DR 1402
[official-gcc.git] / gcc / dse.c
blob0e40c8539cfd8e601b08e2a938d623f134650e09
1 /* RTL dead store elimination.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
5 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
6 and Kenneth Zadeck <zadeck@naturalbridge.com>
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 #undef BASELINE
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "hashtab.h"
30 #include "tm.h"
31 #include "rtl.h"
32 #include "tree.h"
33 #include "tm_p.h"
34 #include "regs.h"
35 #include "hard-reg-set.h"
36 #include "regset.h"
37 #include "flags.h"
38 #include "df.h"
39 #include "cselib.h"
40 #include "timevar.h"
41 #include "tree-pass.h"
42 #include "alloc-pool.h"
43 #include "alias.h"
44 #include "insn-config.h"
45 #include "expr.h"
46 #include "recog.h"
47 #include "optabs.h"
48 #include "dbgcnt.h"
49 #include "target.h"
50 #include "params.h"
51 #include "tree-flow.h" /* for may_be_aliased */
53 /* This file contains three techniques for performing Dead Store
54 Elimination (dse).
56 * The first technique performs dse locally on any base address. It
57 is based on the cselib which is a local value numbering technique.
58 This technique is local to a basic block but deals with a fairly
59 general addresses.
61 * The second technique performs dse globally but is restricted to
62 base addresses that are either constant or are relative to the
63 frame_pointer.
65 * The third technique, (which is only done after register allocation)
66 processes the spill spill slots. This differs from the second
67 technique because it takes advantage of the fact that spilling is
68 completely free from the effects of aliasing.
70 Logically, dse is a backwards dataflow problem. A store can be
71 deleted if it if cannot be reached in the backward direction by any
72 use of the value being stored. However, the local technique uses a
73 forwards scan of the basic block because cselib requires that the
74 block be processed in that order.
76 The pass is logically broken into 7 steps:
78 0) Initialization.
80 1) The local algorithm, as well as scanning the insns for the two
81 global algorithms.
83 2) Analysis to see if the global algs are necessary. In the case
84 of stores base on a constant address, there must be at least two
85 stores to that address, to make it possible to delete some of the
86 stores. In the case of stores off of the frame or spill related
87 stores, only one store to an address is necessary because those
88 stores die at the end of the function.
90 3) Set up the global dataflow equations based on processing the
91 info parsed in the first step.
93 4) Solve the dataflow equations.
95 5) Delete the insns that the global analysis has indicated are
96 unnecessary.
98 6) Delete insns that store the same value as preceding store
99 where the earlier store couldn't be eliminated.
101 7) Cleanup.
103 This step uses cselib and canon_rtx to build the largest expression
104 possible for each address. This pass is a forwards pass through
105 each basic block. From the point of view of the global technique,
106 the first pass could examine a block in either direction. The
107 forwards ordering is to accommodate cselib.
109 We a simplifying assumption: addresses fall into four broad
110 categories:
112 1) base has rtx_varies_p == false, offset is constant.
113 2) base has rtx_varies_p == false, offset variable.
114 3) base has rtx_varies_p == true, offset constant.
115 4) base has rtx_varies_p == true, offset variable.
117 The local passes are able to process all 4 kinds of addresses. The
118 global pass only handles (1).
120 The global problem is formulated as follows:
122 A store, S1, to address A, where A is not relative to the stack
123 frame, can be eliminated if all paths from S1 to the end of the
124 of the function contain another store to A before a read to A.
126 If the address A is relative to the stack frame, a store S2 to A
127 can be eliminated if there are no paths from S1 that reach the
128 end of the function that read A before another store to A. In
129 this case S2 can be deleted if there are paths to from S2 to the
130 end of the function that have no reads or writes to A. This
131 second case allows stores to the stack frame to be deleted that
132 would otherwise die when the function returns. This cannot be
133 done if stores_off_frame_dead_at_return is not true. See the doc
134 for that variable for when this variable is false.
136 The global problem is formulated as a backwards set union
137 dataflow problem where the stores are the gens and reads are the
138 kills. Set union problems are rare and require some special
139 handling given our representation of bitmaps. A straightforward
140 implementation of requires a lot of bitmaps filled with 1s.
141 These are expensive and cumbersome in our bitmap formulation so
142 care has been taken to avoid large vectors filled with 1s. See
143 the comments in bb_info and in the dataflow confluence functions
144 for details.
146 There are two places for further enhancements to this algorithm:
148 1) The original dse which was embedded in a pass called flow also
149 did local address forwarding. For example in
151 A <- r100
152 ... <- A
154 flow would replace the right hand side of the second insn with a
155 reference to r100. Most of the information is available to add this
156 to this pass. It has not done it because it is a lot of work in
157 the case that either r100 is assigned to between the first and
158 second insn and/or the second insn is a load of part of the value
159 stored by the first insn.
161 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
162 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
163 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
164 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
166 2) The cleaning up of spill code is quite profitable. It currently
167 depends on reading tea leaves and chicken entrails left by reload.
168 This pass depends on reload creating a singleton alias set for each
169 spill slot and telling the next dse pass which of these alias sets
170 are the singletons. Rather than analyze the addresses of the
171 spills, dse's spill processing just does analysis of the loads and
172 stores that use those alias sets. There are three cases where this
173 falls short:
175 a) Reload sometimes creates the slot for one mode of access, and
176 then inserts loads and/or stores for a smaller mode. In this
177 case, the current code just punts on the slot. The proper thing
178 to do is to back out and use one bit vector position for each
179 byte of the entity associated with the slot. This depends on
180 KNOWING that reload always generates the accesses for each of the
181 bytes in some canonical (read that easy to understand several
182 passes after reload happens) way.
184 b) Reload sometimes decides that spill slot it allocated was not
185 large enough for the mode and goes back and allocates more slots
186 with the same mode and alias set. The backout in this case is a
187 little more graceful than (a). In this case the slot is unmarked
188 as being a spill slot and if final address comes out to be based
189 off the frame pointer, the global algorithm handles this slot.
191 c) For any pass that may prespill, there is currently no
192 mechanism to tell the dse pass that the slot being used has the
193 special properties that reload uses. It may be that all that is
194 required is to have those passes make the same calls that reload
195 does, assuming that the alias sets can be manipulated in the same
196 way. */
198 /* There are limits to the size of constant offsets we model for the
199 global problem. There are certainly test cases, that exceed this
200 limit, however, it is unlikely that there are important programs
201 that really have constant offsets this size. */
202 #define MAX_OFFSET (64 * 1024)
205 static bitmap scratch = NULL;
206 struct insn_info;
208 /* This structure holds information about a candidate store. */
209 struct store_info
212 /* False means this is a clobber. */
213 bool is_set;
215 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
216 bool is_large;
218 /* The id of the mem group of the base address. If rtx_varies_p is
219 true, this is -1. Otherwise, it is the index into the group
220 table. */
221 int group_id;
223 /* This is the cselib value. */
224 cselib_val *cse_base;
226 /* This canonized mem. */
227 rtx mem;
229 /* Canonized MEM address for use by canon_true_dependence. */
230 rtx mem_addr;
232 /* If this is non-zero, it is the alias set of a spill location. */
233 alias_set_type alias_set;
235 /* The offset of the first and byte before the last byte associated
236 with the operation. */
237 HOST_WIDE_INT begin, end;
239 union
241 /* A bitmask as wide as the number of bytes in the word that
242 contains a 1 if the byte may be needed. The store is unused if
243 all of the bits are 0. This is used if IS_LARGE is false. */
244 unsigned HOST_WIDE_INT small_bitmask;
246 struct
248 /* A bitmap with one bit per byte. Cleared bit means the position
249 is needed. Used if IS_LARGE is false. */
250 bitmap bmap;
252 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
253 equal to END - BEGIN, the whole store is unused. */
254 int count;
255 } large;
256 } positions_needed;
258 /* The next store info for this insn. */
259 struct store_info *next;
261 /* The right hand side of the store. This is used if there is a
262 subsequent reload of the mems address somewhere later in the
263 basic block. */
264 rtx rhs;
266 /* If rhs is or holds a constant, this contains that constant,
267 otherwise NULL. */
268 rtx const_rhs;
270 /* Set if this store stores the same constant value as REDUNDANT_REASON
271 insn stored. These aren't eliminated early, because doing that
272 might prevent the earlier larger store to be eliminated. */
273 struct insn_info *redundant_reason;
276 /* Return a bitmask with the first N low bits set. */
278 static unsigned HOST_WIDE_INT
279 lowpart_bitmask (int n)
281 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
282 return mask >> (HOST_BITS_PER_WIDE_INT - n);
285 typedef struct store_info *store_info_t;
286 static alloc_pool cse_store_info_pool;
287 static alloc_pool rtx_store_info_pool;
289 /* This structure holds information about a load. These are only
290 built for rtx bases. */
291 struct read_info
293 /* The id of the mem group of the base address. */
294 int group_id;
296 /* If this is non-zero, it is the alias set of a spill location. */
297 alias_set_type alias_set;
299 /* The offset of the first and byte after the last byte associated
300 with the operation. If begin == end == 0, the read did not have
301 a constant offset. */
302 int begin, end;
304 /* The mem being read. */
305 rtx mem;
307 /* The next read_info for this insn. */
308 struct read_info *next;
310 typedef struct read_info *read_info_t;
311 static alloc_pool read_info_pool;
314 /* One of these records is created for each insn. */
316 struct insn_info
318 /* Set true if the insn contains a store but the insn itself cannot
319 be deleted. This is set if the insn is a parallel and there is
320 more than one non dead output or if the insn is in some way
321 volatile. */
322 bool cannot_delete;
324 /* This field is only used by the global algorithm. It is set true
325 if the insn contains any read of mem except for a (1). This is
326 also set if the insn is a call or has a clobber mem. If the insn
327 contains a wild read, the use_rec will be null. */
328 bool wild_read;
330 /* This is true only for CALL instructions which could potentially read
331 any non-frame memory location. This field is used by the global
332 algorithm. */
333 bool non_frame_wild_read;
335 /* This field is only used for the processing of const functions.
336 These functions cannot read memory, but they can read the stack
337 because that is where they may get their parms. We need to be
338 this conservative because, like the store motion pass, we don't
339 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
340 Moreover, we need to distinguish two cases:
341 1. Before reload (register elimination), the stores related to
342 outgoing arguments are stack pointer based and thus deemed
343 of non-constant base in this pass. This requires special
344 handling but also means that the frame pointer based stores
345 need not be killed upon encountering a const function call.
346 2. After reload, the stores related to outgoing arguments can be
347 either stack pointer or hard frame pointer based. This means
348 that we have no other choice than also killing all the frame
349 pointer based stores upon encountering a const function call.
350 This field is set after reload for const function calls. Having
351 this set is less severe than a wild read, it just means that all
352 the frame related stores are killed rather than all the stores. */
353 bool frame_read;
355 /* This field is only used for the processing of const functions.
356 It is set if the insn may contain a stack pointer based store. */
357 bool stack_pointer_based;
359 /* This is true if any of the sets within the store contains a
360 cselib base. Such stores can only be deleted by the local
361 algorithm. */
362 bool contains_cselib_groups;
364 /* The insn. */
365 rtx insn;
367 /* The list of mem sets or mem clobbers that are contained in this
368 insn. If the insn is deletable, it contains only one mem set.
369 But it could also contain clobbers. Insns that contain more than
370 one mem set are not deletable, but each of those mems are here in
371 order to provide info to delete other insns. */
372 store_info_t store_rec;
374 /* The linked list of mem uses in this insn. Only the reads from
375 rtx bases are listed here. The reads to cselib bases are
376 completely processed during the first scan and so are never
377 created. */
378 read_info_t read_rec;
380 /* The live fixed registers. We assume only fixed registers can
381 cause trouble by being clobbered from an expanded pattern;
382 storing only the live fixed registers (rather than all registers)
383 means less memory needs to be allocated / copied for the individual
384 stores. */
385 regset fixed_regs_live;
387 /* The prev insn in the basic block. */
388 struct insn_info * prev_insn;
390 /* The linked list of insns that are in consideration for removal in
391 the forwards pass through the basic block. This pointer may be
392 trash as it is not cleared when a wild read occurs. The only
393 time it is guaranteed to be correct is when the traversal starts
394 at active_local_stores. */
395 struct insn_info * next_local_store;
398 typedef struct insn_info *insn_info_t;
399 static alloc_pool insn_info_pool;
401 /* The linked list of stores that are under consideration in this
402 basic block. */
403 static insn_info_t active_local_stores;
404 static int active_local_stores_len;
406 struct bb_info
409 /* Pointer to the insn info for the last insn in the block. These
410 are linked so this is how all of the insns are reached. During
411 scanning this is the current insn being scanned. */
412 insn_info_t last_insn;
414 /* The info for the global dataflow problem. */
417 /* This is set if the transfer function should and in the wild_read
418 bitmap before applying the kill and gen sets. That vector knocks
419 out most of the bits in the bitmap and thus speeds up the
420 operations. */
421 bool apply_wild_read;
423 /* The following 4 bitvectors hold information about which positions
424 of which stores are live or dead. They are indexed by
425 get_bitmap_index. */
427 /* The set of store positions that exist in this block before a wild read. */
428 bitmap gen;
430 /* The set of load positions that exist in this block above the
431 same position of a store. */
432 bitmap kill;
434 /* The set of stores that reach the top of the block without being
435 killed by a read.
437 Do not represent the in if it is all ones. Note that this is
438 what the bitvector should logically be initialized to for a set
439 intersection problem. However, like the kill set, this is too
440 expensive. So initially, the in set will only be created for the
441 exit block and any block that contains a wild read. */
442 bitmap in;
444 /* The set of stores that reach the bottom of the block from it's
445 successors.
