Move PREFERRED_DEBUGGING_TYPE define in pa64-hpux.h to pa.h
[official-gcc.git] / gcc / tree-vectorizer.h
blob7d3d3935c957fba972b13c428a446ff49b1508fa
1 /* Vectorizer
2 Copyright (C) 2003-2021 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 typedef class _stmt_vec_info *stmt_vec_info;
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
28 #include "target.h"
29 #include "internal-fn.h"
30 #include "tree-ssa-operands.h"
32 /* Used for naming of new temporaries. */
33 enum vect_var_kind {
34 vect_simple_var,
35 vect_pointer_var,
36 vect_scalar_var,
37 vect_mask_var
40 /* Defines type of operation. */
41 enum operation_type {
42 unary_op = 1,
43 binary_op,
44 ternary_op
47 /* Define type of available alignment support. */
48 enum dr_alignment_support {
49 dr_unaligned_unsupported,
50 dr_unaligned_supported,
51 dr_explicit_realign,
52 dr_explicit_realign_optimized,
53 dr_aligned
56 /* Define type of def-use cross-iteration cycle. */
57 enum vect_def_type {
58 vect_uninitialized_def = 0,
59 vect_constant_def = 1,
60 vect_external_def,
61 vect_internal_def,
62 vect_induction_def,
63 vect_reduction_def,
64 vect_double_reduction_def,
65 vect_nested_cycle,
66 vect_unknown_def_type
69 /* Define type of reduction. */
70 enum vect_reduction_type {
71 TREE_CODE_REDUCTION,
72 COND_REDUCTION,
73 INTEGER_INDUC_COND_REDUCTION,
74 CONST_COND_REDUCTION,
76 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
77 to implement:
79 for (int i = 0; i < VF; ++i)
80 res = cond[i] ? val[i] : res; */
81 EXTRACT_LAST_REDUCTION,
83 /* Use a folding reduction within the loop to implement:
85 for (int i = 0; i < VF; ++i)
86 res = res OP val[i];
88 (with no reassocation). */
89 FOLD_LEFT_REDUCTION
92 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
93 || ((D) == vect_double_reduction_def) \
94 || ((D) == vect_nested_cycle))
96 /* Structure to encapsulate information about a group of like
97 instructions to be presented to the target cost model. */
98 struct stmt_info_for_cost {
99 int count;
100 enum vect_cost_for_stmt kind;
101 enum vect_cost_model_location where;
102 stmt_vec_info stmt_info;
103 tree vectype;
104 int misalign;
107 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
109 /* Maps base addresses to an innermost_loop_behavior and the stmt it was
110 derived from that gives the maximum known alignment for that base. */
111 typedef hash_map<tree_operand_hash,
112 std::pair<stmt_vec_info, innermost_loop_behavior *> >
113 vec_base_alignments;
115 /************************************************************************
117 ************************************************************************/
118 typedef struct _slp_tree *slp_tree;
119 typedef vec<std::pair<unsigned, unsigned> > lane_permutation_t;
120 typedef vec<unsigned> load_permutation_t;
122 /* A computation tree of an SLP instance. Each node corresponds to a group of
123 stmts to be packed in a SIMD stmt. */
124 struct _slp_tree {
125 _slp_tree ();
126 ~_slp_tree ();
128 /* Nodes that contain def-stmts of this node statements operands. */
129 vec<slp_tree> children;
131 /* A group of scalar stmts to be vectorized together. */
132 vec<stmt_vec_info> stmts;
133 /* A group of scalar operands to be vectorized together. */
134 vec<tree> ops;
135 /* The representative that should be used for analysis and
136 code generation. */
137 stmt_vec_info representative;
139 /* Load permutation relative to the stores, NULL if there is no
140 permutation. */
141 load_permutation_t load_permutation;
142 /* Lane permutation of the operands scalar lanes encoded as pairs
143 of { operand number, lane number }. The number of elements
144 denotes the number of output lanes. */
145 lane_permutation_t lane_permutation;
147 tree vectype;
148 /* Vectorized stmt/s. */
149 vec<gimple *> vec_stmts;
150 vec<tree> vec_defs;
151 /* Number of vector stmts that are created to replace the group of scalar
152 stmts. It is calculated during the transformation phase as the number of
153 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
154 divided by vector size. */
155 unsigned int vec_stmts_size;
157 /* Reference count in the SLP graph. */
158 unsigned int refcnt;
159 /* The maximum number of vector elements for the subtree rooted
160 at this node. */
161 poly_uint64 max_nunits;
162 /* The DEF type of this node. */
163 enum vect_def_type def_type;
164 /* The number of scalar lanes produced by this node. */
165 unsigned int lanes;
166 /* The operation of this node. */
167 enum tree_code code;
169 int vertex;
171 /* If not NULL this is a cached failed SLP discovery attempt with
172 the lanes that failed during SLP discovery as 'false'. This is
173 a copy of the matches array. */
174 bool *failed;
176 /* Allocate from slp_tree_pool. */
177 static void *operator new (size_t);
179 /* Return memory to slp_tree_pool. */
180 static void operator delete (void *, size_t);
182 /* Linked list of nodes to release when we free the slp_tree_pool. */
183 slp_tree next_node;
184 slp_tree prev_node;
187 /* The enum describes the type of operations that an SLP instance
188 can perform. */
190 enum slp_instance_kind {
191 slp_inst_kind_store,
192 slp_inst_kind_reduc_group,
193 slp_inst_kind_reduc_chain,
194 slp_inst_kind_bb_reduc,
195 slp_inst_kind_ctor
198 /* SLP instance is a sequence of stmts in a loop that can be packed into
199 SIMD stmts. */
200 typedef class _slp_instance {
201 public:
202 /* The root of SLP tree. */
203 slp_tree root;
205 /* For vector constructors, the constructor stmt that the SLP tree is built
206 from, NULL otherwise. */
207 vec<stmt_vec_info> root_stmts;
209 /* The unrolling factor required to vectorized this SLP instance. */
210 poly_uint64 unrolling_factor;
212 /* The group of nodes that contain loads of this SLP instance. */
213 vec<slp_tree> loads;
215 /* The SLP node containing the reduction PHIs. */
216 slp_tree reduc_phis;
218 /* Vector cost of this entry to the SLP graph. */
219 stmt_vector_for_cost cost_vec;
221 /* If this instance is the main entry of a subgraph the set of
222 entries into the same subgraph, including itself. */
223 vec<_slp_instance *> subgraph_entries;
225 /* The type of operation the SLP instance is performing. */
226 slp_instance_kind kind;
228 dump_user_location_t location () const;
229 } *slp_instance;
232 /* Access Functions. */
233 #define SLP_INSTANCE_TREE(S) (S)->root
234 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
235 #define SLP_INSTANCE_LOADS(S) (S)->loads
236 #define SLP_INSTANCE_ROOT_STMTS(S) (S)->root_stmts
237 #define SLP_INSTANCE_KIND(S) (S)->kind
239 #define SLP_TREE_CHILDREN(S) (S)->children
240 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
241 #define SLP_TREE_SCALAR_OPS(S) (S)->ops
242 #define SLP_TREE_REF_COUNT(S) (S)->refcnt
243 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
244 #define SLP_TREE_VEC_DEFS(S) (S)->vec_defs
245 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
246 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
247 #define SLP_TREE_LANE_PERMUTATION(S) (S)->lane_permutation
248 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
249 #define SLP_TREE_VECTYPE(S) (S)->vectype
250 #define SLP_TREE_REPRESENTATIVE(S) (S)->representative
251 #define SLP_TREE_LANES(S) (S)->lanes
252 #define SLP_TREE_CODE(S) (S)->code
254 /* Key for map that records association between
255 scalar conditions and corresponding loop mask, and
256 is populated by vect_record_loop_mask. */
258 struct scalar_cond_masked_key
260 scalar_cond_masked_key (tree t, unsigned ncopies_)
261 : ncopies (ncopies_)
263 get_cond_ops_from_tree (t);
266 void get_cond_ops_from_tree (tree);
268 unsigned ncopies;
269 tree_code code;
270 tree op0;
271 tree op1;
274 template<>
275 struct default_hash_traits<scalar_cond_masked_key>
277 typedef scalar_cond_masked_key compare_type;
278 typedef scalar_cond_masked_key value_type;
280 static inline hashval_t
281 hash (value_type v)
283 inchash::hash h;
284 h.add_int (v.code);
285 inchash::add_expr (v.op0, h, 0);
286 inchash::add_expr (v.op1, h, 0);
287 h.add_int (v.ncopies);
288 return h.end ();
291 static inline bool
292 equal (value_type existing, value_type candidate)
294 return (existing.ncopies == candidate.ncopies
295 && existing.code == candidate.code
296 && operand_equal_p (existing.op0, candidate.op0, 0)
297 && operand_equal_p (existing.op1, candidate.op1, 0));
300 static const bool empty_zero_p = true;
302 static inline void
303 mark_empty (value_type &v)
305 v.ncopies = 0;
308 static inline bool
309 is_empty (value_type v)
311 return v.ncopies == 0;
314 static inline void mark_deleted (value_type &) {}
316 static inline bool is_deleted (const value_type &)
318 return false;
321 static inline void remove (value_type &) {}
324 typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
326 /* Describes two objects whose addresses must be unequal for the vectorized
327 loop to be valid. */
328 typedef std::pair<tree, tree> vec_object_pair;
330 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
331 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
332 class vec_lower_bound {
333 public:
334 vec_lower_bound () {}
335 vec_lower_bound (tree e, bool u, poly_uint64 m)
336 : expr (e), unsigned_p (u), min_value (m) {}
338 tree expr;
339 bool unsigned_p;
340 poly_uint64 min_value;
343 /* Vectorizer state shared between different analyses like vector sizes
344 of the same CFG region. */
345 class vec_info_shared {
346 public:
347 vec_info_shared();
348 ~vec_info_shared();
350 void save_datarefs();
351 void check_datarefs();
353 /* The number of scalar stmts. */
354 unsigned n_stmts;
356 /* All data references. Freed by free_data_refs, so not an auto_vec. */
357 vec<data_reference_p> datarefs;
358 vec<data_reference> datarefs_copy;
360 /* The loop nest in which the data dependences are computed. */
361 auto_vec<loop_p> loop_nest;
363 /* All data dependences. Freed by free_dependence_relations, so not
364 an auto_vec. */
365 vec<ddr_p> ddrs;
368 /* Vectorizer state common between loop and basic-block vectorization. */
369 class vec_info {
370 public:
371 typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
372 enum vec_kind { bb, loop };
374 vec_info (vec_kind, vec_info_shared *);
375 ~vec_info ();
377 stmt_vec_info add_stmt (gimple *);
378 stmt_vec_info add_pattern_stmt (gimple *, stmt_vec_info);
