[42/46] Add vec_info::replace_stmt
[official-gcc.git] / gcc / combine.c
blob3a5883a4c756d12939134e7f97684d5bad4dedaf
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
108 /* Number of attempts to combine instructions in this function. */
110 static int combine_attempts;
112 /* Number of attempts that got as far as substitution in this function. */
114 static int combine_merges;
116 /* Number of instructions combined with added SETs in this function. */
118 static int combine_extras;
120 /* Number of instructions combined in this function. */
122 static int combine_successes;
124 /* Totals over entire compilation. */
126 static int total_attempts, total_merges, total_extras, total_successes;
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
135 static rtx_insn *i2mod;
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139 static rtx i2mod_old_rhs;
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143 static rtx i2mod_new_rhs;
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
165 Therefore, we maintain the following fields:
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
181 (The next two parameters are out of date).
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
195 /* Record last value assigned to (hard or pseudo) register n. */
197 rtx last_set_value;
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
202 int last_set_table_tick;
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
207 int last_set_label;
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
222 char last_set_invalid;
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
234 If an entry is zero, it means that we don't know anything special. */
236 unsigned char sign_bit_copies;
238 unsigned HOST_WIDE_INT nonzero_bits;
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
244 int truncation_label;
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
255 static vec<reg_stat_type> reg_stat;
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
265 static unsigned int reg_n_sets_max;
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
270 static int mem_last_set;
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
275 static int last_call_luid;
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
283 static rtx_insn *subst_insn;
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
292 static int subst_low_luid;
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
297 static HARD_REG_SET newpat_used_regs;
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
303 static rtx_insn *added_links_insn;
305 /* And similarly, for notes. */
307 static rtx_insn *added_notes_insn;
309 /* Basic block in which we are performing combines. */
310 static basic_block this_basic_block;
311 static bool optimize_this_for_speed_p;
314 /* Length of the currently allocated uid_insn_cost array. */
316 static int max_uid_known;
318 /* The following array records the insn_cost for every insn
319 in the instruction stream. */
321 static int *uid_insn_cost;
323 /* The following array records the LOG_LINKS for every insn in the
324 instruction stream as struct insn_link pointers. */
326 struct insn_link {
327 rtx_insn *insn;
328 unsigned int regno;
329 struct insn_link *next;
332 static struct insn_link **uid_log_links;
334 static inline int
335 insn_uid_check (const_rtx insn)
337 int uid = INSN_UID (insn);
338 gcc_checking_assert (uid <= max_uid_known);
339 return uid;
342 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
343 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
345 #define FOR_EACH_LOG_LINK(L, INSN) \
346 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
348 /* Links for LOG_LINKS are allocated from this obstack. */
350 static struct obstack insn_link_obstack;
352 /* Allocate a link. */
354 static inline struct insn_link *
355 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
357 struct insn_link *l
358 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
359 sizeof (struct insn_link));
360 l->insn = insn;
361 l->regno = regno;
362 l->next = next;
363 return l;
366 /* Incremented for each basic block. */
368 static int label_tick;
370 /* Reset to label_tick for each extended basic block in scanning order. */
372 static int label_tick_ebb_start;
374 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
375 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
377 static scalar_int_mode nonzero_bits_mode;
379 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
380 be safely used. It is zero while computing them and after combine has
381 completed. This former test prevents propagating values based on
382 previously set values, which can be incorrect if a variable is modified
383 in a loop. */
385 static int nonzero_sign_valid;
388 /* Record one modification to rtl structure
389 to be undone by storing old_contents into *where. */
391 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
393 struct undo
395 struct undo *next;
396 enum undo_kind kind;
397 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
398 union { rtx *r; int *i; struct insn_link **l; } where;
401 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
402 num_undo says how many are currently recorded.
404 other_insn is nonzero if we have modified some other insn in the process
405 of working on subst_insn. It must be verified too. */
407 struct undobuf
409 struct undo *undos;
410 struct undo *frees;
411 rtx_insn *other_insn;
414 static struct undobuf undobuf;
416 /* Number of times the pseudo being substituted for
417 was found and replaced. */
419 static int n_occurrences;
421 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
422 scalar_int_mode,
423 unsigned HOST_WIDE_INT *);
424 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
425 scalar_int_mode,
426 unsigned int *);
427 static void do_SUBST (rtx *, rtx);
428 static void do_SUBST_INT (int *, int);
429 static void init_reg_last (void);
430 static void setup_incoming_promotions (rtx_insn *);
431 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
432 static int cant_combine_insn_p (rtx_insn *);
433 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
434 rtx_insn *, rtx_insn *, rtx *, rtx *);
435 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
436 static int contains_muldiv (rtx);
437 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
438 int *, rtx_insn *);
439 static void undo_all (void);
440 static void undo_commit (void);
441 static rtx *find_split_point (rtx *, rtx_insn *, bool);
442 static rtx subst (rtx, rtx, rtx, int, int, int);
443 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
444 static rtx simplify_if_then_else (rtx);
445 static rtx simplify_set (rtx);
446 static rtx simplify_logical (rtx);
447 static rtx expand_compound_operation (rtx);
448 static const_rtx expand_field_assignment (const_rtx);
449 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
450 rtx, unsigned HOST_WIDE_INT, int, int, int);
451 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
452 unsigned HOST_WIDE_INT *);
453 static rtx canon_reg_for_combine (rtx, rtx);
454 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
455 scalar_int_mode, unsigned HOST_WIDE_INT, int);
456 static rtx force_to_mode (rtx, machine_mode,
457 unsigned HOST_WIDE_INT, int);
458 static rtx if_then_else_cond (rtx, rtx *, rtx *);
459 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
460 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
461 static rtx make_field_assignment (rtx);
462 static rtx apply_distributive_law (rtx);
463 static rtx distribute_and_simplify_rtx (rtx, int);
464 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
465 unsigned HOST_WIDE_INT);
466 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
467 unsigned HOST_WIDE_INT);
468 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
469 HOST_WIDE_INT, machine_mode, int *);
470 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
471 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
472 int);
473 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
474 static rtx gen_lowpart_for_combine (machine_mode, rtx);
475 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
476 rtx, rtx *);
477 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
478 static void update_table_tick (rtx);
479 static void record_value_for_reg (rtx, rtx_insn *, rtx);
480 static void check_promoted_subreg (rtx_insn *, rtx);
481 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
482 static void record_dead_and_set_regs (rtx_insn *);
483 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
484 static rtx get_last_value (const_rtx);
485 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
486 static int reg_dead_at_p (rtx, rtx_insn *);
487 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
488 static int reg_bitfield_target_p (rtx, rtx);
489 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
490 static void distribute_links (struct insn_link *);
491 static void mark_used_regs_combine (rtx);
492 static void record_promoted_value (rtx_insn *, rtx);
493 static bool unmentioned_reg_p (rtx, rtx);
494 static void record_truncated_values (rtx *, void *);
495 static bool reg_truncated_to_mode (machine_mode, const_rtx);
496 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
499 /* It is not safe to use ordinary gen_lowpart in combine.
500 See comments in gen_lowpart_for_combine. */
501 #undef RTL_HOOKS_GEN_LOWPART
502 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
504 /* Our implementation of gen_lowpart never emits a new pseudo. */
505 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
506 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
508 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
509 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
511 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
512 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
514 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
515 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
517 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
520 /* Convenience wrapper for the canonicalize_comparison target hook.
521 Target hooks cannot use enum rtx_code. */
522 static inline void
523 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
524 bool op0_preserve_value)
526 int code_int = (int)*code;
527 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
528 *code = (enum rtx_code)code_int;
531 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
532 PATTERN can not be split. Otherwise, it returns an insn sequence.
533 This is a wrapper around split_insns which ensures that the
534 reg_stat vector is made larger if the splitter creates a new
535 register. */
537 static rtx_insn *
538 combine_split_insns (rtx pattern, rtx_insn *insn)
540 rtx_insn *ret;
541 unsigned int nregs;
543 ret = split_insns (pattern, insn);
544 nregs = max_reg_num ();
545 if (nregs > reg_stat.length ())
546 reg_stat.safe_grow_cleared (nregs);
547 return ret;
550 /* This is used by find_single_use to locate an rtx in LOC that
551 contains exactly one use of DEST, which is typically either a REG
552 or CC0. It returns a pointer to the innermost rtx expression
553 containing DEST. Appearances of DEST that are being used to
554 totally replace it are not counted. */
556 static rtx *
557 find_single_use_1 (rtx dest, rtx *loc)
559 rtx x = *loc;
560 enum rtx_code code = GET_CODE (x);
561 rtx *result = NULL;
562 rtx *this_result;
563 int i;
564 const char *fmt;
566 switch (code)
568 case CONST:
569 case LABEL_REF:
570 case SYMBOL_REF:
571 CASE_CONST_ANY:
572 case CLOBBER:
573 return 0;
575 case SET:
576 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
577 of a REG that occupies all of the REG, the insn uses DEST if
578 it is mentioned in the destination or the source. Otherwise, we
579 need just check the source. */
580 if (GET_CODE (SET_DEST (x)) != CC0
581 && GET_CODE (SET_DEST (x)) != PC
582 && !REG_P (SET_DEST (x))
583 && ! (GET_CODE (SET_DEST (x)) == SUBREG
584 && REG_P (SUBREG_REG (SET_DEST (x)))
585 && !read_modify_subreg_p (SET_DEST (x))))
586 break;
588 return find_single_use_1 (dest, &SET_SRC (x));
590 case MEM:
591 case SUBREG:
592 return find_single_use_1 (dest, &XEXP (x, 0));
594 default:
595 break;
598 /* If it wasn't one of the common cases above, check each expression and
599 vector of this code. Look for a unique usage of DEST. */
601 fmt = GET_RTX_FORMAT (code);
602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
604 if (fmt[i] == 'e')
606 if (dest == XEXP (x, i)
607 || (REG_P (dest) && REG_P (XEXP (x, i))
608 && REGNO (dest) == REGNO (XEXP (x, i))))
609 this_result = loc;
610 else
611 this_result = find_single_use_1 (dest, &XEXP (x, i));
613 if (result == NULL)
614 result = this_result;
615 else if (this_result)
616 /* Duplicate usage. */
617 return NULL;
619 else if (fmt[i] == 'E')
621 int j;
623 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
625 if (XVECEXP (x, i, j) == dest
626 || (REG_P (dest)
627 && REG_P (XVECEXP (x, i, j))
628 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 this_result = loc;
630 else
631 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
633 if (result == NULL)
634 result = this_result;
635 else if (this_result)
636 return NULL;
641 return result;
645 /* See if DEST, produced in INSN, is used only a single time in the
646 sequel. If so, return a pointer to the innermost rtx expression in which
647 it is used.
649 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
651 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
652 care about REG_DEAD notes or LOG_LINKS.
654 Otherwise, we find the single use by finding an insn that has a
655 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
656 only referenced once in that insn, we know that it must be the first
657 and last insn referencing DEST. */
659 static rtx *
660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
662 basic_block bb;
663 rtx_insn *next;
664 rtx *result;
665 struct insn_link *link;
667 if (dest == cc0_rtx)
669 next = NEXT_INSN (insn);
670 if (next == 0
671 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 return 0;
674 result = find_single_use_1 (dest, &PATTERN (next));
675 if (result && ploc)
676 *ploc = next;
677 return result;
680 if (!REG_P (dest))
681 return 0;
683 bb = BLOCK_FOR_INSN (insn);
684 for (next = NEXT_INSN (insn);
685 next && BLOCK_FOR_INSN (next) == bb;
686 next = NEXT_INSN (next))
687 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
689 FOR_EACH_LOG_LINK (link, next)
690 if (link->insn == insn && link->regno == REGNO (dest))
691 break;
693 if (link)
695 result = find_single_use_1 (dest, &PATTERN (next));
696 if (ploc)
697 *ploc = next;
698 return result;
702 return 0;
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706 insn. The substitution can be undone by undo_all. If INTO is already
707 set to NEWVAL, do not record this change. Because computing NEWVAL might
708 also call SUBST, we have to compute it before we put anything into
709 the undo table. */
711 static void
712 do_SUBST (rtx *into, rtx newval)
714 struct undo *buf;
715 rtx oldval = *into;
717 if (oldval == newval)
718 return;
720 /* We'd like to catch as many invalid transformations here as
721 possible. Unfortunately, there are way too many mode changes
722 that are perfectly valid, so we'd waste too much effort for
723 little gain doing the checks here. Focus on catching invalid
724 transformations involving integer constants. */
725 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726 && CONST_INT_P (newval))
728 /* Sanity check that we're replacing oldval with a CONST_INT
729 that is a valid sign-extension for the original mode. */
730 gcc_assert (INTVAL (newval)
731 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
733 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 CONST_INT is not valid, because after the replacement, the
735 original mode would be gone. Unfortunately, we can't tell
736 when do_SUBST is called to replace the operand thereof, so we
737 perform this test on oldval instead, checking whether an
738 invalid replacement took place before we got here. */
739 gcc_assert (!(GET_CODE (oldval) == SUBREG
740 && CONST_INT_P (SUBREG_REG (oldval))));
741 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 && CONST_INT_P (XEXP (oldval, 0))));
745 if (undobuf.frees)
746 buf = undobuf.frees, undobuf.frees = buf->next;
747 else
748 buf = XNEW (struct undo);
750 buf->kind = UNDO_RTX;
751 buf->where.r = into;
752 buf->old_contents.r = oldval;
753 *into = newval;
755 buf->next = undobuf.undos, undobuf.undos = buf;
758 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
760 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
761 for the value of a HOST_WIDE_INT value (including CONST_INT) is
762 not safe. */
764 static void
765 do_SUBST_INT (int *into, int newval)
767 struct undo *buf;
768 int oldval = *into;
770 if (oldval == newval)
771 return;
773 if (undobuf.frees)
774 buf = undobuf.frees, undobuf.frees = buf->next;
775 else
776 buf = XNEW (struct undo);
778 buf->kind = UNDO_INT;
779 buf->where.i = into;
780 buf->old_contents.i = oldval;
781 *into = newval;
783 buf->next = undobuf.undos, undobuf.undos = buf;
786 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
788 /* Similar to SUBST, but just substitute the mode. This is used when
789 changing the mode of a pseudo-register, so that any other
790 references to the entry in the regno_reg_rtx array will change as
791 well. */
793 static void
794 do_SUBST_MODE (rtx *into, machine_mode newval)
796 struct undo *buf;
797 machine_mode oldval = GET_MODE (*into);
799 if (oldval == newval)
800 return;
802 if (undobuf.frees)
803 buf = undobuf.frees, undobuf.frees = buf->next;
804 else
805 buf = XNEW (struct undo);
807 buf->kind = UNDO_MODE;
808 buf->where.r = into;
809 buf->old_contents.m = oldval;
810 adjust_reg_mode (*into, newval);
812 buf->next = undobuf.undos, undobuf.undos = buf;
815 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
819 static void
820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
822 struct undo *buf;
823 struct insn_link * oldval = *into;
825 if (oldval == newval)
826 return;
828 if (undobuf.frees)
829 buf = undobuf.frees, undobuf.frees = buf->next;
830 else
831 buf = XNEW (struct undo);
833 buf->kind = UNDO_LINKS;
834 buf->where.l = into;
835 buf->old_contents.l = oldval;
836 *into = newval;
838 buf->next = undobuf.undos, undobuf.undos = buf;
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
843 /* Subroutine of try_combine. Determine whether the replacement patterns
844 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
845 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
846 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
847 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
848 of all the instructions can be estimated and the replacements are more
849 expensive than the original sequence. */
851 static bool
852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 rtx newpat, rtx newi2pat, rtx newotherpat)
855 int i0_cost, i1_cost, i2_cost, i3_cost;
856 int new_i2_cost, new_i3_cost;
857 int old_cost, new_cost;
859 /* Lookup the original insn_costs. */
860 i2_cost = INSN_COST (i2);
861 i3_cost = INSN_COST (i3);
863 if (i1)
865 i1_cost = INSN_COST (i1);
866 if (i0)
868 i0_cost = INSN_COST (i0);
869 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
872 else
874 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 ? i1_cost + i2_cost + i3_cost : 0);
876 i0_cost = 0;
879 else
881 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882 i1_cost = i0_cost = 0;
885 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886 correct that. */
887 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888 old_cost -= i1_cost;
891 /* Calculate the replacement insn_costs. */
892 rtx tmp = PATTERN (i3);
893 PATTERN (i3) = newpat;
894 int tmpi = INSN_CODE (i3);
895 INSN_CODE (i3) = -1;
896 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
897 PATTERN (i3) = tmp;
898 INSN_CODE (i3) = tmpi;
899 if (newi2pat)
901 tmp = PATTERN (i2);
902 PATTERN (i2) = newi2pat;
903 tmpi = INSN_CODE (i2);
904 INSN_CODE (i2) = -1;
905 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
906 PATTERN (i2) = tmp;
907 INSN_CODE (i2) = tmpi;
908 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
909 ? new_i2_cost + new_i3_cost : 0;
911 else
913 new_cost = new_i3_cost;
914 new_i2_cost = 0;
917 if (undobuf.other_insn)
919 int old_other_cost, new_other_cost;
921 old_other_cost = INSN_COST (undobuf.other_insn);
922 tmp = PATTERN (undobuf.other_insn);
923 PATTERN (undobuf.other_insn) = newotherpat;
924 tmpi = INSN_CODE (undobuf.other_insn);
925 INSN_CODE (undobuf.other_insn) = -1;
926 new_other_cost = insn_cost (undobuf.other_insn,
927 optimize_this_for_speed_p);
928 PATTERN (undobuf.other_insn) = tmp;
929 INSN_CODE (undobuf.other_insn) = tmpi;
930 if (old_other_cost > 0 && new_other_cost > 0)
932 old_cost += old_other_cost;
933 new_cost += new_other_cost;
935 else
936 old_cost = 0;
939 /* Disallow this combination if both new_cost and old_cost are greater than
940 zero, and new_cost is greater than old cost. */
941 int reject = old_cost > 0 && new_cost > old_cost;
943 if (dump_file)
945 fprintf (dump_file, "%s combination of insns ",
946 reject ? "rejecting" : "allowing");
947 if (i0)
948 fprintf (dump_file, "%d, ", INSN_UID (i0));
949 if (i1 && INSN_UID (i1) != INSN_UID (i2))
950 fprintf (dump_file, "%d, ", INSN_UID (i1));
951 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
953 fprintf (dump_file, "original costs ");
954 if (i0)
955 fprintf (dump_file, "%d + ", i0_cost);
956 if (i1 && INSN_UID (i1) != INSN_UID (i2))
957 fprintf (dump_file, "%d + ", i1_cost);
958 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
960 if (newi2pat)
961 fprintf (dump_file, "replacement costs %d + %d = %d\n",
962 new_i2_cost, new_i3_cost, new_cost);
963 else
964 fprintf (dump_file, "replacement cost %d\n", new_cost);
967 if (reject)
968 return false;
970 /* Update the uid_insn_cost array with the replacement costs. */
971 INSN_COST (i2) = new_i2_cost;
972 INSN_COST (i3) = new_i3_cost;
973 if (i1)
975 INSN_COST (i1) = 0;
976 if (i0)
977 INSN_COST (i0) = 0;
980 return true;
984 /* Delete any insns that copy a register to itself. */
986 static void
987 delete_noop_moves (void)
989 rtx_insn *insn, *next;
990 basic_block bb;
992 FOR_EACH_BB_FN (bb, cfun)
994 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
996 next = NEXT_INSN (insn);
997 if (INSN_P (insn) && noop_move_p (insn))
999 if (dump_file)
1000 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1002 delete_insn_and_edges (insn);
1009 /* Return false if we do not want to (or cannot) combine DEF. */
1010 static bool
1011 can_combine_def_p (df_ref def)
1013 /* Do not consider if it is pre/post modification in MEM. */
1014 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1015 return false;
1017 unsigned int regno = DF_REF_REGNO (def);
1019 /* Do not combine frame pointer adjustments. */
1020 if ((regno == FRAME_POINTER_REGNUM
1021 && (!reload_completed || frame_pointer_needed))
1022 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1023 && regno == HARD_FRAME_POINTER_REGNUM
1024 && (!reload_completed || frame_pointer_needed))
1025 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1026 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1027 return false;
1029 return true;
1032 /* Return false if we do not want to (or cannot) combine USE. */
1033 static bool
1034 can_combine_use_p (df_ref use)
1036 /* Do not consider the usage of the stack pointer by function call. */
1037 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1038 return false;
1040 return true;
1043 /* Fill in log links field for all insns. */
1045 static void
1046 create_log_links (void)
1048 basic_block bb;
1049 rtx_insn **next_use;
1050 rtx_insn *insn;
1051 df_ref def, use;
1053 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1055 /* Pass through each block from the end, recording the uses of each
1056 register and establishing log links when def is encountered.
1057 Note that we do not clear next_use array in order to save time,
1058 so we have to test whether the use is in the same basic block as def.
1060 There are a few cases below when we do not consider the definition or
1061 usage -- these are taken from original flow.c did. Don't ask me why it is
1062 done this way; I don't know and if it works, I don't want to know. */
1064 FOR_EACH_BB_FN (bb, cfun)
1066 FOR_BB_INSNS_REVERSE (bb, insn)
1068 if (!NONDEBUG_INSN_P (insn))
1069 continue;
1071 /* Log links are created only once. */
1072 gcc_assert (!LOG_LINKS (insn));
1074 FOR_EACH_INSN_DEF (def, insn)
1076 unsigned int regno = DF_REF_REGNO (def);
1077 rtx_insn *use_insn;
1079 if (!next_use[regno])
1080 continue;
1082 if (!can_combine_def_p (def))
1083 continue;
1085 use_insn = next_use[regno];
1086 next_use[regno] = NULL;
1088 if (BLOCK_FOR_INSN (use_insn) != bb)
1089 continue;
1091 /* flow.c claimed:
1093 We don't build a LOG_LINK for hard registers contained
1094 in ASM_OPERANDs. If these registers get replaced,
1095 we might wind up changing the semantics of the insn,
1096 even if reload can make what appear to be valid
1097 assignments later. */
1098 if (regno < FIRST_PSEUDO_REGISTER
1099 && asm_noperands (PATTERN (use_insn)) >= 0)
1100 continue;
1102 /* Don't add duplicate links between instructions. */
1103 struct insn_link *links;
1104 FOR_EACH_LOG_LINK (links, use_insn)
1105 if (insn == links->insn && regno == links->regno)
1106 break;
1108 if (!links)
1109 LOG_LINKS (use_insn)
1110 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1113 FOR_EACH_INSN_USE (use, insn)
1114 if (can_combine_use_p (use))
1115 next_use[DF_REF_REGNO (use)] = insn;
1119 free (next_use);
1122 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1123 true if we found a LOG_LINK that proves that A feeds B. This only works
1124 if there are no instructions between A and B which could have a link
1125 depending on A, since in that case we would not record a link for B.
1126 We also check the implicit dependency created by a cc0 setter/user
1127 pair. */
1129 static bool
1130 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1132 struct insn_link *links;
1133 FOR_EACH_LOG_LINK (links, b)
1134 if (links->insn == a)
1135 return true;
1136 if (HAVE_cc0 && sets_cc0_p (a))
1137 return true;
1138 return false;
1141 /* Main entry point for combiner. F is the first insn of the function.
1142 NREGS is the first unused pseudo-reg number.
1144 Return nonzero if the combiner has turned an indirect jump
1145 instruction into a direct jump. */
1146 static int
1147 combine_instructions (rtx_insn *f, unsigned int nregs)
1149 rtx_insn *insn, *next;
1150 rtx_insn *prev;
1151 struct insn_link *links, *nextlinks;
1152 rtx_insn *first;
1153 basic_block last_bb;
1155 int new_direct_jump_p = 0;
1157 for (first = f; first && !NONDEBUG_INSN_P (first); )
1158 first = NEXT_INSN (first);
1159 if (!first)
1160 return 0;
1162 combine_attempts = 0;
1163 combine_merges = 0;
1164 combine_extras = 0;
1165 combine_successes = 0;
1167 rtl_hooks = combine_rtl_hooks;
1169 reg_stat.safe_grow_cleared (nregs);
1171 init_recog_no_volatile ();
1173 /* Allocate array for insn info. */
1174 max_uid_known = get_max_uid ();
1175 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1176 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1177 gcc_obstack_init (&insn_link_obstack);
1179 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1181 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1182 problems when, for example, we have j <<= 1 in a loop. */
1184 nonzero_sign_valid = 0;
1185 label_tick = label_tick_ebb_start = 1;
1187 /* Scan all SETs and see if we can deduce anything about what
1188 bits are known to be zero for some registers and how many copies
1189 of the sign bit are known to exist for those registers.
1191 Also set any known values so that we can use it while searching
1192 for what bits are known to be set. */
1194 setup_incoming_promotions (first);
1195 /* Allow the entry block and the first block to fall into the same EBB.
1196 Conceptually the incoming promotions are assigned to the entry block. */
1197 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1199 create_log_links ();
1200 FOR_EACH_BB_FN (this_basic_block, cfun)
1202 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1203 last_call_luid = 0;
1204 mem_last_set = -1;
1206 label_tick++;
1207 if (!single_pred_p (this_basic_block)
1208 || single_pred (this_basic_block) != last_bb)
1209 label_tick_ebb_start = label_tick;
1210 last_bb = this_basic_block;
1212 FOR_BB_INSNS (this_basic_block, insn)
1213 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1215 rtx links;
1217 subst_low_luid = DF_INSN_LUID (insn);
1218 subst_insn = insn;
1220 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1221 insn);
1222 record_dead_and_set_regs (insn);
1224 if (AUTO_INC_DEC)
1225 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1226 if (REG_NOTE_KIND (links) == REG_INC)
1227 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1228 insn);
1230 /* Record the current insn_cost of this instruction. */
1231 if (NONJUMP_INSN_P (insn))
1232 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1233 if (dump_file)
1235 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1236 dump_insn_slim (dump_file, insn);
1241 nonzero_sign_valid = 1;
1243 /* Now scan all the insns in forward order. */
1244 label_tick = label_tick_ebb_start = 1;
1245 init_reg_last ();
1246 setup_incoming_promotions (first);
1247 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1248 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1250 FOR_EACH_BB_FN (this_basic_block, cfun)
1252 rtx_insn *last_combined_insn = NULL;
1254 /* Ignore instruction combination in basic blocks that are going to
1255 be removed as unreachable anyway. See PR82386. */
1256 if (EDGE_COUNT (this_basic_block->preds) == 0)
1257 continue;
1259 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1260 last_call_luid = 0;
1261 mem_last_set = -1;
1263 label_tick++;
1264 if (!single_pred_p (this_basic_block)
1265 || single_pred (this_basic_block) != last_bb)
1266 label_tick_ebb_start = label_tick;
1267 last_bb = this_basic_block;
1269 rtl_profile_for_bb (this_basic_block);
1270 for (insn = BB_HEAD (this_basic_block);
1271 insn != NEXT_INSN (BB_END (this_basic_block));
1272 insn = next ? next : NEXT_INSN (insn))
1274 next = 0;
1275 if (!NONDEBUG_INSN_P (insn))
1276 continue;
1278 while (last_combined_insn
1279 && (!NONDEBUG_INSN_P (last_combined_insn)
1280 || last_combined_insn->deleted ()))
1281 last_combined_insn = PREV_INSN (last_combined_insn);
1282 if (last_combined_insn == NULL_RTX
1283 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1284 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1285 last_combined_insn = insn;
1287 /* See if we know about function return values before this
1288 insn based upon SUBREG flags. */
1289 check_promoted_subreg (insn, PATTERN (insn));
1291 /* See if we can find hardregs and subreg of pseudos in
1292 narrower modes. This could help turning TRUNCATEs
1293 into SUBREGs. */
1294 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1296 /* Try this insn with each insn it links back to. */
1298 FOR_EACH_LOG_LINK (links, insn)
1299 if ((next = try_combine (insn, links->insn, NULL,
1300 NULL, &new_direct_jump_p,
1301 last_combined_insn)) != 0)
1303 statistics_counter_event (cfun, "two-insn combine", 1);
1304 goto retry;
1307 /* Try each sequence of three linked insns ending with this one. */
1309 if (max_combine >= 3)
1310 FOR_EACH_LOG_LINK (links, insn)
1312 rtx_insn *link = links->insn;
1314 /* If the linked insn has been replaced by a note, then there
1315 is no point in pursuing this chain any further. */
1316 if (NOTE_P (link))
1317 continue;
1319 FOR_EACH_LOG_LINK (nextlinks, link)
1320 if ((next = try_combine (insn, link, nextlinks->insn,
1321 NULL, &new_direct_jump_p,
1322 last_combined_insn)) != 0)
1324 statistics_counter_event (cfun, "three-insn combine", 1);
1325 goto retry;
1329 /* Try to combine a jump insn that uses CC0
1330 with a preceding insn that sets CC0, and maybe with its
1331 logical predecessor as well.
1332 This is how we make decrement-and-branch insns.
1333 We need this special code because data flow connections
1334 via CC0 do not get entered in LOG_LINKS. */
1336 if (HAVE_cc0
1337 && JUMP_P (insn)
1338 && (prev = prev_nonnote_insn (insn)) != 0
1339 && NONJUMP_INSN_P (prev)
1340 && sets_cc0_p (PATTERN (prev)))
1342 if ((next = try_combine (insn, prev, NULL, NULL,
1343 &new_direct_jump_p,
1344 last_combined_insn)) != 0)
1345 goto retry;
1347 FOR_EACH_LOG_LINK (nextlinks, prev)
1348 if ((next = try_combine (insn, prev, nextlinks->insn,
1349 NULL, &new_direct_jump_p,
1350 last_combined_insn)) != 0)
1351 goto retry;
1354 /* Do the same for an insn that explicitly references CC0. */
1355 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1356 && (prev = prev_nonnote_insn (insn)) != 0
1357 && NONJUMP_INSN_P (prev)
1358 && sets_cc0_p (PATTERN (prev))
1359 && GET_CODE (PATTERN (insn)) == SET
1360 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1362 if ((next = try_combine (insn, prev, NULL, NULL,
1363 &new_direct_jump_p,
1364 last_combined_insn)) != 0)
1365 goto retry;
1367 FOR_EACH_LOG_LINK (nextlinks, prev)
1368 if ((next = try_combine (insn, prev, nextlinks->insn,
1369 NULL, &new_direct_jump_p,
1370 last_combined_insn)) != 0)
1371 goto retry;
1374 /* Finally, see if any of the insns that this insn links to
1375 explicitly references CC0. If so, try this insn, that insn,
1376 and its predecessor if it sets CC0. */
1377 if (HAVE_cc0)
1379 FOR_EACH_LOG_LINK (links, insn)
1380 if (NONJUMP_INSN_P (links->insn)
1381 && GET_CODE (PATTERN (links->insn)) == SET
1382 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1383 && (prev = prev_nonnote_insn (links->insn)) != 0
1384 && NONJUMP_INSN_P (prev)
1385 && sets_cc0_p (PATTERN (prev))
1386 && (next = try_combine (insn, links->insn,
1387 prev, NULL, &new_direct_jump_p,
1388 last_combined_insn)) != 0)
1389 goto retry;
1392 /* Try combining an insn with two different insns whose results it
1393 uses. */
1394 if (max_combine >= 3)
1395 FOR_EACH_LOG_LINK (links, insn)
1396 for (nextlinks = links->next; nextlinks;
1397 nextlinks = nextlinks->next)
1398 if ((next = try_combine (insn, links->insn,
1399 nextlinks->insn, NULL,
1400 &new_direct_jump_p,
1401 last_combined_insn)) != 0)
1404 statistics_counter_event (cfun, "three-insn combine", 1);
1405 goto retry;
1408 /* Try four-instruction combinations. */
1409 if (max_combine >= 4)
1410 FOR_EACH_LOG_LINK (links, insn)
1412 struct insn_link *next1;
1413 rtx_insn *link = links->insn;
1415 /* If the linked insn has been replaced by a note, then there
1416 is no point in pursuing this chain any further. */
1417 if (NOTE_P (link))
1418 continue;
1420 FOR_EACH_LOG_LINK (next1, link)
1422 rtx_insn *link1 = next1->insn;
1423 if (NOTE_P (link1))
1424 continue;
1425 /* I0 -> I1 -> I2 -> I3. */
1426 FOR_EACH_LOG_LINK (nextlinks, link1)
1427 if ((next = try_combine (insn, link, link1,
1428 nextlinks->insn,
1429 &new_direct_jump_p,
1430 last_combined_insn)) != 0)
1432 statistics_counter_event (cfun, "four-insn combine", 1);
1433 goto retry;
1435 /* I0, I1 -> I2, I2 -> I3. */
1436 for (nextlinks = next1->next; nextlinks;
1437 nextlinks = nextlinks->next)
1438 if ((next = try_combine (insn, link, link1,
1439 nextlinks->insn,
1440 &new_direct_jump_p,
1441 last_combined_insn)) != 0)
1443 statistics_counter_event (cfun, "four-insn combine", 1);
1444 goto retry;
1448 for (next1 = links->next; next1; next1 = next1->next)
1450 rtx_insn *link1 = next1->insn;
1451 if (NOTE_P (link1))
1452 continue;
1453 /* I0 -> I2; I1, I2 -> I3. */
1454 FOR_EACH_LOG_LINK (nextlinks, link)
1455 if ((next = try_combine (insn, link, link1,
1456 nextlinks->insn,
1457 &new_direct_jump_p,
1458 last_combined_insn)) != 0)
1460 statistics_counter_event (cfun, "four-insn combine", 1);
1461 goto retry;
1463 /* I0 -> I1; I1, I2 -> I3. */
1464 FOR_EACH_LOG_LINK (nextlinks, link1)
1465 if ((next = try_combine (insn, link, link1,
1466 nextlinks->insn,
1467 &new_direct_jump_p,
1468 last_combined_insn)) != 0)
1470 statistics_counter_event (cfun, "four-insn combine", 1);
1471 goto retry;
1476 /* Try this insn with each REG_EQUAL note it links back to. */
1477 FOR_EACH_LOG_LINK (links, insn)
1479 rtx set, note;
1480 rtx_insn *temp = links->insn;
1481 if ((set = single_set (temp)) != 0
1482 && (note = find_reg_equal_equiv_note (temp)) != 0
1483 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1484 /* Avoid using a register that may already been marked
1485 dead by an earlier instruction. */
1486 && ! unmentioned_reg_p (note, SET_SRC (set))
1487 && (GET_MODE (note) == VOIDmode
1488 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1489 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1490 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1491 || (GET_MODE (XEXP (SET_DEST (set), 0))
1492 == GET_MODE (note))))))
1494 /* Temporarily replace the set's source with the
1495 contents of the REG_EQUAL note. The insn will
1496 be deleted or recognized by try_combine. */
1497 rtx orig_src = SET_SRC (set);
1498 rtx orig_dest = SET_DEST (set);
1499 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1500 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1501 SET_SRC (set) = note;
1502 i2mod = temp;
1503 i2mod_old_rhs = copy_rtx (orig_src);
1504 i2mod_new_rhs = copy_rtx (note);
1505 next = try_combine (insn, i2mod, NULL, NULL,
1506 &new_direct_jump_p,
1507 last_combined_insn);
1508 i2mod = NULL;
1509 if (next)
1511 statistics_counter_event (cfun, "insn-with-note combine", 1);
1512 goto retry;
1514 SET_SRC (set) = orig_src;
1515 SET_DEST (set) = orig_dest;
1519 if (!NOTE_P (insn))
1520 record_dead_and_set_regs (insn);
1522 retry:
1527 default_rtl_profile ();
1528 clear_bb_flags ();
1529 new_direct_jump_p |= purge_all_dead_edges ();
1530 delete_noop_moves ();
1532 /* Clean up. */
1533 obstack_free (&insn_link_obstack, NULL);
1534 free (uid_log_links);
1535 free (uid_insn_cost);
1536 reg_stat.release ();
1539 struct undo *undo, *next;
1540 for (undo = undobuf.frees; undo; undo = next)
1542 next = undo->next;
1543 free (undo);
1545 undobuf.frees = 0;
1548 total_attempts += combine_attempts;
1549 total_merges += combine_merges;
1550 total_extras += combine_extras;
1551 total_successes += combine_successes;
1553 nonzero_sign_valid = 0;
1554 rtl_hooks = general_rtl_hooks;
1556 /* Make recognizer allow volatile MEMs again. */
1557 init_recog ();
1559 return new_direct_jump_p;
1562 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1564 static void
1565 init_reg_last (void)
1567 unsigned int i;
1568 reg_stat_type *p;
1570 FOR_EACH_VEC_ELT (reg_stat, i, p)
1571 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1574 /* Set up any promoted values for incoming argument registers. */
1576 static void
1577 setup_incoming_promotions (rtx_insn *first)
1579 tree arg;
1580 bool strictly_local = false;
1582 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1583 arg = DECL_CHAIN (arg))
1585 rtx x, reg = DECL_INCOMING_RTL (arg);
1586 int uns1, uns3;
1587 machine_mode mode1, mode2, mode3, mode4;
1589 /* Only continue if the incoming argument is in a register. */
1590 if (!REG_P (reg))
1591 continue;
1593 /* Determine, if possible, whether all call sites of the current
1594 function lie within the current compilation unit. (This does
1595 take into account the exporting of a function via taking its
1596 address, and so forth.) */
1597 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1599 /* The mode and signedness of the argument before any promotions happen
1600 (equal to the mode of the pseudo holding it at that stage). */
1601 mode1 = TYPE_MODE (TREE_TYPE (arg));
1602 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1604 /* The mode and signedness of the argument after any source language and
1605 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1606 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1607 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1609 /* The mode and signedness of the argument as it is actually passed,
1610 see assign_parm_setup_reg in function.c. */
1611 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1612 TREE_TYPE (cfun->decl), 0);
1614 /* The mode of the register in which the argument is being passed. */
1615 mode4 = GET_MODE (reg);
1617 /* Eliminate sign extensions in the callee when:
1618 (a) A mode promotion has occurred; */
1619 if (mode1 == mode3)
1620 continue;
1621 /* (b) The mode of the register is the same as the mode of
1622 the argument as it is passed; */
1623 if (mode3 != mode4)
1624 continue;
1625 /* (c) There's no language level extension; */
1626 if (mode1 == mode2)
1628 /* (c.1) All callers are from the current compilation unit. If that's
1629 the case we don't have to rely on an ABI, we only have to know
1630 what we're generating right now, and we know that we will do the
1631 mode1 to mode2 promotion with the given sign. */
1632 else if (!strictly_local)
1633 continue;
1634 /* (c.2) The combination of the two promotions is useful. This is
1635 true when the signs match, or if the first promotion is unsigned.
1636 In the later case, (sign_extend (zero_extend x)) is the same as
1637 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1638 else if (uns1)
1639 uns3 = true;
1640 else if (uns3)
1641 continue;
1643 /* Record that the value was promoted from mode1 to mode3,
1644 so that any sign extension at the head of the current
1645 function may be eliminated. */
1646 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1647 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1648 record_value_for_reg (reg, first, x);
1652 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1653 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1654 because some machines (maybe most) will actually do the sign-extension and
1655 this is the conservative approach.
1657 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1658 kludge. */
1660 static rtx
1661 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1663 scalar_int_mode int_mode;
1664 if (CONST_INT_P (src)
1665 && is_a <scalar_int_mode> (mode, &int_mode)
1666 && GET_MODE_PRECISION (int_mode) < prec
1667 && INTVAL (src) > 0
1668 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1669 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1671 return src;
1674 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1675 and SET. */
1677 static void
1678 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1679 rtx x)
1681 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1682 unsigned HOST_WIDE_INT bits = 0;
1683 rtx reg_equal = NULL, src = SET_SRC (set);
1684 unsigned int num = 0;
1686 if (reg_equal_note)
1687 reg_equal = XEXP (reg_equal_note, 0);
1689 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1691 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1692 if (reg_equal)
1693 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1696 /* Don't call nonzero_bits if it cannot change anything. */
1697 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1699 bits = nonzero_bits (src, nonzero_bits_mode);
1700 if (reg_equal && bits)
1701 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1702 rsp->nonzero_bits |= bits;
1705 /* Don't call num_sign_bit_copies if it cannot change anything. */
1706 if (rsp->sign_bit_copies != 1)
1708 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1709 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1711 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1712 if (num == 0 || numeq > num)
1713 num = numeq;
1715 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1716 rsp->sign_bit_copies = num;
1720 /* Called via note_stores. If X is a pseudo that is narrower than
1721 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1723 If we are setting only a portion of X and we can't figure out what
1724 portion, assume all bits will be used since we don't know what will
1725 be happening.
1727 Similarly, set how many bits of X are known to be copies of the sign bit
1728 at all locations in the function. This is the smallest number implied
1729 by any set of X. */
1731 static void
1732 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1734 rtx_insn *insn = (rtx_insn *) data;
1735 scalar_int_mode mode;
1737 if (REG_P (x)
1738 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1739 /* If this register is undefined at the start of the file, we can't
1740 say what its contents were. */
1741 && ! REGNO_REG_SET_P
1742 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1743 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1744 && HWI_COMPUTABLE_MODE_P (mode))
1746 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1748 if (set == 0 || GET_CODE (set) == CLOBBER)
1750 rsp->nonzero_bits = GET_MODE_MASK (mode);
1751 rsp->sign_bit_copies = 1;
1752 return;
1755 /* If this register is being initialized using itself, and the
1756 register is uninitialized in this basic block, and there are
1757 no LOG_LINKS which set the register, then part of the
1758 register is uninitialized. In that case we can't assume
1759 anything about the number of nonzero bits.
1761 ??? We could do better if we checked this in
1762 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1763 could avoid making assumptions about the insn which initially
1764 sets the register, while still using the information in other
1765 insns. We would have to be careful to check every insn
1766 involved in the combination. */
1768 if (insn
1769 && reg_referenced_p (x, PATTERN (insn))
1770 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1771 REGNO (x)))
1773 struct insn_link *link;
1775 FOR_EACH_LOG_LINK (link, insn)
1776 if (dead_or_set_p (link->insn, x))
1777 break;
1778 if (!link)
1780 rsp->nonzero_bits = GET_MODE_MASK (mode);
1781 rsp->sign_bit_copies = 1;
1782 return;
1786 /* If this is a complex assignment, see if we can convert it into a
1787 simple assignment. */
1788 set = expand_field_assignment (set);
1790 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1791 set what we know about X. */
1793 if (SET_DEST (set) == x
1794 || (paradoxical_subreg_p (SET_DEST (set))
1795 && SUBREG_REG (SET_DEST (set)) == x))
1796 update_rsp_from_reg_equal (rsp, insn, set, x);
1797 else
1799 rsp->nonzero_bits = GET_MODE_MASK (mode);
1800 rsp->sign_bit_copies = 1;
1805 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1806 optionally insns that were previously combined into I3 or that will be
1807 combined into the merger of INSN and I3. The order is PRED, PRED2,
1808 INSN, SUCC, SUCC2, I3.
1810 Return 0 if the combination is not allowed for any reason.
1812 If the combination is allowed, *PDEST will be set to the single
1813 destination of INSN and *PSRC to the single source, and this function
1814 will return 1. */
1816 static int
1817 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1818 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1819 rtx *pdest, rtx *psrc)
1821 int i;
1822 const_rtx set = 0;
1823 rtx src, dest;
1824 rtx_insn *p;
1825 rtx link;
1826 bool all_adjacent = true;
1827 int (*is_volatile_p) (const_rtx);
1829 if (succ)
1831 if (succ2)
1833 if (next_active_insn (succ2) != i3)
1834 all_adjacent = false;
1835 if (next_active_insn (succ) != succ2)
1836 all_adjacent = false;
1838 else if (next_active_insn (succ) != i3)
1839 all_adjacent = false;
1840 if (next_active_insn (insn) != succ)
1841 all_adjacent = false;
1843 else if (next_active_insn (insn) != i3)
1844 all_adjacent = false;
1846 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1847 or a PARALLEL consisting of such a SET and CLOBBERs.
1849 If INSN has CLOBBER parallel parts, ignore them for our processing.
1850 By definition, these happen during the execution of the insn. When it
1851 is merged with another insn, all bets are off. If they are, in fact,
1852 needed and aren't also supplied in I3, they may be added by
1853 recog_for_combine. Otherwise, it won't match.
1855 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1856 note.
1858 Get the source and destination of INSN. If more than one, can't
1859 combine. */
1861 if (GET_CODE (PATTERN (insn)) == SET)
1862 set = PATTERN (insn);
1863 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1864 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1866 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1868 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1870 switch (GET_CODE (elt))
1872 /* This is important to combine floating point insns
1873 for the SH4 port. */
1874 case USE:
1875 /* Combining an isolated USE doesn't make sense.
1876 We depend here on combinable_i3pat to reject them. */
1877 /* The code below this loop only verifies that the inputs of
1878 the SET in INSN do not change. We call reg_set_between_p
1879 to verify that the REG in the USE does not change between
1880 I3 and INSN.
1881 If the USE in INSN was for a pseudo register, the matching
1882 insn pattern will likely match any register; combining this
1883 with any other USE would only be safe if we knew that the
1884 used registers have identical values, or if there was
1885 something to tell them apart, e.g. different modes. For
1886 now, we forgo such complicated tests and simply disallow
1887 combining of USES of pseudo registers with any other USE. */
1888 if (REG_P (XEXP (elt, 0))
1889 && GET_CODE (PATTERN (i3)) == PARALLEL)
1891 rtx i3pat = PATTERN (i3);
1892 int i = XVECLEN (i3pat, 0) - 1;
1893 unsigned int regno = REGNO (XEXP (elt, 0));
1897 rtx i3elt = XVECEXP (i3pat, 0, i);
1899 if (GET_CODE (i3elt) == USE
1900 && REG_P (XEXP (i3elt, 0))
1901 && (REGNO (XEXP (i3elt, 0)) == regno
1902 ? reg_set_between_p (XEXP (elt, 0),
1903 PREV_INSN (insn), i3)
1904 : regno >= FIRST_PSEUDO_REGISTER))
1905 return 0;
1907 while (--i >= 0);
1909 break;
1911 /* We can ignore CLOBBERs. */
1912 case CLOBBER:
1913 break;
1915 case SET:
1916 /* Ignore SETs whose result isn't used but not those that
1917 have side-effects. */
1918 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1919 && insn_nothrow_p (insn)
1920 && !side_effects_p (elt))
1921 break;
1923 /* If we have already found a SET, this is a second one and
1924 so we cannot combine with this insn. */
1925 if (set)
1926 return 0;
1928 set = elt;
1929 break;
1931 default:
1932 /* Anything else means we can't combine. */
1933 return 0;
1937 if (set == 0
1938 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1939 so don't do anything with it. */
1940 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1941 return 0;
1943 else
1944 return 0;
1946 if (set == 0)
1947 return 0;
1949 /* The simplification in expand_field_assignment may call back to
1950 get_last_value, so set safe guard here. */
1951 subst_low_luid = DF_INSN_LUID (insn);
1953 set = expand_field_assignment (set);
1954 src = SET_SRC (set), dest = SET_DEST (set);
1956 /* Do not eliminate user-specified register if it is in an
1957 asm input because we may break the register asm usage defined
1958 in GCC manual if allow to do so.
1959 Be aware that this may cover more cases than we expect but this
1960 should be harmless. */
1961 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1962 && extract_asm_operands (PATTERN (i3)))
1963 return 0;
1965 /* Don't eliminate a store in the stack pointer. */
1966 if (dest == stack_pointer_rtx
1967 /* Don't combine with an insn that sets a register to itself if it has
1968 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1969 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1970 /* Can't merge an ASM_OPERANDS. */
1971 || GET_CODE (src) == ASM_OPERANDS
1972 /* Can't merge a function call. */
1973 || GET_CODE (src) == CALL
1974 /* Don't eliminate a function call argument. */
1975 || (CALL_P (i3)
1976 && (find_reg_fusage (i3, USE, dest)
1977 || (REG_P (dest)
1978 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1979 && global_regs[REGNO (dest)])))
1980 /* Don't substitute into an incremented register. */
1981 || FIND_REG_INC_NOTE (i3, dest)
1982 || (succ && FIND_REG_INC_NOTE (succ, dest))
1983 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1984 /* Don't substitute into a non-local goto, this confuses CFG. */
1985 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1986 /* Make sure that DEST is not used after INSN but before SUCC, or
1987 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1988 || (!all_adjacent
1989 && ((succ2
1990 && (reg_used_between_p (dest, succ2, i3)
1991 || reg_used_between_p (dest, succ, succ2)))
1992 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1993 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
1994 || (succ
1995 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1996 that case SUCC is not in the insn stream, so use SUCC2
1997 instead for this test. */
1998 && reg_used_between_p (dest, insn,
1999 succ2
2000 && INSN_UID (succ) == INSN_UID (succ2)
2001 ? succ2 : succ))))
2002 /* Make sure that the value that is to be substituted for the register
2003 does not use any registers whose values alter in between. However,
2004 If the insns are adjacent, a use can't cross a set even though we
2005 think it might (this can happen for a sequence of insns each setting
2006 the same destination; last_set of that register might point to
2007 a NOTE). If INSN has a REG_EQUIV note, the register is always
2008 equivalent to the memory so the substitution is valid even if there
2009 are intervening stores. Also, don't move a volatile asm or
2010 UNSPEC_VOLATILE across any other insns. */
2011 || (! all_adjacent
2012 && (((!MEM_P (src)
2013 || ! find_reg_note (insn, REG_EQUIV, src))
2014 && modified_between_p (src, insn, i3))
2015 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2016 || GET_CODE (src) == UNSPEC_VOLATILE))
2017 /* Don't combine across a CALL_INSN, because that would possibly
2018 change whether the life span of some REGs crosses calls or not,
2019 and it is a pain to update that information.
2020 Exception: if source is a constant, moving it later can't hurt.
2021 Accept that as a special case. */
2022 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2023 return 0;
2025 /* DEST must either be a REG or CC0. */
2026 if (REG_P (dest))
2028 /* If register alignment is being enforced for multi-word items in all
2029 cases except for parameters, it is possible to have a register copy
2030 insn referencing a hard register that is not allowed to contain the
2031 mode being copied and which would not be valid as an operand of most
2032 insns. Eliminate this problem by not combining with such an insn.
2034 Also, on some machines we don't want to extend the life of a hard
2035 register. */
2037 if (REG_P (src)
2038 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2039 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2040 /* Don't extend the life of a hard register unless it is
2041 user variable (if we have few registers) or it can't
2042 fit into the desired register (meaning something special
2043 is going on).
2044 Also avoid substituting a return register into I3, because
2045 reload can't handle a conflict with constraints of other
2046 inputs. */
2047 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2048 && !targetm.hard_regno_mode_ok (REGNO (src),
2049 GET_MODE (src)))))
2050 return 0;
2052 else if (GET_CODE (dest) != CC0)
2053 return 0;
2056 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2057 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2058 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2060 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2062 /* If the clobber represents an earlyclobber operand, we must not
2063 substitute an expression containing the clobbered register.
2064 As we do not analyze the constraint strings here, we have to
2065 make the conservative assumption. However, if the register is
2066 a fixed hard reg, the clobber cannot represent any operand;
2067 we leave it up to the machine description to either accept or
2068 reject use-and-clobber patterns. */
2069 if (!REG_P (reg)
2070 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2071 || !fixed_regs[REGNO (reg)])
2072 if (reg_overlap_mentioned_p (reg, src))
2073 return 0;
2076 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2077 or not), reject, unless nothing volatile comes between it and I3 */
2079 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2081 /* Make sure neither succ nor succ2 contains a volatile reference. */
2082 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2083 return 0;
2084 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2085 return 0;
2086 /* We'll check insns between INSN and I3 below. */
2089 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2090 to be an explicit register variable, and was chosen for a reason. */
2092 if (GET_CODE (src) == ASM_OPERANDS
2093 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2094 return 0;
2096 /* If INSN contains volatile references (specifically volatile MEMs),
2097 we cannot combine across any other volatile references.
2098 Even if INSN doesn't contain volatile references, any intervening
2099 volatile insn might affect machine state. */
2101 is_volatile_p = volatile_refs_p (PATTERN (insn))
2102 ? volatile_refs_p
2103 : volatile_insn_p;
2105 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2106 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2107 return 0;
2109 /* If INSN contains an autoincrement or autodecrement, make sure that
2110 register is not used between there and I3, and not already used in
2111 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2112 Also insist that I3 not be a jump; if it were one
2113 and the incremented register were spilled, we would lose. */
2115 if (AUTO_INC_DEC)
2116 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2117 if (REG_NOTE_KIND (link) == REG_INC
2118 && (JUMP_P (i3)
2119 || reg_used_between_p (XEXP (link, 0), insn, i3)
2120 || (pred != NULL_RTX
2121 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2122 || (pred2 != NULL_RTX
2123 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2124 || (succ != NULL_RTX
2125 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2126 || (succ2 != NULL_RTX
2127 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2128 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2129 return 0;
2131 /* Don't combine an insn that follows a CC0-setting insn.
