1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This is a simple analysis of induction variables of the loop. The major use
22 is for determining the number of iterations of a loop for loop unrolling,
23 doloop optimization and branch prediction. The iv information is computed
26 Induction variables are analyzed by walking the use-def chains. When
27 a basic induction variable (biv) is found, it is cached in the bivs
28 hash table. When register is proved to be a biv, its description
29 is stored to DF_REF_DATA of the def reference.
31 The analysis works always with one loop -- you must call
32 iv_analysis_loop_init (loop) for it. All the other functions then work with
33 this loop. When you need to work with another loop, just call
34 iv_analysis_loop_init for it. When you no longer need iv analysis, call
35 iv_analysis_done () to clean up the memory.
37 The available functions are:
39 iv_analyze (insn, reg, iv): Stores the description of the induction variable
40 corresponding to the use of register REG in INSN to IV. Returns true if
41 REG is an induction variable in INSN. false otherwise.
42 If use of REG is not found in INSN, following insns are scanned (so that
43 we may call this function on insn returned by get_condition).
44 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
45 corresponding to DEF, which is a register defined in INSN.
46 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
47 corresponding to expression EXPR evaluated at INSN. All registers used bu
48 EXPR must also be used in INSN.
53 #include "coretypes.h"
56 #include "hard-reg-set.h"
58 #include "basic-block.h"
62 #include "diagnostic-core.h"
67 /* Possible return values of iv_get_reaching_def. */
71 /* More than one reaching def, or reaching def that does not
75 /* The use is trivial invariant of the loop, i.e. is not changed
79 /* The use is reached by initial value and a value from the
80 previous iteration. */
83 /* The use has single dominating def. */
87 /* Information about a biv. */
91 unsigned regno
; /* The register of the biv. */
92 struct rtx_iv iv
; /* Value of the biv. */
95 static bool clean_slate
= true;
97 static unsigned int iv_ref_table_size
= 0;
99 /* Table of rtx_ivs indexed by the df_ref uid field. */
100 static struct rtx_iv
** iv_ref_table
;
102 /* Induction variable stored at the reference. */
103 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID(REF)]
104 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID(REF)] = (IV)
106 /* The current loop. */
108 static struct loop
*current_loop
;
110 /* Bivs of the current loop. */
114 static bool iv_analyze_op (rtx
, rtx
, struct rtx_iv
*);
116 /* Return the RTX code corresponding to the IV extend code EXTEND. */
117 static inline enum rtx_code
118 iv_extend_to_rtx_code (enum iv_extend_code extend
)
126 case IV_UNKNOWN_EXTEND
:
132 /* Dumps information about IV to FILE. */
134 extern void dump_iv_info (FILE *, struct rtx_iv
*);
136 dump_iv_info (FILE *file
, struct rtx_iv
*iv
)
140 fprintf (file
, "not simple");
144 if (iv
->step
== const0_rtx
145 && !iv
->first_special
)
146 fprintf (file
, "invariant ");
148 print_rtl (file
, iv
->base
);
149 if (iv
->step
!= const0_rtx
)
151 fprintf (file
, " + ");
152 print_rtl (file
, iv
->step
);
153 fprintf (file
, " * iteration");
155 fprintf (file
, " (in %s)", GET_MODE_NAME (iv
->mode
));
157 if (iv
->mode
!= iv
->extend_mode
)
158 fprintf (file
, " %s to %s",
159 rtx_name
[iv_extend_to_rtx_code (iv
->extend
)],
160 GET_MODE_NAME (iv
->extend_mode
));
162 if (iv
->mult
!= const1_rtx
)
164 fprintf (file
, " * ");
165 print_rtl (file
, iv
->mult
);
167 if (iv
->delta
!= const0_rtx
)
169 fprintf (file
, " + ");
170 print_rtl (file
, iv
->delta
);
172 if (iv
->first_special
)
173 fprintf (file
, " (first special)");
176 /* Generates a subreg to get the least significant part of EXPR (in mode
177 INNER_MODE) to OUTER_MODE. */
180 lowpart_subreg (enum machine_mode outer_mode
, rtx expr
,
181 enum machine_mode inner_mode
)
183 return simplify_gen_subreg (outer_mode
, expr
, inner_mode
,
184 subreg_lowpart_offset (outer_mode
, inner_mode
));
188 check_iv_ref_table_size (void)
190 if (iv_ref_table_size
< DF_DEFS_TABLE_SIZE())
192 unsigned int new_size
= DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
193 iv_ref_table
= XRESIZEVEC (struct rtx_iv
*, iv_ref_table
, new_size
);
194 memset (&iv_ref_table
[iv_ref_table_size
], 0,
195 (new_size
- iv_ref_table_size
) * sizeof (struct rtx_iv
*));
196 iv_ref_table_size
= new_size
;
