
5213 branch and an rvalue in the other. Here, we resolve attempts to
5214 store the throw expression's nonexistent result. */
5215 gcc_assert (!call_param_p
);
5216 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5219 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
5221 /* Perform first part of compound expression, then assign from second
5223 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
5224 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5225 return store_expr_with_bounds (TREE_OPERAND (exp
, 1), target
,
5226 call_param_p
, nontemporal
, btarget
);
5228 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
5230 /* For conditional expression, get safe form of the target. Then
5231 test the condition, doing the appropriate assignment on either
5232 side. This avoids the creation of unnecessary temporaries.
5233 For non-BLKmode, it is more efficient not to do this. */
5235 rtx_code_label
*lab1
= gen_label_rtx (), *lab2
= gen_label_rtx ();
5237 do_pending_stack_adjust ();
5239 jumpifnot (TREE_OPERAND (exp
, 0), lab1
, -1);
5240 store_expr_with_bounds (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5241 nontemporal
, btarget
);
5242 emit_jump_insn (gen_jump (lab2
));
5245 store_expr_with_bounds (TREE_OPERAND (exp
, 2), target
, call_param_p
,
5246 nontemporal
, btarget
);
5252 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
5253 /* If this is a scalar in a register that is stored in a wider mode
5254 than the declared mode, compute the result into its declared mode
5255 and then convert to the wider mode. Our value is the computed
5258 rtx inner_target
= 0;
5260 /* We can do the conversion inside EXP, which will often result
5261 in some optimizations. Do the conversion in two steps: first
5262 change the signedness, if needed, then the extend. But don't
5263 do this if the type of EXP is a subtype of something else
5264 since then the conversion might involve more than just
5265 converting modes. */
5266 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
5267 && TREE_TYPE (TREE_TYPE (exp
)) == 0
5268 && GET_MODE_PRECISION (GET_MODE (target
))
5269 == TYPE_PRECISION (TREE_TYPE (exp
)))
5271 if (!SUBREG_CHECK_PROMOTED_SIGN (target
,
5272 TYPE_UNSIGNED (TREE_TYPE (exp
))))
5274 /* Some types, e.g. Fortran's logical*4, won't have a signed
5275 version, so use the mode instead. */
5277 = (signed_or_unsigned_type_for
5278 (SUBREG_PROMOTED_SIGN (target
), TREE_TYPE (exp
)));
5280 ntype
= lang_hooks
.types
.type_for_mode
5281 (TYPE_MODE (TREE_TYPE (exp
)),
5282 SUBREG_PROMOTED_SIGN (target
));
5284 exp
= fold_convert_loc (loc
, ntype
, exp
);
5287 exp
= fold_convert_loc (loc
, lang_hooks
.types
.type_for_mode
5288 (GET_MODE (SUBREG_REG (target
)),
5289 SUBREG_PROMOTED_SIGN (target
)),
5292 inner_target
= SUBREG_REG (target
);
5295 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
5296 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5298 /* Handle bounds returned by call. */
5299 if (TREE_CODE (exp
) == CALL_EXPR
)
5302 chkp_split_slot (temp
, &temp
, &bounds
);
5303 if (bounds
&& btarget
)
5305 gcc_assert (TREE_CODE (btarget
) == SSA_NAME
);
5306 rtx tmp
= targetm
.calls
.load_returned_bounds (bounds
);
5307 chkp_set_rtl_bounds (btarget
, tmp
);
5311 /* If TEMP is a VOIDmode constant, use convert_modes to make
5312 sure that we properly convert it. */
5313 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
5315 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5316 temp
, SUBREG_PROMOTED_SIGN (target
));
5317 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
5318 GET_MODE (target
), temp
,
5319 SUBREG_PROMOTED_SIGN (target
));
5322 convert_move (SUBREG_REG (target
), temp
,
5323 SUBREG_PROMOTED_SIGN (target
));
5327 else if ((TREE_CODE (exp
) == STRING_CST
5328 || (TREE_CODE (exp
) == MEM_REF
5329 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
5330 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
5332 && integer_zerop (TREE_OPERAND (exp
, 1))))
5333 && !nontemporal
&& !call_param_p
5336 /* Optimize initialization of an array with a STRING_CST. */
5337 HOST_WIDE_INT exp_len
, str_copy_len
;
5339 tree str
= TREE_CODE (exp
) == STRING_CST
5340 ? exp
: TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
5342 exp_len
= int_expr_size (exp
);
5346 if (TREE_STRING_LENGTH (str
) <= 0)
5349 str_copy_len
= strlen (TREE_STRING_POINTER (str
));
5350 if (str_copy_len
< TREE_STRING_LENGTH (str
) - 1)
5353 str_copy_len
= TREE_STRING_LENGTH (str
);
5354 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0
5355 && TREE_STRING_POINTER (str
)[TREE_STRING_LENGTH (str
) - 1] == '\0')
5357 str_copy_len
+= STORE_MAX_PIECES
- 1;
5358 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
5360 str_copy_len
= MIN (str_copy_len
, exp_len
);
5361 if (!can_store_by_pieces (str_copy_len
, builtin_strncpy_read_str
,
5362 CONST_CAST (char *, TREE_STRING_POINTER (str
)),
5363 MEM_ALIGN (target
), false))
5368 dest_mem
= store_by_pieces (dest_mem
,
5369 str_copy_len
, builtin_strncpy_read_str
,
5371 TREE_STRING_POINTER (str
)),
5372 MEM_ALIGN (target
), false,
5373 exp_len
> str_copy_len
? 1 : 0);
5374 if (exp_len
> str_copy_len
)
5375 clear_storage (adjust_address (dest_mem
, BLKmode
, 0),
5376 GEN_INT (exp_len
- str_copy_len
),
5385 /* If we want to use a nontemporal store, force the value to
5387 tmp_target
= nontemporal
? NULL_RTX
: target
;
5388 temp
= expand_expr_real (exp
, tmp_target
, GET_MODE (target
),
5390 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
5393 /* Handle bounds returned by call. */
5394 if (TREE_CODE (exp
) == CALL_EXPR
)
5397 chkp_split_slot (temp
, &temp
, &bounds
);
5398 if (bounds
&& btarget
)
5400 gcc_assert (TREE_CODE (btarget
) == SSA_NAME
);
5401 rtx tmp
= targetm
.calls
.load_returned_bounds (bounds
);
5402 chkp_set_rtl_bounds (btarget
, tmp
);
5407 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5408 the same as that of TARGET, adjust the constant. This is needed, for
5409 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5410 only a word-sized value. */
5411 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
5412 && TREE_CODE (exp
) != ERROR_MARK
5413 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
5414 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5415 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5417 /* If value was not generated in the target, store it there.
5418 Convert the value to TARGET's type first if necessary and emit the
5419 pending incrementations that have been queued when expanding EXP.
5420 Note that we cannot emit the whole queue blindly because this will
5421 effectively disable the POST_INC optimization later.
5423 If TEMP and TARGET compare equal according to rtx_equal_p, but
5424 one or both of them are volatile memory refs, we have to distinguish
5426 - expand_expr has used TARGET. In this case, we must not generate
5427 another copy. This can be detected by TARGET being equal according
5429 - expand_expr has not used TARGET - that means that the source just
5430 happens to have the same RTX form. Since temp will have been created
5431 by expand_expr, it will compare unequal according to == .
5432 We must generate a copy in this case, to reach the correct number
5433 of volatile memory references. */
5435 if ((! rtx_equal_p (temp
, target
)
5436 || (temp
!= target
&& (side_effects_p (temp
)
5437 || side_effects_p (target
))))
5438 && TREE_CODE (exp
) != ERROR_MARK
5439 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5440 but TARGET is not valid memory reference, TEMP will differ
5441 from TARGET although it is really the same location. */
5443 && rtx_equal_p (alt_rtl
, target
)
5444 && !side_effects_p (alt_rtl
)
5445 && !side_effects_p (target
))
5446 /* If there's nothing to copy, don't bother. Don't call
5447 expr_size unless necessary, because some front-ends (C++)
5448 expr_size-hook must not be given objects that are not
5449 supposed to be bit-copied or bit-initialized. */
5450 && expr_size (exp
) != const0_rtx
)
5452 if (GET_MODE (temp
) != GET_MODE (target
) && GET_MODE (temp
) != VOIDmode
)
5454 if (GET_MODE (target
) == BLKmode
)
5456 /* Handle calls that return BLKmode values in registers. */
5457 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
5458 copy_blkmode_from_reg (target
, temp
, TREE_TYPE (exp
));
5460 store_bit_field (target
,
5461 INTVAL (expr_size (exp
)) * BITS_PER_UNIT
,
5462 0, 0, 0, GET_MODE (temp
), temp
);
5465 convert_move (target
, temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5468 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
5470 /* Handle copying a string constant into an array. The string
5471 constant may be shorter than the array. So copy just the string's
5472 actual length, and clear the rest. First get the size of the data
5473 type of the string, which is actually the size of the target. */
5474 rtx size
= expr_size (exp
);
5476 if (CONST_INT_P (size
)
5477 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
5478 emit_block_move (target
, temp
, size
,
5480 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5483 machine_mode pointer_mode
5484 = targetm
.addr_space
.pointer_mode (MEM_ADDR_SPACE (target
));
5485 machine_mode address_mode
= get_address_mode (target
);
5487 /* Compute the size of the data to copy from the string. */
5489 = size_binop_loc (loc
, MIN_EXPR
,
5490 make_tree (sizetype
, size
),
5491 size_int (TREE_STRING_LENGTH (exp
)));
5493 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
5495 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
5496 rtx_code_label
*label
= 0;
5498 /* Copy that much. */
5499 copy_size_rtx
= convert_to_mode (pointer_mode
, copy_size_rtx
,
5500 TYPE_UNSIGNED (sizetype
));
5501 emit_block_move (target
, temp
, copy_size_rtx
,
5503 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5505 /* Figure out how much is left in TARGET that we have to clear.
5506 Do all calculations in pointer_mode. */
5507 if (CONST_INT_P (copy_size_rtx
))
5509 size
= plus_constant (address_mode
, size
,
5510 -INTVAL (copy_size_rtx
));
5511 target
= adjust_address (target
, BLKmode
,
5512 INTVAL (copy_size_rtx
));
5516 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
5517 copy_size_rtx
, NULL_RTX
, 0,
5520 if (GET_MODE (copy_size_rtx
) != address_mode
)
5521 copy_size_rtx
= convert_to_mode (address_mode
,
5523 TYPE_UNSIGNED (sizetype
));
5525 target
= offset_address (target
, copy_size_rtx
,
5526 highest_pow2_factor (copy_size
));
5527 label
= gen_label_rtx ();
5528 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
5529 GET_MODE (size
), 0, label
);
5532 if (size
!= const0_rtx
)
5533 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
5539 /* Handle calls that return values in multiple non-contiguous locations.
5540 The Irix 6 ABI has examples of this. */
5541 else if (GET_CODE (target
) == PARALLEL
)
5543 if (GET_CODE (temp
) == PARALLEL
)
5544 emit_group_move (target
, temp
);
5546 emit_group_load (target
, temp
, TREE_TYPE (exp
),
5547 int_size_in_bytes (TREE_TYPE (exp
)));
5549 else if (GET_CODE (temp
) == PARALLEL
)
5550 emit_group_store (target
, temp
, TREE_TYPE (exp
),
5551 int_size_in_bytes (TREE_TYPE (exp
)));
5552 else if (GET_MODE (temp
) == BLKmode
)
5553 emit_block_move (target
, temp
, expr_size (exp
),
5555 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5556 /* If we emit a nontemporal store, there is nothing else to do. */
5557 else if (nontemporal
&& emit_storent_insn (target
, temp
))
5561 temp
= force_operand (temp
, target
);
5563 emit_move_insn (target
, temp
);
5570 /* Same as store_expr_with_bounds but ignoring bounds of EXP. */
5572 store_expr (tree exp
, rtx target
, int call_param_p
, bool nontemporal
)
5574 return store_expr_with_bounds (exp
, target
, call_param_p
, nontemporal
, NULL
);
5577 /* Return true if field F of structure TYPE is a flexible array. */
5580 flexible_array_member_p (const_tree f
, const_tree type
)
5585 return (DECL_CHAIN (f
) == NULL
5586 && TREE_CODE (tf
) == ARRAY_TYPE
5588 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
5589 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
5590 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
5591 && int_size_in_bytes (type
) >= 0);
5594 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5595 must have in order for it to completely initialize a value of type TYPE.
5596 Return -1 if the number isn't known.
5598 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5600 static HOST_WIDE_INT
5601 count_type_elements (const_tree type
, bool for_ctor_p
)
5603 switch (TREE_CODE (type
))
5609 nelts
= array_type_nelts (type
);
5610 if (nelts
&& tree_fits_uhwi_p (nelts
))
5612 unsigned HOST_WIDE_INT n
;
5614 n
= tree_to_uhwi (nelts
) + 1;
5615 if (n
== 0 || for_ctor_p
)
5618 return n
* count_type_elements (TREE_TYPE (type
), false);
5620 return for_ctor_p
? -1 : 1;
5625 unsigned HOST_WIDE_INT n
;
5629 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5630 if (TREE_CODE (f
) == FIELD_DECL
)
5633 n
+= count_type_elements (TREE_TYPE (f
), false);
5634 else if (!flexible_array_member_p (f
, type
))
5635 /* Don't count flexible arrays, which are not supposed
5636 to be initialized. */
5644 case QUAL_UNION_TYPE
:
5649 gcc_assert (!for_ctor_p
);
5650 /* Estimate the number of scalars in each field and pick the
5651 maximum. Other estimates would do instead; the idea is simply
5652 to make sure that the estimate is not sensitive to the ordering
5655 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5656 if (TREE_CODE (f
) == FIELD_DECL
)
5658 m
= count_type_elements (TREE_TYPE (f
), false);
5659 /* If the field doesn't span the whole union, add an extra
5660 scalar for the rest. */
5661 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f
)),
5662 TYPE_SIZE (type
)) != 1)
5674 return TYPE_VECTOR_SUBPARTS (type
);
5678 case FIXED_POINT_TYPE
:
5683 case REFERENCE_TYPE
:
5699 /* Helper for categorize_ctor_elements. Identical interface. */
5702 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5703 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5705 unsigned HOST_WIDE_INT idx
;
5706 HOST_WIDE_INT nz_elts
, init_elts
, num_fields
;
5707 tree value
, purpose
, elt_type
;
5709 /* Whether CTOR is a valid constant initializer, in accordance with what
5710 initializer_constant_valid_p does. If inferred from the constructor
5711 elements, true until proven otherwise. */
5712 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
5713 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
5718 elt_type
= NULL_TREE
;
5720 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
5722 HOST_WIDE_INT mult
= 1;
5724 if (purpose
&& TREE_CODE (purpose
) == RANGE_EXPR
)
5726 tree lo_index
= TREE_OPERAND (purpose
, 0);
5727 tree hi_index
= TREE_OPERAND (purpose
, 1);
5729 if (tree_fits_uhwi_p (lo_index
) && tree_fits_uhwi_p (hi_index
))
5730 mult
= (tree_to_uhwi (hi_index
)
5731 - tree_to_uhwi (lo_index
) + 1);
5734 elt_type
= TREE_TYPE (value
);
5736 switch (TREE_CODE (value
))
5740 HOST_WIDE_INT nz
= 0, ic
= 0;
5742 bool const_elt_p
= categorize_ctor_elements_1 (value
, &nz
, &ic
,
5745 nz_elts
+= mult
* nz
;
5746 init_elts
+= mult
* ic
;
5748 if (const_from_elts_p
&& const_p
)
5749 const_p
= const_elt_p
;
5756 if (!initializer_zerop (value
))
5762 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
5763 init_elts
+= mult
* TREE_STRING_LENGTH (value
);
5767 if (!initializer_zerop (TREE_REALPART (value
)))
5769 if (!initializer_zerop (TREE_IMAGPART (value
)))
5777 for (i
= 0; i
< VECTOR_CST_NELTS (value
); ++i
)
5779 tree v
= VECTOR_CST_ELT (value
, i
);
5780 if (!initializer_zerop (v
))
5789 HOST_WIDE_INT tc
= count_type_elements (elt_type
, false);
5790 nz_elts
+= mult
* tc
;
5791 init_elts
+= mult
* tc
;
5793 if (const_from_elts_p
&& const_p
)
5794 const_p
= initializer_constant_valid_p (value
, elt_type
)
5801 if (*p_complete
&& !complete_ctor_at_level_p (TREE_TYPE (ctor
),
5802 num_fields
, elt_type
))
5803 *p_complete
= false;
5805 *p_nz_elts
+= nz_elts
;
5806 *p_init_elts
+= init_elts
;
5811 /* Examine CTOR to discover:
5812 * how many scalar fields are set to nonzero values,
5813 and place it in *P_NZ_ELTS;
5814 * how many scalar fields in total are in CTOR,
5815 and place it in *P_ELT_COUNT.
5816 * whether the constructor is complete -- in the sense that every
5817 meaningful byte is explicitly given a value --
5818 and place it in *P_COMPLETE.
5820 Return whether or not CTOR is a valid static constant initializer, the same
5821 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5824 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5825 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5831 return categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_init_elts
, p_complete
);
5834 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5835 of which had type LAST_TYPE. Each element was itself a complete
5836 initializer, in the sense that every meaningful byte was explicitly
5837 given a value. Return true if the same is true for the constructor
5841 complete_ctor_at_level_p (const_tree type
, HOST_WIDE_INT num_elts
,
5842 const_tree last_type
)
5844 if (TREE_CODE (type
) == UNION_TYPE
5845 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5850 gcc_assert (num_elts
== 1 && last_type
);
5852 /* ??? We could look at each element of the union, and find the
5853 largest element. Which would avoid comparing the size of the
5854 initialized element against any tail padding in the union.
5855 Doesn't seem worth the effort... */
5856 return simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (last_type
)) == 1;
5859 return count_type_elements (type
, true) == num_elts
;
5862 /* Return 1 if EXP contains mostly (3/4) zeros. */
5865 mostly_zeros_p (const_tree exp
)
5867 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5869 HOST_WIDE_INT nz_elts
, init_elts
;
5872 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5873 return !complete_p
|| nz_elts
< init_elts
/ 4;
5876 return initializer_zerop (exp
);
5879 /* Return 1 if EXP contains all zeros. */
5882 all_zeros_p (const_tree exp
)
5884 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5886 HOST_WIDE_INT nz_elts
, init_elts
;
5889 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5890 return nz_elts
== 0;
5893 return initializer_zerop (exp
);
5896 /* Helper function for store_constructor.
5897 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5898 CLEARED is as for store_constructor.
5899 ALIAS_SET is the alias set to use for any stores.
5901 This provides a recursive shortcut back to store_constructor when it isn't
5902 necessary to go through store_field. This is so that we can pass through
5903 the cleared field to let store_constructor know that we may not have to
5904 clear a substructure if the outer structure has already been cleared. */
5907 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
5908 HOST_WIDE_INT bitpos
, machine_mode mode
,
5909 tree exp
, int cleared
, alias_set_type alias_set
)
5911 if (TREE_CODE (exp
) == CONSTRUCTOR
5912 /* We can only call store_constructor recursively if the size and
5913 bit position are on a byte boundary. */
5914 && bitpos
% BITS_PER_UNIT
== 0
5915 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
5916 /* If we have a nonzero bitpos for a register target, then we just
5917 let store_field do the bitfield handling. This is unlikely to
5918 generate unnecessary clear instructions anyways. */
5919 && (bitpos
== 0 || MEM_P (target
)))
5923 = adjust_address (target
,
5924 GET_MODE (target
) == BLKmode
5926 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
5927 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5930 /* Update the alias set, if required. */
5931 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
5932 && MEM_ALIAS_SET (target
) != 0)
5934 target
= copy_rtx (target
);
5935 set_mem_alias_set (target
, alias_set
);
5938 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
5941 store_field (target
, bitsize
, bitpos
, 0, 0, mode
, exp
, alias_set
, false);
5945 /* Returns the number of FIELD_DECLs in TYPE. */
5948 fields_length (const_tree type
)
5950 tree t
= TYPE_FIELDS (type
);
5953 for (; t
; t
= DECL_CHAIN (t
))
5954 if (TREE_CODE (t
) == FIELD_DECL
)
5961 /* Store the value of constructor EXP into the rtx TARGET.
5962 TARGET is either a REG or a MEM; we know it cannot conflict, since
5963 safe_from_p has been called.