379 stmt_vec_info lookup_stmt (gimple *);
380 stmt_vec_info lookup_def (tree);
381 stmt_vec_info lookup_single_use (tree);
382 class dr_vec_info *lookup_dr (data_reference *);
383 void move_dr (stmt_vec_info, stmt_vec_info);
384 void remove_stmt (stmt_vec_info);
385 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
386 void insert_on_entry (stmt_vec_info, gimple *);
387 void insert_seq_on_entry (stmt_vec_info, gimple_seq);
389 /* The type of vectorization. */
390 vec_kind kind;
392 /* Shared vectorizer state. */
393 vec_info_shared *shared;
395 /* The mapping of GIMPLE UID to stmt_vec_info. */
396 vec<stmt_vec_info> stmt_vec_infos;
397 /* Whether the above mapping is complete. */
398 bool stmt_vec_info_ro;
400 /* The SLP graph. */
401 auto_vec<slp_instance> slp_instances;
403 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
404 known alignment for that base. */
405 vec_base_alignments base_alignments;
407 /* All interleaving chains of stores, represented by the first
408 stmt in the chain. */
409 auto_vec<stmt_vec_info> grouped_stores;
411 /* Cost data used by the target cost model. */
412 class vector_costs *target_cost_data;
414 /* The set of vector modes used in the vectorized region. */
415 mode_set used_vector_modes;
417 /* The argument we should pass to related_vector_mode when looking up
418 the vector mode for a scalar mode, or VOIDmode if we haven't yet
419 made any decisions about which vector modes to use. */
420 machine_mode vector_mode;
422 private:
423 stmt_vec_info new_stmt_vec_info (gimple *stmt);
424 void set_vinfo_for_stmt (gimple *, stmt_vec_info, bool = true);
425 void free_stmt_vec_infos ();
426 void free_stmt_vec_info (stmt_vec_info);
429 class _loop_vec_info;
430 class _bb_vec_info;
432 template<>
433 template<>
434 inline bool
435 is_a_helper <_loop_vec_info *>::test (vec_info *i)
437 return i->kind == vec_info::loop;
440 template<>
441 template<>
442 inline bool
443 is_a_helper <_bb_vec_info *>::test (vec_info *i)
445 return i->kind == vec_info::bb;
448 /* In general, we can divide the vector statements in a vectorized loop
449 into related groups ("rgroups") and say that for each rgroup there is
450 some nS such that the rgroup operates on nS values from one scalar
451 iteration followed by nS values from the next. That is, if VF is the
452 vectorization factor of the loop, the rgroup operates on a sequence:
454 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
456 where (i,j) represents a scalar value with index j in a scalar
457 iteration with index i.
459 [ We use the term "rgroup" to emphasise that this grouping isn't
460 necessarily the same as the grouping of statements used elsewhere.
461 For example, if we implement a group of scalar loads using gather
462 loads, we'll use a separate gather load for each scalar load, and
463 thus each gather load will belong to its own rgroup. ]
465 In general this sequence will occupy nV vectors concatenated
466 together. If these vectors have nL lanes each, the total number
467 of scalar values N is given by:
469 N = nS * VF = nV * nL
471 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
472 are compile-time constants but VF and nL can be variable (if the target
473 supports variable-length vectors).
475 In classical vectorization, each iteration of the vector loop would
476 handle exactly VF iterations of the original scalar loop. However,
477 in vector loops that are able to operate on partial vectors, a
478 particular iteration of the vector loop might handle fewer than VF
479 iterations of the scalar loop. The vector lanes that correspond to
480 iterations of the scalar loop are said to be "active" and the other
481 lanes are said to be "inactive".
483 In such vector loops, many rgroups need to be controlled to ensure
484 that they have no effect for the inactive lanes. Conceptually, each
485 such rgroup needs a sequence of booleans in the same order as above,
486 but with each (i,j) replaced by a boolean that indicates whether
487 iteration i is active. This sequence occupies nV vector controls
488 that again have nL lanes each. Thus the control sequence as a whole
489 consists of VF independent booleans that are each repeated nS times.
491 Taking mask-based approach as a partially-populated vectors example.
492 We make the simplifying assumption that if a sequence of nV masks is
493 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
494 VIEW_CONVERTing it. This holds for all current targets that support
495 fully-masked loops. For example, suppose the scalar loop is:
497 float *f;
498 double *d;
499 for (int i = 0; i < n; ++i)
501 f[i * 2 + 0] += 1.0f;
502 f[i * 2 + 1] += 2.0f;
503 d[i] += 3.0;
506 and suppose that vectors have 256 bits. The vectorized f accesses
507 will belong to one rgroup and the vectorized d access to another:
509 f rgroup: nS = 2, nV = 1, nL = 8
510 d rgroup: nS = 1, nV = 1, nL = 4
511 VF = 4
513 [ In this simple example the rgroups do correspond to the normal
514 SLP grouping scheme. ]
516 If only the first three lanes are active, the masks we need are:
518 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
519 d rgroup: 1 | 1 | 1 | 0
521 Here we can use a mask calculated for f's rgroup for d's, but not
522 vice versa.
524 Thus for each value of nV, it is enough to provide nV masks, with the
525 mask being calculated based on the highest nL (or, equivalently, based
526 on the highest nS) required by any rgroup with that nV. We therefore
527 represent the entire collection of masks as a two-level table, with the
528 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
529 the second being indexed by the mask index 0 <= i < nV. */
531 /* The controls (like masks or lengths) needed by rgroups with nV vectors,
532 according to the description above. */
533 struct rgroup_controls {
534 /* The largest nS for all rgroups that use these controls. */
535 unsigned int max_nscalars_per_iter;
537 /* For the largest nS recorded above, the loop controls divide each scalar
538 into FACTOR equal-sized pieces. This is useful if we need to split
539 element-based accesses into byte-based accesses. */
540 unsigned int factor;
542 /* This is a vector type with MAX_NSCALARS_PER_ITER * VF / nV elements.
543 For mask-based controls, it is the type of the masks in CONTROLS.
544 For length-based controls, it can be any vector type that has the
545 specified number of elements; the type of the elements doesn't matter. */
546 tree type;
548 /* A vector of nV controls, in iteration order. */
549 vec<tree> controls;
552 typedef auto_vec<rgroup_controls> vec_loop_masks;
554 typedef auto_vec<rgroup_controls> vec_loop_lens;
556 typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
558 /* Information about a reduction accumulator from the main loop that could
559 conceivably be reused as the input to a reduction in an epilogue loop. */
560 struct vect_reusable_accumulator {
561 /* The final value of the accumulator, which forms the input to the
562 reduction operation. */
563 tree reduc_input;
565 /* The stmt_vec_info that describes the reduction (i.e. the one for
566 which is_reduc_info is true). */
567 stmt_vec_info reduc_info;
570 /*-----------------------------------------------------------------*/
571 /* Info on vectorized loops. */
572 /*-----------------------------------------------------------------*/
573 typedef class _loop_vec_info : public vec_info {
574 public:
575 _loop_vec_info (class loop *, vec_info_shared *);
576 ~_loop_vec_info ();
578 /* The loop to which this info struct refers to. */
579 class loop *loop;
581 /* The loop basic blocks. */
582 basic_block *bbs;
584 /* Number of latch executions. */
585 tree num_itersm1;
586 /* Number of iterations. */
587 tree num_iters;
588 /* Number of iterations of the original loop. */
589 tree num_iters_unchanged;
590 /* Condition under which this loop is analyzed and versioned. */
591 tree num_iters_assumptions;
593 /* Threshold of number of iterations below which vectorization will not be
594 performed. It is calculated from MIN_PROFITABLE_ITERS and
595 param_min_vect_loop_bound. */
596 unsigned int th;
598 /* When applying loop versioning, the vector form should only be used
599 if the number of scalar iterations is >= this value, on top of all
600 the other requirements. Ignored when loop versioning is not being
601 used. */
602 poly_uint64 versioning_threshold;
604 /* Unrolling factor */
605 poly_uint64 vectorization_factor;
607 /* If this loop is an epilogue loop whose main loop can be skipped,
608 MAIN_LOOP_EDGE is the edge from the main loop to this loop's
609 preheader. SKIP_MAIN_LOOP_EDGE is then the edge that skips the
610 main loop and goes straight to this loop's preheader.
612 Both fields are null otherwise. */
613 edge main_loop_edge;
614 edge skip_main_loop_edge;
616 /* If this loop is an epilogue loop that might be skipped after executing
617 the main loop, this edge is the one that skips the epilogue. */
618 edge skip_this_loop_edge;
620 /* The vectorized form of a standard reduction replaces the original
621 scalar code's final result (a loop-closed SSA PHI) with the result
622 of a vector-to-scalar reduction operation. After vectorization,
623 this variable maps these vector-to-scalar results to information
624 about the reductions that generated them. */
625 hash_map<tree, vect_reusable_accumulator> reusable_accumulators;
627 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
628 if there is no particular limit. */
629 unsigned HOST_WIDE_INT max_vectorization_factor;
631 /* The masks that a fully-masked loop should use to avoid operating
632 on inactive scalars. */
633 vec_loop_masks masks;
635 /* The lengths that a loop with length should use to avoid operating
636 on inactive scalars. */
637 vec_loop_lens lens;
639 /* Set of scalar conditions that have loop mask applied. */
640 scalar_cond_masked_set_type scalar_cond_masked_set;
642 /* If we are using a loop mask to align memory addresses, this variable
643 contains the number of vector elements that we should skip in the
644 first iteration of the vector loop (i.e. the number of leading
645 elements that should be false in the first mask). */
646 tree mask_skip_niters;
648 /* The type that the loop control IV should be converted to before
649 testing which of the VF scalars are active and inactive.