2132 An insn that uses CC0 must not be separated from the one that sets it.
2133 We do, however, allow I2 to follow a CC0-setting insn if that insn
2134 is passed as I1; in that case it will be deleted also.
2135 We also allow combining in this case if all the insns are adjacent
2136 because that would leave the two CC0 insns adjacent as well.
2137 It would be more logical to test whether CC0 occurs inside I1 or I2,
2138 but that would be much slower, and this ought to be equivalent. */
2140 if (HAVE_cc0)
2142 p = prev_nonnote_insn (insn);
2143 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2144 && ! all_adjacent)
2145 return 0;
2148 /* If we get here, we have passed all the tests and the combination is
2149 to be allowed. */
2151 *pdest = dest;
2152 *psrc = src;
2154 return 1;
2157 /* LOC is the location within I3 that contains its pattern or the component
2158 of a PARALLEL of the pattern. We validate that it is valid for combining.
2160 One problem is if I3 modifies its output, as opposed to replacing it
2161 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2162 doing so would produce an insn that is not equivalent to the original insns.
2164 Consider:
2166 (set (reg:DI 101) (reg:DI 100))
2167 (set (subreg:SI (reg:DI 101) 0) <foo>)
2169 This is NOT equivalent to:
2171 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2172 (set (reg:DI 101) (reg:DI 100))])
2174 Not only does this modify 100 (in which case it might still be valid
2175 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2177 We can also run into a problem if I2 sets a register that I1
2178 uses and I1 gets directly substituted into I3 (not via I2). In that
2179 case, we would be getting the wrong value of I2DEST into I3, so we
2180 must reject the combination. This case occurs when I2 and I1 both
2181 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2182 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2183 of a SET must prevent combination from occurring. The same situation
2184 can occur for I0, in which case I0_NOT_IN_SRC is set.
2186 Before doing the above check, we first try to expand a field assignment
2187 into a set of logical operations.
2189 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2190 we place a register that is both set and used within I3. If more than one
2191 such register is detected, we fail.
2193 Return 1 if the combination is valid, zero otherwise. */
2195 static int
2196 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2197 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2199 rtx x = *loc;
2201 if (GET_CODE (x) == SET)
2203 rtx set = x ;
2204 rtx dest = SET_DEST (set);
2205 rtx src = SET_SRC (set);
2206 rtx inner_dest = dest;
2207 rtx subdest;
2209 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2210 || GET_CODE (inner_dest) == SUBREG
2211 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2212 inner_dest = XEXP (inner_dest, 0);
2214 /* Check for the case where I3 modifies its output, as discussed
2215 above. We don't want to prevent pseudos from being combined
2216 into the address of a MEM, so only prevent the combination if
2217 i1 or i2 set the same MEM. */
2218 if ((inner_dest != dest &&
2219 (!MEM_P (inner_dest)
2220 || rtx_equal_p (i2dest, inner_dest)
2221 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2222 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2223 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2224 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2225 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2227 /* This is the same test done in can_combine_p except we can't test
2228 all_adjacent; we don't have to, since this instruction will stay
2229 in place, thus we are not considering increasing the lifetime of
2230 INNER_DEST.
2232 Also, if this insn sets a function argument, combining it with
2233 something that might need a spill could clobber a previous
2234 function argument; the all_adjacent test in can_combine_p also
2235 checks this; here, we do a more specific test for this case. */
2237 || (REG_P (inner_dest)
2238 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2239 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2240 GET_MODE (inner_dest)))
2241 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2242 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2243 return 0;
2245 /* If DEST is used in I3, it is being killed in this insn, so
2246 record that for later. We have to consider paradoxical
2247 subregs here, since they kill the whole register, but we
2248 ignore partial subregs, STRICT_LOW_PART, etc.
2249 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2250 STACK_POINTER_REGNUM, since these are always considered to be
2251 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2252 subdest = dest;
2253 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2254 subdest = SUBREG_REG (subdest);
2255 if (pi3dest_killed
2256 && REG_P (subdest)
2257 && reg_referenced_p (subdest, PATTERN (i3))
2258 && REGNO (subdest) != FRAME_POINTER_REGNUM
2259 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2260 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2261 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2262 || (REGNO (subdest) != ARG_POINTER_REGNUM
2263 || ! fixed_regs [REGNO (subdest)]))
2264 && REGNO (subdest) != STACK_POINTER_REGNUM)
2266 if (*pi3dest_killed)
2267 return 0;
2269 *pi3dest_killed = subdest;
2273 else if (GET_CODE (x) == PARALLEL)
2275 int i;
2277 for (i = 0; i < XVECLEN (x, 0); i++)
2278 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2279 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2280 return 0;
2283 return 1;
2286 /* Return 1 if X is an arithmetic expression that contains a multiplication
2287 and division. We don't count multiplications by powers of two here. */
2289 static int
2290 contains_muldiv (rtx x)
2292 switch (GET_CODE (x))
2294 case MOD: case DIV: case UMOD: case UDIV:
2295 return 1;
2297 case MULT:
2298 return ! (CONST_INT_P (XEXP (x, 1))
2299 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2300 default:
2301 if (BINARY_P (x))
2302 return contains_muldiv (XEXP (x, 0))
2303 || contains_muldiv (XEXP (x, 1));
2305 if (UNARY_P (x))
2306 return contains_muldiv (XEXP (x, 0));
2308 return 0;
2312 /* Determine whether INSN can be used in a combination. Return nonzero if
2313 not. This is used in try_combine to detect early some cases where we
2314 can't perform combinations. */
2316 static int
2317 cant_combine_insn_p (rtx_insn *insn)
2319 rtx set;
2320 rtx src, dest;
2322 /* If this isn't really an insn, we can't do anything.
2323 This can occur when flow deletes an insn that it has merged into an
2324 auto-increment address. */
2325 if (!NONDEBUG_INSN_P (insn))
2326 return 1;
2328 /* Never combine loads and stores involving hard regs that are likely
2329 to be spilled. The register allocator can usually handle such
2330 reg-reg moves by tying. If we allow the combiner to make
2331 substitutions of likely-spilled regs, reload might die.
2332 As an exception, we allow combinations involving fixed regs; these are
2333 not available to the register allocator so there's no risk involved. */
2335 set = single_set (insn);
2336 if (! set)
2337 return 0;
2338 src = SET_SRC (set);
2339 dest = SET_DEST (set);
2340 if (GET_CODE (src) == SUBREG)
2341 src = SUBREG_REG (src);
2342 if (GET_CODE (dest) == SUBREG)
2343 dest = SUBREG_REG (dest);
2344 if (REG_P (src) && REG_P (dest)
2345 && ((HARD_REGISTER_P (src)
2346 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2347 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2348 || (HARD_REGISTER_P (dest)
2349 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2350 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2351 return 1;
2353 return 0;
2356 struct likely_spilled_retval_info
2358 unsigned regno, nregs;
2359 unsigned mask;
2362 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2363 hard registers that are known to be written to / clobbered in full. */
2364 static void
2365 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2367 struct likely_spilled_retval_info *const info =
2368 (struct likely_spilled_retval_info *) data;
2369 unsigned regno, nregs;
2370 unsigned new_mask;
2372 if (!REG_P (XEXP (set, 0)))
2373 return;
2374 regno = REGNO (x);
2375 if (regno >= info->regno + info->nregs)
2376 return;
2377 nregs = REG_NREGS (x);
2378 if (regno + nregs <= info->regno)
2379 return;
2380 new_mask = (2U << (nregs - 1)) - 1;
2381 if (regno < info->regno)
2382 new_mask >>= info->regno - regno;
2383 else
2384 new_mask <<= regno - info->regno;
2385 info->mask &= ~new_mask;
2388 /* Return nonzero iff part of the return value is live during INSN, and
2389 it is likely spilled. This can happen when more than one insn is needed
2390 to copy the return value, e.g. when we consider to combine into the
2391 second copy insn for a complex value. */
2393 static int
2394 likely_spilled_retval_p (rtx_insn *insn)
2396 rtx_insn *use = BB_END (this_basic_block);
2397 rtx reg;
2398 rtx_insn *p;
2399 unsigned regno, nregs;
2400 /* We assume here that no machine mode needs more than
2401 32 hard registers when the value overlaps with a register
2402 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2403 unsigned mask;
2404 struct likely_spilled_retval_info info;
2406 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2407 return 0;
2408 reg = XEXP (PATTERN (use), 0);
2409 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2410 return 0;
2411 regno = REGNO (reg);
2412 nregs = REG_NREGS (reg);
2413 if (nregs == 1)
2414 return 0;
2415 mask = (2U << (nregs - 1)) - 1;
2417 /* Disregard parts of the return value that are set later. */
2418 info.regno = regno;
2419 info.nregs = nregs;
2420 info.mask = mask;
2421 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2422 if (INSN_P (p))
2423 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2424 mask = info.mask;
2426 /* Check if any of the (probably) live return value registers is
2427 likely spilled. */
2428 nregs --;
2431 if ((mask & 1 << nregs)
2432 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2433 return 1;
2434 } while (nregs--);
2435 return 0;
2438 /* Adjust INSN after we made a change to its destination.
2440 Changing the destination can invalidate notes that say something about
2441 the results of the insn and a LOG_LINK pointing to the insn. */
2443 static void
2444 adjust_for_new_dest (rtx_insn *insn)
2446 /* For notes, be conservative and simply remove them. */
2447 remove_reg_equal_equiv_notes (insn);
2449 /* The new insn will have a destination that was previously the destination
2450 of an insn just above it. Call distribute_links to make a LOG_LINK from
2451 the next use of that destination. */
2453 rtx set = single_set (insn);
2454 gcc_assert (set);
2456 rtx reg = SET_DEST (set);
2458 while (GET_CODE (reg) == ZERO_EXTRACT
2459 || GET_CODE (reg) == STRICT_LOW_PART
2460 || GET_CODE (reg) == SUBREG)
2461 reg = XEXP (reg, 0);
2462 gcc_assert (REG_P (reg));
2464 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2466 df_insn_rescan (insn);
2469 /* Return TRUE if combine can reuse reg X in mode MODE.
2470 ADDED_SETS is nonzero if the original set is still required. */
2471 static bool
2472 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2474 unsigned int regno;
2476 if (!REG_P (x))
2477 return false;
2479 /* Don't change between modes with different underlying register sizes,
2480 since this could lead to invalid subregs. */
2481 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2482 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2483 return false;
2485 regno = REGNO (x);
2486 /* Allow hard registers if the new mode is legal, and occupies no more
2487 registers than the old mode. */
2488 if (regno < FIRST_PSEUDO_REGISTER)
2489 return (targetm.hard_regno_mode_ok (regno, mode)
2490 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2492 /* Or a pseudo that is only used once. */
2493 return (regno < reg_n_sets_max
2494 && REG_N_SETS (regno) == 1
2495 && !added_sets
2496 && !REG_USERVAR_P (x));
2500 /* Check whether X, the destination of a set, refers to part of
2501 the register specified by REG. */
2503 static bool
2504 reg_subword_p (rtx x, rtx reg)
2506 /* Check that reg is an integer mode register. */
2507 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2508 return false;
2510 if (GET_CODE (x) == STRICT_LOW_PART
2511 || GET_CODE (x) == ZERO_EXTRACT)
2512 x = XEXP (x, 0);
2514 return GET_CODE (x) == SUBREG
2515 && SUBREG_REG (x) == reg
2516 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2519 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2520 Note that the INSN should be deleted *after* removing dead edges, so
2521 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2522 but not for a (set (pc) (label_ref FOO)). */
2524 static void
2525 update_cfg_for_uncondjump (rtx_insn *insn)
2527 basic_block bb = BLOCK_FOR_INSN (insn);
2528 gcc_assert (BB_END (bb) == insn);
2530 purge_dead_edges (bb);
2532 delete_insn (insn);
2533 if (EDGE_COUNT (bb->succs) == 1)
2535 rtx_insn *insn;
2537 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2539 /* Remove barriers from the footer if there are any. */
2540 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2541 if (BARRIER_P (insn))
2543 if (PREV_INSN (insn))
2544 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2545 else
2546 BB_FOOTER (bb) = NEXT_INSN (insn);
2547 if (NEXT_INSN (insn))
2548 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2550 else if (LABEL_P (insn))
2551 break;
2555 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2556 by an arbitrary number of CLOBBERs. */
2557 static bool
2558 is_parallel_of_n_reg_sets (rtx pat, int n)
2560 if (GET_CODE (pat) != PARALLEL)
2561 return false;
2563 int len = XVECLEN (pat, 0);
2564 if (len < n)
2565 return false;
2567 int i;
2568 for (i = 0; i < n; i++)
2569 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2570 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2571 return false;
2572 for ( ; i < len; i++)
2573 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2574 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2575 return false;
2577 return true;
2580 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2581 CLOBBERs), can be split into individual SETs in that order, without
2582 changing semantics. */
2583 static bool
2584 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2586 if (!insn_nothrow_p (insn))
2587 return false;
2589 rtx pat = PATTERN (insn);
2591 int i, j;
2592 for (i = 0; i < n; i++)
2594 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2595 return false;
2597 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2599 for (j = i + 1; j < n; j++)
2600 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2601 return false;
2604 return true;
2607 /* Return whether X is just a single set, with the source
2608 a general_operand. */
2609 static bool
2610 is_just_move (rtx x)
2612 if (INSN_P (x))
2613 x = PATTERN (x);
2615 return (GET_CODE (x) == SET && general_operand (SET_SRC (x), VOIDmode));
2618 /* Try to combine the insns I0, I1 and I2 into I3.
2619 Here I0, I1 and I2 appear earlier than I3.
2620 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2623 If we are combining more than two insns and the resulting insn is not
2624 recognized, try splitting it into two insns. If that happens, I2 and I3
2625 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2626 Otherwise, I0, I1 and I2 are pseudo-deleted.
2628 Return 0 if the combination does not work. Then nothing is changed.
2629 If we did the combination, return the insn at which combine should
2630 resume scanning.
2632 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2633 new direct jump instruction.
2635 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2636 been I3 passed to an earlier try_combine within the same basic
2637 block. */
2639 static rtx_insn *
2640 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2641 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2643 /* New patterns for I3 and I2, respectively. */
2644 rtx newpat, newi2pat = 0;
2645 rtvec newpat_vec_with_clobbers = 0;
2646 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2647 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2648 dead. */
2649 int added_sets_0, added_sets_1, added_sets_2;
2650 /* Total number of SETs to put into I3. */
2651 int total_sets;
2652 /* Nonzero if I2's or I1's body now appears in I3. */
2653 int i2_is_used = 0, i1_is_used = 0;
2654 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2655 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2656 /* Contains I3 if the destination of I3 is used in its source, which means
2657 that the old life of I3 is being killed. If that usage is placed into
2658 I2 and not in I3, a REG_DEAD note must be made. */
2659 rtx i3dest_killed = 0;
2660 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2661 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2662 /* Copy of SET_SRC of I1 and I0, if needed. */
2663 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2664 /* Set if I2DEST was reused as a scratch register. */
2665 bool i2scratch = false;
2666 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2667 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2668 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2669 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2670 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2671 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2672 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2673 /* Notes that must be added to REG_NOTES in I3 and I2. */
2674 rtx new_i3_notes, new_i2_notes;
2675 /* Notes that we substituted I3 into I2 instead of the normal case. */
2676 int i3_subst_into_i2 = 0;
2677 /* Notes that I1, I2 or I3 is a MULT operation. */
2678 int have_mult = 0;
2679 int swap_i2i3 = 0;
2680 int split_i2i3 = 0;
2681 int changed_i3_dest = 0;
2682 bool i2_was_move = false, i3_was_move = false;
2684 int maxreg;
2685 rtx_insn *temp_insn;
2686 rtx temp_expr;
2687 struct insn_link *link;
2688 rtx other_pat = 0;
2689 rtx new_other_notes;
2690 int i;
2691 scalar_int_mode dest_mode, temp_mode;
2693 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2694 never be). */
2695 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2696 return 0;
2698 /* Only try four-insn combinations when there's high likelihood of
2699 success. Look for simple insns, such as loads of constants or
2700 binary operations involving a constant. */
2701 if (i0)
2703 int i;
2704 int ngood = 0;
2705 int nshift = 0;
2706 rtx set0, set3;
2708 if (!flag_expensive_optimizations)
2709 return 0;
2711 for (i = 0; i < 4; i++)
2713 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2714 rtx set = single_set (insn);
2715 rtx src;
2716 if (!set)
2717 continue;
2718 src = SET_SRC (set);
2719 if (CONSTANT_P (src))
2721 ngood += 2;
2722 break;
2724 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2725 ngood++;
2726 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2727 || GET_CODE (src) == LSHIFTRT)
2728 nshift++;
2731 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2732 are likely manipulating its value. Ideally we'll be able to combine
2733 all four insns into a bitfield insertion of some kind.
2735 Note the source in I0 might be inside a sign/zero extension and the
2736 memory modes in I0 and I3 might be different. So extract the address
2737 from the destination of I3 and search for it in the source of I0.
2739 In the event that there's a match but the source/dest do not actually
2740 refer to the same memory, the worst that happens is we try some
2741 combinations that we wouldn't have otherwise. */
2742 if ((set0 = single_set (i0))
2743 /* Ensure the source of SET0 is a MEM, possibly buried inside
2744 an extension. */
2745 && (GET_CODE (SET_SRC (set0)) == MEM
2746 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2747 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2748 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2749 && (set3 = single_set (i3))
2750 /* Ensure the destination of SET3 is a MEM. */
2751 && GET_CODE (SET_DEST (set3)) == MEM
2752 /* Would it be better to extract the base address for the MEM
2753 in SET3 and look for that? I don't have cases where it matters
2754 but I could envision such cases. */
2755 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2756 ngood += 2;
2758 if (ngood < 2 && nshift < 2)
2759 return 0;
2762 /* Exit early if one of the insns involved can't be used for
2763 combinations. */
2764 if (CALL_P (i2)
2765 || (i1 && CALL_P (i1))
2766 || (i0 && CALL_P (i0))
2767 || cant_combine_insn_p (i3)
2768 || cant_combine_insn_p (i2)
2769 || (i1 && cant_combine_insn_p (i1))
2770 || (i0 && cant_combine_insn_p (i0))
2771 || likely_spilled_retval_p (i3))
2772 return 0;
2774 combine_attempts++;
2775 undobuf.other_insn = 0;
2777 /* Reset the hard register usage information. */
2778 CLEAR_HARD_REG_SET (newpat_used_regs);
2780 if (dump_file && (dump_flags & TDF_DETAILS))
2782 if (i0)
2783 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2784 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2785 else if (i1)
2786 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2787 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2788 else
2789 fprintf (dump_file, "\nTrying %d -> %d:\n",
2790 INSN_UID (i2), INSN_UID (i3));
2792 if (i0)
2793 dump_insn_slim (dump_file, i0);
2794 if (i1)
2795 dump_insn_slim (dump_file, i1);
2796 dump_insn_slim (dump_file, i2);
2797 dump_insn_slim (dump_file, i3);
2800 /* If multiple insns feed into one of I2 or I3, they can be in any
2801 order. To simplify the code below, reorder them in sequence. */
2802 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2803 std::swap (i0, i2);
2804 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2805 std::swap (i0, i1);
2806 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2807 std::swap (i1, i2);
2809 added_links_insn = 0;
2810 added_notes_insn = 0;
2812 /* First check for one important special case that the code below will
2813 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2814 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2815 we may be able to replace that destination with the destination of I3.
2816 This occurs in the common code where we compute both a quotient and
2817 remainder into a structure, in which case we want to do the computation
2818 directly into the structure to avoid register-register copies.
2820 Note that this case handles both multiple sets in I2 and also cases
2821 where I2 has a number of CLOBBERs inside the PARALLEL.
2823 We make very conservative checks below and only try to handle the
2824 most common cases of this. For example, we only handle the case
2825 where I2 and I3 are adjacent to avoid making difficult register
2826 usage tests. */
2828 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2829 && REG_P (SET_SRC (PATTERN (i3)))
2830 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2831 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2832 && GET_CODE (PATTERN (i2)) == PARALLEL
2833 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2834 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2835 below would need to check what is inside (and reg_overlap_mentioned_p
2836 doesn't support those codes anyway). Don't allow those destinations;
2837 the resulting insn isn't likely to be recognized anyway. */
2838 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2839 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2840 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2841 SET_DEST (PATTERN (i3)))
2842 && next_active_insn (i2) == i3)
2844 rtx p2 = PATTERN (i2);
2846 /* Make sure that the destination of I3,
2847 which we are going to substitute into one output of I2,
2848 is not used within another output of I2. We must avoid making this:
2849 (parallel [(set (mem (reg 69)) ...)
2850 (set (reg 69) ...)])
2851 which is not well-defined as to order of actions.
2852 (Besides, reload can't handle output reloads for this.)
2854 The problem can also happen if the dest of I3 is a memory ref,
2855 if another dest in I2 is an indirect memory ref.
2857 Neither can this PARALLEL be an asm. We do not allow combining
2858 that usually (see can_combine_p), so do not here either. */
2859 bool ok = true;
2860 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2862 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2863 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2864 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2865 SET_DEST (XVECEXP (p2, 0, i))))
2866 ok = false;
2867 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2868 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2869 ok = false;
2872 if (ok)
2873 for (i = 0; i < XVECLEN (p2, 0); i++)
2874 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2875 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2877 combine_merges++;
2879 subst_insn = i3;
2880 subst_low_luid = DF_INSN_LUID (i2);
2882 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2883 i2src = SET_SRC (XVECEXP (p2, 0, i));
2884 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2885 i2dest_killed = dead_or_set_p (i2, i2dest);
2887 /* Replace the dest in I2 with our dest and make the resulting
2888 insn the new pattern for I3. Then skip to where we validate
2889 the pattern. Everything was set up above. */
2890 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2891 newpat = p2;
2892 i3_subst_into_i2 = 1;
2893 goto validate_replacement;
2897 /* If I2 is setting a pseudo to a constant and I3 is setting some
2898 sub-part of it to another constant, merge them by making a new
2899 constant. */
2900 if (i1 == 0
2901 && (temp_expr = single_set (i2)) != 0
2902 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2903 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2904 && GET_CODE (PATTERN (i3)) == SET
2905 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2906 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2908 rtx dest = SET_DEST (PATTERN (i3));
2909 rtx temp_dest = SET_DEST (temp_expr);
2910 int offset = -1;
2911 int width = 0;
2913 if (GET_CODE (dest) == ZERO_EXTRACT)
2915 if (CONST_INT_P (XEXP (dest, 1))
2916 && CONST_INT_P (XEXP (dest, 2))
2917 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2918 &dest_mode))
2920 width = INTVAL (XEXP (dest, 1));
2921 offset = INTVAL (XEXP (dest, 2));
2922 dest = XEXP (dest, 0);
2923 if (BITS_BIG_ENDIAN)
2924 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2927 else
2929 if (GET_CODE (dest) == STRICT_LOW_PART)
2930 dest = XEXP (dest, 0);
2931 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2933 width = GET_MODE_PRECISION (dest_mode);
2934 offset = 0;
2938 if (offset >= 0)
2940 /* If this is the low part, we're done. */
2941 if (subreg_lowpart_p (dest))
2943 /* Handle the case where inner is twice the size of outer. */
2944 else if (GET_MODE_PRECISION (temp_mode)
2945 == 2 * GET_MODE_PRECISION (dest_mode))
2946 offset += GET_MODE_PRECISION (dest_mode);
2947 /* Otherwise give up for now. */
2948 else
2949 offset = -1;
2952 if (offset >= 0)
2954 rtx inner = SET_SRC (PATTERN (i3));
2955 rtx outer = SET_SRC (temp_expr);
2957 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2958 rtx_mode_t (inner, dest_mode),
2959 offset, width);
2961 combine_merges++;
2962 subst_insn = i3;
2963 subst_low_luid = DF_INSN_LUID (i2);
2964 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2965 i2dest = temp_dest;
2966 i2dest_killed = dead_or_set_p (i2, i2dest);
2968 /* Replace the source in I2 with the new constant and make the
2969 resulting insn the new pattern for I3. Then skip to where we
2970 validate the pattern. Everything was set up above. */
2971 SUBST (SET_SRC (temp_expr),
2972 immed_wide_int_const (o, temp_mode));
2974 newpat = PATTERN (i2);
2976 /* The dest of I3 has been replaced with the dest of I2. */
2977 changed_i3_dest = 1;
2978 goto validate_replacement;
2982 /* If we have no I1 and I2 looks like:
2983 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2984 (set Y OP)])
2985 make up a dummy I1 that is
2986 (set Y OP)
2987 and change I2 to be
2988 (set (reg:CC X) (compare:CC Y (const_int 0)))
2990 (We can ignore any trailing CLOBBERs.)
2992 This undoes a previous combination and allows us to match a branch-and-
2993 decrement insn. */
2995 if (!HAVE_cc0 && i1 == 0
2996 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2997 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2998 == MODE_CC)
2999 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
3000 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
3001 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
3002 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
3003 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3004 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3006 /* We make I1 with the same INSN_UID as I2. This gives it
3007 the same DF_INSN_LUID for value tracking. Our fake I1 will
3008 never appear in the insn stream so giving it the same INSN_UID
3009 as I2 will not cause a problem. */
3011 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3012 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3013 -1, NULL_RTX);
3014 INSN_UID (i1) = INSN_UID (i2);
3016 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3017 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3018 SET_DEST (PATTERN (i1)));
3019 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3020 SUBST_LINK (LOG_LINKS (i2),
3021 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3024 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3025 make those two SETs separate I1 and I2 insns, and make an I0 that is
3026 the original I1. */
3027 if (!HAVE_cc0 && i0 == 0
3028 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3029 && can_split_parallel_of_n_reg_sets (i2, 2)
3030 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3031 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3032 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3033 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3035 /* If there is no I1, there is no I0 either. */
3036 i0 = i1;
3038 /* We make I1 with the same INSN_UID as I2. This gives it
3039 the same DF_INSN_LUID for value tracking. Our fake I1 will
3040 never appear in the insn stream so giving it the same INSN_UID
3041 as I2 will not cause a problem. */
3043 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3044 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3045 -1, NULL_RTX);
3046 INSN_UID (i1) = INSN_UID (i2);
3048 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3051 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3052 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3054 if (dump_file)
3055 fprintf (dump_file, "Can't combine i2 into i3\n");
3056 undo_all ();
3057 return 0;
3059 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3061 if (dump_file)
3062 fprintf (dump_file, "Can't combine i1 into i3\n");
3063 undo_all ();
3064 return 0;
3066 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3068 if (dump_file)
3069 fprintf (dump_file, "Can't combine i0 into i3\n");
3070 undo_all ();
3071 return 0;
3074 /* Record whether i2 and i3 are trivial moves. */
3075 i2_was_move = is_just_move (i2);
3076 i3_was_move = is_just_move (i3);
3078 /* Record whether I2DEST is used in I2SRC and similarly for the other
3079 cases. Knowing this will help in register status updating below. */
3080 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3081 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3082 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3083 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3084 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3085 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3086 i2dest_killed = dead_or_set_p (i2, i2dest);
3087 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3088 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3090 /* For the earlier insns, determine which of the subsequent ones they
3091 feed. */
3092 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3093 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3094 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3095 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3096 && reg_overlap_mentioned_p (i0dest, i2src))));
3098 /* Ensure that I3's pattern can be the destination of combines. */
3099 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3100 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3101 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3102 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3103 &i3dest_killed))
3105 undo_all ();
3106 return 0;
3109 /* See if any of the insns is a MULT operation. Unless one is, we will
3110 reject a combination that is, since it must be slower. Be conservative
3111 here. */
3112 if (GET_CODE (i2src) == MULT
3113 || (i1 != 0 && GET_CODE (i1src) == MULT)
3114 || (i0 != 0 && GET_CODE (i0src) == MULT)
3115 || (GET_CODE (PATTERN (i3)) == SET
3116 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3117 have_mult = 1;
3119 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3120 We used to do this EXCEPT in one case: I3 has a post-inc in an
3121 output operand. However, that exception can give rise to insns like
3122 mov r3,(r3)+
3123 which is a famous insn on the PDP-11 where the value of r3 used as the
3124 source was model-dependent. Avoid this sort of thing. */
3126 #if 0
3127 if (!(GET_CODE (PATTERN (i3)) == SET
3128 && REG_P (SET_SRC (PATTERN (i3)))
3129 && MEM_P (SET_DEST (PATTERN (i3)))
3130 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3131 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3132 /* It's not the exception. */
3133 #endif
3134 if (AUTO_INC_DEC)
3136 rtx link;
3137 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3138 if (REG_NOTE_KIND (link) == REG_INC
3139 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3140 || (i1 != 0
3141 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3143 undo_all ();
3144 return 0;
3148 /* See if the SETs in I1 or I2 need to be kept around in the merged
3149 instruction: whenever the value set there is still needed past I3.
3150 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3152 For the SET in I1, we have two cases: if I1 and I2 independently feed
3153 into I3, the set in I1 needs to be kept around unless I1DEST dies
3154 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3155 in I1 needs to be kept around unless I1DEST dies or is set in either
3156 I2 or I3. The same considerations apply to I0. */
3158 added_sets_2 = !dead_or_set_p (i3, i2dest);
3160 if (i1)
3161 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3162 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3163 else
3164 added_sets_1 = 0;
3166 if (i0)
3167 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3168 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3169 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3170 && dead_or_set_p (i2, i0dest)));
3171 else
3172 added_sets_0 = 0;
3174 /* We are about to copy insns for the case where they need to be kept
3175 around. Check that they can be copied in the merged instruction. */
3177 if (targetm.cannot_copy_insn_p
3178 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3179 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3180 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3182 undo_all ();
3183 return 0;
3186 /* If the set in I2 needs to be kept around, we must make a copy of
3187 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3188 PATTERN (I2), we are only substituting for the original I1DEST, not into
3189 an already-substituted copy. This also prevents making self-referential
3190 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3191 I2DEST. */
3193 if (added_sets_2)
3195 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3196 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3197 else
3198 i2pat = copy_rtx (PATTERN (i2));
3201 if (added_sets_1)
3203 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3204 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3205 else
3206 i1pat = copy_rtx (PATTERN (i1));
3209 if (added_sets_0)
3211 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3212 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3213 else
3214 i0pat = copy_rtx (PATTERN (i0));
3217 combine_merges++;
3219 /* Substitute in the latest insn for the regs set by the earlier ones. */
3221 maxreg = max_reg_num ();
3223 subst_insn = i3;
3225 /* Many machines that don't use CC0 have insns that can both perform an
3226 arithmetic operation and set the condition code. These operations will
3227 be represented as a PARALLEL with the first element of the vector
3228 being a COMPARE of an arithmetic operation with the constant zero.
3229 The second element of the vector will set some pseudo to the result
3230 of the same arithmetic operation. If we simplify the COMPARE, we won't
3231 match such a pattern and so will generate an extra insn. Here we test
3232 for this case, where both the comparison and the operation result are
3233 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3234 I2SRC. Later we will make the PARALLEL that contains I2. */
3236 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3237 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3238 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3239 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3241 rtx newpat_dest;
3242 rtx *cc_use_loc = NULL;
3243 rtx_insn *cc_use_insn = NULL;
3244 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3245 machine_mode compare_mode, orig_compare_mode;
3246 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3247 scalar_int_mode mode;
3249 newpat = PATTERN (i3);
3250 newpat_dest = SET_DEST (newpat);
3251 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3253 if (undobuf.other_insn == 0
3254 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3255 &cc_use_insn)))
3257 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3258 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3259 compare_code = simplify_compare_const (compare_code, mode,
3260 op0, &op1);
3261 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3264 /* Do the rest only if op1 is const0_rtx, which may be the
3265 result of simplification. */
3266 if (op1 == const0_rtx)
3268 /* If a single use of the CC is found, prepare to modify it
3269 when SELECT_CC_MODE returns a new CC-class mode, or when
3270 the above simplify_compare_const() returned a new comparison
3271 operator. undobuf.other_insn is assigned the CC use insn
3272 when modifying it. */
3273 if (cc_use_loc)
3275 #ifdef SELECT_CC_MODE
3276 machine_mode new_mode
3277 = SELECT_CC_MODE (compare_code, op0, op1);
3278 if (new_mode != orig_compare_mode
3279 && can_change_dest_mode (SET_DEST (newpat),
3280 added_sets_2, new_mode))
3282 unsigned int regno = REGNO (newpat_dest);
3283 compare_mode = new_mode;
3284 if (regno < FIRST_PSEUDO_REGISTER)
3285 newpat_dest = gen_rtx_REG (compare_mode, regno);
3286 else
3288 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3289 newpat_dest = regno_reg_rtx[regno];
3292 #endif
3293 /* Cases for modifying the CC-using comparison. */
3294 if (compare_code != orig_compare_code
3295 /* ??? Do we need to verify the zero rtx? */
3296 && XEXP (*cc_use_loc, 1) == const0_rtx)
3298 /* Replace cc_use_loc with entire new RTX. */
3299 SUBST (*cc_use_loc,
3300 gen_rtx_fmt_ee (compare_code, compare_mode,
3301 newpat_dest, const0_rtx));
3302 undobuf.other_insn = cc_use_insn;
3304 else if (compare_mode != orig_compare_mode)
3306 /* Just replace the CC reg with a new mode. */
3307 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3308 undobuf.other_insn = cc_use_insn;
3312 /* Now we modify the current newpat:
3313 First, SET_DEST(newpat) is updated if the CC mode has been
3314 altered. For targets without SELECT_CC_MODE, this should be
3315 optimized away. */
3316 if (compare_mode != orig_compare_mode)
3317 SUBST (SET_DEST (newpat), newpat_dest);
3318 /* This is always done to propagate i2src into newpat. */
3319 SUBST (SET_SRC (newpat),
3320 gen_rtx_COMPARE (compare_mode, op0, op1));
3321 /* Create new version of i2pat if needed; the below PARALLEL
3322 creation needs this to work correctly. */
3323 if (! rtx_equal_p (i2src, op0))
3324 i2pat = gen_rtx_SET (i2dest, op0);
3325 i2_is_used = 1;
3329 if (i2_is_used == 0)
3331 /* It is possible that the source of I2 or I1 may be performing
3332 an unneeded operation, such as a ZERO_EXTEND of something
3333 that is known to have the high part zero. Handle that case
3334 by letting subst look at the inner insns.
3336 Another way to do this would be to have a function that tries
3337 to simplify a single insn instead of merging two or more
3338 insns. We don't do this because of the potential of infinite
3339 loops and because of the potential extra memory required.
3340 However, doing it the way we are is a bit of a kludge and
3341 doesn't catch all cases.
3343 But only do this if -fexpensive-optimizations since it slows
3344 things down and doesn't usually win.
3346 This is not done in the COMPARE case above because the
3347 unmodified I2PAT is used in the PARALLEL and so a pattern
3348 with a modified I2SRC would not match. */
3350 if (flag_expensive_optimizations)
3352 /* Pass pc_rtx so no substitutions are done, just
3353 simplifications. */
3354 if (i1)
3356 subst_low_luid = DF_INSN_LUID (i1);
3357 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3360 subst_low_luid = DF_INSN_LUID (i2);
3361 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3364 n_occurrences = 0; /* `subst' counts here */
3365 subst_low_luid = DF_INSN_LUID (i2);
3367 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3368 copy of I2SRC each time we substitute it, in order to avoid creating
3369 self-referential RTL when we will be substituting I1SRC for I1DEST
3370 later. Likewise if I0 feeds into I2, either directly or indirectly
3371 through I1, and I0DEST is in I0SRC. */
3372 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3373 (i1_feeds_i2_n && i1dest_in_i1src)
3374 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3375 && i0dest_in_i0src));
3376 substed_i2 = 1;
3378 /* Record whether I2's body now appears within I3's body. */
3379 i2_is_used = n_occurrences;
3382 /* If we already got a failure, don't try to do more. Otherwise, try to
3383 substitute I1 if we have it. */
3385 if (i1 && GET_CODE (newpat) != CLOBBER)
3387 /* Check that an autoincrement side-effect on I1 has not been lost.
3388 This happens if I1DEST is mentioned in I2 and dies there, and
3389 has disappeared from the new pattern. */
3390 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3391 && i1_feeds_i2_n
3392 && dead_or_set_p (i2, i1dest)
3393 && !reg_overlap_mentioned_p (i1dest, newpat))
3394 /* Before we can do this substitution, we must redo the test done
3395 above (see detailed comments there) that ensures I1DEST isn't
3396 mentioned in any SETs in NEWPAT that are field assignments. */
3397 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3398 0, 0, 0))
3400 undo_all ();
3401 return 0;
3404 n_occurrences = 0;
3405 subst_low_luid = DF_INSN_LUID (i1);
3407 /* If the following substitution will modify I1SRC, make a copy of it
3408 for the case where it is substituted for I1DEST in I2PAT later. */
3409 if (added_sets_2 && i1_feeds_i2_n)
3410 i1src_copy = copy_rtx (i1src);
3412 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3413 copy of I1SRC each time we substitute it, in order to avoid creating
3414 self-referential RTL when we will be substituting I0SRC for I0DEST
3415 later. */
3416 newpat = subst (newpat, i1dest, i1src, 0, 0,
3417 i0_feeds_i1_n && i0dest_in_i0src);
3418 substed_i1 = 1;
3420 /* Record whether I1's body now appears within I3's body. */
3421 i1_is_used = n_occurrences;
3424 /* Likewise for I0 if we have it. */
3426 if (i0 && GET_CODE (newpat) != CLOBBER)
3428 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3429 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3430 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3431 && !reg_overlap_mentioned_p (i0dest, newpat))
3432 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3433 0, 0, 0))
3435 undo_all ();
3436 return 0;
3439 /* If the following substitution will modify I0SRC, make a copy of it
3440 for the case where it is substituted for I0DEST in I1PAT later. */
3441 if (added_sets_1 && i0_feeds_i1_n)
3442 i0src_copy = copy_rtx (i0src);
3443 /* And a copy for I0DEST in I2PAT substitution. */
3444 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3445 || (i0_feeds_i2_n)))
3446 i0src_copy2 = copy_rtx (i0src);
3448 n_occurrences = 0;
3449 subst_low_luid = DF_INSN_LUID (i0);
3450 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3451 substed_i0 = 1;
3454 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3455 to count all the ways that I2SRC and I1SRC can be used. */
3456 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3457 && i2_is_used + added_sets_2 > 1)
3458 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3459 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3460 > 1))
3461 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3462 && (n_occurrences + added_sets_0
3463 + (added_sets_1 && i0_feeds_i1_n)
3464 + (added_sets_2 && i0_feeds_i2_n)
3465 > 1))
3466 /* Fail if we tried to make a new register. */
3467 || max_reg_num () != maxreg
3468 /* Fail if we couldn't do something and have a CLOBBER. */
3469 || GET_CODE (newpat) == CLOBBER
3470 /* Fail if this new pattern is a MULT and we didn't have one before
3471 at the outer level. */
3472 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3473 && ! have_mult))
3475 undo_all ();
3476 return 0;
3479 /* If the actions of the earlier insns must be kept
3480 in addition to substituting them into the latest one,
3481 we must make a new PARALLEL for the latest insn
3482 to hold additional the SETs. */
3484 if (added_sets_0 || added_sets_1 || added_sets_2)
3486 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3487 combine_extras++;
3489 if (GET_CODE (newpat) == PARALLEL)
3491 rtvec old = XVEC (newpat, 0);
3492 total_sets = XVECLEN (newpat, 0) + extra_sets;
3493 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3494 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3495 sizeof (old->elem[0]) * old->num_elem);
3497 else
3499 rtx old = newpat;
3500 total_sets = 1 + extra_sets;
3501 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3502 XVECEXP (newpat, 0, 0) = old;
3505 if (added_sets_0)
3506 XVECEXP (newpat, 0, --total_sets) = i0pat;
3508 if (added_sets_1)
3510 rtx t = i1pat;
3511 if (i0_feeds_i1_n)
3512 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3514 XVECEXP (newpat, 0, --total_sets) = t;
3516 if (added_sets_2)
3518 rtx t = i2pat;
3519 if (i1_feeds_i2_n)
3520 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3521 i0_feeds_i1_n && i0dest_in_i0src);
3522 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3523 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3525 XVECEXP (newpat, 0, --total_sets) = t;
3529 validate_replacement:
3531 /* Note which hard regs this insn has as inputs. */
3532 mark_used_regs_combine (newpat);
3534 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3535 consider splitting this pattern, we might need these clobbers. */
3536 if (i1 && GET_CODE (newpat) == PARALLEL
3537 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3539 int len = XVECLEN (newpat, 0);
3541 newpat_vec_with_clobbers = rtvec_alloc (len);
3542 for (i = 0; i < len; i++)
3543 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3546 /* We have recognized nothing yet. */
3547 insn_code_number = -1;
3549 /* See if this is a PARALLEL of two SETs where one SET's destination is
3550 a register that is unused and this isn't marked as an instruction that
3551 might trap in an EH region. In that case, we just need the other SET.
3552 We prefer this over the PARALLEL.
3554 This can occur when simplifying a divmod insn. We *must* test for this
3555 case here because the code below that splits two independent SETs doesn't
3556 handle this case correctly when it updates the register status.
3558 It's pointless doing this if we originally had two sets, one from
3559 i3, and one from i2. Combining then splitting the parallel results
3560 in the original i2 again plus an invalid insn (which we delete).
3561 The net effect is only to move instructions around, which makes
3562 debug info less accurate.
3564 If the remaining SET came from I2 its destination should not be used
3565 between I2 and I3. See PR82024. */
3567 if (!(added_sets_2 && i1 == 0)
3568 && is_parallel_of_n_reg_sets (newpat, 2)
3569 && asm_noperands (newpat) < 0)
3571 rtx set0 = XVECEXP (newpat, 0, 0);
3572 rtx set1 = XVECEXP (newpat, 0, 1);
3573 rtx oldpat = newpat;
3575 if (((REG_P (SET_DEST (set1))
3576 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3577 || (GET_CODE (SET_DEST (set1)) == SUBREG
3578 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3579 && insn_nothrow_p (i3)
3580 && !side_effects_p (SET_SRC (set1)))
3582 newpat = set0;
3583 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3586 else if (((REG_P (SET_DEST (set0))
3587 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3588 || (GET_CODE (SET_DEST (set0)) == SUBREG
3589 && find_reg_note (i3, REG_UNUSED,
3590 SUBREG_REG (SET_DEST (set0)))))
3591 && insn_nothrow_p (i3)
3592 && !side_effects_p (SET_SRC (set0)))
3594 rtx dest = SET_DEST (set1);
3595 if (GET_CODE (dest) == SUBREG)
3596 dest = SUBREG_REG (dest);
3597 if (!reg_used_between_p (dest, i2, i3))
3599 newpat = set1;
3600 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3602 if (insn_code_number >= 0)
3603 changed_i3_dest = 1;
3607 if (insn_code_number < 0)
3608 newpat = oldpat;
3611 /* Is the result of combination a valid instruction? */
3612 if (insn_code_number < 0)
3613 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3615 /* If we were combining three insns and the result is a simple SET
3616 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3617 insns. There are two ways to do this. It can be split using a
3618 machine-specific method (like when you have an addition of a large
3619 constant) or by combine in the function find_split_point. */
3621 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3622 && asm_noperands (newpat) < 0)
3624 rtx parallel, *split;
3625 rtx_insn *m_split_insn;
3627 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3628 use I2DEST as a scratch register will help. In the latter case,
3629 convert I2DEST to the mode of the source of NEWPAT if we can. */
3631 m_split_insn = combine_split_insns (newpat, i3);
3633 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3634 inputs of NEWPAT. */
3636 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3637 possible to try that as a scratch reg. This would require adding
3638 more code to make it work though. */
3640 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3642 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3644 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3645 (temporarily, until we are committed to this instruction
3646 combination) does not work: for example, any call to nonzero_bits
3647 on the register (from a splitter in the MD file, for example)
3648 will get the old information, which is invalid.
3650 Since nowadays we can create registers during combine just fine,
3651 we should just create a new one here, not reuse i2dest. */
3653 /* First try to split using the original register as a
3654 scratch register. */
3655 parallel = gen_rtx_PARALLEL (VOIDmode,
3656 gen_rtvec (2, newpat,
3657 gen_rtx_CLOBBER (VOIDmode,
3658 i2dest)));
3659 m_split_insn = combine_split_insns (parallel, i3);
3661 /* If that didn't work, try changing the mode of I2DEST if
3662 we can. */
3663 if (m_split_insn == 0
3664 && new_mode != GET_MODE (i2dest)
3665 && new_mode != VOIDmode
3666 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3668 machine_mode old_mode = GET_MODE (i2dest);
3669 rtx ni2dest;
3671 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3672 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3673 else
3675 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3676 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3679 parallel = (gen_rtx_PARALLEL
3680 (VOIDmode,
3681 gen_rtvec (2, newpat,
3682 gen_rtx_CLOBBER (VOIDmode,
3683 ni2dest))));
3684 m_split_insn = combine_split_insns (parallel, i3);
3686 if (m_split_insn == 0
3687 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3689 struct undo *buf;
3691 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3692 buf = undobuf.undos;
3693 undobuf.undos = buf->next;
3694 buf->next = undobuf.frees;
3695 undobuf.frees = buf;
3699 i2scratch = m_split_insn != 0;
3702 /* If recog_for_combine has discarded clobbers, try to use them
3703 again for the split. */
3704 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3706 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3707 m_split_insn = combine_split_insns (parallel, i3);
3710 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3712 rtx m_split_pat = PATTERN (m_split_insn);
3713 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3714 if (insn_code_number >= 0)
3715 newpat = m_split_pat;
3717 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3718 && (next_nonnote_nondebug_insn (i2) == i3
3719 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3721 rtx i2set, i3set;
3722 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3723 newi2pat = PATTERN (m_split_insn);
3725 i3set = single_set (NEXT_INSN (m_split_insn));
3726 i2set = single_set (m_split_insn);
3728 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3730 /* If I2 or I3 has multiple SETs, we won't know how to track
3731 register status, so don't use these insns. If I2's destination
3732 is used between I2 and I3, we also can't use these insns. */
3734 if (i2_code_number >= 0 && i2set && i3set
3735 && (next_nonnote_nondebug_insn (i2) == i3
3736 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3737 insn_code_number = recog_for_combine (&newi3pat, i3,
3738 &new_i3_notes);
3739 if (insn_code_number >= 0)
3740 newpat = newi3pat;
3742 /* It is possible that both insns now set the destination of I3.
3743 If so, we must show an extra use of it. */
3745 if (insn_code_number >= 0)
3747 rtx new_i3_dest = SET_DEST (i3set);
3748 rtx new_i2_dest = SET_DEST (i2set);
3750 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3751 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3752 || GET_CODE (new_i3_dest) == SUBREG)
3753 new_i3_dest = XEXP (new_i3_dest, 0);
3755 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3756 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3757 || GET_CODE (new_i2_dest) == SUBREG)
3758 new_i2_dest = XEXP (new_i2_dest, 0);
3760 if (REG_P (new_i3_dest)
3761 && REG_P (new_i2_dest)
3762 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3763 && REGNO (new_i2_dest) < reg_n_sets_max)
3764 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3768 /* If we can split it and use I2DEST, go ahead and see if that
3769 helps things be recognized. Verify that none of the registers
3770 are set between I2 and I3. */
3771 if (insn_code_number < 0
3772 && (split = find_split_point (&newpat, i3, false)) != 0
3773 && (!HAVE_cc0 || REG_P (i2dest))
3774 /* We need I2DEST in the proper mode. If it is a hard register
3775 or the only use of a pseudo, we can change its mode.
3776 Make sure we don't change a hard register to have a mode that
3777 isn't valid for it, or change the number of registers. */
3778 && (GET_MODE (*split) == GET_MODE (i2dest)
3779 || GET_MODE (*split) == VOIDmode
3780 || can_change_dest_mode (i2dest, added_sets_2,
3781 GET_MODE (*split)))
3782 && (next_nonnote_nondebug_insn (i2) == i3
3783 || !modified_between_p (*split, i2, i3))
3784 /* We can't overwrite I2DEST if its value is still used by
3785 NEWPAT. */
3786 && ! reg_referenced_p (i2dest, newpat))
3788 rtx newdest = i2dest;
3789 enum rtx_code split_code = GET_CODE (*split);
3790 machine_mode split_mode = GET_MODE (*split);
3791 bool subst_done = false;
3792 newi2pat = NULL_RTX;
3794 i2scratch = true;
3796 /* *SPLIT may be part of I2SRC, so make sure we have the
3797 original expression around for later debug processing.
3798 We should not need I2SRC any more in other cases. */
3799 if (MAY_HAVE_DEBUG_BIND_INSNS)
3800 i2src = copy_rtx (i2src);
3801 else
3802 i2src = NULL;
3804 /* Get NEWDEST as a register in the proper mode. We have already
3805 validated that we can do this. */
3806 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3808 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3809 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3810 else
3812 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3813 newdest = regno_reg_rtx[REGNO (i2dest)];
3817 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3818 an ASHIFT. This can occur if it was inside a PLUS and hence
3819 appeared to be a memory address. This is a kludge. */
3820 if (split_code == MULT
3821 && CONST_INT_P (XEXP (*split, 1))
3822 && INTVAL (XEXP (*split, 1)) > 0
3823 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3825 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3826 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3827 XEXP (*split, 0), i_rtx));
3828 /* Update split_code because we may not have a multiply
3829 anymore. */
3830 split_code = GET_CODE (*split);
3833 /* Similarly for (plus (mult FOO (const_int pow2))). */
3834 if (split_code == PLUS
3835 && GET_CODE (XEXP (*split, 0)) == MULT
3836 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3837 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3838 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3840 rtx nsplit = XEXP (*split, 0);
3841 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3842 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3843 XEXP (nsplit, 0),
3844 i_rtx));
3845 /* Update split_code because we may not have a multiply
3846 anymore. */
3847 split_code = GET_CODE (*split);
3850 #ifdef INSN_SCHEDULING
3851 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3852 be written as a ZERO_EXTEND. */
3853 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3855 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3856 what it really is. */
3857 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3858 == SIGN_EXTEND)
3859 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3860 SUBREG_REG (*split)));
3861 else
3862 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3863 SUBREG_REG (*split)));
3865 #endif
3867 /* Attempt to split binary operators using arithmetic identities. */
3868 if (BINARY_P (SET_SRC (newpat))
3869 && split_mode == GET_MODE (SET_SRC (newpat))
3870 && ! side_effects_p (SET_SRC (newpat)))
3872 rtx setsrc = SET_SRC (newpat);
3873 machine_mode mode = GET_MODE (setsrc);
3874 enum rtx_code code = GET_CODE (setsrc);
3875 rtx src_op0 = XEXP (setsrc, 0);
3876 rtx src_op1 = XEXP (setsrc, 1);
3878 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3879 if (rtx_equal_p (src_op0, src_op1))
3881 newi2pat = gen_rtx_SET (newdest, src_op0);
3882 SUBST (XEXP (setsrc, 0), newdest);
3883 SUBST (XEXP (setsrc, 1), newdest);
3884 subst_done = true;
3886 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3887 else if ((code == PLUS || code == MULT)
3888 && GET_CODE (src_op0) == code
3889 && GET_CODE (XEXP (src_op0, 0)) == code
3890 && (INTEGRAL_MODE_P (mode)
3891 || (FLOAT_MODE_P (mode)
3892 && flag_unsafe_math_optimizations)))
3894 rtx p = XEXP (XEXP (src_op0, 0), 0);
3895 rtx q = XEXP (XEXP (src_op0, 0), 1);
3896 rtx r = XEXP (src_op0, 1);
3897 rtx s = src_op1;
3899 /* Split both "((X op Y) op X) op Y" and
3900 "((X op Y) op Y) op X" as "T op T" where T is
3901 "X op Y". */
3902 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3903 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3905 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3906 SUBST (XEXP (setsrc, 0), newdest);
3907 SUBST (XEXP (setsrc, 1), newdest);
3908 subst_done = true;
3910 /* Split "((X op X) op Y) op Y)" as "T op T" where
3911 T is "X op Y". */
3912 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3914 rtx tmp = simplify_gen_binary (code, mode, p, r);
3915 newi2pat = gen_rtx_SET (newdest, tmp);
3916 SUBST (XEXP (setsrc, 0), newdest);
3917 SUBST (XEXP (setsrc, 1), newdest);
3918 subst_done = true;
3923 if (!subst_done)
3925 newi2pat = gen_rtx_SET (newdest, *split);
3926 SUBST (*split, newdest);
3929 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3931 /* recog_for_combine might have added CLOBBERs to newi2pat.