5964 CLEARED is true if TARGET is known to have been zero'd.
5965 SIZE is the number of bytes of TARGET we are allowed to modify: this
5966 may not be the same as the size of EXP if we are assigning to a field
5967 which has been packed to exclude padding bits. */
5970 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
5972 tree type
= TREE_TYPE (exp
);
5973 #ifdef WORD_REGISTER_OPERATIONS
5974 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
5977 switch (TREE_CODE (type
))
5981 case QUAL_UNION_TYPE
:
5983 unsigned HOST_WIDE_INT idx
;
5986 /* If size is zero or the target is already cleared, do nothing. */
5987 if (size
== 0 || cleared
)
5989 /* We either clear the aggregate or indicate the value is dead. */
5990 else if ((TREE_CODE (type
) == UNION_TYPE
5991 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5992 && ! CONSTRUCTOR_ELTS (exp
))
5993 /* If the constructor is empty, clear the union. */
5995 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
5999 /* If we are building a static constructor into a register,
6000 set the initial value as zero so we can fold the value into
6001 a constant. But if more than one register is involved,
6002 this probably loses. */
6003 else if (REG_P (target
) && TREE_STATIC (exp
)
6004 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
6006 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6010 /* If the constructor has fewer fields than the structure or
6011 if we are initializing the structure to mostly zeros, clear
6012 the whole structure first. Don't do this if TARGET is a
6013 register whose mode size isn't equal to SIZE since
6014 clear_storage can't handle this case. */
6016 && (((int)vec_safe_length (CONSTRUCTOR_ELTS (exp
))
6017 != fields_length (type
))
6018 || mostly_zeros_p (exp
))
6020 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
6023 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6027 if (REG_P (target
) && !cleared
)
6028 emit_clobber (target
);
6030 /* Store each element of the constructor into the
6031 corresponding field of TARGET. */
6032 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
6035 HOST_WIDE_INT bitsize
;
6036 HOST_WIDE_INT bitpos
= 0;
6038 rtx to_rtx
= target
;
6040 /* Just ignore missing fields. We cleared the whole
6041 structure, above, if any fields are missing. */
6045 if (cleared
&& initializer_zerop (value
))
6048 if (tree_fits_uhwi_p (DECL_SIZE (field
)))
6049 bitsize
= tree_to_uhwi (DECL_SIZE (field
));
6053 mode
= DECL_MODE (field
);
6054 if (DECL_BIT_FIELD (field
))
6057 offset
= DECL_FIELD_OFFSET (field
);
6058 if (tree_fits_shwi_p (offset
)
6059 && tree_fits_shwi_p (bit_position (field
)))
6061 bitpos
= int_bit_position (field
);
6065 bitpos
= tree_to_shwi (DECL_FIELD_BIT_OFFSET (field
));
6069 machine_mode address_mode
;
6073 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
6074 make_tree (TREE_TYPE (exp
),
6077 offset_rtx
= expand_normal (offset
);
6078 gcc_assert (MEM_P (to_rtx
));
6080 address_mode
= get_address_mode (to_rtx
);
6081 if (GET_MODE (offset_rtx
) != address_mode
)
6082 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
6084 to_rtx
= offset_address (to_rtx
, offset_rtx
,
6085 highest_pow2_factor (offset
));
6088 #ifdef WORD_REGISTER_OPERATIONS
6089 /* If this initializes a field that is smaller than a
6090 word, at the start of a word, try to widen it to a full
6091 word. This special case allows us to output C++ member
6092 function initializations in a form that the optimizers
6095 && bitsize
< BITS_PER_WORD
6096 && bitpos
% BITS_PER_WORD
== 0
6097 && GET_MODE_CLASS (mode
) == MODE_INT
6098 && TREE_CODE (value
) == INTEGER_CST
6100 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
6102 tree type
= TREE_TYPE (value
);
6104 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
6106 type
= lang_hooks
.types
.type_for_mode
6107 (word_mode
, TYPE_UNSIGNED (type
));
6108 value
= fold_convert (type
, value
);
6111 if (BYTES_BIG_ENDIAN
)
6113 = fold_build2 (LSHIFT_EXPR
, type
, value
,
6114 build_int_cst (type
,
6115 BITS_PER_WORD
- bitsize
));
6116 bitsize
= BITS_PER_WORD
;
6121 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
6122 && DECL_NONADDRESSABLE_P (field
))
6124 to_rtx
= copy_rtx (to_rtx
);
6125 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
6128 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
6130 get_alias_set (TREE_TYPE (field
)));
6137 unsigned HOST_WIDE_INT i
;
6140 tree elttype
= TREE_TYPE (type
);
6142 HOST_WIDE_INT minelt
= 0;
6143 HOST_WIDE_INT maxelt
= 0;
6145 domain
= TYPE_DOMAIN (type
);
6146 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
6147 && TYPE_MAX_VALUE (domain
)
6148 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain
))
6149 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain
)));
6151 /* If we have constant bounds for the range of the type, get them. */
6154 minelt
= tree_to_shwi (TYPE_MIN_VALUE (domain
));
6155 maxelt
= tree_to_shwi (TYPE_MAX_VALUE (domain
));
6158 /* If the constructor has fewer elements than the array, clear
6159 the whole array first. Similarly if this is static
6160 constructor of a non-BLKmode object. */
6163 else if (REG_P (target
) && TREE_STATIC (exp
))
6167 unsigned HOST_WIDE_INT idx
;
6169 HOST_WIDE_INT count
= 0, zero_count
= 0;
6170 need_to_clear
= ! const_bounds_p
;
6172 /* This loop is a more accurate version of the loop in
6173 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6174 is also needed to check for missing elements. */
6175 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
6177 HOST_WIDE_INT this_node_count
;
6182 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6184 tree lo_index
= TREE_OPERAND (index
, 0);
6185 tree hi_index
= TREE_OPERAND (index
, 1);
6187 if (! tree_fits_uhwi_p (lo_index
)
6188 || ! tree_fits_uhwi_p (hi_index
))
6194 this_node_count
= (tree_to_uhwi (hi_index
)
6195 - tree_to_uhwi (lo_index
) + 1);
6198 this_node_count
= 1;
6200 count
+= this_node_count
;
6201 if (mostly_zeros_p (value
))
6202 zero_count
+= this_node_count
;
6205 /* Clear the entire array first if there are any missing
6206 elements, or if the incidence of zero elements is >=
6209 && (count
< maxelt
- minelt
+ 1
6210 || 4 * zero_count
>= 3 * count
))
6214 if (need_to_clear
&& size
> 0)
6217 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6219 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6223 if (!cleared
&& REG_P (target
))
6224 /* Inform later passes that the old value is dead. */
6225 emit_clobber (target
);
6227 /* Store each element of the constructor into the
6228 corresponding element of TARGET, determined by counting the
6230 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
6233 HOST_WIDE_INT bitsize
;
6234 HOST_WIDE_INT bitpos
;
6235 rtx xtarget
= target
;
6237 if (cleared
&& initializer_zerop (value
))
6240 mode
= TYPE_MODE (elttype
);
6241 if (mode
== BLKmode
)
6242 bitsize
= (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6243 ? tree_to_uhwi (TYPE_SIZE (elttype
))
6246 bitsize
= GET_MODE_BITSIZE (mode
);
6248 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6250 tree lo_index
= TREE_OPERAND (index
, 0);
6251 tree hi_index
= TREE_OPERAND (index
, 1);
6252 rtx index_r
, pos_rtx
;
6253 HOST_WIDE_INT lo
, hi
, count
;
6256 /* If the range is constant and "small", unroll the loop. */
6258 && tree_fits_shwi_p (lo_index
)
6259 && tree_fits_shwi_p (hi_index
)
6260 && (lo
= tree_to_shwi (lo_index
),
6261 hi
= tree_to_shwi (hi_index
),
6262 count
= hi
- lo
+ 1,
6265 || (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6266 && (tree_to_uhwi (TYPE_SIZE (elttype
)) * count
6269 lo
-= minelt
; hi
-= minelt
;
6270 for (; lo
<= hi
; lo
++)
6272 bitpos
= lo
* tree_to_shwi (TYPE_SIZE (elttype
));
6275 && !MEM_KEEP_ALIAS_SET_P (target
)
6276 && TREE_CODE (type
) == ARRAY_TYPE
6277 && TYPE_NONALIASED_COMPONENT (type
))
6279 target
= copy_rtx (target
);
6280 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6283 store_constructor_field
6284 (target
, bitsize
, bitpos
, mode
, value
, cleared
,
6285 get_alias_set (elttype
));
6290 rtx_code_label
*loop_start
= gen_label_rtx ();
6291 rtx_code_label
*loop_end
= gen_label_rtx ();
6294 expand_normal (hi_index
);
6296 index
= build_decl (EXPR_LOCATION (exp
),
6297 VAR_DECL
, NULL_TREE
, domain
);
6298 index_r
= gen_reg_rtx (promote_decl_mode (index
, NULL
));
6299 SET_DECL_RTL (index
, index_r
);
6300 store_expr (lo_index
, index_r
, 0, false);
6302 /* Build the head of the loop. */
6303 do_pending_stack_adjust ();
6304 emit_label (loop_start
);
6306 /* Assign value to element index. */
6308 fold_convert (ssizetype
,
6309 fold_build2 (MINUS_EXPR
,
6312 TYPE_MIN_VALUE (domain
)));
6315 size_binop (MULT_EXPR
, position
,
6316 fold_convert (ssizetype
,
6317 TYPE_SIZE_UNIT (elttype
)));
6319 pos_rtx
= expand_normal (position
);
6320 xtarget
= offset_address (target
, pos_rtx
,
6321 highest_pow2_factor (position
));
6322 xtarget
= adjust_address (xtarget
, mode
, 0);
6323 if (TREE_CODE (value
) == CONSTRUCTOR
)
6324 store_constructor (value
, xtarget
, cleared
,
6325 bitsize
/ BITS_PER_UNIT
);
6327 store_expr (value
, xtarget
, 0, false);
6329 /* Generate a conditional jump to exit the loop. */
6330 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
6332 jumpif (exit_cond
, loop_end
, -1);
6334 /* Update the loop counter, and jump to the head of
6336 expand_assignment (index
,
6337 build2 (PLUS_EXPR
, TREE_TYPE (index
),
6338 index
, integer_one_node
),
6341 emit_jump (loop_start
);
6343 /* Build the end of the loop. */
6344 emit_label (loop_end
);
6347 else if ((index
!= 0 && ! tree_fits_shwi_p (index
))
6348 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype
)))
6353 index
= ssize_int (1);
6356 index
= fold_convert (ssizetype
,
6357 fold_build2 (MINUS_EXPR
,
6360 TYPE_MIN_VALUE (domain
)));
6363 size_binop (MULT_EXPR
, index
,
6364 fold_convert (ssizetype
,
6365 TYPE_SIZE_UNIT (elttype
)));
6366 xtarget
= offset_address (target
,
6367 expand_normal (position
),
6368 highest_pow2_factor (position
));
6369 xtarget
= adjust_address (xtarget
, mode
, 0);
6370 store_expr (value
, xtarget
, 0, false);
6375 bitpos
= ((tree_to_shwi (index
) - minelt
)
6376 * tree_to_uhwi (TYPE_SIZE (elttype
)));
6378 bitpos
= (i
* tree_to_uhwi (TYPE_SIZE (elttype
)));
6380 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
6381 && TREE_CODE (type
) == ARRAY_TYPE
6382 && TYPE_NONALIASED_COMPONENT (type
))
6384 target
= copy_rtx (target
);
6385 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6387 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
6388 cleared
, get_alias_set (elttype
));
6396 unsigned HOST_WIDE_INT idx
;
6397 constructor_elt
*ce
;
6400 int icode
= CODE_FOR_nothing
;
6401 tree elttype
= TREE_TYPE (type
);
6402 int elt_size
= tree_to_uhwi (TYPE_SIZE (elttype
));
6403 machine_mode eltmode
= TYPE_MODE (elttype
);
6404 HOST_WIDE_INT bitsize
;
6405 HOST_WIDE_INT bitpos
;
6406 rtvec vector
= NULL
;
6408 alias_set_type alias
;
6410 gcc_assert (eltmode
!= BLKmode
);
6412 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
6413 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
6415 machine_mode mode
= GET_MODE (target
);
6417 icode
= (int) optab_handler (vec_init_optab
, mode
);
6418 /* Don't use vec_init<mode> if some elements have VECTOR_TYPE. */
6419 if (icode
!= CODE_FOR_nothing
)
6423 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6424 if (TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
)
6426 icode
= CODE_FOR_nothing
;
6430 if (icode
!= CODE_FOR_nothing
)
6434 vector
= rtvec_alloc (n_elts
);
6435 for (i
= 0; i
< n_elts
; i
++)
6436 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
6440 /* If the constructor has fewer elements than the vector,
6441 clear the whole array first. Similarly if this is static
6442 constructor of a non-BLKmode object. */
6445 else if (REG_P (target
) && TREE_STATIC (exp
))
6449 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
6452 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6454 int n_elts_here
= tree_to_uhwi
6455 (int_const_binop (TRUNC_DIV_EXPR
,
6456 TYPE_SIZE (TREE_TYPE (value
)),
6457 TYPE_SIZE (elttype
)));
6459 count
+= n_elts_here
;
6460 if (mostly_zeros_p (value
))
6461 zero_count
+= n_elts_here
;
6464 /* Clear the entire vector first if there are any missing elements,
6465 or if the incidence of zero elements is >= 75%. */
6466 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
6469 if (need_to_clear
&& size
> 0 && !vector
)
6472 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6474 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6478 /* Inform later passes that the old value is dead. */
6479 if (!cleared
&& !vector
&& REG_P (target
))
6480 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6483 alias
= MEM_ALIAS_SET (target
);
6485 alias
= get_alias_set (elttype
);
6487 /* Store each element of the constructor into the corresponding
6488 element of TARGET, determined by counting the elements. */
6489 for (idx
= 0, i
= 0;
6490 vec_safe_iterate (CONSTRUCTOR_ELTS (exp
), idx
, &ce
);
6491 idx
++, i
+= bitsize
/ elt_size
)
6493 HOST_WIDE_INT eltpos
;
6494 tree value
= ce
->value
;
6496 bitsize
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value
)));
6497 if (cleared
&& initializer_zerop (value
))
6501 eltpos
= tree_to_uhwi (ce
->index
);
6507 /* vec_init<mode> should not be used if there are VECTOR_TYPE
6509 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
6510 RTVEC_ELT (vector
, eltpos
)
6511 = expand_normal (value
);
6515 machine_mode value_mode
=
6516 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
6517 ? TYPE_MODE (TREE_TYPE (value
))
6519 bitpos
= eltpos
* elt_size
;
6520 store_constructor_field (target
, bitsize
, bitpos
, value_mode
,
6521 value
, cleared
, alias
);
6526 emit_insn (GEN_FCN (icode
)
6528 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
6537 /* Store the value of EXP (an expression tree)
6538 into a subfield of TARGET which has mode MODE and occupies
6539 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6540 If MODE is VOIDmode, it means that we are storing into a bit-field.
6542 BITREGION_START is bitpos of the first bitfield in this region.
6543 BITREGION_END is the bitpos of the ending bitfield in this region.
6544 These two fields are 0, if the C++ memory model does not apply,
6545 or we are not interested in keeping track of bitfield regions.
6547 Always return const0_rtx unless we have something particular to
6550 ALIAS_SET is the alias set for the destination. This value will
6551 (in general) be different from that for TARGET, since TARGET is a
6552 reference to the containing structure.
6554 If NONTEMPORAL is true, try generating a nontemporal store. */
6557 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
6558 unsigned HOST_WIDE_INT bitregion_start
,
6559 unsigned HOST_WIDE_INT bitregion_end
,
6560 machine_mode mode
, tree exp
,
6561 alias_set_type alias_set
, bool nontemporal
)
6563 if (TREE_CODE (exp
) == ERROR_MARK
)
6566 /* If we have nothing to store, do nothing unless the expression has
6569 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6571 if (GET_CODE (target
) == CONCAT
)
6573 /* We're storing into a struct containing a single __complex. */
6575 gcc_assert (!bitpos
);
6576 return store_expr (exp
, target
, 0, nontemporal
);
6579 /* If the structure is in a register or if the component
6580 is a bit field, we cannot use addressing to access it.
6581 Use bit-field techniques or SUBREG to store in it. */
6583 if (mode
== VOIDmode
6584 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
6585 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
6586 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
6588 || GET_CODE (target
) == SUBREG
6589 /* If the field isn't aligned enough to store as an ordinary memref,
6590 store it as a bit field. */
6592 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
6593 || bitpos
% GET_MODE_ALIGNMENT (mode
))
6594 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
6595 || (bitpos
% BITS_PER_UNIT
!= 0)))
6596 || (bitsize
>= 0 && mode
!= BLKmode
6597 && GET_MODE_BITSIZE (mode
) > bitsize
)
6598 /* If the RHS and field are a constant size and the size of the
6599 RHS isn't the same size as the bitfield, we must use bitfield
6602 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
6603 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0)
6604 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6605 decl we must use bitfield operations. */
6607 && TREE_CODE (exp
) == MEM_REF
6608 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
6609 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
6610 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp
, 0),0 ))
6611 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)) != BLKmode
))
6616 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6617 implies a mask operation. If the precision is the same size as
6618 the field we're storing into, that mask is redundant. This is
6619 particularly common with bit field assignments generated by the
6621 nop_def
= get_def_for_expr (exp
, NOP_EXPR
);
6624 tree type
= TREE_TYPE (exp
);
6625 if (INTEGRAL_TYPE_P (type
)
6626 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
6627 && bitsize
== TYPE_PRECISION (type
))
6629 tree op
= gimple_assign_rhs1 (nop_def
);
6630 type
= TREE_TYPE (op
);
6631 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
6636 temp
= expand_normal (exp
);
6638 /* If BITSIZE is narrower than the size of the type of EXP
6639 we will be narrowing TEMP. Normally, what's wanted are the
6640 low-order bits. However, if EXP's type is a record and this is
6641 big-endian machine, we want the upper BITSIZE bits. */
6642 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
6643 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
6644 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
6645 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
6646 GET_MODE_BITSIZE (GET_MODE (temp
)) - bitsize
,
6649 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6650 if (mode
!= VOIDmode
&& mode
!= BLKmode
6651 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
6652 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
6654 /* If TEMP is not a PARALLEL (see below) and its mode and that of TARGET
6655 are both BLKmode, both must be in memory and BITPOS must be aligned
6656 on a byte boundary. If so, we simply do a block copy. Likewise for
6657 a BLKmode-like TARGET. */
6658 if (GET_CODE (temp
) != PARALLEL
6659 && GET_MODE (temp
) == BLKmode
6660 && (GET_MODE (target
) == BLKmode
6662 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
6663 && (bitpos
% BITS_PER_UNIT
) == 0
6664 && (bitsize
% BITS_PER_UNIT
) == 0)))
6666 gcc_assert (MEM_P (target
) && MEM_P (temp
)
6667 && (bitpos
% BITS_PER_UNIT
) == 0);
6669 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
6670 emit_block_move (target
, temp
,
6671 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
6678 /* Handle calls that return values in multiple non-contiguous locations.
6679 The Irix 6 ABI has examples of this. */
6680 if (GET_CODE (temp
) == PARALLEL
)
6682 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6684 if (mode
== BLKmode
|| mode
== VOIDmode
)
6685 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6686 temp_target
= gen_reg_rtx (mode
);
6687 emit_group_store (temp_target
, temp
, TREE_TYPE (exp
), size
);
6690 else if (mode
== BLKmode
)
6692 /* Handle calls that return BLKmode values in registers. */
6693 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
6695 rtx temp_target
= gen_reg_rtx (GET_MODE (temp
));
6696 copy_blkmode_from_reg (temp_target
, temp
, TREE_TYPE (exp
));
6701 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6703 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6704 temp_target
= gen_reg_rtx (mode
);
6706 = extract_bit_field (temp
, size
* BITS_PER_UNIT
, 0, 1,
6707 temp_target
, mode
, mode
);
6712 /* Store the value in the bitfield. */
6713 store_bit_field (target
, bitsize
, bitpos
,
6714 bitregion_start
, bitregion_end
,
6721 /* Now build a reference to just the desired component. */
6722 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
6724 if (to_rtx
== target
)
6725 to_rtx
= copy_rtx (to_rtx
);
6727 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
6728 set_mem_alias_set (to_rtx
, alias_set
);
6730 return store_expr (exp
, to_rtx
, 0, nontemporal
);
6734 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6735 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6736 codes and find the ultimate containing object, which we return.
6738 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6739 bit position, and *PUNSIGNEDP to the signedness of the field.
6740 If the position of the field is variable, we store a tree
6741 giving the variable offset (in units) in *POFFSET.
6742 This offset is in addition to the bit position.
6743 If the position is not variable, we store 0 in *POFFSET.
6745 If any of the extraction expressions is volatile,
6746 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6748 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6749 Otherwise, it is a mode that can be used to access the field.
6751 If the field describes a variable-sized object, *PMODE is set to
6752 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6753 this case, but the address of the object can be found.
6755 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6756 look through nodes that serve as markers of a greater alignment than
6757 the one that can be deduced from the expression. These nodes make it
6758 possible for front-ends to prevent temporaries from being created by
6759 the middle-end on alignment considerations. For that purpose, the
6760 normal operating mode at high-level is to always pass FALSE so that
6761 the ultimate containing object is really returned; moreover, the
6762 associated predicate handled_component_p will always return TRUE
6763 on these nodes, thus indicating that they are essentially handled
6764 by get_inner_reference. TRUE should only be passed when the caller
6765 is scanning the expression in order to build another representation
6766 and specifically knows how to handle these nodes; as such, this is
6767 the normal operating mode in the RTL expanders. */
6770 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
6771 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
6772 machine_mode
*pmode
, int *punsignedp
,
6773 int *pvolatilep
, bool keep_aligning
)
6776 machine_mode mode
= VOIDmode
;
6777 bool blkmode_bitfield
= false;
6778 tree offset
= size_zero_node
;
6779 offset_int bit_offset
= 0;
6781 /* First get the mode, signedness, and size. We do this from just the
6782 outermost expression. */
6784 if (TREE_CODE (exp
) == COMPONENT_REF
)
6786 tree field
= TREE_OPERAND (exp
, 1);
6787 size_tree
= DECL_SIZE (field
);
6788 if (flag_strict_volatile_bitfields
> 0
6789 && TREE_THIS_VOLATILE (exp
)
6790 && DECL_BIT_FIELD_TYPE (field
)
6791 && DECL_MODE (field
) != BLKmode
)
6792 /* Volatile bitfields should be accessed in the mode of the
6793 field's type, not the mode computed based on the bit
6795 mode
= TYPE_MODE (DECL_BIT_FIELD_TYPE (field
));
6796 else if (!DECL_BIT_FIELD (field
))
6797 mode
= DECL_MODE (field
);
6798 else if (DECL_MODE (field
) == BLKmode
)
6799 blkmode_bitfield
= true;
6801 *punsignedp
= DECL_UNSIGNED (field
);
6803 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
6805 size_tree
= TREE_OPERAND (exp
, 1);
6806 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
6807 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
6809 /* For vector types, with the correct size of access, use the mode of
6811 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
6812 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6813 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
6814 mode
= TYPE_MODE (TREE_TYPE (exp
));
6818 mode
= TYPE_MODE (TREE_TYPE (exp
));
6819 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
6821 if (mode
== BLKmode
)
6822 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
6824 *pbitsize
= GET_MODE_BITSIZE (mode
);
6829 if (! tree_fits_uhwi_p (size_tree
))
6830 mode
= BLKmode
, *pbitsize
= -1;
6832 *pbitsize
= tree_to_uhwi (size_tree
);
6835 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6836 and find the ultimate containing object. */
6839 switch (TREE_CODE (exp
))
6842 bit_offset
+= wi::to_offset (TREE_OPERAND (exp
, 2));
6847 tree field
= TREE_OPERAND (exp
, 1);
6848 tree this_offset
= component_ref_field_offset (exp
);
6850 /* If this field hasn't been filled in yet, don't go past it.