650 Only meaningful if LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
651 tree rgroup_compare_type;
653 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
654 the loop should not be vectorized, if constant non-zero, simd_if_cond
655 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
656 should be versioned on that condition, using scalar loop if the condition
657 is false and vectorized loop otherwise. */
658 tree simd_if_cond;
660 /* The type that the vector loop control IV should have when
661 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
662 tree rgroup_iv_type;
664 /* Unknown DRs according to which loop was peeled. */
665 class dr_vec_info *unaligned_dr;
667 /* peeling_for_alignment indicates whether peeling for alignment will take
668 place, and what the peeling factor should be:
669 peeling_for_alignment = X means:
670 If X=0: Peeling for alignment will not be applied.
671 If X>0: Peel first X iterations.
672 If X=-1: Generate a runtime test to calculate the number of iterations
673 to be peeled, using the dataref recorded in the field
674 unaligned_dr. */
675 int peeling_for_alignment;
677 /* The mask used to check the alignment of pointers or arrays. */
678 int ptr_mask;
680 /* Data Dependence Relations defining address ranges that are candidates
681 for a run-time aliasing check. */
682 auto_vec<ddr_p> may_alias_ddrs;
684 /* Data Dependence Relations defining address ranges together with segment
685 lengths from which the run-time aliasing check is built. */
686 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
688 /* Check that the addresses of each pair of objects is unequal. */
689 auto_vec<vec_object_pair> check_unequal_addrs;
691 /* List of values that are required to be nonzero. This is used to check
692 whether things like "x[i * n] += 1;" are safe and eventually gets added
693 to the checks for lower bounds below. */
694 auto_vec<tree> check_nonzero;
696 /* List of values that need to be checked for a minimum value. */
697 auto_vec<vec_lower_bound> lower_bounds;
699 /* Statements in the loop that have data references that are candidates for a
700 runtime (loop versioning) misalignment check. */
701 auto_vec<stmt_vec_info> may_misalign_stmts;
703 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
704 auto_vec<stmt_vec_info> reductions;
706 /* All reduction chains in the loop, represented by the first
707 stmt in the chain. */
708 auto_vec<stmt_vec_info> reduction_chains;
710 /* Cost vector for a single scalar iteration. */
711 auto_vec<stmt_info_for_cost> scalar_cost_vec;
713 /* Map of IV base/step expressions to inserted name in the preheader. */
714 hash_map<tree_operand_hash, tree> *ivexpr_map;
716 /* Map of OpenMP "omp simd array" scan variables to corresponding
717 rhs of the store of the initializer. */
718 hash_map<tree, tree> *scan_map;
720 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
721 applied to the loop, i.e., no unrolling is needed, this is 1. */
722 poly_uint64 slp_unrolling_factor;
724 /* Cost of a single scalar iteration. */
725 int single_scalar_iteration_cost;
727 /* The cost of the vector prologue and epilogue, including peeled
728 iterations and set-up code. */
729 int vec_outside_cost;
731 /* The cost of the vector loop body. */
732 int vec_inside_cost;
734 /* The factor used to over weight those statements in an inner loop
735 relative to the loop being vectorized. */
736 unsigned int inner_loop_cost_factor;
738 /* Is the loop vectorizable? */
739 bool vectorizable;
741 /* Records whether we still have the option of vectorizing this loop
742 using partially-populated vectors; in other words, whether it is
743 still possible for one iteration of the vector loop to handle
744 fewer than VF scalars. */
745 bool can_use_partial_vectors_p;
747 /* True if we've decided to use partially-populated vectors, so that
748 the vector loop can handle fewer than VF scalars. */
749 bool using_partial_vectors_p;
751 /* True if we've decided to use partially-populated vectors for the
752 epilogue of loop. */
753 bool epil_using_partial_vectors_p;
755 /* When we have grouped data accesses with gaps, we may introduce invalid
756 memory accesses. We peel the last iteration of the loop to prevent
757 this. */
758 bool peeling_for_gaps;
760 /* When the number of iterations is not a multiple of the vector size
761 we need to peel off iterations at the end to form an epilogue loop. */
762 bool peeling_for_niter;
764 /* True if there are no loop carried data dependencies in the loop.
765 If loop->safelen <= 1, then this is always true, either the loop
766 didn't have any loop carried data dependencies, or the loop is being
767 vectorized guarded with some runtime alias checks, or couldn't
768 be vectorized at all, but then this field shouldn't be used.
769 For loop->safelen >= 2, the user has asserted that there are no
770 backward dependencies, but there still could be loop carried forward
771 dependencies in such loops. This flag will be false if normal
772 vectorizer data dependency analysis would fail or require versioning
773 for alias, but because of loop->safelen >= 2 it has been vectorized
774 even without versioning for alias. E.g. in:
775 #pragma omp simd
776 for (int i = 0; i < m; i++)
777 a[i] = a[i + k] * c;
778 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
779 DTRT even for k > 0 && k < m, but without safelen we would not
780 vectorize this, so this field would be false. */
781 bool no_data_dependencies;
783 /* Mark loops having masked stores. */
784 bool has_mask_store;
786 /* Queued scaling factor for the scalar loop. */
787 profile_probability scalar_loop_scaling;
789 /* If if-conversion versioned this loop before conversion, this is the
790 loop version without if-conversion. */
791 class loop *scalar_loop;
793 /* For loops being epilogues of already vectorized loops
794 this points to the original vectorized loop. Otherwise NULL. */
795 _loop_vec_info *orig_loop_info;
797 /* Used to store loop_vec_infos of epilogues of this loop during
798 analysis. */
799 vec<_loop_vec_info *> epilogue_vinfos;
801 } *loop_vec_info;
803 /* Access Functions. */
804 #define LOOP_VINFO_LOOP(L) (L)->loop
805 #define LOOP_VINFO_BBS(L) (L)->bbs
806 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
807 #define LOOP_VINFO_NITERS(L) (L)->num_iters
808 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
809 prologue peeling retain total unchanged scalar loop iterations for
810 cost model. */
811 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
812 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
813 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
814 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
815 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
816 #define LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P(L) (L)->can_use_partial_vectors_p
817 #define LOOP_VINFO_USING_PARTIAL_VECTORS_P(L) (L)->using_partial_vectors_p
818 #define LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P(L) \
819 (L)->epil_using_partial_vectors_p
820 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
821 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
822 #define LOOP_VINFO_MASKS(L) (L)->masks
823 #define LOOP_VINFO_LENS(L) (L)->lens
824 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
825 #define LOOP_VINFO_RGROUP_COMPARE_TYPE(L) (L)->rgroup_compare_type
826 #define LOOP_VINFO_RGROUP_IV_TYPE(L) (L)->rgroup_iv_type
827 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
828 #define LOOP_VINFO_N_STMTS(L) (L)->shared->n_stmts
829 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
830 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
831 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
832 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
833 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
834 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
835 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
836 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
837 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
838 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
839 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
840 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
841 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
842 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
843 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
844 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
845 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
846 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
847 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
848 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
849 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
850 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
851 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
852 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
853 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
854 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
855 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
856 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
857 #define LOOP_VINFO_INNER_LOOP_COST_FACTOR(L) (L)->inner_loop_cost_factor
859 #define LOOP_VINFO_FULLY_MASKED_P(L) \
860 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
861 && !LOOP_VINFO_MASKS (L).is_empty ())
863 #define LOOP_VINFO_FULLY_WITH_LENGTH_P(L) \
864 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
865 && !LOOP_VINFO_LENS (L).is_empty ())
867 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
868 ((L)->may_misalign_stmts.length () > 0)
869 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
870 ((L)->comp_alias_ddrs.length () > 0 \
871 || (L)->check_unequal_addrs.length () > 0 \
872 || (L)->lower_bounds.length () > 0)
873 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
874 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
875 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
876 (LOOP_VINFO_SIMD_IF_COND (L))
877 #define LOOP_REQUIRES_VERSIONING(L) \
878 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
879 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
880 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
881 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
883 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
884 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
886 #define LOOP_VINFO_EPILOGUE_P(L) \
887 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
889 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
890 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
892 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
893 value signifies success, and a NULL value signifies failure, supporting
894 propagating an opt_problem * describing the failure back up the call
895 stack. */
896 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
898 static inline loop_vec_info
899 loop_vec_info_for_loop (class loop *loop)
901 return (loop_vec_info) loop->aux;
904 struct slp_root
906 slp_root (slp_instance_kind kind_, vec<stmt_vec_info> stmts_,
907 vec<stmt_vec_info> roots_)
908 : kind(kind_), stmts(stmts_), roots(roots_) {}
909 slp_instance_kind kind;
910 vec<stmt_vec_info> stmts;
911 vec<stmt_vec_info> roots;
914 typedef class _bb_vec_info : public vec_info
916 public:
917 _bb_vec_info (vec<basic_block> bbs, vec_info_shared *);
918 ~_bb_vec_info ();
920 /* The region we are operating on. bbs[0] is the entry, excluding
921 its PHI nodes. In the future we might want to track an explicit
922 entry edge to cover bbs[0] PHI nodes and have a region entry
923 insert location. */
924 vec<basic_block> bbs;
926 vec<slp_root> roots;
927 } *bb_vec_info;
929 #define BB_VINFO_BB(B) (B)->bb
930 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
931 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
932 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
933 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
935 /*-----------------------------------------------------------------*/
936 /* Info on vectorized defs. */
937 /*-----------------------------------------------------------------*/
938 enum stmt_vec_info_type {
939 undef_vec_info_type = 0,
940 load_vec_info_type,
941 store_vec_info_type,
942 shift_vec_info_type,
943 op_vec_info_type,
944 call_vec_info_type,
945 call_simd_clone_vec_info_type,
946 assignment_vec_info_type,
947 condition_vec_info_type,
948 comparison_vec_info_type,
949 reduc_vec_info_type,
950 induc_vec_info_type,
951 type_promotion_vec_info_type,
952 type_demotion_vec_info_type,
953 type_conversion_vec_info_type,
954 cycle_phi_info_type,
955 lc_phi_info_type,
956 phi_info_type,
957 loop_exit_ctrl_vec_info_type
960 /* Indicates whether/how a variable is used in the scope of loop/basic
961 block. */
962 enum vect_relevant {
963 vect_unused_in_scope = 0,
965 /* The def is only used outside the loop. */
966 vect_used_only_live,
967 /* The def is in the inner loop, and the use is in the outer loop, and the
968 use is a reduction stmt. */
969 vect_used_in_outer_by_reduction,
970 /* The def is in the inner loop, and the use is in the outer loop (and is
971 not part of reduction). */
972 vect_used_in_outer,
974 /* defs that feed computations that end up (only) in a reduction. These
975 defs may be used by non-reduction stmts, but eventually, any
976 computations/values that are affected by these defs are used to compute
977 a reduction (i.e. don't get stored to memory, for example). We use this
978 to identify computations that we can change the order in which they are
979 computed. */
980 vect_used_by_reduction,
982 vect_used_in_scope
985 /* The type of vectorization that can be applied to the stmt: regular loop-based
986 vectorization; pure SLP - the stmt is a part of SLP instances and does not
987 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
988 a part of SLP instance and also must be loop-based vectorized, since it has
989 uses outside SLP sequences.