447 Do not represent the in if it is all ones. Note that this is
448 what the bitvector should logically be initialized to for a set
449 intersection problem. However, like the kill and in set, this is
450 too expensive. So what is done is that the confluence operator
451 just initializes the vector from one of the out sets of the
452 successors of the block. */
453 bitmap out;
455 /* The following bitvector is indexed by the reg number. It
456 contains the set of regs that are live at the current instruction
457 being processed. While it contains info for all of the
458 registers, only the hard registers are actually examined. It is used
459 to assure that shift and/or add sequences that are inserted do not
460 accidentally clobber live hard regs. */
461 bitmap regs_live;
464 typedef struct bb_info *bb_info_t;
465 static alloc_pool bb_info_pool;
467 /* Table to hold all bb_infos. */
468 static bb_info_t *bb_table;
470 /* There is a group_info for each rtx base that is used to reference
471 memory. There are also not many of the rtx bases because they are
472 very limited in scope. */
474 struct group_info
476 /* The actual base of the address. */
477 rtx rtx_base;
479 /* The sequential id of the base. This allows us to have a
480 canonical ordering of these that is not based on addresses. */
481 int id;
483 /* True if there are any positions that are to be processed
484 globally. */
485 bool process_globally;
487 /* True if the base of this group is either the frame_pointer or
488 hard_frame_pointer. */
489 bool frame_related;
491 /* A mem wrapped around the base pointer for the group in order to do
492 read dependency. It must be given BLKmode in order to encompass all
493 the possible offsets from the base. */
494 rtx base_mem;
496 /* Canonized version of base_mem's address. */
497 rtx canon_base_addr;
499 /* These two sets of two bitmaps are used to keep track of how many
500 stores are actually referencing that position from this base. We
501 only do this for rtx bases as this will be used to assign
502 positions in the bitmaps for the global problem. Bit N is set in
503 store1 on the first store for offset N. Bit N is set in store2
504 for the second store to offset N. This is all we need since we
505 only care about offsets that have two or more stores for them.
507 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
508 for 0 and greater offsets.
510 There is one special case here, for stores into the stack frame,
511 we will or store1 into store2 before deciding which stores look
512 at globally. This is because stores to the stack frame that have
513 no other reads before the end of the function can also be
514 deleted. */
515 bitmap store1_n, store1_p, store2_n, store2_p;
517 /* These bitmaps keep track of offsets in this group escape this function.
518 An offset escapes if it corresponds to a named variable whose
519 addressable flag is set. */
520 bitmap escaped_n, escaped_p;
522 /* The positions in this bitmap have the same assignments as the in,
523 out, gen and kill bitmaps. This bitmap is all zeros except for
524 the positions that are occupied by stores for this group. */
525 bitmap group_kill;
527 /* The offset_map is used to map the offsets from this base into
528 positions in the global bitmaps. It is only created after all of
529 the all of stores have been scanned and we know which ones we
530 care about. */
531 int *offset_map_n, *offset_map_p;
532 int offset_map_size_n, offset_map_size_p;
534 typedef struct group_info *group_info_t;
535 typedef const struct group_info *const_group_info_t;
536 static alloc_pool rtx_group_info_pool;
538 /* Tables of group_info structures, hashed by base value. */
539 static htab_t rtx_group_table;
541 /* Index into the rtx_group_vec. */
542 static int rtx_group_next_id;
544 DEF_VEC_P(group_info_t);
545 DEF_VEC_ALLOC_P(group_info_t,heap);
547 static VEC(group_info_t,heap) *rtx_group_vec;
550 /* This structure holds the set of changes that are being deferred
551 when removing read operation. See replace_read. */
552 struct deferred_change
555 /* The mem that is being replaced. */
556 rtx *loc;
558 /* The reg it is being replaced with. */
559 rtx reg;
561 struct deferred_change *next;
564 typedef struct deferred_change *deferred_change_t;
565 static alloc_pool deferred_change_pool;
567 static deferred_change_t deferred_change_list = NULL;
569 /* This are used to hold the alias sets of spill variables. Since
570 these are never aliased and there may be a lot of them, it makes
571 sense to treat them specially. This bitvector is only allocated in
572 calls from dse_record_singleton_alias_set which currently is only
573 made during reload1. So when dse is called before reload this
574 mechanism does nothing. */
576 static bitmap clear_alias_sets = NULL;
578 /* The set of clear_alias_sets that have been disqualified because
579 there are loads or stores using a different mode than the alias set
580 was registered with. */
581 static bitmap disqualified_clear_alias_sets = NULL;
583 /* The group that holds all of the clear_alias_sets. */
584 static group_info_t clear_alias_group;
586 /* The modes of the clear_alias_sets. */
587 static htab_t clear_alias_mode_table;
589 /* Hash table element to look up the mode for an alias set. */
590 struct clear_alias_mode_holder
592 alias_set_type alias_set;
593 enum machine_mode mode;
596 static alloc_pool clear_alias_mode_pool;
598 /* This is true except if cfun->stdarg -- i.e. we cannot do
599 this for vararg functions because they play games with the frame. */
600 static bool stores_off_frame_dead_at_return;
602 /* Counter for stats. */
603 static int globally_deleted;
604 static int locally_deleted;
605 static int spill_deleted;
607 static bitmap all_blocks;
609 /* Locations that are killed by calls in the global phase. */
610 static bitmap kill_on_calls;
612 /* The number of bits used in the global bitmaps. */
613 static unsigned int current_position;
616 static bool gate_dse1 (void);
617 static bool gate_dse2 (void);
620 /*----------------------------------------------------------------------------
621 Zeroth step.
623 Initialization.
624 ----------------------------------------------------------------------------*/
627 /* Find the entry associated with ALIAS_SET. */
629 static struct clear_alias_mode_holder *
630 clear_alias_set_lookup (alias_set_type alias_set)
632 struct clear_alias_mode_holder tmp_holder;
633 void **slot;
635 tmp_holder.alias_set = alias_set;
636 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
637 gcc_assert (*slot);
639 return (struct clear_alias_mode_holder *) *slot;
643 /* Hashtable callbacks for maintaining the "bases" field of
644 store_group_info, given that the addresses are function invariants. */
646 static int
647 invariant_group_base_eq (const void *p1, const void *p2)
649 const_group_info_t gi1 = (const_group_info_t) p1;
650 const_group_info_t gi2 = (const_group_info_t) p2;
651 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
655 static hashval_t
656 invariant_group_base_hash (const void *p)
658 const_group_info_t gi = (const_group_info_t) p;
659 int do_not_record;
660 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
664 /* Get the GROUP for BASE. Add a new group if it is not there. */
666 static group_info_t
667 get_group_info (rtx base)
669 struct group_info tmp_gi;
670 group_info_t gi;
671 void **slot;
673 if (base)
675 /* Find the store_base_info structure for BASE, creating a new one
676 if necessary. */
677 tmp_gi.rtx_base = base;
678 slot = htab_find_slot (rtx_group_table, &tmp_gi, INSERT);
679 gi = (group_info_t) *slot;
681 else
683 if (!clear_alias_group)
685 clear_alias_group = gi =
686 (group_info_t) pool_alloc (rtx_group_info_pool);
687 memset (gi, 0, sizeof (struct group_info));
688 gi->id = rtx_group_next_id++;
689 gi->store1_n = BITMAP_ALLOC (NULL);
690 gi->store1_p = BITMAP_ALLOC (NULL);
691 gi->store2_n = BITMAP_ALLOC (NULL);
692 gi->store2_p = BITMAP_ALLOC (NULL);
693 gi->escaped_p = BITMAP_ALLOC (NULL);
694 gi->escaped_n = BITMAP_ALLOC (NULL);
695 gi->group_kill = BITMAP_ALLOC (NULL);
696 gi->process_globally = false;
697 gi->offset_map_size_n = 0;
698 gi->offset_map_size_p = 0;
699 gi->offset_map_n = NULL;
700 gi->offset_map_p = NULL;
701 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
703 return clear_alias_group;
706 if (gi == NULL)
708 *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool);
709 gi->rtx_base = base;
710 gi->id = rtx_group_next_id++;
711 gi->base_mem = gen_rtx_MEM (BLKmode, base);
712 gi->canon_base_addr = canon_rtx (base);
713 gi->store1_n = BITMAP_ALLOC (NULL);
714 gi->store1_p = BITMAP_ALLOC (NULL);
715 gi->store2_n = BITMAP_ALLOC (NULL);
716 gi->store2_p = BITMAP_ALLOC (NULL);
717 gi->escaped_p = BITMAP_ALLOC (NULL);
718 gi->escaped_n = BITMAP_ALLOC (NULL);
719 gi->group_kill = BITMAP_ALLOC (NULL);
720 gi->process_globally = false;
721 gi->frame_related =
722 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
723 gi->offset_map_size_n = 0;
724 gi->offset_map_size_p = 0;
725 gi->offset_map_n = NULL;
726 gi->offset_map_p = NULL;
727 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
730 return gi;
734 /* Initialization of data structures. */
736 static void
737 dse_step0 (void)
739 locally_deleted = 0;
740 globally_deleted = 0;
741 spill_deleted = 0;
743 scratch = BITMAP_ALLOC (NULL);
744 kill_on_calls = BITMAP_ALLOC (NULL);
746 rtx_store_info_pool
747 = create_alloc_pool ("rtx_store_info_pool",
748 sizeof (struct store_info), 100);
749 read_info_pool
750 = create_alloc_pool ("read_info_pool",
751 sizeof (struct read_info), 100);
752 insn_info_pool
753 = create_alloc_pool ("insn_info_pool",
754 sizeof (struct insn_info), 100);
755 bb_info_pool
756 = create_alloc_pool ("bb_info_pool",
757 sizeof (struct bb_info), 100);
758 rtx_group_info_pool
759 = create_alloc_pool ("rtx_group_info_pool",
760 sizeof (struct group_info), 100);
761 deferred_change_pool
762 = create_alloc_pool ("deferred_change_pool",
763 sizeof (struct deferred_change), 10);
765 rtx_group_table = htab_create (11, invariant_group_base_hash,
766 invariant_group_base_eq, NULL);
768 bb_table = XCNEWVEC (bb_info_t, last_basic_block);
769 rtx_group_next_id = 0;
771 stores_off_frame_dead_at_return = !cfun->stdarg;
773 init_alias_analysis ();
775 if (clear_alias_sets)
776 clear_alias_group = get_group_info (NULL);
777 else
778 clear_alias_group = NULL;
783 /*----------------------------------------------------------------------------
784 First step.
786 Scan all of the insns. Any random ordering of the blocks is fine.
787 Each block is scanned in forward order to accommodate cselib which
788 is used to remove stores with non-constant bases.
789 ----------------------------------------------------------------------------*/
791 /* Delete all of the store_info recs from INSN_INFO. */
793 static void
794 free_store_info (insn_info_t insn_info)
796 store_info_t store_info = insn_info->store_rec;
797 while (store_info)
799 store_info_t next = store_info->next;
800 if (store_info->is_large)
801 BITMAP_FREE (store_info->positions_needed.large.bmap);
802 if (store_info->cse_base)
803 pool_free (cse_store_info_pool, store_info);
804 else
805 pool_free (rtx_store_info_pool, store_info);
806 store_info = next;
809 insn_info->cannot_delete = true;
810 insn_info->contains_cselib_groups = false;
811 insn_info->store_rec = NULL;
814 typedef struct
816 rtx first, current;
817 regset fixed_regs_live;
818 bool failure;
819 } note_add_store_info;
821 /* Callback for emit_inc_dec_insn_before via note_stores.
822 Check if a register is clobbered which is live afterwards. */
824 static void
825 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
827 rtx insn;
828 note_add_store_info *info = (note_add_store_info *) data;
829 int r, n;
831 if (!REG_P (loc))
832 return;
834 /* If this register is referenced by the current or an earlier insn,
835 that's OK. E.g. this applies to the register that is being incremented
836 with this addition. */
837 for (insn = info->first;
838 insn != NEXT_INSN (info->current);
839 insn = NEXT_INSN (insn))
840 if (reg_referenced_p (loc, PATTERN (insn)))
841 return;
843 /* If we come here, we have a clobber of a register that's only OK
844 if that register is not live. If we don't have liveness information
845 available, fail now. */
846 if (!info->fixed_regs_live)
848 info->failure = true;
849 return;
851 /* Now check if this is a live fixed register. */
852 r = REGNO (loc);
853 n = hard_regno_nregs[r][GET_MODE (loc)];
854 while (--n >= 0)
855 if (REGNO_REG_SET_P (info->fixed_regs_live, r+n))
856 info->failure = true;
859 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
860 SRC + SRCOFF before insn ARG. */
862 static int
863 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
864 rtx op ATTRIBUTE_UNUSED,
865 rtx dest, rtx src, rtx srcoff, void *arg)
867 insn_info_t insn_info = (insn_info_t) arg;
868 rtx insn = insn_info->insn, new_insn, cur;
869 note_add_store_info info;
871 /* We can reuse all operands without copying, because we are about
872 to delete the insn that contained it. */
873 if (srcoff)
875 start_sequence ();
876 emit_insn (gen_add3_insn (dest, src, srcoff));
877 new_insn = get_insns ();
878 end_sequence ();
880 else
881 new_insn = gen_move_insn (dest, src);
882 info.first = new_insn;
883 info.fixed_regs_live = insn_info->fixed_regs_live;
884 info.failure = false;
885 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
887 info.current = cur;
888 note_stores (PATTERN (cur), note_add_store, &info);
891 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
892 return it immediately, communicating the failure to its caller. */
893 if (info.failure)
894 return 1;
896 emit_insn_before (new_insn, insn);
898 return -1;
901 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
902 is there, is split into a separate insn.