3932 Make sure NEWPAT does not depend on the clobbered regs. */
3933 if (GET_CODE (newi2pat) == PARALLEL)
3934 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3935 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3937 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3938 if (reg_overlap_mentioned_p (reg, newpat))
3940 undo_all ();
3941 return 0;
3945 /* If the split point was a MULT and we didn't have one before,
3946 don't use one now. */
3947 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3948 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3952 /* Check for a case where we loaded from memory in a narrow mode and
3953 then sign extended it, but we need both registers. In that case,
3954 we have a PARALLEL with both loads from the same memory location.
3955 We can split this into a load from memory followed by a register-register
3956 copy. This saves at least one insn, more if register allocation can
3957 eliminate the copy.
3959 We cannot do this if the destination of the first assignment is a
3960 condition code register or cc0. We eliminate this case by making sure
3961 the SET_DEST and SET_SRC have the same mode.
3963 We cannot do this if the destination of the second assignment is
3964 a register that we have already assumed is zero-extended. Similarly
3965 for a SUBREG of such a register. */
3967 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3968 && GET_CODE (newpat) == PARALLEL
3969 && XVECLEN (newpat, 0) == 2
3970 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3971 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3972 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3973 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3974 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3975 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3976 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3977 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
3978 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3979 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3980 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3981 (REG_P (temp_expr)
3982 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3983 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3984 BITS_PER_WORD)
3985 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3986 HOST_BITS_PER_INT)
3987 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3988 != GET_MODE_MASK (word_mode))))
3989 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3990 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3991 (REG_P (temp_expr)
3992 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3993 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3994 BITS_PER_WORD)
3995 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3996 HOST_BITS_PER_INT)
3997 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3998 != GET_MODE_MASK (word_mode)))))
3999 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4000 SET_SRC (XVECEXP (newpat, 0, 1)))
4001 && ! find_reg_note (i3, REG_UNUSED,
4002 SET_DEST (XVECEXP (newpat, 0, 0))))
4004 rtx ni2dest;
4006 newi2pat = XVECEXP (newpat, 0, 0);
4007 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
4008 newpat = XVECEXP (newpat, 0, 1);
4009 SUBST (SET_SRC (newpat),
4010 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
4011 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4013 if (i2_code_number >= 0)
4014 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4016 if (insn_code_number >= 0)
4017 swap_i2i3 = 1;
4020 /* Similarly, check for a case where we have a PARALLEL of two independent
4021 SETs but we started with three insns. In this case, we can do the sets
4022 as two separate insns. This case occurs when some SET allows two
4023 other insns to combine, but the destination of that SET is still live.
4025 Also do this if we started with two insns and (at least) one of the
4026 resulting sets is a noop; this noop will be deleted later. */
4028 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4029 && GET_CODE (newpat) == PARALLEL
4030 && XVECLEN (newpat, 0) == 2
4031 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4032 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4033 && (i1
4034 || set_noop_p (XVECEXP (newpat, 0, 0))
4035 || set_noop_p (XVECEXP (newpat, 0, 1))
4036 || (!i2_was_move && !i3_was_move))
4037 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4038 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4039 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4040 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4041 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4042 XVECEXP (newpat, 0, 0))
4043 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4044 XVECEXP (newpat, 0, 1))
4045 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4046 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4048 rtx set0 = XVECEXP (newpat, 0, 0);
4049 rtx set1 = XVECEXP (newpat, 0, 1);
4051 /* Normally, it doesn't matter which of the two is done first,
4052 but the one that references cc0 can't be the second, and
4053 one which uses any regs/memory set in between i2 and i3 can't
4054 be first. The PARALLEL might also have been pre-existing in i3,
4055 so we need to make sure that we won't wrongly hoist a SET to i2
4056 that would conflict with a death note present in there. */
4057 if (!modified_between_p (SET_SRC (set1), i2, i3)
4058 && !(REG_P (SET_DEST (set1))
4059 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4060 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4061 && find_reg_note (i2, REG_DEAD,
4062 SUBREG_REG (SET_DEST (set1))))
4063 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4064 /* If I3 is a jump, ensure that set0 is a jump so that
4065 we do not create invalid RTL. */
4066 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4069 newi2pat = set1;
4070 newpat = set0;
4072 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4073 && !(REG_P (SET_DEST (set0))
4074 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4075 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4076 && find_reg_note (i2, REG_DEAD,
4077 SUBREG_REG (SET_DEST (set0))))
4078 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4079 /* If I3 is a jump, ensure that set1 is a jump so that
4080 we do not create invalid RTL. */
4081 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4084 newi2pat = set0;
4085 newpat = set1;
4087 else
4089 undo_all ();
4090 return 0;
4093 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4095 if (i2_code_number >= 0)
4097 /* recog_for_combine might have added CLOBBERs to newi2pat.
4098 Make sure NEWPAT does not depend on the clobbered regs. */
4099 if (GET_CODE (newi2pat) == PARALLEL)
4101 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4102 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4104 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4105 if (reg_overlap_mentioned_p (reg, newpat))
4107 undo_all ();
4108 return 0;
4113 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4115 if (insn_code_number >= 0)
4116 split_i2i3 = 1;
4120 /* If it still isn't recognized, fail and change things back the way they
4121 were. */
4122 if ((insn_code_number < 0
4123 /* Is the result a reasonable ASM_OPERANDS? */
4124 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4126 undo_all ();
4127 return 0;
4130 /* If we had to change another insn, make sure it is valid also. */
4131 if (undobuf.other_insn)
4133 CLEAR_HARD_REG_SET (newpat_used_regs);
4135 other_pat = PATTERN (undobuf.other_insn);
4136 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4137 &new_other_notes);
4139 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4141 undo_all ();
4142 return 0;
4146 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4147 they are adjacent to each other or not. */
4148 if (HAVE_cc0)
4150 rtx_insn *p = prev_nonnote_insn (i3);
4151 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4152 && sets_cc0_p (newi2pat))
4154 undo_all ();
4155 return 0;
4159 /* Only allow this combination if insn_cost reports that the
4160 replacement instructions are cheaper than the originals. */
4161 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4163 undo_all ();
4164 return 0;
4167 if (MAY_HAVE_DEBUG_BIND_INSNS)
4169 struct undo *undo;
4171 for (undo = undobuf.undos; undo; undo = undo->next)
4172 if (undo->kind == UNDO_MODE)
4174 rtx reg = *undo->where.r;
4175 machine_mode new_mode = GET_MODE (reg);
4176 machine_mode old_mode = undo->old_contents.m;
4178 /* Temporarily revert mode back. */
4179 adjust_reg_mode (reg, old_mode);
4181 if (reg == i2dest && i2scratch)
4183 /* If we used i2dest as a scratch register with a
4184 different mode, substitute it for the original
4185 i2src while its original mode is temporarily
4186 restored, and then clear i2scratch so that we don't
4187 do it again later. */
4188 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4189 this_basic_block);
4190 i2scratch = false;
4191 /* Put back the new mode. */
4192 adjust_reg_mode (reg, new_mode);
4194 else
4196 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4197 rtx_insn *first, *last;
4199 if (reg == i2dest)
4201 first = i2;
4202 last = last_combined_insn;
4204 else
4206 first = i3;
4207 last = undobuf.other_insn;
4208 gcc_assert (last);
4209 if (DF_INSN_LUID (last)
4210 < DF_INSN_LUID (last_combined_insn))
4211 last = last_combined_insn;
4214 /* We're dealing with a reg that changed mode but not
4215 meaning, so we want to turn it into a subreg for
4216 the new mode. However, because of REG sharing and
4217 because its mode had already changed, we have to do
4218 it in two steps. First, replace any debug uses of
4219 reg, with its original mode temporarily restored,
4220 with this copy we have created; then, replace the
4221 copy with the SUBREG of the original shared reg,
4222 once again changed to the new mode. */
4223 propagate_for_debug (first, last, reg, tempreg,
4224 this_basic_block);
4225 adjust_reg_mode (reg, new_mode);
4226 propagate_for_debug (first, last, tempreg,
4227 lowpart_subreg (old_mode, reg, new_mode),
4228 this_basic_block);
4233 /* If we will be able to accept this, we have made a
4234 change to the destination of I3. This requires us to
4235 do a few adjustments. */
4237 if (changed_i3_dest)
4239 PATTERN (i3) = newpat;
4240 adjust_for_new_dest (i3);
4243 /* We now know that we can do this combination. Merge the insns and
4244 update the status of registers and LOG_LINKS. */
4246 if (undobuf.other_insn)
4248 rtx note, next;
4250 PATTERN (undobuf.other_insn) = other_pat;
4252 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4253 ensure that they are still valid. Then add any non-duplicate
4254 notes added by recog_for_combine. */
4255 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4257 next = XEXP (note, 1);
4259 if ((REG_NOTE_KIND (note) == REG_DEAD
4260 && !reg_referenced_p (XEXP (note, 0),
4261 PATTERN (undobuf.other_insn)))
4262 ||(REG_NOTE_KIND (note) == REG_UNUSED
4263 && !reg_set_p (XEXP (note, 0),
4264 PATTERN (undobuf.other_insn)))
4265 /* Simply drop equal note since it may be no longer valid
4266 for other_insn. It may be possible to record that CC
4267 register is changed and only discard those notes, but
4268 in practice it's unnecessary complication and doesn't
4269 give any meaningful improvement.
4271 See PR78559. */
4272 || REG_NOTE_KIND (note) == REG_EQUAL
4273 || REG_NOTE_KIND (note) == REG_EQUIV)
4274 remove_note (undobuf.other_insn, note);
4277 distribute_notes (new_other_notes, undobuf.other_insn,
4278 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4279 NULL_RTX);
4282 if (swap_i2i3)
4284 /* I3 now uses what used to be its destination and which is now
4285 I2's destination. This requires us to do a few adjustments. */
4286 PATTERN (i3) = newpat;
4287 adjust_for_new_dest (i3);
4290 if (swap_i2i3 || split_i2i3)
4292 /* We might need a LOG_LINK from I3 to I2. But then we used to
4293 have one, so we still will.
4295 However, some later insn might be using I2's dest and have
4296 a LOG_LINK pointing at I3. We should change it to point at
4297 I2 instead. */
4299 /* newi2pat is usually a SET here; however, recog_for_combine might
4300 have added some clobbers. */
4301 rtx x = newi2pat;
4302 if (GET_CODE (x) == PARALLEL)
4303 x = XVECEXP (newi2pat, 0, 0);
4305 /* It can only be a SET of a REG or of a SUBREG of a REG. */
4306 unsigned int regno = reg_or_subregno (SET_DEST (x));
4308 bool done = false;
4309 for (rtx_insn *insn = NEXT_INSN (i3);
4310 !done
4311 && insn
4312 && NONDEBUG_INSN_P (insn)
4313 && BLOCK_FOR_INSN (insn) == this_basic_block;
4314 insn = NEXT_INSN (insn))
4316 struct insn_link *link;
4317 FOR_EACH_LOG_LINK (link, insn)
4318 if (link->insn == i3 && link->regno == regno)
4320 link->insn = i2;
4321 done = true;
4322 break;
4328 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4329 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4330 rtx midnotes = 0;
4331 int from_luid;
4332 /* Compute which registers we expect to eliminate. newi2pat may be setting
4333 either i3dest or i2dest, so we must check it. */
4334 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4335 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4336 || !i2dest_killed
4337 ? 0 : i2dest);
4338 /* For i1, we need to compute both local elimination and global
4339 elimination information with respect to newi2pat because i1dest
4340 may be the same as i3dest, in which case newi2pat may be setting
4341 i1dest. Global information is used when distributing REG_DEAD
4342 note for i2 and i3, in which case it does matter if newi2pat sets
4343 i1dest or not.
4345 Local information is used when distributing REG_DEAD note for i1,
4346 in which case it doesn't matter if newi2pat sets i1dest or not.
4347 See PR62151, if we have four insns combination:
4348 i0: r0 <- i0src
4349 i1: r1 <- i1src (using r0)
4350 REG_DEAD (r0)
4351 i2: r0 <- i2src (using r1)
4352 i3: r3 <- i3src (using r0)
4353 ix: using r0
4354 From i1's point of view, r0 is eliminated, no matter if it is set
4355 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4356 should be discarded.
4358 Note local information only affects cases in forms like "I1->I2->I3",
4359 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4360 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4361 i0dest anyway. */
4362 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4363 || !i1dest_killed
4364 ? 0 : i1dest);
4365 rtx elim_i1 = (local_elim_i1 == 0
4366 || (newi2pat && reg_set_p (i1dest, newi2pat))
4367 ? 0 : i1dest);
4368 /* Same case as i1. */
4369 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4370 ? 0 : i0dest);
4371 rtx elim_i0 = (local_elim_i0 == 0
4372 || (newi2pat && reg_set_p (i0dest, newi2pat))
4373 ? 0 : i0dest);
4375 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4376 clear them. */
4377 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4378 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4379 if (i1)
4380 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4381 if (i0)
4382 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4384 /* Ensure that we do not have something that should not be shared but
4385 occurs multiple times in the new insns. Check this by first
4386 resetting all the `used' flags and then copying anything is shared. */
4388 reset_used_flags (i3notes);
4389 reset_used_flags (i2notes);
4390 reset_used_flags (i1notes);
4391 reset_used_flags (i0notes);
4392 reset_used_flags (newpat);
4393 reset_used_flags (newi2pat);
4394 if (undobuf.other_insn)
4395 reset_used_flags (PATTERN (undobuf.other_insn));
4397 i3notes = copy_rtx_if_shared (i3notes);
4398 i2notes = copy_rtx_if_shared (i2notes);
4399 i1notes = copy_rtx_if_shared (i1notes);
4400 i0notes = copy_rtx_if_shared (i0notes);
4401 newpat = copy_rtx_if_shared (newpat);
4402 newi2pat = copy_rtx_if_shared (newi2pat);
4403 if (undobuf.other_insn)
4404 reset_used_flags (PATTERN (undobuf.other_insn));
4406 INSN_CODE (i3) = insn_code_number;
4407 PATTERN (i3) = newpat;
4409 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4411 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4412 link = XEXP (link, 1))
4414 if (substed_i2)
4416 /* I2SRC must still be meaningful at this point. Some
4417 splitting operations can invalidate I2SRC, but those
4418 operations do not apply to calls. */
4419 gcc_assert (i2src);
4420 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4421 i2dest, i2src);
4423 if (substed_i1)
4424 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4425 i1dest, i1src);
4426 if (substed_i0)
4427 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4428 i0dest, i0src);
4432 if (undobuf.other_insn)
4433 INSN_CODE (undobuf.other_insn) = other_code_number;
4435 /* We had one special case above where I2 had more than one set and
4436 we replaced a destination of one of those sets with the destination
4437 of I3. In that case, we have to update LOG_LINKS of insns later
4438 in this basic block. Note that this (expensive) case is rare.
4440 Also, in this case, we must pretend that all REG_NOTEs for I2
4441 actually came from I3, so that REG_UNUSED notes from I2 will be
4442 properly handled. */
4444 if (i3_subst_into_i2)
4446 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4447 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4448 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4449 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4450 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4451 && ! find_reg_note (i2, REG_UNUSED,
4452 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4453 for (temp_insn = NEXT_INSN (i2);
4454 temp_insn
4455 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4456 || BB_HEAD (this_basic_block) != temp_insn);
4457 temp_insn = NEXT_INSN (temp_insn))
4458 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4459 FOR_EACH_LOG_LINK (link, temp_insn)
4460 if (link->insn == i2)
4461 link->insn = i3;
4463 if (i3notes)
4465 rtx link = i3notes;
4466 while (XEXP (link, 1))
4467 link = XEXP (link, 1);
4468 XEXP (link, 1) = i2notes;
4470 else
4471 i3notes = i2notes;
4472 i2notes = 0;
4475 LOG_LINKS (i3) = NULL;
4476 REG_NOTES (i3) = 0;
4477 LOG_LINKS (i2) = NULL;
4478 REG_NOTES (i2) = 0;
4480 if (newi2pat)
4482 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4483 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4484 this_basic_block);
4485 INSN_CODE (i2) = i2_code_number;
4486 PATTERN (i2) = newi2pat;
4488 else
4490 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4491 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4492 this_basic_block);
4493 SET_INSN_DELETED (i2);
4496 if (i1)
4498 LOG_LINKS (i1) = NULL;
4499 REG_NOTES (i1) = 0;
4500 if (MAY_HAVE_DEBUG_BIND_INSNS)
4501 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4502 this_basic_block);
4503 SET_INSN_DELETED (i1);
4506 if (i0)
4508 LOG_LINKS (i0) = NULL;
4509 REG_NOTES (i0) = 0;
4510 if (MAY_HAVE_DEBUG_BIND_INSNS)
4511 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4512 this_basic_block);
4513 SET_INSN_DELETED (i0);
4516 /* Get death notes for everything that is now used in either I3 or
4517 I2 and used to die in a previous insn. If we built two new
4518 patterns, move from I1 to I2 then I2 to I3 so that we get the
4519 proper movement on registers that I2 modifies. */
4521 if (i0)
4522 from_luid = DF_INSN_LUID (i0);
4523 else if (i1)
4524 from_luid = DF_INSN_LUID (i1);
4525 else
4526 from_luid = DF_INSN_LUID (i2);
4527 if (newi2pat)
4528 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4529 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4531 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4532 if (i3notes)
4533 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4534 elim_i2, elim_i1, elim_i0);
4535 if (i2notes)
4536 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4537 elim_i2, elim_i1, elim_i0);
4538 if (i1notes)
4539 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4540 elim_i2, local_elim_i1, local_elim_i0);
4541 if (i0notes)
4542 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4543 elim_i2, elim_i1, local_elim_i0);
4544 if (midnotes)
4545 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4546 elim_i2, elim_i1, elim_i0);
4548 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4549 know these are REG_UNUSED and want them to go to the desired insn,
4550 so we always pass it as i3. */
4552 if (newi2pat && new_i2_notes)
4553 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4554 NULL_RTX);
4556 if (new_i3_notes)
4557 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4558 NULL_RTX);
4560 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4561 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4562 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4563 in that case, it might delete I2. Similarly for I2 and I1.
4564 Show an additional death due to the REG_DEAD note we make here. If
4565 we discard it in distribute_notes, we will decrement it again. */
4567 if (i3dest_killed)
4569 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4570 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4571 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4572 elim_i1, elim_i0);
4573 else
4574 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4575 elim_i2, elim_i1, elim_i0);
4578 if (i2dest_in_i2src)
4580 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4581 if (newi2pat && reg_set_p (i2dest, newi2pat))
4582 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4583 NULL_RTX, NULL_RTX);
4584 else
4585 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4586 NULL_RTX, NULL_RTX, NULL_RTX);
4589 if (i1dest_in_i1src)
4591 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4592 if (newi2pat && reg_set_p (i1dest, newi2pat))
4593 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4594 NULL_RTX, NULL_RTX);
4595 else
4596 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4597 NULL_RTX, NULL_RTX, NULL_RTX);
4600 if (i0dest_in_i0src)
4602 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4603 if (newi2pat && reg_set_p (i0dest, newi2pat))
4604 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4605 NULL_RTX, NULL_RTX);
4606 else
4607 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4608 NULL_RTX, NULL_RTX, NULL_RTX);
4611 distribute_links (i3links);
4612 distribute_links (i2links);
4613 distribute_links (i1links);
4614 distribute_links (i0links);
4616 if (REG_P (i2dest))
4618 struct insn_link *link;
4619 rtx_insn *i2_insn = 0;
4620 rtx i2_val = 0, set;
4622 /* The insn that used to set this register doesn't exist, and
4623 this life of the register may not exist either. See if one of
4624 I3's links points to an insn that sets I2DEST. If it does,
4625 that is now the last known value for I2DEST. If we don't update
4626 this and I2 set the register to a value that depended on its old
4627 contents, we will get confused. If this insn is used, thing
4628 will be set correctly in combine_instructions. */
4629 FOR_EACH_LOG_LINK (link, i3)
4630 if ((set = single_set (link->insn)) != 0
4631 && rtx_equal_p (i2dest, SET_DEST (set)))
4632 i2_insn = link->insn, i2_val = SET_SRC (set);
4634 record_value_for_reg (i2dest, i2_insn, i2_val);
4636 /* If the reg formerly set in I2 died only once and that was in I3,
4637 zero its use count so it won't make `reload' do any work. */
4638 if (! added_sets_2
4639 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4640 && ! i2dest_in_i2src
4641 && REGNO (i2dest) < reg_n_sets_max)
4642 INC_REG_N_SETS (REGNO (i2dest), -1);
4645 if (i1 && REG_P (i1dest))
4647 struct insn_link *link;
4648 rtx_insn *i1_insn = 0;
4649 rtx i1_val = 0, set;
4651 FOR_EACH_LOG_LINK (link, i3)
4652 if ((set = single_set (link->insn)) != 0
4653 && rtx_equal_p (i1dest, SET_DEST (set)))
4654 i1_insn = link->insn, i1_val = SET_SRC (set);
4656 record_value_for_reg (i1dest, i1_insn, i1_val);
4658 if (! added_sets_1
4659 && ! i1dest_in_i1src
4660 && REGNO (i1dest) < reg_n_sets_max)
4661 INC_REG_N_SETS (REGNO (i1dest), -1);
4664 if (i0 && REG_P (i0dest))
4666 struct insn_link *link;
4667 rtx_insn *i0_insn = 0;
4668 rtx i0_val = 0, set;
4670 FOR_EACH_LOG_LINK (link, i3)
4671 if ((set = single_set (link->insn)) != 0
4672 && rtx_equal_p (i0dest, SET_DEST (set)))
4673 i0_insn = link->insn, i0_val = SET_SRC (set);
4675 record_value_for_reg (i0dest, i0_insn, i0_val);
4677 if (! added_sets_0
4678 && ! i0dest_in_i0src
4679 && REGNO (i0dest) < reg_n_sets_max)
4680 INC_REG_N_SETS (REGNO (i0dest), -1);
4683 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4684 been made to this insn. The order is important, because newi2pat
4685 can affect nonzero_bits of newpat. */
4686 if (newi2pat)
4687 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4688 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4691 if (undobuf.other_insn != NULL_RTX)
4693 if (dump_file)
4695 fprintf (dump_file, "modifying other_insn ");
4696 dump_insn_slim (dump_file, undobuf.other_insn);
4698 df_insn_rescan (undobuf.other_insn);
4701 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4703 if (dump_file)
4705 fprintf (dump_file, "modifying insn i0 ");
4706 dump_insn_slim (dump_file, i0);
4708 df_insn_rescan (i0);
4711 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4713 if (dump_file)
4715 fprintf (dump_file, "modifying insn i1 ");
4716 dump_insn_slim (dump_file, i1);
4718 df_insn_rescan (i1);
4721 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4723 if (dump_file)
4725 fprintf (dump_file, "modifying insn i2 ");
4726 dump_insn_slim (dump_file, i2);
4728 df_insn_rescan (i2);
4731 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4733 if (dump_file)
4735 fprintf (dump_file, "modifying insn i3 ");
4736 dump_insn_slim (dump_file, i3);
4738 df_insn_rescan (i3);
4741 /* Set new_direct_jump_p if a new return or simple jump instruction
4742 has been created. Adjust the CFG accordingly. */
4743 if (returnjump_p (i3) || any_uncondjump_p (i3))
4745 *new_direct_jump_p = 1;
4746 mark_jump_label (PATTERN (i3), i3, 0);
4747 update_cfg_for_uncondjump (i3);
4750 if (undobuf.other_insn != NULL_RTX
4751 && (returnjump_p (undobuf.other_insn)
4752 || any_uncondjump_p (undobuf.other_insn)))
4754 *new_direct_jump_p = 1;
4755 update_cfg_for_uncondjump (undobuf.other_insn);
4758 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4759 && XEXP (PATTERN (i3), 0) == const1_rtx)
4761 basic_block bb = BLOCK_FOR_INSN (i3);
4762 gcc_assert (bb);
4763 remove_edge (split_block (bb, i3));
4764 emit_barrier_after_bb (bb);
4765 *new_direct_jump_p = 1;
4768 if (undobuf.other_insn
4769 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4770 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4772 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4773 gcc_assert (bb);
4774 remove_edge (split_block (bb, undobuf.other_insn));
4775 emit_barrier_after_bb (bb);
4776 *new_direct_jump_p = 1;
4779 /* A noop might also need cleaning up of CFG, if it comes from the
4780 simplification of a jump. */
4781 if (JUMP_P (i3)
4782 && GET_CODE (newpat) == SET
4783 && SET_SRC (newpat) == pc_rtx
4784 && SET_DEST (newpat) == pc_rtx)
4786 *new_direct_jump_p = 1;
4787 update_cfg_for_uncondjump (i3);
4790 if (undobuf.other_insn != NULL_RTX
4791 && JUMP_P (undobuf.other_insn)
4792 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4793 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4794 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4796 *new_direct_jump_p = 1;
4797 update_cfg_for_uncondjump (undobuf.other_insn);
4800 combine_successes++;
4801 undo_commit ();
4803 rtx_insn *ret = newi2pat ? i2 : i3;
4804 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4805 ret = added_links_insn;
4806 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4807 ret = added_notes_insn;
4809 return ret;
4812 /* Get a marker for undoing to the current state. */
4814 static void *
4815 get_undo_marker (void)
4817 return undobuf.undos;
4820 /* Undo the modifications up to the marker. */
4822 static void
4823 undo_to_marker (void *marker)
4825 struct undo *undo, *next;
4827 for (undo = undobuf.undos; undo != marker; undo = next)
4829 gcc_assert (undo);
4831 next = undo->next;
4832 switch (undo->kind)
4834 case UNDO_RTX:
4835 *undo->where.r = undo->old_contents.r;
4836 break;
4837 case UNDO_INT:
4838 *undo->where.i = undo->old_contents.i;
4839 break;
4840 case UNDO_MODE:
4841 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4842 break;
4843 case UNDO_LINKS:
4844 *undo->where.l = undo->old_contents.l;
4845 break;
4846 default:
4847 gcc_unreachable ();
4850 undo->next = undobuf.frees;
4851 undobuf.frees = undo;
4854 undobuf.undos = (struct undo *) marker;
4857 /* Undo all the modifications recorded in undobuf. */
4859 static void
4860 undo_all (void)
4862 undo_to_marker (0);
4865 /* We've committed to accepting the changes we made. Move all
4866 of the undos to the free list. */
4868 static void
4869 undo_commit (void)
4871 struct undo *undo, *next;
4873 for (undo = undobuf.undos; undo; undo = next)
4875 next = undo->next;
4876 undo->next = undobuf.frees;
4877 undobuf.frees = undo;
4879 undobuf.undos = 0;
4882 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4883 where we have an arithmetic expression and return that point. LOC will
4884 be inside INSN.
4886 try_combine will call this function to see if an insn can be split into
4887 two insns. */
4889 static rtx *
4890 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4892 rtx x = *loc;
4893 enum rtx_code code = GET_CODE (x);
4894 rtx *split;
4895 unsigned HOST_WIDE_INT len = 0;
4896 HOST_WIDE_INT pos = 0;
4897 int unsignedp = 0;
4898 rtx inner = NULL_RTX;
4899 scalar_int_mode mode, inner_mode;
4901 /* First special-case some codes. */
4902 switch (code)
4904 case SUBREG:
4905 #ifdef INSN_SCHEDULING
4906 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4907 point. */
4908 if (MEM_P (SUBREG_REG (x)))
4909 return loc;
4910 #endif
4911 return find_split_point (&SUBREG_REG (x), insn, false);
4913 case MEM:
4914 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4915 using LO_SUM and HIGH. */
4916 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4917 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4919 machine_mode address_mode = get_address_mode (x);
4921 SUBST (XEXP (x, 0),
4922 gen_rtx_LO_SUM (address_mode,
4923 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4924 XEXP (x, 0)));
4925 return &XEXP (XEXP (x, 0), 0);
4928 /* If we have a PLUS whose second operand is a constant and the
4929 address is not valid, perhaps will can split it up using
4930 the machine-specific way to split large constants. We use
4931 the first pseudo-reg (one of the virtual regs) as a placeholder;
4932 it will not remain in the result. */
4933 if (GET_CODE (XEXP (x, 0)) == PLUS
4934 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4935 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4936 MEM_ADDR_SPACE (x)))
4938 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4939 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4940 subst_insn);
4942 /* This should have produced two insns, each of which sets our
4943 placeholder. If the source of the second is a valid address,
4944 we can make put both sources together and make a split point
4945 in the middle. */
4947 if (seq
4948 && NEXT_INSN (seq) != NULL_RTX
4949 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4950 && NONJUMP_INSN_P (seq)
4951 && GET_CODE (PATTERN (seq)) == SET
4952 && SET_DEST (PATTERN (seq)) == reg
4953 && ! reg_mentioned_p (reg,
4954 SET_SRC (PATTERN (seq)))
4955 && NONJUMP_INSN_P (NEXT_INSN (seq))
4956 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4957 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4958 && memory_address_addr_space_p
4959 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4960 MEM_ADDR_SPACE (x)))
4962 rtx src1 = SET_SRC (PATTERN (seq));
4963 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4965 /* Replace the placeholder in SRC2 with SRC1. If we can
4966 find where in SRC2 it was placed, that can become our
4967 split point and we can replace this address with SRC2.
4968 Just try two obvious places. */
4970 src2 = replace_rtx (src2, reg, src1);
4971 split = 0;
4972 if (XEXP (src2, 0) == src1)
4973 split = &XEXP (src2, 0);
4974 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4975 && XEXP (XEXP (src2, 0), 0) == src1)
4976 split = &XEXP (XEXP (src2, 0), 0);
4978 if (split)
4980 SUBST (XEXP (x, 0), src2);
4981 return split;
4985 /* If that didn't work, perhaps the first operand is complex and
4986 needs to be computed separately, so make a split point there.
4987 This will occur on machines that just support REG + CONST
4988 and have a constant moved through some previous computation. */
4990 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4991 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4992 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4993 return &XEXP (XEXP (x, 0), 0);
4996 /* If we have a PLUS whose first operand is complex, try computing it
4997 separately by making a split there. */
4998 if (GET_CODE (XEXP (x, 0)) == PLUS
4999 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5000 MEM_ADDR_SPACE (x))
5001 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
5002 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5003 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5004 return &XEXP (XEXP (x, 0), 0);
5005 break;
5007 case SET:
5008 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
5009 ZERO_EXTRACT, the most likely reason why this doesn't match is that
5010 we need to put the operand into a register. So split at that
5011 point. */
5013 if (SET_DEST (x) == cc0_rtx
5014 && GET_CODE (SET_SRC (x)) != COMPARE
5015 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
5016 && !OBJECT_P (SET_SRC (x))
5017 && ! (GET_CODE (SET_SRC (x)) == SUBREG
5018 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
5019 return &SET_SRC (x);
5021 /* See if we can split SET_SRC as it stands. */
5022 split = find_split_point (&SET_SRC (x), insn, true);
5023 if (split && split != &SET_SRC (x))
5024 return split;
5026 /* See if we can split SET_DEST as it stands. */
5027 split = find_split_point (&SET_DEST (x), insn, false);
5028 if (split && split != &SET_DEST (x))
5029 return split;
5031 /* See if this is a bitfield assignment with everything constant. If
5032 so, this is an IOR of an AND, so split it into that. */
5033 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5034 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5035 &inner_mode)
5036 && HWI_COMPUTABLE_MODE_P (inner_mode)
5037 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5038 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5039 && CONST_INT_P (SET_SRC (x))
5040 && ((INTVAL (XEXP (SET_DEST (x), 1))
5041 + INTVAL (XEXP (SET_DEST (x), 2)))
5042 <= GET_MODE_PRECISION (inner_mode))
5043 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5045 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5046 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5047 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
5048 rtx dest = XEXP (SET_DEST (x), 0);
5049 unsigned HOST_WIDE_INT mask
5050 = (HOST_WIDE_INT_1U << len) - 1;
5051 rtx or_mask;
5053 if (BITS_BIG_ENDIAN)
5054 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5056 or_mask = gen_int_mode (src << pos, inner_mode);
5057 if (src == mask)
5058 SUBST (SET_SRC (x),
5059 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5060 else
5062 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5063 SUBST (SET_SRC (x),
5064 simplify_gen_binary (IOR, inner_mode,
5065 simplify_gen_binary (AND, inner_mode,
5066 dest, negmask),
5067 or_mask));
5070 SUBST (SET_DEST (x), dest);
5072 split = find_split_point (&SET_SRC (x), insn, true);
5073 if (split && split != &SET_SRC (x))
5074 return split;
5077 /* Otherwise, see if this is an operation that we can split into two.
5078 If so, try to split that. */
5079 code = GET_CODE (SET_SRC (x));
5081 switch (code)
5083 case AND:
5084 /* If we are AND'ing with a large constant that is only a single
5085 bit and the result is only being used in a context where we
5086 need to know if it is zero or nonzero, replace it with a bit
5087 extraction. This will avoid the large constant, which might
5088 have taken more than one insn to make. If the constant were
5089 not a valid argument to the AND but took only one insn to make,
5090 this is no worse, but if it took more than one insn, it will
5091 be better. */
5093 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5094 && REG_P (XEXP (SET_SRC (x), 0))
5095 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5096 && REG_P (SET_DEST (x))
5097 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5098 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5099 && XEXP (*split, 0) == SET_DEST (x)
5100 && XEXP (*split, 1) == const0_rtx)
5102 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5103 XEXP (SET_SRC (x), 0),
5104 pos, NULL_RTX, 1, 1, 0, 0);
5105 if (extraction != 0)
5107 SUBST (SET_SRC (x), extraction);
5108 return find_split_point (loc, insn, false);
5111 break;
5113 case NE:
5114 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5115 is known to be on, this can be converted into a NEG of a shift. */
5116 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5117 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5118 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5119 GET_MODE (XEXP (SET_SRC (x),
5120 0))))) >= 1))
5122 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5123 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5124 SUBST (SET_SRC (x),
5125 gen_rtx_NEG (mode,
5126 gen_rtx_LSHIFTRT (mode,
5127 XEXP (SET_SRC (x), 0),
5128 pos_rtx)));
5130 split = find_split_point (&SET_SRC (x), insn, true);
5131 if (split && split != &SET_SRC (x))
5132 return split;
5134 break;
5136 case SIGN_EXTEND:
5137 inner = XEXP (SET_SRC (x), 0);
5139 /* We can't optimize if either mode is a partial integer
5140 mode as we don't know how many bits are significant
5141 in those modes. */
5142 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5143 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5144 break;
5146 pos = 0;
5147 len = GET_MODE_PRECISION (inner_mode);
5148 unsignedp = 0;
5149 break;
5151 case SIGN_EXTRACT:
5152 case ZERO_EXTRACT:
5153 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5154 &inner_mode)
5155 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5156 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5158 inner = XEXP (SET_SRC (x), 0);
5159 len = INTVAL (XEXP (SET_SRC (x), 1));
5160 pos = INTVAL (XEXP (SET_SRC (x), 2));
5162 if (BITS_BIG_ENDIAN)
5163 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5164 unsignedp = (code == ZERO_EXTRACT);
5166 break;
5168 default:
5169 break;
5172 if (len
5173 && known_subrange_p (pos, len,
5174 0, GET_MODE_PRECISION (GET_MODE (inner)))
5175 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5177 /* For unsigned, we have a choice of a shift followed by an
5178 AND or two shifts. Use two shifts for field sizes where the
5179 constant might be too large. We assume here that we can
5180 always at least get 8-bit constants in an AND insn, which is
5181 true for every current RISC. */
5183 if (unsignedp && len <= 8)
5185 unsigned HOST_WIDE_INT mask
5186 = (HOST_WIDE_INT_1U << len) - 1;
5187 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5188 SUBST (SET_SRC (x),
5189 gen_rtx_AND (mode,
5190 gen_rtx_LSHIFTRT
5191 (mode, gen_lowpart (mode, inner), pos_rtx),
5192 gen_int_mode (mask, mode)));
5194 split = find_split_point (&SET_SRC (x), insn, true);
5195 if (split && split != &SET_SRC (x))
5196 return split;
5198 else
5200 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5201 int right_bits = GET_MODE_PRECISION (mode) - len;
5202 SUBST (SET_SRC (x),
5203 gen_rtx_fmt_ee
5204 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5205 gen_rtx_ASHIFT (mode,
5206 gen_lowpart (mode, inner),
5207 gen_int_shift_amount (mode, left_bits)),
5208 gen_int_shift_amount (mode, right_bits)));
5210 split = find_split_point (&SET_SRC (x), insn, true);
5211 if (split && split != &SET_SRC (x))
5212 return split;
5216 /* See if this is a simple operation with a constant as the second
5217 operand. It might be that this constant is out of range and hence
5218 could be used as a split point. */
5219 if (BINARY_P (SET_SRC (x))
5220 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5221 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5222 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5223 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5224 return &XEXP (SET_SRC (x), 1);
5226 /* Finally, see if this is a simple operation with its first operand
5227 not in a register. The operation might require this operand in a
5228 register, so return it as a split point. We can always do this
5229 because if the first operand were another operation, we would have
5230 already found it as a split point. */
5231 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5232 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5233 return &XEXP (SET_SRC (x), 0);
5235 return 0;
5237 case AND:
5238 case IOR:
5239 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5240 it is better to write this as (not (ior A B)) so we can split it.
5241 Similarly for IOR. */
5242 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5244 SUBST (*loc,
5245 gen_rtx_NOT (GET_MODE (x),
5246 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5247 GET_MODE (x),
5248 XEXP (XEXP (x, 0), 0),
5249 XEXP (XEXP (x, 1), 0))));
5250 return find_split_point (loc, insn, set_src);
5253 /* Many RISC machines have a large set of logical insns. If the
5254 second operand is a NOT, put it first so we will try to split the
5255 other operand first. */
5256 if (GET_CODE (XEXP (x, 1)) == NOT)
5258 rtx tem = XEXP (x, 0);
5259 SUBST (XEXP (x, 0), XEXP (x, 1));
5260 SUBST (XEXP (x, 1), tem);
5262 break;
5264 case PLUS:
5265 case MINUS:
5266 /* Canonicalization can produce (minus A (mult B C)), where C is a
5267 constant. It may be better to try splitting (plus (mult B -C) A)
5268 instead if this isn't a multiply by a power of two. */
5269 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5270 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5271 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5273 machine_mode mode = GET_MODE (x);
5274 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5275 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5276 SUBST (*loc, gen_rtx_PLUS (mode,
5277 gen_rtx_MULT (mode,
5278 XEXP (XEXP (x, 1), 0),
5279 gen_int_mode (other_int,
5280 mode)),
5281 XEXP (x, 0)));
5282 return find_split_point (loc, insn, set_src);
5285 /* Split at a multiply-accumulate instruction. However if this is
5286 the SET_SRC, we likely do not have such an instruction and it's
5287 worthless to try this split. */
5288 if (!set_src
5289 && (GET_CODE (XEXP (x, 0)) == MULT
5290 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5291 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5292 return loc;
5294 default:
5295 break;
5298 /* Otherwise, select our actions depending on our rtx class. */
5299 switch (GET_RTX_CLASS (code))
5301 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5302 case RTX_TERNARY:
5303 split = find_split_point (&XEXP (x, 2), insn, false);
5304 if (split)
5305 return split;
5306 /* fall through */
5307 case RTX_BIN_ARITH:
5308 case RTX_COMM_ARITH:
5309 case RTX_COMPARE:
5310 case RTX_COMM_COMPARE:
5311 split = find_split_point (&XEXP (x, 1), insn, false);
5312 if (split)
5313 return split;
5314 /* fall through */
5315 case RTX_UNARY:
5316 /* Some machines have (and (shift ...) ...) insns. If X is not
5317 an AND, but XEXP (X, 0) is, use it as our split point. */
5318 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5319 return &XEXP (x, 0);
5321 split = find_split_point (&XEXP (x, 0), insn, false);
5322 if (split)
5323 return split;
5324 return loc;
5326 default:
5327 /* Otherwise, we don't have a split point. */
5328 return 0;
5332 /* Throughout X, replace FROM with TO, and return the result.
5333 The result is TO if X is FROM;
5334 otherwise the result is X, but its contents may have been modified.
5335 If they were modified, a record was made in undobuf so that
5336 undo_all will (among other things) return X to its original state.
5338 If the number of changes necessary is too much to record to undo,
5339 the excess changes are not made, so the result is invalid.
5340 The changes already made can still be undone.
5341 undobuf.num_undo is incremented for such changes, so by testing that
5342 the caller can tell whether the result is valid.
5344 `n_occurrences' is incremented each time FROM is replaced.
5346 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5348 IN_COND is nonzero if we are at the top level of a condition.
5350 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5351 by copying if `n_occurrences' is nonzero. */
5353 static rtx
5354 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5356 enum rtx_code code = GET_CODE (x);
5357 machine_mode op0_mode = VOIDmode;
5358 const char *fmt;
5359 int len, i;
5360 rtx new_rtx;
5362 /* Two expressions are equal if they are identical copies of a shared
5363 RTX or if they are both registers with the same register number
5364 and mode. */
5366 #define COMBINE_RTX_EQUAL_P(X,Y) \
5367 ((X) == (Y) \
5368 || (REG_P (X) && REG_P (Y) \
5369 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5371 /* Do not substitute into clobbers of regs -- this will never result in
5372 valid RTL. */
5373 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5374 return x;
5376 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5378 n_occurrences++;
5379 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5382 /* If X and FROM are the same register but different modes, they
5383 will not have been seen as equal above. However, the log links code
5384 will make a LOG_LINKS entry for that case. If we do nothing, we
5385 will try to rerecognize our original insn and, when it succeeds,
5386 we will delete the feeding insn, which is incorrect.
5388 So force this insn not to match in this (rare) case. */
5389 if (! in_dest && code == REG && REG_P (from)
5390 && reg_overlap_mentioned_p (x, from))
5391 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5393 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5394 of which may contain things that can be combined. */
5395 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5396 return x;
5398 /* It is possible to have a subexpression appear twice in the insn.
5399 Suppose that FROM is a register that appears within TO.
5400 Then, after that subexpression has been scanned once by `subst',
5401 the second time it is scanned, TO may be found. If we were
5402 to scan TO here, we would find FROM within it and create a
5403 self-referent rtl structure which is completely wrong. */
5404 if (COMBINE_RTX_EQUAL_P (x, to))
5405 return to;
5407 /* Parallel asm_operands need special attention because all of the
5408 inputs are shared across the arms. Furthermore, unsharing the
5409 rtl results in recognition failures. Failure to handle this case
5410 specially can result in circular rtl.
5412 Solve this by doing a normal pass across the first entry of the
5413 parallel, and only processing the SET_DESTs of the subsequent
5414 entries. Ug. */
5416 if (code == PARALLEL
5417 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5418 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5420 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5422 /* If this substitution failed, this whole thing fails. */
5423 if (GET_CODE (new_rtx) == CLOBBER
5424 && XEXP (new_rtx, 0) == const0_rtx)
5425 return new_rtx;
5427 SUBST (XVECEXP (x, 0, 0), new_rtx);
5429 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5431 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5433 if (!REG_P (dest)
5434 && GET_CODE (dest) != CC0
5435 && GET_CODE (dest) != PC)
5437 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5439 /* If this substitution failed, this whole thing fails. */
5440 if (GET_CODE (new_rtx) == CLOBBER
5441 && XEXP (new_rtx, 0) == const0_rtx)
5442 return new_rtx;
5444 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5448 else
5450 len = GET_RTX_LENGTH (code);
5451 fmt = GET_RTX_FORMAT (code);
5453 /* We don't need to process a SET_DEST that is a register, CC0,
5454 or PC, so set up to skip this common case. All other cases
5455 where we want to suppress replacing something inside a
5456 SET_SRC are handled via the IN_DEST operand. */
5457 if (code == SET
5458 && (REG_P (SET_DEST (x))
5459 || GET_CODE (SET_DEST (x)) == CC0
5460 || GET_CODE (SET_DEST (x)) == PC))
5461 fmt = "ie";
5463 /* Trying to simplify the operands of a widening MULT is not likely
5464 to create RTL matching a machine insn. */
5465 if (code == MULT
5466 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5467 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5468 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5469 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5470 && REG_P (XEXP (XEXP (x, 0), 0))
5471 && REG_P (XEXP (XEXP (x, 1), 0))
5472 && from == to)
5473 return x;
5476 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5477 constant. */
5478 if (fmt[0] == 'e')
5479 op0_mode = GET_MODE (XEXP (x, 0));
5481 for (i = 0; i < len; i++)
5483 if (fmt[i] == 'E')
5485 int j;
5486 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5488 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5490 new_rtx = (unique_copy && n_occurrences
5491 ? copy_rtx (to) : to);
5492 n_occurrences++;
5494 else
5496 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5497 unique_copy);
5499 /* If this substitution failed, this whole thing
5500 fails. */
5501 if (GET_CODE (new_rtx) == CLOBBER
5502 && XEXP (new_rtx, 0) == const0_rtx)
5503 return new_rtx;
5506 SUBST (XVECEXP (x, i, j), new_rtx);
5509 else if (fmt[i] == 'e')
5511 /* If this is a register being set, ignore it. */
5512 new_rtx = XEXP (x, i);
5513 if (in_dest
5514 && i == 0
5515 && (((code == SUBREG || code == ZERO_EXTRACT)
5516 && REG_P (new_rtx))
5517 || code == STRICT_LOW_PART))
5520 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5522 /* In general, don't install a subreg involving two
5523 modes not tieable. It can worsen register
5524 allocation, and can even make invalid reload
5525 insns, since the reg inside may need to be copied
5526 from in the outside mode, and that may be invalid
5527 if it is an fp reg copied in integer mode.
5529 We allow two exceptions to this: It is valid if
5530 it is inside another SUBREG and the mode of that
5531 SUBREG and the mode of the inside of TO is
5532 tieable and it is valid if X is a SET that copies
5533 FROM to CC0. */
5535 if (GET_CODE (to) == SUBREG
5536 && !targetm.modes_tieable_p (GET_MODE (to),
5537 GET_MODE (SUBREG_REG (to)))
5538 && ! (code == SUBREG
5539 && (targetm.modes_tieable_p
5540 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5541 && (!HAVE_cc0
5542 || (! (code == SET
5543 && i == 1
5544 && XEXP (x, 0) == cc0_rtx))))
5545 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5547 if (code == SUBREG
5548 && REG_P (to)
5549 && REGNO (to) < FIRST_PSEUDO_REGISTER
5550 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5551 SUBREG_BYTE (x),
5552 GET_MODE (x)) < 0)
5553 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5555 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5556 n_occurrences++;
5558 else
5559 /* If we are in a SET_DEST, suppress most cases unless we
5560 have gone inside a MEM, in which case we want to
5561 simplify the address. We assume here that things that
5562 are actually part of the destination have their inner
5563 parts in the first expression. This is true for SUBREG,
5564 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5565 things aside from REG and MEM that should appear in a
5566 SET_DEST. */
5567 new_rtx = subst (XEXP (x, i), from, to,
5568 (((in_dest
5569 && (code == SUBREG || code == STRICT_LOW_PART
5570 || code == ZERO_EXTRACT))
5571 || code == SET)
5572 && i == 0),
5573 code == IF_THEN_ELSE && i == 0,
5574 unique_copy);
5576 /* If we found that we will have to reject this combination,
5577 indicate that by returning the CLOBBER ourselves, rather than
5578 an expression containing it. This will speed things up as
5579 well as prevent accidents where two CLOBBERs are considered
5580 to be equal, thus producing an incorrect simplification. */
5582 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5583 return new_rtx;
5585 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5587 machine_mode mode = GET_MODE (x);
5589 x = simplify_subreg (GET_MODE (x), new_rtx,
5590 GET_MODE (SUBREG_REG (x)),
5591 SUBREG_BYTE (x));
5592 if (! x)
5593 x = gen_rtx_CLOBBER (mode, const0_rtx);
5595 else if (CONST_SCALAR_INT_P (new_rtx)
5596 && (GET_CODE (x) == ZERO_EXTEND
5597 || GET_CODE (x) == FLOAT
5598 || GET_CODE (x) == UNSIGNED_FLOAT))
5600 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5601 new_rtx,
5602 GET_MODE (XEXP (x, 0)));
5603 if (!x)
5604 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5606 else
5607 SUBST (XEXP (x, i), new_rtx);
5612 /* Check if we are loading something from the constant pool via float
5613 extension; in this case we would undo compress_float_constant
5614 optimization and degenerate constant load to an immediate value. */
5615 if (GET_CODE (x) == FLOAT_EXTEND
5616 && MEM_P (XEXP (x, 0))
5617 && MEM_READONLY_P (XEXP (x, 0)))
5619 rtx tmp = avoid_constant_pool_reference (x);
5620 if (x != tmp)
5621 return x;
5624 /* Try to simplify X. If the simplification changed the code, it is likely
5625 that further simplification will help, so loop, but limit the number
5626 of repetitions that will be performed. */
5628 for (i = 0; i < 4; i++)
5630 /* If X is sufficiently simple, don't bother trying to do anything
5631 with it. */
5632 if (code != CONST_INT && code != REG && code != CLOBBER)
5633 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5635 if (GET_CODE (x) == code)
5636 break;
5638 code = GET_CODE (x);
5640 /* We no longer know the original mode of operand 0 since we
5641 have changed the form of X) */
5642 op0_mode = VOIDmode;
5645 return x;
5648 /* If X is a commutative operation whose operands are not in the canonical
5649 order, use substitutions to swap them. */
5651 static void
5652 maybe_swap_commutative_operands (rtx x)
5654 if (COMMUTATIVE_ARITH_P (x)
5655 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5657 rtx temp = XEXP (x, 0);
5658 SUBST (XEXP (x, 0), XEXP (x, 1));
5659 SUBST (XEXP (x, 1), temp);
5663 /* Simplify X, a piece of RTL. We just operate on the expression at the
5664 outer level; call `subst' to simplify recursively. Return the new
5665 expression.
5667 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5668 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5669 of a condition. */
5671 static rtx
5672 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5673 int in_cond)
5675 enum rtx_code code = GET_CODE (x);
5676 machine_mode mode = GET_MODE (x);
5677 scalar_int_mode int_mode;
5678 rtx temp;
5679 int i;
5681 /* If this is a commutative operation, put a constant last and a complex
5682 expression first. We don't need to do this for comparisons here. */
5683 maybe_swap_commutative_operands (x);
5685 /* Try to fold this expression in case we have constants that weren't
5686 present before. */
5687 temp = 0;
5688 switch (GET_RTX_CLASS (code))
5690 case RTX_UNARY:
5691 if (op0_mode == VOIDmode)
5692 op0_mode = GET_MODE (XEXP (x, 0));
5693 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5694 break;
5695 case RTX_COMPARE:
5696 case RTX_COMM_COMPARE:
5698 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5699 if (cmp_mode == VOIDmode)
5701 cmp_mode = GET_MODE (XEXP (x, 1));
5702 if (cmp_mode == VOIDmode)
5703 cmp_mode = op0_mode;
5705 temp = simplify_relational_operation (code, mode, cmp_mode,
5706 XEXP (x, 0), XEXP (x, 1));
5708 break;
5709 case RTX_COMM_ARITH:
5710 case RTX_BIN_ARITH:
5711 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5712 break;
5713 case RTX_BITFIELD_OPS:
5714 case RTX_TERNARY:
5715 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5716 XEXP (x, 1), XEXP (x, 2));
5717 break;
5718 default:
5719 break;
5722 if (temp)
5724 x = temp;
5725 code = GET_CODE (temp);
5726 op0_mode = VOIDmode;
5727 mode = GET_MODE (temp);
5730 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5731 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5732 things. Check for cases where both arms are testing the same
5733 condition.