991 In the loop context the meanings of pure and hybrid SLP are slightly
992 different. By saying that pure SLP is applied to the loop, we mean that we
993 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
994 vectorized without doing any conceptual unrolling, cause we don't pack
995 together stmts from different iterations, only within a single iteration.
996 Loop hybrid SLP means that we exploit both intra-iteration and
997 inter-iteration parallelism (e.g., number of elements in the vector is 4
998 and the slp-group-size is 2, in which case we don't have enough parallelism
999 within an iteration, so we obtain the rest of the parallelism from subsequent
1000 iterations by unrolling the loop by 2). */
1001 enum slp_vect_type {
1002 loop_vect = 0,
1003 pure_slp,
1004 hybrid
1007 /* Says whether a statement is a load, a store of a vectorized statement
1008 result, or a store of an invariant value. */
1009 enum vec_load_store_type {
1010 VLS_LOAD,
1011 VLS_STORE,
1012 VLS_STORE_INVARIANT
1015 /* Describes how we're going to vectorize an individual load or store,
1016 or a group of loads or stores. */
1017 enum vect_memory_access_type {
1018 /* An access to an invariant address. This is used only for loads. */
1019 VMAT_INVARIANT,
1021 /* A simple contiguous access. */
1022 VMAT_CONTIGUOUS,
1024 /* A contiguous access that goes down in memory rather than up,
1025 with no additional permutation. This is used only for stores
1026 of invariants. */
1027 VMAT_CONTIGUOUS_DOWN,
1029 /* A simple contiguous access in which the elements need to be permuted
1030 after loading or before storing. Only used for loop vectorization;
1031 SLP uses separate permutes. */
1032 VMAT_CONTIGUOUS_PERMUTE,
1034 /* A simple contiguous access in which the elements need to be reversed
1035 after loading or before storing. */
1036 VMAT_CONTIGUOUS_REVERSE,
1038 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
1039 VMAT_LOAD_STORE_LANES,
1041 /* An access in which each scalar element is loaded or stored
1042 individually. */
1043 VMAT_ELEMENTWISE,
1045 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
1046 SLP accesses. Each unrolled iteration uses a contiguous load
1047 or store for the whole group, but the groups from separate iterations
1048 are combined in the same way as for VMAT_ELEMENTWISE. */
1049 VMAT_STRIDED_SLP,
1051 /* The access uses gather loads or scatter stores. */
1052 VMAT_GATHER_SCATTER
1055 class dr_vec_info {
1056 public:
1057 /* The data reference itself. */
1058 data_reference *dr;
1059 /* The statement that contains the data reference. */
1060 stmt_vec_info stmt;
1061 /* The analysis group this DR belongs to when doing BB vectorization.
1062 DRs of the same group belong to the same conditional execution context. */
1063 unsigned group;
1064 /* The misalignment in bytes of the reference, or -1 if not known. */
1065 int misalignment;
1066 /* The byte alignment that we'd ideally like the reference to have,
1067 and the value that misalignment is measured against. */
1068 poly_uint64 target_alignment;
1069 /* If true the alignment of base_decl needs to be increased. */
1070 bool base_misaligned;
1071 tree base_decl;
1073 /* Stores current vectorized loop's offset. To be added to the DR's
1074 offset to calculate current offset of data reference. */
1075 tree offset;
1078 typedef struct data_reference *dr_p;
1080 class _stmt_vec_info {
1081 public:
1083 enum stmt_vec_info_type type;
1085 /* Indicates whether this stmts is part of a computation whose result is
1086 used outside the loop. */
1087 bool live;
1089 /* Stmt is part of some pattern (computation idiom) */
1090 bool in_pattern_p;
1092 /* True if the statement was created during pattern recognition as
1093 part of the replacement for RELATED_STMT. This implies that the
1094 statement isn't part of any basic block, although for convenience
1095 its gimple_bb is the same as for RELATED_STMT. */
1096 bool pattern_stmt_p;
1098 /* Is this statement vectorizable or should it be skipped in (partial)
1099 vectorization. */
1100 bool vectorizable;
1102 /* The stmt to which this info struct refers to. */
1103 gimple *stmt;
1105 /* The vector type to be used for the LHS of this statement. */
1106 tree vectype;
1108 /* The vectorized stmts. */
1109 vec<gimple *> vec_stmts;
1111 /* The following is relevant only for stmts that contain a non-scalar
1112 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
1113 at most one such data-ref. */
1115 dr_vec_info dr_aux;
1117 /* Information about the data-ref relative to this loop
1118 nest (the loop that is being considered for vectorization). */
1119 innermost_loop_behavior dr_wrt_vec_loop;
1121 /* For loop PHI nodes, the base and evolution part of it. This makes sure
1122 this information is still available in vect_update_ivs_after_vectorizer
1123 where we may not be able to re-analyze the PHI nodes evolution as
1124 peeling for the prologue loop can make it unanalyzable. The evolution
1125 part is still correct after peeling, but the base may have changed from
1126 the version here. */
1127 tree loop_phi_evolution_base_unchanged;
1128 tree loop_phi_evolution_part;
1130 /* Used for various bookkeeping purposes, generally holding a pointer to
1131 some other stmt S that is in some way "related" to this stmt.
1132 Current use of this field is:
1133 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
1134 true): S is the "pattern stmt" that represents (and replaces) the
1135 sequence of stmts that constitutes the pattern. Similarly, the
1136 related_stmt of the "pattern stmt" points back to this stmt (which is
1137 the last stmt in the original sequence of stmts that constitutes the
1138 pattern). */
1139 stmt_vec_info related_stmt;
1141 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
1142 The sequence is attached to the original statement rather than the
1143 pattern statement. */
1144 gimple_seq pattern_def_seq;
1146 /* Selected SIMD clone's function info. First vector element
1147 is SIMD clone's function decl, followed by a pair of trees (base + step)
1148 for linear arguments (pair of NULLs for other arguments). */
1149 vec<tree> simd_clone_info;
1151 /* Classify the def of this stmt. */
1152 enum vect_def_type def_type;
1154 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1155 enum slp_vect_type slp_type;
1157 /* Interleaving and reduction chains info. */
1158 /* First element in the group. */
1159 stmt_vec_info first_element;
1160 /* Pointer to the next element in the group. */
1161 stmt_vec_info next_element;
1162 /* The size of the group. */
1163 unsigned int size;
1164 /* For stores, number of stores from this group seen. We vectorize the last
1165 one. */
1166 unsigned int store_count;
1167 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1168 is 1. */
1169 unsigned int gap;
1171 /* The minimum negative dependence distance this stmt participates in
1172 or zero if none. */
1173 unsigned int min_neg_dist;
1175 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1176 of the loop induction variable and computation of array indexes. relevant
1177 indicates whether the stmt needs to be vectorized. */
1178 enum vect_relevant relevant;
1180 /* For loads if this is a gather, for stores if this is a scatter. */
1181 bool gather_scatter_p;
1183 /* True if this is an access with loop-invariant stride. */
1184 bool strided_p;
1186 /* For both loads and stores. */
1187 unsigned simd_lane_access_p : 3;
1189 /* Classifies how the load or store is going to be implemented
1190 for loop vectorization. */
1191 vect_memory_access_type memory_access_type;
1193 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1194 tree induc_cond_initial_val;
1196 /* If not NULL the value to be added to compute final reduction value. */
1197 tree reduc_epilogue_adjustment;
1199 /* On a reduction PHI the reduction type as detected by
1200 vect_is_simple_reduction and vectorizable_reduction. */
1201 enum vect_reduction_type reduc_type;
1203 /* The original reduction code, to be used in the epilogue. */
1204 enum tree_code reduc_code;
1205 /* An internal function we should use in the epilogue. */
1206 internal_fn reduc_fn;
1208 /* On a stmt participating in the reduction the index of the operand
1209 on the reduction SSA cycle. */
1210 int reduc_idx;
1212 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1213 On the def returned by vect_force_simple_reduction the
1214 corresponding PHI. */
1215 stmt_vec_info reduc_def;
1217 /* The vector input type relevant for reduction vectorization. */
1218 tree reduc_vectype_in;
1220 /* The vector type for performing the actual reduction. */
1221 tree reduc_vectype;
1223 /* If IS_REDUC_INFO is true and if the vector code is performing
1224 N scalar reductions in parallel, this variable gives the initial
1225 scalar values of those N reductions. */
1226 vec<tree> reduc_initial_values;
1228 /* If IS_REDUC_INFO is true and if the vector code is performing
1229 N scalar reductions in parallel, this variable gives the vectorized code's
1230 final (scalar) result for each of those N reductions. In other words,
1231 REDUC_SCALAR_RESULTS[I] replaces the original scalar code's loop-closed
1232 SSA PHI for reduction number I. */
1233 vec<tree> reduc_scalar_results;
1235 /* Only meaningful if IS_REDUC_INFO. If non-null, the reduction is
1236 being performed by an epilogue loop and we have decided to reuse
1237 this accumulator from the main loop. */
1238 vect_reusable_accumulator *reused_accumulator;
1240 /* Whether we force a single cycle PHI during reduction vectorization. */
1241 bool force_single_cycle;
1243 /* Whether on this stmt reduction meta is recorded. */
1244 bool is_reduc_info;
1246 /* If nonzero, the lhs of the statement could be truncated to this
1247 many bits without affecting any users of the result. */
1248 unsigned int min_output_precision;
1250 /* If nonzero, all non-boolean input operands have the same precision,
1251 and they could each be truncated to this many bits without changing
1252 the result. */
1253 unsigned int min_input_precision;
1255 /* If OPERATION_BITS is nonzero, the statement could be performed on
1256 an integer with the sign and number of bits given by OPERATION_SIGN
1257 and OPERATION_BITS without changing the result. */
1258 unsigned int operation_precision;
1259 signop operation_sign;
1261 /* If the statement produces a boolean result, this value describes
1262 how we should choose the associated vector type. The possible
1263 values are:
1265 - an integer precision N if we should use the vector mask type
1266 associated with N-bit integers. This is only used if all relevant
1267 input booleans also want the vector mask type for N-bit integers,
1268 or if we can convert them into that form by pattern-matching.