903 Return true on success (or if there was nothing to do), false on failure. */
905 static bool
906 check_for_inc_dec_1 (insn_info_t insn_info)
908 rtx insn = insn_info->insn;
909 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
910 if (note)
911 return for_each_inc_dec (&insn, emit_inc_dec_insn_before, insn_info) == 0;
912 return true;
916 /* Entry point for postreload. If you work on reload_cse, or you need this
917 anywhere else, consider if you can provide register liveness information
918 and add a parameter to this function so that it can be passed down in
919 insn_info.fixed_regs_live. */
920 bool
921 check_for_inc_dec (rtx insn)
923 struct insn_info insn_info;
924 rtx note;
926 insn_info.insn = insn;
927 insn_info.fixed_regs_live = NULL;
928 note = find_reg_note (insn, REG_INC, NULL_RTX);
929 if (note)
930 return for_each_inc_dec (&insn, emit_inc_dec_insn_before, &insn_info) == 0;
931 return true;
934 /* Delete the insn and free all of the fields inside INSN_INFO. */
936 static void
937 delete_dead_store_insn (insn_info_t insn_info)
939 read_info_t read_info;
941 if (!dbg_cnt (dse))
942 return;
944 if (!check_for_inc_dec_1 (insn_info))
945 return;
946 if (dump_file)
948 fprintf (dump_file, "Locally deleting insn %d ",
949 INSN_UID (insn_info->insn));
950 if (insn_info->store_rec->alias_set)
951 fprintf (dump_file, "alias set %d\n",
952 (int) insn_info->store_rec->alias_set);
953 else
954 fprintf (dump_file, "\n");
957 free_store_info (insn_info);
958 read_info = insn_info->read_rec;
960 while (read_info)
962 read_info_t next = read_info->next;
963 pool_free (read_info_pool, read_info);
964 read_info = next;
966 insn_info->read_rec = NULL;
968 delete_insn (insn_info->insn);
969 locally_deleted++;
970 insn_info->insn = NULL;
972 insn_info->wild_read = false;
975 /* Check if EXPR can possibly escape the current function scope. */
976 static bool
977 can_escape (tree expr)
979 tree base;
980 if (!expr)
981 return true;
982 base = get_base_address (expr);
983 if (DECL_P (base)
984 && !may_be_aliased (base))
985 return false;
986 return true;
989 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
990 OFFSET and WIDTH. */
992 static void
993 set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width,
994 tree expr)
996 HOST_WIDE_INT i;
997 bool expr_escapes = can_escape (expr);
998 if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
999 for (i=offset; i<offset+width; i++)
1001 bitmap store1;
1002 bitmap store2;
1003 bitmap escaped;
1004 int ai;
1005 if (i < 0)
1007 store1 = group->store1_n;
1008 store2 = group->store2_n;
1009 escaped = group->escaped_n;
1010 ai = -i;
1012 else
1014 store1 = group->store1_p;
1015 store2 = group->store2_p;
1016 escaped = group->escaped_p;
1017 ai = i;
1020 if (!bitmap_set_bit (store1, ai))
1021 bitmap_set_bit (store2, ai);
1022 else
1024 if (i < 0)
1026 if (group->offset_map_size_n < ai)
1027 group->offset_map_size_n = ai;
1029 else
1031 if (group->offset_map_size_p < ai)
1032 group->offset_map_size_p = ai;
1035 if (expr_escapes)
1036 bitmap_set_bit (escaped, ai);
1040 static void
1041 reset_active_stores (void)
1043 active_local_stores = NULL;
1044 active_local_stores_len = 0;
1047 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1049 static void
1050 free_read_records (bb_info_t bb_info)
1052 insn_info_t insn_info = bb_info->last_insn;
1053 read_info_t *ptr = &insn_info->read_rec;
1054 while (*ptr)
1056 read_info_t next = (*ptr)->next;
1057 if ((*ptr)->alias_set == 0)
1059 pool_free (read_info_pool, *ptr);
1060 *ptr = next;
1062 else
1063 ptr = &(*ptr)->next;
1067 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1069 static void
1070 add_wild_read (bb_info_t bb_info)
1072 insn_info_t insn_info = bb_info->last_insn;
1073 insn_info->wild_read = true;
1074 free_read_records (bb_info);
1075 reset_active_stores ();
1078 /* Set the BB_INFO so that the last insn is marked as a wild read of
1079 non-frame locations. */
1081 static void
1082 add_non_frame_wild_read (bb_info_t bb_info)
1084 insn_info_t insn_info = bb_info->last_insn;
1085 insn_info->non_frame_wild_read = true;
1086 free_read_records (bb_info);
1087 reset_active_stores ();
1090 /* Return true if X is a constant or one of the registers that behave
1091 as a constant over the life of a function. This is equivalent to
1092 !rtx_varies_p for memory addresses. */
1094 static bool
1095 const_or_frame_p (rtx x)
1097 switch (GET_CODE (x))
1099 case CONST:
1100 case CONST_INT:
1101 case CONST_DOUBLE:
1102 case CONST_VECTOR:
1103 case SYMBOL_REF:
1104 case LABEL_REF:
1105 return true;
1107 case REG:
1108 /* Note that we have to test for the actual rtx used for the frame
1109 and arg pointers and not just the register number in case we have
1110 eliminated the frame and/or arg pointer and are using it
1111 for pseudos. */
1112 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1113 /* The arg pointer varies if it is not a fixed register. */
1114 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1115 || x == pic_offset_table_rtx)
1116 return true;
1117 return false;
1119 default:
1120 return false;
1124 /* Take all reasonable action to put the address of MEM into the form
1125 that we can do analysis on.
1127 The gold standard is to get the address into the form: address +
1128 OFFSET where address is something that rtx_varies_p considers a
1129 constant. When we can get the address in this form, we can do
1130 global analysis on it. Note that for constant bases, address is
1131 not actually returned, only the group_id. The address can be
1132 obtained from that.
1134 If that fails, we try cselib to get a value we can at least use
1135 locally. If that fails we return false.
1137 The GROUP_ID is set to -1 for cselib bases and the index of the
1138 group for non_varying bases.
1140 FOR_READ is true if this is a mem read and false if not. */
1142 static bool
1143 canon_address (rtx mem,
1144 alias_set_type *alias_set_out,
1145 int *group_id,
1146 HOST_WIDE_INT *offset,
1147 cselib_val **base)
1149 enum machine_mode address_mode = get_address_mode (mem);
1150 rtx mem_address = XEXP (mem, 0);
1151 rtx expanded_address, address;
1152 int expanded;
1154 /* Make sure that cselib is has initialized all of the operands of
1155 the address before asking it to do the subst. */
1157 if (clear_alias_sets)
1159 /* If this is a spill, do not do any further processing. */
1160 alias_set_type alias_set = MEM_ALIAS_SET (mem);
1161 if (dump_file)
1162 fprintf (dump_file, "found alias set %d\n", (int) alias_set);
1163 if (bitmap_bit_p (clear_alias_sets, alias_set))
1165 struct clear_alias_mode_holder *entry
1166 = clear_alias_set_lookup (alias_set);
1168 /* If the modes do not match, we cannot process this set. */
1169 if (entry->mode != GET_MODE (mem))
1171 if (dump_file)
1172 fprintf (dump_file,
1173 "disqualifying alias set %d, (%s) != (%s)\n",
1174 (int) alias_set, GET_MODE_NAME (entry->mode),
1175 GET_MODE_NAME (GET_MODE (mem)));
1177 bitmap_set_bit (disqualified_clear_alias_sets, alias_set);
1178 return false;
1181 *alias_set_out = alias_set;
1182 *group_id = clear_alias_group->id;
1183 return true;
1187 *alias_set_out = 0;
1189 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1191 if (dump_file)
1193 fprintf (dump_file, " mem: ");
1194 print_inline_rtx (dump_file, mem_address, 0);
1195 fprintf (dump_file, "\n");
1198 /* First see if just canon_rtx (mem_address) is const or frame,
1199 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1200 address = NULL_RTX;
1201 for (expanded = 0; expanded < 2; expanded++)
1203 if (expanded)
1205 /* Use cselib to replace all of the reg references with the full
1206 expression. This will take care of the case where we have
1208 r_x = base + offset;
1209 val = *r_x;
1211 by making it into
1213 val = *(base + offset); */
1215 expanded_address = cselib_expand_value_rtx (mem_address,
1216 scratch, 5);
1218 /* If this fails, just go with the address from first
1219 iteration. */
1220 if (!expanded_address)
1221 break;
1223 else
1224 expanded_address = mem_address;
1226 /* Split the address into canonical BASE + OFFSET terms. */
1227 address = canon_rtx (expanded_address);
1229 *offset = 0;
1231 if (dump_file)
1233 if (expanded)
1235 fprintf (dump_file, "\n after cselib_expand address: ");
1236 print_inline_rtx (dump_file, expanded_address, 0);
1237 fprintf (dump_file, "\n");
1240 fprintf (dump_file, "\n after canon_rtx address: ");
1241 print_inline_rtx (dump_file, address, 0);
1242 fprintf (dump_file, "\n");
1245 if (GET_CODE (address) == CONST)
1246 address = XEXP (address, 0);
1248 if (GET_CODE (address) == PLUS
1249 && CONST_INT_P (XEXP (address, 1)))
1251 *offset = INTVAL (XEXP (address, 1));
1252 address = XEXP (address, 0);
1255 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1256 && const_or_frame_p (address))
1258 group_info_t group = get_group_info (address);
1260 if (dump_file)
1261 fprintf (dump_file, " gid=%d offset=%d \n",
1262 group->id, (int)*offset);
1263 *base = NULL;
1264 *group_id = group->id;
1265 return true;
1269 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1270 *group_id = -1;
1272 if (*base == NULL)
1274 if (dump_file)
1275 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1276 return false;
1278 if (dump_file)
1279 fprintf (dump_file, " varying cselib base=%u:%u offset = %d\n",
1280 (*base)->uid, (*base)->hash, (int)*offset);
1281 return true;
1285 /* Clear the rhs field from the active_local_stores array. */
1287 static void
1288 clear_rhs_from_active_local_stores (void)
1290 insn_info_t ptr = active_local_stores;
1292 while (ptr)
1294 store_info_t store_info = ptr->store_rec;
1295 /* Skip the clobbers. */
1296 while (!store_info->is_set)
1297 store_info = store_info->next;
1299 store_info->rhs = NULL;
1300 store_info->const_rhs = NULL;
1302 ptr = ptr->next_local_store;
1307 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1309 static inline void
1310 set_position_unneeded (store_info_t s_info, int pos)
1312 if (__builtin_expect (s_info->is_large, false))
1314 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1315 s_info->positions_needed.large.count++;
1317 else
1318 s_info->positions_needed.small_bitmask
1319 &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
1322 /* Mark the whole store S_INFO as unneeded. */
1324 static inline void
1325 set_all_positions_unneeded (store_info_t s_info)
1327 if (__builtin_expect (s_info->is_large, false))
1329 int pos, end = s_info->end - s_info->begin;
1330 for (pos = 0; pos < end; pos++)
1331 bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1332 s_info->positions_needed.large.count = end;
1334 else
1335 s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
1338 /* Return TRUE if any bytes from S_INFO store are needed. */
1340 static inline bool
1341 any_positions_needed_p (store_info_t s_info)
1343 if (__builtin_expect (s_info->is_large, false))
1344 return (s_info->positions_needed.large.count
1345 < s_info->end - s_info->begin);
1346 else
1347 return (s_info->positions_needed.small_bitmask
1348 != (unsigned HOST_WIDE_INT) 0);
1351 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1352 store are needed. */
1354 static inline bool
1355 all_positions_needed_p (store_info_t s_info, int start, int width)
1357 if (__builtin_expect (s_info->is_large, false))
1359 int end = start + width;
1360 while (start < end)
1361 if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1362 return false;
1363 return true;
1365 else
1367 unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
1368 return (s_info->positions_needed.small_bitmask & mask) == mask;
1373 static rtx get_stored_val (store_info_t, enum machine_mode, HOST_WIDE_INT,
1374 HOST_WIDE_INT, basic_block, bool);
1377 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1378 there is a candidate store, after adding it to the appropriate
1379 local store group if so. */
1381 static int
1382 record_store (rtx body, bb_info_t bb_info)
1384 rtx mem, rhs, const_rhs, mem_addr;
1385 HOST_WIDE_INT offset = 0;
1386 HOST_WIDE_INT width = 0;
1387 alias_set_type spill_alias_set;
1388 insn_info_t insn_info = bb_info->last_insn;
1389 store_info_t store_info = NULL;
1390 int group_id;
1391 cselib_val *base = NULL;
1392 insn_info_t ptr, last, redundant_reason;
1393 bool store_is_unused;
1395 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1396 return 0;
1398 mem = SET_DEST (body);
1400 /* If this is not used, then this cannot be used to keep the insn
1401 from being deleted. On the other hand, it does provide something
1402 that can be used to prove that another store is dead. */
1403 store_is_unused
1404 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1406 /* Check whether that value is a suitable memory location. */
1407 if (!MEM_P (mem))
1409 /* If the set or clobber is unused, then it does not effect our
1410 ability to get rid of the entire insn. */
1411 if (!store_is_unused)
1412 insn_info->cannot_delete = true;
1413 return 0;
1416 /* At this point we know mem is a mem. */
1417 if (GET_MODE (mem) == BLKmode)
1419 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1421 if (dump_file)