5735 Don't do anything if all operands are very simple. */
5737 if ((BINARY_P (x)
5738 && ((!OBJECT_P (XEXP (x, 0))
5739 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5740 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5741 || (!OBJECT_P (XEXP (x, 1))
5742 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5743 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5744 || (UNARY_P (x)
5745 && (!OBJECT_P (XEXP (x, 0))
5746 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5747 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5749 rtx cond, true_rtx, false_rtx;
5751 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5752 if (cond != 0
5753 /* If everything is a comparison, what we have is highly unlikely
5754 to be simpler, so don't use it. */
5755 && ! (COMPARISON_P (x)
5756 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5757 /* Similarly, if we end up with one of the expressions the same
5758 as the original, it is certainly not simpler. */
5759 && ! rtx_equal_p (x, true_rtx)
5760 && ! rtx_equal_p (x, false_rtx))
5762 rtx cop1 = const0_rtx;
5763 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5765 if (cond_code == NE && COMPARISON_P (cond))
5766 return x;
5768 /* Simplify the alternative arms; this may collapse the true and
5769 false arms to store-flag values. Be careful to use copy_rtx
5770 here since true_rtx or false_rtx might share RTL with x as a
5771 result of the if_then_else_cond call above. */
5772 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5773 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5775 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5776 is unlikely to be simpler. */
5777 if (general_operand (true_rtx, VOIDmode)
5778 && general_operand (false_rtx, VOIDmode))
5780 enum rtx_code reversed;
5782 /* Restarting if we generate a store-flag expression will cause
5783 us to loop. Just drop through in this case. */
5785 /* If the result values are STORE_FLAG_VALUE and zero, we can
5786 just make the comparison operation. */
5787 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5788 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5789 cond, cop1);
5790 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5791 && ((reversed = reversed_comparison_code_parts
5792 (cond_code, cond, cop1, NULL))
5793 != UNKNOWN))
5794 x = simplify_gen_relational (reversed, mode, VOIDmode,
5795 cond, cop1);
5797 /* Likewise, we can make the negate of a comparison operation
5798 if the result values are - STORE_FLAG_VALUE and zero. */
5799 else if (CONST_INT_P (true_rtx)
5800 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5801 && false_rtx == const0_rtx)
5802 x = simplify_gen_unary (NEG, mode,
5803 simplify_gen_relational (cond_code,
5804 mode, VOIDmode,
5805 cond, cop1),
5806 mode);
5807 else if (CONST_INT_P (false_rtx)
5808 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5809 && true_rtx == const0_rtx
5810 && ((reversed = reversed_comparison_code_parts
5811 (cond_code, cond, cop1, NULL))
5812 != UNKNOWN))
5813 x = simplify_gen_unary (NEG, mode,
5814 simplify_gen_relational (reversed,
5815 mode, VOIDmode,
5816 cond, cop1),
5817 mode);
5818 else
5819 return gen_rtx_IF_THEN_ELSE (mode,
5820 simplify_gen_relational (cond_code,
5821 mode,
5822 VOIDmode,
5823 cond,
5824 cop1),
5825 true_rtx, false_rtx);
5827 code = GET_CODE (x);
5828 op0_mode = VOIDmode;
5833 /* First see if we can apply the inverse distributive law. */
5834 if (code == PLUS || code == MINUS
5835 || code == AND || code == IOR || code == XOR)
5837 x = apply_distributive_law (x);
5838 code = GET_CODE (x);
5839 op0_mode = VOIDmode;
5842 /* If CODE is an associative operation not otherwise handled, see if we
5843 can associate some operands. This can win if they are constants or
5844 if they are logically related (i.e. (a & b) & a). */
5845 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5846 || code == AND || code == IOR || code == XOR
5847 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5848 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5849 || (flag_associative_math && FLOAT_MODE_P (mode))))
5851 if (GET_CODE (XEXP (x, 0)) == code)
5853 rtx other = XEXP (XEXP (x, 0), 0);
5854 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5855 rtx inner_op1 = XEXP (x, 1);
5856 rtx inner;
5858 /* Make sure we pass the constant operand if any as the second
5859 one if this is a commutative operation. */
5860 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5861 std::swap (inner_op0, inner_op1);
5862 inner = simplify_binary_operation (code == MINUS ? PLUS
5863 : code == DIV ? MULT
5864 : code,
5865 mode, inner_op0, inner_op1);
5867 /* For commutative operations, try the other pair if that one
5868 didn't simplify. */
5869 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5871 other = XEXP (XEXP (x, 0), 1);
5872 inner = simplify_binary_operation (code, mode,
5873 XEXP (XEXP (x, 0), 0),
5874 XEXP (x, 1));
5877 if (inner)
5878 return simplify_gen_binary (code, mode, other, inner);
5882 /* A little bit of algebraic simplification here. */
5883 switch (code)
5885 case MEM:
5886 /* Ensure that our address has any ASHIFTs converted to MULT in case
5887 address-recognizing predicates are called later. */
5888 temp = make_compound_operation (XEXP (x, 0), MEM);
5889 SUBST (XEXP (x, 0), temp);
5890 break;
5892 case SUBREG:
5893 if (op0_mode == VOIDmode)
5894 op0_mode = GET_MODE (SUBREG_REG (x));
5896 /* See if this can be moved to simplify_subreg. */
5897 if (CONSTANT_P (SUBREG_REG (x))
5898 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5899 /* Don't call gen_lowpart if the inner mode
5900 is VOIDmode and we cannot simplify it, as SUBREG without
5901 inner mode is invalid. */
5902 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5903 || gen_lowpart_common (mode, SUBREG_REG (x))))
5904 return gen_lowpart (mode, SUBREG_REG (x));
5906 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5907 break;
5909 rtx temp;
5910 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5911 SUBREG_BYTE (x));
5912 if (temp)
5913 return temp;
5915 /* If op is known to have all lower bits zero, the result is zero. */
5916 scalar_int_mode int_mode, int_op0_mode;
5917 if (!in_dest
5918 && is_a <scalar_int_mode> (mode, &int_mode)
5919 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5920 && (GET_MODE_PRECISION (int_mode)
5921 < GET_MODE_PRECISION (int_op0_mode))
5922 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
5923 SUBREG_BYTE (x))
5924 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5925 && (nonzero_bits (SUBREG_REG (x), int_op0_mode)
5926 & GET_MODE_MASK (int_mode)) == 0)
5927 return CONST0_RTX (int_mode);
5930 /* Don't change the mode of the MEM if that would change the meaning
5931 of the address. */
5932 if (MEM_P (SUBREG_REG (x))
5933 && (MEM_VOLATILE_P (SUBREG_REG (x))
5934 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5935 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5936 return gen_rtx_CLOBBER (mode, const0_rtx);
5938 /* Note that we cannot do any narrowing for non-constants since
5939 we might have been counting on using the fact that some bits were
5940 zero. We now do this in the SET. */
5942 break;
5944 case NEG:
5945 temp = expand_compound_operation (XEXP (x, 0));
5947 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5948 replaced by (lshiftrt X C). This will convert
5949 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5951 if (GET_CODE (temp) == ASHIFTRT
5952 && CONST_INT_P (XEXP (temp, 1))
5953 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
5954 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5955 INTVAL (XEXP (temp, 1)));
5957 /* If X has only a single bit that might be nonzero, say, bit I, convert
5958 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5959 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5960 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5961 or a SUBREG of one since we'd be making the expression more
5962 complex if it was just a register. */
5964 if (!REG_P (temp)
5965 && ! (GET_CODE (temp) == SUBREG
5966 && REG_P (SUBREG_REG (temp)))
5967 && is_a <scalar_int_mode> (mode, &int_mode)
5968 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
5970 rtx temp1 = simplify_shift_const
5971 (NULL_RTX, ASHIFTRT, int_mode,
5972 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
5973 GET_MODE_PRECISION (int_mode) - 1 - i),
5974 GET_MODE_PRECISION (int_mode) - 1 - i);
5976 /* If all we did was surround TEMP with the two shifts, we
5977 haven't improved anything, so don't use it. Otherwise,
5978 we are better off with TEMP1. */
5979 if (GET_CODE (temp1) != ASHIFTRT
5980 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5981 || XEXP (XEXP (temp1, 0), 0) != temp)
5982 return temp1;
5984 break;
5986 case TRUNCATE:
5987 /* We can't handle truncation to a partial integer mode here
5988 because we don't know the real bitsize of the partial
5989 integer mode. */
5990 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5991 break;
5993 if (HWI_COMPUTABLE_MODE_P (mode))
5994 SUBST (XEXP (x, 0),
5995 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5996 GET_MODE_MASK (mode), 0));
5998 /* We can truncate a constant value and return it. */
6000 poly_int64 c;
6001 if (poly_int_rtx_p (XEXP (x, 0), &c))
6002 return gen_int_mode (c, mode);
6005 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
6006 whose value is a comparison can be replaced with a subreg if
6007 STORE_FLAG_VALUE permits. */
6008 if (HWI_COMPUTABLE_MODE_P (mode)
6009 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6010 && (temp = get_last_value (XEXP (x, 0)))
6011 && COMPARISON_P (temp))
6012 return gen_lowpart (mode, XEXP (x, 0));
6013 break;
6015 case CONST:
6016 /* (const (const X)) can become (const X). Do it this way rather than
6017 returning the inner CONST since CONST can be shared with a
6018 REG_EQUAL note. */
6019 if (GET_CODE (XEXP (x, 0)) == CONST)
6020 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6021 break;
6023 case LO_SUM:
6024 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6025 can add in an offset. find_split_point will split this address up
6026 again if it doesn't match. */
6027 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6028 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6029 return XEXP (x, 1);
6030 break;
6032 case PLUS:
6033 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6034 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6035 bit-field and can be replaced by either a sign_extend or a
6036 sign_extract. The `and' may be a zero_extend and the two
6037 <c>, -<c> constants may be reversed. */
6038 if (GET_CODE (XEXP (x, 0)) == XOR
6039 && is_a <scalar_int_mode> (mode, &int_mode)
6040 && CONST_INT_P (XEXP (x, 1))
6041 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6042 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6043 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6044 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6045 && HWI_COMPUTABLE_MODE_P (int_mode)
6046 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6047 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6048 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6049 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6050 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6051 && known_eq ((GET_MODE_PRECISION
6052 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6053 (unsigned int) i + 1))))
6054 return simplify_shift_const
6055 (NULL_RTX, ASHIFTRT, int_mode,
6056 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6057 XEXP (XEXP (XEXP (x, 0), 0), 0),
6058 GET_MODE_PRECISION (int_mode) - (i + 1)),
6059 GET_MODE_PRECISION (int_mode) - (i + 1));
6061 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6062 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6063 the bitsize of the mode - 1. This allows simplification of
6064 "a = (b & 8) == 0;" */
6065 if (XEXP (x, 1) == constm1_rtx
6066 && !REG_P (XEXP (x, 0))
6067 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6068 && REG_P (SUBREG_REG (XEXP (x, 0))))
6069 && is_a <scalar_int_mode> (mode, &int_mode)
6070 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6071 return simplify_shift_const
6072 (NULL_RTX, ASHIFTRT, int_mode,
6073 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6074 gen_rtx_XOR (int_mode, XEXP (x, 0),
6075 const1_rtx),
6076 GET_MODE_PRECISION (int_mode) - 1),
6077 GET_MODE_PRECISION (int_mode) - 1);
6079 /* If we are adding two things that have no bits in common, convert
6080 the addition into an IOR. This will often be further simplified,
6081 for example in cases like ((a & 1) + (a & 2)), which can
6082 become a & 3. */
6084 if (HWI_COMPUTABLE_MODE_P (mode)
6085 && (nonzero_bits (XEXP (x, 0), mode)
6086 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6088 /* Try to simplify the expression further. */
6089 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6090 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6092 /* If we could, great. If not, do not go ahead with the IOR
6093 replacement, since PLUS appears in many special purpose
6094 address arithmetic instructions. */
6095 if (GET_CODE (temp) != CLOBBER
6096 && (GET_CODE (temp) != IOR
6097 || ((XEXP (temp, 0) != XEXP (x, 0)
6098 || XEXP (temp, 1) != XEXP (x, 1))
6099 && (XEXP (temp, 0) != XEXP (x, 1)
6100 || XEXP (temp, 1) != XEXP (x, 0)))))
6101 return temp;
6104 /* Canonicalize x + x into x << 1. */
6105 if (GET_MODE_CLASS (mode) == MODE_INT
6106 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6107 && !side_effects_p (XEXP (x, 0)))
6108 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6110 break;
6112 case MINUS:
6113 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6114 (and <foo> (const_int pow2-1)) */
6115 if (is_a <scalar_int_mode> (mode, &int_mode)
6116 && GET_CODE (XEXP (x, 1)) == AND
6117 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6118 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6119 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6120 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6121 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6122 break;
6124 case MULT:
6125 /* If we have (mult (plus A B) C), apply the distributive law and then
6126 the inverse distributive law to see if things simplify. This
6127 occurs mostly in addresses, often when unrolling loops. */
6129 if (GET_CODE (XEXP (x, 0)) == PLUS)
6131 rtx result = distribute_and_simplify_rtx (x, 0);
6132 if (result)
6133 return result;
6136 /* Try simplify a*(b/c) as (a*b)/c. */
6137 if (FLOAT_MODE_P (mode) && flag_associative_math
6138 && GET_CODE (XEXP (x, 0)) == DIV)
6140 rtx tem = simplify_binary_operation (MULT, mode,
6141 XEXP (XEXP (x, 0), 0),
6142 XEXP (x, 1));
6143 if (tem)
6144 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6146 break;
6148 case UDIV:
6149 /* If this is a divide by a power of two, treat it as a shift if
6150 its first operand is a shift. */
6151 if (is_a <scalar_int_mode> (mode, &int_mode)
6152 && CONST_INT_P (XEXP (x, 1))
6153 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6154 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6155 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6156 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6157 || GET_CODE (XEXP (x, 0)) == ROTATE
6158 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6159 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6160 XEXP (x, 0), i);
6161 break;
6163 case EQ: case NE:
6164 case GT: case GTU: case GE: case GEU:
6165 case LT: case LTU: case LE: case LEU:
6166 case UNEQ: case LTGT:
6167 case UNGT: case UNGE:
6168 case UNLT: case UNLE:
6169 case UNORDERED: case ORDERED:
6170 /* If the first operand is a condition code, we can't do anything
6171 with it. */
6172 if (GET_CODE (XEXP (x, 0)) == COMPARE
6173 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6174 && ! CC0_P (XEXP (x, 0))))
6176 rtx op0 = XEXP (x, 0);
6177 rtx op1 = XEXP (x, 1);
6178 enum rtx_code new_code;
6180 if (GET_CODE (op0) == COMPARE)
6181 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6183 /* Simplify our comparison, if possible. */
6184 new_code = simplify_comparison (code, &op0, &op1);
6186 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6187 if only the low-order bit is possibly nonzero in X (such as when
6188 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6189 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6190 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6191 (plus X 1).
6193 Remove any ZERO_EXTRACT we made when thinking this was a
6194 comparison. It may now be simpler to use, e.g., an AND. If a
6195 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6196 the call to make_compound_operation in the SET case.
6198 Don't apply these optimizations if the caller would
6199 prefer a comparison rather than a value.
6200 E.g., for the condition in an IF_THEN_ELSE most targets need
6201 an explicit comparison. */
6203 if (in_cond)
6206 else if (STORE_FLAG_VALUE == 1
6207 && new_code == NE
6208 && is_int_mode (mode, &int_mode)
6209 && op1 == const0_rtx
6210 && int_mode == GET_MODE (op0)
6211 && nonzero_bits (op0, int_mode) == 1)
6212 return gen_lowpart (int_mode,
6213 expand_compound_operation (op0));
6215 else if (STORE_FLAG_VALUE == 1
6216 && new_code == NE
6217 && is_int_mode (mode, &int_mode)
6218 && op1 == const0_rtx
6219 && int_mode == GET_MODE (op0)
6220 && (num_sign_bit_copies (op0, int_mode)
6221 == GET_MODE_PRECISION (int_mode)))
6223 op0 = expand_compound_operation (op0);
6224 return simplify_gen_unary (NEG, int_mode,
6225 gen_lowpart (int_mode, op0),
6226 int_mode);
6229 else if (STORE_FLAG_VALUE == 1
6230 && new_code == EQ
6231 && is_int_mode (mode, &int_mode)
6232 && op1 == const0_rtx
6233 && int_mode == GET_MODE (op0)
6234 && nonzero_bits (op0, int_mode) == 1)
6236 op0 = expand_compound_operation (op0);
6237 return simplify_gen_binary (XOR, int_mode,
6238 gen_lowpart (int_mode, op0),
6239 const1_rtx);
6242 else if (STORE_FLAG_VALUE == 1
6243 && new_code == EQ
6244 && is_int_mode (mode, &int_mode)
6245 && op1 == const0_rtx
6246 && int_mode == GET_MODE (op0)
6247 && (num_sign_bit_copies (op0, int_mode)
6248 == GET_MODE_PRECISION (int_mode)))
6250 op0 = expand_compound_operation (op0);
6251 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6254 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6255 those above. */
6256 if (in_cond)
6259 else if (STORE_FLAG_VALUE == -1
6260 && new_code == NE
6261 && is_int_mode (mode, &int_mode)
6262 && op1 == const0_rtx
6263 && int_mode == GET_MODE (op0)
6264 && (num_sign_bit_copies (op0, int_mode)
6265 == GET_MODE_PRECISION (int_mode)))
6266 return gen_lowpart (int_mode, expand_compound_operation (op0));
6268 else if (STORE_FLAG_VALUE == -1
6269 && new_code == NE
6270 && is_int_mode (mode, &int_mode)
6271 && op1 == const0_rtx
6272 && int_mode == GET_MODE (op0)
6273 && nonzero_bits (op0, int_mode) == 1)
6275 op0 = expand_compound_operation (op0);
6276 return simplify_gen_unary (NEG, int_mode,
6277 gen_lowpart (int_mode, op0),
6278 int_mode);
6281 else if (STORE_FLAG_VALUE == -1
6282 && new_code == EQ
6283 && is_int_mode (mode, &int_mode)
6284 && op1 == const0_rtx
6285 && int_mode == GET_MODE (op0)
6286 && (num_sign_bit_copies (op0, int_mode)
6287 == GET_MODE_PRECISION (int_mode)))
6289 op0 = expand_compound_operation (op0);
6290 return simplify_gen_unary (NOT, int_mode,
6291 gen_lowpart (int_mode, op0),
6292 int_mode);
6295 /* If X is 0/1, (eq X 0) is X-1. */
6296 else if (STORE_FLAG_VALUE == -1
6297 && new_code == EQ
6298 && is_int_mode (mode, &int_mode)
6299 && op1 == const0_rtx
6300 && int_mode == GET_MODE (op0)
6301 && nonzero_bits (op0, int_mode) == 1)
6303 op0 = expand_compound_operation (op0);
6304 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6307 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6308 one bit that might be nonzero, we can convert (ne x 0) to
6309 (ashift x c) where C puts the bit in the sign bit. Remove any
6310 AND with STORE_FLAG_VALUE when we are done, since we are only
6311 going to test the sign bit. */
6312 if (new_code == NE
6313 && is_int_mode (mode, &int_mode)
6314 && HWI_COMPUTABLE_MODE_P (int_mode)
6315 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6316 && op1 == const0_rtx
6317 && int_mode == GET_MODE (op0)
6318 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6320 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6321 expand_compound_operation (op0),
6322 GET_MODE_PRECISION (int_mode) - 1 - i);
6323 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6324 return XEXP (x, 0);
6325 else
6326 return x;
6329 /* If the code changed, return a whole new comparison.
6330 We also need to avoid using SUBST in cases where
6331 simplify_comparison has widened a comparison with a CONST_INT,
6332 since in that case the wider CONST_INT may fail the sanity
6333 checks in do_SUBST. */
6334 if (new_code != code
6335 || (CONST_INT_P (op1)
6336 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6337 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6338 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6340 /* Otherwise, keep this operation, but maybe change its operands.
6341 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6342 SUBST (XEXP (x, 0), op0);
6343 SUBST (XEXP (x, 1), op1);
6345 break;
6347 case IF_THEN_ELSE:
6348 return simplify_if_then_else (x);
6350 case ZERO_EXTRACT:
6351 case SIGN_EXTRACT:
6352 case ZERO_EXTEND:
6353 case SIGN_EXTEND:
6354 /* If we are processing SET_DEST, we are done. */
6355 if (in_dest)
6356 return x;
6358 return expand_compound_operation (x);
6360 case SET:
6361 return simplify_set (x);
6363 case AND:
6364 case IOR:
6365 return simplify_logical (x);
6367 case ASHIFT:
6368 case LSHIFTRT:
6369 case ASHIFTRT:
6370 case ROTATE:
6371 case ROTATERT:
6372 /* If this is a shift by a constant amount, simplify it. */
6373 if (CONST_INT_P (XEXP (x, 1)))
6374 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6375 INTVAL (XEXP (x, 1)));
6377 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6378 SUBST (XEXP (x, 1),
6379 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6380 (HOST_WIDE_INT_1U
6381 << exact_log2 (GET_MODE_UNIT_BITSIZE
6382 (GET_MODE (x))))
6383 - 1,
6384 0));
6385 break;
6387 default:
6388 break;
6391 return x;
6394 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6396 static rtx
6397 simplify_if_then_else (rtx x)
6399 machine_mode mode = GET_MODE (x);
6400 rtx cond = XEXP (x, 0);
6401 rtx true_rtx = XEXP (x, 1);
6402 rtx false_rtx = XEXP (x, 2);
6403 enum rtx_code true_code = GET_CODE (cond);
6404 int comparison_p = COMPARISON_P (cond);
6405 rtx temp;
6406 int i;
6407 enum rtx_code false_code;
6408 rtx reversed;
6409 scalar_int_mode int_mode, inner_mode;
6411 /* Simplify storing of the truth value. */
6412 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6413 return simplify_gen_relational (true_code, mode, VOIDmode,
6414 XEXP (cond, 0), XEXP (cond, 1));
6416 /* Also when the truth value has to be reversed. */
6417 if (comparison_p
6418 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6419 && (reversed = reversed_comparison (cond, mode)))
6420 return reversed;
6422 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6423 in it is being compared against certain values. Get the true and false
6424 comparisons and see if that says anything about the value of each arm. */
6426 if (comparison_p
6427 && ((false_code = reversed_comparison_code (cond, NULL))
6428 != UNKNOWN)
6429 && REG_P (XEXP (cond, 0)))
6431 HOST_WIDE_INT nzb;
6432 rtx from = XEXP (cond, 0);
6433 rtx true_val = XEXP (cond, 1);
6434 rtx false_val = true_val;
6435 int swapped = 0;
6437 /* If FALSE_CODE is EQ, swap the codes and arms. */
6439 if (false_code == EQ)
6441 swapped = 1, true_code = EQ, false_code = NE;
6442 std::swap (true_rtx, false_rtx);
6445 scalar_int_mode from_mode;
6446 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6448 /* If we are comparing against zero and the expression being
6449 tested has only a single bit that might be nonzero, that is
6450 its value when it is not equal to zero. Similarly if it is
6451 known to be -1 or 0. */
6452 if (true_code == EQ
6453 && true_val == const0_rtx
6454 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6456 false_code = EQ;
6457 false_val = gen_int_mode (nzb, from_mode);
6459 else if (true_code == EQ
6460 && true_val == const0_rtx
6461 && (num_sign_bit_copies (from, from_mode)
6462 == GET_MODE_PRECISION (from_mode)))
6464 false_code = EQ;
6465 false_val = constm1_rtx;
6469 /* Now simplify an arm if we know the value of the register in the
6470 branch and it is used in the arm. Be careful due to the potential
6471 of locally-shared RTL. */
6473 if (reg_mentioned_p (from, true_rtx))
6474 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6475 from, true_val),
6476 pc_rtx, pc_rtx, 0, 0, 0);
6477 if (reg_mentioned_p (from, false_rtx))
6478 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6479 from, false_val),
6480 pc_rtx, pc_rtx, 0, 0, 0);
6482 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6483 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6485 true_rtx = XEXP (x, 1);
6486 false_rtx = XEXP (x, 2);
6487 true_code = GET_CODE (cond);
6490 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6491 reversed, do so to avoid needing two sets of patterns for
6492 subtract-and-branch insns. Similarly if we have a constant in the true
6493 arm, the false arm is the same as the first operand of the comparison, or
6494 the false arm is more complicated than the true arm. */
6496 if (comparison_p
6497 && reversed_comparison_code (cond, NULL) != UNKNOWN
6498 && (true_rtx == pc_rtx
6499 || (CONSTANT_P (true_rtx)
6500 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6501 || true_rtx == const0_rtx
6502 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6503 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6504 && !OBJECT_P (false_rtx))
6505 || reg_mentioned_p (true_rtx, false_rtx)
6506 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6508 true_code = reversed_comparison_code (cond, NULL);
6509 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6510 SUBST (XEXP (x, 1), false_rtx);
6511 SUBST (XEXP (x, 2), true_rtx);
6513 std::swap (true_rtx, false_rtx);
6514 cond = XEXP (x, 0);
6516 /* It is possible that the conditional has been simplified out. */
6517 true_code = GET_CODE (cond);
6518 comparison_p = COMPARISON_P (cond);
6521 /* If the two arms are identical, we don't need the comparison. */
6523 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6524 return true_rtx;
6526 /* Convert a == b ? b : a to "a". */
6527 if (true_code == EQ && ! side_effects_p (cond)
6528 && !HONOR_NANS (mode)
6529 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6530 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6531 return false_rtx;
6532 else if (true_code == NE && ! side_effects_p (cond)
6533 && !HONOR_NANS (mode)
6534 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6535 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6536 return true_rtx;
6538 /* Look for cases where we have (abs x) or (neg (abs X)). */
6540 if (GET_MODE_CLASS (mode) == MODE_INT
6541 && comparison_p
6542 && XEXP (cond, 1) == const0_rtx
6543 && GET_CODE (false_rtx) == NEG
6544 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6545 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6546 && ! side_effects_p (true_rtx))
6547 switch (true_code)
6549 case GT:
6550 case GE:
6551 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6552 case LT:
6553 case LE:
6554 return
6555 simplify_gen_unary (NEG, mode,
6556 simplify_gen_unary (ABS, mode, true_rtx, mode),
6557 mode);
6558 default:
6559 break;
6562 /* Look for MIN or MAX. */
6564 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6565 && comparison_p
6566 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6567 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6568 && ! side_effects_p (cond))
6569 switch (true_code)
6571 case GE:
6572 case GT:
6573 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6574 case LE:
6575 case LT:
6576 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6577 case GEU:
6578 case GTU:
6579 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6580 case LEU:
6581 case LTU:
6582 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6583 default:
6584 break;
6587 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6588 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6589 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6590 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6591 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6592 neither 1 or -1, but it isn't worth checking for. */
6594 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6595 && comparison_p
6596 && is_int_mode (mode, &int_mode)
6597 && ! side_effects_p (x))
6599 rtx t = make_compound_operation (true_rtx, SET);
6600 rtx f = make_compound_operation (false_rtx, SET);
6601 rtx cond_op0 = XEXP (cond, 0);
6602 rtx cond_op1 = XEXP (cond, 1);
6603 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6604 scalar_int_mode m = int_mode;
6605 rtx z = 0, c1 = NULL_RTX;
6607 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6608 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6609 || GET_CODE (t) == ASHIFT
6610 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6611 && rtx_equal_p (XEXP (t, 0), f))
6612 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6614 /* If an identity-zero op is commutative, check whether there
6615 would be a match if we swapped the operands. */
6616 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6617 || GET_CODE (t) == XOR)
6618 && rtx_equal_p (XEXP (t, 1), f))
6619 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6620 else if (GET_CODE (t) == SIGN_EXTEND
6621 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6622 && (GET_CODE (XEXP (t, 0)) == PLUS
6623 || GET_CODE (XEXP (t, 0)) == MINUS
6624 || GET_CODE (XEXP (t, 0)) == IOR
6625 || GET_CODE (XEXP (t, 0)) == XOR
6626 || GET_CODE (XEXP (t, 0)) == ASHIFT
6627 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6628 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6629 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6630 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6631 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6632 && (num_sign_bit_copies (f, GET_MODE (f))
6633 > (unsigned int)
6634 (GET_MODE_PRECISION (int_mode)
6635 - GET_MODE_PRECISION (inner_mode))))
6637 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6638 extend_op = SIGN_EXTEND;
6639 m = inner_mode;
6641 else if (GET_CODE (t) == SIGN_EXTEND
6642 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6643 && (GET_CODE (XEXP (t, 0)) == PLUS
6644 || GET_CODE (XEXP (t, 0)) == IOR
6645 || GET_CODE (XEXP (t, 0)) == XOR)
6646 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6647 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6648 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6649 && (num_sign_bit_copies (f, GET_MODE (f))
6650 > (unsigned int)
6651 (GET_MODE_PRECISION (int_mode)
6652 - GET_MODE_PRECISION (inner_mode))))
6654 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6655 extend_op = SIGN_EXTEND;
6656 m = inner_mode;
6658 else if (GET_CODE (t) == ZERO_EXTEND
6659 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6660 && (GET_CODE (XEXP (t, 0)) == PLUS
6661 || GET_CODE (XEXP (t, 0)) == MINUS
6662 || GET_CODE (XEXP (t, 0)) == IOR
6663 || GET_CODE (XEXP (t, 0)) == XOR
6664 || GET_CODE (XEXP (t, 0)) == ASHIFT
6665 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6666 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6667 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6668 && HWI_COMPUTABLE_MODE_P (int_mode)
6669 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6670 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6671 && ((nonzero_bits (f, GET_MODE (f))
6672 & ~GET_MODE_MASK (inner_mode))
6673 == 0))
6675 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6676 extend_op = ZERO_EXTEND;
6677 m = inner_mode;
6679 else if (GET_CODE (t) == ZERO_EXTEND
6680 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6681 && (GET_CODE (XEXP (t, 0)) == PLUS
6682 || GET_CODE (XEXP (t, 0)) == IOR
6683 || GET_CODE (XEXP (t, 0)) == XOR)
6684 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6685 && HWI_COMPUTABLE_MODE_P (int_mode)
6686 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6687 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6688 && ((nonzero_bits (f, GET_MODE (f))
6689 & ~GET_MODE_MASK (inner_mode))
6690 == 0))
6692 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6693 extend_op = ZERO_EXTEND;
6694 m = inner_mode;
6697 if (z)
6699 machine_mode cm = m;
6700 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6701 && GET_MODE (c1) != VOIDmode)
6702 cm = GET_MODE (c1);
6703 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6704 cond_op0, cond_op1),
6705 pc_rtx, pc_rtx, 0, 0, 0);
6706 temp = simplify_gen_binary (MULT, cm, temp,
6707 simplify_gen_binary (MULT, cm, c1,
6708 const_true_rtx));
6709 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6710 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6712 if (extend_op != UNKNOWN)
6713 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6715 return temp;
6719 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6720 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6721 negation of a single bit, we can convert this operation to a shift. We
6722 can actually do this more generally, but it doesn't seem worth it. */
6724 if (true_code == NE
6725 && is_a <scalar_int_mode> (mode, &int_mode)
6726 && XEXP (cond, 1) == const0_rtx
6727 && false_rtx == const0_rtx
6728 && CONST_INT_P (true_rtx)
6729 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6730 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6731 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6732 == GET_MODE_PRECISION (int_mode))
6733 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6734 return
6735 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6736 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6738 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6739 non-zero bit in A is C1. */
6740 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6741 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6742 && is_a <scalar_int_mode> (mode, &int_mode)
6743 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6744 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6745 == nonzero_bits (XEXP (cond, 0), inner_mode)
6746 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6748 rtx val = XEXP (cond, 0);
6749 if (inner_mode == int_mode)
6750 return val;
6751 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6752 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6755 return x;
6758 /* Simplify X, a SET expression. Return the new expression. */
6760 static rtx
6761 simplify_set (rtx x)
6763 rtx src = SET_SRC (x);
6764 rtx dest = SET_DEST (x);
6765 machine_mode mode
6766 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6767 rtx_insn *other_insn;
6768 rtx *cc_use;
6769 scalar_int_mode int_mode;
6771 /* (set (pc) (return)) gets written as (return). */
6772 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6773 return src;
6775 /* Now that we know for sure which bits of SRC we are using, see if we can
6776 simplify the expression for the object knowing that we only need the
6777 low-order bits. */
6779 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6781 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6782 SUBST (SET_SRC (x), src);
6785 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6786 the comparison result and try to simplify it unless we already have used
6787 undobuf.other_insn. */
6788 if ((GET_MODE_CLASS (mode) == MODE_CC
6789 || GET_CODE (src) == COMPARE
6790 || CC0_P (dest))
6791 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6792 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6793 && COMPARISON_P (*cc_use)
6794 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6796 enum rtx_code old_code = GET_CODE (*cc_use);
6797 enum rtx_code new_code;
6798 rtx op0, op1, tmp;
6799 int other_changed = 0;
6800 rtx inner_compare = NULL_RTX;
6801 machine_mode compare_mode = GET_MODE (dest);
6803 if (GET_CODE (src) == COMPARE)
6805 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6806 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6808 inner_compare = op0;
6809 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6812 else
6813 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6815 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6816 op0, op1);
6817 if (!tmp)
6818 new_code = old_code;
6819 else if (!CONSTANT_P (tmp))
6821 new_code = GET_CODE (tmp);
6822 op0 = XEXP (tmp, 0);
6823 op1 = XEXP (tmp, 1);
6825 else
6827 rtx pat = PATTERN (other_insn);
6828 undobuf.other_insn = other_insn;
6829 SUBST (*cc_use, tmp);
6831 /* Attempt to simplify CC user. */
6832 if (GET_CODE (pat) == SET)
6834 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6835 if (new_rtx != NULL_RTX)
6836 SUBST (SET_SRC (pat), new_rtx);
6839 /* Convert X into a no-op move. */
6840 SUBST (SET_DEST (x), pc_rtx);
6841 SUBST (SET_SRC (x), pc_rtx);
6842 return x;
6845 /* Simplify our comparison, if possible. */
6846 new_code = simplify_comparison (new_code, &op0, &op1);
6848 #ifdef SELECT_CC_MODE
6849 /* If this machine has CC modes other than CCmode, check to see if we
6850 need to use a different CC mode here. */
6851 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6852 compare_mode = GET_MODE (op0);
6853 else if (inner_compare
6854 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6855 && new_code == old_code
6856 && op0 == XEXP (inner_compare, 0)
6857 && op1 == XEXP (inner_compare, 1))
6858 compare_mode = GET_MODE (inner_compare);
6859 else
6860 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6862 /* If the mode changed, we have to change SET_DEST, the mode in the
6863 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6864 a hard register, just build new versions with the proper mode. If it
6865 is a pseudo, we lose unless it is only time we set the pseudo, in
6866 which case we can safely change its mode. */
6867 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6869 if (can_change_dest_mode (dest, 0, compare_mode))
6871 unsigned int regno = REGNO (dest);
6872 rtx new_dest;
6874 if (regno < FIRST_PSEUDO_REGISTER)
6875 new_dest = gen_rtx_REG (compare_mode, regno);
6876 else
6878 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6879 new_dest = regno_reg_rtx[regno];
6882 SUBST (SET_DEST (x), new_dest);
6883 SUBST (XEXP (*cc_use, 0), new_dest);
6884 other_changed = 1;
6886 dest = new_dest;
6889 #endif /* SELECT_CC_MODE */
6891 /* If the code changed, we have to build a new comparison in
6892 undobuf.other_insn. */
6893 if (new_code != old_code)
6895 int other_changed_previously = other_changed;
6896 unsigned HOST_WIDE_INT mask;
6897 rtx old_cc_use = *cc_use;
6899 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6900 dest, const0_rtx));
6901 other_changed = 1;
6903 /* If the only change we made was to change an EQ into an NE or
6904 vice versa, OP0 has only one bit that might be nonzero, and OP1
6905 is zero, check if changing the user of the condition code will
6906 produce a valid insn. If it won't, we can keep the original code
6907 in that insn by surrounding our operation with an XOR. */
6909 if (((old_code == NE && new_code == EQ)
6910 || (old_code == EQ && new_code == NE))
6911 && ! other_changed_previously && op1 == const0_rtx
6912 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6913 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6915 rtx pat = PATTERN (other_insn), note = 0;
6917 if ((recog_for_combine (&pat, other_insn, &note) < 0
6918 && ! check_asm_operands (pat)))
6920 *cc_use = old_cc_use;
6921 other_changed = 0;
6923 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6924 gen_int_mode (mask,
6925 GET_MODE (op0)));
6930 if (other_changed)
6931 undobuf.other_insn = other_insn;
6933 /* Don't generate a compare of a CC with 0, just use that CC. */
6934 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6936 SUBST (SET_SRC (x), op0);
6937 src = SET_SRC (x);
6939 /* Otherwise, if we didn't previously have the same COMPARE we
6940 want, create it from scratch. */
6941 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6942 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6944 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6945 src = SET_SRC (x);
6948 else
6950 /* Get SET_SRC in a form where we have placed back any
6951 compound expressions. Then do the checks below. */
6952 src = make_compound_operation (src, SET);
6953 SUBST (SET_SRC (x), src);
6956 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6957 and X being a REG or (subreg (reg)), we may be able to convert this to
6958 (set (subreg:m2 x) (op)).
6960 We can always do this if M1 is narrower than M2 because that means that
6961 we only care about the low bits of the result.
6963 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6964 perform a narrower operation than requested since the high-order bits will
6965 be undefined. On machine where it is defined, this transformation is safe
6966 as long as M1 and M2 have the same number of words. */
6968 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6969 && !OBJECT_P (SUBREG_REG (src))
6970 && (known_equal_after_align_up
6971 (GET_MODE_SIZE (GET_MODE (src)),
6972 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
6973 UNITS_PER_WORD))
6974 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
6975 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6976 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
6977 GET_MODE (SUBREG_REG (src)),
6978 GET_MODE (src)))
6979 && (REG_P (dest)
6980 || (GET_CODE (dest) == SUBREG
6981 && REG_P (SUBREG_REG (dest)))))
6983 SUBST (SET_DEST (x),
6984 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6985 dest));
6986 SUBST (SET_SRC (x), SUBREG_REG (src));
6988 src = SET_SRC (x), dest = SET_DEST (x);
6991 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6992 in SRC. */
6993 if (dest == cc0_rtx
6994 && partial_subreg_p (src)
6995 && subreg_lowpart_p (src))
6997 rtx inner = SUBREG_REG (src);
6998 machine_mode inner_mode = GET_MODE (inner);
7000 /* Here we make sure that we don't have a sign bit on. */
7001 if (val_signbit_known_clear_p (GET_MODE (src),
7002 nonzero_bits (inner, inner_mode)))
7004 SUBST (SET_SRC (x), inner);
7005 src = SET_SRC (x);
7009 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
7010 would require a paradoxical subreg. Replace the subreg with a
7011 zero_extend to avoid the reload that would otherwise be required.
7012 Don't do this unless we have a scalar integer mode, otherwise the
7013 transformation is incorrect. */
7015 enum rtx_code extend_op;
7016 if (paradoxical_subreg_p (src)
7017 && MEM_P (SUBREG_REG (src))
7018 && SCALAR_INT_MODE_P (GET_MODE (src))
7019 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7021 SUBST (SET_SRC (x),
7022 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7024 src = SET_SRC (x);
7027 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7028 are comparing an item known to be 0 or -1 against 0, use a logical
7029 operation instead. Check for one of the arms being an IOR of the other
7030 arm with some value. We compute three terms to be IOR'ed together. In
7031 practice, at most two will be nonzero. Then we do the IOR's. */
7033 if (GET_CODE (dest) != PC
7034 && GET_CODE (src) == IF_THEN_ELSE
7035 && is_int_mode (GET_MODE (src), &int_mode)
7036 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7037 && XEXP (XEXP (src, 0), 1) == const0_rtx
7038 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7039 && (!HAVE_conditional_move
7040 || ! can_conditionally_move_p (int_mode))
7041 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7042 == GET_MODE_PRECISION (int_mode))
7043 && ! side_effects_p (src))
7045 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7046 ? XEXP (src, 1) : XEXP (src, 2));
7047 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7048 ? XEXP (src, 2) : XEXP (src, 1));
7049 rtx term1 = const0_rtx, term2, term3;
7051 if (GET_CODE (true_rtx) == IOR
7052 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7053 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7054 else if (GET_CODE (true_rtx) == IOR
7055 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7056 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7057 else if (GET_CODE (false_rtx) == IOR
7058 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7059 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7060 else if (GET_CODE (false_rtx) == IOR
7061 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7062 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7064 term2 = simplify_gen_binary (AND, int_mode,
7065 XEXP (XEXP (src, 0), 0), true_rtx);
7066 term3 = simplify_gen_binary (AND, int_mode,
7067 simplify_gen_unary (NOT, int_mode,
7068 XEXP (XEXP (src, 0), 0),
7069 int_mode),
7070 false_rtx);
7072 SUBST (SET_SRC (x),
7073 simplify_gen_binary (IOR, int_mode,
7074 simplify_gen_binary (IOR, int_mode,
7075 term1, term2),
7076 term3));
7078 src = SET_SRC (x);
7081 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7082 whole thing fail. */
7083 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7084 return src;
7085 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7086 return dest;
7087 else
7088 /* Convert this into a field assignment operation, if possible. */
7089 return make_field_assignment (x);
7092 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7093 result. */
7095 static rtx
7096 simplify_logical (rtx x)
7098 rtx op0 = XEXP (x, 0);
7099 rtx op1 = XEXP (x, 1);
7100 scalar_int_mode mode;
7102 switch (GET_CODE (x))
7104 case AND:
7105 /* We can call simplify_and_const_int only if we don't lose
7106 any (sign) bits when converting INTVAL (op1) to
7107 "unsigned HOST_WIDE_INT". */
7108 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7109 && CONST_INT_P (op1)
7110 && (HWI_COMPUTABLE_MODE_P (mode)
7111 || INTVAL (op1) > 0))
7113 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7114 if (GET_CODE (x) != AND)
7115 return x;
7117 op0 = XEXP (x, 0);
7118 op1 = XEXP (x, 1);
7121 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7122 apply the distributive law and then the inverse distributive
7123 law to see if things simplify. */
7124 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7126 rtx result = distribute_and_simplify_rtx (x, 0);
7127 if (result)
7128 return result;
7130 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7132 rtx result = distribute_and_simplify_rtx (x, 1);
7133 if (result)
7134 return result;
7136 break;
7138 case IOR:
7139 /* If we have (ior (and A B) C), apply the distributive law and then
7140 the inverse distributive law to see if things simplify. */
7142 if (GET_CODE (op0) == AND)
7144 rtx result = distribute_and_simplify_rtx (x, 0);
7145 if (result)
7146 return result;
7149 if (GET_CODE (op1) == AND)
7151 rtx result = distribute_and_simplify_rtx (x, 1);
7152 if (result)
7153 return result;
7155 break;
7157 default:
7158 gcc_unreachable ();
7161 return x;
7164 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7165 operations" because they can be replaced with two more basic operations.
7166 ZERO_EXTEND is also considered "compound" because it can be replaced with
7167 an AND operation, which is simpler, though only one operation.
7169 The function expand_compound_operation is called with an rtx expression
7170 and will convert it to the appropriate shifts and AND operations,
7171 simplifying at each stage.
7173 The function make_compound_operation is called to convert an expression
7174 consisting of shifts and ANDs into the equivalent compound expression.
7175 It is the inverse of this function, loosely speaking. */
7177 static rtx
7178 expand_compound_operation (rtx x)
7180 unsigned HOST_WIDE_INT pos = 0, len;
7181 int unsignedp = 0;
7182 unsigned int modewidth;
7183 rtx tem;
7184 scalar_int_mode inner_mode;
7186 switch (GET_CODE (x))
7188 case ZERO_EXTEND:
7189 unsignedp = 1;
7190 /* FALLTHRU */
7191 case SIGN_EXTEND:
7192 /* We can't necessarily use a const_int for a multiword mode;
7193 it depends on implicitly extending the value.
7194 Since we don't know the right way to extend it,
7195 we can't tell whether the implicit way is right.
7197 Even for a mode that is no wider than a const_int,
7198 we can't win, because we need to sign extend one of its bits through
7199 the rest of it, and we don't know which bit. */
7200 if (CONST_INT_P (XEXP (x, 0)))
7201 return x;
7203 /* Reject modes that aren't scalar integers because turning vector
7204 or complex modes into shifts causes problems. */
7205 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7206 return x;
7208 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7209 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7210 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7211 reloaded. If not for that, MEM's would very rarely be safe.
7213 Reject modes bigger than a word, because we might not be able
7214 to reference a two-register group starting with an arbitrary register
7215 (and currently gen_lowpart might crash for a SUBREG). */
7217 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7218 return x;
7220 len = GET_MODE_PRECISION (inner_mode);
7221 /* If the inner object has VOIDmode (the only way this can happen
7222 is if it is an ASM_OPERANDS), we can't do anything since we don't
7223 know how much masking to do. */
7224 if (len == 0)
7225 return x;
7227 break;
7229 case ZERO_EXTRACT:
7230 unsignedp = 1;
7232 /* fall through */
7234 case SIGN_EXTRACT:
7235 /* If the operand is a CLOBBER, just return it. */
7236 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7237 return XEXP (x, 0);
7239 if (!CONST_INT_P (XEXP (x, 1))
7240 || !CONST_INT_P (XEXP (x, 2)))
7241 return x;
7243 /* Reject modes that aren't scalar integers because turning vector
7244 or complex modes into shifts causes problems. */
7245 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7246 return x;
7248 len = INTVAL (XEXP (x, 1));
7249 pos = INTVAL (XEXP (x, 2));
7251 /* This should stay within the object being extracted, fail otherwise. */
7252 if (len + pos > GET_MODE_PRECISION (inner_mode))
7253 return x;
7255 if (BITS_BIG_ENDIAN)
7256 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7258 break;
7260 default:
7261 return x;
7264 /* We've rejected non-scalar operations by now. */
7265 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7267 /* Convert sign extension to zero extension, if we know that the high
7268 bit is not set, as this is easier to optimize. It will be converted
7269 back to cheaper alternative in make_extraction. */
7270 if (GET_CODE (x) == SIGN_EXTEND
7271 && HWI_COMPUTABLE_MODE_P (mode)
7272 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7273 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7274 == 0))
7276 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7277 rtx temp2 = expand_compound_operation (temp);
7279 /* Make sure this is a profitable operation. */
7280 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7281 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7282 return temp2;
7283 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7284 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7285 return temp;
7286 else
7287 return x;
7290 /* We can optimize some special cases of ZERO_EXTEND. */
7291 if (GET_CODE (x) == ZERO_EXTEND)
7293 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7294 know that the last value didn't have any inappropriate bits
7295 set. */
7296 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7297 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7298 && HWI_COMPUTABLE_MODE_P (mode)
7299 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7300 & ~GET_MODE_MASK (inner_mode)) == 0)
7301 return XEXP (XEXP (x, 0), 0);
7303 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7304 if (GET_CODE (XEXP (x, 0)) == SUBREG
7305 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7306 && subreg_lowpart_p (XEXP (x, 0))
7307 && HWI_COMPUTABLE_MODE_P (mode)
7308 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7309 & ~GET_MODE_MASK (inner_mode)) == 0)
7310 return SUBREG_REG (XEXP (x, 0));
7312 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7313 is a comparison and STORE_FLAG_VALUE permits. This is like
7314 the first case, but it works even when MODE is larger
7315 than HOST_WIDE_INT. */
7316 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7317 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7318 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7319 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7320 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7321 return XEXP (XEXP (x, 0), 0);
7323 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7324 if (GET_CODE (XEXP (x, 0)) == SUBREG
7325 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7326 && subreg_lowpart_p (XEXP (x, 0))
7327 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7328 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7329 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7330 return SUBREG_REG (XEXP (x, 0));
7334 /* If we reach here, we want to return a pair of shifts. The inner
7335 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7336 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7337 logical depending on the value of UNSIGNEDP.
7339 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7340 converted into an AND of a shift.
7342 We must check for the case where the left shift would have a negative
7343 count. This can happen in a case like (x >> 31) & 255 on machines
7344 that can't shift by a constant. On those machines, we would first
7345 combine the shift with the AND to produce a variable-position
7346 extraction. Then the constant of 31 would be substituted in
7347 to produce such a position. */
7349 modewidth = GET_MODE_PRECISION (mode);
7350 if (modewidth >= pos + len)
7352 tem = gen_lowpart (mode, XEXP (x, 0));
7353 if (!tem || GET_CODE (tem) == CLOBBER)
7354 return x;
7355 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7356 tem, modewidth - pos - len);
7357 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7358 mode, tem, modewidth - len);
7360 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7361 tem = simplify_and_const_int (NULL_RTX, mode,
7362 simplify_shift_const (NULL_RTX, LSHIFTRT,
7363 mode, XEXP (x, 0),
7364 pos),
7365 (HOST_WIDE_INT_1U << len) - 1);
7366 else
7367 /* Any other cases we can't handle. */
7368 return x;
7370 /* If we couldn't do this for some reason, return the original
7371 expression. */
7372 if (GET_CODE (tem) == CLOBBER)
7373 return x;
7375 return tem;
7378 /* X is a SET which contains an assignment of one object into
7379 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7380 or certain SUBREGS). If possible, convert it into a series of
7381 logical operations.
7383 We half-heartedly support variable positions, but do not at all
7384 support variable lengths. */
7386 static const_rtx
7387 expand_field_assignment (const_rtx x)
7389 rtx inner;
7390 rtx pos; /* Always counts from low bit. */
7391 int len, inner_len;
7392 rtx mask, cleared, masked;
7393 scalar_int_mode compute_mode;
7395 /* Loop until we find something we can't simplify. */
7396 while (1)
7398 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7399 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7401 rtx x0 = XEXP (SET_DEST (x), 0);
7402 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7403 break;
7404 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7405 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7406 MAX_MODE_INT);
7408 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7409 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7411 inner = XEXP (SET_DEST (x), 0);
7412 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7413 break;
7415 len = INTVAL (XEXP (SET_DEST (x), 1));
7416 pos = XEXP (SET_DEST (x), 2);
7418 /* A constant position should stay within the width of INNER. */
7419 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7420 break;
7422 if (BITS_BIG_ENDIAN)
7424 if (CONST_INT_P (pos))
7425 pos = GEN_INT (inner_len - len - INTVAL (pos));
7426 else if (GET_CODE (pos) == MINUS
7427 && CONST_INT_P (XEXP (pos, 1))
7428 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7429 /* If position is ADJUST - X, new position is X. */
7430 pos = XEXP (pos, 0);
7431 else
7432 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7433 gen_int_mode (inner_len - len,
7434 GET_MODE (pos)),
7435 pos);
7439 /* If the destination is a subreg that overwrites the whole of the inner
7440 register, we can move the subreg to the source. */
7441 else if (GET_CODE (SET_DEST (x)) == SUBREG
7442 /* We need SUBREGs to compute nonzero_bits properly. */
7443 && nonzero_sign_valid
7444 && !read_modify_subreg_p (SET_DEST (x)))
7446 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7447 gen_lowpart
7448 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7449 SET_SRC (x)));
7450 continue;
7452 else
7453 break;
7455 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7456 inner = SUBREG_REG (inner);
7458 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7459 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7461 /* Don't do anything for vector or complex integral types. */
7462 if (! FLOAT_MODE_P (GET_MODE (inner)))
7463 break;
7465 /* Try to find an integral mode to pun with. */
7466 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7467 .exists (&compute_mode))
7468 break;
7470 inner = gen_lowpart (compute_mode, inner);
7473 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7474 if (len >= HOST_BITS_PER_WIDE_INT)
7475 break;
7477 /* Don't try to compute in too wide unsupported modes. */
7478 if (!targetm.scalar_mode_supported_p (compute_mode))
7479 break;
7481 /* Now compute the equivalent expression. Make a copy of INNER
7482 for the SET_DEST in case it is a MEM into which we will substitute;
7483 we don't want shared RTL in that case. */
7484 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7485 compute_mode);
7486 cleared = simplify_gen_binary (AND, compute_mode,
7487 simplify_gen_unary (NOT, compute_mode,
7488 simplify_gen_binary (ASHIFT,
7489 compute_mode,
7490 mask, pos),
7491 compute_mode),
7492 inner);
7493 masked = simplify_gen_binary (ASHIFT, compute_mode,
7494 simplify_gen_binary (
7495 AND, compute_mode,
7496 gen_lowpart (compute_mode, SET_SRC (x)),
7497 mask),
7498 pos);
7500 x = gen_rtx_SET (copy_rtx (inner),
7501 simplify_gen_binary (IOR, compute_mode,
7502 cleared, masked));
7505 return x;
7508 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7509 it is an RTX that represents the (variable) starting position; otherwise,
7510 POS is the (constant) starting bit position. Both are counted from the LSB.
7512 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7514 IN_DEST is nonzero if this is a reference in the destination of a SET.