6851 This should only happen when folding expressions made during
6852 type construction. */
6853 if (this_offset
== 0)
6856 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
6857 bit_offset
+= wi::to_offset (DECL_FIELD_BIT_OFFSET (field
));
6859 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6864 case ARRAY_RANGE_REF
:
6866 tree index
= TREE_OPERAND (exp
, 1);
6867 tree low_bound
= array_ref_low_bound (exp
);
6868 tree unit_size
= array_ref_element_size (exp
);
6870 /* We assume all arrays have sizes that are a multiple of a byte.
6871 First subtract the lower bound, if any, in the type of the
6872 index, then convert to sizetype and multiply by the size of
6873 the array element. */
6874 if (! integer_zerop (low_bound
))
6875 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
6878 offset
= size_binop (PLUS_EXPR
, offset
,
6879 size_binop (MULT_EXPR
,
6880 fold_convert (sizetype
, index
),
6889 bit_offset
+= *pbitsize
;
6892 case VIEW_CONVERT_EXPR
:
6893 if (keep_aligning
&& STRICT_ALIGNMENT
6894 && (TYPE_ALIGN (TREE_TYPE (exp
))
6895 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
6896 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6897 < BIGGEST_ALIGNMENT
)
6898 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
6899 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
6904 /* Hand back the decl for MEM[&decl, off]. */
6905 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
)
6907 tree off
= TREE_OPERAND (exp
, 1);
6908 if (!integer_zerop (off
))
6910 offset_int boff
, coff
= mem_ref_offset (exp
);
6911 boff
= wi::lshift (coff
, LOG2_BITS_PER_UNIT
);
6914 exp
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
6922 /* If any reference in the chain is volatile, the effect is volatile. */
6923 if (TREE_THIS_VOLATILE (exp
))
6926 exp
= TREE_OPERAND (exp
, 0);
6930 /* If OFFSET is constant, see if we can return the whole thing as a
6931 constant bit position. Make sure to handle overflow during
6933 if (TREE_CODE (offset
) == INTEGER_CST
)
6935 offset_int tem
= wi::sext (wi::to_offset (offset
),
6936 TYPE_PRECISION (sizetype
));
6937 tem
= wi::lshift (tem
, LOG2_BITS_PER_UNIT
);
6939 if (wi::fits_shwi_p (tem
))
6941 *pbitpos
= tem
.to_shwi ();
6942 *poffset
= offset
= NULL_TREE
;
6946 /* Otherwise, split it up. */
6949 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6950 if (wi::neg_p (bit_offset
) || !wi::fits_shwi_p (bit_offset
))
6952 offset_int mask
= wi::mask
<offset_int
> (LOG2_BITS_PER_UNIT
, false);
6953 offset_int tem
= bit_offset
.and_not (mask
);
6954 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6955 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6957 tem
= wi::arshift (tem
, LOG2_BITS_PER_UNIT
);
6958 offset
= size_binop (PLUS_EXPR
, offset
,
6959 wide_int_to_tree (sizetype
, tem
));
6962 *pbitpos
= bit_offset
.to_shwi ();
6966 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6967 if (mode
== VOIDmode
6969 && (*pbitpos
% BITS_PER_UNIT
) == 0
6970 && (*pbitsize
% BITS_PER_UNIT
) == 0)
6978 /* Return a tree of sizetype representing the size, in bytes, of the element
6979 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6982 array_ref_element_size (tree exp
)
6984 tree aligned_size
= TREE_OPERAND (exp
, 3);
6985 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6986 location_t loc
= EXPR_LOCATION (exp
);
6988 /* If a size was specified in the ARRAY_REF, it's the size measured
6989 in alignment units of the element type. So multiply by that value. */
6992 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6993 sizetype from another type of the same width and signedness. */
6994 if (TREE_TYPE (aligned_size
) != sizetype
)
6995 aligned_size
= fold_convert_loc (loc
, sizetype
, aligned_size
);
6996 return size_binop_loc (loc
, MULT_EXPR
, aligned_size
,
6997 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
7000 /* Otherwise, take the size from that of the element type. Substitute
7001 any PLACEHOLDER_EXPR that we have. */
7003 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
7006 /* Return a tree representing the lower bound of the array mentioned in
7007 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
7010 array_ref_low_bound (tree exp
)
7012 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
7014 /* If a lower bound is specified in EXP, use it. */
7015 if (TREE_OPERAND (exp
, 2))
7016 return TREE_OPERAND (exp
, 2);
7018 /* Otherwise, if there is a domain type and it has a lower bound, use it,
7019 substituting for a PLACEHOLDER_EXPR as needed. */
7020 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
7021 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
7023 /* Otherwise, return a zero of the appropriate type. */
7024 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
7027 /* Returns true if REF is an array reference to an array at the end of
7028 a structure. If this is the case, the array may be allocated larger
7029 than its upper bound implies. */
7032 array_at_struct_end_p (tree ref
)
7034 if (TREE_CODE (ref
) != ARRAY_REF
7035 && TREE_CODE (ref
) != ARRAY_RANGE_REF
)
7038 while (handled_component_p (ref
))
7040 /* If the reference chain contains a component reference to a
7041 non-union type and there follows another field the reference
7042 is not at the end of a structure. */
7043 if (TREE_CODE (ref
) == COMPONENT_REF
7044 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref
, 0))) == RECORD_TYPE
)
7046 tree nextf
= DECL_CHAIN (TREE_OPERAND (ref
, 1));
7047 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
7048 nextf
= DECL_CHAIN (nextf
);
7053 ref
= TREE_OPERAND (ref
, 0);
7056 /* If the reference is based on a declared entity, the size of the array
7057 is constrained by its given domain. */
7064 /* Return a tree representing the upper bound of the array mentioned in
7065 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
7068 array_ref_up_bound (tree exp
)
7070 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
7072 /* If there is a domain type and it has an upper bound, use it, substituting
7073 for a PLACEHOLDER_EXPR as needed. */
7074 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
7075 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
7077 /* Otherwise fail. */
7081 /* Return a tree representing the offset, in bytes, of the field referenced
7082 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
7085 component_ref_field_offset (tree exp
)
7087 tree aligned_offset
= TREE_OPERAND (exp
, 2);
7088 tree field
= TREE_OPERAND (exp
, 1);
7089 location_t loc
= EXPR_LOCATION (exp
);
7091 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
7092 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
7096 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
7097 sizetype from another type of the same width and signedness. */
7098 if (TREE_TYPE (aligned_offset
) != sizetype
)
7099 aligned_offset
= fold_convert_loc (loc
, sizetype
, aligned_offset
);
7100 return size_binop_loc (loc
, MULT_EXPR
, aligned_offset
,
7101 size_int (DECL_OFFSET_ALIGN (field
)
7105 /* Otherwise, take the offset from that of the field. Substitute
7106 any PLACEHOLDER_EXPR that we have. */
7108 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
7111 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7113 static unsigned HOST_WIDE_INT
7114 target_align (const_tree target
)
7116 /* We might have a chain of nested references with intermediate misaligning
7117 bitfields components, so need to recurse to find out. */
7119 unsigned HOST_WIDE_INT this_align
, outer_align
;
7121 switch (TREE_CODE (target
))
7127 this_align
= DECL_ALIGN (TREE_OPERAND (target
, 1));
7128 outer_align
= target_align (TREE_OPERAND (target
, 0));
7129 return MIN (this_align
, outer_align
);
7132 case ARRAY_RANGE_REF
:
7133 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7134 outer_align
= target_align (TREE_OPERAND (target
, 0));
7135 return MIN (this_align
, outer_align
);
7138 case NON_LVALUE_EXPR
:
7139 case VIEW_CONVERT_EXPR
:
7140 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7141 outer_align
= target_align (TREE_OPERAND (target
, 0));
7142 return MAX (this_align
, outer_align
);
7145 return TYPE_ALIGN (TREE_TYPE (target
));
7150 /* Given an rtx VALUE that may contain additions and multiplications, return
7151 an equivalent value that just refers to a register, memory, or constant.
7152 This is done by generating instructions to perform the arithmetic and
7153 returning a pseudo-register containing the value.
7155 The returned value may be a REG, SUBREG, MEM or constant. */
7158 force_operand (rtx value
, rtx target
)
7161 /* Use subtarget as the target for operand 0 of a binary operation. */
7162 rtx subtarget
= get_subtarget (target
);
7163 enum rtx_code code
= GET_CODE (value
);
7165 /* Check for subreg applied to an expression produced by loop optimizer. */
7167 && !REG_P (SUBREG_REG (value
))
7168 && !MEM_P (SUBREG_REG (value
)))
7171 = simplify_gen_subreg (GET_MODE (value
),
7172 force_reg (GET_MODE (SUBREG_REG (value
)),
7173 force_operand (SUBREG_REG (value
),
7175 GET_MODE (SUBREG_REG (value
)),
7176 SUBREG_BYTE (value
));
7177 code
= GET_CODE (value
);
7180 /* Check for a PIC address load. */
7181 if ((code
== PLUS
|| code
== MINUS
)
7182 && XEXP (value
, 0) == pic_offset_table_rtx
7183 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
7184 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
7185 || GET_CODE (XEXP (value
, 1)) == CONST
))
7188 subtarget
= gen_reg_rtx (GET_MODE (value
));
7189 emit_move_insn (subtarget
, value
);
7193 if (ARITHMETIC_P (value
))
7195 op2
= XEXP (value
, 1);
7196 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
7198 if (code
== MINUS
&& CONST_INT_P (op2
))
7201 op2
= negate_rtx (GET_MODE (value
), op2
);
7204 /* Check for an addition with OP2 a constant integer and our first
7205 operand a PLUS of a virtual register and something else. In that
7206 case, we want to emit the sum of the virtual register and the
7207 constant first and then add the other value. This allows virtual
7208 register instantiation to simply modify the constant rather than
7209 creating another one around this addition. */
7210 if (code
== PLUS
&& CONST_INT_P (op2
)
7211 && GET_CODE (XEXP (value
, 0)) == PLUS
7212 && REG_P (XEXP (XEXP (value
, 0), 0))
7213 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7214 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
7216 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
7217 XEXP (XEXP (value
, 0), 0), op2
,
7218 subtarget
, 0, OPTAB_LIB_WIDEN
);
7219 return expand_simple_binop (GET_MODE (value
), code
, temp
,
7220 force_operand (XEXP (XEXP (value
,
7222 target
, 0, OPTAB_LIB_WIDEN
);
7225 op1
= force_operand (XEXP (value
, 0), subtarget
);
7226 op2
= force_operand (op2
, NULL_RTX
);
7230 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
7232 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
7233 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7234 target
, 1, OPTAB_LIB_WIDEN
);
7236 return expand_divmod (0,
7237 FLOAT_MODE_P (GET_MODE (value
))
7238 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
7239 GET_MODE (value
), op1
, op2
, target
, 0);
7241 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7244 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
7247 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7250 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7251 target
, 0, OPTAB_LIB_WIDEN
);
7253 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7254 target
, 1, OPTAB_LIB_WIDEN
);
7257 if (UNARY_P (value
))
7260 target
= gen_reg_rtx (GET_MODE (value
));
7261 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
7268 case FLOAT_TRUNCATE
:
7269 convert_move (target
, op1
, code
== ZERO_EXTEND
);
7274 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
7278 case UNSIGNED_FLOAT
:
7279 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
7283 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
7287 #ifdef INSN_SCHEDULING
7288 /* On machines that have insn scheduling, we want all memory reference to be
7289 explicit, so we need to deal with such paradoxical SUBREGs. */
7290 if (paradoxical_subreg_p (value
) && MEM_P (SUBREG_REG (value
)))
7292 = simplify_gen_subreg (GET_MODE (value
),
7293 force_reg (GET_MODE (SUBREG_REG (value
)),
7294 force_operand (SUBREG_REG (value
),
7296 GET_MODE (SUBREG_REG (value
)),
7297 SUBREG_BYTE (value
));
7303 /* Subroutine of expand_expr: return nonzero iff there is no way that
7304 EXP can reference X, which is being modified. TOP_P is nonzero if this
7305 call is going to be used to determine whether we need a temporary
7306 for EXP, as opposed to a recursive call to this function.
7308 It is always safe for this routine to return zero since it merely
7309 searches for optimization opportunities. */
7312 safe_from_p (const_rtx x
, tree exp
, int top_p
)
7318 /* If EXP has varying size, we MUST use a target since we currently
7319 have no way of allocating temporaries of variable size
7320 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7321 So we assume here that something at a higher level has prevented a
7322 clash. This is somewhat bogus, but the best we can do. Only
7323 do this when X is BLKmode and when we are at the top level. */
7324 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
7325 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
7326 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
7327 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
7328 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
7330 && GET_MODE (x
) == BLKmode
)
7331 /* If X is in the outgoing argument area, it is always safe. */
7333 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
7334 || (GET_CODE (XEXP (x
, 0)) == PLUS
7335 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
7338 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7339 find the underlying pseudo. */
7340 if (GET_CODE (x
) == SUBREG
)
7343 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7347 /* Now look at our tree code and possibly recurse. */
7348 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
7350 case tcc_declaration
:
7351 exp_rtl
= DECL_RTL_IF_SET (exp
);
7357 case tcc_exceptional
:
7358 if (TREE_CODE (exp
) == TREE_LIST
)
7362 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
7364 exp
= TREE_CHAIN (exp
);
7367 if (TREE_CODE (exp
) != TREE_LIST
)
7368 return safe_from_p (x
, exp
, 0);
7371 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
7373 constructor_elt
*ce
;
7374 unsigned HOST_WIDE_INT idx
;
7376 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp
), idx
, ce
)
7377 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
7378 || !safe_from_p (x
, ce
->value
, 0))
7382 else if (TREE_CODE (exp
) == ERROR_MARK
)
7383 return 1; /* An already-visited SAVE_EXPR? */
7388 /* The only case we look at here is the DECL_INITIAL inside a
7390 return (TREE_CODE (exp
) != DECL_EXPR
7391 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
7392 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
7393 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
7396 case tcc_comparison
:
7397 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
7402 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7404 case tcc_expression
:
7407 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7408 the expression. If it is set, we conflict iff we are that rtx or
7409 both are in memory. Otherwise, we check all operands of the
7410 expression recursively. */
7412 switch (TREE_CODE (exp
))
7415 /* If the operand is static or we are static, we can't conflict.
7416 Likewise if we don't conflict with the operand at all. */
7417 if (staticp (TREE_OPERAND (exp
, 0))
7418 || TREE_STATIC (exp
)
7419 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
7422 /* Otherwise, the only way this can conflict is if we are taking
7423 the address of a DECL a that address if part of X, which is
7425 exp
= TREE_OPERAND (exp
, 0);
7428 if (!DECL_RTL_SET_P (exp
)
7429 || !MEM_P (DECL_RTL (exp
)))
7432 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
7438 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
7439 get_alias_set (exp
)))
7444 /* Assume that the call will clobber all hard registers and
7446 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7451 case WITH_CLEANUP_EXPR
:
7452 case CLEANUP_POINT_EXPR
:
7453 /* Lowered by gimplify.c. */
7457 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7463 /* If we have an rtx, we do not need to scan our operands. */
7467 nops
= TREE_OPERAND_LENGTH (exp
);
7468 for (i
= 0; i
< nops
; i
++)
7469 if (TREE_OPERAND (exp
, i
) != 0
7470 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
7476 /* Should never get a type here. */
7480 /* If we have an rtl, find any enclosed object. Then see if we conflict
7484 if (GET_CODE (exp_rtl
) == SUBREG
)
7486 exp_rtl
= SUBREG_REG (exp_rtl
);
7488 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
7492 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7493 are memory and they conflict. */
7494 return ! (rtx_equal_p (x
, exp_rtl
)
7495 || (MEM_P (x
) && MEM_P (exp_rtl
)
7496 && true_dependence (exp_rtl
, VOIDmode
, x
)));
7499 /* If we reach here, it is safe. */
7504 /* Return the highest power of two that EXP is known to be a multiple of.
7505 This is used in updating alignment of MEMs in array references. */
7507 unsigned HOST_WIDE_INT
7508 highest_pow2_factor (const_tree exp
)
7510 unsigned HOST_WIDE_INT ret
;
7511 int trailing_zeros
= tree_ctz (exp
);
7512 if (trailing_zeros
>= HOST_BITS_PER_WIDE_INT
)
7513 return BIGGEST_ALIGNMENT
;
7514 ret
= (unsigned HOST_WIDE_INT
) 1 << trailing_zeros
;
7515 if (ret
> BIGGEST_ALIGNMENT
)
7516 return BIGGEST_ALIGNMENT
;
7520 /* Similar, except that the alignment requirements of TARGET are
7521 taken into account. Assume it is at least as aligned as its
7522 type, unless it is a COMPONENT_REF in which case the layout of
7523 the structure gives the alignment. */
7525 static unsigned HOST_WIDE_INT
7526 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
7528 unsigned HOST_WIDE_INT talign
= target_align (target
) / BITS_PER_UNIT
;
7529 unsigned HOST_WIDE_INT factor
= highest_pow2_factor (exp
);
7531 return MAX (factor
, talign
);
7534 #ifdef HAVE_conditional_move
7535 /* Convert the tree comparison code TCODE to the rtl one where the
7536 signedness is UNSIGNEDP. */
7538 static enum rtx_code
7539 convert_tree_comp_to_rtx (enum tree_code tcode
, int unsignedp
)
7551 code
= unsignedp
? LTU
: LT
;
7554 code
= unsignedp
? LEU
: LE
;
7557 code
= unsignedp
? GTU
: GT
;
7560 code
= unsignedp
? GEU
: GE
;
7562 case UNORDERED_EXPR
:
7594 /* Subroutine of expand_expr. Expand the two operands of a binary
7595 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7596 The value may be stored in TARGET if TARGET is nonzero. The
7597 MODIFIER argument is as documented by expand_expr. */
7600 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
7601 enum expand_modifier modifier
)
7603 if (! safe_from_p (target
, exp1
, 1))
7605 if (operand_equal_p (exp0
, exp1
, 0))
7607 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7608 *op1
= copy_rtx (*op0
);
7612 /* If we need to preserve evaluation order, copy exp0 into its own
7613 temporary variable so that it can't be clobbered by exp1. */
7614 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
7615 exp0
= save_expr (exp0
);
7616 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7617 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
7622 /* Return a MEM that contains constant EXP. DEFER is as for
7623 output_constant_def and MODIFIER is as for expand_expr. */
7626 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
7630 mem
= output_constant_def (exp
, defer
);
7631 if (modifier
!= EXPAND_INITIALIZER
)
7632 mem
= use_anchored_address (mem
);
7636 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7637 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7640 expand_expr_addr_expr_1 (tree exp
, rtx target
, machine_mode tmode
,
7641 enum expand_modifier modifier
, addr_space_t as
)
7643 rtx result
, subtarget
;
7645 HOST_WIDE_INT bitsize
, bitpos
;
7646 int volatilep
, unsignedp
;
7649 /* If we are taking the address of a constant and are at the top level,
7650 we have to use output_constant_def since we can't call force_const_mem
7652 /* ??? This should be considered a front-end bug. We should not be
7653 generating ADDR_EXPR of something that isn't an LVALUE. The only
7654 exception here is STRING_CST. */
7655 if (CONSTANT_CLASS_P (exp
))
7657 result
= XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
7658 if (modifier
< EXPAND_SUM
)
7659 result
= force_operand (result
, target
);
7663 /* Everything must be something allowed by is_gimple_addressable. */
7664 switch (TREE_CODE (exp
))
7667 /* This case will happen via recursion for &a->b. */
7668 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
7672 tree tem
= TREE_OPERAND (exp
, 0);
7673 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
7674 tem
= fold_build_pointer_plus (tem
, TREE_OPERAND (exp
, 1));
7675 return expand_expr (tem
, target
, tmode
, modifier
);
7679 /* Expand the initializer like constants above. */
7680 result
= XEXP (expand_expr_constant (DECL_INITIAL (exp
),
7682 if (modifier
< EXPAND_SUM
)
7683 result
= force_operand (result
, target
);
7687 /* The real part of the complex number is always first, therefore
7688 the address is the same as the address of the parent object. */
7691 inner
= TREE_OPERAND (exp
, 0);
7695 /* The imaginary part of the complex number is always second.