1422 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1423 add_wild_read (bb_info);
1424 insn_info->cannot_delete = true;
1425 return 0;
1427 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1428 as memset (addr, 0, 36); */
1429 else if (!MEM_SIZE_KNOWN_P (mem)
1430 || MEM_SIZE (mem) <= 0
1431 || MEM_SIZE (mem) > MAX_OFFSET
1432 || GET_CODE (body) != SET
1433 || !CONST_INT_P (SET_SRC (body)))
1435 if (!store_is_unused)
1437 /* If the set or clobber is unused, then it does not effect our
1438 ability to get rid of the entire insn. */
1439 insn_info->cannot_delete = true;
1440 clear_rhs_from_active_local_stores ();
1442 return 0;
1446 /* We can still process a volatile mem, we just cannot delete it. */
1447 if (MEM_VOLATILE_P (mem))
1448 insn_info->cannot_delete = true;
1450 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1452 clear_rhs_from_active_local_stores ();
1453 return 0;
1456 if (GET_MODE (mem) == BLKmode)
1457 width = MEM_SIZE (mem);
1458 else
1460 width = GET_MODE_SIZE (GET_MODE (mem));
1461 gcc_assert ((unsigned) width <= HOST_BITS_PER_WIDE_INT);
1464 if (spill_alias_set)
1466 bitmap store1 = clear_alias_group->store1_p;
1467 bitmap store2 = clear_alias_group->store2_p;
1469 gcc_assert (GET_MODE (mem) != BLKmode);
1471 if (!bitmap_set_bit (store1, spill_alias_set))
1472 bitmap_set_bit (store2, spill_alias_set);
1474 if (clear_alias_group->offset_map_size_p < spill_alias_set)
1475 clear_alias_group->offset_map_size_p = spill_alias_set;
1477 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1479 if (dump_file)
1480 fprintf (dump_file, " processing spill store %d(%s)\n",
1481 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1483 else if (group_id >= 0)
1485 /* In the restrictive case where the base is a constant or the
1486 frame pointer we can do global analysis. */
1488 group_info_t group
1489 = VEC_index (group_info_t, rtx_group_vec, group_id);
1490 tree expr = MEM_EXPR (mem);
1492 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1493 set_usage_bits (group, offset, width, expr);
1495 if (dump_file)
1496 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1497 group_id, (int)offset, (int)(offset+width));
1499 else
1501 if (may_be_sp_based_p (XEXP (mem, 0)))
1502 insn_info->stack_pointer_based = true;
1503 insn_info->contains_cselib_groups = true;
1505 store_info = (store_info_t) pool_alloc (cse_store_info_pool);
1506 group_id = -1;
1508 if (dump_file)
1509 fprintf (dump_file, " processing cselib store [%d..%d)\n",
1510 (int)offset, (int)(offset+width));
1513 const_rhs = rhs = NULL_RTX;
1514 if (GET_CODE (body) == SET
1515 /* No place to keep the value after ra. */
1516 && !reload_completed
1517 && (REG_P (SET_SRC (body))
1518 || GET_CODE (SET_SRC (body)) == SUBREG
1519 || CONSTANT_P (SET_SRC (body)))
1520 && !MEM_VOLATILE_P (mem)
1521 /* Sometimes the store and reload is used for truncation and
1522 rounding. */
1523 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1525 rhs = SET_SRC (body);
1526 if (CONSTANT_P (rhs))
1527 const_rhs = rhs;
1528 else if (body == PATTERN (insn_info->insn))
1530 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1531 if (tem && CONSTANT_P (XEXP (tem, 0)))
1532 const_rhs = XEXP (tem, 0);
1534 if (const_rhs == NULL_RTX && REG_P (rhs))
1536 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1538 if (tem && CONSTANT_P (tem))
1539 const_rhs = tem;
1543 /* Check to see if this stores causes some other stores to be
1544 dead. */
1545 ptr = active_local_stores;
1546 last = NULL;
1547 redundant_reason = NULL;
1548 mem = canon_rtx (mem);
1549 /* For alias_set != 0 canon_true_dependence should be never called. */
1550 if (spill_alias_set)
1551 mem_addr = NULL_RTX;
1552 else
1554 if (group_id < 0)
1555 mem_addr = base->val_rtx;
1556 else
1558 group_info_t group
1559 = VEC_index (group_info_t, rtx_group_vec, group_id);
1560 mem_addr = group->canon_base_addr;
1562 if (offset)
1563 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1566 while (ptr)
1568 insn_info_t next = ptr->next_local_store;
1569 store_info_t s_info = ptr->store_rec;
1570 bool del = true;
1572 /* Skip the clobbers. We delete the active insn if this insn
1573 shadows the set. To have been put on the active list, it
1574 has exactly on set. */
1575 while (!s_info->is_set)
1576 s_info = s_info->next;
1578 if (s_info->alias_set != spill_alias_set)
1579 del = false;
1580 else if (s_info->alias_set)
1582 struct clear_alias_mode_holder *entry
1583 = clear_alias_set_lookup (s_info->alias_set);
1584 /* Generally, spills cannot be processed if and of the
1585 references to the slot have a different mode. But if
1586 we are in the same block and mode is exactly the same
1587 between this store and one before in the same block,
1588 we can still delete it. */
1589 if ((GET_MODE (mem) == GET_MODE (s_info->mem))
1590 && (GET_MODE (mem) == entry->mode))
1592 del = true;
1593 set_all_positions_unneeded (s_info);
1595 if (dump_file)
1596 fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n",
1597 INSN_UID (ptr->insn), (int) s_info->alias_set);
1599 else if ((s_info->group_id == group_id)
1600 && (s_info->cse_base == base))
1602 HOST_WIDE_INT i;
1603 if (dump_file)
1604 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
1605 INSN_UID (ptr->insn), s_info->group_id,
1606 (int)s_info->begin, (int)s_info->end);
1608 /* Even if PTR won't be eliminated as unneeded, if both
1609 PTR and this insn store the same constant value, we might
1610 eliminate this insn instead. */
1611 if (s_info->const_rhs
1612 && const_rhs
1613 && offset >= s_info->begin
1614 && offset + width <= s_info->end
1615 && all_positions_needed_p (s_info, offset - s_info->begin,
1616 width))
1618 if (GET_MODE (mem) == BLKmode)
1620 if (GET_MODE (s_info->mem) == BLKmode
1621 && s_info->const_rhs == const_rhs)
1622 redundant_reason = ptr;
1624 else if (s_info->const_rhs == const0_rtx
1625 && const_rhs == const0_rtx)
1626 redundant_reason = ptr;
1627 else
1629 rtx val;
1630 start_sequence ();
1631 val = get_stored_val (s_info, GET_MODE (mem),
1632 offset, offset + width,
1633 BLOCK_FOR_INSN (insn_info->insn),
1634 true);
1635 if (get_insns () != NULL)
1636 val = NULL_RTX;
1637 end_sequence ();
1638 if (val && rtx_equal_p (val, const_rhs))
1639 redundant_reason = ptr;
1643 for (i = MAX (offset, s_info->begin);
1644 i < offset + width && i < s_info->end;
1645 i++)
1646 set_position_unneeded (s_info, i - s_info->begin);
1648 else if (s_info->rhs)
1649 /* Need to see if it is possible for this store to overwrite
1650 the value of store_info. If it is, set the rhs to NULL to
1651 keep it from being used to remove a load. */
1653 if (canon_true_dependence (s_info->mem,
1654 GET_MODE (s_info->mem),
1655 s_info->mem_addr,
1656 mem, mem_addr))
1658 s_info->rhs = NULL;
1659 s_info->const_rhs = NULL;
1663 /* An insn can be deleted if every position of every one of
1664 its s_infos is zero. */
1665 if (any_positions_needed_p (s_info))
1666 del = false;
1668 if (del)
1670 insn_info_t insn_to_delete = ptr;
1672 active_local_stores_len--;
1673 if (last)
1674 last->next_local_store = ptr->next_local_store;
1675 else
1676 active_local_stores = ptr->next_local_store;
1678 if (!insn_to_delete->cannot_delete)
1679 delete_dead_store_insn (insn_to_delete);
1681 else
1682 last = ptr;
1684 ptr = next;
1687 /* Finish filling in the store_info. */
1688 store_info->next = insn_info->store_rec;
1689 insn_info->store_rec = store_info;
1690 store_info->mem = mem;
1691 store_info->alias_set = spill_alias_set;
1692 store_info->mem_addr = mem_addr;
1693 store_info->cse_base = base;
1694 if (width > HOST_BITS_PER_WIDE_INT)
1696 store_info->is_large = true;
1697 store_info->positions_needed.large.count = 0;
1698 store_info->positions_needed.large.bmap = BITMAP_ALLOC (NULL);
1700 else
1702 store_info->is_large = false;
1703 store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
1705 store_info->group_id = group_id;
1706 store_info->begin = offset;
1707 store_info->end = offset + width;
1708 store_info->is_set = GET_CODE (body) == SET;
1709 store_info->rhs = rhs;
1710 store_info->const_rhs = const_rhs;
1711 store_info->redundant_reason = redundant_reason;
1713 /* If this is a clobber, we return 0. We will only be able to
1714 delete this insn if there is only one store USED store, but we
1715 can use the clobber to delete other stores earlier. */
1716 return store_info->is_set ? 1 : 0;
1720 static void
1721 dump_insn_info (const char * start, insn_info_t insn_info)
1723 fprintf (dump_file, "%s insn=%d %s\n", start,
1724 INSN_UID (insn_info->insn),
1725 insn_info->store_rec ? "has store" : "naked");
1729 /* If the modes are different and the value's source and target do not
1730 line up, we need to extract the value from lower part of the rhs of
1731 the store, shift it, and then put it into a form that can be shoved
1732 into the read_insn. This function generates a right SHIFT of a
1733 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1734 shift sequence is returned or NULL if we failed to find a
1735 shift. */
1737 static rtx
1738 find_shift_sequence (int access_size,
1739 store_info_t store_info,
1740 enum machine_mode read_mode,
1741 int shift, bool speed, bool require_cst)
1743 enum machine_mode store_mode = GET_MODE (store_info->mem);
1744 enum machine_mode new_mode;
1745 rtx read_reg = NULL;
1747 /* Some machines like the x86 have shift insns for each size of
1748 operand. Other machines like the ppc or the ia-64 may only have
1749 shift insns that shift values within 32 or 64 bit registers.
1750 This loop tries to find the smallest shift insn that will right
1751 justify the value we want to read but is available in one insn on
1752 the machine. */
1754 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1755 MODE_INT);
1756 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1757 new_mode = GET_MODE_WIDER_MODE (new_mode))
1759 rtx target, new_reg, shift_seq, insn, new_lhs;
1760 int cost;
1762 /* If a constant was stored into memory, try to simplify it here,
1763 otherwise the cost of the shift might preclude this optimization
1764 e.g. at -Os, even when no actual shift will be needed. */
1765 if (store_info->const_rhs)
1767 unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1768 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1769 store_mode, byte);
1770 if (ret && CONSTANT_P (ret))
1772 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1773 ret, GEN_INT (shift));
1774 if (ret && CONSTANT_P (ret))
1776 byte = subreg_lowpart_offset (read_mode, new_mode);
1777 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1778 if (ret && CONSTANT_P (ret)
1779 && set_src_cost (ret, speed) <= COSTS_N_INSNS (1))
1780 return ret;
1785 if (require_cst)
1786 return NULL_RTX;
1788 /* Try a wider mode if truncating the store mode to NEW_MODE
1789 requires a real instruction. */
1790 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1791 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1792 continue;
1794 /* Also try a wider mode if the necessary punning is either not
1795 desirable or not possible. */
1796 if (!CONSTANT_P (store_info->rhs)
1797 && !MODES_TIEABLE_P (new_mode, store_mode))
1798 continue;
1800 new_reg = gen_reg_rtx (new_mode);
1802 start_sequence ();
1804 /* In theory we could also check for an ashr. Ian Taylor knows
1805 of one dsp where the cost of these two was not the same. But
1806 this really is a rare case anyway. */
1807 target = expand_binop (new_mode, lshr_optab, new_reg,
1808 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1810 shift_seq = get_insns ();
1811 end_sequence ();
1813 if (target != new_reg || shift_seq == NULL)
1814 continue;
1816 cost = 0;
1817 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1818 if (INSN_P (insn))
1819 cost += insn_rtx_cost (PATTERN (insn), speed);
1821 /* The computation up to here is essentially independent
1822 of the arguments and could be precomputed. It may
1823 not be worth doing so. We could precompute if
1824 worthwhile or at least cache the results. The result
1825 technically depends on both SHIFT and ACCESS_SIZE,
1826 but in practice the answer will depend only on ACCESS_SIZE. */
1828 if (cost > COSTS_N_INSNS (1))
1829 continue;
1831 new_lhs = extract_low_bits (new_mode, store_mode,
1832 copy_rtx (store_info->rhs));
1833 if (new_lhs == NULL_RTX)
1834 continue;
1836 /* We found an acceptable shift. Generate a move to
1837 take the value from the store and put it into the
1838 shift pseudo, then shift it, then generate another
1839 move to put in into the target of the read. */
1840 emit_move_insn (new_reg, new_lhs);
1841 emit_insn (shift_seq);
1842 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1843 break;
1846 return read_reg;
1850 /* Call back for note_stores to find the hard regs set or clobbered by
1851 insn. Data is a bitmap of the hardregs set so far. */
1853 static void
1854 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1856 bitmap regs_set = (bitmap) data;
1858 if (REG_P (x)
1859 && HARD_REGISTER_P (x))
1861 unsigned int regno = REGNO (x);
1862 bitmap_set_range (regs_set, regno,
1863 hard_regno_nregs[regno][GET_MODE (x)]);
1867 /* Helper function for replace_read and record_store.