7515 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7516 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7517 be used.
7519 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7520 ZERO_EXTRACT should be built even for bits starting at bit 0.
7522 MODE is the desired mode of the result (if IN_DEST == 0).
7524 The result is an RTX for the extraction or NULL_RTX if the target
7525 can't handle it. */
7527 static rtx
7528 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7529 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7530 int in_dest, int in_compare)
7532 /* This mode describes the size of the storage area
7533 to fetch the overall value from. Within that, we
7534 ignore the POS lowest bits, etc. */
7535 machine_mode is_mode = GET_MODE (inner);
7536 machine_mode inner_mode;
7537 scalar_int_mode wanted_inner_mode;
7538 scalar_int_mode wanted_inner_reg_mode = word_mode;
7539 scalar_int_mode pos_mode = word_mode;
7540 machine_mode extraction_mode = word_mode;
7541 rtx new_rtx = 0;
7542 rtx orig_pos_rtx = pos_rtx;
7543 HOST_WIDE_INT orig_pos;
7545 if (pos_rtx && CONST_INT_P (pos_rtx))
7546 pos = INTVAL (pos_rtx), pos_rtx = 0;
7548 if (GET_CODE (inner) == SUBREG
7549 && subreg_lowpart_p (inner)
7550 && (paradoxical_subreg_p (inner)
7551 /* If trying or potentionally trying to extract
7552 bits outside of is_mode, don't look through
7553 non-paradoxical SUBREGs. See PR82192. */
7554 || (pos_rtx == NULL_RTX
7555 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7557 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7558 consider just the QI as the memory to extract from.
7559 The subreg adds or removes high bits; its mode is
7560 irrelevant to the meaning of this extraction,
7561 since POS and LEN count from the lsb. */
7562 if (MEM_P (SUBREG_REG (inner)))
7563 is_mode = GET_MODE (SUBREG_REG (inner));
7564 inner = SUBREG_REG (inner);
7566 else if (GET_CODE (inner) == ASHIFT
7567 && CONST_INT_P (XEXP (inner, 1))
7568 && pos_rtx == 0 && pos == 0
7569 && len > UINTVAL (XEXP (inner, 1)))
7571 /* We're extracting the least significant bits of an rtx
7572 (ashift X (const_int C)), where LEN > C. Extract the
7573 least significant (LEN - C) bits of X, giving an rtx
7574 whose mode is MODE, then shift it left C times. */
7575 new_rtx = make_extraction (mode, XEXP (inner, 0),
7576 0, 0, len - INTVAL (XEXP (inner, 1)),
7577 unsignedp, in_dest, in_compare);
7578 if (new_rtx != 0)
7579 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7581 else if (GET_CODE (inner) == TRUNCATE
7582 /* If trying or potentionally trying to extract
7583 bits outside of is_mode, don't look through
7584 TRUNCATE. See PR82192. */
7585 && pos_rtx == NULL_RTX
7586 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7587 inner = XEXP (inner, 0);
7589 inner_mode = GET_MODE (inner);
7591 /* See if this can be done without an extraction. We never can if the
7592 width of the field is not the same as that of some integer mode. For
7593 registers, we can only avoid the extraction if the position is at the
7594 low-order bit and this is either not in the destination or we have the
7595 appropriate STRICT_LOW_PART operation available.
7597 For MEM, we can avoid an extract if the field starts on an appropriate
7598 boundary and we can change the mode of the memory reference. */
7600 scalar_int_mode tmode;
7601 if (int_mode_for_size (len, 1).exists (&tmode)
7602 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7603 && !MEM_P (inner)
7604 && (pos == 0 || REG_P (inner))
7605 && (inner_mode == tmode
7606 || !REG_P (inner)
7607 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7608 || reg_truncated_to_mode (tmode, inner))
7609 && (! in_dest
7610 || (REG_P (inner)
7611 && have_insn_for (STRICT_LOW_PART, tmode))))
7612 || (MEM_P (inner) && pos_rtx == 0
7613 && (pos
7614 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7615 : BITS_PER_UNIT)) == 0
7616 /* We can't do this if we are widening INNER_MODE (it
7617 may not be aligned, for one thing). */
7618 && !paradoxical_subreg_p (tmode, inner_mode)
7619 && (inner_mode == tmode
7620 || (! mode_dependent_address_p (XEXP (inner, 0),
7621 MEM_ADDR_SPACE (inner))
7622 && ! MEM_VOLATILE_P (inner))))))
7624 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7625 field. If the original and current mode are the same, we need not
7626 adjust the offset. Otherwise, we do if bytes big endian.
7628 If INNER is not a MEM, get a piece consisting of just the field
7629 of interest (in this case POS % BITS_PER_WORD must be 0). */
7631 if (MEM_P (inner))
7633 poly_int64 offset;
7635 /* POS counts from lsb, but make OFFSET count in memory order. */
7636 if (BYTES_BIG_ENDIAN)
7637 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7638 - len - pos);
7639 else
7640 offset = pos / BITS_PER_UNIT;
7642 new_rtx = adjust_address_nv (inner, tmode, offset);
7644 else if (REG_P (inner))
7646 if (tmode != inner_mode)
7648 /* We can't call gen_lowpart in a DEST since we
7649 always want a SUBREG (see below) and it would sometimes
7650 return a new hard register. */
7651 if (pos || in_dest)
7653 poly_uint64 offset
7654 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7656 /* Avoid creating invalid subregs, for example when
7657 simplifying (x>>32)&255. */
7658 if (!validate_subreg (tmode, inner_mode, inner, offset))
7659 return NULL_RTX;
7661 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7663 else
7664 new_rtx = gen_lowpart (tmode, inner);
7666 else
7667 new_rtx = inner;
7669 else
7670 new_rtx = force_to_mode (inner, tmode,
7671 len >= HOST_BITS_PER_WIDE_INT
7672 ? HOST_WIDE_INT_M1U
7673 : (HOST_WIDE_INT_1U << len) - 1, 0);
7675 /* If this extraction is going into the destination of a SET,
7676 make a STRICT_LOW_PART unless we made a MEM. */
7678 if (in_dest)
7679 return (MEM_P (new_rtx) ? new_rtx
7680 : (GET_CODE (new_rtx) != SUBREG
7681 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7682 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7684 if (mode == tmode)
7685 return new_rtx;
7687 if (CONST_SCALAR_INT_P (new_rtx))
7688 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7689 mode, new_rtx, tmode);
7691 /* If we know that no extraneous bits are set, and that the high
7692 bit is not set, convert the extraction to the cheaper of
7693 sign and zero extension, that are equivalent in these cases. */
7694 if (flag_expensive_optimizations
7695 && (HWI_COMPUTABLE_MODE_P (tmode)
7696 && ((nonzero_bits (new_rtx, tmode)
7697 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7698 == 0)))
7700 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7701 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7703 /* Prefer ZERO_EXTENSION, since it gives more information to
7704 backends. */
7705 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7706 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7707 return temp;
7708 return temp1;
7711 /* Otherwise, sign- or zero-extend unless we already are in the
7712 proper mode. */
7714 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7715 mode, new_rtx));
7718 /* Unless this is a COMPARE or we have a funny memory reference,
7719 don't do anything with zero-extending field extracts starting at
7720 the low-order bit since they are simple AND operations. */
7721 if (pos_rtx == 0 && pos == 0 && ! in_dest
7722 && ! in_compare && unsignedp)
7723 return 0;
7725 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7726 if the position is not a constant and the length is not 1. In all
7727 other cases, we would only be going outside our object in cases when
7728 an original shift would have been undefined. */
7729 if (MEM_P (inner)
7730 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7731 || (pos_rtx != 0 && len != 1)))
7732 return 0;
7734 enum extraction_pattern pattern = (in_dest ? EP_insv
7735 : unsignedp ? EP_extzv : EP_extv);
7737 /* If INNER is not from memory, we want it to have the mode of a register
7738 extraction pattern's structure operand, or word_mode if there is no
7739 such pattern. The same applies to extraction_mode and pos_mode
7740 and their respective operands.
7742 For memory, assume that the desired extraction_mode and pos_mode
7743 are the same as for a register operation, since at present we don't
7744 have named patterns for aligned memory structures. */
7745 struct extraction_insn insn;
7746 unsigned int inner_size;
7747 if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7748 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7750 wanted_inner_reg_mode = insn.struct_mode.require ();
7751 pos_mode = insn.pos_mode;
7752 extraction_mode = insn.field_mode;
7755 /* Never narrow an object, since that might not be safe. */
7757 if (mode != VOIDmode
7758 && partial_subreg_p (extraction_mode, mode))
7759 extraction_mode = mode;
7761 if (!MEM_P (inner))
7762 wanted_inner_mode = wanted_inner_reg_mode;
7763 else
7765 /* Be careful not to go beyond the extracted object and maintain the
7766 natural alignment of the memory. */
7767 wanted_inner_mode = smallest_int_mode_for_size (len);
7768 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7769 > GET_MODE_BITSIZE (wanted_inner_mode))
7770 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7773 orig_pos = pos;
7775 if (BITS_BIG_ENDIAN)
7777 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7778 BITS_BIG_ENDIAN style. If position is constant, compute new
7779 position. Otherwise, build subtraction.
7780 Note that POS is relative to the mode of the original argument.
7781 If it's a MEM we need to recompute POS relative to that.
7782 However, if we're extracting from (or inserting into) a register,
7783 we want to recompute POS relative to wanted_inner_mode. */
7784 int width;
7785 if (!MEM_P (inner))
7786 width = GET_MODE_BITSIZE (wanted_inner_mode);
7787 else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7788 return NULL_RTX;
7790 if (pos_rtx == 0)
7791 pos = width - len - pos;
7792 else
7793 pos_rtx
7794 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7795 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7796 pos_rtx);
7797 /* POS may be less than 0 now, but we check for that below.
7798 Note that it can only be less than 0 if !MEM_P (inner). */
7801 /* If INNER has a wider mode, and this is a constant extraction, try to
7802 make it smaller and adjust the byte to point to the byte containing
7803 the value. */
7804 if (wanted_inner_mode != VOIDmode
7805 && inner_mode != wanted_inner_mode
7806 && ! pos_rtx
7807 && partial_subreg_p (wanted_inner_mode, is_mode)
7808 && MEM_P (inner)
7809 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7810 && ! MEM_VOLATILE_P (inner))
7812 poly_int64 offset = 0;
7814 /* The computations below will be correct if the machine is big
7815 endian in both bits and bytes or little endian in bits and bytes.
7816 If it is mixed, we must adjust. */
7818 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7819 adjust OFFSET to compensate. */
7820 if (BYTES_BIG_ENDIAN
7821 && paradoxical_subreg_p (is_mode, inner_mode))
7822 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7824 /* We can now move to the desired byte. */
7825 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7826 * GET_MODE_SIZE (wanted_inner_mode);
7827 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7829 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7830 && is_mode != wanted_inner_mode)
7831 offset = (GET_MODE_SIZE (is_mode)
7832 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7834 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7837 /* If INNER is not memory, get it into the proper mode. If we are changing
7838 its mode, POS must be a constant and smaller than the size of the new
7839 mode. */
7840 else if (!MEM_P (inner))
7842 /* On the LHS, don't create paradoxical subregs implicitely truncating
7843 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7844 if (in_dest
7845 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7846 wanted_inner_mode))
7847 return NULL_RTX;
7849 if (GET_MODE (inner) != wanted_inner_mode
7850 && (pos_rtx != 0
7851 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7852 return NULL_RTX;
7854 if (orig_pos < 0)
7855 return NULL_RTX;
7857 inner = force_to_mode (inner, wanted_inner_mode,
7858 pos_rtx
7859 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7860 ? HOST_WIDE_INT_M1U
7861 : (((HOST_WIDE_INT_1U << len) - 1)
7862 << orig_pos),
7866 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7867 have to zero extend. Otherwise, we can just use a SUBREG.
7869 We dealt with constant rtxes earlier, so pos_rtx cannot
7870 have VOIDmode at this point. */
7871 if (pos_rtx != 0
7872 && (GET_MODE_SIZE (pos_mode)
7873 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7875 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7876 GET_MODE (pos_rtx));
7878 /* If we know that no extraneous bits are set, and that the high
7879 bit is not set, convert extraction to cheaper one - either
7880 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7881 cases. */
7882 if (flag_expensive_optimizations
7883 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7884 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7885 & ~(((unsigned HOST_WIDE_INT)
7886 GET_MODE_MASK (GET_MODE (pos_rtx)))
7887 >> 1))
7888 == 0)))
7890 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7891 GET_MODE (pos_rtx));
7893 /* Prefer ZERO_EXTENSION, since it gives more information to
7894 backends. */
7895 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7896 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7897 temp = temp1;
7899 pos_rtx = temp;
7902 /* Make POS_RTX unless we already have it and it is correct. If we don't
7903 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7904 be a CONST_INT. */
7905 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7906 pos_rtx = orig_pos_rtx;
7908 else if (pos_rtx == 0)
7909 pos_rtx = GEN_INT (pos);
7911 /* Make the required operation. See if we can use existing rtx. */
7912 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7913 extraction_mode, inner, GEN_INT (len), pos_rtx);
7914 if (! in_dest)
7915 new_rtx = gen_lowpart (mode, new_rtx);
7917 return new_rtx;
7920 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7921 can be commuted with any other operations in X. Return X without
7922 that shift if so. */
7924 static rtx
7925 extract_left_shift (scalar_int_mode mode, rtx x, int count)
7927 enum rtx_code code = GET_CODE (x);
7928 rtx tem;
7930 switch (code)
7932 case ASHIFT:
7933 /* This is the shift itself. If it is wide enough, we will return
7934 either the value being shifted if the shift count is equal to
7935 COUNT or a shift for the difference. */
7936 if (CONST_INT_P (XEXP (x, 1))
7937 && INTVAL (XEXP (x, 1)) >= count)
7938 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7939 INTVAL (XEXP (x, 1)) - count);
7940 break;
7942 case NEG: case NOT:
7943 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7944 return simplify_gen_unary (code, mode, tem, mode);
7946 break;
7948 case PLUS: case IOR: case XOR: case AND:
7949 /* If we can safely shift this constant and we find the inner shift,
7950 make a new operation. */
7951 if (CONST_INT_P (XEXP (x, 1))
7952 && (UINTVAL (XEXP (x, 1))
7953 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7954 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7956 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7957 return simplify_gen_binary (code, mode, tem,
7958 gen_int_mode (val, mode));
7960 break;
7962 default:
7963 break;
7966 return 0;
7969 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7970 level of the expression and MODE is its mode. IN_CODE is as for
7971 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7972 that should be used when recursing on operands of *X_PTR.
7974 There are two possible actions:
7976 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7977 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7979 - Return a new rtx, which the caller returns directly. */
7981 static rtx
7982 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
7983 enum rtx_code in_code,
7984 enum rtx_code *next_code_ptr)
7986 rtx x = *x_ptr;
7987 enum rtx_code next_code = *next_code_ptr;
7988 enum rtx_code code = GET_CODE (x);
7989 int mode_width = GET_MODE_PRECISION (mode);
7990 rtx rhs, lhs;
7991 rtx new_rtx = 0;
7992 int i;
7993 rtx tem;
7994 scalar_int_mode inner_mode;
7995 bool equality_comparison = false;
7997 if (in_code == EQ)
7999 equality_comparison = true;
8000 in_code = COMPARE;
8003 /* Process depending on the code of this operation. If NEW is set
8004 nonzero, it will be returned. */
8006 switch (code)
8008 case ASHIFT:
8009 /* Convert shifts by constants into multiplications if inside
8010 an address. */
8011 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8012 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8013 && INTVAL (XEXP (x, 1)) >= 0)
8015 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8016 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8018 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8019 if (GET_CODE (new_rtx) == NEG)
8021 new_rtx = XEXP (new_rtx, 0);
8022 multval = -multval;
8024 multval = trunc_int_for_mode (multval, mode);
8025 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8027 break;
8029 case PLUS:
8030 lhs = XEXP (x, 0);
8031 rhs = XEXP (x, 1);
8032 lhs = make_compound_operation (lhs, next_code);
8033 rhs = make_compound_operation (rhs, next_code);
8034 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8036 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8037 XEXP (lhs, 1));
8038 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8040 else if (GET_CODE (lhs) == MULT
8041 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8043 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8044 simplify_gen_unary (NEG, mode,
8045 XEXP (lhs, 1),
8046 mode));
8047 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8049 else
8051 SUBST (XEXP (x, 0), lhs);
8052 SUBST (XEXP (x, 1), rhs);
8054 maybe_swap_commutative_operands (x);
8055 return x;
8057 case MINUS:
8058 lhs = XEXP (x, 0);
8059 rhs = XEXP (x, 1);
8060 lhs = make_compound_operation (lhs, next_code);
8061 rhs = make_compound_operation (rhs, next_code);
8062 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8064 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8065 XEXP (rhs, 1));
8066 return simplify_gen_binary (PLUS, mode, tem, lhs);
8068 else if (GET_CODE (rhs) == MULT
8069 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8071 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8072 simplify_gen_unary (NEG, mode,
8073 XEXP (rhs, 1),
8074 mode));
8075 return simplify_gen_binary (PLUS, mode, tem, lhs);
8077 else
8079 SUBST (XEXP (x, 0), lhs);
8080 SUBST (XEXP (x, 1), rhs);
8081 return x;
8084 case AND:
8085 /* If the second operand is not a constant, we can't do anything
8086 with it. */
8087 if (!CONST_INT_P (XEXP (x, 1)))
8088 break;
8090 /* If the constant is a power of two minus one and the first operand
8091 is a logical right shift, make an extraction. */
8092 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8093 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8095 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8096 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8097 i, 1, 0, in_code == COMPARE);
8100 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8101 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8102 && subreg_lowpart_p (XEXP (x, 0))
8103 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8104 &inner_mode)
8105 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8106 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8108 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8109 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8110 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8111 XEXP (inner_x0, 1),
8112 i, 1, 0, in_code == COMPARE);
8114 /* If we narrowed the mode when dropping the subreg, then we lose. */
8115 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8116 new_rtx = NULL;
8118 /* If that didn't give anything, see if the AND simplifies on
8119 its own. */
8120 if (!new_rtx && i >= 0)
8122 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8123 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8124 0, in_code == COMPARE);
8127 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8128 else if ((GET_CODE (XEXP (x, 0)) == XOR
8129 || GET_CODE (XEXP (x, 0)) == IOR)
8130 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8131 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8132 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8134 /* Apply the distributive law, and then try to make extractions. */
8135 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8136 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8137 XEXP (x, 1)),
8138 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8139 XEXP (x, 1)));
8140 new_rtx = make_compound_operation (new_rtx, in_code);
8143 /* If we are have (and (rotate X C) M) and C is larger than the number
8144 of bits in M, this is an extraction. */
8146 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8147 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8148 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8149 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8151 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8152 new_rtx = make_extraction (mode, new_rtx,
8153 (GET_MODE_PRECISION (mode)
8154 - INTVAL (XEXP (XEXP (x, 0), 1))),
8155 NULL_RTX, i, 1, 0, in_code == COMPARE);
8158 /* On machines without logical shifts, if the operand of the AND is
8159 a logical shift and our mask turns off all the propagated sign
8160 bits, we can replace the logical shift with an arithmetic shift. */
8161 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8162 && !have_insn_for (LSHIFTRT, mode)
8163 && have_insn_for (ASHIFTRT, mode)
8164 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8165 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8166 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8167 && mode_width <= HOST_BITS_PER_WIDE_INT)
8169 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8171 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8172 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8173 SUBST (XEXP (x, 0),
8174 gen_rtx_ASHIFTRT (mode,
8175 make_compound_operation (XEXP (XEXP (x,
8178 next_code),
8179 XEXP (XEXP (x, 0), 1)));
8182 /* If the constant is one less than a power of two, this might be
8183 representable by an extraction even if no shift is present.
8184 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8185 we are in a COMPARE. */
8186 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8187 new_rtx = make_extraction (mode,
8188 make_compound_operation (XEXP (x, 0),
8189 next_code),
8190 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8192 /* If we are in a comparison and this is an AND with a power of two,
8193 convert this into the appropriate bit extract. */
8194 else if (in_code == COMPARE
8195 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8196 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8197 new_rtx = make_extraction (mode,
8198 make_compound_operation (XEXP (x, 0),
8199 next_code),
8200 i, NULL_RTX, 1, 1, 0, 1);
8202 /* If the one operand is a paradoxical subreg of a register or memory and
8203 the constant (limited to the smaller mode) has only zero bits where
8204 the sub expression has known zero bits, this can be expressed as
8205 a zero_extend. */
8206 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8208 rtx sub;
8210 sub = XEXP (XEXP (x, 0), 0);
8211 machine_mode sub_mode = GET_MODE (sub);
8212 int sub_width;
8213 if ((REG_P (sub) || MEM_P (sub))
8214 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8215 && sub_width < mode_width)
8217 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8218 unsigned HOST_WIDE_INT mask;
8220 /* original AND constant with all the known zero bits set */
8221 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8222 if ((mask & mode_mask) == mode_mask)
8224 new_rtx = make_compound_operation (sub, next_code);
8225 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8226 1, 0, in_code == COMPARE);
8231 break;
8233 case LSHIFTRT:
8234 /* If the sign bit is known to be zero, replace this with an
8235 arithmetic shift. */
8236 if (have_insn_for (ASHIFTRT, mode)
8237 && ! have_insn_for (LSHIFTRT, mode)
8238 && mode_width <= HOST_BITS_PER_WIDE_INT
8239 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8241 new_rtx = gen_rtx_ASHIFTRT (mode,
8242 make_compound_operation (XEXP (x, 0),
8243 next_code),
8244 XEXP (x, 1));
8245 break;
8248 /* fall through */
8250 case ASHIFTRT:
8251 lhs = XEXP (x, 0);
8252 rhs = XEXP (x, 1);
8254 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8255 this is a SIGN_EXTRACT. */
8256 if (CONST_INT_P (rhs)
8257 && GET_CODE (lhs) == ASHIFT
8258 && CONST_INT_P (XEXP (lhs, 1))
8259 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8260 && INTVAL (XEXP (lhs, 1)) >= 0
8261 && INTVAL (rhs) < mode_width)
8263 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8264 new_rtx = make_extraction (mode, new_rtx,
8265 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8266 NULL_RTX, mode_width - INTVAL (rhs),
8267 code == LSHIFTRT, 0, in_code == COMPARE);
8268 break;
8271 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8272 If so, try to merge the shifts into a SIGN_EXTEND. We could
8273 also do this for some cases of SIGN_EXTRACT, but it doesn't
8274 seem worth the effort; the case checked for occurs on Alpha. */
8276 if (!OBJECT_P (lhs)
8277 && ! (GET_CODE (lhs) == SUBREG
8278 && (OBJECT_P (SUBREG_REG (lhs))))
8279 && CONST_INT_P (rhs)
8280 && INTVAL (rhs) >= 0
8281 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8282 && INTVAL (rhs) < mode_width
8283 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8284 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8285 next_code),
8286 0, NULL_RTX, mode_width - INTVAL (rhs),
8287 code == LSHIFTRT, 0, in_code == COMPARE);
8289 break;
8291 case SUBREG:
8292 /* Call ourselves recursively on the inner expression. If we are
8293 narrowing the object and it has a different RTL code from
8294 what it originally did, do this SUBREG as a force_to_mode. */
8296 rtx inner = SUBREG_REG (x), simplified;
8297 enum rtx_code subreg_code = in_code;
8299 /* If the SUBREG is masking of a logical right shift,
8300 make an extraction. */
8301 if (GET_CODE (inner) == LSHIFTRT
8302 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8303 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8304 && CONST_INT_P (XEXP (inner, 1))
8305 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8306 && subreg_lowpart_p (x))
8308 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8309 int width = GET_MODE_PRECISION (inner_mode)
8310 - INTVAL (XEXP (inner, 1));
8311 if (width > mode_width)
8312 width = mode_width;
8313 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8314 width, 1, 0, in_code == COMPARE);
8315 break;
8318 /* If in_code is COMPARE, it isn't always safe to pass it through
8319 to the recursive make_compound_operation call. */
8320 if (subreg_code == COMPARE
8321 && (!subreg_lowpart_p (x)
8322 || GET_CODE (inner) == SUBREG
8323 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8324 is (const_int 0), rather than
8325 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8326 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8327 for non-equality comparisons against 0 is not equivalent
8328 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8329 || (GET_CODE (inner) == AND
8330 && CONST_INT_P (XEXP (inner, 1))
8331 && partial_subreg_p (x)
8332 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8333 >= GET_MODE_BITSIZE (mode) - 1)))
8334 subreg_code = SET;
8336 tem = make_compound_operation (inner, subreg_code);
8338 simplified
8339 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8340 if (simplified)
8341 tem = simplified;
8343 if (GET_CODE (tem) != GET_CODE (inner)
8344 && partial_subreg_p (x)
8345 && subreg_lowpart_p (x))
8347 rtx newer
8348 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8350 /* If we have something other than a SUBREG, we might have
8351 done an expansion, so rerun ourselves. */
8352 if (GET_CODE (newer) != SUBREG)
8353 newer = make_compound_operation (newer, in_code);
8355 /* force_to_mode can expand compounds. If it just re-expanded
8356 the compound, use gen_lowpart to convert to the desired
8357 mode. */
8358 if (rtx_equal_p (newer, x)
8359 /* Likewise if it re-expanded the compound only partially.
8360 This happens for SUBREG of ZERO_EXTRACT if they extract
8361 the same number of bits. */
8362 || (GET_CODE (newer) == SUBREG
8363 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8364 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8365 && GET_CODE (inner) == AND
8366 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8367 return gen_lowpart (GET_MODE (x), tem);
8369 return newer;
8372 if (simplified)
8373 return tem;
8375 break;
8377 default:
8378 break;
8381 if (new_rtx)
8382 *x_ptr = gen_lowpart (mode, new_rtx);
8383 *next_code_ptr = next_code;
8384 return NULL_RTX;
8387 /* Look at the expression rooted at X. Look for expressions
8388 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8389 Form these expressions.
8391 Return the new rtx, usually just X.
8393 Also, for machines like the VAX that don't have logical shift insns,
8394 try to convert logical to arithmetic shift operations in cases where
8395 they are equivalent. This undoes the canonicalizations to logical
8396 shifts done elsewhere.
8398 We try, as much as possible, to re-use rtl expressions to save memory.
8400 IN_CODE says what kind of expression we are processing. Normally, it is
8401 SET. In a memory address it is MEM. When processing the arguments of
8402 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8403 precisely it is an equality comparison against zero. */
8406 make_compound_operation (rtx x, enum rtx_code in_code)
8408 enum rtx_code code = GET_CODE (x);
8409 const char *fmt;
8410 int i, j;
8411 enum rtx_code next_code;
8412 rtx new_rtx, tem;
8414 /* Select the code to be used in recursive calls. Once we are inside an
8415 address, we stay there. If we have a comparison, set to COMPARE,
8416 but once inside, go back to our default of SET. */
8418 next_code = (code == MEM ? MEM
8419 : ((code == COMPARE || COMPARISON_P (x))
8420 && XEXP (x, 1) == const0_rtx) ? COMPARE
8421 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8423 scalar_int_mode mode;
8424 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8426 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8427 &next_code);
8428 if (new_rtx)
8429 return new_rtx;
8430 code = GET_CODE (x);
8433 /* Now recursively process each operand of this operation. We need to
8434 handle ZERO_EXTEND specially so that we don't lose track of the
8435 inner mode. */
8436 if (code == ZERO_EXTEND)
8438 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8439 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8440 new_rtx, GET_MODE (XEXP (x, 0)));
8441 if (tem)
8442 return tem;
8443 SUBST (XEXP (x, 0), new_rtx);
8444 return x;
8447 fmt = GET_RTX_FORMAT (code);
8448 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8449 if (fmt[i] == 'e')
8451 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8452 SUBST (XEXP (x, i), new_rtx);
8454 else if (fmt[i] == 'E')
8455 for (j = 0; j < XVECLEN (x, i); j++)
8457 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8458 SUBST (XVECEXP (x, i, j), new_rtx);
8461 maybe_swap_commutative_operands (x);
8462 return x;
8465 /* Given M see if it is a value that would select a field of bits
8466 within an item, but not the entire word. Return -1 if not.
8467 Otherwise, return the starting position of the field, where 0 is the
8468 low-order bit.
8470 *PLEN is set to the length of the field. */
8472 static int
8473 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8475 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8476 int pos = m ? ctz_hwi (m) : -1;
8477 int len = 0;
8479 if (pos >= 0)
8480 /* Now shift off the low-order zero bits and see if we have a
8481 power of two minus 1. */
8482 len = exact_log2 ((m >> pos) + 1);
8484 if (len <= 0)
8485 pos = -1;
8487 *plen = len;
8488 return pos;
8491 /* If X refers to a register that equals REG in value, replace these
8492 references with REG. */
8493 static rtx
8494 canon_reg_for_combine (rtx x, rtx reg)
8496 rtx op0, op1, op2;
8497 const char *fmt;
8498 int i;
8499 bool copied;
8501 enum rtx_code code = GET_CODE (x);
8502 switch (GET_RTX_CLASS (code))
8504 case RTX_UNARY:
8505 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8506 if (op0 != XEXP (x, 0))
8507 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8508 GET_MODE (reg));
8509 break;
8511 case RTX_BIN_ARITH:
8512 case RTX_COMM_ARITH:
8513 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8514 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8515 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8516 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8517 break;
8519 case RTX_COMPARE:
8520 case RTX_COMM_COMPARE:
8521 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8522 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8523 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8524 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8525 GET_MODE (op0), op0, op1);
8526 break;
8528 case RTX_TERNARY:
8529 case RTX_BITFIELD_OPS:
8530 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8531 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8532 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8533 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8534 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8535 GET_MODE (op0), op0, op1, op2);
8536 /* FALLTHRU */
8538 case RTX_OBJ:
8539 if (REG_P (x))
8541 if (rtx_equal_p (get_last_value (reg), x)
8542 || rtx_equal_p (reg, get_last_value (x)))
8543 return reg;
8544 else
8545 break;
8548 /* fall through */
8550 default:
8551 fmt = GET_RTX_FORMAT (code);
8552 copied = false;
8553 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8554 if (fmt[i] == 'e')
8556 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8557 if (op != XEXP (x, i))
8559 if (!copied)
8561 copied = true;
8562 x = copy_rtx (x);
8564 XEXP (x, i) = op;
8567 else if (fmt[i] == 'E')
8569 int j;
8570 for (j = 0; j < XVECLEN (x, i); j++)
8572 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8573 if (op != XVECEXP (x, i, j))
8575 if (!copied)
8577 copied = true;
8578 x = copy_rtx (x);
8580 XVECEXP (x, i, j) = op;
8585 break;
8588 return x;
8591 /* Return X converted to MODE. If the value is already truncated to
8592 MODE we can just return a subreg even though in the general case we
8593 would need an explicit truncation. */
8595 static rtx
8596 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8598 if (!CONST_INT_P (x)
8599 && partial_subreg_p (mode, GET_MODE (x))
8600 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8601 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8603 /* Bit-cast X into an integer mode. */
8604 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8605 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8606 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8607 x, GET_MODE (x));
8610 return gen_lowpart (mode, x);
8613 /* See if X can be simplified knowing that we will only refer to it in
8614 MODE and will only refer to those bits that are nonzero in MASK.
8615 If other bits are being computed or if masking operations are done
8616 that select a superset of the bits in MASK, they can sometimes be
8617 ignored.
8619 Return a possibly simplified expression, but always convert X to
8620 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8622 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8623 are all off in X. This is used when X will be complemented, by either
8624 NOT, NEG, or XOR. */
8626 static rtx
8627 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8628 int just_select)
8630 enum rtx_code code = GET_CODE (x);
8631 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8632 machine_mode op_mode;
8633 unsigned HOST_WIDE_INT nonzero;
8635 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8636 code below will do the wrong thing since the mode of such an
8637 expression is VOIDmode.
8639 Also do nothing if X is a CLOBBER; this can happen if X was
8640 the return value from a call to gen_lowpart. */
8641 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8642 return x;
8644 /* We want to perform the operation in its present mode unless we know
8645 that the operation is valid in MODE, in which case we do the operation
8646 in MODE. */
8647 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8648 && have_insn_for (code, mode))
8649 ? mode : GET_MODE (x));
8651 /* It is not valid to do a right-shift in a narrower mode
8652 than the one it came in with. */
8653 if ((code == LSHIFTRT || code == ASHIFTRT)
8654 && partial_subreg_p (mode, GET_MODE (x)))
8655 op_mode = GET_MODE (x);
8657 /* Truncate MASK to fit OP_MODE. */
8658 if (op_mode)
8659 mask &= GET_MODE_MASK (op_mode);
8661 /* Determine what bits of X are guaranteed to be (non)zero. */
8662 nonzero = nonzero_bits (x, mode);
8664 /* If none of the bits in X are needed, return a zero. */
8665 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8666 x = const0_rtx;
8668 /* If X is a CONST_INT, return a new one. Do this here since the
8669 test below will fail. */
8670 if (CONST_INT_P (x))
8672 if (SCALAR_INT_MODE_P (mode))
8673 return gen_int_mode (INTVAL (x) & mask, mode);
8674 else
8676 x = GEN_INT (INTVAL (x) & mask);
8677 return gen_lowpart_common (mode, x);
8681 /* If X is narrower than MODE and we want all the bits in X's mode, just
8682 get X in the proper mode. */
8683 if (paradoxical_subreg_p (mode, GET_MODE (x))
8684 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8685 return gen_lowpart (mode, x);
8687 /* We can ignore the effect of a SUBREG if it narrows the mode or
8688 if the constant masks to zero all the bits the mode doesn't have. */
8689 if (GET_CODE (x) == SUBREG
8690 && subreg_lowpart_p (x)
8691 && (partial_subreg_p (x)
8692 || (mask
8693 & GET_MODE_MASK (GET_MODE (x))
8694 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8695 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8697 scalar_int_mode int_mode, xmode;
8698 if (is_a <scalar_int_mode> (mode, &int_mode)
8699 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8700 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8701 integer too. */
8702 return force_int_to_mode (x, int_mode, xmode,
8703 as_a <scalar_int_mode> (op_mode),
8704 mask, just_select);
8706 return gen_lowpart_or_truncate (mode, x);
8709 /* Subroutine of force_to_mode that handles cases in which both X and
8710 the result are scalar integers. MODE is the mode of the result,
8711 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8712 is preferred for simplified versions of X. The other arguments
8713 are as for force_to_mode. */
8715 static rtx
8716 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8717 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8718 int just_select)
8720 enum rtx_code code = GET_CODE (x);
8721 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8722 unsigned HOST_WIDE_INT fuller_mask;
8723 rtx op0, op1, temp;
8724 poly_int64 const_op0;
8726 /* When we have an arithmetic operation, or a shift whose count we
8727 do not know, we need to assume that all bits up to the highest-order
8728 bit in MASK will be needed. This is how we form such a mask. */
8729 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8730 fuller_mask = HOST_WIDE_INT_M1U;
8731 else
8732 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8733 - 1);
8735 switch (code)
8737 case CLOBBER:
8738 /* If X is a (clobber (const_int)), return it since we know we are
8739 generating something that won't match. */
8740 return x;
8742 case SIGN_EXTEND:
8743 case ZERO_EXTEND:
8744 case ZERO_EXTRACT:
8745 case SIGN_EXTRACT:
8746 x = expand_compound_operation (x);
8747 if (GET_CODE (x) != code)
8748 return force_to_mode (x, mode, mask, next_select);
8749 break;
8751 case TRUNCATE:
8752 /* Similarly for a truncate. */
8753 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8755 case AND:
8756 /* If this is an AND with a constant, convert it into an AND
8757 whose constant is the AND of that constant with MASK. If it
8758 remains an AND of MASK, delete it since it is redundant. */
8760 if (CONST_INT_P (XEXP (x, 1)))
8762 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8763 mask & INTVAL (XEXP (x, 1)));
8764 xmode = op_mode;
8766 /* If X is still an AND, see if it is an AND with a mask that
8767 is just some low-order bits. If so, and it is MASK, we don't
8768 need it. */
8770 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8771 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8772 x = XEXP (x, 0);
8774 /* If it remains an AND, try making another AND with the bits
8775 in the mode mask that aren't in MASK turned on. If the
8776 constant in the AND is wide enough, this might make a
8777 cheaper constant. */
8779 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8780 && GET_MODE_MASK (xmode) != mask
8781 && HWI_COMPUTABLE_MODE_P (xmode))
8783 unsigned HOST_WIDE_INT cval
8784 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8785 rtx y;
8787 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8788 gen_int_mode (cval, xmode));
8789 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8790 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8791 x = y;
8794 break;
8797 goto binop;
8799 case PLUS:
8800 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8801 low-order bits (as in an alignment operation) and FOO is already
8802 aligned to that boundary, mask C1 to that boundary as well.
8803 This may eliminate that PLUS and, later, the AND. */
8806 unsigned int width = GET_MODE_PRECISION (mode);
8807 unsigned HOST_WIDE_INT smask = mask;
8809 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8810 number, sign extend it. */
8812 if (width < HOST_BITS_PER_WIDE_INT
8813 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8814 smask |= HOST_WIDE_INT_M1U << width;
8816 if (CONST_INT_P (XEXP (x, 1))
8817 && pow2p_hwi (- smask)
8818 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8819 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8820 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8821 (INTVAL (XEXP (x, 1)) & smask)),
8822 mode, smask, next_select);
8825 /* fall through */
8827 case MULT:
8828 /* Substituting into the operands of a widening MULT is not likely to
8829 create RTL matching a machine insn. */
8830 if (code == MULT
8831 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8832 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8833 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8834 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8835 && REG_P (XEXP (XEXP (x, 0), 0))
8836 && REG_P (XEXP (XEXP (x, 1), 0)))
8837 return gen_lowpart_or_truncate (mode, x);
8839 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8840 most significant bit in MASK since carries from those bits will
8841 affect the bits we are interested in. */
8842 mask = fuller_mask;
8843 goto binop;
8845 case MINUS:
8846 /* If X is (minus C Y) where C's least set bit is larger than any bit
8847 in the mask, then we may replace with (neg Y). */
8848 if (poly_int_rtx_p (XEXP (x, 0), &const_op0)
8849 && (unsigned HOST_WIDE_INT) known_alignment (const_op0) > mask)
8851 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8852 return force_to_mode (x, mode, mask, next_select);
8855 /* Similarly, if C contains every bit in the fuller_mask, then we may
8856 replace with (not Y). */
8857 if (CONST_INT_P (XEXP (x, 0))
8858 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8860 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8861 return force_to_mode (x, mode, mask, next_select);
8864 mask = fuller_mask;
8865 goto binop;
8867 case IOR:
8868 case XOR:
8869 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8870 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8871 operation which may be a bitfield extraction. Ensure that the
8872 constant we form is not wider than the mode of X. */
8874 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8875 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8876 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8877 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8878 && CONST_INT_P (XEXP (x, 1))
8879 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8880 + floor_log2 (INTVAL (XEXP (x, 1))))
8881 < GET_MODE_PRECISION (xmode))
8882 && (UINTVAL (XEXP (x, 1))
8883 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8885 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8886 << INTVAL (XEXP (XEXP (x, 0), 1)),
8887 xmode);
8888 temp = simplify_gen_binary (GET_CODE (x), xmode,
8889 XEXP (XEXP (x, 0), 0), temp);
8890 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8891 XEXP (XEXP (x, 0), 1));
8892 return force_to_mode (x, mode, mask, next_select);
8895 binop:
8896 /* For most binary operations, just propagate into the operation and
8897 change the mode if we have an operation of that mode. */
8899 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8900 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8902 /* If we ended up truncating both operands, truncate the result of the
8903 operation instead. */
8904 if (GET_CODE (op0) == TRUNCATE
8905 && GET_CODE (op1) == TRUNCATE)
8907 op0 = XEXP (op0, 0);
8908 op1 = XEXP (op1, 0);
8911 op0 = gen_lowpart_or_truncate (op_mode, op0);
8912 op1 = gen_lowpart_or_truncate (op_mode, op1);
8914 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8916 x = simplify_gen_binary (code, op_mode, op0, op1);
8917 xmode = op_mode;
8919 break;
8921 case ASHIFT:
8922 /* For left shifts, do the same, but just for the first operand.
8923 However, we cannot do anything with shifts where we cannot
8924 guarantee that the counts are smaller than the size of the mode
8925 because such a count will have a different meaning in a
8926 wider mode. */
8928 if (! (CONST_INT_P (XEXP (x, 1))
8929 && INTVAL (XEXP (x, 1)) >= 0
8930 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8931 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8932 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8933 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8934 break;
8936 /* If the shift count is a constant and we can do arithmetic in
8937 the mode of the shift, refine which bits we need. Otherwise, use the
8938 conservative form of the mask. */
8939 if (CONST_INT_P (XEXP (x, 1))
8940 && INTVAL (XEXP (x, 1)) >= 0
8941 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8942 && HWI_COMPUTABLE_MODE_P (op_mode))
8943 mask >>= INTVAL (XEXP (x, 1));
8944 else
8945 mask = fuller_mask;
8947 op0 = gen_lowpart_or_truncate (op_mode,
8948 force_to_mode (XEXP (x, 0), mode,
8949 mask, next_select));
8951 if (op_mode != xmode || op0 != XEXP (x, 0))
8953 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8954 xmode = op_mode;
8956 break;
8958 case LSHIFTRT:
8959 /* Here we can only do something if the shift count is a constant,
8960 this shift constant is valid for the host, and we can do arithmetic
8961 in OP_MODE. */
8963 if (CONST_INT_P (XEXP (x, 1))
8964 && INTVAL (XEXP (x, 1)) >= 0
8965 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8966 && HWI_COMPUTABLE_MODE_P (op_mode))
8968 rtx inner = XEXP (x, 0);
8969 unsigned HOST_WIDE_INT inner_mask;
8971 /* Select the mask of the bits we need for the shift operand. */
8972 inner_mask = mask << INTVAL (XEXP (x, 1));
8974 /* We can only change the mode of the shift if we can do arithmetic
8975 in the mode of the shift and INNER_MASK is no wider than the
8976 width of X's mode. */
8977 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
8978 op_mode = xmode;
8980 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8982 if (xmode != op_mode || inner != XEXP (x, 0))
8984 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8985 xmode = op_mode;
8989 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8990 shift and AND produces only copies of the sign bit (C2 is one less
8991 than a power of two), we can do this with just a shift. */
8993 if (GET_CODE (x) == LSHIFTRT
8994 && CONST_INT_P (XEXP (x, 1))
8995 /* The shift puts one of the sign bit copies in the least significant
8996 bit. */
8997 && ((INTVAL (XEXP (x, 1))
8998 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8999 >= GET_MODE_PRECISION (xmode))
9000 && pow2p_hwi (mask + 1)
9001 /* Number of bits left after the shift must be more than the mask
9002 needs. */
9003 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
9004 <= GET_MODE_PRECISION (xmode))
9005 /* Must be more sign bit copies than the mask needs. */
9006 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9007 >= exact_log2 (mask + 1)))
9009 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
9010 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
9011 gen_int_shift_amount (xmode, nbits));
9013 goto shiftrt;
9015 case ASHIFTRT:
9016 /* If we are just looking for the sign bit, we don't need this shift at
9017 all, even if it has a variable count. */
9018 if (val_signbit_p (xmode, mask))
9019 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9021 /* If this is a shift by a constant, get a mask that contains those bits
9022 that are not copies of the sign bit. We then have two cases: If
9023 MASK only includes those bits, this can be a logical shift, which may
9024 allow simplifications. If MASK is a single-bit field not within
9025 those bits, we are requesting a copy of the sign bit and hence can
9026 shift the sign bit to the appropriate location. */
9028 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9029 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9031 unsigned HOST_WIDE_INT nonzero;
9032 int i;
9034 /* If the considered data is wider than HOST_WIDE_INT, we can't
9035 represent a mask for all its bits in a single scalar.
9036 But we only care about the lower bits, so calculate these. */
9038 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9040 nonzero = HOST_WIDE_INT_M1U;
9042 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9043 is the number of bits a full-width mask would have set.
9044 We need only shift if these are fewer than nonzero can
9045 hold. If not, we must keep all bits set in nonzero. */
9047 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9048 < HOST_BITS_PER_WIDE_INT)
9049 nonzero >>= INTVAL (XEXP (x, 1))
9050 + HOST_BITS_PER_WIDE_INT
9051 - GET_MODE_PRECISION (xmode);
9053 else
9055 nonzero = GET_MODE_MASK (xmode);
9056 nonzero >>= INTVAL (XEXP (x, 1));
9059 if ((mask & ~nonzero) == 0)
9061 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9062 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9063 if (GET_CODE (x) != ASHIFTRT)
9064 return force_to_mode (x, mode, mask, next_select);
9067 else if ((i = exact_log2 (mask)) >= 0)
9069 x = simplify_shift_const
9070 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9071 GET_MODE_PRECISION (xmode) - 1 - i);
9073 if (GET_CODE (x) != ASHIFTRT)
9074 return force_to_mode (x, mode, mask, next_select);
9078 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9079 even if the shift count isn't a constant. */
9080 if (mask == 1)
9081 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9083 shiftrt:
9085 /* If this is a zero- or sign-extension operation that just affects bits
9086 we don't care about, remove it. Be sure the call above returned
9087 something that is still a shift. */
9089 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9090 && CONST_INT_P (XEXP (x, 1))
9091 && INTVAL (XEXP (x, 1)) >= 0
9092 && (INTVAL (XEXP (x, 1))
9093 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9094 && GET_CODE (XEXP (x, 0)) == ASHIFT
9095 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9096 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9097 next_select);
9099 break;
9101 case ROTATE:
9102 case ROTATERT:
9103 /* If the shift count is constant and we can do computations
9104 in the mode of X, compute where the bits we care about are.
9105 Otherwise, we can't do anything. Don't change the mode of
9106 the shift or propagate MODE into the shift, though. */
9107 if (CONST_INT_P (XEXP (x, 1))
9108 && INTVAL (XEXP (x, 1)) >= 0)
9110 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9111 xmode, gen_int_mode (mask, xmode),
9112 XEXP (x, 1));
9113 if (temp && CONST_INT_P (temp))
9114 x = simplify_gen_binary (code, xmode,
9115 force_to_mode (XEXP (x, 0), xmode,
9116 INTVAL (temp), next_select),
9117 XEXP (x, 1));
9119 break;
9121 case NEG:
9122 /* If we just want the low-order bit, the NEG isn't needed since it
9123 won't change the low-order bit. */
9124 if (mask == 1)
9125 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9127 /* We need any bits less significant than the most significant bit in
9128 MASK since carries from those bits will affect the bits we are
9129 interested in. */
9130 mask = fuller_mask;
9131 goto unop;
9133 case NOT:
9134 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9135 same as the XOR case above. Ensure that the constant we form is not
9136 wider than the mode of X. */
9138 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9139 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9140 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9141 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9142 < GET_MODE_PRECISION (xmode))
9143 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9145 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9146 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9147 x = simplify_gen_binary (LSHIFTRT, xmode,
9148 temp, XEXP (XEXP (x, 0), 1));
9150 return force_to_mode (x, mode, mask, next_select);
9153 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9154 use the full mask inside the NOT. */
9155 mask = fuller_mask;
9157 unop:
9158 op0 = gen_lowpart_or_truncate (op_mode,
9159 force_to_mode (XEXP (x, 0), mode, mask,
9160 next_select));
9161 if (op_mode != xmode || op0 != XEXP (x, 0))
9163 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9164 xmode = op_mode;
9166 break;
9168 case NE:
9169 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9170 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9171 which is equal to STORE_FLAG_VALUE. */
9172 if ((mask & ~STORE_FLAG_VALUE) == 0
9173 && XEXP (x, 1) == const0_rtx
9174 && GET_MODE (XEXP (x, 0)) == mode
9175 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9176 && (nonzero_bits (XEXP (x, 0), mode)
9177 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9178 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9180 break;
9182 case IF_THEN_ELSE:
9183 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9184 written in a narrower mode. We play it safe and do not do so. */
9186 op0 = gen_lowpart_or_truncate (xmode,
9187 force_to_mode (XEXP (x, 1), mode,
9188 mask, next_select));
9189 op1 = gen_lowpart_or_truncate (xmode,
9190 force_to_mode (XEXP (x, 2), mode,
9191 mask, next_select));
9192 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9193 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9194 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9195 op0, op1);
9196 break;
9198 default:
9199 break;
9202 /* Ensure we return a value of the proper mode. */
9203 return gen_lowpart_or_truncate (mode, x);
9206 /* Return nonzero if X is an expression that has one of two values depending on
9207 whether some other value is zero or nonzero. In that case, we return the
9208 value that is being tested, *PTRUE is set to the value if the rtx being
9209 returned has a nonzero value, and *PFALSE is set to the other alternative.
9211 If we return zero, we set *PTRUE and *PFALSE to X. */
9213 static rtx
9214 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9216 machine_mode mode = GET_MODE (x);
9217 enum rtx_code code = GET_CODE (x);
9218 rtx cond0, cond1, true0, true1, false0, false1;
9219 unsigned HOST_WIDE_INT nz;
9220 scalar_int_mode int_mode;
9222 /* If we are comparing a value against zero, we are done. */
9223 if ((code == NE || code == EQ)
9224 && XEXP (x, 1) == const0_rtx)
9226 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9227 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9228 return XEXP (x, 0);
9231 /* If this is a unary operation whose operand has one of two values, apply
9232 our opcode to compute those values. */
9233 else if (UNARY_P (x)
9234 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9236 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9237 *pfalse = simplify_gen_unary (code, mode, false0,
9238 GET_MODE (XEXP (x, 0)));
9239 return cond0;
9242 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9243 make can't possibly match and would suppress other optimizations. */
9244 else if (code == COMPARE)
9247 /* If this is a binary operation, see if either side has only one of two
9248 values. If either one does or if both do and they are conditional on
9249 the same value, compute the new true and false values. */
9250 else if (BINARY_P (x))
9252 rtx op0 = XEXP (x, 0);
9253 rtx op1 = XEXP (x, 1);
9254 cond0 = if_then_else_cond (op0, &true0, &false0);
9255 cond1 = if_then_else_cond (op1, &true1, &false1);
9257 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9258 && (REG_P (op0) || REG_P (op1)))
9260 /* Try to enable a simplification by undoing work done by
9261 if_then_else_cond if it converted a REG into something more
9262 complex. */
9263 if (REG_P (op0))
9265 cond0 = 0;
9266 true0 = false0 = op0;
9268 else
9270 cond1 = 0;
9271 true1 = false1 = op1;
9275 if ((cond0 != 0 || cond1 != 0)
9276 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9278 /* If if_then_else_cond returned zero, then true/false are the
9279 same rtl. We must copy one of them to prevent invalid rtl
9280 sharing. */
9281 if (cond0 == 0)
9282 true0 = copy_rtx (true0);
9283 else if (cond1 == 0)
9284 true1 = copy_rtx (true1);
9286 if (COMPARISON_P (x))
9288 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9289 true0, true1);
9290 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9291 false0, false1);
9293 else
9295 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9296 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9299 return cond0 ? cond0 : cond1;
9302 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9303 operands is zero when the other is nonzero, and vice-versa,
9304 and STORE_FLAG_VALUE is 1 or -1. */
9306 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9307 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9308 || code == UMAX)
9309 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9311 rtx op0 = XEXP (XEXP (x, 0), 1);
9312 rtx op1 = XEXP (XEXP (x, 1), 1);
9314 cond0 = XEXP (XEXP (x, 0), 0);
9315 cond1 = XEXP (XEXP (x, 1), 0);
9317 if (COMPARISON_P (cond0)
9318 && COMPARISON_P (cond1)
9319 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9320 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9321 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9322 || ((swap_condition (GET_CODE (cond0))
9323 == reversed_comparison_code (cond1, NULL))
9324 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9325 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9326 && ! side_effects_p (x))
9328 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9329 *pfalse = simplify_gen_binary (MULT, mode,
9330 (code == MINUS
9331 ? simplify_gen_unary (NEG, mode,
9332 op1, mode)
9333 : op1),
9334 const_true_rtx);
9335 return cond0;
9339 /* Similarly for MULT, AND and UMIN, except that for these the result
9340 is always zero. */
9341 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9342 && (code == MULT || code == AND || code == UMIN)
9343 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9345 cond0 = XEXP (XEXP (x, 0), 0);
9346 cond1 = XEXP (XEXP (x, 1), 0);
9348 if (COMPARISON_P (cond0)
9349 && COMPARISON_P (cond1)
9350 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9351 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9352 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9353 || ((swap_condition (GET_CODE (cond0))
9354 == reversed_comparison_code (cond1, NULL))
9355 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9356 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9357 && ! side_effects_p (x))
9359 *ptrue = *pfalse = const0_rtx;
9360 return cond0;
9365 else if (code == IF_THEN_ELSE)
9367 /* If we have IF_THEN_ELSE already, extract the condition and
9368 canonicalize it if it is NE or EQ. */
9369 cond0 = XEXP (x, 0);
9370 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9371 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9372 return XEXP (cond0, 0);
9373 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9375 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9376 return XEXP (cond0, 0);
9378 else
9379 return cond0;
9382 /* If X is a SUBREG, we can narrow both the true and false values
9383 if the inner expression, if there is a condition. */
9384 else if (code == SUBREG
9385 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9386 &false0)) != 0)
9388 true0 = simplify_gen_subreg (mode, true0,
9389 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9390 false0 = simplify_gen_subreg (mode, false0,
9391 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9392 if (true0 && false0)
9394 *ptrue = true0;
9395 *pfalse = false0;
9396 return cond0;
9400 /* If X is a constant, this isn't special and will cause confusions
9401 if we treat it as such. Likewise if it is equivalent to a constant. */
9402 else if (CONSTANT_P (x)
9403 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9406 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9407 will be least confusing to the rest of the compiler. */
9408 else if (mode == BImode)
9410 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9411 return x;
9414 /* If X is known to be either 0 or -1, those are the true and
9415 false values when testing X. */
9416 else if (x == constm1_rtx || x == const0_rtx
9417 || (is_a <scalar_int_mode> (mode, &int_mode)
9418 && (num_sign_bit_copies (x, int_mode)
9419 == GET_MODE_PRECISION (int_mode))))
9421 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9422 return x;
9425 /* Likewise for 0 or a single bit. */
9426 else if (HWI_COMPUTABLE_MODE_P (mode)
9427 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9429 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9430 return x;
9433 /* Otherwise fail; show no condition with true and false values the same. */
9434 *ptrue = *pfalse = x;
9435 return 0;
9438 /* Return the value of expression X given the fact that condition COND
9439 is known to be true when applied to REG as its first operand and VAL
9440 as its second. X is known to not be shared and so can be modified in
9441 place.