1270 - ~0U if we considered choosing a vector mask type but decided
1271 to treat the boolean as a normal integer type instead.
1273 - 0 otherwise. This means either that the operation isn't one that
1274 could have a vector mask type (and so should have a normal vector
1275 type instead) or that we simply haven't made a choice either way. */
1276 unsigned int mask_precision;
1278 /* True if this is only suitable for SLP vectorization. */
1279 bool slp_vect_only_p;
1281 /* True if this is a pattern that can only be handled by SLP
1282 vectorization. */
1283 bool slp_vect_pattern_only_p;
1286 /* Information about a gather/scatter call. */
1287 struct gather_scatter_info {
1288 /* The internal function to use for the gather/scatter operation,
1289 or IFN_LAST if a built-in function should be used instead. */
1290 internal_fn ifn;
1292 /* The FUNCTION_DECL for the built-in gather/scatter function,
1293 or null if an internal function should be used instead. */
1294 tree decl;
1296 /* The loop-invariant base value. */
1297 tree base;
1299 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1300 tree offset;
1302 /* Each offset element should be multiplied by this amount before
1303 being added to the base. */
1304 int scale;
1306 /* The definition type for the vectorized offset. */
1307 enum vect_def_type offset_dt;
1309 /* The type of the vectorized offset. */
1310 tree offset_vectype;
1312 /* The type of the scalar elements after loading or before storing. */
1313 tree element_type;
1315 /* The type of the scalar elements being loaded or stored. */
1316 tree memory_type;
1319 /* Access Functions. */
1320 #define STMT_VINFO_TYPE(S) (S)->type
1321 #define STMT_VINFO_STMT(S) (S)->stmt
1322 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1323 #define STMT_VINFO_LIVE_P(S) (S)->live
1324 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1325 #define STMT_VINFO_VEC_STMTS(S) (S)->vec_stmts
1326 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1327 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1328 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1329 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1330 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1331 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1332 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1333 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1334 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1335 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1337 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1338 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1339 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1340 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1341 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1342 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1343 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1344 (S)->dr_wrt_vec_loop.base_misalignment
1345 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1346 (S)->dr_wrt_vec_loop.offset_alignment
1347 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1348 (S)->dr_wrt_vec_loop.step_alignment
1350 #define STMT_VINFO_DR_INFO(S) \
1351 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1353 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1354 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1355 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1356 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1357 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1358 #define STMT_VINFO_GROUPED_ACCESS(S) \
1359 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1360 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1361 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1362 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1363 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1364 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1365 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1366 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1367 #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1368 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1369 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1370 #define STMT_VINFO_SLP_VECT_ONLY_PATTERN(S) (S)->slp_vect_pattern_only_p
1372 #define DR_GROUP_FIRST_ELEMENT(S) \
1373 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1374 #define DR_GROUP_NEXT_ELEMENT(S) \
1375 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1376 #define DR_GROUP_SIZE(S) \
1377 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1378 #define DR_GROUP_STORE_COUNT(S) \
1379 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1380 #define DR_GROUP_GAP(S) \
1381 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1383 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1384 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1385 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1386 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1387 #define REDUC_GROUP_SIZE(S) \
1388 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1390 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1392 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1393 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1394 #define STMT_SLP_TYPE(S) (S)->slp_type
1396 /* Contains the scalar or vector costs for a vec_info. */
1397 class vector_costs
1399 public:
1400 vector_costs (vec_info *, bool);
1401 virtual ~vector_costs () {}
1403 /* Update the costs in response to adding COUNT copies of a statement.
1405 - WHERE specifies whether the cost occurs in the loop prologue,
1406 the loop body, or the loop epilogue.
1407 - KIND is the kind of statement, which is always meaningful.
1408 - STMT_INFO, if nonnull, describes the statement that will be
1409 vectorized.
1410 - VECTYPE, if nonnull, is the vector type that the vectorized
1411 statement will operate on. Note that this should be used in
1412 preference to STMT_VINFO_VECTYPE (STMT_INFO) since the latter
1413 is not correct for SLP.
1414 - for unaligned_load and unaligned_store statements, MISALIGN is
1415 the byte misalignment of the load or store relative to the target's
1416 preferred alignment for VECTYPE, or DR_MISALIGNMENT_UNKNOWN
1417 if the misalignment is not known.
1419 Return the calculated cost as well as recording it. The return
1420 value is used for dumping purposes. */
1421 virtual unsigned int add_stmt_cost (int count, vect_cost_for_stmt kind,
1422 stmt_vec_info stmt_info, tree vectype,
1423 int misalign,
1424 vect_cost_model_location where);
1426 /* Finish calculating the cost of the code. The results can be
1427 read back using the functions below. */
1428 virtual void finish_cost ();
1430 unsigned int prologue_cost () const;
1431 unsigned int body_cost () const;
1432 unsigned int epilogue_cost () const;
1434 protected:
1435 unsigned int record_stmt_cost (stmt_vec_info, vect_cost_model_location,
1436 unsigned int);
1437 unsigned int adjust_cost_for_freq (stmt_vec_info, vect_cost_model_location,
1438 unsigned int);
1440 /* The region of code that we're considering vectorizing. */
1441 vec_info *m_vinfo;
1443 /* True if we're costing the scalar code, false if we're costing
1444 the vector code. */
1445 bool m_costing_for_scalar;
1447 /* The costs of the three regions, indexed by vect_cost_model_location. */
1448 unsigned int m_costs[3];
1450 /* True if finish_cost has been called. */
1451 bool m_finished;
1454 /* Create costs for VINFO. COSTING_FOR_SCALAR is true if the costs
1455 are for scalar code, false if they are for vector code. */
1457 inline
1458 vector_costs::vector_costs (vec_info *vinfo, bool costing_for_scalar)
1459 : m_vinfo (vinfo),
1460 m_costing_for_scalar (costing_for_scalar),
1461 m_costs (),
1462 m_finished (false)
1466 /* Return the cost of the prologue code (in abstract units). */
1468 inline unsigned int
1469 vector_costs::prologue_cost () const
1471 gcc_checking_assert (m_finished);
1472 return m_costs[vect_prologue];
1475 /* Return the cost of the body code (in abstract units). */
1477 inline unsigned int
1478 vector_costs::body_cost () const
1480 gcc_checking_assert (m_finished);
1481 return m_costs[vect_body];
1484 /* Return the cost of the epilogue code (in abstract units). */
1486 inline unsigned int
1487 vector_costs::epilogue_cost () const
1489 gcc_checking_assert (m_finished);
1490 return m_costs[vect_epilogue];
1493 #define VECT_MAX_COST 1000
1495 /* The maximum number of intermediate steps required in multi-step type
1496 conversion. */
1497 #define MAX_INTERM_CVT_STEPS 3
1499 #define MAX_VECTORIZATION_FACTOR INT_MAX
1501 /* Nonzero if TYPE represents a (scalar) boolean type or type
1502 in the middle-end compatible with it (unsigned precision 1 integral
1503 types). Used to determine which types should be vectorized as
1504 VECTOR_BOOLEAN_TYPE_P. */
1506 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1507 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1508 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1509 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1510 && TYPE_PRECISION (TYPE) == 1 \
1511 && TYPE_UNSIGNED (TYPE)))
1513 static inline bool
1514 nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1516 return (loop->inner
1517 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1520 /* PHI is either a scalar reduction phi or a scalar induction phi.