1868 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1869 to one before READ_END bytes read in READ_MODE. Return NULL
1870 if not successful. If REQUIRE_CST is true, return always constant. */
1872 static rtx
1873 get_stored_val (store_info_t store_info, enum machine_mode read_mode,
1874 HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
1875 basic_block bb, bool require_cst)
1877 enum machine_mode store_mode = GET_MODE (store_info->mem);
1878 int shift;
1879 int access_size; /* In bytes. */
1880 rtx read_reg;
1882 /* To get here the read is within the boundaries of the write so
1883 shift will never be negative. Start out with the shift being in
1884 bytes. */
1885 if (store_mode == BLKmode)
1886 shift = 0;
1887 else if (BYTES_BIG_ENDIAN)
1888 shift = store_info->end - read_end;
1889 else
1890 shift = read_begin - store_info->begin;
1892 access_size = shift + GET_MODE_SIZE (read_mode);
1894 /* From now on it is bits. */
1895 shift *= BITS_PER_UNIT;
1897 if (shift)
1898 read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
1899 optimize_bb_for_speed_p (bb),
1900 require_cst);
1901 else if (store_mode == BLKmode)
1903 /* The store is a memset (addr, const_val, const_size). */
1904 gcc_assert (CONST_INT_P (store_info->rhs));
1905 store_mode = int_mode_for_mode (read_mode);
1906 if (store_mode == BLKmode)
1907 read_reg = NULL_RTX;
1908 else if (store_info->rhs == const0_rtx)
1909 read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
1910 else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
1911 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1912 read_reg = NULL_RTX;
1913 else
1915 unsigned HOST_WIDE_INT c
1916 = INTVAL (store_info->rhs)
1917 & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
1918 int shift = BITS_PER_UNIT;
1919 while (shift < HOST_BITS_PER_WIDE_INT)
1921 c |= (c << shift);
1922 shift <<= 1;
1924 read_reg = gen_int_mode (c, store_mode);
1925 read_reg = extract_low_bits (read_mode, store_mode, read_reg);
1928 else if (store_info->const_rhs
1929 && (require_cst
1930 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1931 read_reg = extract_low_bits (read_mode, store_mode,
1932 copy_rtx (store_info->const_rhs));
1933 else
1934 read_reg = extract_low_bits (read_mode, store_mode,
1935 copy_rtx (store_info->rhs));
1936 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1937 read_reg = NULL_RTX;
1938 return read_reg;
1941 /* Take a sequence of:
1942 A <- r1
1944 ... <- A
1946 and change it into
1947 r2 <- r1
1948 A <- r1
1950 ... <- r2
1954 r3 <- extract (r1)
1955 r3 <- r3 >> shift
1956 r2 <- extract (r3)
1957 ... <- r2
1961 r2 <- extract (r1)
1962 ... <- r2
1964 Depending on the alignment and the mode of the store and
1965 subsequent load.
1968 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1969 and READ_INSN are for the read. Return true if the replacement
1970 went ok. */
1972 static bool
1973 replace_read (store_info_t store_info, insn_info_t store_insn,
1974 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1975 bitmap regs_live)
1977 enum machine_mode store_mode = GET_MODE (store_info->mem);
1978 enum machine_mode read_mode = GET_MODE (read_info->mem);
1979 rtx insns, this_insn, read_reg;
1980 basic_block bb;
1982 if (!dbg_cnt (dse))
1983 return false;
1985 /* Create a sequence of instructions to set up the read register.
1986 This sequence goes immediately before the store and its result
1987 is read by the load.
1989 We need to keep this in perspective. We are replacing a read
1990 with a sequence of insns, but the read will almost certainly be
1991 in cache, so it is not going to be an expensive one. Thus, we
1992 are not willing to do a multi insn shift or worse a subroutine
1993 call to get rid of the read. */
1994 if (dump_file)
1995 fprintf (dump_file, "trying to replace %smode load in insn %d"
1996 " from %smode store in insn %d\n",
1997 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1998 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1999 start_sequence ();
2000 bb = BLOCK_FOR_INSN (read_insn->insn);
2001 read_reg = get_stored_val (store_info,
2002 read_mode, read_info->begin, read_info->end,
2003 bb, false);
2004 if (read_reg == NULL_RTX)
2006 end_sequence ();
2007 if (dump_file)
2008 fprintf (dump_file, " -- could not extract bits of stored value\n");
2009 return false;
2011 /* Force the value into a new register so that it won't be clobbered
2012 between the store and the load. */
2013 read_reg = copy_to_mode_reg (read_mode, read_reg);
2014 insns = get_insns ();
2015 end_sequence ();
2017 if (insns != NULL_RTX)
2019 /* Now we have to scan the set of new instructions to see if the
2020 sequence contains and sets of hardregs that happened to be
2021 live at this point. For instance, this can happen if one of
2022 the insns sets the CC and the CC happened to be live at that
2023 point. This does occasionally happen, see PR 37922. */
2024 bitmap regs_set = BITMAP_ALLOC (NULL);
2026 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2027 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
2029 bitmap_and_into (regs_set, regs_live);
2030 if (!bitmap_empty_p (regs_set))
2032 if (dump_file)
2034 fprintf (dump_file,
2035 "abandoning replacement because sequence clobbers live hardregs:");
2036 df_print_regset (dump_file, regs_set);
2039 BITMAP_FREE (regs_set);
2040 return false;
2042 BITMAP_FREE (regs_set);
2045 if (validate_change (read_insn->insn, loc, read_reg, 0))
2047 deferred_change_t deferred_change =
2048 (deferred_change_t) pool_alloc (deferred_change_pool);
2050 /* Insert this right before the store insn where it will be safe
2051 from later insns that might change it before the read. */
2052 emit_insn_before (insns, store_insn->insn);
2054 /* And now for the kludge part: cselib croaks if you just
2055 return at this point. There are two reasons for this:
2057 1) Cselib has an idea of how many pseudos there are and
2058 that does not include the new ones we just added.
2060 2) Cselib does not know about the move insn we added
2061 above the store_info, and there is no way to tell it
2062 about it, because it has "moved on".
2064 Problem (1) is fixable with a certain amount of engineering.
2065 Problem (2) is requires starting the bb from scratch. This
2066 could be expensive.
2068 So we are just going to have to lie. The move/extraction
2069 insns are not really an issue, cselib did not see them. But
2070 the use of the new pseudo read_insn is a real problem because
2071 cselib has not scanned this insn. The way that we solve this
2072 problem is that we are just going to put the mem back for now
2073 and when we are finished with the block, we undo this. We
2074 keep a table of mems to get rid of. At the end of the basic
2075 block we can put them back. */
2077 *loc = read_info->mem;
2078 deferred_change->next = deferred_change_list;
2079 deferred_change_list = deferred_change;
2080 deferred_change->loc = loc;
2081 deferred_change->reg = read_reg;
2083 /* Get rid of the read_info, from the point of view of the
2084 rest of dse, play like this read never happened. */
2085 read_insn->read_rec = read_info->next;
2086 pool_free (read_info_pool, read_info);
2087 if (dump_file)
2089 fprintf (dump_file, " -- replaced the loaded MEM with ");
2090 print_simple_rtl (dump_file, read_reg);
2091 fprintf (dump_file, "\n");
2093 return true;
2095 else
2097 if (dump_file)
2099 fprintf (dump_file, " -- replacing the loaded MEM with ");
2100 print_simple_rtl (dump_file, read_reg);
2101 fprintf (dump_file, " led to an invalid instruction\n");
2103 return false;
2107 /* A for_each_rtx callback in which DATA is the bb_info. Check to see
2108 if LOC is a mem and if it is look at the address and kill any
2109 appropriate stores that may be active. */
2111 static int
2112 check_mem_read_rtx (rtx *loc, void *data)
2114 rtx mem = *loc, mem_addr;
2115 bb_info_t bb_info;
2116 insn_info_t insn_info;
2117 HOST_WIDE_INT offset = 0;
2118 HOST_WIDE_INT width = 0;
2119 alias_set_type spill_alias_set = 0;
2120 cselib_val *base = NULL;
2121 int group_id;
2122 read_info_t read_info;
2124 if (!mem || !MEM_P (mem))
2125 return 0;
2127 bb_info = (bb_info_t) data;
2128 insn_info = bb_info->last_insn;
2130 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2131 || (MEM_VOLATILE_P (mem)))
2133 if (dump_file)
2134 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2135 add_wild_read (bb_info);
2136 insn_info->cannot_delete = true;
2137 return 0;
2140 /* If it is reading readonly mem, then there can be no conflict with
2141 another write. */
2142 if (MEM_READONLY_P (mem))
2143 return 0;
2145 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
2147 if (dump_file)
2148 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2149 add_wild_read (bb_info);
2150 return 0;
2153 if (GET_MODE (mem) == BLKmode)
2154 width = -1;
2155 else
2156 width = GET_MODE_SIZE (GET_MODE (mem));
2158 read_info = (read_info_t) pool_alloc (read_info_pool);
2159 read_info->group_id = group_id;
2160 read_info->mem = mem;
2161 read_info->alias_set = spill_alias_set;
2162 read_info->begin = offset;
2163 read_info->end = offset + width;
2164 read_info->next = insn_info->read_rec;
2165 insn_info->read_rec = read_info;
2166 /* For alias_set != 0 canon_true_dependence should be never called. */
2167 if (spill_alias_set)
2168 mem_addr = NULL_RTX;
2169 else
2171 if (group_id < 0)
2172 mem_addr = base->val_rtx;
2173 else
2175 group_info_t group
2176 = VEC_index (group_info_t, rtx_group_vec, group_id);
2177 mem_addr = group->canon_base_addr;
2179 if (offset)
2180 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2183 /* We ignore the clobbers in store_info. The is mildly aggressive,
2184 but there really should not be a clobber followed by a read. */
2186 if (spill_alias_set)
2188 insn_info_t i_ptr = active_local_stores;
2189 insn_info_t last = NULL;
2191 if (dump_file)
2192 fprintf (dump_file, " processing spill load %d\n",
2193 (int) spill_alias_set);
2195 while (i_ptr)
2197 store_info_t store_info = i_ptr->store_rec;
2199 /* Skip the clobbers. */
2200 while (!store_info->is_set)
2201 store_info = store_info->next;
2203 if (store_info->alias_set == spill_alias_set)
2205 if (dump_file)
2206 dump_insn_info ("removing from active", i_ptr);
2208 active_local_stores_len--;
2209 if (last)
2210 last->next_local_store = i_ptr->next_local_store;
2211 else
2212 active_local_stores = i_ptr->next_local_store;
2214 else
2215 last = i_ptr;
2216 i_ptr = i_ptr->next_local_store;
2219 else if (group_id >= 0)
2221 /* This is the restricted case where the base is a constant or
2222 the frame pointer and offset is a constant. */
2223 insn_info_t i_ptr = active_local_stores;
2224 insn_info_t last = NULL;
2226 if (dump_file)
2228 if (width == -1)
2229 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2230 group_id);
2231 else
2232 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
2233 group_id, (int)offset, (int)(offset+width));
2236 while (i_ptr)
2238 bool remove = false;
2239 store_info_t store_info = i_ptr->store_rec;
2241 /* Skip the clobbers. */
2242 while (!store_info->is_set)
2243 store_info = store_info->next;
2245 /* There are three cases here. */
2246 if (store_info->group_id < 0)
2247 /* We have a cselib store followed by a read from a
2248 const base. */
2249 remove
2250 = canon_true_dependence (store_info->mem,
2251 GET_MODE (store_info->mem),
2252 store_info->mem_addr,
2253 mem, mem_addr);
2255 else if (group_id == store_info->group_id)
2257 /* This is a block mode load. We may get lucky and
2258 canon_true_dependence may save the day. */
2259 if (width == -1)
2260 remove
2261 = canon_true_dependence (store_info->mem,
2262 GET_MODE (store_info->mem),
2263 store_info->mem_addr,
2264 mem, mem_addr);
2266 /* If this read is just reading back something that we just
2267 stored, rewrite the read. */
2268 else
2270 if (store_info->rhs
2271 && offset >= store_info->begin
2272 && offset + width <= store_info->end
2273 && all_positions_needed_p (store_info,
2274 offset - store_info->begin,
2275 width)
2276 && replace_read (store_info, i_ptr, read_info,
2277 insn_info, loc, bb_info->regs_live))
2278 return 0;
2280 /* The bases are the same, just see if the offsets
2281 overlap. */
2282 if ((offset < store_info->end)
2283 && (offset + width > store_info->begin))
2284 remove = true;
2288 /* else
2289 The else case that is missing here is that the
2290 bases are constant but different. There is nothing
2291 to do here because there is no overlap. */
2293 if (remove)
2295 if (dump_file)
2296 dump_insn_info ("removing from active", i_ptr);
2298 active_local_stores_len--;
2299 if (last)
2300 last->next_local_store = i_ptr->next_local_store;
2301 else
2302 active_local_stores = i_ptr->next_local_store;
2304 else
2305 last = i_ptr;
2306 i_ptr = i_ptr->next_local_store;
2309 else
2311 insn_info_t i_ptr = active_local_stores;
2312 insn_info_t last = NULL;
2313 if (dump_file)
2315 fprintf (dump_file, " processing cselib load mem:");
2316 print_inline_rtx (dump_file, mem, 0);
2317 fprintf (dump_file, "\n");
2320 while (i_ptr)
2322 bool remove = false;
2323 store_info_t store_info = i_ptr->store_rec;
2325 if (dump_file)
2326 fprintf (dump_file, " processing cselib load against insn %d\n",
2327 INSN_UID (i_ptr->insn));
2329 /* Skip the clobbers. */
2330 while (!store_info->is_set)
2331 store_info = store_info->next;
2333 /* If this read is just reading back something that we just
2334 stored, rewrite the read. */
2335 if (store_info->rhs
2336 && store_info->group_id == -1
2337 && store_info->cse_base == base
2338 && width != -1
2339 && offset >= store_info->begin
2340 && offset + width <= store_info->end
2341 && all_positions_needed_p (store_info,
2342 offset - store_info->begin, width)
2343 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2344 bb_info->regs_live))
2345 return 0;
2347 if (!store_info->alias_set)
2348 remove = canon_true_dependence (store_info->mem,
2349 GET_MODE (store_info->mem),
2350 store_info->mem_addr,
2351 mem, mem_addr);
2353 if (remove)
2355 if (dump_file)
2356 dump_insn_info ("removing from active", i_ptr);
2358 active_local_stores_len--;
2359 if (last)
2360 last->next_local_store = i_ptr->next_local_store;
2361 else
2362 active_local_stores = i_ptr->next_local_store;
2364 else
2365 last = i_ptr;
2366 i_ptr = i_ptr->next_local_store;
2369 return 0;
2372 /* A for_each_rtx callback in which DATA points the INSN_INFO for
2373 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2374 true for any part of *LOC. */
2376 static void
2377 check_mem_read_use (rtx *loc, void *data)
2379 for_each_rtx (loc, check_mem_read_rtx, data);
2383 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2384 So far it only handles arguments passed in registers. */
2386 static bool
2387 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2389 CUMULATIVE_ARGS args_so_far_v;
2390 cumulative_args_t args_so_far;
2391 tree arg;
2392 int idx;
2394 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2395 args_so_far = pack_cumulative_args (&args_so_far_v);
2397 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2398 for (idx = 0;
2399 arg != void_list_node && idx < nargs;
2400 arg = TREE_CHAIN (arg), idx++)
2402 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2403 rtx reg, link, tmp;
2404 reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2405 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
2406 || GET_MODE_CLASS (mode) != MODE_INT)
2407 return false;
2409 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2410 link;
2411 link = XEXP (link, 1))
2412 if (GET_CODE (XEXP (link, 0)) == USE)
2414 args[idx] = XEXP (XEXP (link, 0), 0);
2415 if (REG_P (args[idx])
2416 && REGNO (args[idx]) == REGNO (reg)
2417 && (GET_MODE (args[idx]) == mode
2418 || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
2419 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2420 <= UNITS_PER_WORD)
2421 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2422 > GET_MODE_SIZE (mode)))))
2423 break;
2425 if (!link)
2426 return false;
2428 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2429 if (GET_MODE (args[idx]) != mode)
2431 if (!tmp || !CONST_INT_P (tmp))
2432 return false;
2433 tmp = gen_int_mode (INTVAL (tmp), mode);
2435 if (tmp)
2436 args[idx] = tmp;
2438 targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2440 if (arg != void_list_node || idx != nargs)
2441 return false;
2442 return true;
2445 /* Return a bitmap of the fixed registers contained in IN. */
2447 static bitmap
2448 copy_fixed_regs (const_bitmap in)
2450 bitmap ret;
2452 ret = ALLOC_REG_SET (NULL);
2453 bitmap_and (ret, in, fixed_reg_set_regset);
2454 return ret;
2457 /* Apply record_store to all candidate stores in INSN. Mark INSN
2458 if some part of it is not a candidate store and assigns to a
2459 non-register target. */
2461 static void
2462 scan_insn (bb_info_t bb_info, rtx insn)
2464 rtx body;
2465 insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool);
2466 int mems_found = 0;
2467 memset (insn_info, 0, sizeof (struct insn_info));
2469 if (dump_file)
2470 fprintf (dump_file, "\n**scanning insn=%d\n",
2471 INSN_UID (insn));
2473 insn_info->prev_insn = bb_info->last_insn;
2474 insn_info->insn = insn;
2475 bb_info->last_insn = insn_info;
2477 if (DEBUG_INSN_P (insn))
2479 insn_info->cannot_delete = true;
2480 return;
2483 /* Cselib clears the table for this case, so we have to essentially
2484 do the same. */
2485 if (NONJUMP_INSN_P (insn)
2486 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2487 && MEM_VOLATILE_P (PATTERN (insn)))
2489 add_wild_read (bb_info);
2490 insn_info->cannot_delete = true;
2491 return;
2494 /* Look at all of the uses in the insn. */
2495 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2497 if (CALL_P (insn))
2499 bool const_call;
2500 tree memset_call = NULL_TREE;
2502 insn_info->cannot_delete = true;
2504 /* Const functions cannot do anything bad i.e. read memory,
2505 however, they can read their parameters which may have
2506 been pushed onto the stack.