9443 We only handle the simplest cases, and specifically those cases that
9444 arise with IF_THEN_ELSE expressions. */
9446 static rtx
9447 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9449 enum rtx_code code = GET_CODE (x);
9450 const char *fmt;
9451 int i, j;
9453 if (side_effects_p (x))
9454 return x;
9456 /* If either operand of the condition is a floating point value,
9457 then we have to avoid collapsing an EQ comparison. */
9458 if (cond == EQ
9459 && rtx_equal_p (x, reg)
9460 && ! FLOAT_MODE_P (GET_MODE (x))
9461 && ! FLOAT_MODE_P (GET_MODE (val)))
9462 return val;
9464 if (cond == UNEQ && rtx_equal_p (x, reg))
9465 return val;
9467 /* If X is (abs REG) and we know something about REG's relationship
9468 with zero, we may be able to simplify this. */
9470 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9471 switch (cond)
9473 case GE: case GT: case EQ:
9474 return XEXP (x, 0);
9475 case LT: case LE:
9476 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9477 XEXP (x, 0),
9478 GET_MODE (XEXP (x, 0)));
9479 default:
9480 break;
9483 /* The only other cases we handle are MIN, MAX, and comparisons if the
9484 operands are the same as REG and VAL. */
9486 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9488 if (rtx_equal_p (XEXP (x, 0), val))
9490 std::swap (val, reg);
9491 cond = swap_condition (cond);
9494 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9496 if (COMPARISON_P (x))
9498 if (comparison_dominates_p (cond, code))
9499 return const_true_rtx;
9501 code = reversed_comparison_code (x, NULL);
9502 if (code != UNKNOWN
9503 && comparison_dominates_p (cond, code))
9504 return const0_rtx;
9505 else
9506 return x;
9508 else if (code == SMAX || code == SMIN
9509 || code == UMIN || code == UMAX)
9511 int unsignedp = (code == UMIN || code == UMAX);
9513 /* Do not reverse the condition when it is NE or EQ.
9514 This is because we cannot conclude anything about
9515 the value of 'SMAX (x, y)' when x is not equal to y,
9516 but we can when x equals y. */
9517 if ((code == SMAX || code == UMAX)
9518 && ! (cond == EQ || cond == NE))
9519 cond = reverse_condition (cond);
9521 switch (cond)
9523 case GE: case GT:
9524 return unsignedp ? x : XEXP (x, 1);
9525 case LE: case LT:
9526 return unsignedp ? x : XEXP (x, 0);
9527 case GEU: case GTU:
9528 return unsignedp ? XEXP (x, 1) : x;
9529 case LEU: case LTU:
9530 return unsignedp ? XEXP (x, 0) : x;
9531 default:
9532 break;
9537 else if (code == SUBREG)
9539 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9540 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9542 if (SUBREG_REG (x) != r)
9544 /* We must simplify subreg here, before we lose track of the
9545 original inner_mode. */
9546 new_rtx = simplify_subreg (GET_MODE (x), r,
9547 inner_mode, SUBREG_BYTE (x));
9548 if (new_rtx)
9549 return new_rtx;
9550 else
9551 SUBST (SUBREG_REG (x), r);
9554 return x;
9556 /* We don't have to handle SIGN_EXTEND here, because even in the
9557 case of replacing something with a modeless CONST_INT, a
9558 CONST_INT is already (supposed to be) a valid sign extension for
9559 its narrower mode, which implies it's already properly
9560 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9561 story is different. */
9562 else if (code == ZERO_EXTEND)
9564 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9565 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9567 if (XEXP (x, 0) != r)
9569 /* We must simplify the zero_extend here, before we lose
9570 track of the original inner_mode. */
9571 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9572 r, inner_mode);
9573 if (new_rtx)
9574 return new_rtx;
9575 else
9576 SUBST (XEXP (x, 0), r);
9579 return x;
9582 fmt = GET_RTX_FORMAT (code);
9583 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9585 if (fmt[i] == 'e')
9586 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9587 else if (fmt[i] == 'E')
9588 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9589 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9590 cond, reg, val));
9593 return x;
9596 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9597 assignment as a field assignment. */
9599 static int
9600 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9602 if (widen_x && GET_MODE (x) != GET_MODE (y))
9604 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9605 return 0;
9606 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9607 return 0;
9608 x = adjust_address_nv (x, GET_MODE (y),
9609 byte_lowpart_offset (GET_MODE (y),
9610 GET_MODE (x)));
9613 if (x == y || rtx_equal_p (x, y))
9614 return 1;
9616 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9617 return 0;
9619 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9620 Note that all SUBREGs of MEM are paradoxical; otherwise they
9621 would have been rewritten. */
9622 if (MEM_P (x) && GET_CODE (y) == SUBREG
9623 && MEM_P (SUBREG_REG (y))
9624 && rtx_equal_p (SUBREG_REG (y),
9625 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9626 return 1;
9628 if (MEM_P (y) && GET_CODE (x) == SUBREG
9629 && MEM_P (SUBREG_REG (x))
9630 && rtx_equal_p (SUBREG_REG (x),
9631 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9632 return 1;
9634 /* We used to see if get_last_value of X and Y were the same but that's
9635 not correct. In one direction, we'll cause the assignment to have
9636 the wrong destination and in the case, we'll import a register into this
9637 insn that might have already have been dead. So fail if none of the
9638 above cases are true. */
9639 return 0;
9642 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9643 Return that assignment if so.
9645 We only handle the most common cases. */
9647 static rtx
9648 make_field_assignment (rtx x)
9650 rtx dest = SET_DEST (x);
9651 rtx src = SET_SRC (x);
9652 rtx assign;
9653 rtx rhs, lhs;
9654 HOST_WIDE_INT c1;
9655 HOST_WIDE_INT pos;
9656 unsigned HOST_WIDE_INT len;
9657 rtx other;
9659 /* All the rules in this function are specific to scalar integers. */
9660 scalar_int_mode mode;
9661 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9662 return x;
9664 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9665 a clear of a one-bit field. We will have changed it to
9666 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9667 for a SUBREG. */
9669 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9670 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9671 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9672 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9674 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9675 1, 1, 1, 0);
9676 if (assign != 0)
9677 return gen_rtx_SET (assign, const0_rtx);
9678 return x;
9681 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9682 && subreg_lowpart_p (XEXP (src, 0))
9683 && partial_subreg_p (XEXP (src, 0))
9684 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9685 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9686 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9687 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9689 assign = make_extraction (VOIDmode, dest, 0,
9690 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9691 1, 1, 1, 0);
9692 if (assign != 0)
9693 return gen_rtx_SET (assign, const0_rtx);
9694 return x;
9697 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9698 one-bit field. */
9699 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9700 && XEXP (XEXP (src, 0), 0) == const1_rtx
9701 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9703 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9704 1, 1, 1, 0);
9705 if (assign != 0)
9706 return gen_rtx_SET (assign, const1_rtx);
9707 return x;
9710 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9711 SRC is an AND with all bits of that field set, then we can discard
9712 the AND. */
9713 if (GET_CODE (dest) == ZERO_EXTRACT
9714 && CONST_INT_P (XEXP (dest, 1))
9715 && GET_CODE (src) == AND
9716 && CONST_INT_P (XEXP (src, 1)))
9718 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9719 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9720 unsigned HOST_WIDE_INT ze_mask;
9722 if (width >= HOST_BITS_PER_WIDE_INT)
9723 ze_mask = -1;
9724 else
9725 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9727 /* Complete overlap. We can remove the source AND. */
9728 if ((and_mask & ze_mask) == ze_mask)
9729 return gen_rtx_SET (dest, XEXP (src, 0));
9731 /* Partial overlap. We can reduce the source AND. */
9732 if ((and_mask & ze_mask) != and_mask)
9734 src = gen_rtx_AND (mode, XEXP (src, 0),
9735 gen_int_mode (and_mask & ze_mask, mode));
9736 return gen_rtx_SET (dest, src);
9740 /* The other case we handle is assignments into a constant-position
9741 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9742 a mask that has all one bits except for a group of zero bits and
9743 OTHER is known to have zeros where C1 has ones, this is such an
9744 assignment. Compute the position and length from C1. Shift OTHER
9745 to the appropriate position, force it to the required mode, and
9746 make the extraction. Check for the AND in both operands. */
9748 /* One or more SUBREGs might obscure the constant-position field
9749 assignment. The first one we are likely to encounter is an outer
9750 narrowing SUBREG, which we can just strip for the purposes of
9751 identifying the constant-field assignment. */
9752 scalar_int_mode src_mode = mode;
9753 if (GET_CODE (src) == SUBREG
9754 && subreg_lowpart_p (src)
9755 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9756 src = SUBREG_REG (src);
9758 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9759 return x;
9761 rhs = expand_compound_operation (XEXP (src, 0));
9762 lhs = expand_compound_operation (XEXP (src, 1));
9764 if (GET_CODE (rhs) == AND
9765 && CONST_INT_P (XEXP (rhs, 1))
9766 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9767 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9768 /* The second SUBREG that might get in the way is a paradoxical
9769 SUBREG around the first operand of the AND. We want to
9770 pretend the operand is as wide as the destination here. We
9771 do this by adjusting the MEM to wider mode for the sole
9772 purpose of the call to rtx_equal_for_field_assignment_p. Also
9773 note this trick only works for MEMs. */
9774 else if (GET_CODE (rhs) == AND
9775 && paradoxical_subreg_p (XEXP (rhs, 0))
9776 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9777 && CONST_INT_P (XEXP (rhs, 1))
9778 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9779 dest, true))
9780 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9781 else if (GET_CODE (lhs) == AND
9782 && CONST_INT_P (XEXP (lhs, 1))
9783 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9784 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9785 /* The second SUBREG that might get in the way is a paradoxical
9786 SUBREG around the first operand of the AND. We want to
9787 pretend the operand is as wide as the destination here. We
9788 do this by adjusting the MEM to wider mode for the sole
9789 purpose of the call to rtx_equal_for_field_assignment_p. Also
9790 note this trick only works for MEMs. */
9791 else if (GET_CODE (lhs) == AND
9792 && paradoxical_subreg_p (XEXP (lhs, 0))
9793 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9794 && CONST_INT_P (XEXP (lhs, 1))
9795 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9796 dest, true))
9797 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9798 else
9799 return x;
9801 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9802 if (pos < 0
9803 || pos + len > GET_MODE_PRECISION (mode)
9804 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9805 || (c1 & nonzero_bits (other, mode)) != 0)
9806 return x;
9808 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9809 if (assign == 0)
9810 return x;
9812 /* The mode to use for the source is the mode of the assignment, or of
9813 what is inside a possible STRICT_LOW_PART. */
9814 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9815 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9817 /* Shift OTHER right POS places and make it the source, restricting it
9818 to the proper length and mode. */
9820 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9821 src_mode, other, pos),
9822 dest);
9823 src = force_to_mode (src, new_mode,
9824 len >= HOST_BITS_PER_WIDE_INT
9825 ? HOST_WIDE_INT_M1U
9826 : (HOST_WIDE_INT_1U << len) - 1,
9829 /* If SRC is masked by an AND that does not make a difference in
9830 the value being stored, strip it. */
9831 if (GET_CODE (assign) == ZERO_EXTRACT
9832 && CONST_INT_P (XEXP (assign, 1))
9833 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9834 && GET_CODE (src) == AND
9835 && CONST_INT_P (XEXP (src, 1))
9836 && UINTVAL (XEXP (src, 1))
9837 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9838 src = XEXP (src, 0);
9840 return gen_rtx_SET (assign, src);
9843 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9844 if so. */
9846 static rtx
9847 apply_distributive_law (rtx x)
9849 enum rtx_code code = GET_CODE (x);
9850 enum rtx_code inner_code;
9851 rtx lhs, rhs, other;
9852 rtx tem;
9854 /* Distributivity is not true for floating point as it can change the
9855 value. So we don't do it unless -funsafe-math-optimizations. */
9856 if (FLOAT_MODE_P (GET_MODE (x))
9857 && ! flag_unsafe_math_optimizations)
9858 return x;
9860 /* The outer operation can only be one of the following: */
9861 if (code != IOR && code != AND && code != XOR
9862 && code != PLUS && code != MINUS)
9863 return x;
9865 lhs = XEXP (x, 0);
9866 rhs = XEXP (x, 1);
9868 /* If either operand is a primitive we can't do anything, so get out
9869 fast. */
9870 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9871 return x;
9873 lhs = expand_compound_operation (lhs);
9874 rhs = expand_compound_operation (rhs);
9875 inner_code = GET_CODE (lhs);
9876 if (inner_code != GET_CODE (rhs))
9877 return x;
9879 /* See if the inner and outer operations distribute. */
9880 switch (inner_code)
9882 case LSHIFTRT:
9883 case ASHIFTRT:
9884 case AND:
9885 case IOR:
9886 /* These all distribute except over PLUS. */
9887 if (code == PLUS || code == MINUS)
9888 return x;
9889 break;
9891 case MULT:
9892 if (code != PLUS && code != MINUS)
9893 return x;
9894 break;
9896 case ASHIFT:
9897 /* This is also a multiply, so it distributes over everything. */
9898 break;
9900 /* This used to handle SUBREG, but this turned out to be counter-
9901 productive, since (subreg (op ...)) usually is not handled by
9902 insn patterns, and this "optimization" therefore transformed
9903 recognizable patterns into unrecognizable ones. Therefore the
9904 SUBREG case was removed from here.
9906 It is possible that distributing SUBREG over arithmetic operations
9907 leads to an intermediate result than can then be optimized further,
9908 e.g. by moving the outer SUBREG to the other side of a SET as done
9909 in simplify_set. This seems to have been the original intent of
9910 handling SUBREGs here.
9912 However, with current GCC this does not appear to actually happen,
9913 at least on major platforms. If some case is found where removing
9914 the SUBREG case here prevents follow-on optimizations, distributing
9915 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9917 default:
9918 return x;
9921 /* Set LHS and RHS to the inner operands (A and B in the example
9922 above) and set OTHER to the common operand (C in the example).
9923 There is only one way to do this unless the inner operation is
9924 commutative. */
9925 if (COMMUTATIVE_ARITH_P (lhs)
9926 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9927 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9928 else if (COMMUTATIVE_ARITH_P (lhs)
9929 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9930 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9931 else if (COMMUTATIVE_ARITH_P (lhs)
9932 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9933 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9934 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9935 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9936 else
9937 return x;
9939 /* Form the new inner operation, seeing if it simplifies first. */
9940 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9942 /* There is one exception to the general way of distributing:
9943 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9944 if (code == XOR && inner_code == IOR)
9946 inner_code = AND;
9947 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9950 /* We may be able to continuing distributing the result, so call
9951 ourselves recursively on the inner operation before forming the
9952 outer operation, which we return. */
9953 return simplify_gen_binary (inner_code, GET_MODE (x),
9954 apply_distributive_law (tem), other);
9957 /* See if X is of the form (* (+ A B) C), and if so convert to
9958 (+ (* A C) (* B C)) and try to simplify.
9960 Most of the time, this results in no change. However, if some of
9961 the operands are the same or inverses of each other, simplifications
9962 will result.
9964 For example, (and (ior A B) (not B)) can occur as the result of
9965 expanding a bit field assignment. When we apply the distributive
9966 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9967 which then simplifies to (and (A (not B))).
9969 Note that no checks happen on the validity of applying the inverse
9970 distributive law. This is pointless since we can do it in the
9971 few places where this routine is called.
9973 N is the index of the term that is decomposed (the arithmetic operation,
9974 i.e. (+ A B) in the first example above). !N is the index of the term that
9975 is distributed, i.e. of C in the first example above. */
9976 static rtx
9977 distribute_and_simplify_rtx (rtx x, int n)
9979 machine_mode mode;
9980 enum rtx_code outer_code, inner_code;
9981 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9983 /* Distributivity is not true for floating point as it can change the
9984 value. So we don't do it unless -funsafe-math-optimizations. */
9985 if (FLOAT_MODE_P (GET_MODE (x))
9986 && ! flag_unsafe_math_optimizations)
9987 return NULL_RTX;
9989 decomposed = XEXP (x, n);
9990 if (!ARITHMETIC_P (decomposed))
9991 return NULL_RTX;
9993 mode = GET_MODE (x);
9994 outer_code = GET_CODE (x);
9995 distributed = XEXP (x, !n);
9997 inner_code = GET_CODE (decomposed);
9998 inner_op0 = XEXP (decomposed, 0);
9999 inner_op1 = XEXP (decomposed, 1);
10001 /* Special case (and (xor B C) (not A)), which is equivalent to
10002 (xor (ior A B) (ior A C)) */
10003 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
10005 distributed = XEXP (distributed, 0);
10006 outer_code = IOR;
10009 if (n == 0)
10011 /* Distribute the second term. */
10012 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
10013 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
10015 else
10017 /* Distribute the first term. */
10018 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10019 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10022 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10023 new_op0, new_op1));
10024 if (GET_CODE (tmp) != outer_code
10025 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10026 < set_src_cost (x, mode, optimize_this_for_speed_p)))
10027 return tmp;
10029 return NULL_RTX;
10032 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10033 in MODE. Return an equivalent form, if different from (and VAROP
10034 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10036 static rtx
10037 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10038 unsigned HOST_WIDE_INT constop)
10040 unsigned HOST_WIDE_INT nonzero;
10041 unsigned HOST_WIDE_INT orig_constop;
10042 rtx orig_varop;
10043 int i;
10045 orig_varop = varop;
10046 orig_constop = constop;
10047 if (GET_CODE (varop) == CLOBBER)
10048 return NULL_RTX;
10050 /* Simplify VAROP knowing that we will be only looking at some of the
10051 bits in it.
10053 Note by passing in CONSTOP, we guarantee that the bits not set in
10054 CONSTOP are not significant and will never be examined. We must
10055 ensure that is the case by explicitly masking out those bits
10056 before returning. */
10057 varop = force_to_mode (varop, mode, constop, 0);
10059 /* If VAROP is a CLOBBER, we will fail so return it. */
10060 if (GET_CODE (varop) == CLOBBER)
10061 return varop;
10063 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10064 to VAROP and return the new constant. */
10065 if (CONST_INT_P (varop))
10066 return gen_int_mode (INTVAL (varop) & constop, mode);
10068 /* See what bits may be nonzero in VAROP. Unlike the general case of
10069 a call to nonzero_bits, here we don't care about bits outside
10070 MODE. */
10072 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10074 /* Turn off all bits in the constant that are known to already be zero.
10075 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10076 which is tested below. */
10078 constop &= nonzero;
10080 /* If we don't have any bits left, return zero. */
10081 if (constop == 0)
10082 return const0_rtx;
10084 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10085 a power of two, we can replace this with an ASHIFT. */
10086 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10087 && (i = exact_log2 (constop)) >= 0)
10088 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10090 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10091 or XOR, then try to apply the distributive law. This may eliminate
10092 operations if either branch can be simplified because of the AND.
10093 It may also make some cases more complex, but those cases probably
10094 won't match a pattern either with or without this. */
10096 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10098 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10099 return
10100 gen_lowpart
10101 (mode,
10102 apply_distributive_law
10103 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10104 simplify_and_const_int (NULL_RTX, varop_mode,
10105 XEXP (varop, 0),
10106 constop),
10107 simplify_and_const_int (NULL_RTX, varop_mode,
10108 XEXP (varop, 1),
10109 constop))));
10112 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10113 the AND and see if one of the operands simplifies to zero. If so, we
10114 may eliminate it. */
10116 if (GET_CODE (varop) == PLUS
10117 && pow2p_hwi (constop + 1))
10119 rtx o0, o1;
10121 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10122 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10123 if (o0 == const0_rtx)
10124 return o1;
10125 if (o1 == const0_rtx)
10126 return o0;
10129 /* Make a SUBREG if necessary. If we can't make it, fail. */
10130 varop = gen_lowpart (mode, varop);
10131 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10132 return NULL_RTX;
10134 /* If we are only masking insignificant bits, return VAROP. */
10135 if (constop == nonzero)
10136 return varop;
10138 if (varop == orig_varop && constop == orig_constop)
10139 return NULL_RTX;
10141 /* Otherwise, return an AND. */
10142 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10146 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10147 in MODE.
10149 Return an equivalent form, if different from X. Otherwise, return X. If
10150 X is zero, we are to always construct the equivalent form. */
10152 static rtx
10153 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10154 unsigned HOST_WIDE_INT constop)
10156 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10157 if (tem)
10158 return tem;
10160 if (!x)
10161 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10162 gen_int_mode (constop, mode));
10163 if (GET_MODE (x) != mode)
10164 x = gen_lowpart (mode, x);
10165 return x;
10168 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10169 We don't care about bits outside of those defined in MODE.
10171 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10172 a shift, AND, or zero_extract, we can do better. */
10174 static rtx
10175 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10176 scalar_int_mode mode,
10177 unsigned HOST_WIDE_INT *nonzero)
10179 rtx tem;
10180 reg_stat_type *rsp;
10182 /* If X is a register whose nonzero bits value is current, use it.
10183 Otherwise, if X is a register whose value we can find, use that
10184 value. Otherwise, use the previously-computed global nonzero bits
10185 for this register. */
10187 rsp = &reg_stat[REGNO (x)];
10188 if (rsp->last_set_value != 0
10189 && (rsp->last_set_mode == mode
10190 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10191 && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10192 && GET_MODE_CLASS (mode) == MODE_INT))
10193 && ((rsp->last_set_label >= label_tick_ebb_start
10194 && rsp->last_set_label < label_tick)
10195 || (rsp->last_set_label == label_tick
10196 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10197 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10198 && REGNO (x) < reg_n_sets_max
10199 && REG_N_SETS (REGNO (x)) == 1
10200 && !REGNO_REG_SET_P
10201 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10202 REGNO (x)))))
10204 /* Note that, even if the precision of last_set_mode is lower than that
10205 of mode, record_value_for_reg invoked nonzero_bits on the register
10206 with nonzero_bits_mode (because last_set_mode is necessarily integral
10207 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10208 are all valid, hence in mode too since nonzero_bits_mode is defined
10209 to the largest HWI_COMPUTABLE_MODE_P mode. */
10210 *nonzero &= rsp->last_set_nonzero_bits;
10211 return NULL;
10214 tem = get_last_value (x);
10215 if (tem)
10217 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10218 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10220 return tem;
10223 if (nonzero_sign_valid && rsp->nonzero_bits)
10225 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10227 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10228 /* We don't know anything about the upper bits. */
10229 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10231 *nonzero &= mask;
10234 return NULL;
10237 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10238 end of X that are known to be equal to the sign bit. X will be used
10239 in mode MODE; the returned value will always be between 1 and the
10240 number of bits in MODE. */
10242 static rtx
10243 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10244 scalar_int_mode mode,
10245 unsigned int *result)
10247 rtx tem;
10248 reg_stat_type *rsp;
10250 rsp = &reg_stat[REGNO (x)];
10251 if (rsp->last_set_value != 0
10252 && rsp->last_set_mode == mode
10253 && ((rsp->last_set_label >= label_tick_ebb_start
10254 && rsp->last_set_label < label_tick)
10255 || (rsp->last_set_label == label_tick
10256 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10257 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10258 && REGNO (x) < reg_n_sets_max
10259 && REG_N_SETS (REGNO (x)) == 1
10260 && !REGNO_REG_SET_P
10261 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10262 REGNO (x)))))
10264 *result = rsp->last_set_sign_bit_copies;
10265 return NULL;
10268 tem = get_last_value (x);
10269 if (tem != 0)
10270 return tem;
10272 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10273 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10274 *result = rsp->sign_bit_copies;
10276 return NULL;
10279 /* Return the number of "extended" bits there are in X, when interpreted
10280 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10281 unsigned quantities, this is the number of high-order zero bits.
10282 For signed quantities, this is the number of copies of the sign bit
10283 minus 1. In both case, this function returns the number of "spare"
10284 bits. For example, if two quantities for which this function returns
10285 at least 1 are added, the addition is known not to overflow.
10287 This function will always return 0 unless called during combine, which
10288 implies that it must be called from a define_split. */
10290 unsigned int
10291 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10293 if (nonzero_sign_valid == 0)
10294 return 0;
10296 scalar_int_mode int_mode;
10297 return (unsignedp
10298 ? (is_a <scalar_int_mode> (mode, &int_mode)
10299 && HWI_COMPUTABLE_MODE_P (int_mode)
10300 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10301 - floor_log2 (nonzero_bits (x, int_mode)))
10302 : 0)
10303 : num_sign_bit_copies (x, mode) - 1);
10306 /* This function is called from `simplify_shift_const' to merge two
10307 outer operations. Specifically, we have already found that we need
10308 to perform operation *POP0 with constant *PCONST0 at the outermost
10309 position. We would now like to also perform OP1 with constant CONST1
10310 (with *POP0 being done last).
10312 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10313 the resulting operation. *PCOMP_P is set to 1 if we would need to
10314 complement the innermost operand, otherwise it is unchanged.
10316 MODE is the mode in which the operation will be done. No bits outside
10317 the width of this mode matter. It is assumed that the width of this mode
10318 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10320 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10321 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10322 result is simply *PCONST0.
10324 If the resulting operation cannot be expressed as one operation, we
10325 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10327 static int
10328 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10330 enum rtx_code op0 = *pop0;
10331 HOST_WIDE_INT const0 = *pconst0;
10333 const0 &= GET_MODE_MASK (mode);
10334 const1 &= GET_MODE_MASK (mode);
10336 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10337 if (op0 == AND)
10338 const1 &= const0;
10340 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10341 if OP0 is SET. */
10343 if (op1 == UNKNOWN || op0 == SET)
10344 return 1;
10346 else if (op0 == UNKNOWN)
10347 op0 = op1, const0 = const1;
10349 else if (op0 == op1)
10351 switch (op0)
10353 case AND:
10354 const0 &= const1;
10355 break;
10356 case IOR:
10357 const0 |= const1;
10358 break;
10359 case XOR:
10360 const0 ^= const1;
10361 break;
10362 case PLUS:
10363 const0 += const1;
10364 break;
10365 case NEG:
10366 op0 = UNKNOWN;
10367 break;
10368 default:
10369 break;
10373 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10374 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10375 return 0;
10377 /* If the two constants aren't the same, we can't do anything. The
10378 remaining six cases can all be done. */
10379 else if (const0 != const1)
10380 return 0;
10382 else
10383 switch (op0)
10385 case IOR:
10386 if (op1 == AND)
10387 /* (a & b) | b == b */
10388 op0 = SET;
10389 else /* op1 == XOR */
10390 /* (a ^ b) | b == a | b */
10392 break;
10394 case XOR:
10395 if (op1 == AND)
10396 /* (a & b) ^ b == (~a) & b */
10397 op0 = AND, *pcomp_p = 1;
10398 else /* op1 == IOR */
10399 /* (a | b) ^ b == a & ~b */
10400 op0 = AND, const0 = ~const0;
10401 break;
10403 case AND:
10404 if (op1 == IOR)
10405 /* (a | b) & b == b */
10406 op0 = SET;
10407 else /* op1 == XOR */
10408 /* (a ^ b) & b) == (~a) & b */
10409 *pcomp_p = 1;
10410 break;
10411 default:
10412 break;
10415 /* Check for NO-OP cases. */
10416 const0 &= GET_MODE_MASK (mode);
10417 if (const0 == 0
10418 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10419 op0 = UNKNOWN;
10420 else if (const0 == 0 && op0 == AND)
10421 op0 = SET;
10422 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10423 && op0 == AND)
10424 op0 = UNKNOWN;
10426 *pop0 = op0;
10428 /* ??? Slightly redundant with the above mask, but not entirely.
10429 Moving this above means we'd have to sign-extend the mode mask
10430 for the final test. */
10431 if (op0 != UNKNOWN && op0 != NEG)
10432 *pconst0 = trunc_int_for_mode (const0, mode);
10434 return 1;
10437 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10438 the shift in. The original shift operation CODE is performed on OP in
10439 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10440 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10441 result of the shift is subject to operation OUTER_CODE with operand
10442 OUTER_CONST. */
10444 static scalar_int_mode
10445 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10446 scalar_int_mode orig_mode, scalar_int_mode mode,
10447 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10449 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10451 /* In general we can't perform in wider mode for right shift and rotate. */
10452 switch (code)
10454 case ASHIFTRT:
10455 /* We can still widen if the bits brought in from the left are identical
10456 to the sign bit of ORIG_MODE. */
10457 if (num_sign_bit_copies (op, mode)
10458 > (unsigned) (GET_MODE_PRECISION (mode)
10459 - GET_MODE_PRECISION (orig_mode)))
10460 return mode;
10461 return orig_mode;
10463 case LSHIFTRT:
10464 /* Similarly here but with zero bits. */
10465 if (HWI_COMPUTABLE_MODE_P (mode)
10466 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10467 return mode;
10469 /* We can also widen if the bits brought in will be masked off. This
10470 operation is performed in ORIG_MODE. */
10471 if (outer_code == AND)
10473 int care_bits = low_bitmask_len (orig_mode, outer_const);
10475 if (care_bits >= 0
10476 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10477 return mode;
10479 /* fall through */
10481 case ROTATE:
10482 return orig_mode;
10484 case ROTATERT:
10485 gcc_unreachable ();
10487 default:
10488 return mode;
10492 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10493 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10494 if we cannot simplify it. Otherwise, return a simplified value.
10496 The shift is normally computed in the widest mode we find in VAROP, as
10497 long as it isn't a different number of words than RESULT_MODE. Exceptions
10498 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10500 static rtx
10501 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10502 rtx varop, int orig_count)
10504 enum rtx_code orig_code = code;
10505 rtx orig_varop = varop;
10506 int count, log2;
10507 machine_mode mode = result_mode;
10508 machine_mode shift_mode;
10509 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10510 /* We form (outer_op (code varop count) (outer_const)). */
10511 enum rtx_code outer_op = UNKNOWN;
10512 HOST_WIDE_INT outer_const = 0;
10513 int complement_p = 0;
10514 rtx new_rtx, x;
10516 /* Make sure and truncate the "natural" shift on the way in. We don't
10517 want to do this inside the loop as it makes it more difficult to
10518 combine shifts. */
10519 if (SHIFT_COUNT_TRUNCATED)
10520 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10522 /* If we were given an invalid count, don't do anything except exactly
10523 what was requested. */
10525 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10526 return NULL_RTX;
10528 count = orig_count;
10530 /* Unless one of the branches of the `if' in this loop does a `continue',
10531 we will `break' the loop after the `if'. */
10533 while (count != 0)
10535 /* If we have an operand of (clobber (const_int 0)), fail. */
10536 if (GET_CODE (varop) == CLOBBER)
10537 return NULL_RTX;
10539 /* Convert ROTATERT to ROTATE. */
10540 if (code == ROTATERT)
10542 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10543 code = ROTATE;
10544 count = bitsize - count;
10547 shift_mode = result_mode;
10548 if (shift_mode != mode)
10550 /* We only change the modes of scalar shifts. */
10551 int_mode = as_a <scalar_int_mode> (mode);
10552 int_result_mode = as_a <scalar_int_mode> (result_mode);
10553 shift_mode = try_widen_shift_mode (code, varop, count,
10554 int_result_mode, int_mode,
10555 outer_op, outer_const);
10558 scalar_int_mode shift_unit_mode
10559 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10561 /* Handle cases where the count is greater than the size of the mode
10562 minus 1. For ASHIFT, use the size minus one as the count (this can
10563 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10564 take the count modulo the size. For other shifts, the result is
10565 zero.
10567 Since these shifts are being produced by the compiler by combining
10568 multiple operations, each of which are defined, we know what the
10569 result is supposed to be. */
10571 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10573 if (code == ASHIFTRT)
10574 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10575 else if (code == ROTATE || code == ROTATERT)
10576 count %= GET_MODE_PRECISION (shift_unit_mode);
10577 else
10579 /* We can't simply return zero because there may be an
10580 outer op. */
10581 varop = const0_rtx;
10582 count = 0;
10583 break;
10587 /* If we discovered we had to complement VAROP, leave. Making a NOT
10588 here would cause an infinite loop. */
10589 if (complement_p)
10590 break;
10592 if (shift_mode == shift_unit_mode)
10594 /* An arithmetic right shift of a quantity known to be -1 or 0
10595 is a no-op. */
10596 if (code == ASHIFTRT
10597 && (num_sign_bit_copies (varop, shift_unit_mode)
10598 == GET_MODE_PRECISION (shift_unit_mode)))
10600 count = 0;
10601 break;
10604 /* If we are doing an arithmetic right shift and discarding all but
10605 the sign bit copies, this is equivalent to doing a shift by the
10606 bitsize minus one. Convert it into that shift because it will
10607 often allow other simplifications. */
10609 if (code == ASHIFTRT
10610 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10611 >= GET_MODE_PRECISION (shift_unit_mode)))
10612 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10614 /* We simplify the tests below and elsewhere by converting
10615 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10616 `make_compound_operation' will convert it to an ASHIFTRT for
10617 those machines (such as VAX) that don't have an LSHIFTRT. */
10618 if (code == ASHIFTRT
10619 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10620 && val_signbit_known_clear_p (shift_unit_mode,
10621 nonzero_bits (varop,
10622 shift_unit_mode)))
10623 code = LSHIFTRT;
10625 if (((code == LSHIFTRT
10626 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10627 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10628 || (code == ASHIFT
10629 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10630 && !((nonzero_bits (varop, shift_unit_mode) << count)
10631 & GET_MODE_MASK (shift_unit_mode))))
10632 && !side_effects_p (varop))
10633 varop = const0_rtx;
10636 switch (GET_CODE (varop))
10638 case SIGN_EXTEND:
10639 case ZERO_EXTEND:
10640 case SIGN_EXTRACT:
10641 case ZERO_EXTRACT:
10642 new_rtx = expand_compound_operation (varop);
10643 if (new_rtx != varop)
10645 varop = new_rtx;
10646 continue;
10648 break;
10650 case MEM:
10651 /* The following rules apply only to scalars. */
10652 if (shift_mode != shift_unit_mode)
10653 break;
10654 int_mode = as_a <scalar_int_mode> (mode);
10656 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10657 minus the width of a smaller mode, we can do this with a
10658 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10659 if ((code == ASHIFTRT || code == LSHIFTRT)
10660 && ! mode_dependent_address_p (XEXP (varop, 0),
10661 MEM_ADDR_SPACE (varop))
10662 && ! MEM_VOLATILE_P (varop)
10663 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10664 .exists (&tmode)))
10666 new_rtx = adjust_address_nv (varop, tmode,
10667 BYTES_BIG_ENDIAN ? 0
10668 : count / BITS_PER_UNIT);
10670 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10671 : ZERO_EXTEND, int_mode, new_rtx);
10672 count = 0;
10673 continue;
10675 break;
10677 case SUBREG:
10678 /* The following rules apply only to scalars. */
10679 if (shift_mode != shift_unit_mode)
10680 break;
10681 int_mode = as_a <scalar_int_mode> (mode);
10682 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10684 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10685 the same number of words as what we've seen so far. Then store
10686 the widest mode in MODE. */
10687 if (subreg_lowpart_p (varop)
10688 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10689 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10690 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10691 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10692 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10694 varop = SUBREG_REG (varop);
10695 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10696 mode = inner_mode;
10697 continue;
10699 break;
10701 case MULT:
10702 /* Some machines use MULT instead of ASHIFT because MULT
10703 is cheaper. But it is still better on those machines to
10704 merge two shifts into one. */
10705 if (CONST_INT_P (XEXP (varop, 1))
10706 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10708 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10709 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10710 XEXP (varop, 0), log2_rtx);
10711 continue;
10713 break;
10715 case UDIV:
10716 /* Similar, for when divides are cheaper. */
10717 if (CONST_INT_P (XEXP (varop, 1))
10718 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10720 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10721 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10722 XEXP (varop, 0), log2_rtx);
10723 continue;
10725 break;
10727 case ASHIFTRT:
10728 /* If we are extracting just the sign bit of an arithmetic
10729 right shift, that shift is not needed. However, the sign
10730 bit of a wider mode may be different from what would be
10731 interpreted as the sign bit in a narrower mode, so, if
10732 the result is narrower, don't discard the shift. */
10733 if (code == LSHIFTRT
10734 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10735 && (GET_MODE_UNIT_BITSIZE (result_mode)
10736 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10738 varop = XEXP (varop, 0);
10739 continue;
10742 /* fall through */
10744 case LSHIFTRT:
10745 case ASHIFT:
10746 case ROTATE:
10747 /* The following rules apply only to scalars. */
10748 if (shift_mode != shift_unit_mode)
10749 break;
10750 int_mode = as_a <scalar_int_mode> (mode);
10751 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10752 int_result_mode = as_a <scalar_int_mode> (result_mode);
10754 /* Here we have two nested shifts. The result is usually the
10755 AND of a new shift with a mask. We compute the result below. */
10756 if (CONST_INT_P (XEXP (varop, 1))
10757 && INTVAL (XEXP (varop, 1)) >= 0
10758 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10759 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10760 && HWI_COMPUTABLE_MODE_P (int_mode))
10762 enum rtx_code first_code = GET_CODE (varop);
10763 unsigned int first_count = INTVAL (XEXP (varop, 1));
10764 unsigned HOST_WIDE_INT mask;
10765 rtx mask_rtx;
10767 /* We have one common special case. We can't do any merging if
10768 the inner code is an ASHIFTRT of a smaller mode. However, if
10769 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10770 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10771 we can convert it to
10772 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10773 This simplifies certain SIGN_EXTEND operations. */
10774 if (code == ASHIFT && first_code == ASHIFTRT
10775 && count == (GET_MODE_PRECISION (int_result_mode)
10776 - GET_MODE_PRECISION (int_varop_mode)))
10778 /* C3 has the low-order C1 bits zero. */
10780 mask = GET_MODE_MASK (int_mode)
10781 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10783 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10784 XEXP (varop, 0), mask);
10785 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10786 int_result_mode, varop, count);
10787 count = first_count;
10788 code = ASHIFTRT;
10789 continue;
10792 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10793 than C1 high-order bits equal to the sign bit, we can convert
10794 this to either an ASHIFT or an ASHIFTRT depending on the
10795 two counts.
10797 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10799 if (code == ASHIFTRT && first_code == ASHIFT
10800 && int_varop_mode == shift_unit_mode
10801 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10802 > first_count))
10804 varop = XEXP (varop, 0);
10805 count -= first_count;
10806 if (count < 0)
10808 count = -count;
10809 code = ASHIFT;
10812 continue;
10815 /* There are some cases we can't do. If CODE is ASHIFTRT,
10816 we can only do this if FIRST_CODE is also ASHIFTRT.
10818 We can't do the case when CODE is ROTATE and FIRST_CODE is
10819 ASHIFTRT.
10821 If the mode of this shift is not the mode of the outer shift,
10822 we can't do this if either shift is a right shift or ROTATE.
10824 Finally, we can't do any of these if the mode is too wide
10825 unless the codes are the same.
10827 Handle the case where the shift codes are the same
10828 first. */
10830 if (code == first_code)
10832 if (int_varop_mode != int_result_mode
10833 && (code == ASHIFTRT || code == LSHIFTRT
10834 || code == ROTATE))
10835 break;
10837 count += first_count;
10838 varop = XEXP (varop, 0);
10839 continue;
10842 if (code == ASHIFTRT
10843 || (code == ROTATE && first_code == ASHIFTRT)
10844 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10845 || (int_varop_mode != int_result_mode
10846 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10847 || first_code == ROTATE
10848 || code == ROTATE)))
10849 break;
10851 /* To compute the mask to apply after the shift, shift the
10852 nonzero bits of the inner shift the same way the
10853 outer shift will. */
10855 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10856 int_result_mode);
10857 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10858 mask_rtx
10859 = simplify_const_binary_operation (code, int_result_mode,
10860 mask_rtx, count_rtx);
10862 /* Give up if we can't compute an outer operation to use. */
10863 if (mask_rtx == 0
10864 || !CONST_INT_P (mask_rtx)
10865 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10866 INTVAL (mask_rtx),
10867 int_result_mode, &complement_p))
10868 break;
10870 /* If the shifts are in the same direction, we add the
10871 counts. Otherwise, we subtract them. */
10872 if ((code == ASHIFTRT || code == LSHIFTRT)
10873 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10874 count += first_count;
10875 else
10876 count -= first_count;
10878 /* If COUNT is positive, the new shift is usually CODE,
10879 except for the two exceptions below, in which case it is
10880 FIRST_CODE. If the count is negative, FIRST_CODE should
10881 always be used */
10882 if (count > 0
10883 && ((first_code == ROTATE && code == ASHIFT)
10884 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10885 code = first_code;
10886 else if (count < 0)
10887 code = first_code, count = -count;
10889 varop = XEXP (varop, 0);
10890 continue;
10893 /* If we have (A << B << C) for any shift, we can convert this to
10894 (A << C << B). This wins if A is a constant. Only try this if
10895 B is not a constant. */
10897 else if (GET_CODE (varop) == code
10898 && CONST_INT_P (XEXP (varop, 0))
10899 && !CONST_INT_P (XEXP (varop, 1)))
10901 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10902 sure the result will be masked. See PR70222. */
10903 if (code == LSHIFTRT
10904 && int_mode != int_result_mode
10905 && !merge_outer_ops (&outer_op, &outer_const, AND,
10906 GET_MODE_MASK (int_result_mode)
10907 >> orig_count, int_result_mode,
10908 &complement_p))
10909 break;
10910 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10911 up outer sign extension (often left and right shift) is
10912 hardly more efficient than the original. See PR70429. */
10913 if (code == ASHIFTRT && int_mode != int_result_mode)
10914 break;
10916 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10917 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10918 XEXP (varop, 0),
10919 count_rtx);
10920 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10921 count = 0;
10922 continue;
10924 break;
10926 case NOT:
10927 /* The following rules apply only to scalars. */
10928 if (shift_mode != shift_unit_mode)
10929 break;
10931 /* Make this fit the case below. */
10932 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10933 continue;
10935 case IOR:
10936 case AND:
10937 case XOR:
10938 /* The following rules apply only to scalars. */
10939 if (shift_mode != shift_unit_mode)
10940 break;
10941 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10942 int_result_mode = as_a <scalar_int_mode> (result_mode);
10944 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10945 with C the size of VAROP - 1 and the shift is logical if
10946 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10947 we have an (le X 0) operation. If we have an arithmetic shift
10948 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10949 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10951 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10952 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10953 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10954 && (code == LSHIFTRT || code == ASHIFTRT)
10955 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
10956 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10958 count = 0;
10959 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
10960 const0_rtx);
10962 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10963 varop = gen_rtx_NEG (int_varop_mode, varop);
10965 continue;
10968 /* If we have (shift (logical)), move the logical to the outside
10969 to allow it to possibly combine with another logical and the
10970 shift to combine with another shift. This also canonicalizes to
10971 what a ZERO_EXTRACT looks like. Also, some machines have
10972 (and (shift)) insns. */
10974 if (CONST_INT_P (XEXP (varop, 1))
10975 /* We can't do this if we have (ashiftrt (xor)) and the
10976 constant has its sign bit set in shift_unit_mode with
10977 shift_unit_mode wider than result_mode. */
10978 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10979 && int_result_mode != shift_unit_mode
10980 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10981 shift_unit_mode) < 0)
10982 && (new_rtx = simplify_const_binary_operation
10983 (code, int_result_mode,
10984 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
10985 gen_int_shift_amount (int_result_mode, count))) != 0
10986 && CONST_INT_P (new_rtx)
10987 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10988 INTVAL (new_rtx), int_result_mode,
10989 &complement_p))
10991 varop = XEXP (varop, 0);
10992 continue;
10995 /* If we can't do that, try to simplify the shift in each arm of the
10996 logical expression, make a new logical expression, and apply
10997 the inverse distributive law. This also can't be done for
10998 (ashiftrt (xor)) where we've widened the shift and the constant
10999 changes the sign bit. */
11000 if (CONST_INT_P (XEXP (varop, 1))
11001 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11002 && int_result_mode != shift_unit_mode
11003 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11004 shift_unit_mode) < 0))
11006 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11007 XEXP (varop, 0), count);
11008 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11009 XEXP (varop, 1), count);
11011 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
11012 lhs, rhs);
11013 varop = apply_distributive_law (varop);
11015 count = 0;
11016 continue;
11018 break;
11020 case EQ:
11021 /* The following rules apply only to scalars. */
11022 if (shift_mode != shift_unit_mode)
11023 break;
11024 int_result_mode = as_a <scalar_int_mode> (result_mode);
11026 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11027 says that the sign bit can be tested, FOO has mode MODE, C is
11028 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11029 that may be nonzero. */
11030 if (code == LSHIFTRT
11031 && XEXP (varop, 1) == const0_rtx
11032 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11033 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11034 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11035 && STORE_FLAG_VALUE == -1
11036 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11037 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11038 int_result_mode, &complement_p))
11040 varop = XEXP (varop, 0);
11041 count = 0;
11042 continue;
11044 break;
11046 case NEG:
11047 /* The following rules apply only to scalars. */
11048 if (shift_mode != shift_unit_mode)
11049 break;
11050 int_result_mode = as_a <scalar_int_mode> (result_mode);
11052 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11053 than the number of bits in the mode is equivalent to A. */
11054 if (code == LSHIFTRT
11055 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11056 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11058 varop = XEXP (varop, 0);
11059 count = 0;
11060 continue;
11063 /* NEG commutes with ASHIFT since it is multiplication. Move the
11064 NEG outside to allow shifts to combine. */
11065 if (code == ASHIFT
11066 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11067 int_result_mode, &complement_p))
11069 varop = XEXP (varop, 0);
11070 continue;
11072 break;
11074 case PLUS:
11075 /* The following rules apply only to scalars. */
11076 if (shift_mode != shift_unit_mode)
11077 break;
11078 int_result_mode = as_a <scalar_int_mode> (result_mode);
11080 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11081 is one less than the number of bits in the mode is
11082 equivalent to (xor A 1). */
11083 if (code == LSHIFTRT
11084 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11085 && XEXP (varop, 1) == constm1_rtx
11086 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11087 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11088 int_result_mode, &complement_p))
11090 count = 0;
11091 varop = XEXP (varop, 0);
11092 continue;
11095 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11096 that might be nonzero in BAR are those being shifted out and those
11097 bits are known zero in FOO, we can replace the PLUS with FOO.
11098 Similarly in the other operand order. This code occurs when
11099 we are computing the size of a variable-size array. */
11101 if ((code == ASHIFTRT || code == LSHIFTRT)
11102 && count < HOST_BITS_PER_WIDE_INT
11103 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11104 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11105 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11107 varop = XEXP (varop, 0);
11108 continue;
11110 else if ((code == ASHIFTRT || code == LSHIFTRT)
11111 && count < HOST_BITS_PER_WIDE_INT
11112 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11113 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11114 >> count) == 0
11115 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11116 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11118 varop = XEXP (varop, 1);
11119 continue;
11122 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11123 if (code == ASHIFT
11124 && CONST_INT_P (XEXP (varop, 1))
11125 && (new_rtx = simplify_const_binary_operation
11126 (ASHIFT, int_result_mode,
11127 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11128 gen_int_shift_amount (int_result_mode, count))) != 0
11129 && CONST_INT_P (new_rtx)
11130 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11131 INTVAL (new_rtx), int_result_mode,
11132 &complement_p))
11134 varop = XEXP (varop, 0);
11135 continue;
11138 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11139 signbit', and attempt to change the PLUS to an XOR and move it to
11140 the outer operation as is done above in the AND/IOR/XOR case
11141 leg for shift(logical). See details in logical handling above
11142 for reasoning in doing so. */
11143 if (code == LSHIFTRT
11144 && CONST_INT_P (XEXP (varop, 1))
11145 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11146 && (new_rtx = simplify_const_binary_operation
11147 (code, int_result_mode,
11148 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11149 gen_int_shift_amount (int_result_mode, count))) != 0
11150 && CONST_INT_P (new_rtx)
11151 && merge_outer_ops (&outer_op, &outer_const, XOR,
11152 INTVAL (new_rtx), int_result_mode,
11153 &complement_p))
11155 varop = XEXP (varop, 0);
11156 continue;
11159 break;
11161 case MINUS:
11162 /* The following rules apply only to scalars. */
11163 if (shift_mode != shift_unit_mode)
11164 break;
11165 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11167 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11168 with C the size of VAROP - 1 and the shift is logical if
11169 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11170 we have a (gt X 0) operation. If the shift is arithmetic with
11171 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11172 we have a (neg (gt X 0)) operation. */
11174 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11175 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11176 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11177 && (code == LSHIFTRT || code == ASHIFTRT)
11178 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11179 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11180 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11182 count = 0;
11183 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11184 const0_rtx);
11186 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11187 varop = gen_rtx_NEG (int_varop_mode, varop);
11189 continue;
11191 break;
11193 case TRUNCATE:
11194 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11195 if the truncate does not affect the value. */
11196 if (code == LSHIFTRT
11197 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11198 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11199 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11200 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11201 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11203 rtx varop_inner = XEXP (varop, 0);
11204 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11205 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11206 new_count);
11207 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11208 XEXP (varop_inner, 0),
11209 new_count_rtx);
11210 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11211 count = 0;
11212 continue;
11214 break;
11216 default:
11217 break;
11220 break;
11223 shift_mode = result_mode;
11224 if (shift_mode != mode)
11226 /* We only change the modes of scalar shifts. */
11227 int_mode = as_a <scalar_int_mode> (mode);
11228 int_result_mode = as_a <scalar_int_mode> (result_mode);
11229 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11230 int_mode, outer_op, outer_const);
11233 /* We have now finished analyzing the shift. The result should be
11234 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11235 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11236 to the result of the shift. OUTER_CONST is the relevant constant,
11237 but we must turn off all bits turned off in the shift. */
11239 if (outer_op == UNKNOWN
11240 && orig_code == code && orig_count == count
11241 && varop == orig_varop
11242 && shift_mode == GET_MODE (varop))
11243 return NULL_RTX;
11245 /* Make a SUBREG if necessary. If we can't make it, fail. */
11246 varop = gen_lowpart (shift_mode, varop);
11247 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11248 return NULL_RTX;
11250 /* If we have an outer operation and we just made a shift, it is
11251 possible that we could have simplified the shift were it not
11252 for the outer operation. So try to do the simplification
11253 recursively. */
11255 if (outer_op != UNKNOWN)
11256 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11257 else
11258 x = NULL_RTX;
11260 if (x == NULL_RTX)
11261 x = simplify_gen_binary (code, shift_mode, varop,
11262 gen_int_shift_amount (shift_mode, count));
11264 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11265 turn off all the bits that the shift would have turned off. */
11266 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11267 /* We only change the modes of scalar shifts. */
11268 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11269 x, GET_MODE_MASK (result_mode) >> orig_count);
11271 /* Do the remainder of the processing in RESULT_MODE. */
11272 x = gen_lowpart_or_truncate (result_mode, x);
11274 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11275 operation. */
11276 if (complement_p)
11277 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11279 if (outer_op != UNKNOWN)
11281 int_result_mode = as_a <scalar_int_mode> (result_mode);
11283 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11284 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11285 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11287 if (outer_op == AND)
11288 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11289 else if (outer_op == SET)
11291 /* This means that we have determined that the result is
11292 equivalent to a constant. This should be rare. */
11293 if (!side_effects_p (x))
11294 x = GEN_INT (outer_const);
11296 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11297 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11298 else
11299 x = simplify_gen_binary (outer_op, int_result_mode, x,
11300 GEN_INT (outer_const));
11303 return x;
11306 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11307 The result of the shift is RESULT_MODE. If we cannot simplify it,
11308 return X or, if it is NULL, synthesize the expression with
11309 simplify_gen_binary. Otherwise, return a simplified value.