1521 Return the initial value of the variable on entry to the containing
1522 loop. */
1524 static inline tree
1525 vect_phi_initial_value (gphi *phi)
1527 basic_block bb = gimple_bb (phi);
1528 edge pe = loop_preheader_edge (bb->loop_father);
1529 gcc_assert (pe->dest == bb);
1530 return PHI_ARG_DEF_FROM_EDGE (phi, pe);
1533 /* Return true if STMT_INFO should produce a vector mask type rather than
1534 a normal nonmask type. */
1536 static inline bool
1537 vect_use_mask_type_p (stmt_vec_info stmt_info)
1539 return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
1542 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1543 pattern. */
1545 static inline bool
1546 is_pattern_stmt_p (stmt_vec_info stmt_info)
1548 return stmt_info->pattern_stmt_p;
1551 /* If STMT_INFO is a pattern statement, return the statement that it
1552 replaces, otherwise return STMT_INFO itself. */
1554 inline stmt_vec_info
1555 vect_orig_stmt (stmt_vec_info stmt_info)
1557 if (is_pattern_stmt_p (stmt_info))
1558 return STMT_VINFO_RELATED_STMT (stmt_info);
1559 return stmt_info;
1562 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1564 static inline stmt_vec_info
1565 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1567 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1568 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1569 return stmt1_info;
1570 else
1571 return stmt2_info;
1574 /* If STMT_INFO has been replaced by a pattern statement, return the
1575 replacement statement, otherwise return STMT_INFO itself. */
1577 inline stmt_vec_info
1578 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1580 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1581 return STMT_VINFO_RELATED_STMT (stmt_info);
1582 return stmt_info;
1585 /* Return true if BB is a loop header. */
1587 static inline bool
1588 is_loop_header_bb_p (basic_block bb)
1590 if (bb == (bb->loop_father)->header)
1591 return true;
1592 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1593 return false;
1596 /* Return pow2 (X). */
1598 static inline int
1599 vect_pow2 (int x)
1601 int i, res = 1;
1603 for (i = 0; i < x; i++)
1604 res *= 2;
1606 return res;
1609 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1611 static inline int
1612 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1613 tree vectype, int misalign)
1615 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1616 vectype, misalign);
1619 /* Get cost by calling cost target builtin. */
1621 static inline
1622 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1624 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1627 /* Alias targetm.vectorize.init_cost. */
1629 static inline vector_costs *
1630 init_cost (vec_info *vinfo, bool costing_for_scalar)
1632 return targetm.vectorize.create_costs (vinfo, costing_for_scalar);
1635 extern void dump_stmt_cost (FILE *, int, enum vect_cost_for_stmt,
1636 stmt_vec_info, tree, int, unsigned,
1637 enum vect_cost_model_location);
1639 /* Alias targetm.vectorize.add_stmt_cost. */
1641 static inline unsigned
1642 add_stmt_cost (vector_costs *costs, int count,
1643 enum vect_cost_for_stmt kind,
1644 stmt_vec_info stmt_info, tree vectype, int misalign,
1645 enum vect_cost_model_location where)
1647 unsigned cost = costs->add_stmt_cost (count, kind, stmt_info, vectype,
1648 misalign, where);
1649 if (dump_file && (dump_flags & TDF_DETAILS))
1650 dump_stmt_cost (dump_file, count, kind, stmt_info, vectype, misalign,
1651 cost, where);
1652 return cost;
1655 /* Alias targetm.vectorize.add_stmt_cost. */
1657 static inline unsigned
1658 add_stmt_cost (vector_costs *costs, stmt_info_for_cost *i)
1660 return add_stmt_cost (costs, i->count, i->kind, i->stmt_info,
1661 i->vectype, i->misalign, i->where);
1664 /* Alias targetm.vectorize.finish_cost. */
1666 static inline void
1667 finish_cost (vector_costs *costs, unsigned *prologue_cost,
1668 unsigned *body_cost, unsigned *epilogue_cost)
1670 costs->finish_cost ();
1671 *prologue_cost = costs->prologue_cost ();
1672 *body_cost = costs->body_cost ();
1673 *epilogue_cost = costs->epilogue_cost ();
1676 inline void
1677 add_stmt_costs (vector_costs *costs, stmt_vector_for_cost *cost_vec)
1679 stmt_info_for_cost *cost;
1680 unsigned i;
1681 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1682 add_stmt_cost (costs, cost->count, cost->kind, cost->stmt_info,
1683 cost->vectype, cost->misalign, cost->where);
1686 /*-----------------------------------------------------------------*/
1687 /* Info on data references alignment. */
1688 /*-----------------------------------------------------------------*/
1689 #define DR_MISALIGNMENT_UNKNOWN (-1)
1690 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1692 inline void
1693 set_dr_misalignment (dr_vec_info *dr_info, int val)
1695 dr_info->misalignment = val;
1698 extern int dr_misalignment (dr_vec_info *dr_info, tree vectype,
1699 poly_int64 offset = 0);
1701 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1703 /* Only defined once DR_MISALIGNMENT is defined. */
1704 static inline const poly_uint64
1705 dr_target_alignment (dr_vec_info *dr_info)
1707 if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt))
1708 dr_info = STMT_VINFO_DR_INFO (DR_GROUP_FIRST_ELEMENT (dr_info->stmt));
1709 return dr_info->target_alignment;
1711 #define DR_TARGET_ALIGNMENT(DR) dr_target_alignment (DR)
1713 static inline void
1714 set_dr_target_alignment (dr_vec_info *dr_info, poly_uint64 val)
1716 dr_info->target_alignment = val;
1718 #define SET_DR_TARGET_ALIGNMENT(DR, VAL) set_dr_target_alignment (DR, VAL)
1720 /* Return true if data access DR_INFO is aligned to the targets
1721 preferred alignment for VECTYPE (which may be less than a full vector). */
1723 static inline bool
1724 aligned_access_p (dr_vec_info *dr_info, tree vectype)
1726 return (dr_misalignment (dr_info, vectype) == 0);
1729 /* Return TRUE if the (mis-)alignment of the data access is known with
1730 respect to the targets preferred alignment for VECTYPE, and FALSE
1731 otherwise. */
1733 static inline bool
1734 known_alignment_for_access_p (dr_vec_info *dr_info, tree vectype)
1736 return (dr_misalignment (dr_info, vectype) != DR_MISALIGNMENT_UNKNOWN);
1739 /* Return the minimum alignment in bytes that the vectorized version
1740 of DR_INFO is guaranteed to have. */
1742 static inline unsigned int
1743 vect_known_alignment_in_bytes (dr_vec_info *dr_info, tree vectype)
1745 int misalignment = dr_misalignment (dr_info, vectype);
1746 if (misalignment == DR_MISALIGNMENT_UNKNOWN)
1747 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1748 else if (misalignment == 0)
1749 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1750 return misalignment & -misalignment;
1753 /* Return the behavior of DR_INFO with respect to the vectorization context
1754 (which for outer loop vectorization might not be the behavior recorded
1755 in DR_INFO itself). */
1757 static inline innermost_loop_behavior *
1758 vect_dr_behavior (vec_info *vinfo, dr_vec_info *dr_info)
1760 stmt_vec_info stmt_info = dr_info->stmt;
1761 loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo);
1762 if (loop_vinfo == NULL
1763 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1764 return &DR_INNERMOST (dr_info->dr);
1765 else
1766 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1769 /* Return the offset calculated by adding the offset of this DR_INFO to the
1770 corresponding data_reference's offset. If CHECK_OUTER then use
1771 vect_dr_behavior to select the appropriate data_reference to use. */
1773 inline tree
1774 get_dr_vinfo_offset (vec_info *vinfo,
1775 dr_vec_info *dr_info, bool check_outer = false)
1777 innermost_loop_behavior *base;
1778 if (check_outer)
1779 base = vect_dr_behavior (vinfo, dr_info);
1780 else
1781 base = &dr_info->dr->innermost;
1783 tree offset = base->offset;
1785 if (!dr_info->offset)
1786 return offset;
1788 offset = fold_convert (sizetype, offset);
1789 return fold_build2 (PLUS_EXPR, TREE_TYPE (dr_info->offset), offset,
1790 dr_info->offset);
1794 /* Return the vect cost model for LOOP. */
1795 static inline enum vect_cost_model
1796 loop_cost_model (loop_p loop)
1798 if (loop != NULL
1799 && loop->force_vectorize
1800 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1801 return flag_simd_cost_model;
1802 return flag_vect_cost_model;
1805 /* Return true if the vect cost model is unlimited. */
1806 static inline bool
1807 unlimited_cost_model (loop_p loop)
1809 return loop_cost_model (loop) == VECT_COST_MODEL_UNLIMITED;
1812 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1813 if the first iteration should use a partial mask in order to achieve
1814 alignment. */
1816 static inline bool
1817 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1819 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1820 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1823 /* Return the number of vectors of type VECTYPE that are needed to get
1824 NUNITS elements. NUNITS should be based on the vectorization factor,
1825 so it is always a known multiple of the number of elements in VECTYPE. */
1827 static inline unsigned int
1828 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1830 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1833 /* Return the number of copies needed for loop vectorization when
1834 a statement operates on vectors of type VECTYPE. This is the
1835 vectorization factor divided by the number of elements in
1836 VECTYPE and is always known at compile time. */
1838 static inline unsigned int
1839 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1841 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1844 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1845 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
1847 static inline void
1848 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
1850 /* All unit counts have the form vec_info::vector_size * X for some
1851 rational X, so two unit sizes must have a common multiple.
1852 Everything is a multiple of the initial value of 1. */
1853 *max_nunits = force_common_multiple (*max_nunits, nunits);
1856 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1857 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1858 if we haven't yet recorded any vector types. */
1860 static inline void
1861 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1863 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
1866 /* Return the vectorization factor that should be used for costing
1867 purposes while vectorizing the loop described by LOOP_VINFO.
1868 Pick a reasonable estimate if the vectorization factor isn't
1869 known at compile time. */
1871 static inline unsigned int
1872 vect_vf_for_cost (loop_vec_info loop_vinfo)
1874 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1877 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1878 Pick a reasonable estimate if the exact number isn't known at
1879 compile time. */
1881 static inline unsigned int
1882 vect_nunits_for_cost (tree vec_type)
1884 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1887 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1889 static inline unsigned HOST_WIDE_INT
1890 vect_max_vf (loop_vec_info loop_vinfo)
1892 unsigned HOST_WIDE_INT vf;
1893 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1894 return vf;
1895 return MAX_VECTORIZATION_FACTOR;
1898 /* Return the size of the value accessed by unvectorized data reference
1899 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1900 for the associated gimple statement, since that guarantees that DR_INFO
1901 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1902 here includes things like V1SI, which can be vectorized in the same way
1903 as a plain SI.) */
1905 inline unsigned int
1906 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1908 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1911 /* Return true if LOOP_VINFO requires a runtime check for whether the
1912 vector loop is profitable. */
1914 inline bool
1915 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
1917 unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
1918 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1919 && th >= vect_vf_for_cost (loop_vinfo));
1922 /* Source location + hotness information. */
1923 extern dump_user_location_t vect_location;
1925 /* A macro for calling:
1926 dump_begin_scope (MSG, vect_location);
1927 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1928 and then calling
1929 dump_end_scope ();
1930 once the object goes out of scope, thus capturing the nesting of
1931 the scopes.