7696 The expression is therefore always offset by the size of the
7699 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
7700 inner
= TREE_OPERAND (exp
, 0);
7703 case COMPOUND_LITERAL_EXPR
:
7704 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7705 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7706 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7707 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7708 the initializers aren't gimplified. */
7709 if (COMPOUND_LITERAL_EXPR_DECL (exp
)
7710 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp
)))
7711 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp
),
7712 target
, tmode
, modifier
, as
);
7715 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7716 expand_expr, as that can have various side effects; LABEL_DECLs for
7717 example, may not have their DECL_RTL set yet. Expand the rtl of
7718 CONSTRUCTORs too, which should yield a memory reference for the
7719 constructor's contents. Assume language specific tree nodes can
7720 be expanded in some interesting way. */
7721 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
7723 || TREE_CODE (exp
) == CONSTRUCTOR
7724 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
7726 result
= expand_expr (exp
, target
, tmode
,
7727 modifier
== EXPAND_INITIALIZER
7728 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
7730 /* If the DECL isn't in memory, then the DECL wasn't properly
7731 marked TREE_ADDRESSABLE, which will be either a front-end
7732 or a tree optimizer bug. */
7734 if (TREE_ADDRESSABLE (exp
)
7736 && ! targetm
.calls
.allocate_stack_slots_for_args ())
7738 error ("local frame unavailable (naked function?)");
7742 gcc_assert (MEM_P (result
));
7743 result
= XEXP (result
, 0);
7745 /* ??? Is this needed anymore? */
7747 TREE_USED (exp
) = 1;
7749 if (modifier
!= EXPAND_INITIALIZER
7750 && modifier
!= EXPAND_CONST_ADDRESS
7751 && modifier
!= EXPAND_SUM
)
7752 result
= force_operand (result
, target
);
7756 /* Pass FALSE as the last argument to get_inner_reference although
7757 we are expanding to RTL. The rationale is that we know how to
7758 handle "aligning nodes" here: we can just bypass them because
7759 they won't change the final object whose address will be returned
7760 (they actually exist only for that purpose). */
7761 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7762 &mode1
, &unsignedp
, &volatilep
, false);
7766 /* We must have made progress. */
7767 gcc_assert (inner
!= exp
);
7769 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
7770 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7771 inner alignment, force the inner to be sufficiently aligned. */
7772 if (CONSTANT_CLASS_P (inner
)
7773 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
7775 inner
= copy_node (inner
);
7776 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
7777 TYPE_ALIGN (TREE_TYPE (inner
)) = TYPE_ALIGN (TREE_TYPE (exp
));
7778 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
7780 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
, as
);
7786 if (modifier
!= EXPAND_NORMAL
)
7787 result
= force_operand (result
, NULL
);
7788 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
7789 modifier
== EXPAND_INITIALIZER
7790 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
7792 /* expand_expr is allowed to return an object in a mode other
7793 than TMODE. If it did, we need to convert. */
7794 if (GET_MODE (tmp
) != VOIDmode
&& tmode
!= GET_MODE (tmp
))
7795 tmp
= convert_modes (tmode
, GET_MODE (tmp
),
7796 tmp
, TYPE_UNSIGNED (TREE_TYPE (offset
)));
7797 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7798 tmp
= convert_memory_address_addr_space (tmode
, tmp
, as
);
7800 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7801 result
= simplify_gen_binary (PLUS
, tmode
, result
, tmp
);
7804 subtarget
= bitpos
? NULL_RTX
: target
;
7805 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
7806 1, OPTAB_LIB_WIDEN
);
7812 /* Someone beforehand should have rejected taking the address
7813 of such an object. */
7814 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
7816 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7817 result
= plus_constant (tmode
, result
, bitpos
/ BITS_PER_UNIT
);
7818 if (modifier
< EXPAND_SUM
)
7819 result
= force_operand (result
, target
);
7825 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7826 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7829 expand_expr_addr_expr (tree exp
, rtx target
, machine_mode tmode
,
7830 enum expand_modifier modifier
)
7832 addr_space_t as
= ADDR_SPACE_GENERIC
;
7833 machine_mode address_mode
= Pmode
;
7834 machine_mode pointer_mode
= ptr_mode
;
7838 /* Target mode of VOIDmode says "whatever's natural". */
7839 if (tmode
== VOIDmode
)
7840 tmode
= TYPE_MODE (TREE_TYPE (exp
));
7842 if (POINTER_TYPE_P (TREE_TYPE (exp
)))
7844 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp
)));
7845 address_mode
= targetm
.addr_space
.address_mode (as
);
7846 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
7849 /* We can get called with some Weird Things if the user does silliness
7850 like "(short) &a". In that case, convert_memory_address won't do
7851 the right thing, so ignore the given target mode. */
7852 if (tmode
!= address_mode
&& tmode
!= pointer_mode
)
7853 tmode
= address_mode
;
7855 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
7856 tmode
, modifier
, as
);
7858 /* Despite expand_expr claims concerning ignoring TMODE when not
7859 strictly convenient, stuff breaks if we don't honor it. Note
7860 that combined with the above, we only do this for pointer modes. */
7861 rmode
= GET_MODE (result
);
7862 if (rmode
== VOIDmode
)
7865 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7870 /* Generate code for computing CONSTRUCTOR EXP.
7871 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7872 is TRUE, instead of creating a temporary variable in memory
7873 NULL is returned and the caller needs to handle it differently. */
7876 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
7877 bool avoid_temp_mem
)
7879 tree type
= TREE_TYPE (exp
);
7880 machine_mode mode
= TYPE_MODE (type
);
7882 /* Try to avoid creating a temporary at all. This is possible
7883 if all of the initializer is zero.
7884 FIXME: try to handle all [0..255] initializers we can handle
7886 if (TREE_STATIC (exp
)
7887 && !TREE_ADDRESSABLE (exp
)
7888 && target
!= 0 && mode
== BLKmode
7889 && all_zeros_p (exp
))
7891 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
7895 /* All elts simple constants => refer to a constant in memory. But
7896 if this is a non-BLKmode mode, let it store a field at a time
7897 since that should make a CONST_INT, CONST_WIDE_INT or
7898 CONST_DOUBLE when we fold. Likewise, if we have a target we can
7899 use, it is best to store directly into the target unless the type
7900 is large enough that memcpy will be used. If we are making an
7901 initializer and all operands are constant, put it in memory as
7904 FIXME: Avoid trying to fill vector constructors piece-meal.
7905 Output them with output_constant_def below unless we're sure
7906 they're zeros. This should go away when vector initializers
7907 are treated like VECTOR_CST instead of arrays. */
7908 if ((TREE_STATIC (exp
)
7909 && ((mode
== BLKmode
7910 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
7911 || TREE_ADDRESSABLE (exp
)
7912 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type
))
7913 && (! can_move_by_pieces
7914 (tree_to_uhwi (TYPE_SIZE_UNIT (type
)),
7916 && ! mostly_zeros_p (exp
))))
7917 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
7918 && TREE_CONSTANT (exp
)))
7925 constructor
= expand_expr_constant (exp
, 1, modifier
);
7927 if (modifier
!= EXPAND_CONST_ADDRESS
7928 && modifier
!= EXPAND_INITIALIZER
7929 && modifier
!= EXPAND_SUM
)
7930 constructor
= validize_mem (constructor
);
7935 /* Handle calls that pass values in multiple non-contiguous
7936 locations. The Irix 6 ABI has examples of this. */
7937 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
7938 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
)
7943 target
= assign_temp (type
, TREE_ADDRESSABLE (exp
), 1);
7946 store_constructor (exp
, target
, 0, int_expr_size (exp
));
7951 /* expand_expr: generate code for computing expression EXP.
7952 An rtx for the computed value is returned. The value is never null.
7953 In the case of a void EXP, const0_rtx is returned.
7955 The value may be stored in TARGET if TARGET is nonzero.
7956 TARGET is just a suggestion; callers must assume that
7957 the rtx returned may not be the same as TARGET.
7959 If TARGET is CONST0_RTX, it means that the value will be ignored.
7961 If TMODE is not VOIDmode, it suggests generating the
7962 result in mode TMODE. But this is done only when convenient.
7963 Otherwise, TMODE is ignored and the value generated in its natural mode.
7964 TMODE is just a suggestion; callers must assume that
7965 the rtx returned may not have mode TMODE.
7967 Note that TARGET may have neither TMODE nor MODE. In that case, it
7968 probably will not be used.
7970 If MODIFIER is EXPAND_SUM then when EXP is an addition
7971 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7972 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7973 products as above, or REG or MEM, or constant.
7974 Ordinarily in such cases we would output mul or add instructions
7975 and then return a pseudo reg containing the sum.
7977 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7978 it also marks a label as absolutely required (it can't be dead).
7979 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7980 This is used for outputting expressions used in initializers.
7982 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7983 with a constant address even if that address is not normally legitimate.
7984 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7986 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7987 a call parameter. Such targets require special care as we haven't yet
7988 marked TARGET so that it's safe from being trashed by libcalls. We
7989 don't want to use TARGET for anything but the final result;
7990 Intermediate values must go elsewhere. Additionally, calls to
7991 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7993 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7994 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7995 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7996 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7999 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8000 In this case, we don't adjust a returned MEM rtx that wouldn't be
8001 sufficiently aligned for its mode; instead, it's up to the caller
8002 to deal with it afterwards. This is used to make sure that unaligned
8003 base objects for which out-of-bounds accesses are supported, for
8004 example record types with trailing arrays, aren't realigned behind
8005 the back of the caller.
8006 The normal operating mode is to pass FALSE for this parameter. */
8009 expand_expr_real (tree exp
, rtx target
, machine_mode tmode
,
8010 enum expand_modifier modifier
, rtx
*alt_rtl
,
8011 bool inner_reference_p
)
8015 /* Handle ERROR_MARK before anybody tries to access its type. */
8016 if (TREE_CODE (exp
) == ERROR_MARK
8017 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
8019 ret
= CONST0_RTX (tmode
);
8020 return ret
? ret
: const0_rtx
;
8023 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
,
8028 /* Try to expand the conditional expression which is represented by
8029 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
8030 return the rtl reg which repsents the result. Otherwise return
8034 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED
,
8035 tree treeop1 ATTRIBUTE_UNUSED
,
8036 tree treeop2 ATTRIBUTE_UNUSED
)
8038 #ifdef HAVE_conditional_move
8040 rtx op00
, op01
, op1
, op2
;
8041 enum rtx_code comparison_code
;
8042 machine_mode comparison_mode
;
8045 tree type
= TREE_TYPE (treeop1
);
8046 int unsignedp
= TYPE_UNSIGNED (type
);
8047 machine_mode mode
= TYPE_MODE (type
);
8048 machine_mode orig_mode
= mode
;
8050 /* If we cannot do a conditional move on the mode, try doing it
8051 with the promoted mode. */
8052 if (!can_conditionally_move_p (mode
))
8054 mode
= promote_mode (type
, mode
, &unsignedp
);
8055 if (!can_conditionally_move_p (mode
))
8057 temp
= assign_temp (type
, 0, 0); /* Use promoted mode for temp. */
8060 temp
= assign_temp (type
, 0, 1);
8063 expand_operands (treeop1
, treeop2
,
8064 temp
, &op1
, &op2
, EXPAND_NORMAL
);
8066 if (TREE_CODE (treeop0
) == SSA_NAME
8067 && (srcstmt
= get_def_for_expr_class (treeop0
, tcc_comparison
)))
8069 tree type
= TREE_TYPE (gimple_assign_rhs1 (srcstmt
));
8070 enum tree_code cmpcode
= gimple_assign_rhs_code (srcstmt
);
8071 op00
= expand_normal (gimple_assign_rhs1 (srcstmt
));
8072 op01
= expand_normal (gimple_assign_rhs2 (srcstmt
));
8073 comparison_mode
= TYPE_MODE (type
);
8074 unsignedp
= TYPE_UNSIGNED (type
);
8075 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
8077 else if (TREE_CODE_CLASS (TREE_CODE (treeop0
)) == tcc_comparison
)
8079 tree type
= TREE_TYPE (TREE_OPERAND (treeop0
, 0));
8080 enum tree_code cmpcode
= TREE_CODE (treeop0
);
8081 op00
= expand_normal (TREE_OPERAND (treeop0
, 0));
8082 op01
= expand_normal (TREE_OPERAND (treeop0
, 1));
8083 unsignedp
= TYPE_UNSIGNED (type
);
8084 comparison_mode
= TYPE_MODE (type
);
8085 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
8089 op00
= expand_normal (treeop0
);
8091 comparison_code
= NE
;
8092 comparison_mode
= GET_MODE (op00
);
8093 if (comparison_mode
== VOIDmode
)
8094 comparison_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
8097 if (GET_MODE (op1
) != mode
)
8098 op1
= gen_lowpart (mode
, op1
);
8100 if (GET_MODE (op2
) != mode
)
8101 op2
= gen_lowpart (mode
, op2
);
8103 /* Try to emit the conditional move. */
8104 insn
= emit_conditional_move (temp
, comparison_code
,
8105 op00
, op01
, comparison_mode
,
8109 /* If we could do the conditional move, emit the sequence,
8113 rtx_insn
*seq
= get_insns ();
8116 return convert_modes (orig_mode
, mode
, temp
, 0);
8119 /* Otherwise discard the sequence and fall back to code with
8127 expand_expr_real_2 (sepops ops
, rtx target
, machine_mode tmode
,
8128 enum expand_modifier modifier
)
8130 rtx op0
, op1
, op2
, temp
;
8134 enum tree_code code
= ops
->code
;
8136 rtx subtarget
, original_target
;
8138 bool reduce_bit_field
;
8139 location_t loc
= ops
->location
;
8140 tree treeop0
, treeop1
, treeop2
;
8141 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8142 ? reduce_to_bit_field_precision ((expr), \
8148 mode
= TYPE_MODE (type
);
8149 unsignedp
= TYPE_UNSIGNED (type
);
8155 /* We should be called only on simple (binary or unary) expressions,
8156 exactly those that are valid in gimple expressions that aren't
8157 GIMPLE_SINGLE_RHS (or invalid). */
8158 gcc_assert (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
8159 || get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
8160 || get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
);
8162 ignore
= (target
== const0_rtx
8163 || ((CONVERT_EXPR_CODE_P (code
)
8164 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
8165 && TREE_CODE (type
) == VOID_TYPE
));
8167 /* We should be called only if we need the result. */
8168 gcc_assert (!ignore
);
8170 /* An operation in what may be a bit-field type needs the
8171 result to be reduced to the precision of the bit-field type,
8172 which is narrower than that of the type's mode. */
8173 reduce_bit_field
= (INTEGRAL_TYPE_P (type
)
8174 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
8176 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
8179 /* Use subtarget as the target for operand 0 of a binary operation. */
8180 subtarget
= get_subtarget (target
);
8181 original_target
= target
;
8185 case NON_LVALUE_EXPR
:
8188 if (treeop0
== error_mark_node
)
8191 if (TREE_CODE (type
) == UNION_TYPE
)
8193 tree valtype
= TREE_TYPE (treeop0
);
8195 /* If both input and output are BLKmode, this conversion isn't doing
8196 anything except possibly changing memory attribute. */
8197 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
8199 rtx result
= expand_expr (treeop0
, target
, tmode
,
8202 result
= copy_rtx (result
);
8203 set_mem_attributes (result
, type
, 0);
8209 if (TYPE_MODE (type
) != BLKmode
)
8210 target
= gen_reg_rtx (TYPE_MODE (type
));
8212 target
= assign_temp (type
, 1, 1);
8216 /* Store data into beginning of memory target. */
8217 store_expr (treeop0
,
8218 adjust_address (target
, TYPE_MODE (valtype
), 0),
8219 modifier
== EXPAND_STACK_PARM
,
8224 gcc_assert (REG_P (target
));
8226 /* Store this field into a union of the proper type. */
8227 store_field (target
,
8228 MIN ((int_size_in_bytes (TREE_TYPE
8231 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
8232 0, 0, 0, TYPE_MODE (valtype
), treeop0
, 0, false);
8235 /* Return the entire union. */
8239 if (mode
== TYPE_MODE (TREE_TYPE (treeop0
)))
8241 op0
= expand_expr (treeop0
, target
, VOIDmode
,
8244 /* If the signedness of the conversion differs and OP0 is
8245 a promoted SUBREG, clear that indication since we now
8246 have to do the proper extension. */
8247 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)) != unsignedp
8248 && GET_CODE (op0
) == SUBREG
)
8249 SUBREG_PROMOTED_VAR_P (op0
) = 0;
8251 return REDUCE_BIT_FIELD (op0
);
8254 op0
= expand_expr (treeop0
, NULL_RTX
, mode
,
8255 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
8256 if (GET_MODE (op0
) == mode
)
8259 /* If OP0 is a constant, just convert it into the proper mode. */
8260 else if (CONSTANT_P (op0
))
8262 tree inner_type
= TREE_TYPE (treeop0
);
8263 machine_mode inner_mode
= GET_MODE (op0
);
8265 if (inner_mode
== VOIDmode
)
8266 inner_mode
= TYPE_MODE (inner_type
);
8268 if (modifier
== EXPAND_INITIALIZER
)
8269 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
8270 subreg_lowpart_offset (mode
,
8273 op0
= convert_modes (mode
, inner_mode
, op0
,
8274 TYPE_UNSIGNED (inner_type
));
8277 else if (modifier
== EXPAND_INITIALIZER
)
8278 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
8280 else if (target
== 0)
8281 op0
= convert_to_mode (mode
, op0
,
8282 TYPE_UNSIGNED (TREE_TYPE
8286 convert_move (target
, op0
,
8287 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8291 return REDUCE_BIT_FIELD (op0
);
8293 case ADDR_SPACE_CONVERT_EXPR
:
8295 tree treeop0_type
= TREE_TYPE (treeop0
);
8297 addr_space_t as_from
;
8299 gcc_assert (POINTER_TYPE_P (type
));
8300 gcc_assert (POINTER_TYPE_P (treeop0_type
));
8302 as_to
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
8303 as_from
= TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type
));
8305 /* Conversions between pointers to the same address space should
8306 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8307 gcc_assert (as_to
!= as_from
);
8309 /* Ask target code to handle conversion between pointers
8310 to overlapping address spaces. */
8311 if (targetm
.addr_space
.subset_p (as_to
, as_from
)
8312 || targetm
.addr_space
.subset_p (as_from
, as_to
))
8314 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
8315 op0
= targetm
.addr_space
.convert (op0
, treeop0_type
, type
);
8320 /* For disjoint address spaces, converting anything but
8321 a null pointer invokes undefined behaviour. We simply
8322 always return a null pointer here. */
8323 return CONST0_RTX (mode
);
8326 case POINTER_PLUS_EXPR
:
8327 /* Even though the sizetype mode and the pointer's mode can be different
8328 expand is able to handle this correctly and get the correct result out
8329 of the PLUS_EXPR code. */
8330 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8331 if sizetype precision is smaller than pointer precision. */
8332 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
8333 treeop1
= fold_convert_loc (loc
, type
,
8334 fold_convert_loc (loc
, ssizetype
,
8336 /* If sizetype precision is larger than pointer precision, truncate the
8337 offset to have matching modes. */
8338 else if (TYPE_PRECISION (sizetype
) > TYPE_PRECISION (type
))
8339 treeop1
= fold_convert_loc (loc
, type
, treeop1
);
8342 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8343 something else, make sure we add the register to the constant and
8344 then to the other thing. This case can occur during strength
8345 reduction and doing it this way will produce better code if the
8346 frame pointer or argument pointer is eliminated.
8348 fold-const.c will ensure that the constant is always in the inner
8349 PLUS_EXPR, so the only case we need to do anything about is if
8350 sp, ap, or fp is our second argument, in which case we must swap
8351 the innermost first argument and our second argument. */
8353 if (TREE_CODE (treeop0
) == PLUS_EXPR
8354 && TREE_CODE (TREE_OPERAND (treeop0
, 1)) == INTEGER_CST
8355 && TREE_CODE (treeop1
) == VAR_DECL
8356 && (DECL_RTL (treeop1
) == frame_pointer_rtx
8357 || DECL_RTL (treeop1
) == stack_pointer_rtx
8358 || DECL_RTL (treeop1
) == arg_pointer_rtx
))
8363 /* If the result is to be ptr_mode and we are adding an integer to
8364 something, we might be forming a constant. So try to use
8365 plus_constant. If it produces a sum and we can't accept it,
8366 use force_operand. This allows P = &ARR[const] to generate
8367 efficient code on machines where a SYMBOL_REF is not a valid
8370 If this is an EXPAND_SUM call, always return the sum. */
8371 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8372 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8374 if (modifier
== EXPAND_STACK_PARM
)
8376 if (TREE_CODE (treeop0
) == INTEGER_CST
8377 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8378 && TREE_CONSTANT (treeop1
))
8382 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop1
));
8384 op1
= expand_expr (treeop1
, subtarget
, VOIDmode
,
8386 /* Use wi::shwi to ensure that the constant is
8387 truncated according to the mode of OP1, then sign extended
8388 to a HOST_WIDE_INT. Using the constant directly can result
8389 in non-canonical RTL in a 64x32 cross compile. */
8390 wc
= TREE_INT_CST_LOW (treeop0
);
8392 immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
8393 op1
= plus_constant (mode
, op1
, INTVAL (constant_part
));
8394 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8395 op1
= force_operand (op1
, target
);
8396 return REDUCE_BIT_FIELD (op1
);
8399 else if (TREE_CODE (treeop1
) == INTEGER_CST
8400 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8401 && TREE_CONSTANT (treeop0
))
8405 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop0
));
8407 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8408 (modifier
== EXPAND_INITIALIZER
8409 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8410 if (! CONSTANT_P (op0
))
8412 op1
= expand_expr (treeop1
, NULL_RTX
,
8413 VOIDmode
, modifier
);
8414 /* Return a PLUS if modifier says it's OK. */
8415 if (modifier
== EXPAND_SUM
8416 || modifier
== EXPAND_INITIALIZER
)
8417 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8420 /* Use wi::shwi to ensure that the constant is
8421 truncated according to the mode of OP1, then sign extended
8422 to a HOST_WIDE_INT. Using the constant directly can result
8423 in non-canonical RTL in a 64x32 cross compile. */
8424 wc
= TREE_INT_CST_LOW (treeop1
);
8426 = immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
8427 op0
= plus_constant (mode
, op0
, INTVAL (constant_part
));
8428 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8429 op0
= force_operand (op0
, target
);
8430 return REDUCE_BIT_FIELD (op0
);
8434 /* Use TER to expand pointer addition of a negated value
8435 as pointer subtraction. */
8436 if ((POINTER_TYPE_P (TREE_TYPE (treeop0
))
8437 || (TREE_CODE (TREE_TYPE (treeop0
)) == VECTOR_TYPE
8438 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0
)))))
8439 && TREE_CODE (treeop1
) == SSA_NAME
8440 && TYPE_MODE (TREE_TYPE (treeop0
))
8441 == TYPE_MODE (TREE_TYPE (treeop1
)))
8443 gimple def
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8446 treeop1
= gimple_assign_rhs1 (def
);
8452 /* No sense saving up arithmetic to be done
8453 if it's all in the wrong mode to form part of an address.