2507 memset and bzero don't read memory either. */
2508 const_call = RTL_CONST_CALL_P (insn);
2509 if (!const_call)
2511 rtx call = PATTERN (insn);
2512 if (GET_CODE (call) == PARALLEL)
2513 call = XVECEXP (call, 0, 0);
2514 if (GET_CODE (call) == SET)
2515 call = SET_SRC (call);
2516 if (GET_CODE (call) == CALL
2517 && MEM_P (XEXP (call, 0))
2518 && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
2520 rtx symbol = XEXP (XEXP (call, 0), 0);
2521 if (SYMBOL_REF_DECL (symbol)
2522 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
2524 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
2525 == BUILT_IN_NORMAL
2526 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
2527 == BUILT_IN_MEMSET))
2528 || SYMBOL_REF_DECL (symbol) == block_clear_fn)
2529 memset_call = SYMBOL_REF_DECL (symbol);
2533 if (const_call || memset_call)
2535 insn_info_t i_ptr = active_local_stores;
2536 insn_info_t last = NULL;
2538 if (dump_file)
2539 fprintf (dump_file, "%s call %d\n",
2540 const_call ? "const" : "memset", INSN_UID (insn));
2542 /* See the head comment of the frame_read field. */
2543 if (reload_completed)
2544 insn_info->frame_read = true;
2546 /* Loop over the active stores and remove those which are
2547 killed by the const function call. */
2548 while (i_ptr)
2550 bool remove_store = false;
2552 /* The stack pointer based stores are always killed. */
2553 if (i_ptr->stack_pointer_based)
2554 remove_store = true;
2556 /* If the frame is read, the frame related stores are killed. */
2557 else if (insn_info->frame_read)
2559 store_info_t store_info = i_ptr->store_rec;
2561 /* Skip the clobbers. */
2562 while (!store_info->is_set)
2563 store_info = store_info->next;
2565 if (store_info->group_id >= 0
2566 && VEC_index (group_info_t, rtx_group_vec,
2567 store_info->group_id)->frame_related)
2568 remove_store = true;
2571 if (remove_store)
2573 if (dump_file)
2574 dump_insn_info ("removing from active", i_ptr);
2576 active_local_stores_len--;
2577 if (last)
2578 last->next_local_store = i_ptr->next_local_store;
2579 else
2580 active_local_stores = i_ptr->next_local_store;
2582 else
2583 last = i_ptr;
2585 i_ptr = i_ptr->next_local_store;
2588 if (memset_call)
2590 rtx args[3];
2591 if (get_call_args (insn, memset_call, args, 3)
2592 && CONST_INT_P (args[1])
2593 && CONST_INT_P (args[2])
2594 && INTVAL (args[2]) > 0)
2596 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2597 set_mem_size (mem, INTVAL (args[2]));
2598 body = gen_rtx_SET (VOIDmode, mem, args[1]);
2599 mems_found += record_store (body, bb_info);
2600 if (dump_file)
2601 fprintf (dump_file, "handling memset as BLKmode store\n");
2602 if (mems_found == 1)
2604 if (active_local_stores_len++
2605 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2607 active_local_stores_len = 1;
2608 active_local_stores = NULL;
2610 insn_info->fixed_regs_live
2611 = copy_fixed_regs (bb_info->regs_live);
2612 insn_info->next_local_store = active_local_stores;
2613 active_local_stores = insn_info;
2619 else
2620 /* Every other call, including pure functions, may read any memory
2621 that is not relative to the frame. */
2622 add_non_frame_wild_read (bb_info);
2624 return;
2627 /* Assuming that there are sets in these insns, we cannot delete
2628 them. */
2629 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2630 || volatile_refs_p (PATTERN (insn))
2631 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2632 || (RTX_FRAME_RELATED_P (insn))
2633 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2634 insn_info->cannot_delete = true;
2636 body = PATTERN (insn);
2637 if (GET_CODE (body) == PARALLEL)
2639 int i;
2640 for (i = 0; i < XVECLEN (body, 0); i++)
2641 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2643 else
2644 mems_found += record_store (body, bb_info);
2646 if (dump_file)
2647 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2648 mems_found, insn_info->cannot_delete ? "true" : "false");
2650 /* If we found some sets of mems, add it into the active_local_stores so
2651 that it can be locally deleted if found dead or used for
2652 replace_read and redundant constant store elimination. Otherwise mark
2653 it as cannot delete. This simplifies the processing later. */
2654 if (mems_found == 1)
2656 if (active_local_stores_len++
2657 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2659 active_local_stores_len = 1;
2660 active_local_stores = NULL;
2662 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2663 insn_info->next_local_store = active_local_stores;
2664 active_local_stores = insn_info;
2666 else
2667 insn_info->cannot_delete = true;
2671 /* Remove BASE from the set of active_local_stores. This is a
2672 callback from cselib that is used to get rid of the stores in
2673 active_local_stores. */
2675 static void
2676 remove_useless_values (cselib_val *base)
2678 insn_info_t insn_info = active_local_stores;
2679 insn_info_t last = NULL;
2681 while (insn_info)
2683 store_info_t store_info = insn_info->store_rec;
2684 bool del = false;
2686 /* If ANY of the store_infos match the cselib group that is
2687 being deleted, then the insn can not be deleted. */
2688 while (store_info)
2690 if ((store_info->group_id == -1)
2691 && (store_info->cse_base == base))
2693 del = true;
2694 break;
2696 store_info = store_info->next;
2699 if (del)
2701 active_local_stores_len--;
2702 if (last)
2703 last->next_local_store = insn_info->next_local_store;
2704 else
2705 active_local_stores = insn_info->next_local_store;
2706 free_store_info (insn_info);
2708 else
2709 last = insn_info;
2711 insn_info = insn_info->next_local_store;
2716 /* Do all of step 1. */
2718 static void
2719 dse_step1 (void)
2721 basic_block bb;
2722 bitmap regs_live = BITMAP_ALLOC (NULL);
2724 cselib_init (0);
2725 all_blocks = BITMAP_ALLOC (NULL);
2726 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2727 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2729 FOR_ALL_BB (bb)
2731 insn_info_t ptr;
2732 bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool);
2734 memset (bb_info, 0, sizeof (struct bb_info));
2735 bitmap_set_bit (all_blocks, bb->index);
2736 bb_info->regs_live = regs_live;
2738 bitmap_copy (regs_live, DF_LR_IN (bb));
2739 df_simulate_initialize_forwards (bb, regs_live);
2741 bb_table[bb->index] = bb_info;
2742 cselib_discard_hook = remove_useless_values;
2744 if (bb->index >= NUM_FIXED_BLOCKS)
2746 rtx insn;
2748 cse_store_info_pool
2749 = create_alloc_pool ("cse_store_info_pool",
2750 sizeof (struct store_info), 100);
2751 active_local_stores = NULL;
2752 active_local_stores_len = 0;
2753 cselib_clear_table ();
2755 /* Scan the insns. */
2756 FOR_BB_INSNS (bb, insn)
2758 if (INSN_P (insn))
2759 scan_insn (bb_info, insn);
2760 cselib_process_insn (insn);
2761 if (INSN_P (insn))
2762 df_simulate_one_insn_forwards (bb, insn, regs_live);
2765 /* This is something of a hack, because the global algorithm
2766 is supposed to take care of the case where stores go dead
2767 at the end of the function. However, the global
2768 algorithm must take a more conservative view of block
2769 mode reads than the local alg does. So to get the case
2770 where you have a store to the frame followed by a non
2771 overlapping block more read, we look at the active local
2772 stores at the end of the function and delete all of the
2773 frame and spill based ones. */
2774 if (stores_off_frame_dead_at_return
2775 && (EDGE_COUNT (bb->succs) == 0
2776 || (single_succ_p (bb)
2777 && single_succ (bb) == EXIT_BLOCK_PTR
2778 && ! crtl->calls_eh_return)))
2780 insn_info_t i_ptr = active_local_stores;
2781 while (i_ptr)
2783 store_info_t store_info = i_ptr->store_rec;
2785 /* Skip the clobbers. */
2786 while (!store_info->is_set)
2787 store_info = store_info->next;
2788 if (store_info->alias_set && !i_ptr->cannot_delete)
2789 delete_dead_store_insn (i_ptr);
2790 else
2791 if (store_info->group_id >= 0)
2793 group_info_t group
2794 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
2795 if (group->frame_related && !i_ptr->cannot_delete)
2796 delete_dead_store_insn (i_ptr);
2799 i_ptr = i_ptr->next_local_store;
2803 /* Get rid of the loads that were discovered in
2804 replace_read. Cselib is finished with this block. */
2805 while (deferred_change_list)
2807 deferred_change_t next = deferred_change_list->next;
2809 /* There is no reason to validate this change. That was
2810 done earlier. */
2811 *deferred_change_list->loc = deferred_change_list->reg;
2812 pool_free (deferred_change_pool, deferred_change_list);
2813 deferred_change_list = next;
2816 /* Get rid of all of the cselib based store_infos in this
2817 block and mark the containing insns as not being
2818 deletable. */
2819 ptr = bb_info->last_insn;
2820 while (ptr)
2822 if (ptr->contains_cselib_groups)
2824 store_info_t s_info = ptr->store_rec;
2825 while (s_info && !s_info->is_set)
2826 s_info = s_info->next;
2827 if (s_info
2828 && s_info->redundant_reason
2829 && s_info->redundant_reason->insn
2830 && !ptr->cannot_delete)
2832 if (dump_file)
2833 fprintf (dump_file, "Locally deleting insn %d "
2834 "because insn %d stores the "
2835 "same value and couldn't be "
2836 "eliminated\n",
2837 INSN_UID (ptr->insn),
2838 INSN_UID (s_info->redundant_reason->insn));
2839 delete_dead_store_insn (ptr);
2841 if (s_info)
2842 s_info->redundant_reason = NULL;
2843 free_store_info (ptr);
2845 else
2847 store_info_t s_info;
2849 /* Free at least positions_needed bitmaps. */
2850 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2851 if (s_info->is_large)
2853 BITMAP_FREE (s_info->positions_needed.large.bmap);
2854 s_info->is_large = false;
2857 ptr = ptr->prev_insn;
2860 free_alloc_pool (cse_store_info_pool);
2862 bb_info->regs_live = NULL;
2865 BITMAP_FREE (regs_live);
2866 cselib_finish ();
2867 htab_empty (rtx_group_table);
2871 /*----------------------------------------------------------------------------
2872 Second step.
2874 Assign each byte position in the stores that we are going to
2875 analyze globally to a position in the bitmaps. Returns true if
2876 there are any bit positions assigned.