1933 These scopes affect dump messages within them: dump messages at the
1934 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1935 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
1937 #define DUMP_VECT_SCOPE(MSG) \
1938 AUTO_DUMP_SCOPE (MSG, vect_location)
1940 /* A sentinel class for ensuring that the "vect_location" global gets
1941 reset at the end of a scope.
1943 The "vect_location" global is used during dumping and contains a
1944 location_t, which could contain references to a tree block via the
1945 ad-hoc data. This data is used for tracking inlining information,
1946 but it's not a GC root; it's simply assumed that such locations never
1947 get accessed if the blocks are optimized away.
1949 Hence we need to ensure that such locations are purged at the end
1950 of any operations using them (e.g. via this class). */
1952 class auto_purge_vect_location
1954 public:
1955 ~auto_purge_vect_location ();
1958 /*-----------------------------------------------------------------*/
1959 /* Function prototypes. */
1960 /*-----------------------------------------------------------------*/
1962 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1963 in tree-vect-loop-manip.c. */
1964 extern void vect_set_loop_condition (class loop *, loop_vec_info,
1965 tree, tree, tree, bool);
1966 extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
1967 class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
1968 class loop *, edge);
1969 class loop *vect_loop_versioning (loop_vec_info, gimple *);
1970 extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
1971 tree *, tree *, tree *, int, bool, bool,
1972 tree *);
1973 extern tree vect_get_main_loop_result (loop_vec_info, tree, tree);
1974 extern void vect_prepare_for_masked_peels (loop_vec_info);
1975 extern dump_user_location_t find_loop_location (class loop *);
1976 extern bool vect_can_advance_ivs_p (loop_vec_info);
1977 extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
1979 /* In tree-vect-stmts.c. */
1980 extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
1981 poly_uint64 = 0);
1982 extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
1983 extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
1984 extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
1985 extern tree get_same_sized_vectype (tree, tree);
1986 extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
1987 extern bool vect_get_loop_mask_type (loop_vec_info);
1988 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1989 stmt_vec_info * = NULL, gimple ** = NULL);
1990 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1991 tree *, stmt_vec_info * = NULL,
1992 gimple ** = NULL);
1993 extern bool vect_is_simple_use (vec_info *, stmt_vec_info, slp_tree,
1994 unsigned, tree *, slp_tree *,
1995 enum vect_def_type *,
1996 tree *, stmt_vec_info * = NULL);
1997 extern bool vect_maybe_update_slp_op_vectype (slp_tree, tree);
1998 extern bool supportable_widening_operation (vec_info *,
1999 enum tree_code, stmt_vec_info,
2000 tree, tree, enum tree_code *,
2001 enum tree_code *, int *,
2002 vec<tree> *);
2003 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
2004 enum tree_code *, int *,
2005 vec<tree> *);
2007 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2008 enum vect_cost_for_stmt, stmt_vec_info,
2009 tree, int, enum vect_cost_model_location);
2011 /* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO. */
2013 static inline unsigned
2014 record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
2015 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
2016 int misalign, enum vect_cost_model_location where)
2018 return record_stmt_cost (body_cost_vec, count, kind, stmt_info,
2019 STMT_VINFO_VECTYPE (stmt_info), misalign, where);
2022 extern void vect_finish_replace_stmt (vec_info *, stmt_vec_info, gimple *);
2023 extern void vect_finish_stmt_generation (vec_info *, stmt_vec_info, gimple *,
2024 gimple_stmt_iterator *);
2025 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
2026 extern tree vect_get_store_rhs (stmt_vec_info);
2027 void vect_get_vec_defs_for_operand (vec_info *vinfo, stmt_vec_info, unsigned,
2028 tree op, vec<tree> *, tree = NULL);
2029 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
2030 tree, vec<tree> *,
2031 tree = NULL, vec<tree> * = NULL,
2032 tree = NULL, vec<tree> * = NULL,
2033 tree = NULL, vec<tree> * = NULL);
2034 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
2035 tree, vec<tree> *, tree,
2036 tree = NULL, vec<tree> * = NULL, tree = NULL,
2037 tree = NULL, vec<tree> * = NULL, tree = NULL,
2038 tree = NULL, vec<tree> * = NULL, tree = NULL);
2039 extern tree vect_init_vector (vec_info *, stmt_vec_info, tree, tree,
2040 gimple_stmt_iterator *);
2041 extern tree vect_get_slp_vect_def (slp_tree, unsigned);
2042 extern bool vect_transform_stmt (vec_info *, stmt_vec_info,
2043 gimple_stmt_iterator *,
2044 slp_tree, slp_instance);
2045 extern void vect_remove_stores (vec_info *, stmt_vec_info);
2046 extern bool vect_nop_conversion_p (stmt_vec_info);
2047 extern opt_result vect_analyze_stmt (vec_info *, stmt_vec_info, bool *,
2048 slp_tree,
2049 slp_instance, stmt_vector_for_cost *);
2050 extern void vect_get_load_cost (vec_info *, stmt_vec_info, int,
2051 dr_alignment_support, int, bool,
2052 unsigned int *, unsigned int *,
2053 stmt_vector_for_cost *,
2054 stmt_vector_for_cost *, bool);
2055 extern void vect_get_store_cost (vec_info *, stmt_vec_info, int,
2056 dr_alignment_support, int,
2057 unsigned int *, stmt_vector_for_cost *);
2058 extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
2059 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
2060 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
2061 extern void optimize_mask_stores (class loop*);
2062 extern tree vect_gen_while (gimple_seq *, tree, tree, tree,
2063 const char * = nullptr);
2064 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
2065 extern opt_result vect_get_vector_types_for_stmt (vec_info *,
2066 stmt_vec_info, tree *,
2067 tree *, unsigned int = 0);
2068 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
2070 /* In tree-vect-data-refs.c. */
2071 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
2072 extern enum dr_alignment_support vect_supportable_dr_alignment
2073 (vec_info *, dr_vec_info *, tree, int);
2074 extern tree vect_get_smallest_scalar_type (stmt_vec_info, tree);
2075 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
2076 extern bool vect_slp_analyze_instance_dependence (vec_info *, slp_instance);
2077 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
2078 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
2079 extern bool vect_slp_analyze_instance_alignment (vec_info *, slp_instance);
2080 extern opt_result vect_analyze_data_ref_accesses (vec_info *, vec<int> *);
2081 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
2082 extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
2083 tree, int, internal_fn *, tree *);
2084 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
2085 gather_scatter_info *);
2086 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
2087 vec<data_reference_p> *,
2088 vec<int> *, int);
2089 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
2090 extern void vect_record_base_alignments (vec_info *);
2091 extern tree vect_create_data_ref_ptr (vec_info *,
2092 stmt_vec_info, tree, class loop *, tree,
2093 tree *, gimple_stmt_iterator *,
2094 gimple **, bool,
2095 tree = NULL_TREE);
2096 extern tree bump_vector_ptr (vec_info *, tree, gimple *, gimple_stmt_iterator *,
2097 stmt_vec_info, tree);
2098 extern void vect_copy_ref_info (tree, tree);
2099 extern tree vect_create_destination_var (tree, tree);
2100 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
2101 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2102 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
2103 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2104 extern void vect_permute_store_chain (vec_info *, vec<tree> &,
2105 unsigned int, stmt_vec_info,
2106 gimple_stmt_iterator *, vec<tree> *);
2107 extern tree vect_setup_realignment (vec_info *,
2108 stmt_vec_info, gimple_stmt_iterator *,
2109 tree *, enum dr_alignment_support, tree,
2110 class loop **);
2111 extern void vect_transform_grouped_load (vec_info *, stmt_vec_info, vec<tree>,
2112 int, gimple_stmt_iterator *);
2113 extern void vect_record_grouped_load_vectors (vec_info *,
2114 stmt_vec_info, vec<tree>);
2115 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
2116 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
2117 const char * = NULL);
2118 extern tree vect_create_addr_base_for_vector_ref (vec_info *,
2119 stmt_vec_info, gimple_seq *,
2120 tree);
2122 /* In tree-vect-loop.c. */
2123 extern widest_int vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo);
2124 bool vect_rgroup_iv_might_wrap_p (loop_vec_info, rgroup_controls *);
2125 /* Used in tree-vect-loop-manip.c */
2126 extern opt_result vect_determine_partial_vectors_and_peeling (loop_vec_info,
2127 bool);
2128 /* Used in gimple-loop-interchange.c and tree-parloops.c. */
2129 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
2130 enum tree_code);
2131 extern bool needs_fold_left_reduction_p (tree, tree_code);
2132 /* Drive for loop analysis stage. */
2133 extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
2134 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
2135 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
2136 tree *, bool);
2137 extern tree vect_halve_mask_nunits (tree, machine_mode);
2138 extern tree vect_double_mask_nunits (tree, machine_mode);
2139 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
2140 unsigned int, tree, tree);
2141 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
2142 unsigned int, tree, unsigned int);
2143 extern void vect_record_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
2144 tree, unsigned int);
2145 extern tree vect_get_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
2146 unsigned int);
2147 extern gimple_seq vect_gen_len (tree, tree, tree, tree);
2148 extern stmt_vec_info info_for_reduction (vec_info *, stmt_vec_info);