8454 And force_operand won't know whether to sign-extend or
8456 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8457 || mode
!= ptr_mode
)
8459 expand_operands (treeop0
, treeop1
,
8460 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8461 if (op0
== const0_rtx
)
8463 if (op1
== const0_rtx
)
8468 expand_operands (treeop0
, treeop1
,
8469 subtarget
, &op0
, &op1
, modifier
);
8470 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8474 /* For initializers, we are allowed to return a MINUS of two
8475 symbolic constants. Here we handle all cases when both operands
8477 /* Handle difference of two symbolic constants,
8478 for the sake of an initializer. */
8479 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8480 && really_constant_p (treeop0
)
8481 && really_constant_p (treeop1
))
8483 expand_operands (treeop0
, treeop1
,
8484 NULL_RTX
, &op0
, &op1
, modifier
);
8486 /* If the last operand is a CONST_INT, use plus_constant of
8487 the negated constant. Else make the MINUS. */
8488 if (CONST_INT_P (op1
))
8489 return REDUCE_BIT_FIELD (plus_constant (mode
, op0
,
8492 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
8495 /* No sense saving up arithmetic to be done
8496 if it's all in the wrong mode to form part of an address.
8497 And force_operand won't know whether to sign-extend or
8499 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8500 || mode
!= ptr_mode
)
8503 expand_operands (treeop0
, treeop1
,
8504 subtarget
, &op0
, &op1
, modifier
);
8506 /* Convert A - const to A + (-const). */
8507 if (CONST_INT_P (op1
))
8509 op1
= negate_rtx (mode
, op1
);
8510 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8515 case WIDEN_MULT_PLUS_EXPR
:
8516 case WIDEN_MULT_MINUS_EXPR
:
8517 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8518 op2
= expand_normal (treeop2
);
8519 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
8523 case WIDEN_MULT_EXPR
:
8524 /* If first operand is constant, swap them.
8525 Thus the following special case checks need only
8526 check the second operand. */
8527 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8534 /* First, check if we have a multiplication of one signed and one
8535 unsigned operand. */
8536 if (TREE_CODE (treeop1
) != INTEGER_CST
8537 && (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
8538 != TYPE_UNSIGNED (TREE_TYPE (treeop1
))))
8540 machine_mode innermode
= TYPE_MODE (TREE_TYPE (treeop0
));
8541 this_optab
= usmul_widen_optab
;
8542 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8543 != CODE_FOR_nothing
)
8545 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8546 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8549 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op1
, &op0
,
8551 /* op0 and op1 might still be constant, despite the above
8552 != INTEGER_CST check. Handle it. */
8553 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8555 op0
= convert_modes (innermode
, mode
, op0
, true);
8556 op1
= convert_modes (innermode
, mode
, op1
, false);
8557 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8558 target
, unsignedp
));
8563 /* Check for a multiplication with matching signedness. */
8564 else if ((TREE_CODE (treeop1
) == INTEGER_CST
8565 && int_fits_type_p (treeop1
, TREE_TYPE (treeop0
)))
8566 || (TYPE_UNSIGNED (TREE_TYPE (treeop1
))
8567 == TYPE_UNSIGNED (TREE_TYPE (treeop0
))))
8569 tree op0type
= TREE_TYPE (treeop0
);
8570 machine_mode innermode
= TYPE_MODE (op0type
);
8571 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8572 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8573 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8575 if (TREE_CODE (treeop0
) != INTEGER_CST
)
8577 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8578 != CODE_FOR_nothing
)
8580 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8582 /* op0 and op1 might still be constant, despite the above
8583 != INTEGER_CST check. Handle it. */
8584 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8587 op0
= convert_modes (innermode
, mode
, op0
, zextend_p
);
8589 = convert_modes (innermode
, mode
, op1
,
8590 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8591 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8595 temp
= expand_widening_mult (mode
, op0
, op1
, target
,
8596 unsignedp
, this_optab
);
8597 return REDUCE_BIT_FIELD (temp
);
8599 if (find_widening_optab_handler (other_optab
, mode
, innermode
, 0)
8601 && innermode
== word_mode
)
8604 op0
= expand_normal (treeop0
);
8605 if (TREE_CODE (treeop1
) == INTEGER_CST
)
8606 op1
= convert_modes (innermode
, mode
,
8607 expand_normal (treeop1
),
8608 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8610 op1
= expand_normal (treeop1
);
8611 /* op0 and op1 might still be constant, despite the above
8612 != INTEGER_CST check. Handle it. */
8613 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8614 goto widen_mult_const
;
8615 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8616 unsignedp
, OPTAB_LIB_WIDEN
);
8617 hipart
= gen_highpart (innermode
, temp
);
8618 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
8622 emit_move_insn (hipart
, htem
);
8623 return REDUCE_BIT_FIELD (temp
);
8627 treeop0
= fold_build1 (CONVERT_EXPR
, type
, treeop0
);
8628 treeop1
= fold_build1 (CONVERT_EXPR
, type
, treeop1
);
8629 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8630 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8634 optab opt
= fma_optab
;
8637 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8639 if (optab_handler (fma_optab
, mode
) == CODE_FOR_nothing
)
8641 tree fn
= mathfn_built_in (TREE_TYPE (treeop0
), BUILT_IN_FMA
);
8644 gcc_assert (fn
!= NULL_TREE
);
8645 call_expr
= build_call_expr (fn
, 3, treeop0
, treeop1
, treeop2
);
8646 return expand_builtin (call_expr
, target
, subtarget
, mode
, false);
8649 def0
= get_def_for_expr (treeop0
, NEGATE_EXPR
);
8650 /* The multiplication is commutative - look at its 2nd operand
8651 if the first isn't fed by a negate. */
8654 def0
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8655 /* Swap operands if the 2nd operand is fed by a negate. */
8663 def2
= get_def_for_expr (treeop2
, NEGATE_EXPR
);
8668 && optab_handler (fnms_optab
, mode
) != CODE_FOR_nothing
)
8671 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8672 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8675 && optab_handler (fnma_optab
, mode
) != CODE_FOR_nothing
)
8678 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8681 && optab_handler (fms_optab
, mode
) != CODE_FOR_nothing
)
8684 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8688 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
, EXPAND_NORMAL
);
8690 op2
= expand_normal (treeop2
);
8691 op1
= expand_normal (treeop1
);
8693 return expand_ternary_op (TYPE_MODE (type
), opt
,
8694 op0
, op1
, op2
, target
, 0);
8698 /* If this is a fixed-point operation, then we cannot use the code
8699 below because "expand_mult" doesn't support sat/no-sat fixed-point
8701 if (ALL_FIXED_POINT_MODE_P (mode
))
8704 /* If first operand is constant, swap them.
8705 Thus the following special case checks need only
8706 check the second operand. */
8707 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8714 /* Attempt to return something suitable for generating an
8715 indexed address, for machines that support that. */
8717 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8718 && tree_fits_shwi_p (treeop1
))
8720 tree exp1
= treeop1
;
8722 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8726 op0
= force_operand (op0
, NULL_RTX
);
8728 op0
= copy_to_mode_reg (mode
, op0
);
8730 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8731 gen_int_mode (tree_to_shwi (exp1
),
8732 TYPE_MODE (TREE_TYPE (exp1
)))));
8735 if (modifier
== EXPAND_STACK_PARM
)
8738 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8739 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8741 case TRUNC_DIV_EXPR
:
8742 case FLOOR_DIV_EXPR
:
8744 case ROUND_DIV_EXPR
:
8745 case EXACT_DIV_EXPR
:
8746 /* If this is a fixed-point operation, then we cannot use the code
8747 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8749 if (ALL_FIXED_POINT_MODE_P (mode
))
8752 if (modifier
== EXPAND_STACK_PARM
)
8754 /* Possible optimization: compute the dividend with EXPAND_SUM
8755 then if the divisor is constant can optimize the case
8756 where some terms of the dividend have coeffs divisible by it. */
8757 expand_operands (treeop0
, treeop1
,
8758 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8759 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
8764 case MULT_HIGHPART_EXPR
:
8765 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8766 temp
= expand_mult_highpart (mode
, op0
, op1
, target
, unsignedp
);
8770 case TRUNC_MOD_EXPR
:
8771 case FLOOR_MOD_EXPR
:
8773 case ROUND_MOD_EXPR
:
8774 if (modifier
== EXPAND_STACK_PARM
)
8776 expand_operands (treeop0
, treeop1
,
8777 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8778 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
8780 case FIXED_CONVERT_EXPR
:
8781 op0
= expand_normal (treeop0
);
8782 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8783 target
= gen_reg_rtx (mode
);
8785 if ((TREE_CODE (TREE_TYPE (treeop0
)) == INTEGER_TYPE
8786 && TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8787 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
8788 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
8790 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
8793 case FIX_TRUNC_EXPR
:
8794 op0
= expand_normal (treeop0
);
8795 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8796 target
= gen_reg_rtx (mode
);
8797 expand_fix (target
, op0
, unsignedp
);
8801 op0
= expand_normal (treeop0
);
8802 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8803 target
= gen_reg_rtx (mode
);
8804 /* expand_float can't figure out what to do if FROM has VOIDmode.
8805 So give it the correct mode. With -O, cse will optimize this. */
8806 if (GET_MODE (op0
) == VOIDmode
)
8807 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0
)),
8809 expand_float (target
, op0
,
8810 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8814 op0
= expand_expr (treeop0
, subtarget
,
8815 VOIDmode
, EXPAND_NORMAL
);
8816 if (modifier
== EXPAND_STACK_PARM
)
8818 temp
= expand_unop (mode
,
8819 optab_for_tree_code (NEGATE_EXPR
, type
,
8823 return REDUCE_BIT_FIELD (temp
);
8826 op0
= expand_expr (treeop0
, subtarget
,
8827 VOIDmode
, EXPAND_NORMAL
);
8828 if (modifier
== EXPAND_STACK_PARM
)
8831 /* ABS_EXPR is not valid for complex arguments. */
8832 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8833 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
8835 /* Unsigned abs is simply the operand. Testing here means we don't
8836 risk generating incorrect code below. */
8837 if (TYPE_UNSIGNED (type
))
8840 return expand_abs (mode
, op0
, target
, unsignedp
,
8841 safe_from_p (target
, treeop0
, 1));
8845 target
= original_target
;
8847 || modifier
== EXPAND_STACK_PARM
8848 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
8849 || GET_MODE (target
) != mode
8851 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8852 target
= gen_reg_rtx (mode
);
8853 expand_operands (treeop0
, treeop1
,
8854 target
, &op0
, &op1
, EXPAND_NORMAL
);
8856 /* First try to do it with a special MIN or MAX instruction.
8857 If that does not win, use a conditional jump to select the proper
8859 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8860 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8865 /* At this point, a MEM target is no longer useful; we will get better
8868 if (! REG_P (target
))
8869 target
= gen_reg_rtx (mode
);
8871 /* If op1 was placed in target, swap op0 and op1. */
8872 if (target
!= op0
&& target
== op1
)
8879 /* We generate better code and avoid problems with op1 mentioning
8880 target by forcing op1 into a pseudo if it isn't a constant. */
8881 if (! CONSTANT_P (op1
))
8882 op1
= force_reg (mode
, op1
);
8885 enum rtx_code comparison_code
;
8888 if (code
== MAX_EXPR
)
8889 comparison_code
= unsignedp
? GEU
: GE
;
8891 comparison_code
= unsignedp
? LEU
: LE
;
8893 /* Canonicalize to comparisons against 0. */
8894 if (op1
== const1_rtx
)
8896 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8897 or (a != 0 ? a : 1) for unsigned.
8898 For MIN we are safe converting (a <= 1 ? a : 1)
8899 into (a <= 0 ? a : 1) */
8900 cmpop1
= const0_rtx
;
8901 if (code
== MAX_EXPR
)
8902 comparison_code
= unsignedp
? NE
: GT
;
8904 if (op1
== constm1_rtx
&& !unsignedp
)
8906 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8907 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8908 cmpop1
= const0_rtx
;
8909 if (code
== MIN_EXPR
)
8910 comparison_code
= LT
;
8912 #ifdef HAVE_conditional_move
8913 /* Use a conditional move if possible. */
8914 if (can_conditionally_move_p (mode
))
8920 /* Try to emit the conditional move. */
8921 insn
= emit_conditional_move (target
, comparison_code
,
8926 /* If we could do the conditional move, emit the sequence,
8930 rtx_insn
*seq
= get_insns ();
8936 /* Otherwise discard the sequence and fall back to code with
8942 emit_move_insn (target
, op0
);
8944 temp
= gen_label_rtx ();
8945 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
8946 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
,
8949 emit_move_insn (target
, op1
);
8954 op0
= expand_expr (treeop0
, subtarget
,
8955 VOIDmode
, EXPAND_NORMAL
);
8956 if (modifier
== EXPAND_STACK_PARM
)
8958 /* In case we have to reduce the result to bitfield precision
8959 for unsigned bitfield expand this as XOR with a proper constant
8961 if (reduce_bit_field
&& TYPE_UNSIGNED (type
))
8963 wide_int mask
= wi::mask (TYPE_PRECISION (type
),
8964 false, GET_MODE_PRECISION (mode
));
8966 temp
= expand_binop (mode
, xor_optab
, op0
,
8967 immed_wide_int_const (mask
, mode
),
8968 target
, 1, OPTAB_LIB_WIDEN
);
8971 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8975 /* ??? Can optimize bitwise operations with one arg constant.
8976 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8977 and (a bitwise1 b) bitwise2 b (etc)
8978 but that is probably not worth while. */
8987 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
8988 || (GET_MODE_PRECISION (TYPE_MODE (type
))
8989 == TYPE_PRECISION (type
)));
8994 /* If this is a fixed-point operation, then we cannot use the code
8995 below because "expand_shift" doesn't support sat/no-sat fixed-point
8997 if (ALL_FIXED_POINT_MODE_P (mode
))
9000 if (! safe_from_p (subtarget
, treeop1
, 1))
9002 if (modifier
== EXPAND_STACK_PARM
)
9004 op0
= expand_expr (treeop0
, subtarget
,
9005 VOIDmode
, EXPAND_NORMAL
);
9006 temp
= expand_variable_shift (code
, mode
, op0
, treeop1
, target
,
9008 if (code
== LSHIFT_EXPR
)
9009 temp
= REDUCE_BIT_FIELD (temp
);
9012 /* Could determine the answer when only additive constants differ. Also,
9013 the addition of one can be handled by changing the condition. */
9020 case UNORDERED_EXPR
:
9028 temp
= do_store_flag (ops
,
9029 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
9030 tmode
!= VOIDmode
? tmode
: mode
);
9034 /* Use a compare and a jump for BLKmode comparisons, or for function
9035 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9038 || modifier
== EXPAND_STACK_PARM
9039 || ! safe_from_p (target
, treeop0
, 1)
9040 || ! safe_from_p (target
, treeop1
, 1)
9041 /* Make sure we don't have a hard reg (such as function's return
9042 value) live across basic blocks, if not optimizing. */
9043 || (!optimize
&& REG_P (target
)
9044 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
9045 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
9047 emit_move_insn (target
, const0_rtx
);
9049 op1
= gen_label_rtx ();
9050 jumpifnot_1 (code
, treeop0
, treeop1
, op1
, -1);
9052 if (TYPE_PRECISION (type
) == 1 && !TYPE_UNSIGNED (type
))
9053 emit_move_insn (target
, constm1_rtx
);
9055 emit_move_insn (target
, const1_rtx
);
9061 /* Get the rtx code of the operands. */
9062 op0
= expand_normal (treeop0
);
9063 op1
= expand_normal (treeop1
);
9066 target
= gen_reg_rtx (TYPE_MODE (type
));
9068 /* If target overlaps with op1, then either we need to force
9069 op1 into a pseudo (if target also overlaps with op0),
9070 or write the complex parts in reverse order. */
9071 switch (GET_CODE (target
))
9074 if (reg_overlap_mentioned_p (XEXP (target
, 0), op1
))
9076 if (reg_overlap_mentioned_p (XEXP (target
, 1), op0
))
9078 complex_expr_force_op1
:
9079 temp
= gen_reg_rtx (GET_MODE_INNER (GET_MODE (target
)));
9080 emit_move_insn (temp
, op1
);
9084 complex_expr_swap_order
:
9085 /* Move the imaginary (op1) and real (op0) parts to their
9087 write_complex_part (target
, op1
, true);
9088 write_complex_part (target
, op0
, false);
9094 temp
= adjust_address_nv (target
,
9095 GET_MODE_INNER (GET_MODE (target
)), 0);
9096 if (reg_overlap_mentioned_p (temp
, op1
))
9098 machine_mode imode
= GET_MODE_INNER (GET_MODE (target
));
9099 temp
= adjust_address_nv (target
, imode
,
9100 GET_MODE_SIZE (imode
));
9101 if (reg_overlap_mentioned_p (temp
, op0
))
9102 goto complex_expr_force_op1
;
9103 goto complex_expr_swap_order
;
9107 if (reg_overlap_mentioned_p (target
, op1
))
9109 if (reg_overlap_mentioned_p (target
, op0
))
9110 goto complex_expr_force_op1
;
9111 goto complex_expr_swap_order
;
9116 /* Move the real (op0) and imaginary (op1) parts to their location. */
9117 write_complex_part (target
, op0
, false);
9118 write_complex_part (target
, op1
, true);
9122 case WIDEN_SUM_EXPR
:
9124 tree oprnd0
= treeop0
;
9125 tree oprnd1
= treeop1
;
9127 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9128 target
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, op1
,
9133 case REDUC_MAX_EXPR
:
9134 case REDUC_MIN_EXPR
:
9135 case REDUC_PLUS_EXPR
:
9137 op0
= expand_normal (treeop0
);
9138 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9139 machine_mode vec_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9141 if (optab_handler (this_optab
, vec_mode
) != CODE_FOR_nothing
)
9143 struct expand_operand ops
[2];
9144 enum insn_code icode
= optab_handler (this_optab
, vec_mode
);
9146 create_output_operand (&ops
[0], target
, mode
);
9147 create_input_operand (&ops
[1], op0
, vec_mode
);
9148 if (maybe_expand_insn (icode
, 2, ops
))
9150 target
= ops
[0].value
;
9151 if (GET_MODE (target
) != mode
)
9152 return gen_lowpart (tmode
, target
);
9156 /* Fall back to optab with vector result, and then extract scalar. */
9157 this_optab
= scalar_reduc_to_vector (this_optab
, type
);
9158 temp
= expand_unop (vec_mode
, this_optab
, op0
, NULL_RTX
, unsignedp
);
9160 /* The tree code produces a scalar result, but (somewhat by convention)
9161 the optab produces a vector with the result in element 0 if
9162 little-endian, or element N-1 if big-endian. So pull the scalar
9163 result out of that element. */
9164 int index
= BYTES_BIG_ENDIAN
? GET_MODE_NUNITS (vec_mode
) - 1 : 0;
9165 int bitsize
= GET_MODE_BITSIZE (GET_MODE_INNER (vec_mode
));
9166 temp
= extract_bit_field (temp
, bitsize
, bitsize
* index
, unsignedp
,
9167 target
, mode
, mode
);
9172 case VEC_UNPACK_HI_EXPR
:
9173 case VEC_UNPACK_LO_EXPR
:
9175 op0
= expand_normal (treeop0
);
9176 temp
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, NULL_RTX
,
9182 case VEC_UNPACK_FLOAT_HI_EXPR
:
9183 case VEC_UNPACK_FLOAT_LO_EXPR
:
9185 op0
= expand_normal (treeop0
);
9186 /* The signedness is determined from input operand. */
9187 temp
= expand_widen_pattern_expr
9188 (ops
, op0
, NULL_RTX
, NULL_RTX
,
9189 target
, TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
9195 case VEC_WIDEN_MULT_HI_EXPR
:
9196 case VEC_WIDEN_MULT_LO_EXPR
:
9197 case VEC_WIDEN_MULT_EVEN_EXPR
:
9198 case VEC_WIDEN_MULT_ODD_EXPR
:
9199 case VEC_WIDEN_LSHIFT_HI_EXPR
:
9200 case VEC_WIDEN_LSHIFT_LO_EXPR
:
9201 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9202 target
= expand_widen_pattern_expr (ops
, op0
, op1
, NULL_RTX
,
9204 gcc_assert (target
);
9207 case VEC_PACK_TRUNC_EXPR
:
9208 case VEC_PACK_SAT_EXPR
:
9209 case VEC_PACK_FIX_TRUNC_EXPR
:
9210 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9214 expand_operands (treeop0
, treeop1
, target
, &op0
, &op1
, EXPAND_NORMAL
);
9215 op2
= expand_normal (treeop2
);
9217 /* Careful here: if the target doesn't support integral vector modes,
9218 a constant selection vector could wind up smooshed into a normal
9219 integral constant. */
9220 if (CONSTANT_P (op2
) && GET_CODE (op2
) != CONST_VECTOR
)
9222 tree sel_type
= TREE_TYPE (treeop2
);
9224 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type
)),
9225 TYPE_VECTOR_SUBPARTS (sel_type
));
9226 gcc_assert (GET_MODE_CLASS (vmode
) == MODE_VECTOR_INT
);
9227 op2
= simplify_subreg (vmode
, op2
, TYPE_MODE (sel_type
), 0);
9228 gcc_assert (op2
&& GET_CODE (op2
) == CONST_VECTOR
);
9231 gcc_assert (GET_MODE_CLASS (GET_MODE (op2
)) == MODE_VECTOR_INT
);
9233 temp
= expand_vec_perm (mode
, op0
, op1
, op2
, target
);
9239 tree oprnd0
= treeop0
;
9240 tree oprnd1
= treeop1
;
9241 tree oprnd2
= treeop2
;
9244 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9245 op2
= expand_normal (oprnd2
);
9246 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9253 tree oprnd0
= treeop0
;
9254 tree oprnd1
= treeop1
;
9255 tree oprnd2
= treeop2
;
9258 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9259 op2
= expand_normal (oprnd2
);
9260 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9265 case REALIGN_LOAD_EXPR
:
9267 tree oprnd0
= treeop0
;
9268 tree oprnd1
= treeop1
;
9269 tree oprnd2
= treeop2
;
9272 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9273 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9274 op2
= expand_normal (oprnd2
);
9275 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
9282 /* A COND_EXPR with its type being VOID_TYPE represents a
9283 conditional jump and is handled in
9284 expand_gimple_cond_expr. */
9285 gcc_assert (!VOID_TYPE_P (type
));
9287 /* Note that COND_EXPRs whose type is a structure or union
9288 are required to be constructed to contain assignments of
9289 a temporary variable, so that we can evaluate them here
9290 for side effect only. If type is void, we must do likewise. */
9292 gcc_assert (!TREE_ADDRESSABLE (type
)
9294 && TREE_TYPE (treeop1
) != void_type_node
9295 && TREE_TYPE (treeop2
) != void_type_node
);
9297 temp
= expand_cond_expr_using_cmove (treeop0
, treeop1
, treeop2
);
9301 /* If we are not to produce a result, we have no target. Otherwise,
9302 if a target was specified use it; it will not be used as an
9303 intermediate target unless it is safe. If no target, use a
9306 if (modifier
!= EXPAND_STACK_PARM
9308 && safe_from_p (original_target
, treeop0
, 1)
9309 && GET_MODE (original_target
) == mode
9310 && !MEM_P (original_target
))
9311 temp
= original_target
;
9313 temp
= assign_temp (type
, 0, 1);
9315 do_pending_stack_adjust ();
9317 op0
= gen_label_rtx ();
9318 op1
= gen_label_rtx ();
9319 jumpifnot (treeop0
, op0
, -1);
9320 store_expr (treeop1
, temp
,
9321 modifier
== EXPAND_STACK_PARM
,
9324 emit_jump_insn (gen_jump (op1
));
9327 store_expr (treeop2
, temp
,
9328 modifier
== EXPAND_STACK_PARM
,
9336 target
= expand_vec_cond_expr (type
, treeop0
, treeop1
, treeop2
, target
);
9343 /* Here to do an ordinary binary operator. */
9345 expand_operands (treeop0
, treeop1
,
9346 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9348 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9350 if (modifier
== EXPAND_STACK_PARM
)
9352 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9353 unsignedp
, OPTAB_LIB_WIDEN
);
9355 /* Bitwise operations do not need bitfield reduction as we expect their
9356 operands being properly truncated. */
9357 if (code
== BIT_XOR_EXPR
9358 || code
== BIT_AND_EXPR
9359 || code
== BIT_IOR_EXPR
)
9361 return REDUCE_BIT_FIELD (temp
);
9363 #undef REDUCE_BIT_FIELD
9366 /* Return TRUE if expression STMT is suitable for replacement.