11311 The shift is normally computed in the widest mode we find in VAROP, as
11312 long as it isn't a different number of words than RESULT_MODE. Exceptions
11313 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11315 static rtx
11316 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11317 rtx varop, int count)
11319 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11320 if (tem)
11321 return tem;
11323 if (!x)
11324 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11325 gen_int_shift_amount (GET_MODE (varop), count));
11326 if (GET_MODE (x) != result_mode)
11327 x = gen_lowpart (result_mode, x);
11328 return x;
11332 /* A subroutine of recog_for_combine. See there for arguments and
11333 return value. */
11335 static int
11336 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11338 rtx pat = *pnewpat;
11339 rtx pat_without_clobbers;
11340 int insn_code_number;
11341 int num_clobbers_to_add = 0;
11342 int i;
11343 rtx notes = NULL_RTX;
11344 rtx old_notes, old_pat;
11345 int old_icode;
11347 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11348 we use to indicate that something didn't match. If we find such a
11349 thing, force rejection. */
11350 if (GET_CODE (pat) == PARALLEL)
11351 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11352 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11353 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11354 return -1;
11356 old_pat = PATTERN (insn);
11357 old_notes = REG_NOTES (insn);
11358 PATTERN (insn) = pat;
11359 REG_NOTES (insn) = NULL_RTX;
11361 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11362 if (dump_file && (dump_flags & TDF_DETAILS))
11364 if (insn_code_number < 0)
11365 fputs ("Failed to match this instruction:\n", dump_file);
11366 else
11367 fputs ("Successfully matched this instruction:\n", dump_file);
11368 print_rtl_single (dump_file, pat);
11371 /* If it isn't, there is the possibility that we previously had an insn
11372 that clobbered some register as a side effect, but the combined
11373 insn doesn't need to do that. So try once more without the clobbers
11374 unless this represents an ASM insn. */
11376 if (insn_code_number < 0 && ! check_asm_operands (pat)
11377 && GET_CODE (pat) == PARALLEL)
11379 int pos;
11381 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11382 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11384 if (i != pos)
11385 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11386 pos++;
11389 SUBST_INT (XVECLEN (pat, 0), pos);
11391 if (pos == 1)
11392 pat = XVECEXP (pat, 0, 0);
11394 PATTERN (insn) = pat;
11395 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11396 if (dump_file && (dump_flags & TDF_DETAILS))
11398 if (insn_code_number < 0)
11399 fputs ("Failed to match this instruction:\n", dump_file);
11400 else
11401 fputs ("Successfully matched this instruction:\n", dump_file);
11402 print_rtl_single (dump_file, pat);
11406 pat_without_clobbers = pat;
11408 PATTERN (insn) = old_pat;
11409 REG_NOTES (insn) = old_notes;
11411 /* Recognize all noop sets, these will be killed by followup pass. */
11412 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11413 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11415 /* If we had any clobbers to add, make a new pattern than contains
11416 them. Then check to make sure that all of them are dead. */
11417 if (num_clobbers_to_add)
11419 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11420 rtvec_alloc (GET_CODE (pat) == PARALLEL
11421 ? (XVECLEN (pat, 0)
11422 + num_clobbers_to_add)
11423 : num_clobbers_to_add + 1));
11425 if (GET_CODE (pat) == PARALLEL)
11426 for (i = 0; i < XVECLEN (pat, 0); i++)
11427 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11428 else
11429 XVECEXP (newpat, 0, 0) = pat;
11431 add_clobbers (newpat, insn_code_number);
11433 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11434 i < XVECLEN (newpat, 0); i++)
11436 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11437 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11438 return -1;
11439 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11441 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11442 notes = alloc_reg_note (REG_UNUSED,
11443 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11446 pat = newpat;
11449 if (insn_code_number >= 0
11450 && insn_code_number != NOOP_MOVE_INSN_CODE)
11452 old_pat = PATTERN (insn);
11453 old_notes = REG_NOTES (insn);
11454 old_icode = INSN_CODE (insn);
11455 PATTERN (insn) = pat;
11456 REG_NOTES (insn) = notes;
11457 INSN_CODE (insn) = insn_code_number;
11459 /* Allow targets to reject combined insn. */
11460 if (!targetm.legitimate_combined_insn (insn))
11462 if (dump_file && (dump_flags & TDF_DETAILS))
11463 fputs ("Instruction not appropriate for target.",
11464 dump_file);
11466 /* Callers expect recog_for_combine to strip
11467 clobbers from the pattern on failure. */
11468 pat = pat_without_clobbers;
11469 notes = NULL_RTX;
11471 insn_code_number = -1;
11474 PATTERN (insn) = old_pat;
11475 REG_NOTES (insn) = old_notes;
11476 INSN_CODE (insn) = old_icode;
11479 *pnewpat = pat;
11480 *pnotes = notes;
11482 return insn_code_number;
11485 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11486 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11487 Return whether anything was so changed. */
11489 static bool
11490 change_zero_ext (rtx pat)
11492 bool changed = false;
11493 rtx *src = &SET_SRC (pat);
11495 subrtx_ptr_iterator::array_type array;
11496 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11498 rtx x = **iter;
11499 scalar_int_mode mode, inner_mode;
11500 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11501 continue;
11502 int size;
11504 if (GET_CODE (x) == ZERO_EXTRACT
11505 && CONST_INT_P (XEXP (x, 1))
11506 && CONST_INT_P (XEXP (x, 2))
11507 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11508 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11510 size = INTVAL (XEXP (x, 1));
11512 int start = INTVAL (XEXP (x, 2));
11513 if (BITS_BIG_ENDIAN)
11514 start = GET_MODE_PRECISION (inner_mode) - size - start;
11516 if (start != 0)
11517 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11518 gen_int_shift_amount (inner_mode, start));
11519 else
11520 x = XEXP (x, 0);
11522 if (mode != inner_mode)
11524 if (REG_P (x) && HARD_REGISTER_P (x)
11525 && !can_change_dest_mode (x, 0, mode))
11526 continue;
11528 x = gen_lowpart_SUBREG (mode, x);
11531 else if (GET_CODE (x) == ZERO_EXTEND
11532 && GET_CODE (XEXP (x, 0)) == SUBREG
11533 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11534 && !paradoxical_subreg_p (XEXP (x, 0))
11535 && subreg_lowpart_p (XEXP (x, 0)))
11537 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11538 size = GET_MODE_PRECISION (inner_mode);
11539 x = SUBREG_REG (XEXP (x, 0));
11540 if (GET_MODE (x) != mode)
11542 if (REG_P (x) && HARD_REGISTER_P (x)
11543 && !can_change_dest_mode (x, 0, mode))
11544 continue;
11546 x = gen_lowpart_SUBREG (mode, x);
11549 else if (GET_CODE (x) == ZERO_EXTEND
11550 && REG_P (XEXP (x, 0))
11551 && HARD_REGISTER_P (XEXP (x, 0))
11552 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11554 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11555 size = GET_MODE_PRECISION (inner_mode);
11556 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11558 else
11559 continue;
11561 if (!(GET_CODE (x) == LSHIFTRT
11562 && CONST_INT_P (XEXP (x, 1))
11563 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11565 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11566 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11569 SUBST (**iter, x);
11570 changed = true;
11573 if (changed)
11574 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11575 maybe_swap_commutative_operands (**iter);
11577 rtx *dst = &SET_DEST (pat);
11578 scalar_int_mode mode;
11579 if (GET_CODE (*dst) == ZERO_EXTRACT
11580 && REG_P (XEXP (*dst, 0))
11581 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11582 && CONST_INT_P (XEXP (*dst, 1))
11583 && CONST_INT_P (XEXP (*dst, 2)))
11585 rtx reg = XEXP (*dst, 0);
11586 int width = INTVAL (XEXP (*dst, 1));
11587 int offset = INTVAL (XEXP (*dst, 2));
11588 int reg_width = GET_MODE_PRECISION (mode);
11589 if (BITS_BIG_ENDIAN)
11590 offset = reg_width - width - offset;
11592 rtx x, y, z, w;
11593 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11594 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11595 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11596 if (offset)
11597 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11598 else
11599 y = SET_SRC (pat);
11600 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11601 w = gen_rtx_IOR (mode, x, z);
11602 SUBST (SET_DEST (pat), reg);
11603 SUBST (SET_SRC (pat), w);
11605 changed = true;
11608 return changed;
11611 /* Like recog, but we receive the address of a pointer to a new pattern.
11612 We try to match the rtx that the pointer points to.
11613 If that fails, we may try to modify or replace the pattern,
11614 storing the replacement into the same pointer object.
11616 Modifications include deletion or addition of CLOBBERs. If the
11617 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11618 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11619 (and undo if that fails).
11621 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11622 the CLOBBERs are placed.
11624 The value is the final insn code from the pattern ultimately matched,
11625 or -1. */
11627 static int
11628 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11630 rtx pat = *pnewpat;
11631 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11632 if (insn_code_number >= 0 || check_asm_operands (pat))
11633 return insn_code_number;
11635 void *marker = get_undo_marker ();
11636 bool changed = false;
11638 if (GET_CODE (pat) == SET)
11639 changed = change_zero_ext (pat);
11640 else if (GET_CODE (pat) == PARALLEL)
11642 int i;
11643 for (i = 0; i < XVECLEN (pat, 0); i++)
11645 rtx set = XVECEXP (pat, 0, i);
11646 if (GET_CODE (set) == SET)
11647 changed |= change_zero_ext (set);
11651 if (changed)
11653 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11655 if (insn_code_number < 0)
11656 undo_to_marker (marker);
11659 return insn_code_number;
11662 /* Like gen_lowpart_general but for use by combine. In combine it
11663 is not possible to create any new pseudoregs. However, it is
11664 safe to create invalid memory addresses, because combine will
11665 try to recognize them and all they will do is make the combine
11666 attempt fail.
11668 If for some reason this cannot do its job, an rtx
11669 (clobber (const_int 0)) is returned.
11670 An insn containing that will not be recognized. */
11672 static rtx
11673 gen_lowpart_for_combine (machine_mode omode, rtx x)
11675 machine_mode imode = GET_MODE (x);
11676 rtx result;
11678 if (omode == imode)
11679 return x;
11681 /* We can only support MODE being wider than a word if X is a
11682 constant integer or has a mode the same size. */
11683 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11684 && ! (CONST_SCALAR_INT_P (x)
11685 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11686 goto fail;
11688 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11689 won't know what to do. So we will strip off the SUBREG here and
11690 process normally. */
11691 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11693 x = SUBREG_REG (x);
11695 /* For use in case we fall down into the address adjustments
11696 further below, we need to adjust the known mode and size of
11697 x; imode and isize, since we just adjusted x. */
11698 imode = GET_MODE (x);
11700 if (imode == omode)
11701 return x;
11704 result = gen_lowpart_common (omode, x);
11706 if (result)
11707 return result;
11709 if (MEM_P (x))
11711 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11712 address. */
11713 if (MEM_VOLATILE_P (x)
11714 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11715 goto fail;
11717 /* If we want to refer to something bigger than the original memref,
11718 generate a paradoxical subreg instead. That will force a reload
11719 of the original memref X. */
11720 if (paradoxical_subreg_p (omode, imode))
11721 return gen_rtx_SUBREG (omode, x, 0);
11723 poly_int64 offset = byte_lowpart_offset (omode, imode);
11724 return adjust_address_nv (x, omode, offset);
11727 /* If X is a comparison operator, rewrite it in a new mode. This
11728 probably won't match, but may allow further simplifications. */
11729 else if (COMPARISON_P (x))
11730 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11732 /* If we couldn't simplify X any other way, just enclose it in a
11733 SUBREG. Normally, this SUBREG won't match, but some patterns may
11734 include an explicit SUBREG or we may simplify it further in combine. */
11735 else
11737 rtx res;
11739 if (imode == VOIDmode)
11741 imode = int_mode_for_mode (omode).require ();
11742 x = gen_lowpart_common (imode, x);
11743 if (x == NULL)
11744 goto fail;
11746 res = lowpart_subreg (omode, x, imode);
11747 if (res)
11748 return res;
11751 fail:
11752 return gen_rtx_CLOBBER (omode, const0_rtx);
11755 /* Try to simplify a comparison between OP0 and a constant OP1,
11756 where CODE is the comparison code that will be tested, into a
11757 (CODE OP0 const0_rtx) form.
11759 The result is a possibly different comparison code to use.
11760 *POP1 may be updated. */
11762 static enum rtx_code
11763 simplify_compare_const (enum rtx_code code, machine_mode mode,
11764 rtx op0, rtx *pop1)
11766 scalar_int_mode int_mode;
11767 HOST_WIDE_INT const_op = INTVAL (*pop1);
11769 /* Get the constant we are comparing against and turn off all bits
11770 not on in our mode. */
11771 if (mode != VOIDmode)
11772 const_op = trunc_int_for_mode (const_op, mode);
11774 /* If we are comparing against a constant power of two and the value
11775 being compared can only have that single bit nonzero (e.g., it was
11776 `and'ed with that bit), we can replace this with a comparison
11777 with zero. */
11778 if (const_op
11779 && (code == EQ || code == NE || code == GE || code == GEU
11780 || code == LT || code == LTU)
11781 && is_a <scalar_int_mode> (mode, &int_mode)
11782 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11783 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11784 && (nonzero_bits (op0, int_mode)
11785 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11787 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11788 const_op = 0;
11791 /* Similarly, if we are comparing a value known to be either -1 or
11792 0 with -1, change it to the opposite comparison against zero. */
11793 if (const_op == -1
11794 && (code == EQ || code == NE || code == GT || code == LE
11795 || code == GEU || code == LTU)
11796 && is_a <scalar_int_mode> (mode, &int_mode)
11797 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11799 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11800 const_op = 0;
11803 /* Do some canonicalizations based on the comparison code. We prefer
11804 comparisons against zero and then prefer equality comparisons.
11805 If we can reduce the size of a constant, we will do that too. */
11806 switch (code)
11808 case LT:
11809 /* < C is equivalent to <= (C - 1) */
11810 if (const_op > 0)
11812 const_op -= 1;
11813 code = LE;
11814 /* ... fall through to LE case below. */
11815 gcc_fallthrough ();
11817 else
11818 break;
11820 case LE:
11821 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11822 if (const_op < 0)
11824 const_op += 1;
11825 code = LT;
11828 /* If we are doing a <= 0 comparison on a value known to have
11829 a zero sign bit, we can replace this with == 0. */
11830 else if (const_op == 0
11831 && is_a <scalar_int_mode> (mode, &int_mode)
11832 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11833 && (nonzero_bits (op0, int_mode)
11834 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11835 == 0)
11836 code = EQ;
11837 break;
11839 case GE:
11840 /* >= C is equivalent to > (C - 1). */
11841 if (const_op > 0)
11843 const_op -= 1;
11844 code = GT;
11845 /* ... fall through to GT below. */
11846 gcc_fallthrough ();
11848 else
11849 break;
11851 case GT:
11852 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11853 if (const_op < 0)
11855 const_op += 1;
11856 code = GE;
11859 /* If we are doing a > 0 comparison on a value known to have
11860 a zero sign bit, we can replace this with != 0. */
11861 else if (const_op == 0
11862 && is_a <scalar_int_mode> (mode, &int_mode)
11863 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11864 && (nonzero_bits (op0, int_mode)
11865 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11866 == 0)
11867 code = NE;
11868 break;
11870 case LTU:
11871 /* < C is equivalent to <= (C - 1). */
11872 if (const_op > 0)
11874 const_op -= 1;
11875 code = LEU;
11876 /* ... fall through ... */
11877 gcc_fallthrough ();
11879 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11880 else if (is_a <scalar_int_mode> (mode, &int_mode)
11881 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11882 && ((unsigned HOST_WIDE_INT) const_op
11883 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11885 const_op = 0;
11886 code = GE;
11887 break;
11889 else
11890 break;
11892 case LEU:
11893 /* unsigned <= 0 is equivalent to == 0 */
11894 if (const_op == 0)
11895 code = EQ;
11896 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11897 else if (is_a <scalar_int_mode> (mode, &int_mode)
11898 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11899 && ((unsigned HOST_WIDE_INT) const_op
11900 == ((HOST_WIDE_INT_1U
11901 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11903 const_op = 0;
11904 code = GE;
11906 break;
11908 case GEU:
11909 /* >= C is equivalent to > (C - 1). */
11910 if (const_op > 1)
11912 const_op -= 1;
11913 code = GTU;
11914 /* ... fall through ... */
11915 gcc_fallthrough ();
11918 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11919 else if (is_a <scalar_int_mode> (mode, &int_mode)
11920 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11921 && ((unsigned HOST_WIDE_INT) const_op
11922 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11924 const_op = 0;
11925 code = LT;
11926 break;
11928 else
11929 break;
11931 case GTU:
11932 /* unsigned > 0 is equivalent to != 0 */
11933 if (const_op == 0)
11934 code = NE;
11935 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11936 else if (is_a <scalar_int_mode> (mode, &int_mode)
11937 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11938 && ((unsigned HOST_WIDE_INT) const_op
11939 == (HOST_WIDE_INT_1U
11940 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
11942 const_op = 0;
11943 code = LT;
11945 break;
11947 default:
11948 break;
11951 *pop1 = GEN_INT (const_op);
11952 return code;
11955 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11956 comparison code that will be tested.
11958 The result is a possibly different comparison code to use. *POP0 and
11959 *POP1 may be updated.
11961 It is possible that we might detect that a comparison is either always
11962 true or always false. However, we do not perform general constant
11963 folding in combine, so this knowledge isn't useful. Such tautologies
11964 should have been detected earlier. Hence we ignore all such cases. */
11966 static enum rtx_code
11967 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11969 rtx op0 = *pop0;
11970 rtx op1 = *pop1;
11971 rtx tem, tem1;
11972 int i;
11973 scalar_int_mode mode, inner_mode, tmode;
11974 opt_scalar_int_mode tmode_iter;
11976 /* Try a few ways of applying the same transformation to both operands. */
11977 while (1)
11979 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11980 so check specially. */
11981 if (!WORD_REGISTER_OPERATIONS
11982 && code != GTU && code != GEU && code != LTU && code != LEU
11983 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11984 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11985 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11986 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11987 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11988 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
11989 && (is_a <scalar_int_mode>
11990 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
11991 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
11992 && CONST_INT_P (XEXP (op0, 1))
11993 && XEXP (op0, 1) == XEXP (op1, 1)
11994 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11995 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11996 && (INTVAL (XEXP (op0, 1))
11997 == (GET_MODE_PRECISION (mode)
11998 - GET_MODE_PRECISION (inner_mode))))
12000 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
12001 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
12004 /* If both operands are the same constant shift, see if we can ignore the
12005 shift. We can if the shift is a rotate or if the bits shifted out of
12006 this shift are known to be zero for both inputs and if the type of
12007 comparison is compatible with the shift. */
12008 if (GET_CODE (op0) == GET_CODE (op1)
12009 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12010 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12011 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12012 && (code != GT && code != LT && code != GE && code != LE))
12013 || (GET_CODE (op0) == ASHIFTRT
12014 && (code != GTU && code != LTU
12015 && code != GEU && code != LEU)))
12016 && CONST_INT_P (XEXP (op0, 1))
12017 && INTVAL (XEXP (op0, 1)) >= 0
12018 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12019 && XEXP (op0, 1) == XEXP (op1, 1))
12021 machine_mode mode = GET_MODE (op0);
12022 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12023 int shift_count = INTVAL (XEXP (op0, 1));
12025 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12026 mask &= (mask >> shift_count) << shift_count;
12027 else if (GET_CODE (op0) == ASHIFT)
12028 mask = (mask & (mask << shift_count)) >> shift_count;
12030 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12031 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12032 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12033 else
12034 break;
12037 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12038 SUBREGs are of the same mode, and, in both cases, the AND would
12039 be redundant if the comparison was done in the narrower mode,
12040 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12041 and the operand's possibly nonzero bits are 0xffffff01; in that case
12042 if we only care about QImode, we don't need the AND). This case
12043 occurs if the output mode of an scc insn is not SImode and
12044 STORE_FLAG_VALUE == 1 (e.g., the 386).
12046 Similarly, check for a case where the AND's are ZERO_EXTEND
12047 operations from some narrower mode even though a SUBREG is not
12048 present. */
12050 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12051 && CONST_INT_P (XEXP (op0, 1))
12052 && CONST_INT_P (XEXP (op1, 1)))
12054 rtx inner_op0 = XEXP (op0, 0);
12055 rtx inner_op1 = XEXP (op1, 0);
12056 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12057 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12058 int changed = 0;
12060 if (paradoxical_subreg_p (inner_op0)
12061 && GET_CODE (inner_op1) == SUBREG
12062 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12063 && (GET_MODE (SUBREG_REG (inner_op0))
12064 == GET_MODE (SUBREG_REG (inner_op1)))
12065 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12066 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12067 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12068 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12070 op0 = SUBREG_REG (inner_op0);
12071 op1 = SUBREG_REG (inner_op1);
12073 /* The resulting comparison is always unsigned since we masked
12074 off the original sign bit. */
12075 code = unsigned_condition (code);
12077 changed = 1;
12080 else if (c0 == c1)
12081 FOR_EACH_MODE_UNTIL (tmode,
12082 as_a <scalar_int_mode> (GET_MODE (op0)))
12083 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12085 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12086 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12087 code = unsigned_condition (code);
12088 changed = 1;
12089 break;
12092 if (! changed)
12093 break;
12096 /* If both operands are NOT, we can strip off the outer operation
12097 and adjust the comparison code for swapped operands; similarly for
12098 NEG, except that this must be an equality comparison. */
12099 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12100 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12101 && (code == EQ || code == NE)))
12102 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12104 else
12105 break;
12108 /* If the first operand is a constant, swap the operands and adjust the
12109 comparison code appropriately, but don't do this if the second operand
12110 is already a constant integer. */
12111 if (swap_commutative_operands_p (op0, op1))
12113 std::swap (op0, op1);
12114 code = swap_condition (code);
12117 /* We now enter a loop during which we will try to simplify the comparison.
12118 For the most part, we only are concerned with comparisons with zero,
12119 but some things may really be comparisons with zero but not start
12120 out looking that way. */
12122 while (CONST_INT_P (op1))
12124 machine_mode raw_mode = GET_MODE (op0);
12125 scalar_int_mode int_mode;
12126 int equality_comparison_p;
12127 int sign_bit_comparison_p;
12128 int unsigned_comparison_p;
12129 HOST_WIDE_INT const_op;
12131 /* We only want to handle integral modes. This catches VOIDmode,
12132 CCmode, and the floating-point modes. An exception is that we
12133 can handle VOIDmode if OP0 is a COMPARE or a comparison
12134 operation. */
12136 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12137 && ! (raw_mode == VOIDmode
12138 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12139 break;
12141 /* Try to simplify the compare to constant, possibly changing the
12142 comparison op, and/or changing op1 to zero. */
12143 code = simplify_compare_const (code, raw_mode, op0, &op1);
12144 const_op = INTVAL (op1);
12146 /* Compute some predicates to simplify code below. */
12148 equality_comparison_p = (code == EQ || code == NE);
12149 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12150 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12151 || code == GEU);
12153 /* If this is a sign bit comparison and we can do arithmetic in
12154 MODE, say that we will only be needing the sign bit of OP0. */
12155 if (sign_bit_comparison_p
12156 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12157 && HWI_COMPUTABLE_MODE_P (int_mode))
12158 op0 = force_to_mode (op0, int_mode,
12159 HOST_WIDE_INT_1U
12160 << (GET_MODE_PRECISION (int_mode) - 1),
12163 if (COMPARISON_P (op0))
12165 /* We can't do anything if OP0 is a condition code value, rather
12166 than an actual data value. */
12167 if (const_op != 0
12168 || CC0_P (XEXP (op0, 0))
12169 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12170 break;
12172 /* Get the two operands being compared. */
12173 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12174 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12175 else
12176 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12178 /* Check for the cases where we simply want the result of the
12179 earlier test or the opposite of that result. */
12180 if (code == NE || code == EQ
12181 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12182 && (code == LT || code == GE)))
12184 enum rtx_code new_code;
12185 if (code == LT || code == NE)
12186 new_code = GET_CODE (op0);
12187 else
12188 new_code = reversed_comparison_code (op0, NULL);
12190 if (new_code != UNKNOWN)
12192 code = new_code;
12193 op0 = tem;
12194 op1 = tem1;
12195 continue;
12198 break;
12201 if (raw_mode == VOIDmode)
12202 break;
12203 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12205 /* Now try cases based on the opcode of OP0. If none of the cases
12206 does a "continue", we exit this loop immediately after the
12207 switch. */
12209 unsigned int mode_width = GET_MODE_PRECISION (mode);
12210 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12211 switch (GET_CODE (op0))
12213 case ZERO_EXTRACT:
12214 /* If we are extracting a single bit from a variable position in
12215 a constant that has only a single bit set and are comparing it
12216 with zero, we can convert this into an equality comparison
12217 between the position and the location of the single bit. */
12218 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12219 have already reduced the shift count modulo the word size. */
12220 if (!SHIFT_COUNT_TRUNCATED
12221 && CONST_INT_P (XEXP (op0, 0))
12222 && XEXP (op0, 1) == const1_rtx
12223 && equality_comparison_p && const_op == 0
12224 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12226 if (BITS_BIG_ENDIAN)
12227 i = BITS_PER_WORD - 1 - i;
12229 op0 = XEXP (op0, 2);
12230 op1 = GEN_INT (i);
12231 const_op = i;
12233 /* Result is nonzero iff shift count is equal to I. */
12234 code = reverse_condition (code);
12235 continue;
12238 /* fall through */
12240 case SIGN_EXTRACT:
12241 tem = expand_compound_operation (op0);
12242 if (tem != op0)
12244 op0 = tem;
12245 continue;
12247 break;
12249 case NOT:
12250 /* If testing for equality, we can take the NOT of the constant. */
12251 if (equality_comparison_p
12252 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12254 op0 = XEXP (op0, 0);
12255 op1 = tem;
12256 continue;
12259 /* If just looking at the sign bit, reverse the sense of the
12260 comparison. */
12261 if (sign_bit_comparison_p)
12263 op0 = XEXP (op0, 0);
12264 code = (code == GE ? LT : GE);
12265 continue;
12267 break;
12269 case NEG:
12270 /* If testing for equality, we can take the NEG of the constant. */
12271 if (equality_comparison_p
12272 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12274 op0 = XEXP (op0, 0);
12275 op1 = tem;
12276 continue;
12279 /* The remaining cases only apply to comparisons with zero. */
12280 if (const_op != 0)
12281 break;
12283 /* When X is ABS or is known positive,
12284 (neg X) is < 0 if and only if X != 0. */
12286 if (sign_bit_comparison_p
12287 && (GET_CODE (XEXP (op0, 0)) == ABS
12288 || (mode_width <= HOST_BITS_PER_WIDE_INT
12289 && (nonzero_bits (XEXP (op0, 0), mode)
12290 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12291 == 0)))
12293 op0 = XEXP (op0, 0);
12294 code = (code == LT ? NE : EQ);
12295 continue;
12298 /* If we have NEG of something whose two high-order bits are the
12299 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12300 if (num_sign_bit_copies (op0, mode) >= 2)
12302 op0 = XEXP (op0, 0);
12303 code = swap_condition (code);
12304 continue;
12306 break;
12308 case ROTATE:
12309 /* If we are testing equality and our count is a constant, we
12310 can perform the inverse operation on our RHS. */
12311 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12312 && (tem = simplify_binary_operation (ROTATERT, mode,
12313 op1, XEXP (op0, 1))) != 0)
12315 op0 = XEXP (op0, 0);
12316 op1 = tem;
12317 continue;
12320 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12321 a particular bit. Convert it to an AND of a constant of that
12322 bit. This will be converted into a ZERO_EXTRACT. */
12323 if (const_op == 0 && sign_bit_comparison_p
12324 && CONST_INT_P (XEXP (op0, 1))
12325 && mode_width <= HOST_BITS_PER_WIDE_INT)
12327 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12328 (HOST_WIDE_INT_1U
12329 << (mode_width - 1
12330 - INTVAL (XEXP (op0, 1)))));
12331 code = (code == LT ? NE : EQ);
12332 continue;
12335 /* Fall through. */
12337 case ABS:
12338 /* ABS is ignorable inside an equality comparison with zero. */
12339 if (const_op == 0 && equality_comparison_p)
12341 op0 = XEXP (op0, 0);
12342 continue;
12344 break;
12346 case SIGN_EXTEND:
12347 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12348 (compare FOO CONST) if CONST fits in FOO's mode and we
12349 are either testing inequality or have an unsigned
12350 comparison with ZERO_EXTEND or a signed comparison with
12351 SIGN_EXTEND. But don't do it if we don't have a compare
12352 insn of the given mode, since we'd have to revert it
12353 later on, and then we wouldn't know whether to sign- or
12354 zero-extend. */
12355 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12356 && ! unsigned_comparison_p
12357 && HWI_COMPUTABLE_MODE_P (mode)
12358 && trunc_int_for_mode (const_op, mode) == const_op
12359 && have_insn_for (COMPARE, mode))
12361 op0 = XEXP (op0, 0);
12362 continue;
12364 break;
12366 case SUBREG:
12367 /* Check for the case where we are comparing A - C1 with C2, that is
12369 (subreg:MODE (plus (A) (-C1))) op (C2)
12371 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12372 comparison in the wider mode. One of the following two conditions
12373 must be true in order for this to be valid:
12375 1. The mode extension results in the same bit pattern being added
12376 on both sides and the comparison is equality or unsigned. As
12377 C2 has been truncated to fit in MODE, the pattern can only be
12378 all 0s or all 1s.
12380 2. The mode extension results in the sign bit being copied on
12381 each side.
12383 The difficulty here is that we have predicates for A but not for
12384 (A - C1) so we need to check that C1 is within proper bounds so
12385 as to perturbate A as little as possible. */
12387 if (mode_width <= HOST_BITS_PER_WIDE_INT
12388 && subreg_lowpart_p (op0)
12389 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12390 &inner_mode)
12391 && GET_MODE_PRECISION (inner_mode) > mode_width
12392 && GET_CODE (SUBREG_REG (op0)) == PLUS
12393 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12395 rtx a = XEXP (SUBREG_REG (op0), 0);
12396 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12398 if ((c1 > 0
12399 && (unsigned HOST_WIDE_INT) c1
12400 < HOST_WIDE_INT_1U << (mode_width - 1)
12401 && (equality_comparison_p || unsigned_comparison_p)
12402 /* (A - C1) zero-extends if it is positive and sign-extends
12403 if it is negative, C2 both zero- and sign-extends. */
12404 && (((nonzero_bits (a, inner_mode)
12405 & ~GET_MODE_MASK (mode)) == 0
12406 && const_op >= 0)
12407 /* (A - C1) sign-extends if it is positive and 1-extends
12408 if it is negative, C2 both sign- and 1-extends. */
12409 || (num_sign_bit_copies (a, inner_mode)
12410 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12411 - mode_width)
12412 && const_op < 0)))
12413 || ((unsigned HOST_WIDE_INT) c1
12414 < HOST_WIDE_INT_1U << (mode_width - 2)
12415 /* (A - C1) always sign-extends, like C2. */
12416 && num_sign_bit_copies (a, inner_mode)
12417 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12418 - (mode_width - 1))))
12420 op0 = SUBREG_REG (op0);
12421 continue;
12425 /* If the inner mode is narrower and we are extracting the low part,
12426 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12427 if (paradoxical_subreg_p (op0))
12429 else if (subreg_lowpart_p (op0)
12430 && GET_MODE_CLASS (mode) == MODE_INT
12431 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12432 && (code == NE || code == EQ)
12433 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12434 && !paradoxical_subreg_p (op0)
12435 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12436 & ~GET_MODE_MASK (mode)) == 0)
12438 /* Remove outer subregs that don't do anything. */
12439 tem = gen_lowpart (inner_mode, op1);
12441 if ((nonzero_bits (tem, inner_mode)
12442 & ~GET_MODE_MASK (mode)) == 0)
12444 op0 = SUBREG_REG (op0);
12445 op1 = tem;
12446 continue;
12448 break;
12450 else
12451 break;
12453 /* FALLTHROUGH */
12455 case ZERO_EXTEND:
12456 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12457 && (unsigned_comparison_p || equality_comparison_p)
12458 && HWI_COMPUTABLE_MODE_P (mode)
12459 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12460 && const_op >= 0
12461 && have_insn_for (COMPARE, mode))
12463 op0 = XEXP (op0, 0);
12464 continue;
12466 break;
12468 case PLUS:
12469 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12470 this for equality comparisons due to pathological cases involving
12471 overflows. */
12472 if (equality_comparison_p
12473 && (tem = simplify_binary_operation (MINUS, mode,
12474 op1, XEXP (op0, 1))) != 0)
12476 op0 = XEXP (op0, 0);
12477 op1 = tem;
12478 continue;
12481 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12482 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12483 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12485 op0 = XEXP (XEXP (op0, 0), 0);
12486 code = (code == LT ? EQ : NE);
12487 continue;
12489 break;
12491 case MINUS:
12492 /* We used to optimize signed comparisons against zero, but that
12493 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12494 arrive here as equality comparisons, or (GEU, LTU) are
12495 optimized away. No need to special-case them. */
12497 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12498 (eq B (minus A C)), whichever simplifies. We can only do
12499 this for equality comparisons due to pathological cases involving
12500 overflows. */
12501 if (equality_comparison_p
12502 && (tem = simplify_binary_operation (PLUS, mode,
12503 XEXP (op0, 1), op1)) != 0)
12505 op0 = XEXP (op0, 0);
12506 op1 = tem;
12507 continue;
12510 if (equality_comparison_p
12511 && (tem = simplify_binary_operation (MINUS, mode,
12512 XEXP (op0, 0), op1)) != 0)
12514 op0 = XEXP (op0, 1);
12515 op1 = tem;
12516 continue;
12519 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12520 of bits in X minus 1, is one iff X > 0. */
12521 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12522 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12523 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12524 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12526 op0 = XEXP (op0, 1);
12527 code = (code == GE ? LE : GT);
12528 continue;
12530 break;
12532 case XOR:
12533 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12534 if C is zero or B is a constant. */
12535 if (equality_comparison_p
12536 && (tem = simplify_binary_operation (XOR, mode,
12537 XEXP (op0, 1), op1)) != 0)
12539 op0 = XEXP (op0, 0);
12540 op1 = tem;
12541 continue;
12543 break;
12546 case IOR:
12547 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12548 iff X <= 0. */
12549 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12550 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12551 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12553 op0 = XEXP (op0, 1);
12554 code = (code == GE ? GT : LE);
12555 continue;
12557 break;
12559 case AND:
12560 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12561 will be converted to a ZERO_EXTRACT later. */
12562 if (const_op == 0 && equality_comparison_p
12563 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12564 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12566 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12567 XEXP (XEXP (op0, 0), 1));
12568 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12569 continue;
12572 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12573 zero and X is a comparison and C1 and C2 describe only bits set
12574 in STORE_FLAG_VALUE, we can compare with X. */
12575 if (const_op == 0 && equality_comparison_p
12576 && mode_width <= HOST_BITS_PER_WIDE_INT
12577 && CONST_INT_P (XEXP (op0, 1))
12578 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12579 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12580 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12581 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12583 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12584 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12585 if ((~STORE_FLAG_VALUE & mask) == 0
12586 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12587 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12588 && COMPARISON_P (tem))))
12590 op0 = XEXP (XEXP (op0, 0), 0);
12591 continue;
12595 /* If we are doing an equality comparison of an AND of a bit equal
12596 to the sign bit, replace this with a LT or GE comparison of
12597 the underlying value. */
12598 if (equality_comparison_p
12599 && const_op == 0
12600 && CONST_INT_P (XEXP (op0, 1))
12601 && mode_width <= HOST_BITS_PER_WIDE_INT
12602 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12603 == HOST_WIDE_INT_1U << (mode_width - 1)))
12605 op0 = XEXP (op0, 0);
12606 code = (code == EQ ? GE : LT);
12607 continue;
12610 /* If this AND operation is really a ZERO_EXTEND from a narrower
12611 mode, the constant fits within that mode, and this is either an
12612 equality or unsigned comparison, try to do this comparison in
12613 the narrower mode.
12615 Note that in:
12617 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12618 -> (ne:DI (reg:SI 4) (const_int 0))
12620 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12621 known to hold a value of the required mode the
12622 transformation is invalid. */
12623 if ((equality_comparison_p || unsigned_comparison_p)
12624 && CONST_INT_P (XEXP (op0, 1))
12625 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12626 & GET_MODE_MASK (mode))
12627 + 1)) >= 0
12628 && const_op >> i == 0
12629 && int_mode_for_size (i, 1).exists (&tmode))
12631 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12632 continue;
12635 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12636 fits in both M1 and M2 and the SUBREG is either paradoxical
12637 or represents the low part, permute the SUBREG and the AND
12638 and try again. */
12639 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12640 && CONST_INT_P (XEXP (op0, 1)))
12642 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12643 /* Require an integral mode, to avoid creating something like
12644 (AND:SF ...). */
12645 if ((is_a <scalar_int_mode>
12646 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12647 /* It is unsafe to commute the AND into the SUBREG if the
12648 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12649 not defined. As originally written the upper bits
12650 have a defined value due to the AND operation.
12651 However, if we commute the AND inside the SUBREG then
12652 they no longer have defined values and the meaning of
12653 the code has been changed.
12654 Also C1 should not change value in the smaller mode,
12655 see PR67028 (a positive C1 can become negative in the
12656 smaller mode, so that the AND does no longer mask the
12657 upper bits). */
12658 && ((WORD_REGISTER_OPERATIONS
12659 && mode_width > GET_MODE_PRECISION (tmode)
12660 && mode_width <= BITS_PER_WORD
12661 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12662 || (mode_width <= GET_MODE_PRECISION (tmode)
12663 && subreg_lowpart_p (XEXP (op0, 0))))
12664 && mode_width <= HOST_BITS_PER_WIDE_INT
12665 && HWI_COMPUTABLE_MODE_P (tmode)
12666 && (c1 & ~mask) == 0
12667 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12668 && c1 != mask
12669 && c1 != GET_MODE_MASK (tmode))
12671 op0 = simplify_gen_binary (AND, tmode,
12672 SUBREG_REG (XEXP (op0, 0)),
12673 gen_int_mode (c1, tmode));
12674 op0 = gen_lowpart (mode, op0);
12675 continue;
12679 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12680 if (const_op == 0 && equality_comparison_p
12681 && XEXP (op0, 1) == const1_rtx
12682 && GET_CODE (XEXP (op0, 0)) == NOT)
12684 op0 = simplify_and_const_int (NULL_RTX, mode,
12685 XEXP (XEXP (op0, 0), 0), 1);
12686 code = (code == NE ? EQ : NE);
12687 continue;
12690 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12691 (eq (and (lshiftrt X) 1) 0).
12692 Also handle the case where (not X) is expressed using xor. */
12693 if (const_op == 0 && equality_comparison_p
12694 && XEXP (op0, 1) == const1_rtx
12695 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12697 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12698 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12700 if (GET_CODE (shift_op) == NOT
12701 || (GET_CODE (shift_op) == XOR
12702 && CONST_INT_P (XEXP (shift_op, 1))
12703 && CONST_INT_P (shift_count)
12704 && HWI_COMPUTABLE_MODE_P (mode)
12705 && (UINTVAL (XEXP (shift_op, 1))
12706 == HOST_WIDE_INT_1U
12707 << INTVAL (shift_count))))
12710 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12711 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12712 code = (code == NE ? EQ : NE);
12713 continue;
12716 break;
12718 case ASHIFT:
12719 /* If we have (compare (ashift FOO N) (const_int C)) and
12720 the high order N bits of FOO (N+1 if an inequality comparison)
12721 are known to be zero, we can do this by comparing FOO with C
12722 shifted right N bits so long as the low-order N bits of C are
12723 zero. */
12724 if (CONST_INT_P (XEXP (op0, 1))
12725 && INTVAL (XEXP (op0, 1)) >= 0
12726 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12727 < HOST_BITS_PER_WIDE_INT)
12728 && (((unsigned HOST_WIDE_INT) const_op
12729 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12730 - 1)) == 0)
12731 && mode_width <= HOST_BITS_PER_WIDE_INT
12732 && (nonzero_bits (XEXP (op0, 0), mode)
12733 & ~(mask >> (INTVAL (XEXP (op0, 1))
12734 + ! equality_comparison_p))) == 0)
12736 /* We must perform a logical shift, not an arithmetic one,
12737 as we want the top N bits of C to be zero. */
12738 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12740 temp >>= INTVAL (XEXP (op0, 1));
12741 op1 = gen_int_mode (temp, mode);
12742 op0 = XEXP (op0, 0);
12743 continue;
12746 /* If we are doing a sign bit comparison, it means we are testing
12747 a particular bit. Convert it to the appropriate AND. */
12748 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12749 && mode_width <= HOST_BITS_PER_WIDE_INT)
12751 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12752 (HOST_WIDE_INT_1U
12753 << (mode_width - 1
12754 - INTVAL (XEXP (op0, 1)))));
12755 code = (code == LT ? NE : EQ);
12756 continue;
12759 /* If this an equality comparison with zero and we are shifting
12760 the low bit to the sign bit, we can convert this to an AND of the
12761 low-order bit. */
12762 if (const_op == 0 && equality_comparison_p
12763 && CONST_INT_P (XEXP (op0, 1))
12764 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12766 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12767 continue;
12769 break;
12771 case ASHIFTRT:
12772 /* If this is an equality comparison with zero, we can do this
12773 as a logical shift, which might be much simpler. */
12774 if (equality_comparison_p && const_op == 0
12775 && CONST_INT_P (XEXP (op0, 1)))
12777 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12778 XEXP (op0, 0),
12779 INTVAL (XEXP (op0, 1)));
12780 continue;
12783 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12784 do the comparison in a narrower mode. */
12785 if (! unsigned_comparison_p
12786 && CONST_INT_P (XEXP (op0, 1))
12787 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12788 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12789 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12790 .exists (&tmode))
12791 && (((unsigned HOST_WIDE_INT) const_op
12792 + (GET_MODE_MASK (tmode) >> 1) + 1)
12793 <= GET_MODE_MASK (tmode)))
12795 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12796 continue;
12799 /* Likewise if OP0 is a PLUS of a sign extension with a
12800 constant, which is usually represented with the PLUS
12801 between the shifts. */
12802 if (! unsigned_comparison_p
12803 && CONST_INT_P (XEXP (op0, 1))
12804 && GET_CODE (XEXP (op0, 0)) == PLUS
12805 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12806 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12807 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12808 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12809 .exists (&tmode))
12810 && (((unsigned HOST_WIDE_INT) const_op
12811 + (GET_MODE_MASK (tmode) >> 1) + 1)
12812 <= GET_MODE_MASK (tmode)))
12814 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12815 rtx add_const = XEXP (XEXP (op0, 0), 1);
12816 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12817 add_const, XEXP (op0, 1));
12819 op0 = simplify_gen_binary (PLUS, tmode,
12820 gen_lowpart (tmode, inner),
12821 new_const);
12822 continue;
12825 /* FALLTHROUGH */
12826 case LSHIFTRT:
12827 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12828 the low order N bits of FOO are known to be zero, we can do this
12829 by comparing FOO with C shifted left N bits so long as no
12830 overflow occurs. Even if the low order N bits of FOO aren't known
12831 to be zero, if the comparison is >= or < we can use the same
12832 optimization and for > or <= by setting all the low
12833 order N bits in the comparison constant. */
12834 if (CONST_INT_P (XEXP (op0, 1))
12835 && INTVAL (XEXP (op0, 1)) > 0
12836 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12837 && mode_width <= HOST_BITS_PER_WIDE_INT
12838 && (((unsigned HOST_WIDE_INT) const_op
12839 + (GET_CODE (op0) != LSHIFTRT
12840 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12841 + 1)
12842 : 0))
12843 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12845 unsigned HOST_WIDE_INT low_bits
12846 = (nonzero_bits (XEXP (op0, 0), mode)
12847 & ((HOST_WIDE_INT_1U
12848 << INTVAL (XEXP (op0, 1))) - 1));
12849 if (low_bits == 0 || !equality_comparison_p)
12851 /* If the shift was logical, then we must make the condition
12852 unsigned. */
12853 if (GET_CODE (op0) == LSHIFTRT)
12854 code = unsigned_condition (code);
12856 const_op = (unsigned HOST_WIDE_INT) const_op
12857 << INTVAL (XEXP (op0, 1));
12858 if (low_bits != 0
12859 && (code == GT || code == GTU
12860 || code == LE || code == LEU))
12861 const_op
12862 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12863 op1 = GEN_INT (const_op);
12864 op0 = XEXP (op0, 0);
12865 continue;
12869 /* If we are using this shift to extract just the sign bit, we
12870 can replace this with an LT or GE comparison. */
12871 if (const_op == 0
12872 && (equality_comparison_p || sign_bit_comparison_p)
12873 && CONST_INT_P (XEXP (op0, 1))
12874 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12876 op0 = XEXP (op0, 0);
12877 code = (code == NE || code == GT ? LT : GE);
12878 continue;
12880 break;
12882 default:
12883 break;
12886 break;
12889 /* Now make any compound operations involved in this comparison. Then,
12890 check for an outmost SUBREG on OP0 that is not doing anything or is
12891 paradoxical. The latter transformation must only be performed when
12892 it is known that the "extra" bits will be the same in op0 and op1 or
12893 that they don't matter. There are three cases to consider:
12895 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12896 care bits and we can assume they have any convenient value. So
12897 making the transformation is safe.
12899 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12900 In this case the upper bits of op0 are undefined. We should not make
12901 the simplification in that case as we do not know the contents of
12902 those bits.
12904 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12905 In that case we know those bits are zeros or ones. We must also be
12906 sure that they are the same as the upper bits of op1.
12908 We can never remove a SUBREG for a non-equality comparison because
12909 the sign bit is in a different place in the underlying object. */
12911 rtx_code op0_mco_code = SET;
12912 if (op1 == const0_rtx)
12913 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12915 op0 = make_compound_operation (op0, op0_mco_code);
12916 op1 = make_compound_operation (op1, SET);
12918 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12919 && is_int_mode (GET_MODE (op0), &mode)
12920 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12921 && (code == NE || code == EQ))
12923 if (paradoxical_subreg_p (op0))
12925 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12926 implemented. */
12927 if (REG_P (SUBREG_REG (op0)))
12929 op0 = SUBREG_REG (op0);
12930 op1 = gen_lowpart (inner_mode, op1);
12933 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12934 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12935 & ~GET_MODE_MASK (mode)) == 0)
12937 tem = gen_lowpart (inner_mode, op1);
12939 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
12940 op0 = SUBREG_REG (op0), op1 = tem;
12944 /* We now do the opposite procedure: Some machines don't have compare
12945 insns in all modes. If OP0's mode is an integer mode smaller than a
12946 word and we can't do a compare in that mode, see if there is a larger
12947 mode for which we can do the compare. There are a number of cases in
12948 which we can use the wider mode. */
12950 if (is_int_mode (GET_MODE (op0), &mode)
12951 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12952 && ! have_insn_for (COMPARE, mode))
12953 FOR_EACH_WIDER_MODE (tmode_iter, mode)
12955 tmode = tmode_iter.require ();
12956 if (!HWI_COMPUTABLE_MODE_P (tmode))
12957 break;
12958 if (have_insn_for (COMPARE, tmode))
12960 int zero_extended;
12962 /* If this is a test for negative, we can make an explicit
12963 test of the sign bit. Test this first so we can use
12964 a paradoxical subreg to extend OP0. */
12966 if (op1 == const0_rtx && (code == LT || code == GE)
12967 && HWI_COMPUTABLE_MODE_P (mode))
12969 unsigned HOST_WIDE_INT sign
12970 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12971 op0 = simplify_gen_binary (AND, tmode,
12972 gen_lowpart (tmode, op0),
12973 gen_int_mode (sign, tmode));
12974 code = (code == LT) ? NE : EQ;
12975 break;
12978 /* If the only nonzero bits in OP0 and OP1 are those in the
12979 narrower mode and this is an equality or unsigned comparison,
12980 we can use the wider mode. Similarly for sign-extended
12981 values, in which case it is true for all comparisons. */
12982 zero_extended = ((code == EQ || code == NE
12983 || code == GEU || code == GTU
12984 || code == LEU || code == LTU)
12985 && (nonzero_bits (op0, tmode)
12986 & ~GET_MODE_MASK (mode)) == 0
12987 && ((CONST_INT_P (op1)
12988 || (nonzero_bits (op1, tmode)
12989 & ~GET_MODE_MASK (mode)) == 0)));
12991 if (zero_extended
12992 || ((num_sign_bit_copies (op0, tmode)
12993 > (unsigned int) (GET_MODE_PRECISION (tmode)
12994 - GET_MODE_PRECISION (mode)))
12995 && (num_sign_bit_copies (op1, tmode)
12996 > (unsigned int) (GET_MODE_PRECISION (tmode)
12997 - GET_MODE_PRECISION (mode)))))
12999 /* If OP0 is an AND and we don't have an AND in MODE either,
13000 make a new AND in the proper mode. */
13001 if (GET_CODE (op0) == AND
13002 && !have_insn_for (AND, mode))
13003 op0 = simplify_gen_binary (AND, tmode,
13004 gen_lowpart (tmode,
13005 XEXP (op0, 0)),
13006 gen_lowpart (tmode,
13007 XEXP (op0, 1)));
13008 else
13010 if (zero_extended)
13012 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
13013 op0, mode);
13014 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
13015 op1, mode);
13017 else
13019 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13020 op0, mode);
13021 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13022 op1, mode);
13024 break;
13030 /* We may have changed the comparison operands. Re-canonicalize. */
13031 if (swap_commutative_operands_p (op0, op1))
13033 std::swap (op0, op1);
13034 code = swap_condition (code);
13037 /* If this machine only supports a subset of valid comparisons, see if we
13038 can convert an unsupported one into a supported one. */
13039 target_canonicalize_comparison (&code, &op0, &op1, 0);
13041 *pop0 = op0;
13042 *pop1 = op1;
13044 return code;
13047 /* Utility function for record_value_for_reg. Count number of
13048 rtxs in X. */
13049 static int
13050 count_rtxs (rtx x)
13052 enum rtx_code code = GET_CODE (x);
13053 const char *fmt;
13054 int i, j, ret = 1;
13056 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13057 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13059 rtx x0 = XEXP (x, 0);
13060 rtx x1 = XEXP (x, 1);
13062 if (x0 == x1)
13063 return 1 + 2 * count_rtxs (x0);
13065 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13066 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13067 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13068 return 2 + 2 * count_rtxs (x0)
13069 + count_rtxs (x == XEXP (x1, 0)
13070 ? XEXP (x1, 1) : XEXP (x1, 0));
13072 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13073 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13074 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13075 return 2 + 2 * count_rtxs (x1)
13076 + count_rtxs (x == XEXP (x0, 0)
13077 ? XEXP (x0, 1) : XEXP (x0, 0));
13080 fmt = GET_RTX_FORMAT (code);
13081 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13082 if (fmt[i] == 'e')
13083 ret += count_rtxs (XEXP (x, i));
13084 else if (fmt[i] == 'E')
13085 for (j = 0; j < XVECLEN (x, i); j++)
13086 ret += count_rtxs (XVECEXP (x, i, j));
13088 return ret;
13091 /* Utility function for following routine. Called when X is part of a value
13092 being stored into last_set_value. Sets last_set_table_tick
13093 for each register mentioned. Similar to mention_regs in cse.c */
13095 static void
13096 update_table_tick (rtx x)
13098 enum rtx_code code = GET_CODE (x);
13099 const char *fmt = GET_RTX_FORMAT (code);
13100 int i, j;
13102 if (code == REG)
13104 unsigned int regno = REGNO (x);
13105 unsigned int endregno = END_REGNO (x);
13106 unsigned int r;
13108 for (r = regno; r < endregno; r++)
13110 reg_stat_type *rsp = &reg_stat[r];
13111 rsp->last_set_table_tick = label_tick;
13114 return;
13117 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13118 if (fmt[i] == 'e')
13120 /* Check for identical subexpressions. If x contains
13121 identical subexpression we only have to traverse one of
13122 them. */
13123 if (i == 0 && ARITHMETIC_P (x))
13125 /* Note that at this point x1 has already been
13126 processed. */
13127 rtx x0 = XEXP (x, 0);
13128 rtx x1 = XEXP (x, 1);
13130 /* If x0 and x1 are identical then there is no need to
13131 process x0. */
13132 if (x0 == x1)
13133 break;
13135 /* If x0 is identical to a subexpression of x1 then while
13136 processing x1, x0 has already been processed. Thus we
13137 are done with x. */
13138 if (ARITHMETIC_P (x1)
13139 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13140 break;
13142 /* If x1 is identical to a subexpression of x0 then we
13143 still have to process the rest of x0. */
13144 if (ARITHMETIC_P (x0)
13145 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13147 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13148 break;
13152 update_table_tick (XEXP (x, i));
13154 else if (fmt[i] == 'E')
13155 for (j = 0; j < XVECLEN (x, i); j++)
13156 update_table_tick (XVECEXP (x, i, j));
13159 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13160 are saying that the register is clobbered and we no longer know its
13161 value. If INSN is zero, don't update reg_stat[].last_set; this is
13162 only permitted with VALUE also zero and is used to invalidate the
13163 register. */
13165 static void
13166 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13168 unsigned int regno = REGNO (reg);
13169 unsigned int endregno = END_REGNO (reg);
13170 unsigned int i;
13171 reg_stat_type *rsp;
13173 /* If VALUE contains REG and we have a previous value for REG, substitute
13174 the previous value. */
13175 if (value && insn && reg_overlap_mentioned_p (reg, value))
13177 rtx tem;
13179 /* Set things up so get_last_value is allowed to see anything set up to
13180 our insn. */
13181 subst_low_luid = DF_INSN_LUID (insn);
13182 tem = get_last_value (reg);
13184 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13185 it isn't going to be useful and will take a lot of time to process,
13186 so just use the CLOBBER. */
13188 if (tem)
13190 if (ARITHMETIC_P (tem)
13191 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13192 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13193 tem = XEXP (tem, 0);
13194 else if (count_occurrences (value, reg, 1) >= 2)
13196 /* If there are two or more occurrences of REG in VALUE,
13197 prevent the value from growing too much. */
13198 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13199 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13202 value = replace_rtx (copy_rtx (value), reg, tem);
13206 /* For each register modified, show we don't know its value, that
13207 we don't know about its bitwise content, that its value has been
13208 updated, and that we don't know the location of the death of the
13209 register. */
13210 for (i = regno; i < endregno; i++)
13212 rsp = &reg_stat[i];
13214 if (insn)
13215 rsp->last_set = insn;
13217 rsp->last_set_value = 0;
13218 rsp->last_set_mode = VOIDmode;
13219 rsp->last_set_nonzero_bits = 0;
13220 rsp->last_set_sign_bit_copies = 0;
13221 rsp->last_death = 0;
13222 rsp->truncated_to_mode = VOIDmode;
13225 /* Mark registers that are being referenced in this value. */
13226 if (value)
13227 update_table_tick (value);
13229 /* Now update the status of each register being set.