2149 extern bool reduction_fn_for_scalar_code (enum tree_code, internal_fn *);
2151 /* Drive for loop transformation stage. */
2152 extern class loop *vect_transform_loop (loop_vec_info, gimple *);
2153 struct vect_loop_form_info
2155 tree number_of_iterations;
2156 tree number_of_iterationsm1;
2157 tree assumptions;
2158 gcond *loop_cond;
2159 gcond *inner_loop_cond;
2161 extern opt_result vect_analyze_loop_form (class loop *, vect_loop_form_info *);
2162 extern loop_vec_info vect_create_loop_vinfo (class loop *, vec_info_shared *,
2163 const vect_loop_form_info *);
2164 extern bool vectorizable_live_operation (vec_info *,
2165 stmt_vec_info, gimple_stmt_iterator *,
2166 slp_tree, slp_instance, int,
2167 bool, stmt_vector_for_cost *);
2168 extern bool vectorizable_reduction (loop_vec_info, stmt_vec_info,
2169 slp_tree, slp_instance,
2170 stmt_vector_for_cost *);
2171 extern bool vectorizable_induction (loop_vec_info, stmt_vec_info,
2172 gimple **, slp_tree,
2173 stmt_vector_for_cost *);
2174 extern bool vect_transform_reduction (loop_vec_info, stmt_vec_info,
2175 gimple_stmt_iterator *,
2176 gimple **, slp_tree);
2177 extern bool vect_transform_cycle_phi (loop_vec_info, stmt_vec_info,
2178 gimple **,
2179 slp_tree, slp_instance);
2180 extern bool vectorizable_lc_phi (loop_vec_info, stmt_vec_info,
2181 gimple **, slp_tree);
2182 extern bool vectorizable_phi (vec_info *, stmt_vec_info, gimple **, slp_tree,
2183 stmt_vector_for_cost *);
2184 extern bool vect_emulated_vector_p (tree);
2185 extern bool vect_can_vectorize_without_simd_p (tree_code);
2186 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
2187 stmt_vector_for_cost *,
2188 stmt_vector_for_cost *,
2189 stmt_vector_for_cost *);
2190 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
2192 /* In tree-vect-slp.c. */
2193 extern void vect_slp_init (void);
2194 extern void vect_slp_fini (void);
2195 extern void vect_free_slp_instance (slp_instance);
2196 extern bool vect_transform_slp_perm_load (vec_info *, slp_tree, const vec<tree> &,
2197 gimple_stmt_iterator *, poly_uint64,
2198 bool, unsigned *,
2199 unsigned * = nullptr, bool = false);
2200 extern bool vect_slp_analyze_operations (vec_info *);
2201 extern void vect_schedule_slp (vec_info *, const vec<slp_instance> &);
2202 extern opt_result vect_analyze_slp (vec_info *, unsigned);
2203 extern bool vect_make_slp_decision (loop_vec_info);
2204 extern void vect_detect_hybrid_slp (loop_vec_info);
2205 extern void vect_optimize_slp (vec_info *);
2206 extern void vect_gather_slp_loads (vec_info *);
2207 extern void vect_get_slp_defs (slp_tree, vec<tree> *);
2208 extern void vect_get_slp_defs (vec_info *, slp_tree, vec<vec<tree> > *,
2209 unsigned n = -1U);
2210 extern bool vect_slp_if_converted_bb (basic_block bb, loop_p orig_loop);
2211 extern bool vect_slp_function (function *);
2212 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
2213 extern stmt_vec_info vect_find_first_scalar_stmt_in_slp (slp_tree);
2214 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
2215 extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
2216 unsigned int * = NULL,
2217 tree * = NULL, tree * = NULL);
2218 extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
2219 const vec<tree> &, unsigned int, vec<tree> &);
2220 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
2221 extern slp_tree vect_create_new_slp_node (unsigned, tree_code);
2222 extern void vect_free_slp_tree (slp_tree);
2224 /* In tree-vect-patterns.c. */
2225 extern void
2226 vect_mark_pattern_stmts (vec_info *, stmt_vec_info, gimple *, tree);
2228 /* Pattern recognition functions.
2229 Additional pattern recognition functions can (and will) be added
2230 in the future. */
2231 void vect_pattern_recog (vec_info *);
2233 /* In tree-vectorizer.c. */
2234 unsigned vectorize_loops (void);
2235 void vect_free_loop_info_assumptions (class loop *);
2236 gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
2237 bool vect_stmt_dominates_stmt_p (gimple *, gimple *);
2239 /* SLP Pattern matcher types, tree-vect-slp-patterns.c. */
2241 /* Forward declaration of possible two operands operation that can be matched
2242 by the complex numbers pattern matchers. */
2243 enum _complex_operation : unsigned;
2245 /* All possible load permute values that could result from the partial data-flow
2246 analysis. */
2247 typedef enum _complex_perm_kinds {
2248 PERM_UNKNOWN,
2249 PERM_EVENODD,
2250 PERM_ODDEVEN,
2251 PERM_ODDODD,
2252 PERM_EVENEVEN,
2253 /* Can be combined with any other PERM values. */
2254 PERM_TOP
2255 } complex_perm_kinds_t;
2257 /* Cache from nodes to the load permutation they represent. */
2258 typedef hash_map <slp_tree, complex_perm_kinds_t>
2259 slp_tree_to_load_perm_map_t;
2261 /* Vector pattern matcher base class. All SLP pattern matchers must inherit
2262 from this type. */
2264 class vect_pattern
2266 protected:
2267 /* The number of arguments that the IFN requires. */
2268 unsigned m_num_args;
2270 /* The internal function that will be used when a pattern is created. */
2271 internal_fn m_ifn;
2273 /* The current node being inspected. */
2274 slp_tree *m_node;
2276 /* The list of operands to be the children for the node produced when the
2277 internal function is created. */
2278 vec<slp_tree> m_ops;
2280 /* Default constructor where NODE is the root of the tree to inspect. */
2281 vect_pattern (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
2283 this->m_ifn = ifn;
2284 this->m_node = node;
2285 this->m_ops.create (0);
2286 if (m_ops)
2287 this->m_ops.safe_splice (*m_ops);
2290 public:
2292 /* Create a new instance of the pattern matcher class of the given type. */
2293 static vect_pattern* recognize (slp_tree_to_load_perm_map_t *, slp_tree *);
2295 /* Build the pattern from the data collected so far. */
2296 virtual void build (vec_info *) = 0;
2298 /* Default destructor. */
2299 virtual ~vect_pattern ()
2301 this->m_ops.release ();
2305 /* Function pointer to create a new pattern matcher from a generic type. */
2306 typedef vect_pattern* (*vect_pattern_decl_t) (slp_tree_to_load_perm_map_t *,
2307 slp_tree *);
2309 /* List of supported pattern matchers. */
2310 extern vect_pattern_decl_t slp_patterns[];
2312 /* Number of supported pattern matchers. */
2313 extern size_t num__slp_patterns;
2315 /* ----------------------------------------------------------------------
2316 Target support routines
2317 -----------------------------------------------------------------------
2318 The following routines are provided to simplify costing decisions in
2319 target code. Please add more as needed. */
2321 /* Return true if an operaton of kind KIND for STMT_INFO represents
2322 the extraction of an element from a vector in preparation for
2323 storing the element to memory. */
2324 inline bool
2325 vect_is_store_elt_extraction (vect_cost_for_stmt kind, stmt_vec_info stmt_info)
2327 return (kind == vec_to_scalar
2328 && STMT_VINFO_DATA_REF (stmt_info)
2329 && DR_IS_WRITE (STMT_VINFO_DATA_REF (stmt_info)));
2332 /* Return true if STMT_INFO represents part of a reduction. */
2333 inline bool
2334 vect_is_reduction (stmt_vec_info stmt_info)
2336 return (STMT_VINFO_REDUC_DEF (stmt_info)
2337 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)));
2340 /* If STMT_INFO describes a reduction, return the vect_reduction_type
2341 of the reduction it describes, otherwise return -1. */
2342 inline int
2343 vect_reduc_type (vec_info *vinfo, stmt_vec_info stmt_info)
2345 if (loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo))
2346 if (STMT_VINFO_REDUC_DEF (stmt_info))
2348 stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
2349 return int (STMT_VINFO_REDUC_TYPE (reduc_info));
2351 return -1;
2354 /* If STMT_INFO is a COND_EXPR that includes an embedded comparison, return the
2355 scalar type of the values being compared. Return null otherwise. */
2356 inline tree
2357 vect_embedded_comparison_type (stmt_vec_info stmt_info)
2359 if (auto *assign = dyn_cast<gassign *> (stmt_info->stmt))
2360 if (gimple_assign_rhs_code (assign) == COND_EXPR)
2362 tree cond = gimple_assign_rhs1 (assign);
2363 if (COMPARISON_CLASS_P (cond))
2364 return TREE_TYPE (TREE_OPERAND (cond, 0));
2366 return NULL_TREE;
2369 /* If STMT_INFO is a comparison or contains an embedded comparison, return the
2370 scalar type of the values being compared. Return null otherwise. */
2371 inline tree
2372 vect_comparison_type (stmt_vec_info stmt_info)
2374 if (auto *assign = dyn_cast<gassign *> (stmt_info->stmt))
2375 if (TREE_CODE_CLASS (gimple_assign_rhs_code (assign)) == tcc_comparison)
2376 return TREE_TYPE (gimple_assign_rhs1 (assign));
2377 return vect_embedded_comparison_type (stmt_info);
2380 /* Return true if STMT_INFO extends the result of a load. */
2381 inline bool
2382 vect_is_extending_load (class vec_info *vinfo, stmt_vec_info stmt_info)
2384 /* Although this is quite large for an inline function, this part
2385 at least should be inline. */
2386 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
2387 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2388 return false;
2390 tree rhs = gimple_assign_rhs1 (stmt_info->stmt);
2391 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2392 tree rhs_type = TREE_TYPE (rhs);
2393 if (!INTEGRAL_TYPE_P (lhs_type)
2394 || !INTEGRAL_TYPE_P (rhs_type)
2395 || TYPE_PRECISION (lhs_type) <= TYPE_PRECISION (rhs_type))
2396 return false;
2398 stmt_vec_info def_stmt_info = vinfo->lookup_def (rhs);
2399 return (def_stmt_info
2400 && STMT_VINFO_DATA_REF (def_stmt_info)
2401 && DR_IS_READ (STMT_VINFO_DATA_REF (def_stmt_info)));
2404 /* Return true if STMT_INFO is an integer truncation. */
2405 inline bool
2406 vect_is_integer_truncation (stmt_vec_info stmt_info)
2408 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
2409 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2410 return false;
2412 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2413 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (assign));
2414 return (INTEGRAL_TYPE_P (lhs_type)
2415 && INTEGRAL_TYPE_P (rhs_type)
2416 && TYPE_PRECISION (lhs_type) < TYPE_PRECISION (rhs_type));
2419 #endif /* GCC_TREE_VECTORIZER_H */