9367 Never consider memory loads as replaceable, because those don't ever lead
9368 into constant expressions. */
9371 stmt_is_replaceable_p (gimple stmt
)
9373 if (ssa_is_replaceable_p (stmt
))
9375 /* Don't move around loads. */
9376 if (!gimple_assign_single_p (stmt
)
9377 || is_gimple_val (gimple_assign_rhs1 (stmt
)))
9384 expand_expr_real_1 (tree exp
, rtx target
, machine_mode tmode
,
9385 enum expand_modifier modifier
, rtx
*alt_rtl
,
9386 bool inner_reference_p
)
9388 rtx op0
, op1
, temp
, decl_rtl
;
9392 enum tree_code code
= TREE_CODE (exp
);
9393 rtx subtarget
, original_target
;
9396 bool reduce_bit_field
;
9397 location_t loc
= EXPR_LOCATION (exp
);
9398 struct separate_ops ops
;
9399 tree treeop0
, treeop1
, treeop2
;
9400 tree ssa_name
= NULL_TREE
;
9403 type
= TREE_TYPE (exp
);
9404 mode
= TYPE_MODE (type
);
9405 unsignedp
= TYPE_UNSIGNED (type
);
9407 treeop0
= treeop1
= treeop2
= NULL_TREE
;
9408 if (!VL_EXP_CLASS_P (exp
))
9409 switch (TREE_CODE_LENGTH (code
))
9412 case 3: treeop2
= TREE_OPERAND (exp
, 2);
9413 case 2: treeop1
= TREE_OPERAND (exp
, 1);
9414 case 1: treeop0
= TREE_OPERAND (exp
, 0);
9424 ignore
= (target
== const0_rtx
9425 || ((CONVERT_EXPR_CODE_P (code
)
9426 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
9427 && TREE_CODE (type
) == VOID_TYPE
));
9429 /* An operation in what may be a bit-field type needs the
9430 result to be reduced to the precision of the bit-field type,
9431 which is narrower than that of the type's mode. */
9432 reduce_bit_field
= (!ignore
9433 && INTEGRAL_TYPE_P (type
)
9434 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
9436 /* If we are going to ignore this result, we need only do something
9437 if there is a side-effect somewhere in the expression. If there
9438 is, short-circuit the most common cases here. Note that we must
9439 not call expand_expr with anything but const0_rtx in case this
9440 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9444 if (! TREE_SIDE_EFFECTS (exp
))
9447 /* Ensure we reference a volatile object even if value is ignored, but
9448 don't do this if all we are doing is taking its address. */
9449 if (TREE_THIS_VOLATILE (exp
)
9450 && TREE_CODE (exp
) != FUNCTION_DECL
9451 && mode
!= VOIDmode
&& mode
!= BLKmode
9452 && modifier
!= EXPAND_CONST_ADDRESS
)
9454 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
9460 if (TREE_CODE_CLASS (code
) == tcc_unary
9461 || code
== BIT_FIELD_REF
9462 || code
== COMPONENT_REF
9463 || code
== INDIRECT_REF
)
9464 return expand_expr (treeop0
, const0_rtx
, VOIDmode
,
9467 else if (TREE_CODE_CLASS (code
) == tcc_binary
9468 || TREE_CODE_CLASS (code
) == tcc_comparison
9469 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
9471 expand_expr (treeop0
, const0_rtx
, VOIDmode
, modifier
);
9472 expand_expr (treeop1
, const0_rtx
, VOIDmode
, modifier
);
9479 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
9482 /* Use subtarget as the target for operand 0 of a binary operation. */
9483 subtarget
= get_subtarget (target
);
9484 original_target
= target
;
9490 tree function
= decl_function_context (exp
);
9492 temp
= label_rtx (exp
);
9493 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
9495 if (function
!= current_function_decl
9497 LABEL_REF_NONLOCAL_P (temp
) = 1;
9499 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
9504 /* ??? ivopts calls expander, without any preparation from
9505 out-of-ssa. So fake instructions as if this was an access to the
9506 base variable. This unnecessarily allocates a pseudo, see how we can
9507 reuse it, if partition base vars have it set already. */
9508 if (!currently_expanding_to_rtl
)
9510 tree var
= SSA_NAME_VAR (exp
);
9511 if (var
&& DECL_RTL_SET_P (var
))
9512 return DECL_RTL (var
);
9513 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp
)),
9514 LAST_VIRTUAL_REGISTER
+ 1);
9517 g
= get_gimple_for_ssa_name (exp
);
9518 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9520 && modifier
== EXPAND_INITIALIZER
9521 && !SSA_NAME_IS_DEFAULT_DEF (exp
)
9522 && (optimize
|| DECL_IGNORED_P (SSA_NAME_VAR (exp
)))
9523 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp
)))
9524 g
= SSA_NAME_DEF_STMT (exp
);
9528 ops
.code
= gimple_assign_rhs_code (g
);
9529 switch (get_gimple_rhs_class (ops
.code
))
9531 case GIMPLE_TERNARY_RHS
:
9532 ops
.op2
= gimple_assign_rhs3 (g
);
9534 case GIMPLE_BINARY_RHS
:
9535 ops
.op1
= gimple_assign_rhs2 (g
);
9537 /* Try to expand conditonal compare. */
9538 if (targetm
.gen_ccmp_first
)
9540 gcc_checking_assert (targetm
.gen_ccmp_next
!= NULL
);
9541 r
= expand_ccmp_expr (g
);
9546 case GIMPLE_UNARY_RHS
:
9547 ops
.op0
= gimple_assign_rhs1 (g
);
9548 ops
.type
= TREE_TYPE (gimple_assign_lhs (g
));
9549 ops
.location
= gimple_location (g
);
9550 r
= expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
9552 case GIMPLE_SINGLE_RHS
:
9554 location_t saved_loc
= curr_insn_location ();
9555 set_curr_insn_location (gimple_location (g
));
9556 r
= expand_expr_real (gimple_assign_rhs1 (g
), target
,
9557 tmode
, modifier
, NULL
, inner_reference_p
);
9558 set_curr_insn_location (saved_loc
);
9564 if (REG_P (r
) && !REG_EXPR (r
))
9565 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp
), r
);
9570 decl_rtl
= get_rtx_for_ssa_name (ssa_name
);
9571 exp
= SSA_NAME_VAR (ssa_name
);
9572 goto expand_decl_rtl
;
9576 /* If a static var's type was incomplete when the decl was written,
9577 but the type is complete now, lay out the decl now. */
9578 if (DECL_SIZE (exp
) == 0
9579 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
9580 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
9581 layout_decl (exp
, 0);
9583 /* ... fall through ... */
9587 decl_rtl
= DECL_RTL (exp
);
9589 gcc_assert (decl_rtl
);
9590 decl_rtl
= copy_rtx (decl_rtl
);
9591 /* Record writes to register variables. */
9592 if (modifier
== EXPAND_WRITE
9594 && HARD_REGISTER_P (decl_rtl
))
9595 add_to_hard_reg_set (&crtl
->asm_clobbers
,
9596 GET_MODE (decl_rtl
), REGNO (decl_rtl
));
9598 /* Ensure variable marked as used even if it doesn't go through
9599 a parser. If it hasn't be used yet, write out an external
9601 TREE_USED (exp
) = 1;
9603 /* Show we haven't gotten RTL for this yet. */
9606 /* Variables inherited from containing functions should have
9607 been lowered by this point. */
9608 context
= decl_function_context (exp
);
9609 gcc_assert (SCOPE_FILE_SCOPE_P (context
)
9610 || context
== current_function_decl
9611 || TREE_STATIC (exp
)
9612 || DECL_EXTERNAL (exp
)
9613 /* ??? C++ creates functions that are not TREE_STATIC. */
9614 || TREE_CODE (exp
) == FUNCTION_DECL
);
9616 /* This is the case of an array whose size is to be determined
9617 from its initializer, while the initializer is still being parsed.
9618 ??? We aren't parsing while expanding anymore. */
9620 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
9621 temp
= validize_mem (decl_rtl
);
9623 /* If DECL_RTL is memory, we are in the normal case and the
9624 address is not valid, get the address into a register. */
9626 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
9629 *alt_rtl
= decl_rtl
;
9630 decl_rtl
= use_anchored_address (decl_rtl
);
9631 if (modifier
!= EXPAND_CONST_ADDRESS
9632 && modifier
!= EXPAND_SUM
9633 && !memory_address_addr_space_p (DECL_MODE (exp
),
9635 MEM_ADDR_SPACE (decl_rtl
)))
9636 temp
= replace_equiv_address (decl_rtl
,
9637 copy_rtx (XEXP (decl_rtl
, 0)));
9640 /* If we got something, return it. But first, set the alignment
9641 if the address is a register. */
9644 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
9645 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
9650 /* If the mode of DECL_RTL does not match that of the decl,
9651 there are two cases: we are dealing with a BLKmode value
9652 that is returned in a register, or we are dealing with
9653 a promoted value. In the latter case, return a SUBREG
9654 of the wanted mode, but mark it so that we know that it
9655 was already extended. */
9656 if (REG_P (decl_rtl
)
9657 && DECL_MODE (exp
) != BLKmode
9658 && GET_MODE (decl_rtl
) != DECL_MODE (exp
))
9662 /* Get the signedness to be used for this variable. Ensure we get
9663 the same mode we got when the variable was declared. */
9664 if (code
== SSA_NAME
9665 && (g
= SSA_NAME_DEF_STMT (ssa_name
))
9666 && gimple_code (g
) == GIMPLE_CALL
9667 && !gimple_call_internal_p (g
))
9668 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
9669 gimple_call_fntype (g
),
9672 pmode
= promote_decl_mode (exp
, &unsignedp
);
9673 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
9675 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
9676 SUBREG_PROMOTED_VAR_P (temp
) = 1;
9677 SUBREG_PROMOTED_SET (temp
, unsignedp
);
9684 /* Given that TYPE_PRECISION (type) is not always equal to
9685 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
9686 the former to the latter according to the signedness of the
9688 temp
= immed_wide_int_const (wide_int::from
9690 GET_MODE_PRECISION (TYPE_MODE (type
)),
9697 tree tmp
= NULL_TREE
;
9698 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
9699 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
9700 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FRACT
9701 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UFRACT
9702 || GET_MODE_CLASS (mode
) == MODE_VECTOR_ACCUM
9703 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UACCUM
)
9704 return const_vector_from_tree (exp
);
9705 if (GET_MODE_CLASS (mode
) == MODE_INT
)
9707 tree type_for_mode
= lang_hooks
.types
.type_for_mode (mode
, 1);
9709 tmp
= fold_unary_loc (loc
, VIEW_CONVERT_EXPR
, type_for_mode
, exp
);
9713 vec
<constructor_elt
, va_gc
> *v
;
9715 vec_alloc (v
, VECTOR_CST_NELTS (exp
));
9716 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
9717 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, VECTOR_CST_ELT (exp
, i
));
9718 tmp
= build_constructor (type
, v
);
9720 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
9725 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
9728 /* If optimized, generate immediate CONST_DOUBLE
9729 which will be turned into memory by reload if necessary.
9731 We used to force a register so that loop.c could see it. But
9732 this does not allow gen_* patterns to perform optimizations with
9733 the constants. It also produces two insns in cases like "x = 1.0;".
9734 On most machines, floating-point constants are not permitted in
9735 many insns, so we'd end up copying it to a register in any case.
9737 Now, we do the copying in expand_binop, if appropriate. */
9738 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
9739 TYPE_MODE (TREE_TYPE (exp
)));
9742 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
9743 TYPE_MODE (TREE_TYPE (exp
)));
9746 /* Handle evaluating a complex constant in a CONCAT target. */
9747 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
9749 machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
9752 rtarg
= XEXP (original_target
, 0);
9753 itarg
= XEXP (original_target
, 1);
9755 /* Move the real and imaginary parts separately. */
9756 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
9757 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
9760 emit_move_insn (rtarg
, op0
);
9762 emit_move_insn (itarg
, op1
);
9764 return original_target
;
9767 /* ... fall through ... */
9770 temp
= expand_expr_constant (exp
, 1, modifier
);
9772 /* temp contains a constant address.
9773 On RISC machines where a constant address isn't valid,
9774 make some insns to get that address into a register. */
9775 if (modifier
!= EXPAND_CONST_ADDRESS
9776 && modifier
!= EXPAND_INITIALIZER
9777 && modifier
!= EXPAND_SUM
9778 && ! memory_address_addr_space_p (mode
, XEXP (temp
, 0),
9779 MEM_ADDR_SPACE (temp
)))
9780 return replace_equiv_address (temp
,
9781 copy_rtx (XEXP (temp
, 0)));
9787 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
,
9790 if (!SAVE_EXPR_RESOLVED_P (exp
))
9792 /* We can indeed still hit this case, typically via builtin
9793 expanders calling save_expr immediately before expanding
9794 something. Assume this means that we only have to deal
9795 with non-BLKmode values. */
9796 gcc_assert (GET_MODE (ret
) != BLKmode
);
9798 val
= build_decl (curr_insn_location (),
9799 VAR_DECL
, NULL
, TREE_TYPE (exp
));
9800 DECL_ARTIFICIAL (val
) = 1;
9801 DECL_IGNORED_P (val
) = 1;
9803 TREE_OPERAND (exp
, 0) = treeop0
;
9804 SAVE_EXPR_RESOLVED_P (exp
) = 1;
9806 if (!CONSTANT_P (ret
))
9807 ret
= copy_to_reg (ret
);
9808 SET_DECL_RTL (val
, ret
);
9816 /* If we don't need the result, just ensure we evaluate any
9820 unsigned HOST_WIDE_INT idx
;
9823 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
9824 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
9829 return expand_constructor (exp
, target
, modifier
, false);
9831 case TARGET_MEM_REF
:
9834 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9835 enum insn_code icode
;
9838 op0
= addr_for_mem_ref (exp
, as
, true);
9839 op0
= memory_address_addr_space (mode
, op0
, as
);
9840 temp
= gen_rtx_MEM (mode
, op0
);
9841 set_mem_attributes (temp
, exp
, 0);
9842 set_mem_addr_space (temp
, as
);
9843 align
= get_object_alignment (exp
);
9844 if (modifier
!= EXPAND_WRITE
9845 && modifier
!= EXPAND_MEMORY
9847 && align
< GET_MODE_ALIGNMENT (mode
)
9848 /* If the target does not have special handling for unaligned
9849 loads of mode then it can use regular moves for them. */
9850 && ((icode
= optab_handler (movmisalign_optab
, mode
))
9851 != CODE_FOR_nothing
))
9853 struct expand_operand ops
[2];
9855 /* We've already validated the memory, and we're creating a
9856 new pseudo destination. The predicates really can't fail,
9857 nor can the generator. */
9858 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9859 create_fixed_operand (&ops
[1], temp
);
9860 expand_insn (icode
, 2, ops
);
9861 temp
= ops
[0].value
;
9869 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9870 machine_mode address_mode
;
9871 tree base
= TREE_OPERAND (exp
, 0);
9873 enum insn_code icode
;
9875 /* Handle expansion of non-aliased memory with non-BLKmode. That
9876 might end up in a register. */
9877 if (mem_ref_refers_to_non_mem_p (exp
))
9879 HOST_WIDE_INT offset
= mem_ref_offset (exp
).to_short_addr ();
9880 base
= TREE_OPERAND (base
, 0);
9882 && tree_fits_uhwi_p (TYPE_SIZE (type
))
9883 && (GET_MODE_BITSIZE (DECL_MODE (base
))
9884 == tree_to_uhwi (TYPE_SIZE (type
))))
9885 return expand_expr (build1 (VIEW_CONVERT_EXPR
, type
, base
),
9886 target
, tmode
, modifier
);
9887 if (TYPE_MODE (type
) == BLKmode
)
9889 temp
= assign_stack_temp (DECL_MODE (base
),
9890 GET_MODE_SIZE (DECL_MODE (base
)));
9891 store_expr (base
, temp
, 0, false);
9892 temp
= adjust_address (temp
, BLKmode
, offset
);
9893 set_mem_size (temp
, int_size_in_bytes (type
));
9896 exp
= build3 (BIT_FIELD_REF
, type
, base
, TYPE_SIZE (type
),
9897 bitsize_int (offset
* BITS_PER_UNIT
));
9898 return expand_expr (exp
, target
, tmode
, modifier
);
9900 address_mode
= targetm
.addr_space
.address_mode (as
);
9901 base
= TREE_OPERAND (exp
, 0);
9902 if ((def_stmt
= get_def_for_expr (base
, BIT_AND_EXPR
)))
9904 tree mask
= gimple_assign_rhs2 (def_stmt
);
9905 base
= build2 (BIT_AND_EXPR
, TREE_TYPE (base
),
9906 gimple_assign_rhs1 (def_stmt
), mask
);
9907 TREE_OPERAND (exp
, 0) = base
;
9909 align
= get_object_alignment (exp
);
9910 op0
= expand_expr (base
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
9911 op0
= memory_address_addr_space (mode
, op0
, as
);
9912 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
9914 rtx off
= immed_wide_int_const (mem_ref_offset (exp
), address_mode
);
9915 op0
= simplify_gen_binary (PLUS
, address_mode
, op0
, off
);
9916 op0
= memory_address_addr_space (mode
, op0
, as
);
9918 temp
= gen_rtx_MEM (mode
, op0
);
9919 set_mem_attributes (temp
, exp
, 0);
9920 set_mem_addr_space (temp
, as
);
9921 if (TREE_THIS_VOLATILE (exp
))
9922 MEM_VOLATILE_P (temp
) = 1;
9923 if (modifier
!= EXPAND_WRITE
9924 && modifier
!= EXPAND_MEMORY
9925 && !inner_reference_p
9927 && align
< GET_MODE_ALIGNMENT (mode
))
9929 if ((icode
= optab_handler (movmisalign_optab
, mode
))
9930 != CODE_FOR_nothing
)
9932 struct expand_operand ops
[2];
9934 /* We've already validated the memory, and we're creating a
9935 new pseudo destination. The predicates really can't fail,
9936 nor can the generator. */
9937 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9938 create_fixed_operand (&ops
[1], temp
);
9939 expand_insn (icode
, 2, ops
);
9940 temp
= ops
[0].value
;
9942 else if (SLOW_UNALIGNED_ACCESS (mode
, align
))
9943 temp
= extract_bit_field (temp
, GET_MODE_BITSIZE (mode
),
9944 0, TYPE_UNSIGNED (TREE_TYPE (exp
)),
9945 (modifier
== EXPAND_STACK_PARM
9946 ? NULL_RTX
: target
),
9955 tree array
= treeop0
;
9956 tree index
= treeop1
;
9959 /* Fold an expression like: "foo"[2].