2877 ----------------------------------------------------------------------------*/
2879 static void
2880 dse_step2_init (void)
2882 unsigned int i;
2883 group_info_t group;
2885 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
2887 /* For all non stack related bases, we only consider a store to
2888 be deletable if there are two or more stores for that
2889 position. This is because it takes one store to make the
2890 other store redundant. However, for the stores that are
2891 stack related, we consider them if there is only one store
2892 for the position. We do this because the stack related
2893 stores can be deleted if their is no read between them and
2894 the end of the function.
2896 To make this work in the current framework, we take the stack
2897 related bases add all of the bits from store1 into store2.
2898 This has the effect of making the eligible even if there is
2899 only one store. */
2901 if (stores_off_frame_dead_at_return && group->frame_related)
2903 bitmap_ior_into (group->store2_n, group->store1_n);
2904 bitmap_ior_into (group->store2_p, group->store1_p);
2905 if (dump_file)
2906 fprintf (dump_file, "group %d is frame related ", i);
2909 group->offset_map_size_n++;
2910 group->offset_map_n = XNEWVEC (int, group->offset_map_size_n);
2911 group->offset_map_size_p++;
2912 group->offset_map_p = XNEWVEC (int, group->offset_map_size_p);
2913 group->process_globally = false;
2914 if (dump_file)
2916 fprintf (dump_file, "group %d(%d+%d): ", i,
2917 (int)bitmap_count_bits (group->store2_n),
2918 (int)bitmap_count_bits (group->store2_p));
2919 bitmap_print (dump_file, group->store2_n, "n ", " ");
2920 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2926 /* Init the offset tables for the normal case. */
2928 static bool
2929 dse_step2_nospill (void)
2931 unsigned int i;
2932 group_info_t group;
2933 /* Position 0 is unused because 0 is used in the maps to mean
2934 unused. */
2935 current_position = 1;
2936 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
2938 bitmap_iterator bi;
2939 unsigned int j;
2941 if (group == clear_alias_group)
2942 continue;
2944 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2945 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2946 bitmap_clear (group->group_kill);
2948 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2950 bitmap_set_bit (group->group_kill, current_position);
2951 if (bitmap_bit_p (group->escaped_n, j))
2952 bitmap_set_bit (kill_on_calls, current_position);
2953 group->offset_map_n[j] = current_position++;
2954 group->process_globally = true;
2956 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2958 bitmap_set_bit (group->group_kill, current_position);
2959 if (bitmap_bit_p (group->escaped_p, j))
2960 bitmap_set_bit (kill_on_calls, current_position);
2961 group->offset_map_p[j] = current_position++;
2962 group->process_globally = true;
2965 return current_position != 1;
2969 /* Init the offset tables for the spill case. */
2971 static bool
2972 dse_step2_spill (void)
2974 unsigned int j;
2975 group_info_t group = clear_alias_group;
2976 bitmap_iterator bi;
2978 /* Position 0 is unused because 0 is used in the maps to mean
2979 unused. */
2980 current_position = 1;
2982 if (dump_file)
2984 bitmap_print (dump_file, clear_alias_sets,
2985 "clear alias sets ", "\n");
2986 bitmap_print (dump_file, disqualified_clear_alias_sets,
2987 "disqualified clear alias sets ", "\n");
2990 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2991 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2992 bitmap_clear (group->group_kill);
2994 /* Remove the disqualified positions from the store2_p set. */
2995 bitmap_and_compl_into (group->store2_p, disqualified_clear_alias_sets);
2997 /* We do not need to process the store2_n set because
2998 alias_sets are always positive. */
2999 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
3001 bitmap_set_bit (group->group_kill, current_position);
3002 group->offset_map_p[j] = current_position++;
3003 group->process_globally = true;
3006 return current_position != 1;
3011 /*----------------------------------------------------------------------------
3012 Third step.
3014 Build the bit vectors for the transfer functions.
3015 ----------------------------------------------------------------------------*/
3018 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
3019 there, return 0. */
3021 static int
3022 get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
3024 if (offset < 0)
3026 HOST_WIDE_INT offset_p = -offset;
3027 if (offset_p >= group_info->offset_map_size_n)
3028 return 0;
3029 return group_info->offset_map_n[offset_p];
3031 else
3033 if (offset >= group_info->offset_map_size_p)
3034 return 0;
3035 return group_info->offset_map_p[offset];
3040 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3041 may be NULL. */
3043 static void
3044 scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
3046 while (store_info)
3048 HOST_WIDE_INT i;
3049 group_info_t group_info
3050 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
3051 if (group_info->process_globally)
3052 for (i = store_info->begin; i < store_info->end; i++)
3054 int index = get_bitmap_index (group_info, i);
3055 if (index != 0)
3057 bitmap_set_bit (gen, index);
3058 if (kill)
3059 bitmap_clear_bit (kill, index);
3062 store_info = store_info->next;
3067 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3068 may be NULL. */
3070 static void
3071 scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
3073 while (store_info)
3075 if (store_info->alias_set)
3077 int index = get_bitmap_index (clear_alias_group,
3078 store_info->alias_set);
3079 if (index != 0)
3081 bitmap_set_bit (gen, index);
3082 if (kill)
3083 bitmap_clear_bit (kill, index);
3086 store_info = store_info->next;
3091 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3092 may be NULL. */
3094 static void
3095 scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
3097 read_info_t read_info = insn_info->read_rec;
3098 int i;
3099 group_info_t group;
3101 /* If this insn reads the frame, kill all the frame related stores. */
3102 if (insn_info->frame_read)
3104 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3105 if (group->process_globally && group->frame_related)
3107 if (kill)
3108 bitmap_ior_into (kill, group->group_kill);
3109 bitmap_and_compl_into (gen, group->group_kill);
3112 if (insn_info->non_frame_wild_read)
3114 /* Kill all non-frame related stores. Kill all stores of variables that
3115 escape. */
3116 if (kill)
3117 bitmap_ior_into (kill, kill_on_calls);
3118 bitmap_and_compl_into (gen, kill_on_calls);
3119 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3120 if (group->process_globally && !group->frame_related)
3122 if (kill)
3123 bitmap_ior_into (kill, group->group_kill);
3124 bitmap_and_compl_into (gen, group->group_kill);
3127 while (read_info)
3129 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3131 if (group->process_globally)
3133 if (i == read_info->group_id)
3135 if (read_info->begin > read_info->end)
3137 /* Begin > end for block mode reads. */
3138 if (kill)
3139 bitmap_ior_into (kill, group->group_kill);
3140 bitmap_and_compl_into (gen, group->group_kill);
3142 else
3144 /* The groups are the same, just process the
3145 offsets. */
3146 HOST_WIDE_INT j;
3147 for (j = read_info->begin; j < read_info->end; j++)
3149 int index = get_bitmap_index (group, j);
3150 if (index != 0)
3152 if (kill)
3153 bitmap_set_bit (kill, index);
3154 bitmap_clear_bit (gen, index);
3159 else
3161 /* The groups are different, if the alias sets
3162 conflict, clear the entire group. We only need
3163 to apply this test if the read_info is a cselib
3164 read. Anything with a constant base cannot alias
3165 something else with a different constant
3166 base. */
3167 if ((read_info->group_id < 0)
3168 && canon_true_dependence (group->base_mem,
3169 GET_MODE (group->base_mem),
3170 group->canon_base_addr,
3171 read_info->mem, NULL_RTX))
3173 if (kill)
3174 bitmap_ior_into (kill, group->group_kill);
3175 bitmap_and_compl_into (gen, group->group_kill);
3181 read_info = read_info->next;
3185 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3186 may be NULL. */
3188 static void
3189 scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
3191 while (read_info)
3193 if (read_info->alias_set)
3195 int index = get_bitmap_index (clear_alias_group,
3196 read_info->alias_set);
3197 if (index != 0)
3199 if (kill)
3200 bitmap_set_bit (kill, index);
3201 bitmap_clear_bit (gen, index);
3205 read_info = read_info->next;
3210 /* Return the insn in BB_INFO before the first wild read or if there
3211 are no wild reads in the block, return the last insn. */
3213 static insn_info_t
3214 find_insn_before_first_wild_read (bb_info_t bb_info)
3216 insn_info_t insn_info = bb_info->last_insn;
3217 insn_info_t last_wild_read = NULL;
3219 while (insn_info)
3221 if (insn_info->wild_read)
3223 last_wild_read = insn_info->prev_insn;
3224 /* Block starts with wild read. */
3225 if (!last_wild_read)
3226 return NULL;
3229 insn_info = insn_info->prev_insn;
3232 if (last_wild_read)
3233 return last_wild_read;
3234 else
3235 return bb_info->last_insn;
3239 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3240 the block in order to build the gen and kill sets for the block.
3241 We start at ptr which may be the last insn in the block or may be
3242 the first insn with a wild read. In the latter case we are able to
3243 skip the rest of the block because it just does not matter:
3244 anything that happens is hidden by the wild read. */
3246 static void
3247 dse_step3_scan (bool for_spills, basic_block bb)
3249 bb_info_t bb_info = bb_table[bb->index];
3250 insn_info_t insn_info;
3252 if (for_spills)
3253 /* There are no wild reads in the spill case. */
3254 insn_info = bb_info->last_insn;
3255 else
3256 insn_info = find_insn_before_first_wild_read (bb_info);
3258 /* In the spill case or in the no_spill case if there is no wild
3259 read in the block, we will need a kill set. */
3260 if (insn_info == bb_info->last_insn)
3262 if (bb_info->kill)
3263 bitmap_clear (bb_info->kill);
3264 else
3265 bb_info->kill = BITMAP_ALLOC (NULL);
3267 else
3268 if (bb_info->kill)
3269 BITMAP_FREE (bb_info->kill);
3271 while (insn_info)
3273 /* There may have been code deleted by the dce pass run before
3274 this phase. */
3275 if (insn_info->insn && INSN_P (insn_info->insn))
3277 /* Process the read(s) last. */
3278 if (for_spills)
3280 scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3281 scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
3283 else
3285 scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3286 scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
3290 insn_info = insn_info->prev_insn;
3295 /* Set the gen set of the exit block, and also any block with no
3296 successors that does not have a wild read. */
3298 static void
3299 dse_step3_exit_block_scan (bb_info_t bb_info)
3301 /* The gen set is all 0's for the exit block except for the
3302 frame_pointer_group. */
3304 if (stores_off_frame_dead_at_return)
3306 unsigned int i;
3307 group_info_t group;
3309 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3311 if (group->process_globally && group->frame_related)
3312 bitmap_ior_into (bb_info->gen, group->group_kill);
3318 /* Find all of the blocks that are not backwards reachable from the
3319 exit block or any block with no successors (BB). These are the
3320 infinite loops or infinite self loops. These blocks will still
3321 have their bits set in UNREACHABLE_BLOCKS. */
3323 static void
3324 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3326 edge e;
3327 edge_iterator ei;
3329 if (TEST_BIT (unreachable_blocks, bb->index))
3331 RESET_BIT (unreachable_blocks, bb->index);
3332 FOR_EACH_EDGE (e, ei, bb->preds)
3334 mark_reachable_blocks (unreachable_blocks, e->src);
3339 /* Build the transfer functions for the function. */
3341 static void
3342 dse_step3 (bool for_spills)
3344 basic_block bb;
3345 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block);
3346 sbitmap_iterator sbi;
3347 bitmap all_ones = NULL;
3348 unsigned int i;
3350 sbitmap_ones (unreachable_blocks);
3352 FOR_ALL_BB (bb)
3354 bb_info_t bb_info = bb_table[bb->index];
3355 if (bb_info->gen)
3356 bitmap_clear (bb_info->gen);
3357 else
3358 bb_info->gen = BITMAP_ALLOC (NULL);
3360 if (bb->index == ENTRY_BLOCK)
3362 else if (bb->index == EXIT_BLOCK)
3363 dse_step3_exit_block_scan (bb_info);
3364 else
3365 dse_step3_scan (for_spills, bb);
3366 if (EDGE_COUNT (bb->succs) == 0)
3367 mark_reachable_blocks (unreachable_blocks, bb);
3369 /* If this is the second time dataflow is run, delete the old
3370 sets. */
3371 if (bb_info->in)
3372 BITMAP_FREE (bb_info->in);
3373 if (bb_info->out)
3374 BITMAP_FREE (bb_info->out);
3377 /* For any block in an infinite loop, we must initialize the out set
3378 to all ones. This could be expensive, but almost never occurs in
3379 practice. However, it is common in regression tests. */
3380 EXECUTE_IF_SET_IN_SBITMAP (unreachable_blocks, 0, i, sbi)
3382 if (bitmap_bit_p (all_blocks, i))
3384 bb_info_t bb_info = bb_table[i];
3385 if (!all_ones)
3387 unsigned int j;
3388 group_info_t group;
3390 all_ones = BITMAP_ALLOC (NULL);
3391 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, j, group)
3392 bitmap_ior_into (all_ones, group->group_kill);
3394 if (!bb_info->out)
3396 bb_info->out = BITMAP_ALLOC (NULL);
3397 bitmap_copy (bb_info->out, all_ones);
3402 if (all_ones)
3403 BITMAP_FREE (all_ones);
3404 sbitmap_free (unreachable_blocks);
3409 /*----------------------------------------------------------------------------
3410 Fourth step.
3412 Solve the bitvector equations.
3413 ----------------------------------------------------------------------------*/
3416 /* Confluence function for blocks with no successors. Create an out
3417 set from the gen set of the exit block. This block logically has
3418 the exit block as a successor. */
3422 static void
3423 dse_confluence_0 (basic_block bb)
3425 bb_info_t bb_info = bb_table[bb->index];
3427 if (bb->index == EXIT_BLOCK)
3428 return;
3430 if (!bb_info->out)
3432 bb_info->out = BITMAP_ALLOC (NULL);
3433 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3437 /* Propagate the information from the in set of the dest of E to the
3438 out set of the src of E. If the various in or out sets are not
3439 there, that means they are all ones. */
3441 static bool
3442 dse_confluence_n (edge e)
3444 bb_info_t src_info = bb_table[e->src->index];
3445 bb_info_t dest_info = bb_table[e->dest->index];
3447 if (dest_info->in)
3449 if (src_info->out)
3450 bitmap_and_into (src_info->out, dest_info->in);
3451 else
3453 src_info->out = BITMAP_ALLOC (NULL);
3454 bitmap_copy (src_info->out, dest_info->in);
3457 return true;
3461 /* Propagate the info from the out to the in set of BB_INDEX's basic
3462 block. There are three cases:
3464 1) The block has no kill set. In this case the kill set is all
3465 ones. It does not matter what the out set of the block is, none of
3466 the info can reach the top. The only thing that reaches the top is
3467 the gen set and we just copy the set.