13230 If someone is using this register in this block, set this register
13231 to invalid since we will get confused between the two lives in this
13232 basic block. This makes using this register always invalid. In cse, we
13233 scan the table to invalidate all entries using this register, but this
13234 is too much work for us. */
13236 for (i = regno; i < endregno; i++)
13238 rsp = &reg_stat[i];
13239 rsp->last_set_label = label_tick;
13240 if (!insn
13241 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13242 rsp->last_set_invalid = 1;
13243 else
13244 rsp->last_set_invalid = 0;
13247 /* The value being assigned might refer to X (like in "x++;"). In that
13248 case, we must replace it with (clobber (const_int 0)) to prevent
13249 infinite loops. */
13250 rsp = &reg_stat[regno];
13251 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13253 value = copy_rtx (value);
13254 if (!get_last_value_validate (&value, insn, label_tick, 1))
13255 value = 0;
13258 /* For the main register being modified, update the value, the mode, the
13259 nonzero bits, and the number of sign bit copies. */
13261 rsp->last_set_value = value;
13263 if (value)
13265 machine_mode mode = GET_MODE (reg);
13266 subst_low_luid = DF_INSN_LUID (insn);
13267 rsp->last_set_mode = mode;
13268 if (GET_MODE_CLASS (mode) == MODE_INT
13269 && HWI_COMPUTABLE_MODE_P (mode))
13270 mode = nonzero_bits_mode;
13271 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13272 rsp->last_set_sign_bit_copies
13273 = num_sign_bit_copies (value, GET_MODE (reg));
13277 /* Called via note_stores from record_dead_and_set_regs to handle one
13278 SET or CLOBBER in an insn. DATA is the instruction in which the
13279 set is occurring. */
13281 static void
13282 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13284 rtx_insn *record_dead_insn = (rtx_insn *) data;
13286 if (GET_CODE (dest) == SUBREG)
13287 dest = SUBREG_REG (dest);
13289 if (!record_dead_insn)
13291 if (REG_P (dest))
13292 record_value_for_reg (dest, NULL, NULL_RTX);
13293 return;
13296 if (REG_P (dest))
13298 /* If we are setting the whole register, we know its value. Otherwise
13299 show that we don't know the value. We can handle a SUBREG if it's
13300 the low part, but we must be careful with paradoxical SUBREGs on
13301 RISC architectures because we cannot strip e.g. an extension around
13302 a load and record the naked load since the RTL middle-end considers
13303 that the upper bits are defined according to LOAD_EXTEND_OP. */
13304 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13305 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13306 else if (GET_CODE (setter) == SET
13307 && GET_CODE (SET_DEST (setter)) == SUBREG
13308 && SUBREG_REG (SET_DEST (setter)) == dest
13309 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13310 BITS_PER_WORD)
13311 && subreg_lowpart_p (SET_DEST (setter)))
13312 record_value_for_reg (dest, record_dead_insn,
13313 WORD_REGISTER_OPERATIONS
13314 && paradoxical_subreg_p (SET_DEST (setter))
13315 ? SET_SRC (setter)
13316 : gen_lowpart (GET_MODE (dest),
13317 SET_SRC (setter)));
13318 else
13319 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13321 else if (MEM_P (dest)
13322 /* Ignore pushes, they clobber nothing. */
13323 && ! push_operand (dest, GET_MODE (dest)))
13324 mem_last_set = DF_INSN_LUID (record_dead_insn);
13327 /* Update the records of when each REG was most recently set or killed
13328 for the things done by INSN. This is the last thing done in processing
13329 INSN in the combiner loop.
13331 We update reg_stat[], in particular fields last_set, last_set_value,
13332 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13333 last_death, and also the similar information mem_last_set (which insn
13334 most recently modified memory) and last_call_luid (which insn was the
13335 most recent subroutine call). */
13337 static void
13338 record_dead_and_set_regs (rtx_insn *insn)
13340 rtx link;
13341 unsigned int i;
13343 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13345 if (REG_NOTE_KIND (link) == REG_DEAD
13346 && REG_P (XEXP (link, 0)))
13348 unsigned int regno = REGNO (XEXP (link, 0));
13349 unsigned int endregno = END_REGNO (XEXP (link, 0));
13351 for (i = regno; i < endregno; i++)
13353 reg_stat_type *rsp;
13355 rsp = &reg_stat[i];
13356 rsp->last_death = insn;
13359 else if (REG_NOTE_KIND (link) == REG_INC)
13360 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13363 if (CALL_P (insn))
13365 hard_reg_set_iterator hrsi;
13366 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13368 reg_stat_type *rsp;
13370 rsp = &reg_stat[i];
13371 rsp->last_set_invalid = 1;
13372 rsp->last_set = insn;
13373 rsp->last_set_value = 0;
13374 rsp->last_set_mode = VOIDmode;
13375 rsp->last_set_nonzero_bits = 0;
13376 rsp->last_set_sign_bit_copies = 0;
13377 rsp->last_death = 0;
13378 rsp->truncated_to_mode = VOIDmode;
13381 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13383 /* We can't combine into a call pattern. Remember, though, that
13384 the return value register is set at this LUID. We could
13385 still replace a register with the return value from the
13386 wrong subroutine call! */
13387 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13389 else
13390 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13393 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13394 register present in the SUBREG, so for each such SUBREG go back and
13395 adjust nonzero and sign bit information of the registers that are
13396 known to have some zero/sign bits set.
13398 This is needed because when combine blows the SUBREGs away, the
13399 information on zero/sign bits is lost and further combines can be
13400 missed because of that. */
13402 static void
13403 record_promoted_value (rtx_insn *insn, rtx subreg)
13405 struct insn_link *links;
13406 rtx set;
13407 unsigned int regno = REGNO (SUBREG_REG (subreg));
13408 machine_mode mode = GET_MODE (subreg);
13410 if (!HWI_COMPUTABLE_MODE_P (mode))
13411 return;
13413 for (links = LOG_LINKS (insn); links;)
13415 reg_stat_type *rsp;
13417 insn = links->insn;
13418 set = single_set (insn);
13420 if (! set || !REG_P (SET_DEST (set))
13421 || REGNO (SET_DEST (set)) != regno
13422 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13424 links = links->next;
13425 continue;
13428 rsp = &reg_stat[regno];
13429 if (rsp->last_set == insn)
13431 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13432 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13435 if (REG_P (SET_SRC (set)))
13437 regno = REGNO (SET_SRC (set));
13438 links = LOG_LINKS (insn);
13440 else
13441 break;
13445 /* Check if X, a register, is known to contain a value already
13446 truncated to MODE. In this case we can use a subreg to refer to
13447 the truncated value even though in the generic case we would need
13448 an explicit truncation. */
13450 static bool
13451 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13453 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13454 machine_mode truncated = rsp->truncated_to_mode;
13456 if (truncated == 0
13457 || rsp->truncation_label < label_tick_ebb_start)
13458 return false;
13459 if (!partial_subreg_p (mode, truncated))
13460 return true;
13461 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13462 return true;
13463 return false;
13466 /* If X is a hard reg or a subreg record the mode that the register is
13467 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13468 able to turn a truncate into a subreg using this information. Return true
13469 if traversing X is complete. */
13471 static bool
13472 record_truncated_value (rtx x)
13474 machine_mode truncated_mode;
13475 reg_stat_type *rsp;
13477 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13479 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13480 truncated_mode = GET_MODE (x);
13482 if (!partial_subreg_p (truncated_mode, original_mode))
13483 return true;
13485 truncated_mode = GET_MODE (x);
13486 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13487 return true;
13489 x = SUBREG_REG (x);
13491 /* ??? For hard-regs we now record everything. We might be able to
13492 optimize this using last_set_mode. */
13493 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13494 truncated_mode = GET_MODE (x);
13495 else
13496 return false;
13498 rsp = &reg_stat[REGNO (x)];
13499 if (rsp->truncated_to_mode == 0
13500 || rsp->truncation_label < label_tick_ebb_start
13501 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13503 rsp->truncated_to_mode = truncated_mode;
13504 rsp->truncation_label = label_tick;
13507 return true;
13510 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13511 the modes they are used in. This can help truning TRUNCATEs into
13512 SUBREGs. */
13514 static void
13515 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13517 subrtx_var_iterator::array_type array;
13518 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13519 if (record_truncated_value (*iter))
13520 iter.skip_subrtxes ();
13523 /* Scan X for promoted SUBREGs. For each one found,
13524 note what it implies to the registers used in it. */
13526 static void
13527 check_promoted_subreg (rtx_insn *insn, rtx x)
13529 if (GET_CODE (x) == SUBREG
13530 && SUBREG_PROMOTED_VAR_P (x)
13531 && REG_P (SUBREG_REG (x)))
13532 record_promoted_value (insn, x);
13533 else
13535 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13536 int i, j;
13538 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13539 switch (format[i])
13541 case 'e':
13542 check_promoted_subreg (insn, XEXP (x, i));
13543 break;
13544 case 'V':
13545 case 'E':
13546 if (XVEC (x, i) != 0)
13547 for (j = 0; j < XVECLEN (x, i); j++)
13548 check_promoted_subreg (insn, XVECEXP (x, i, j));
13549 break;
13554 /* Verify that all the registers and memory references mentioned in *LOC are
13555 still valid. *LOC was part of a value set in INSN when label_tick was
13556 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13557 the invalid references with (clobber (const_int 0)) and return 1. This
13558 replacement is useful because we often can get useful information about
13559 the form of a value (e.g., if it was produced by a shift that always
13560 produces -1 or 0) even though we don't know exactly what registers it
13561 was produced from. */
13563 static int
13564 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13566 rtx x = *loc;
13567 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13568 int len = GET_RTX_LENGTH (GET_CODE (x));
13569 int i, j;
13571 if (REG_P (x))
13573 unsigned int regno = REGNO (x);
13574 unsigned int endregno = END_REGNO (x);
13575 unsigned int j;
13577 for (j = regno; j < endregno; j++)
13579 reg_stat_type *rsp = &reg_stat[j];
13580 if (rsp->last_set_invalid
13581 /* If this is a pseudo-register that was only set once and not
13582 live at the beginning of the function, it is always valid. */
13583 || (! (regno >= FIRST_PSEUDO_REGISTER
13584 && regno < reg_n_sets_max
13585 && REG_N_SETS (regno) == 1
13586 && (!REGNO_REG_SET_P
13587 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13588 regno)))
13589 && rsp->last_set_label > tick))
13591 if (replace)
13592 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13593 return replace;
13597 return 1;
13599 /* If this is a memory reference, make sure that there were no stores after
13600 it that might have clobbered the value. We don't have alias info, so we
13601 assume any store invalidates it. Moreover, we only have local UIDs, so
13602 we also assume that there were stores in the intervening basic blocks. */
13603 else if (MEM_P (x) && !MEM_READONLY_P (x)
13604 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13606 if (replace)
13607 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13608 return replace;
13611 for (i = 0; i < len; i++)
13613 if (fmt[i] == 'e')
13615 /* Check for identical subexpressions. If x contains
13616 identical subexpression we only have to traverse one of
13617 them. */
13618 if (i == 1 && ARITHMETIC_P (x))
13620 /* Note that at this point x0 has already been checked
13621 and found valid. */
13622 rtx x0 = XEXP (x, 0);
13623 rtx x1 = XEXP (x, 1);
13625 /* If x0 and x1 are identical then x is also valid. */
13626 if (x0 == x1)
13627 return 1;
13629 /* If x1 is identical to a subexpression of x0 then
13630 while checking x0, x1 has already been checked. Thus
13631 it is valid and so as x. */
13632 if (ARITHMETIC_P (x0)
13633 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13634 return 1;
13636 /* If x0 is identical to a subexpression of x1 then x is
13637 valid iff the rest of x1 is valid. */
13638 if (ARITHMETIC_P (x1)
13639 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13640 return
13641 get_last_value_validate (&XEXP (x1,
13642 x0 == XEXP (x1, 0) ? 1 : 0),
13643 insn, tick, replace);
13646 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13647 replace) == 0)
13648 return 0;
13650 else if (fmt[i] == 'E')
13651 for (j = 0; j < XVECLEN (x, i); j++)
13652 if (get_last_value_validate (&XVECEXP (x, i, j),
13653 insn, tick, replace) == 0)
13654 return 0;
13657 /* If we haven't found a reason for it to be invalid, it is valid. */
13658 return 1;
13661 /* Get the last value assigned to X, if known. Some registers
13662 in the value may be replaced with (clobber (const_int 0)) if their value
13663 is known longer known reliably. */
13665 static rtx
13666 get_last_value (const_rtx x)
13668 unsigned int regno;
13669 rtx value;
13670 reg_stat_type *rsp;
13672 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13673 then convert it to the desired mode. If this is a paradoxical SUBREG,
13674 we cannot predict what values the "extra" bits might have. */
13675 if (GET_CODE (x) == SUBREG
13676 && subreg_lowpart_p (x)
13677 && !paradoxical_subreg_p (x)
13678 && (value = get_last_value (SUBREG_REG (x))) != 0)
13679 return gen_lowpart (GET_MODE (x), value);
13681 if (!REG_P (x))
13682 return 0;
13684 regno = REGNO (x);
13685 rsp = &reg_stat[regno];
13686 value = rsp->last_set_value;
13688 /* If we don't have a value, or if it isn't for this basic block and
13689 it's either a hard register, set more than once, or it's a live
13690 at the beginning of the function, return 0.
13692 Because if it's not live at the beginning of the function then the reg
13693 is always set before being used (is never used without being set).
13694 And, if it's set only once, and it's always set before use, then all
13695 uses must have the same last value, even if it's not from this basic
13696 block. */
13698 if (value == 0
13699 || (rsp->last_set_label < label_tick_ebb_start
13700 && (regno < FIRST_PSEUDO_REGISTER
13701 || regno >= reg_n_sets_max
13702 || REG_N_SETS (regno) != 1
13703 || REGNO_REG_SET_P
13704 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13705 return 0;
13707 /* If the value was set in a later insn than the ones we are processing,
13708 we can't use it even if the register was only set once. */
13709 if (rsp->last_set_label == label_tick
13710 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13711 return 0;
13713 /* If fewer bits were set than what we are asked for now, we cannot use
13714 the value. */
13715 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13716 GET_MODE_PRECISION (GET_MODE (x))))
13717 return 0;
13719 /* If the value has all its registers valid, return it. */
13720 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13721 return value;
13723 /* Otherwise, make a copy and replace any invalid register with
13724 (clobber (const_int 0)). If that fails for some reason, return 0. */
13726 value = copy_rtx (value);
13727 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13728 return value;
13730 return 0;
13733 /* Define three variables used for communication between the following
13734 routines. */
13736 static unsigned int reg_dead_regno, reg_dead_endregno;
13737 static int reg_dead_flag;
13739 /* Function called via note_stores from reg_dead_at_p.
13741 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13742 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13744 static void
13745 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13747 unsigned int regno, endregno;
13749 if (!REG_P (dest))
13750 return;
13752 regno = REGNO (dest);
13753 endregno = END_REGNO (dest);
13754 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13755 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13758 /* Return nonzero if REG is known to be dead at INSN.
13760 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13761 referencing REG, it is dead. If we hit a SET referencing REG, it is
13762 live. Otherwise, see if it is live or dead at the start of the basic
13763 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13764 must be assumed to be always live. */
13766 static int
13767 reg_dead_at_p (rtx reg, rtx_insn *insn)
13769 basic_block block;
13770 unsigned int i;
13772 /* Set variables for reg_dead_at_p_1. */
13773 reg_dead_regno = REGNO (reg);
13774 reg_dead_endregno = END_REGNO (reg);
13776 reg_dead_flag = 0;
13778 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13779 we allow the machine description to decide whether use-and-clobber
13780 patterns are OK. */
13781 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13783 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13784 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13785 return 0;
13788 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13789 beginning of basic block. */
13790 block = BLOCK_FOR_INSN (insn);
13791 for (;;)
13793 if (INSN_P (insn))
13795 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13796 return 1;
13798 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13799 if (reg_dead_flag)
13800 return reg_dead_flag == 1 ? 1 : 0;
13802 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13803 return 1;
13806 if (insn == BB_HEAD (block))
13807 break;
13809 insn = PREV_INSN (insn);
13812 /* Look at live-in sets for the basic block that we were in. */
13813 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13814 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13815 return 0;
13817 return 1;
13820 /* Note hard registers in X that are used. */
13822 static void
13823 mark_used_regs_combine (rtx x)
13825 RTX_CODE code = GET_CODE (x);
13826 unsigned int regno;
13827 int i;
13829 switch (code)
13831 case LABEL_REF:
13832 case SYMBOL_REF:
13833 case CONST:
13834 CASE_CONST_ANY:
13835 case PC:
13836 case ADDR_VEC:
13837 case ADDR_DIFF_VEC:
13838 case ASM_INPUT:
13839 /* CC0 must die in the insn after it is set, so we don't need to take
13840 special note of it here. */
13841 case CC0:
13842 return;
13844 case CLOBBER:
13845 /* If we are clobbering a MEM, mark any hard registers inside the
13846 address as used. */
13847 if (MEM_P (XEXP (x, 0)))
13848 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13849 return;
13851 case REG:
13852 regno = REGNO (x);
13853 /* A hard reg in a wide mode may really be multiple registers.
13854 If so, mark all of them just like the first. */
13855 if (regno < FIRST_PSEUDO_REGISTER)
13857 /* None of this applies to the stack, frame or arg pointers. */
13858 if (regno == STACK_POINTER_REGNUM
13859 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13860 && regno == HARD_FRAME_POINTER_REGNUM)
13861 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13862 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13863 || regno == FRAME_POINTER_REGNUM)
13864 return;
13866 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13868 return;
13870 case SET:
13872 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13873 the address. */
13874 rtx testreg = SET_DEST (x);
13876 while (GET_CODE (testreg) == SUBREG
13877 || GET_CODE (testreg) == ZERO_EXTRACT
13878 || GET_CODE (testreg) == STRICT_LOW_PART)
13879 testreg = XEXP (testreg, 0);
13881 if (MEM_P (testreg))
13882 mark_used_regs_combine (XEXP (testreg, 0));
13884 mark_used_regs_combine (SET_SRC (x));
13886 return;
13888 default:
13889 break;
13892 /* Recursively scan the operands of this expression. */
13895 const char *fmt = GET_RTX_FORMAT (code);
13897 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13899 if (fmt[i] == 'e')
13900 mark_used_regs_combine (XEXP (x, i));
13901 else if (fmt[i] == 'E')
13903 int j;
13905 for (j = 0; j < XVECLEN (x, i); j++)
13906 mark_used_regs_combine (XVECEXP (x, i, j));
13912 /* Remove register number REGNO from the dead registers list of INSN.
13914 Return the note used to record the death, if there was one. */
13917 remove_death (unsigned int regno, rtx_insn *insn)
13919 rtx note = find_regno_note (insn, REG_DEAD, regno);
13921 if (note)
13922 remove_note (insn, note);
13924 return note;
13927 /* For each register (hardware or pseudo) used within expression X, if its
13928 death is in an instruction with luid between FROM_LUID (inclusive) and
13929 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13930 list headed by PNOTES.
13932 That said, don't move registers killed by maybe_kill_insn.
13934 This is done when X is being merged by combination into TO_INSN. These
13935 notes will then be distributed as needed. */
13937 static void
13938 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13939 rtx *pnotes)
13941 const char *fmt;
13942 int len, i;
13943 enum rtx_code code = GET_CODE (x);
13945 if (code == REG)
13947 unsigned int regno = REGNO (x);
13948 rtx_insn *where_dead = reg_stat[regno].last_death;
13950 /* If we do not know where the register died, it may still die between
13951 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
13952 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
13954 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
13955 while (insn
13956 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
13957 && DF_INSN_LUID (insn) >= from_luid)
13959 if (dead_or_set_regno_p (insn, regno))
13961 if (find_regno_note (insn, REG_DEAD, regno))
13962 where_dead = insn;
13963 break;
13966 insn = prev_real_nondebug_insn (insn);
13970 /* Don't move the register if it gets killed in between from and to. */
13971 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13972 && ! reg_referenced_p (x, maybe_kill_insn))
13973 return;
13975 if (where_dead
13976 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13977 && DF_INSN_LUID (where_dead) >= from_luid
13978 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13980 rtx note = remove_death (regno, where_dead);
13982 /* It is possible for the call above to return 0. This can occur
13983 when last_death points to I2 or I1 that we combined with.
13984 In that case make a new note.
13986 We must also check for the case where X is a hard register
13987 and NOTE is a death note for a range of hard registers
13988 including X. In that case, we must put REG_DEAD notes for
13989 the remaining registers in place of NOTE. */
13991 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13992 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
13994 unsigned int deadregno = REGNO (XEXP (note, 0));
13995 unsigned int deadend = END_REGNO (XEXP (note, 0));
13996 unsigned int ourend = END_REGNO (x);
13997 unsigned int i;
13999 for (i = deadregno; i < deadend; i++)
14000 if (i < regno || i >= ourend)
14001 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
14004 /* If we didn't find any note, or if we found a REG_DEAD note that
14005 covers only part of the given reg, and we have a multi-reg hard
14006 register, then to be safe we must check for REG_DEAD notes
14007 for each register other than the first. They could have
14008 their own REG_DEAD notes lying around. */
14009 else if ((note == 0
14010 || (note != 0
14011 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
14012 GET_MODE (x))))
14013 && regno < FIRST_PSEUDO_REGISTER
14014 && REG_NREGS (x) > 1)
14016 unsigned int ourend = END_REGNO (x);
14017 unsigned int i, offset;
14018 rtx oldnotes = 0;
14020 if (note)
14021 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14022 else
14023 offset = 1;
14025 for (i = regno + offset; i < ourend; i++)
14026 move_deaths (regno_reg_rtx[i],
14027 maybe_kill_insn, from_luid, to_insn, &oldnotes);
14030 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14032 XEXP (note, 1) = *pnotes;
14033 *pnotes = note;
14035 else
14036 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14039 return;
14042 else if (GET_CODE (x) == SET)
14044 rtx dest = SET_DEST (x);
14046 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14048 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14049 that accesses one word of a multi-word item, some
14050 piece of everything register in the expression is used by
14051 this insn, so remove any old death. */
14052 /* ??? So why do we test for equality of the sizes? */
14054 if (GET_CODE (dest) == ZERO_EXTRACT
14055 || GET_CODE (dest) == STRICT_LOW_PART
14056 || (GET_CODE (dest) == SUBREG
14057 && !read_modify_subreg_p (dest)))
14059 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14060 return;
14063 /* If this is some other SUBREG, we know it replaces the entire
14064 value, so use that as the destination. */
14065 if (GET_CODE (dest) == SUBREG)
14066 dest = SUBREG_REG (dest);
14068 /* If this is a MEM, adjust deaths of anything used in the address.
14069 For a REG (the only other possibility), the entire value is
14070 being replaced so the old value is not used in this insn. */
14072 if (MEM_P (dest))
14073 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14074 to_insn, pnotes);
14075 return;
14078 else if (GET_CODE (x) == CLOBBER)
14079 return;
14081 len = GET_RTX_LENGTH (code);
14082 fmt = GET_RTX_FORMAT (code);
14084 for (i = 0; i < len; i++)
14086 if (fmt[i] == 'E')
14088 int j;
14089 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14090 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14091 to_insn, pnotes);
14093 else if (fmt[i] == 'e')
14094 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14098 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14099 pattern of an insn. X must be a REG. */
14101 static int
14102 reg_bitfield_target_p (rtx x, rtx body)
14104 int i;
14106 if (GET_CODE (body) == SET)
14108 rtx dest = SET_DEST (body);
14109 rtx target;
14110 unsigned int regno, tregno, endregno, endtregno;
14112 if (GET_CODE (dest) == ZERO_EXTRACT)
14113 target = XEXP (dest, 0);
14114 else if (GET_CODE (dest) == STRICT_LOW_PART)
14115 target = SUBREG_REG (XEXP (dest, 0));
14116 else
14117 return 0;
14119 if (GET_CODE (target) == SUBREG)
14120 target = SUBREG_REG (target);
14122 if (!REG_P (target))
14123 return 0;
14125 tregno = REGNO (target), regno = REGNO (x);
14126 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14127 return target == x;
14129 endtregno = end_hard_regno (GET_MODE (target), tregno);
14130 endregno = end_hard_regno (GET_MODE (x), regno);
14132 return endregno > tregno && regno < endtregno;
14135 else if (GET_CODE (body) == PARALLEL)
14136 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14137 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14138 return 1;
14140 return 0;
14143 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14144 as appropriate. I3 and I2 are the insns resulting from the combination
14145 insns including FROM (I2 may be zero).
14147 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14148 not need REG_DEAD notes because they are being substituted for. This
14149 saves searching in the most common cases.
14151 Each note in the list is either ignored or placed on some insns, depending
14152 on the type of note. */
14154 static void
14155 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14156 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14158 rtx note, next_note;
14159 rtx tem_note;
14160 rtx_insn *tem_insn;
14162 for (note = notes; note; note = next_note)
14164 rtx_insn *place = 0, *place2 = 0;
14166 next_note = XEXP (note, 1);
14167 switch (REG_NOTE_KIND (note))
14169 case REG_BR_PROB:
14170 case REG_BR_PRED:
14171 /* Doesn't matter much where we put this, as long as it's somewhere.
14172 It is preferable to keep these notes on branches, which is most
14173 likely to be i3. */
14174 place = i3;
14175 break;
14177 case REG_NON_LOCAL_GOTO:
14178 if (JUMP_P (i3))
14179 place = i3;
14180 else
14182 gcc_assert (i2 && JUMP_P (i2));
14183 place = i2;
14185 break;
14187 case REG_EH_REGION:
14188 /* These notes must remain with the call or trapping instruction. */
14189 if (CALL_P (i3))
14190 place = i3;
14191 else if (i2 && CALL_P (i2))
14192 place = i2;
14193 else
14195 gcc_assert (cfun->can_throw_non_call_exceptions);
14196 if (may_trap_p (i3))
14197 place = i3;
14198 else if (i2 && may_trap_p (i2))
14199 place = i2;
14200 /* ??? Otherwise assume we've combined things such that we
14201 can now prove that the instructions can't trap. Drop the
14202 note in this case. */
14204 break;
14206 case REG_ARGS_SIZE:
14207 /* ??? How to distribute between i3-i1. Assume i3 contains the
14208 entire adjustment. Assert i3 contains at least some adjust. */
14209 if (!noop_move_p (i3))
14211 poly_int64 old_size, args_size = get_args_size (note);
14212 /* fixup_args_size_notes looks at REG_NORETURN note,
14213 so ensure the note is placed there first. */
14214 if (CALL_P (i3))
14216 rtx *np;
14217 for (np = &next_note; *np; np = &XEXP (*np, 1))
14218 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14220 rtx n = *np;
14221 *np = XEXP (n, 1);
14222 XEXP (n, 1) = REG_NOTES (i3);
14223 REG_NOTES (i3) = n;
14224 break;
14227 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14228 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14229 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14230 gcc_assert (maybe_ne (old_size, args_size)
14231 || (CALL_P (i3)
14232 && !ACCUMULATE_OUTGOING_ARGS
14233 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14235 break;
14237 case REG_NORETURN:
14238 case REG_SETJMP:
14239 case REG_TM:
14240 case REG_CALL_DECL:
14241 case REG_CALL_NOCF_CHECK:
14242 /* These notes must remain with the call. It should not be
14243 possible for both I2 and I3 to be a call. */
14244 if (CALL_P (i3))
14245 place = i3;
14246 else
14248 gcc_assert (i2 && CALL_P (i2));
14249 place = i2;
14251 break;
14253 case REG_UNUSED:
14254 /* Any clobbers for i3 may still exist, and so we must process
14255 REG_UNUSED notes from that insn.
14257 Any clobbers from i2 or i1 can only exist if they were added by
14258 recog_for_combine. In that case, recog_for_combine created the
14259 necessary REG_UNUSED notes. Trying to keep any original
14260 REG_UNUSED notes from these insns can cause incorrect output
14261 if it is for the same register as the original i3 dest.
14262 In that case, we will notice that the register is set in i3,
14263 and then add a REG_UNUSED note for the destination of i3, which
14264 is wrong. However, it is possible to have REG_UNUSED notes from
14265 i2 or i1 for register which were both used and clobbered, so
14266 we keep notes from i2 or i1 if they will turn into REG_DEAD
14267 notes. */
14269 /* If this register is set or clobbered in I3, put the note there
14270 unless there is one already. */
14271 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14273 if (from_insn != i3)
14274 break;
14276 if (! (REG_P (XEXP (note, 0))
14277 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14278 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14279 place = i3;
14281 /* Otherwise, if this register is used by I3, then this register
14282 now dies here, so we must put a REG_DEAD note here unless there
14283 is one already. */
14284 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14285 && ! (REG_P (XEXP (note, 0))
14286 ? find_regno_note (i3, REG_DEAD,
14287 REGNO (XEXP (note, 0)))
14288 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14290 PUT_REG_NOTE_KIND (note, REG_DEAD);
14291 place = i3;
14294 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14295 but we can't tell which at this point. We must reset any
14296 expectations we had about the value that was previously
14297 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14298 and, if appropriate, restore its previous value, but we
14299 don't have enough information for that at this point. */
14300 else
14302 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14304 /* Otherwise, if this register is now referenced in i2
14305 then the register used to be modified in one of the
14306 original insns. If it was i3 (say, in an unused
14307 parallel), it's now completely gone, so the note can
14308 be discarded. But if it was modified in i2, i1 or i0
14309 and we still reference it in i2, then we're
14310 referencing the previous value, and since the
14311 register was modified and REG_UNUSED, we know that
14312 the previous value is now dead. So, if we only
14313 reference the register in i2, we change the note to
14314 REG_DEAD, to reflect the previous value. However, if
14315 we're also setting or clobbering the register as
14316 scratch, we know (because the register was not
14317 referenced in i3) that it's unused, just as it was
14318 unused before, and we place the note in i2. */
14319 if (from_insn != i3 && i2 && INSN_P (i2)
14320 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14322 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14323 PUT_REG_NOTE_KIND (note, REG_DEAD);
14324 if (! (REG_P (XEXP (note, 0))
14325 ? find_regno_note (i2, REG_NOTE_KIND (note),
14326 REGNO (XEXP (note, 0)))
14327 : find_reg_note (i2, REG_NOTE_KIND (note),
14328 XEXP (note, 0))))
14329 place = i2;
14333 break;
14335 case REG_EQUAL:
14336 case REG_EQUIV:
14337 case REG_NOALIAS:
14338 /* These notes say something about results of an insn. We can
14339 only support them if they used to be on I3 in which case they
14340 remain on I3. Otherwise they are ignored.
14342 If the note refers to an expression that is not a constant, we
14343 must also ignore the note since we cannot tell whether the
14344 equivalence is still true. It might be possible to do
14345 slightly better than this (we only have a problem if I2DEST
14346 or I1DEST is present in the expression), but it doesn't
14347 seem worth the trouble. */
14349 if (from_insn == i3
14350 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14351 place = i3;
14352 break;
14354 case REG_INC:
14355 /* These notes say something about how a register is used. They must
14356 be present on any use of the register in I2 or I3. */
14357 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14358 place = i3;
14360 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14362 if (place)
14363 place2 = i2;
14364 else
14365 place = i2;
14367 break;
14369 case REG_LABEL_TARGET:
14370 case REG_LABEL_OPERAND:
14371 /* This can show up in several ways -- either directly in the
14372 pattern, or hidden off in the constant pool with (or without?)
14373 a REG_EQUAL note. */
14374 /* ??? Ignore the without-reg_equal-note problem for now. */
14375 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14376 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14377 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14378 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14379 place = i3;
14381 if (i2
14382 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14383 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14384 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14385 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14387 if (place)
14388 place2 = i2;
14389 else
14390 place = i2;
14393 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14394 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14395 there. */
14396 if (place && JUMP_P (place)
14397 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14398 && (JUMP_LABEL (place) == NULL
14399 || JUMP_LABEL (place) == XEXP (note, 0)))
14401 rtx label = JUMP_LABEL (place);
14403 if (!label)
14404 JUMP_LABEL (place) = XEXP (note, 0);
14405 else if (LABEL_P (label))
14406 LABEL_NUSES (label)--;
14409 if (place2 && JUMP_P (place2)
14410 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14411 && (JUMP_LABEL (place2) == NULL
14412 || JUMP_LABEL (place2) == XEXP (note, 0)))
14414 rtx label = JUMP_LABEL (place2);
14416 if (!label)
14417 JUMP_LABEL (place2) = XEXP (note, 0);
14418 else if (LABEL_P (label))
14419 LABEL_NUSES (label)--;
14420 place2 = 0;
14422 break;
14424 case REG_NONNEG:
14425 /* This note says something about the value of a register prior
14426 to the execution of an insn. It is too much trouble to see
14427 if the note is still correct in all situations. It is better
14428 to simply delete it. */
14429 break;
14431 case REG_DEAD:
14432 /* If we replaced the right hand side of FROM_INSN with a
14433 REG_EQUAL note, the original use of the dying register
14434 will not have been combined into I3 and I2. In such cases,
14435 FROM_INSN is guaranteed to be the first of the combined
14436 instructions, so we simply need to search back before
14437 FROM_INSN for the previous use or set of this register,
14438 then alter the notes there appropriately.
14440 If the register is used as an input in I3, it dies there.
14441 Similarly for I2, if it is nonzero and adjacent to I3.
14443 If the register is not used as an input in either I3 or I2
14444 and it is not one of the registers we were supposed to eliminate,
14445 there are two possibilities. We might have a non-adjacent I2
14446 or we might have somehow eliminated an additional register
14447 from a computation. For example, we might have had A & B where
14448 we discover that B will always be zero. In this case we will
14449 eliminate the reference to A.
14451 In both cases, we must search to see if we can find a previous
14452 use of A and put the death note there. */
14454 if (from_insn
14455 && from_insn == i2mod
14456 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14457 tem_insn = from_insn;
14458 else
14460 if (from_insn
14461 && CALL_P (from_insn)
14462 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14463 place = from_insn;
14464 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14466 /* If the new I2 sets the same register that is marked
14467 dead in the note, we do not in general know where to
14468 put the note. One important case we _can_ handle is
14469 when the note comes from I3. */
14470 if (from_insn == i3)
14471 place = i3;
14472 else
14473 break;
14475 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14476 place = i3;
14477 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14478 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14479 place = i2;
14480 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14481 && !(i2mod
14482 && reg_overlap_mentioned_p (XEXP (note, 0),
14483 i2mod_old_rhs)))
14484 || rtx_equal_p (XEXP (note, 0), elim_i1)
14485 || rtx_equal_p (XEXP (note, 0), elim_i0))
14486 break;
14487 tem_insn = i3;
14490 if (place == 0)
14492 basic_block bb = this_basic_block;
14494 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14496 if (!NONDEBUG_INSN_P (tem_insn))
14498 if (tem_insn == BB_HEAD (bb))
14499 break;
14500 continue;
14503 /* If the register is being set at TEM_INSN, see if that is all
14504 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14505 into a REG_UNUSED note instead. Don't delete sets to
14506 global register vars. */
14507 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14508 || !global_regs[REGNO (XEXP (note, 0))])
14509 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14511 rtx set = single_set (tem_insn);
14512 rtx inner_dest = 0;
14513 rtx_insn *cc0_setter = NULL;
14515 if (set != 0)
14516 for (inner_dest = SET_DEST (set);
14517 (GET_CODE (inner_dest) == STRICT_LOW_PART
14518 || GET_CODE (inner_dest) == SUBREG
14519 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14520 inner_dest = XEXP (inner_dest, 0))
14523 /* Verify that it was the set, and not a clobber that
14524 modified the register.
14526 CC0 targets must be careful to maintain setter/user
14527 pairs. If we cannot delete the setter due to side
14528 effects, mark the user with an UNUSED note instead
14529 of deleting it. */
14531 if (set != 0 && ! side_effects_p (SET_SRC (set))
14532 && rtx_equal_p (XEXP (note, 0), inner_dest)
14533 && (!HAVE_cc0
14534 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14535 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14536 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14538 /* Move the notes and links of TEM_INSN elsewhere.
14539 This might delete other dead insns recursively.
14540 First set the pattern to something that won't use
14541 any register. */
14542 rtx old_notes = REG_NOTES (tem_insn);
14544 PATTERN (tem_insn) = pc_rtx;
14545 REG_NOTES (tem_insn) = NULL;
14547 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14548 NULL_RTX, NULL_RTX, NULL_RTX);
14549 distribute_links (LOG_LINKS (tem_insn));
14551 unsigned int regno = REGNO (XEXP (note, 0));
14552 reg_stat_type *rsp = &reg_stat[regno];
14553 if (rsp->last_set == tem_insn)
14554 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14556 SET_INSN_DELETED (tem_insn);
14557 if (tem_insn == i2)
14558 i2 = NULL;
14560 /* Delete the setter too. */
14561 if (cc0_setter)
14563 PATTERN (cc0_setter) = pc_rtx;
14564 old_notes = REG_NOTES (cc0_setter);
14565 REG_NOTES (cc0_setter) = NULL;
14567 distribute_notes (old_notes, cc0_setter,
14568 cc0_setter, NULL,
14569 NULL_RTX, NULL_RTX, NULL_RTX);
14570 distribute_links (LOG_LINKS (cc0_setter));
14572 SET_INSN_DELETED (cc0_setter);
14573 if (cc0_setter == i2)
14574 i2 = NULL;
14577 else
14579 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14581 /* If there isn't already a REG_UNUSED note, put one
14582 here. Do not place a REG_DEAD note, even if
14583 the register is also used here; that would not
14584 match the algorithm used in lifetime analysis
14585 and can cause the consistency check in the
14586 scheduler to fail. */
14587 if (! find_regno_note (tem_insn, REG_UNUSED,
14588 REGNO (XEXP (note, 0))))
14589 place = tem_insn;
14590 break;
14593 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14594 || (CALL_P (tem_insn)
14595 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14597 place = tem_insn;
14599 /* If we are doing a 3->2 combination, and we have a
14600 register which formerly died in i3 and was not used
14601 by i2, which now no longer dies in i3 and is used in
14602 i2 but does not die in i2, and place is between i2
14603 and i3, then we may need to move a link from place to
14604 i2. */
14605 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14606 && from_insn
14607 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14608 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14610 struct insn_link *links = LOG_LINKS (place);
14611 LOG_LINKS (place) = NULL;
14612 distribute_links (links);
14614 break;
14617 if (tem_insn == BB_HEAD (bb))
14618 break;
14623 /* If the register is set or already dead at PLACE, we needn't do
14624 anything with this note if it is still a REG_DEAD note.
14625 We check here if it is set at all, not if is it totally replaced,
14626 which is what `dead_or_set_p' checks, so also check for it being
14627 set partially. */
14629 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14631 unsigned int regno = REGNO (XEXP (note, 0));
14632 reg_stat_type *rsp = &reg_stat[regno];
14634 if (dead_or_set_p (place, XEXP (note, 0))
14635 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14637 /* Unless the register previously died in PLACE, clear
14638 last_death. [I no longer understand why this is
14639 being done.] */
14640 if (rsp->last_death != place)
14641 rsp->last_death = 0;
14642 place = 0;
14644 else
14645 rsp->last_death = place;
14647 /* If this is a death note for a hard reg that is occupying
14648 multiple registers, ensure that we are still using all
14649 parts of the object. If we find a piece of the object
14650 that is unused, we must arrange for an appropriate REG_DEAD
14651 note to be added for it. However, we can't just emit a USE
14652 and tag the note to it, since the register might actually
14653 be dead; so we recourse, and the recursive call then finds
14654 the previous insn that used this register. */
14656 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14658 unsigned int endregno = END_REGNO (XEXP (note, 0));
14659 bool all_used = true;
14660 unsigned int i;
14662 for (i = regno; i < endregno; i++)
14663 if ((! refers_to_regno_p (i, PATTERN (place))
14664 && ! find_regno_fusage (place, USE, i))
14665 || dead_or_set_regno_p (place, i))
14667 all_used = false;
14668 break;
14671 if (! all_used)
14673 /* Put only REG_DEAD notes for pieces that are
14674 not already dead or set. */
14676 for (i = regno; i < endregno;
14677 i += hard_regno_nregs (i, reg_raw_mode[i]))
14679 rtx piece = regno_reg_rtx[i];
14680 basic_block bb = this_basic_block;
14682 if (! dead_or_set_p (place, piece)
14683 && ! reg_bitfield_target_p (piece,
14684 PATTERN (place)))
14686 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14687 NULL_RTX);
14689 distribute_notes (new_note, place, place,
14690 NULL, NULL_RTX, NULL_RTX,
14691 NULL_RTX);
14693 else if (! refers_to_regno_p (i, PATTERN (place))
14694 && ! find_regno_fusage (place, USE, i))
14695 for (tem_insn = PREV_INSN (place); ;
14696 tem_insn = PREV_INSN (tem_insn))
14698 if (!NONDEBUG_INSN_P (tem_insn))
14700 if (tem_insn == BB_HEAD (bb))
14701 break;
14702 continue;
14704 if (dead_or_set_p (tem_insn, piece)
14705 || reg_bitfield_target_p (piece,
14706 PATTERN (tem_insn)))
14708 add_reg_note (tem_insn, REG_UNUSED, piece);
14709 break;
14714 place = 0;
14718 break;
14720 default:
14721 /* Any other notes should not be present at this point in the
14722 compilation. */
14723 gcc_unreachable ();
14726 if (place)
14728 XEXP (note, 1) = REG_NOTES (place);
14729 REG_NOTES (place) = note;
14731 /* Set added_notes_insn to the earliest insn we added a note to. */
14732 if (added_notes_insn == 0
14733 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14734 added_notes_insn = place;
14737 if (place2)
14739 add_shallow_copy_of_reg_note (place2, note);
14741 /* Set added_notes_insn to the earliest insn we added a note to. */
14742 if (added_notes_insn == 0
14743 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14744 added_notes_insn = place2;
14749 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14750 I3, I2, and I1 to new locations. This is also called to add a link
14751 pointing at I3 when I3's destination is changed. */
14753 static void
14754 distribute_links (struct insn_link *links)
14756 struct insn_link *link, *next_link;
14758 for (link = links; link; link = next_link)
14760 rtx_insn *place = 0;
14761 rtx_insn *insn;
14762 rtx set, reg;
14764 next_link = link->next;
14766 /* If the insn that this link points to is a NOTE, ignore it. */
14767 if (NOTE_P (link->insn))
14768 continue;
14770 set = 0;
14771 rtx pat = PATTERN (link->insn);
14772 if (GET_CODE (pat) == SET)
14773 set = pat;
14774 else if (GET_CODE (pat) == PARALLEL)
14776 int i;
14777 for (i = 0; i < XVECLEN (pat, 0); i++)
14779 set = XVECEXP (pat, 0, i);
14780 if (GET_CODE (set) != SET)
14781 continue;
14783 reg = SET_DEST (set);
14784 while (GET_CODE (reg) == ZERO_EXTRACT
14785 || GET_CODE (reg) == STRICT_LOW_PART
14786 || GET_CODE (reg) == SUBREG)
14787 reg = XEXP (reg, 0);
14789 if (!REG_P (reg))
14790 continue;
14792 if (REGNO (reg) == link->regno)
14793 break;
14795 if (i == XVECLEN (pat, 0))
14796 continue;
14798 else
14799 continue;
14801 reg = SET_DEST (set);
14803 while (GET_CODE (reg) == ZERO_EXTRACT
14804 || GET_CODE (reg) == STRICT_LOW_PART
14805 || GET_CODE (reg) == SUBREG)
14806 reg = XEXP (reg, 0);
14808 if (reg == pc_rtx)
14809 continue;
14811 /* A LOG_LINK is defined as being placed on the first insn that uses
14812 a register and points to the insn that sets the register. Start
14813 searching at the next insn after the target of the link and stop
14814 when we reach a set of the register or the end of the basic block.
14816 Note that this correctly handles the link that used to point from
14817 I3 to I2. Also note that not much searching is typically done here
14818 since most links don't point very far away. */
14820 for (insn = NEXT_INSN (link->insn);
14821 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14822 || BB_HEAD (this_basic_block->next_bb) != insn));
14823 insn = NEXT_INSN (insn))
14824 if (DEBUG_INSN_P (insn))
14825 continue;
14826 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14828 if (reg_referenced_p (reg, PATTERN (insn)))
14829 place = insn;
14830 break;
14832 else if (CALL_P (insn)
14833 && find_reg_fusage (insn, USE, reg))
14835 place = insn;
14836 break;
14838 else if (INSN_P (insn) && reg_set_p (reg, insn))
14839 break;
14841 /* If we found a place to put the link, place it there unless there
14842 is already a link to the same insn as LINK at that point. */
14844 if (place)
14846 struct insn_link *link2;
14848 FOR_EACH_LOG_LINK (link2, place)
14849 if (link2->insn == link->insn && link2->regno == link->regno)
14850 break;
14852 if (link2 == NULL)
14854 link->next = LOG_LINKS (place);
14855 LOG_LINKS (place) = link;
14857 /* Set added_links_insn to the earliest insn we added a
14858 link to. */
14859 if (added_links_insn == 0
14860 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14861 added_links_insn = place;
14867 /* Check for any register or memory mentioned in EQUIV that is not
14868 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14869 of EXPR where some registers may have been replaced by constants. */
14871 static bool
14872 unmentioned_reg_p (rtx equiv, rtx expr)
14874 subrtx_iterator::array_type array;
14875 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14877 const_rtx x = *iter;
14878 if ((REG_P (x) || MEM_P (x))
14879 && !reg_mentioned_p (x, expr))
14880 return true;
14882 return false;
14885 DEBUG_FUNCTION void
14886 dump_combine_stats (FILE *file)
14888 fprintf
14889 (file,
14890 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14891 combine_attempts, combine_merges, combine_extras, combine_successes);
14894 void
14895 dump_combine_total_stats (FILE *file)
14897 fprintf
14898 (file,
14899 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14900 total_attempts, total_merges, total_extras, total_successes);
14903 /* Try combining insns through substitution. */
14904 static unsigned int
14905 rest_of_handle_combine (void)
14907 int rebuild_jump_labels_after_combine;
14909 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14910 df_note_add_problem ();
14911 df_analyze ();
14913 regstat_init_n_sets_and_refs ();
14914 reg_n_sets_max = max_reg_num ();
14916 rebuild_jump_labels_after_combine
14917 = combine_instructions (get_insns (), max_reg_num ());
14919 /* Combining insns may have turned an indirect jump into a
14920 direct jump. Rebuild the JUMP_LABEL fields of jumping
14921 instructions. */
14922 if (rebuild_jump_labels_after_combine)
14924 if (dom_info_available_p (CDI_DOMINATORS))
14925 free_dominance_info (CDI_DOMINATORS);
14926 timevar_push (TV_JUMP);
14927 rebuild_jump_labels (get_insns ());
14928 cleanup_cfg (0);
14929 timevar_pop (TV_JUMP);
14932 regstat_free_n_sets_and_refs ();
14933 return 0;
14936 namespace {
14938 const pass_data pass_data_combine =
14940 RTL_PASS, /* type */
14941 "combine", /* name */
14942 OPTGROUP_NONE, /* optinfo_flags */
14943 TV_COMBINE, /* tv_id */
14944 PROP_cfglayout, /* properties_required */
14945 0, /* properties_provided */
14946 0, /* properties_destroyed */
14947 0, /* todo_flags_start */
14948 TODO_df_finish, /* todo_flags_finish */
14951 class pass_combine : public rtl_opt_pass
14953 public:
14954 pass_combine (gcc::context *ctxt)
14955 : rtl_opt_pass (pass_data_combine, ctxt)
14958 /* opt_pass methods: */
14959 virtual bool gate (function *) { return (optimize > 0); }
14960 virtual unsigned int execute (function *)
14962 return rest_of_handle_combine ();
14965 }; // class pass_combine
14967 } // anon namespace
14969 rtl_opt_pass *
14970 make_pass_combine (gcc::context *ctxt)
14972 return new pass_combine (ctxt);