9960 This is not done in fold so it won't happen inside &.
9961 Don't fold if this is for wide characters since it's too
9962 difficult to do correctly and this is a very rare case. */
9964 if (modifier
!= EXPAND_CONST_ADDRESS
9965 && modifier
!= EXPAND_INITIALIZER
9966 && modifier
!= EXPAND_MEMORY
)
9968 tree t
= fold_read_from_constant_string (exp
);
9971 return expand_expr (t
, target
, tmode
, modifier
);
9974 /* If this is a constant index into a constant array,
9975 just get the value from the array. Handle both the cases when
9976 we have an explicit constructor and when our operand is a variable
9977 that was declared const. */
9979 if (modifier
!= EXPAND_CONST_ADDRESS
9980 && modifier
!= EXPAND_INITIALIZER
9981 && modifier
!= EXPAND_MEMORY
9982 && TREE_CODE (array
) == CONSTRUCTOR
9983 && ! TREE_SIDE_EFFECTS (array
)
9984 && TREE_CODE (index
) == INTEGER_CST
)
9986 unsigned HOST_WIDE_INT ix
;
9989 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
9991 if (tree_int_cst_equal (field
, index
))
9993 if (!TREE_SIDE_EFFECTS (value
))
9994 return expand_expr (fold (value
), target
, tmode
, modifier
);
9999 else if (optimize
>= 1
10000 && modifier
!= EXPAND_CONST_ADDRESS
10001 && modifier
!= EXPAND_INITIALIZER
10002 && modifier
!= EXPAND_MEMORY
10003 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
10004 && TREE_CODE (index
) == INTEGER_CST
10005 && (TREE_CODE (array
) == VAR_DECL
10006 || TREE_CODE (array
) == CONST_DECL
)
10007 && (init
= ctor_for_folding (array
)) != error_mark_node
)
10009 if (init
== NULL_TREE
)
10011 tree value
= build_zero_cst (type
);
10012 if (TREE_CODE (value
) == CONSTRUCTOR
)
10014 /* If VALUE is a CONSTRUCTOR, this optimization is only
10015 useful if this doesn't store the CONSTRUCTOR into
10016 memory. If it does, it is more efficient to just
10017 load the data from the array directly. */
10018 rtx ret
= expand_constructor (value
, target
,
10020 if (ret
== NULL_RTX
)
10025 return expand_expr (value
, target
, tmode
, modifier
);
10027 else if (TREE_CODE (init
) == CONSTRUCTOR
)
10029 unsigned HOST_WIDE_INT ix
;
10032 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
10034 if (tree_int_cst_equal (field
, index
))
10036 if (TREE_SIDE_EFFECTS (value
))
10039 if (TREE_CODE (value
) == CONSTRUCTOR
)
10041 /* If VALUE is a CONSTRUCTOR, this
10042 optimization is only useful if
10043 this doesn't store the CONSTRUCTOR
10044 into memory. If it does, it is more
10045 efficient to just load the data from
10046 the array directly. */
10047 rtx ret
= expand_constructor (value
, target
,
10049 if (ret
== NULL_RTX
)
10054 expand_expr (fold (value
), target
, tmode
, modifier
);
10057 else if (TREE_CODE (init
) == STRING_CST
)
10059 tree low_bound
= array_ref_low_bound (exp
);
10060 tree index1
= fold_convert_loc (loc
, sizetype
, treeop1
);
10062 /* Optimize the special case of a zero lower bound.
10064 We convert the lower bound to sizetype to avoid problems
10065 with constant folding. E.g. suppose the lower bound is
10066 1 and its mode is QI. Without the conversion
10067 (ARRAY + (INDEX - (unsigned char)1))
10069 (ARRAY + (-(unsigned char)1) + INDEX)
10071 (ARRAY + 255 + INDEX). Oops! */
10072 if (!integer_zerop (low_bound
))
10073 index1
= size_diffop_loc (loc
, index1
,
10074 fold_convert_loc (loc
, sizetype
,
10077 if (compare_tree_int (index1
, TREE_STRING_LENGTH (init
)) < 0)
10079 tree type
= TREE_TYPE (TREE_TYPE (init
));
10080 machine_mode mode
= TYPE_MODE (type
);
10082 if (GET_MODE_CLASS (mode
) == MODE_INT
10083 && GET_MODE_SIZE (mode
) == 1)
10084 return gen_int_mode (TREE_STRING_POINTER (init
)
10085 [TREE_INT_CST_LOW (index1
)],
10091 goto normal_inner_ref
;
10093 case COMPONENT_REF
:
10094 /* If the operand is a CONSTRUCTOR, we can just extract the
10095 appropriate field if it is present. */
10096 if (TREE_CODE (treeop0
) == CONSTRUCTOR
)
10098 unsigned HOST_WIDE_INT idx
;
10101 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0
),
10103 if (field
== treeop1
10104 /* We can normally use the value of the field in the
10105 CONSTRUCTOR. However, if this is a bitfield in
10106 an integral mode that we can fit in a HOST_WIDE_INT,
10107 we must mask only the number of bits in the bitfield,
10108 since this is done implicitly by the constructor. If
10109 the bitfield does not meet either of those conditions,
10110 we can't do this optimization. */
10111 && (! DECL_BIT_FIELD (field
)
10112 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
10113 && (GET_MODE_PRECISION (DECL_MODE (field
))
10114 <= HOST_BITS_PER_WIDE_INT
))))
10116 if (DECL_BIT_FIELD (field
)
10117 && modifier
== EXPAND_STACK_PARM
)
10119 op0
= expand_expr (value
, target
, tmode
, modifier
);
10120 if (DECL_BIT_FIELD (field
))
10122 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
10123 machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
10125 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
10127 op1
= gen_int_mode (((HOST_WIDE_INT
) 1 << bitsize
) - 1,
10129 op0
= expand_and (imode
, op0
, op1
, target
);
10133 int count
= GET_MODE_PRECISION (imode
) - bitsize
;
10135 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
10137 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
10145 goto normal_inner_ref
;
10147 case BIT_FIELD_REF
:
10148 case ARRAY_RANGE_REF
:
10151 machine_mode mode1
, mode2
;
10152 HOST_WIDE_INT bitsize
, bitpos
;
10154 int volatilep
= 0, must_force_mem
;
10155 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
10156 &mode1
, &unsignedp
, &volatilep
, true);
10157 rtx orig_op0
, memloc
;
10158 bool clear_mem_expr
= false;
10160 /* If we got back the original object, something is wrong. Perhaps
10161 we are evaluating an expression too early. In any event, don't
10162 infinitely recurse. */
10163 gcc_assert (tem
!= exp
);
10165 /* If TEM's type is a union of variable size, pass TARGET to the inner
10166 computation, since it will need a temporary and TARGET is known
10167 to have to do. This occurs in unchecked conversion in Ada. */
10169 = expand_expr_real (tem
,
10170 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10171 && COMPLETE_TYPE_P (TREE_TYPE (tem
))
10172 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10174 && modifier
!= EXPAND_STACK_PARM
10175 ? target
: NULL_RTX
),
10177 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
10180 /* If the field has a mode, we want to access it in the
10181 field's mode, not the computed mode.
10182 If a MEM has VOIDmode (external with incomplete type),
10183 use BLKmode for it instead. */
10186 if (mode1
!= VOIDmode
)
10187 op0
= adjust_address (op0
, mode1
, 0);
10188 else if (GET_MODE (op0
) == VOIDmode
)
10189 op0
= adjust_address (op0
, BLKmode
, 0);
10193 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
10195 /* If we have either an offset, a BLKmode result, or a reference
10196 outside the underlying object, we must force it to memory.
10197 Such a case can occur in Ada if we have unchecked conversion
10198 of an expression from a scalar type to an aggregate type or
10199 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10200 passed a partially uninitialized object or a view-conversion
10201 to a larger size. */
10202 must_force_mem
= (offset
10203 || mode1
== BLKmode
10204 || bitpos
+ bitsize
> GET_MODE_BITSIZE (mode2
));
10206 /* Handle CONCAT first. */
10207 if (GET_CODE (op0
) == CONCAT
&& !must_force_mem
)
10210 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
10213 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10216 op0
= XEXP (op0
, 0);
10217 mode2
= GET_MODE (op0
);
10219 else if (bitpos
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10220 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 1)))
10224 op0
= XEXP (op0
, 1);
10226 mode2
= GET_MODE (op0
);
10229 /* Otherwise force into memory. */
10230 must_force_mem
= 1;
10233 /* If this is a constant, put it in a register if it is a legitimate
10234 constant and we don't need a memory reference. */
10235 if (CONSTANT_P (op0
)
10236 && mode2
!= BLKmode
10237 && targetm
.legitimate_constant_p (mode2
, op0
)
10238 && !must_force_mem
)
10239 op0
= force_reg (mode2
, op0
);
10241 /* Otherwise, if this is a constant, try to force it to the constant
10242 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10243 is a legitimate constant. */
10244 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
10245 op0
= validize_mem (memloc
);
10247 /* Otherwise, if this is a constant or the object is not in memory
10248 and need be, put it there. */
10249 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
10251 memloc
= assign_temp (TREE_TYPE (tem
), 1, 1);
10252 emit_move_insn (memloc
, op0
);
10254 clear_mem_expr
= true;
10259 machine_mode address_mode
;
10260 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
10263 gcc_assert (MEM_P (op0
));
10265 address_mode
= get_address_mode (op0
);
10266 if (GET_MODE (offset_rtx
) != address_mode
)
10268 /* We cannot be sure that the RTL in offset_rtx is valid outside
10269 of a memory address context, so force it into a register
10270 before attempting to convert it to the desired mode. */
10271 offset_rtx
= force_operand (offset_rtx
, NULL_RTX
);
10272 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
10275 /* See the comment in expand_assignment for the rationale. */
10276 if (mode1
!= VOIDmode
10279 && (bitpos
% bitsize
) == 0
10280 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
10281 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode1
))
10283 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10287 op0
= offset_address (op0
, offset_rtx
,
10288 highest_pow2_factor (offset
));
10291 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10292 record its alignment as BIGGEST_ALIGNMENT. */
10293 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
10294 && is_aligning_offset (offset
, tem
))
10295 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
10297 /* Don't forget about volatility even if this is a bitfield. */
10298 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
10300 if (op0
== orig_op0
)
10301 op0
= copy_rtx (op0
);
10303 MEM_VOLATILE_P (op0
) = 1;
10306 /* In cases where an aligned union has an unaligned object
10307 as a field, we might be extracting a BLKmode value from
10308 an integer-mode (e.g., SImode) object. Handle this case
10309 by doing the extract into an object as wide as the field
10310 (which we know to be the width of a basic mode), then
10311 storing into memory, and changing the mode to BLKmode. */
10312 if (mode1
== VOIDmode
10313 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
10314 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
10315 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
10316 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
10317 && modifier
!= EXPAND_CONST_ADDRESS
10318 && modifier
!= EXPAND_INITIALIZER
10319 && modifier
!= EXPAND_MEMORY
)
10320 /* If the bitfield is volatile and the bitsize
10321 is narrower than the access size of the bitfield,
10322 we need to extract bitfields from the access. */
10323 || (volatilep
&& TREE_CODE (exp
) == COMPONENT_REF
10324 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp
, 1))
10325 && mode1
!= BLKmode
10326 && bitsize
< GET_MODE_SIZE (mode1
) * BITS_PER_UNIT
)
10327 /* If the field isn't aligned enough to fetch as a memref,
10328 fetch it as a bit field. */
10329 || (mode1
!= BLKmode
10330 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
10331 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
10333 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
10334 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
10335 && modifier
!= EXPAND_MEMORY
10336 && ((modifier
== EXPAND_CONST_ADDRESS
10337 || modifier
== EXPAND_INITIALIZER
)
10339 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
10340 || (bitpos
% BITS_PER_UNIT
!= 0)))
10341 /* If the type and the field are a constant size and the
10342 size of the type isn't the same size as the bitfield,
10343 we must use bitfield operations. */
10345 && TYPE_SIZE (TREE_TYPE (exp
))
10346 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
10347 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
10350 machine_mode ext_mode
= mode
;
10352 if (ext_mode
== BLKmode
10353 && ! (target
!= 0 && MEM_P (op0
)
10355 && bitpos
% BITS_PER_UNIT
== 0))
10356 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
10358 if (ext_mode
== BLKmode
)
10361 target
= assign_temp (type
, 1, 1);
10363 /* ??? Unlike the similar test a few lines below, this one is
10364 very likely obsolete. */
10368 /* In this case, BITPOS must start at a byte boundary and
10369 TARGET, if specified, must be a MEM. */
10370 gcc_assert (MEM_P (op0
)
10371 && (!target
|| MEM_P (target
))
10372 && !(bitpos
% BITS_PER_UNIT
));
10374 emit_block_move (target
,
10375 adjust_address (op0
, VOIDmode
,
10376 bitpos
/ BITS_PER_UNIT
),
10377 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
10379 (modifier
== EXPAND_STACK_PARM
10380 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10385 /* If we have nothing to extract, the result will be 0 for targets
10386 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10387 return 0 for the sake of consistency, as reading a zero-sized
10388 bitfield is valid in Ada and the value is fully specified. */
10392 op0
= validize_mem (op0
);
10394 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
10395 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10397 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
10398 (modifier
== EXPAND_STACK_PARM
10399 ? NULL_RTX
: target
),
10400 ext_mode
, ext_mode
);
10402 /* If the result is a record type and BITSIZE is narrower than
10403 the mode of OP0, an integral mode, and this is a big endian
10404 machine, we must put the field into the high-order bits. */
10405 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
10406 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10407 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
10408 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
10409 GET_MODE_BITSIZE (GET_MODE (op0
))
10410 - bitsize
, op0
, 1);
10412 /* If the result type is BLKmode, store the data into a temporary
10413 of the appropriate type, but with the mode corresponding to the
10414 mode for the data we have (op0's mode). */
10415 if (mode
== BLKmode
)
10418 = assign_stack_temp_for_type (ext_mode
,
10419 GET_MODE_BITSIZE (ext_mode
),
10421 emit_move_insn (new_rtx
, op0
);
10422 op0
= copy_rtx (new_rtx
);
10423 PUT_MODE (op0
, BLKmode
);
10429 /* If the result is BLKmode, use that to access the object
10431 if (mode
== BLKmode
)
10434 /* Get a reference to just this component. */
10435 if (modifier
== EXPAND_CONST_ADDRESS
10436 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
10437 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10439 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10441 if (op0
== orig_op0
)
10442 op0
= copy_rtx (op0
);
10444 set_mem_attributes (op0
, exp
, 0);
10446 if (REG_P (XEXP (op0
, 0)))
10447 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10449 /* If op0 is a temporary because the original expressions was forced
10450 to memory, clear MEM_EXPR so that the original expression cannot
10451 be marked as addressable through MEM_EXPR of the temporary. */
10452 if (clear_mem_expr
)
10453 set_mem_expr (op0
, NULL_TREE
);
10455 MEM_VOLATILE_P (op0
) |= volatilep
;
10456 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
10457 || modifier
== EXPAND_CONST_ADDRESS
10458 || modifier
== EXPAND_INITIALIZER
)
10462 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
10464 convert_move (target
, op0
, unsignedp
);
10469 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
10472 /* All valid uses of __builtin_va_arg_pack () are removed during
10474 if (CALL_EXPR_VA_ARG_PACK (exp
))
10475 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp
);
10477 tree fndecl
= get_callee_fndecl (exp
), attr
;
10480 && (attr
= lookup_attribute ("error",
10481 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10482 error ("%Kcall to %qs declared with attribute error: %s",
10483 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10484 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10486 && (attr
= lookup_attribute ("warning",
10487 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10488 warning_at (tree_nonartificial_location (exp
),
10489 0, "%Kcall to %qs declared with attribute warning: %s",
10490 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10491 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10493 /* Check for a built-in function. */
10494 if (fndecl
&& DECL_BUILT_IN (fndecl
))
10496 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
10497 if (CALL_WITH_BOUNDS_P (exp
))
10498 return expand_builtin_with_bounds (exp
, target
, subtarget
,
10501 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
10504 return expand_call (exp
, target
, ignore
);
10506 case VIEW_CONVERT_EXPR
:
10509 /* If we are converting to BLKmode, try to avoid an intermediate
10510 temporary by fetching an inner memory reference. */
10511 if (mode
== BLKmode
10512 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
10513 && TYPE_MODE (TREE_TYPE (treeop0
)) != BLKmode
10514 && handled_component_p (treeop0
))
10516 machine_mode mode1
;
10517 HOST_WIDE_INT bitsize
, bitpos
;
10522 = get_inner_reference (treeop0
, &bitsize
, &bitpos
,
10523 &offset
, &mode1
, &unsignedp
, &volatilep
,
10527 /* ??? We should work harder and deal with non-zero offsets. */
10529 && (bitpos
% BITS_PER_UNIT
) == 0
10531 && compare_tree_int (TYPE_SIZE (type
), bitsize
) == 0)
10533 /* See the normal_inner_ref case for the rationale. */
10535 = expand_expr_real (tem
,
10536 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10537 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10539 && modifier
!= EXPAND_STACK_PARM
10540 ? target
: NULL_RTX
),
10542 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
10545 if (MEM_P (orig_op0
))
10549 /* Get a reference to just this component. */
10550 if (modifier
== EXPAND_CONST_ADDRESS
10551 || modifier
== EXPAND_SUM
10552 || modifier
== EXPAND_INITIALIZER
)
10553 op0
= adjust_address_nv (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10555 op0
= adjust_address (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10557 if (op0
== orig_op0
)
10558 op0
= copy_rtx (op0
);
10560 set_mem_attributes (op0
, treeop0
, 0);
10561 if (REG_P (XEXP (op0
, 0)))
10562 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10564 MEM_VOLATILE_P (op0
) |= volatilep
;
10570 op0
= expand_expr_real (treeop0
, NULL_RTX
, VOIDmode
, modifier
,
10571 NULL
, inner_reference_p
);
10573 /* If the input and output modes are both the same, we are done. */
10574 if (mode
== GET_MODE (op0
))
10576 /* If neither mode is BLKmode, and both modes are the same size
10577 then we can use gen_lowpart. */
10578 else if (mode
!= BLKmode
&& GET_MODE (op0
) != BLKmode
10579 && (GET_MODE_PRECISION (mode
)
10580 == GET_MODE_PRECISION (GET_MODE (op0
)))
10581 && !COMPLEX_MODE_P (GET_MODE (op0
)))
10583 if (GET_CODE (op0
) == SUBREG
)
10584 op0
= force_reg (GET_MODE (op0
), op0
);
10585 temp
= gen_lowpart_common (mode
, op0
);
10590 if (!REG_P (op0
) && !MEM_P (op0
))
10591 op0
= force_reg (GET_MODE (op0
), op0
);
10592 op0
= gen_lowpart (mode
, op0
);
10595 /* If both types are integral, convert from one mode to the other. */
10596 else if (INTEGRAL_TYPE_P (type
) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0
)))
10597 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
10598 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
10599 /* If the output type is a bit-field type, do an extraction. */
10600 else if (reduce_bit_field
)
10601 return extract_bit_field (op0
, TYPE_PRECISION (type
), 0,
10602 TYPE_UNSIGNED (type
), NULL_RTX
,
10604 /* As a last resort, spill op0 to memory, and reload it in a
10606 else if (!MEM_P (op0
))
10608 /* If the operand is not a MEM, force it into memory. Since we
10609 are going to be changing the mode of the MEM, don't call
10610 force_const_mem for constants because we don't allow pool
10611 constants to change mode. */
10612 tree inner_type
= TREE_TYPE (treeop0
);
10614 gcc_assert (!TREE_ADDRESSABLE (exp
));
10616 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
10618 = assign_stack_temp_for_type
10619 (TYPE_MODE (inner_type
),
10620 GET_MODE_SIZE (TYPE_MODE (inner_type
)), inner_type
);
10622 emit_move_insn (target
, op0
);
10626 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
10627 output type is such that the operand is known to be aligned, indicate
10628 that it is. Otherwise, we need only be concerned about alignment for
10629 non-BLKmode results. */
10632 enum insn_code icode
;
10634 if (TYPE_ALIGN_OK (type
))
10636 /* ??? Copying the MEM without substantially changing it might
10637 run afoul of the code handling volatile memory references in
10638 store_expr, which assumes that TARGET is returned unmodified
10639 if it has been used. */
10640 op0
= copy_rtx (op0
);
10641 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
10643 else if (modifier
!= EXPAND_WRITE
10644 && modifier
!= EXPAND_MEMORY
10645 && !inner_reference_p
10647 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
10649 /* If the target does have special handling for unaligned
10650 loads of mode then use them. */
10651 if ((icode
= optab_handler (movmisalign_optab
, mode
))
10652 != CODE_FOR_nothing
)
10656 op0
= adjust_address (op0
, mode
, 0);
10657 /* We've already validated the memory, and we're creating a
10658 new pseudo destination. The predicates really can't
10660 reg
= gen_reg_rtx (mode
);
10662 /* Nor can the insn generator. */
10663 insn
= GEN_FCN (icode
) (reg
, op0
);
10667 else if (STRICT_ALIGNMENT
)
10669 tree inner_type
= TREE_TYPE (treeop0
);
10670 HOST_WIDE_INT temp_size
10671 = MAX (int_size_in_bytes (inner_type
),
10672 (HOST_WIDE_INT
) GET_MODE_SIZE (mode
));
10674 = assign_stack_temp_for_type (mode
, temp_size
, type
);
10675 rtx new_with_op0_mode
10676 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
10678 gcc_assert (!TREE_ADDRESSABLE (exp
));
10680 if (GET_MODE (op0
) == BLKmode
)
10681 emit_block_move (new_with_op0_mode
, op0
,
10682 GEN_INT (GET_MODE_SIZE (mode
)),
10683 (modifier
== EXPAND_STACK_PARM
10684 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10686 emit_move_insn (new_with_op0_mode
, op0
);
10692 op0
= adjust_address (op0
, mode
, 0);
10699 tree lhs
= treeop0
;
10700 tree rhs
= treeop1
;
10701 gcc_assert (ignore
);
10703 /* Check for |= or &= of a bitfield of size one into another bitfield
10704 of size 1. In this case, (unless we need the result of the
10705 assignment) we can do this more efficiently with a
10706 test followed by an assignment, if necessary.