3469 2) There is a kill set but no out set and bb has successors. In
3470 this case we just return. Eventually an out set will be created and
3471 it is better to wait than to create a set of ones.
3473 3) There is both a kill and out set. We apply the obvious transfer
3474 function.
3477 static bool
3478 dse_transfer_function (int bb_index)
3480 bb_info_t bb_info = bb_table[bb_index];
3482 if (bb_info->kill)
3484 if (bb_info->out)
3486 /* Case 3 above. */
3487 if (bb_info->in)
3488 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3489 bb_info->out, bb_info->kill);
3490 else
3492 bb_info->in = BITMAP_ALLOC (NULL);
3493 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3494 bb_info->out, bb_info->kill);
3495 return true;
3498 else
3499 /* Case 2 above. */
3500 return false;
3502 else
3504 /* Case 1 above. If there is already an in set, nothing
3505 happens. */
3506 if (bb_info->in)
3507 return false;
3508 else
3510 bb_info->in = BITMAP_ALLOC (NULL);
3511 bitmap_copy (bb_info->in, bb_info->gen);
3512 return true;
3517 /* Solve the dataflow equations. */
3519 static void
3520 dse_step4 (void)
3522 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3523 dse_confluence_n, dse_transfer_function,
3524 all_blocks, df_get_postorder (DF_BACKWARD),
3525 df_get_n_blocks (DF_BACKWARD));
3526 if (dump_file)
3528 basic_block bb;
3530 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3531 FOR_ALL_BB (bb)
3533 bb_info_t bb_info = bb_table[bb->index];
3535 df_print_bb_index (bb, dump_file);
3536 if (bb_info->in)
3537 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3538 else
3539 fprintf (dump_file, " in: *MISSING*\n");
3540 if (bb_info->gen)
3541 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3542 else
3543 fprintf (dump_file, " gen: *MISSING*\n");
3544 if (bb_info->kill)
3545 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3546 else
3547 fprintf (dump_file, " kill: *MISSING*\n");
3548 if (bb_info->out)
3549 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3550 else
3551 fprintf (dump_file, " out: *MISSING*\n\n");
3558 /*----------------------------------------------------------------------------
3559 Fifth step.
3561 Delete the stores that can only be deleted using the global information.
3562 ----------------------------------------------------------------------------*/
3565 static void
3566 dse_step5_nospill (void)
3568 basic_block bb;
3569 FOR_EACH_BB (bb)
3571 bb_info_t bb_info = bb_table[bb->index];
3572 insn_info_t insn_info = bb_info->last_insn;
3573 bitmap v = bb_info->out;
3575 while (insn_info)
3577 bool deleted = false;
3578 if (dump_file && insn_info->insn)
3580 fprintf (dump_file, "starting to process insn %d\n",
3581 INSN_UID (insn_info->insn));
3582 bitmap_print (dump_file, v, " v: ", "\n");
3585 /* There may have been code deleted by the dce pass run before
3586 this phase. */
3587 if (insn_info->insn
3588 && INSN_P (insn_info->insn)
3589 && (!insn_info->cannot_delete)
3590 && (!bitmap_empty_p (v)))
3592 store_info_t store_info = insn_info->store_rec;
3594 /* Try to delete the current insn. */
3595 deleted = true;
3597 /* Skip the clobbers. */
3598 while (!store_info->is_set)
3599 store_info = store_info->next;
3601 if (store_info->alias_set)
3602 deleted = false;
3603 else
3605 HOST_WIDE_INT i;
3606 group_info_t group_info
3607 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
3609 for (i = store_info->begin; i < store_info->end; i++)
3611 int index = get_bitmap_index (group_info, i);
3613 if (dump_file)
3614 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3615 if (index == 0 || !bitmap_bit_p (v, index))
3617 if (dump_file)
3618 fprintf (dump_file, "failing at i = %d\n", (int)i);
3619 deleted = false;
3620 break;
3624 if (deleted)
3626 if (dbg_cnt (dse)
3627 && check_for_inc_dec_1 (insn_info))
3629 delete_insn (insn_info->insn);
3630 insn_info->insn = NULL;
3631 globally_deleted++;
3635 /* We do want to process the local info if the insn was
3636 deleted. For instance, if the insn did a wild read, we
3637 no longer need to trash the info. */
3638 if (insn_info->insn
3639 && INSN_P (insn_info->insn)
3640 && (!deleted))
3642 scan_stores_nospill (insn_info->store_rec, v, NULL);
3643 if (insn_info->wild_read)
3645 if (dump_file)
3646 fprintf (dump_file, "wild read\n");
3647 bitmap_clear (v);
3649 else if (insn_info->read_rec
3650 || insn_info->non_frame_wild_read)
3652 if (dump_file && !insn_info->non_frame_wild_read)
3653 fprintf (dump_file, "regular read\n");
3654 else if (dump_file)
3655 fprintf (dump_file, "non-frame wild read\n");
3656 scan_reads_nospill (insn_info, v, NULL);
3660 insn_info = insn_info->prev_insn;
3666 static void
3667 dse_step5_spill (void)
3669 basic_block bb;
3670 FOR_EACH_BB (bb)
3672 bb_info_t bb_info = bb_table[bb->index];
3673 insn_info_t insn_info = bb_info->last_insn;
3674 bitmap v = bb_info->out;
3676 while (insn_info)
3678 bool deleted = false;
3679 /* There may have been code deleted by the dce pass run before
3680 this phase. */
3681 if (insn_info->insn
3682 && INSN_P (insn_info->insn)
3683 && (!insn_info->cannot_delete)
3684 && (!bitmap_empty_p (v)))
3686 /* Try to delete the current insn. */
3687 store_info_t store_info = insn_info->store_rec;
3688 deleted = true;
3690 while (store_info)
3692 if (store_info->alias_set)
3694 int index = get_bitmap_index (clear_alias_group,
3695 store_info->alias_set);
3696 if (index == 0 || !bitmap_bit_p (v, index))
3698 deleted = false;
3699 break;
3702 else
3703 deleted = false;
3704 store_info = store_info->next;
3706 if (deleted && dbg_cnt (dse)
3707 && check_for_inc_dec_1 (insn_info))
3709 if (dump_file)
3710 fprintf (dump_file, "Spill deleting insn %d\n",
3711 INSN_UID (insn_info->insn));
3712 delete_insn (insn_info->insn);
3713 spill_deleted++;
3714 insn_info->insn = NULL;
3718 if (insn_info->insn
3719 && INSN_P (insn_info->insn)
3720 && (!deleted))
3722 scan_stores_spill (insn_info->store_rec, v, NULL);
3723 scan_reads_spill (insn_info->read_rec, v, NULL);
3726 insn_info = insn_info->prev_insn;
3733 /*----------------------------------------------------------------------------
3734 Sixth step.
3736 Delete stores made redundant by earlier stores (which store the same
3737 value) that couldn't be eliminated.
3738 ----------------------------------------------------------------------------*/
3740 static void
3741 dse_step6 (void)
3743 basic_block bb;
3745 FOR_ALL_BB (bb)
3747 bb_info_t bb_info = bb_table[bb->index];
3748 insn_info_t insn_info = bb_info->last_insn;
3750 while (insn_info)
3752 /* There may have been code deleted by the dce pass run before
3753 this phase. */
3754 if (insn_info->insn
3755 && INSN_P (insn_info->insn)
3756 && !insn_info->cannot_delete)
3758 store_info_t s_info = insn_info->store_rec;
3760 while (s_info && !s_info->is_set)
3761 s_info = s_info->next;
3762 if (s_info
3763 && s_info->redundant_reason
3764 && s_info->redundant_reason->insn
3765 && INSN_P (s_info->redundant_reason->insn))
3767 rtx rinsn = s_info->redundant_reason->insn;
3768 if (dump_file)
3769 fprintf (dump_file, "Locally deleting insn %d "
3770 "because insn %d stores the "
3771 "same value and couldn't be "
3772 "eliminated\n",
3773 INSN_UID (insn_info->insn),
3774 INSN_UID (rinsn));
3775 delete_dead_store_insn (insn_info);
3778 insn_info = insn_info->prev_insn;
3783 /*----------------------------------------------------------------------------
3784 Seventh step.
3786 Destroy everything left standing.
3787 ----------------------------------------------------------------------------*/
3789 static void
3790 dse_step7 (bool global_done)
3792 unsigned int i;
3793 group_info_t group;
3794 basic_block bb;
3796 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3798 free (group->offset_map_n);
3799 free (group->offset_map_p);
3800 BITMAP_FREE (group->store1_n);
3801 BITMAP_FREE (group->store1_p);
3802 BITMAP_FREE (group->store2_n);
3803 BITMAP_FREE (group->store2_p);
3804 BITMAP_FREE (group->escaped_n);
3805 BITMAP_FREE (group->escaped_p);
3806 BITMAP_FREE (group->group_kill);
3809 if (global_done)
3810 FOR_ALL_BB (bb)
3812 bb_info_t bb_info = bb_table[bb->index];
3813 BITMAP_FREE (bb_info->gen);
3814 if (bb_info->kill)
3815 BITMAP_FREE (bb_info->kill);
3816 if (bb_info->in)
3817 BITMAP_FREE (bb_info->in);
3818 if (bb_info->out)
3819 BITMAP_FREE (bb_info->out);
3822 if (clear_alias_sets)
3824 BITMAP_FREE (clear_alias_sets);
3825 BITMAP_FREE (disqualified_clear_alias_sets);
3826 free_alloc_pool (clear_alias_mode_pool);
3827 htab_delete (clear_alias_mode_table);
3830 end_alias_analysis ();
3831 free (bb_table);
3832 htab_delete (rtx_group_table);
3833 VEC_free (group_info_t, heap, rtx_group_vec);
3834 BITMAP_FREE (all_blocks);
3835 BITMAP_FREE (scratch);
3836 BITMAP_FREE (kill_on_calls);
3838 free_alloc_pool (rtx_store_info_pool);
3839 free_alloc_pool (read_info_pool);
3840 free_alloc_pool (insn_info_pool);
3841 free_alloc_pool (bb_info_pool);
3842 free_alloc_pool (rtx_group_info_pool);
3843 free_alloc_pool (deferred_change_pool);
3847 /* -------------------------------------------------------------------------
3849 ------------------------------------------------------------------------- */
3851 /* Callback for running pass_rtl_dse. */
3853 static unsigned int
3854 rest_of_handle_dse (void)
3856 bool did_global = false;
3858 df_set_flags (DF_DEFER_INSN_RESCAN);
3860 /* Need the notes since we must track live hardregs in the forwards
3861 direction. */
3862 df_note_add_problem ();
3863 df_analyze ();
3865 dse_step0 ();
3866 dse_step1 ();
3867 dse_step2_init ();
3868 if (dse_step2_nospill ())
3870 df_set_flags (DF_LR_RUN_DCE);
3871 df_analyze ();
3872 did_global = true;
3873 if (dump_file)
3874 fprintf (dump_file, "doing global processing\n");
3875 dse_step3 (false);
3876 dse_step4 ();
3877 dse_step5_nospill ();
3880 /* For the instance of dse that runs after reload, we make a special
3881 pass to process the spills. These are special in that they are
3882 totally transparent, i.e, there is no aliasing issues that need
3883 to be considered. This means that the wild reads that kill
3884 everything else do not apply here. */
3885 if (clear_alias_sets && dse_step2_spill ())
3887 if (!did_global)
3889 df_set_flags (DF_LR_RUN_DCE);
3890 df_analyze ();
3892 did_global = true;
3893 if (dump_file)
3894 fprintf (dump_file, "doing global spill processing\n");
3895 dse_step3 (true);
3896 dse_step4 ();
3897 dse_step5_spill ();
3900 dse_step6 ();
3901 dse_step7 (did_global);
3903 if (dump_file)
3904 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3905 locally_deleted, globally_deleted, spill_deleted);
3906 return 0;
3909 static bool
3910 gate_dse1 (void)
3912 return optimize > 0 && flag_dse
3913 && dbg_cnt (dse1);
3916 static bool
3917 gate_dse2 (void)
3919 return optimize > 0 && flag_dse
3920 && dbg_cnt (dse2);
3923 struct rtl_opt_pass pass_rtl_dse1 =
3926 RTL_PASS,
3927 "dse1", /* name */
3928 gate_dse1, /* gate */
3929 rest_of_handle_dse, /* execute */
3930 NULL, /* sub */
3931 NULL, /* next */
3932 0, /* static_pass_number */
3933 TV_DSE1, /* tv_id */
3934 0, /* properties_required */
3935 0, /* properties_provided */
3936 0, /* properties_destroyed */
3937 0, /* todo_flags_start */
3938 TODO_df_finish | TODO_verify_rtl_sharing |
3939 TODO_ggc_collect /* todo_flags_finish */
3943 struct rtl_opt_pass pass_rtl_dse2 =
3946 RTL_PASS,
3947 "dse2", /* name */
3948 gate_dse2, /* gate */
3949 rest_of_handle_dse, /* execute */
3950 NULL, /* sub */
3951 NULL, /* next */
3952 0, /* static_pass_number */
3953 TV_DSE2, /* tv_id */
3954 0, /* properties_required */
3955 0, /* properties_provided */
3956 0, /* properties_destroyed */
3957 0, /* todo_flags_start */
3958 TODO_df_finish | TODO_verify_rtl_sharing |
3959 TODO_ggc_collect /* todo_flags_finish */