10708 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10709 things change so we do, this code should be enhanced to
10711 if (TREE_CODE (lhs
) == COMPONENT_REF
10712 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
10713 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
10714 && TREE_OPERAND (rhs
, 0) == lhs
10715 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
10716 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
10717 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
10719 rtx_code_label
*label
= gen_label_rtx ();
10720 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
10721 do_jump (TREE_OPERAND (rhs
, 1),
10723 value
? 0 : label
, -1);
10724 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
10726 do_pending_stack_adjust ();
10727 emit_label (label
);
10731 expand_assignment (lhs
, rhs
, false);
10736 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
10738 case REALPART_EXPR
:
10739 op0
= expand_normal (treeop0
);
10740 return read_complex_part (op0
, false);
10742 case IMAGPART_EXPR
:
10743 op0
= expand_normal (treeop0
);
10744 return read_complex_part (op0
, true);
10751 /* Expanded in cfgexpand.c. */
10752 gcc_unreachable ();
10754 case TRY_CATCH_EXPR
:
10756 case EH_FILTER_EXPR
:
10757 case TRY_FINALLY_EXPR
:
10758 /* Lowered by tree-eh.c. */
10759 gcc_unreachable ();
10761 case WITH_CLEANUP_EXPR
:
10762 case CLEANUP_POINT_EXPR
:
10764 case CASE_LABEL_EXPR
:
10769 case COMPOUND_EXPR
:
10770 case PREINCREMENT_EXPR
:
10771 case PREDECREMENT_EXPR
:
10772 case POSTINCREMENT_EXPR
:
10773 case POSTDECREMENT_EXPR
:
10776 case COMPOUND_LITERAL_EXPR
:
10777 /* Lowered by gimplify.c. */
10778 gcc_unreachable ();
10781 /* Function descriptors are not valid except for as
10782 initialization constants, and should not be expanded. */
10783 gcc_unreachable ();
10785 case WITH_SIZE_EXPR
:
10786 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10787 have pulled out the size to use in whatever context it needed. */
10788 return expand_expr_real (treeop0
, original_target
, tmode
,
10789 modifier
, alt_rtl
, inner_reference_p
);
10792 return expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
10796 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10797 signedness of TYPE), possibly returning the result in TARGET. */
10799 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
10801 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
10802 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
10804 /* For constant values, reduce using build_int_cst_type. */
10805 if (CONST_INT_P (exp
))
10807 HOST_WIDE_INT value
= INTVAL (exp
);
10808 tree t
= build_int_cst_type (type
, value
);
10809 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
10811 else if (TYPE_UNSIGNED (type
))
10813 machine_mode mode
= GET_MODE (exp
);
10814 rtx mask
= immed_wide_int_const
10815 (wi::mask (prec
, false, GET_MODE_PRECISION (mode
)), mode
);
10816 return expand_and (mode
, exp
, mask
, target
);
10820 int count
= GET_MODE_PRECISION (GET_MODE (exp
)) - prec
;
10821 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
),
10822 exp
, count
, target
, 0);
10823 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
),
10824 exp
, count
, target
, 0);
10828 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10829 when applied to the address of EXP produces an address known to be
10830 aligned more than BIGGEST_ALIGNMENT. */
10833 is_aligning_offset (const_tree offset
, const_tree exp
)
10835 /* Strip off any conversions. */
10836 while (CONVERT_EXPR_P (offset
))
10837 offset
= TREE_OPERAND (offset
, 0);
10839 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10840 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10841 if (TREE_CODE (offset
) != BIT_AND_EXPR
10842 || !tree_fits_uhwi_p (TREE_OPERAND (offset
, 1))
10843 || compare_tree_int (TREE_OPERAND (offset
, 1),
10844 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
10845 || exact_log2 (tree_to_uhwi (TREE_OPERAND (offset
, 1)) + 1) < 0)
10848 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10849 It must be NEGATE_EXPR. Then strip any more conversions. */
10850 offset
= TREE_OPERAND (offset
, 0);
10851 while (CONVERT_EXPR_P (offset
))
10852 offset
= TREE_OPERAND (offset
, 0);
10854 if (TREE_CODE (offset
) != NEGATE_EXPR
)
10857 offset
= TREE_OPERAND (offset
, 0);
10858 while (CONVERT_EXPR_P (offset
))
10859 offset
= TREE_OPERAND (offset
, 0);
10861 /* This must now be the address of EXP. */
10862 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
10865 /* Return the tree node if an ARG corresponds to a string constant or zero
10866 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10867 in bytes within the string that ARG is accessing. The type of the
10868 offset will be `sizetype'. */
10871 string_constant (tree arg
, tree
*ptr_offset
)
10873 tree array
, offset
, lower_bound
;
10876 if (TREE_CODE (arg
) == ADDR_EXPR
)
10878 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
10880 *ptr_offset
= size_zero_node
;
10881 return TREE_OPERAND (arg
, 0);
10883 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
10885 array
= TREE_OPERAND (arg
, 0);
10886 offset
= size_zero_node
;
10888 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
10890 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10891 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10892 if (TREE_CODE (array
) != STRING_CST
10893 && TREE_CODE (array
) != VAR_DECL
)
10896 /* Check if the array has a nonzero lower bound. */
10897 lower_bound
= array_ref_low_bound (TREE_OPERAND (arg
, 0));
10898 if (!integer_zerop (lower_bound
))
10900 /* If the offset and base aren't both constants, return 0. */
10901 if (TREE_CODE (lower_bound
) != INTEGER_CST
)
10903 if (TREE_CODE (offset
) != INTEGER_CST
)
10905 /* Adjust offset by the lower bound. */
10906 offset
= size_diffop (fold_convert (sizetype
, offset
),
10907 fold_convert (sizetype
, lower_bound
));
10910 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == MEM_REF
)
10912 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10913 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10914 if (TREE_CODE (array
) != ADDR_EXPR
)
10916 array
= TREE_OPERAND (array
, 0);
10917 if (TREE_CODE (array
) != STRING_CST
10918 && TREE_CODE (array
) != VAR_DECL
)
10924 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
10926 tree arg0
= TREE_OPERAND (arg
, 0);
10927 tree arg1
= TREE_OPERAND (arg
, 1);
10932 if (TREE_CODE (arg0
) == ADDR_EXPR
10933 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
10934 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
10936 array
= TREE_OPERAND (arg0
, 0);
10939 else if (TREE_CODE (arg1
) == ADDR_EXPR
10940 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
10941 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
10943 array
= TREE_OPERAND (arg1
, 0);
10952 if (TREE_CODE (array
) == STRING_CST
)
10954 *ptr_offset
= fold_convert (sizetype
, offset
);
10957 else if (TREE_CODE (array
) == VAR_DECL
10958 || TREE_CODE (array
) == CONST_DECL
)
10961 tree init
= ctor_for_folding (array
);
10963 /* Variables initialized to string literals can be handled too. */
10964 if (init
== error_mark_node
10966 || TREE_CODE (init
) != STRING_CST
)
10969 /* Avoid const char foo[4] = "abcde"; */
10970 if (DECL_SIZE_UNIT (array
) == NULL_TREE
10971 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
10972 || (length
= TREE_STRING_LENGTH (init
)) <= 0
10973 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
10976 /* If variable is bigger than the string literal, OFFSET must be constant
10977 and inside of the bounds of the string literal. */
10978 offset
= fold_convert (sizetype
, offset
);
10979 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
10980 && (! tree_fits_uhwi_p (offset
)
10981 || compare_tree_int (offset
, length
) >= 0))
10984 *ptr_offset
= offset
;
10991 /* Generate code to calculate OPS, and exploded expression
10992 using a store-flag instruction and return an rtx for the result.
10993 OPS reflects a comparison.
10995 If TARGET is nonzero, store the result there if convenient.
10997 Return zero if there is no suitable set-flag instruction
10998 available on this machine.
11000 Once expand_expr has been called on the arguments of the comparison,
11001 we are committed to doing the store flag, since it is not safe to
11002 re-evaluate the expression. We emit the store-flag insn by calling
11003 emit_store_flag, but only expand the arguments if we have a reason
11004 to believe that emit_store_flag will be successful. If we think that
11005 it will, but it isn't, we have to simulate the store-flag with a
11006 set/jump/set sequence. */
11009 do_store_flag (sepops ops
, rtx target
, machine_mode mode
)
11011 enum rtx_code code
;
11012 tree arg0
, arg1
, type
;
11014 machine_mode operand_mode
;
11017 rtx subtarget
= target
;
11018 location_t loc
= ops
->location
;
11023 /* Don't crash if the comparison was erroneous. */
11024 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
11027 type
= TREE_TYPE (arg0
);
11028 operand_mode
= TYPE_MODE (type
);
11029 unsignedp
= TYPE_UNSIGNED (type
);
11031 /* We won't bother with BLKmode store-flag operations because it would mean
11032 passing a lot of information to emit_store_flag. */
11033 if (operand_mode
== BLKmode
)
11036 /* We won't bother with store-flag operations involving function pointers
11037 when function pointers must be canonicalized before comparisons. */
11038 #ifdef HAVE_canonicalize_funcptr_for_compare
11039 if (HAVE_canonicalize_funcptr_for_compare
11040 && ((TREE_CODE (TREE_TYPE (arg0
)) == POINTER_TYPE
11041 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0
)))
11043 || (TREE_CODE (TREE_TYPE (arg1
)) == POINTER_TYPE
11044 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1
)))
11045 == FUNCTION_TYPE
))))
11052 /* For vector typed comparisons emit code to generate the desired
11053 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
11054 expander for this. */
11055 if (TREE_CODE (ops
->type
) == VECTOR_TYPE
)
11057 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
11058 tree if_true
= constant_boolean_node (true, ops
->type
);
11059 tree if_false
= constant_boolean_node (false, ops
->type
);
11060 return expand_vec_cond_expr (ops
->type
, ifexp
, if_true
, if_false
, target
);
11063 /* Get the rtx comparison code to use. We know that EXP is a comparison
11064 operation of some type. Some comparisons against 1 and -1 can be
11065 converted to comparisons with zero. Do so here so that the tests
11066 below will be aware that we have a comparison with zero. These
11067 tests will not catch constants in the first operand, but constants
11068 are rarely passed as the first operand. */
11079 if (integer_onep (arg1
))
11080 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
11082 code
= unsignedp
? LTU
: LT
;
11085 if (! unsignedp
&& integer_all_onesp (arg1
))
11086 arg1
= integer_zero_node
, code
= LT
;
11088 code
= unsignedp
? LEU
: LE
;
11091 if (! unsignedp
&& integer_all_onesp (arg1
))
11092 arg1
= integer_zero_node
, code
= GE
;
11094 code
= unsignedp
? GTU
: GT
;
11097 if (integer_onep (arg1
))
11098 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
11100 code
= unsignedp
? GEU
: GE
;
11103 case UNORDERED_EXPR
:
11129 gcc_unreachable ();
11132 /* Put a constant second. */
11133 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
11134 || TREE_CODE (arg0
) == FIXED_CST
)
11136 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
11137 code
= swap_condition (code
);
11140 /* If this is an equality or inequality test of a single bit, we can
11141 do this by shifting the bit being tested to the low-order bit and
11142 masking the result with the constant 1. If the condition was EQ,
11143 we xor it with 1. This does not require an scc insn and is faster
11144 than an scc insn even if we have it.
11146 The code to make this transformation was moved into fold_single_bit_test,
11147 so we just call into the folder and expand its result. */
11149 if ((code
== NE
|| code
== EQ
)
11150 && integer_zerop (arg1
)
11151 && (TYPE_PRECISION (ops
->type
) != 1 || TYPE_UNSIGNED (ops
->type
)))
11153 gimple srcstmt
= get_def_for_expr (arg0
, BIT_AND_EXPR
);
11155 && integer_pow2p (gimple_assign_rhs2 (srcstmt
)))
11157 enum tree_code tcode
= code
== NE
? NE_EXPR
: EQ_EXPR
;
11158 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
11159 tree temp
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg1
),
11160 gimple_assign_rhs1 (srcstmt
),
11161 gimple_assign_rhs2 (srcstmt
));
11162 temp
= fold_single_bit_test (loc
, tcode
, temp
, arg1
, type
);
11164 return expand_expr (temp
, target
, VOIDmode
, EXPAND_NORMAL
);
11168 if (! get_subtarget (target
)
11169 || GET_MODE (subtarget
) != operand_mode
)
11172 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
11175 target
= gen_reg_rtx (mode
);
11177 /* Try a cstore if possible. */
11178 return emit_store_flag_force (target
, code
, op0
, op1
,
11179 operand_mode
, unsignedp
,
11180 (TYPE_PRECISION (ops
->type
) == 1
11181 && !TYPE_UNSIGNED (ops
->type
)) ? -1 : 1);
11185 /* Stubs in case we haven't got a casesi insn. */
11186 #ifndef HAVE_casesi
11187 # define HAVE_casesi 0
11188 # define gen_casesi(a, b, c, d, e) (0)
11189 # define CODE_FOR_casesi CODE_FOR_nothing
11192 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11193 0 otherwise (i.e. if there is no casesi instruction).
11195 DEFAULT_PROBABILITY is the probability of jumping to the default
11198 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
11199 rtx table_label
, rtx default_label
, rtx fallback_label
,
11200 int default_probability
)
11202 struct expand_operand ops
[5];
11203 machine_mode index_mode
= SImode
;
11204 rtx op1
, op2
, index
;
11209 /* Convert the index to SImode. */
11210 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
11212 machine_mode omode
= TYPE_MODE (index_type
);
11213 rtx rangertx
= expand_normal (range
);
11215 /* We must handle the endpoints in the original mode. */
11216 index_expr
= build2 (MINUS_EXPR
, index_type
,
11217 index_expr
, minval
);
11218 minval
= integer_zero_node
;
11219 index
= expand_normal (index_expr
);
11221 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
11222 omode
, 1, default_label
,
11223 default_probability
);
11224 /* Now we can safely truncate. */
11225 index
= convert_to_mode (index_mode
, index
, 0);
11229 if (TYPE_MODE (index_type
) != index_mode
)
11231 index_type
= lang_hooks
.types
.type_for_mode (index_mode
, 0);
11232 index_expr
= fold_convert (index_type
, index_expr
);
11235 index
= expand_normal (index_expr
);
11238 do_pending_stack_adjust ();
11240 op1
= expand_normal (minval
);
11241 op2
= expand_normal (range
);
11243 create_input_operand (&ops
[0], index
, index_mode
);
11244 create_convert_operand_from_type (&ops
[1], op1
, TREE_TYPE (minval
));
11245 create_convert_operand_from_type (&ops
[2], op2
, TREE_TYPE (range
));
11246 create_fixed_operand (&ops
[3], table_label
);
11247 create_fixed_operand (&ops
[4], (default_label
11249 : fallback_label
));
11250 expand_jump_insn (CODE_FOR_casesi
, 5, ops
);
11254 /* Attempt to generate a tablejump instruction; same concept. */
11255 #ifndef HAVE_tablejump
11256 #define HAVE_tablejump 0
11257 #define gen_tablejump(x, y) (0)
11260 /* Subroutine of the next function.
11262 INDEX is the value being switched on, with the lowest value
11263 in the table already subtracted.
11264 MODE is its expected mode (needed if INDEX is constant).
11265 RANGE is the length of the jump table.
11266 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11268 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11269 index value is out of range.
11270 DEFAULT_PROBABILITY is the probability of jumping to
11271 the default label. */
11274 do_tablejump (rtx index
, machine_mode mode
, rtx range
, rtx table_label
,
11275 rtx default_label
, int default_probability
)
11279 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
11280 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
11282 /* Do an unsigned comparison (in the proper mode) between the index
11283 expression and the value which represents the length of the range.
11284 Since we just finished subtracting the lower bound of the range
11285 from the index expression, this comparison allows us to simultaneously
11286 check that the original index expression value is both greater than
11287 or equal to the minimum value of the range and less than or equal to
11288 the maximum value of the range. */
11291 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
11292 default_label
, default_probability
);
11295 /* If index is in range, it must fit in Pmode.
11296 Convert to Pmode so we can index with it. */
11298 index
= convert_to_mode (Pmode
, index
, 1);
11300 /* Don't let a MEM slip through, because then INDEX that comes
11301 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11302 and break_out_memory_refs will go to work on it and mess it up. */
11303 #ifdef PIC_CASE_VECTOR_ADDRESS
11304 if (flag_pic
&& !REG_P (index
))
11305 index
= copy_to_mode_reg (Pmode
, index
);
11308 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11309 GET_MODE_SIZE, because this indicates how large insns are. The other
11310 uses should all be Pmode, because they are addresses. This code
11311 could fail if addresses and insns are not the same size. */
11312 index
= simplify_gen_binary (MULT
, Pmode
, index
,
11313 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE
),
11315 index
= simplify_gen_binary (PLUS
, Pmode
, index
,
11316 gen_rtx_LABEL_REF (Pmode
, table_label
));
11318 #ifdef PIC_CASE_VECTOR_ADDRESS
11320 index
= PIC_CASE_VECTOR_ADDRESS (index
);
11323 index
= memory_address (CASE_VECTOR_MODE
, index
);
11324 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
11325 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
11326 convert_move (temp
, vector
, 0);
11328 emit_jump_insn (gen_tablejump (temp
, table_label
));
11330 /* If we are generating PIC code or if the table is PC-relative, the
11331 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11332 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
11337 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
11338 rtx table_label
, rtx default_label
, int default_probability
)
11342 if (! HAVE_tablejump
)
11345 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
11346 fold_convert (index_type
, index_expr
),
11347 fold_convert (index_type
, minval
));
11348 index
= expand_normal (index_expr
);
11349 do_pending_stack_adjust ();
11351 do_tablejump (index
, TYPE_MODE (index_type
),
11352 convert_modes (TYPE_MODE (index_type
),
11353 TYPE_MODE (TREE_TYPE (range
)),
11354 expand_normal (range
),
11355 TYPE_UNSIGNED (TREE_TYPE (range
))),
11356 table_label
, default_label
, default_probability
);
11360 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11362 const_vector_from_tree (tree exp
)
11368 machine_mode inner
, mode
;
11370 mode
= TYPE_MODE (TREE_TYPE (exp
));
11372 if (initializer_zerop (exp
))
11373 return CONST0_RTX (mode
);
11375 units
= GET_MODE_NUNITS (mode
);
11376 inner
= GET_MODE_INNER (mode
);
11378 v
= rtvec_alloc (units
);
11380 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
11382 elt
= VECTOR_CST_ELT (exp
, i
);
11384 if (TREE_CODE (elt
) == REAL_CST
)
11385 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
11387 else if (TREE_CODE (elt
) == FIXED_CST
)
11388 RTVEC_ELT (v
, i
) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
11391 RTVEC_ELT (v
, i
) = immed_wide_int_const (elt
, inner
);
11394 return gen_rtx_CONST_VECTOR (mode
, v
);
11397 /* Build a decl for a personality function given a language prefix. */
11400 build_personality_function (const char *lang
)
11402 const char *unwind_and_version
;
11406 switch (targetm_common
.except_unwind_info (&global_options
))
11411 unwind_and_version
= "_sj0";
11415 unwind_and_version
= "_v0";
11418 unwind_and_version
= "_seh0";
11421 gcc_unreachable ();
11424 name
= ACONCAT (("__", lang
, "_personality", unwind_and_version
, NULL
));
11426 type
= build_function_type_list (integer_type_node
, integer_type_node
,
11427 long_long_unsigned_type_node
,
11428 ptr_type_node
, ptr_type_node
, NULL_TREE
);
11429 decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
11430 get_identifier (name
), type
);
11431 DECL_ARTIFICIAL (decl
) = 1;
11432 DECL_EXTERNAL (decl
) = 1;
11433 TREE_PUBLIC (decl
) = 1;
11435 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11436 are the flags assigned by targetm.encode_section_info. */
11437 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
11442 /* Extracts the personality function of DECL and returns the corresponding
11446 get_personality_function (tree decl
)
11448 tree personality
= DECL_FUNCTION_PERSONALITY (decl
);
11449 enum eh_personality_kind pk
;
11451 pk
= function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl
));
11452 if (pk
== eh_personality_none
)
11456 && pk
== eh_personality_any
)
11457 personality
= lang_hooks
.eh_personality ();
11459 if (pk
== eh_personality_lang
)
11460 gcc_assert (personality
!= NULL_TREE
);
11462 return XEXP (DECL_RTL (personality
), 0);
11465 /* Returns a tree for the size of EXP in bytes. */
11468 tree_expr_size (const_tree exp
)
11471 && DECL_SIZE_UNIT (exp
) != 0)
11472 return DECL_SIZE_UNIT (exp
);
11474 return size_in_bytes (TREE_TYPE (exp
));
11477 /* Return an rtx for the size in bytes of the value of EXP. */
11480 expr_size (tree exp
)
11484 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
11485 size
= TREE_OPERAND (exp
, 1);
11488 size
= tree_expr_size (exp
);
11490 gcc_assert (size
== SUBSTITUTE_PLACEHOLDER_IN_EXPR (size
, exp
));
11493 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), EXPAND_NORMAL
);
11496 /* Return a wide integer for the size in bytes of the value of EXP, or -1
11497 if the size can vary or is larger than an integer. */
11499 static HOST_WIDE_INT
11500 int_expr_size (tree exp
)
11504 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
11505 size
= TREE_OPERAND (exp
, 1);
11508 size
= tree_expr_size (exp
);
11512 if (size
== 0 || !tree_fits_shwi_p (size
))
11515 return tree_to_shwi (size
);
11518 #include "gt-expr.h"