201 /* Checks whether REG is a well-behaved register. */
204 simple_reg_p (rtx reg
)
208 if (GET_CODE (reg
) == SUBREG
)
210 if (!subreg_lowpart_p (reg
))
212 reg
= SUBREG_REG (reg
);
219 if (HARD_REGISTER_NUM_P (r
))
222 if (GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
228 /* Clears the information about ivs stored in df. */
233 unsigned i
, n_defs
= DF_DEFS_TABLE_SIZE ();
236 check_iv_ref_table_size ();
237 for (i
= 0; i
< n_defs
; i
++)
239 iv
= iv_ref_table
[i
];
243 iv_ref_table
[i
] = NULL
;
250 /* Returns hash value for biv B. */
253 biv_hash (const void *b
)
255 return ((const struct biv_entry
*) b
)->regno
;
258 /* Compares biv B and register R. */
261 biv_eq (const void *b
, const void *r
)
263 return ((const struct biv_entry
*) b
)->regno
== REGNO ((const_rtx
) r
);
266 /* Prepare the data for an induction variable analysis of a LOOP. */
269 iv_analysis_loop_init (struct loop
*loop
)
271 basic_block
*body
= get_loop_body_in_dom_order (loop
), bb
;
272 bitmap blocks
= BITMAP_ALLOC (NULL
);
277 /* Clear the information from the analysis of the previous loop. */
280 df_set_flags (DF_EQ_NOTES
+ DF_DEFER_INSN_RESCAN
);
281 bivs
= htab_create (10, biv_hash
, biv_eq
, free
);
287 for (i
= 0; i
< loop
->num_nodes
; i
++)
290 bitmap_set_bit (blocks
, bb
->index
);
292 /* Get rid of the ud chains before processing the rescans. Then add
294 df_remove_problem (df_chain
);
295 df_process_deferred_rescans ();
296 df_set_flags (DF_RD_PRUNE_DEAD_DEFS
);
297 df_chain_add_problem (DF_UD_CHAIN
);
298 df_note_add_problem ();
299 df_set_blocks (blocks
);
302 df_dump_region (dump_file
);
304 check_iv_ref_table_size ();
305 BITMAP_FREE (blocks
);
309 /* Finds the definition of REG that dominates loop latch and stores
310 it to DEF. Returns false if there is not a single definition
311 dominating the latch. If REG has no definition in loop, DEF
312 is set to NULL and true is returned. */
315 latch_dominating_def (rtx reg
, df_ref
*def
)
317 df_ref single_rd
= NULL
, adef
;
318 unsigned regno
= REGNO (reg
);
319 struct df_rd_bb_info
*bb_info
= DF_RD_BB_INFO (current_loop
->latch
);
321 for (adef
= DF_REG_DEF_CHAIN (regno
); adef
; adef
= DF_REF_NEXT_REG (adef
))
323 if (!bitmap_bit_p (df
->blocks_to_analyze
, DF_REF_BBNO (adef
))
324 || !bitmap_bit_p (&bb_info
->out
, DF_REF_ID (adef
)))
327 /* More than one reaching definition. */
331 if (!just_once_each_iteration_p (current_loop
, DF_REF_BB (adef
)))
341 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
343 static enum iv_grd_result
344 iv_get_reaching_def (rtx insn
, rtx reg
, df_ref
*def
)
347 basic_block def_bb
, use_bb
;
352 if (!simple_reg_p (reg
))
354 if (GET_CODE (reg
) == SUBREG
)
355 reg
= SUBREG_REG (reg
);
356 gcc_assert (REG_P (reg
));
358 use
= df_find_use (insn
, reg
);
359 gcc_assert (use
!= NULL
);
361 if (!DF_REF_CHAIN (use
))
362 return GRD_INVARIANT
;
364 /* More than one reaching def. */
365 if (DF_REF_CHAIN (use
)->next
)
368 adef
= DF_REF_CHAIN (use
)->ref
;
370 /* We do not handle setting only part of the register. */
371 if (DF_REF_FLAGS (adef
) & DF_REF_READ_WRITE
)
374 def_insn
= DF_REF_INSN (adef
);
375 def_bb
= DF_REF_BB (adef
);
376 use_bb
= BLOCK_FOR_INSN (insn
);
378 if (use_bb
== def_bb
)
379 dom_p
= (DF_INSN_LUID (def_insn
) < DF_INSN_LUID (insn
));
381 dom_p
= dominated_by_p (CDI_DOMINATORS
, use_bb
, def_bb
);
386 return GRD_SINGLE_DOM
;
389 /* The definition does not dominate the use. This is still OK if
390 this may be a use of a biv, i.e. if the def_bb dominates loop
392 if (just_once_each_iteration_p (current_loop
, def_bb
))
393 return GRD_MAYBE_BIV
;
398 /* Sets IV to invariant CST in MODE. Always returns true (just for
399 consistency with other iv manipulation functions that may fail). */
402 iv_constant (struct rtx_iv
*iv
, rtx cst
, enum machine_mode mode
)
404 if (mode
== VOIDmode
)
405 mode
= GET_MODE (cst
);
409 iv
->step
= const0_rtx
;
410 iv
->first_special
= false;
411 iv
->extend
= IV_UNKNOWN_EXTEND
;
412 iv
->extend_mode
= iv
->mode
;
413 iv
->delta
= const0_rtx
;
414 iv
->mult
= const1_rtx
;
419 /* Evaluates application of subreg to MODE on IV. */
422 iv_subreg (struct rtx_iv
*iv
, enum machine_mode mode
)
424 /* If iv is invariant, just calculate the new value. */
425 if (iv
->step
== const0_rtx
426 && !iv
->first_special
)
428 rtx val
= get_iv_value (iv
, const0_rtx
);
429 val
= lowpart_subreg (mode
, val
, iv
->extend_mode
);
432 iv
->extend
= IV_UNKNOWN_EXTEND
;
433 iv
->mode
= iv
->extend_mode
= mode
;
434 iv
->delta
= const0_rtx
;
435 iv
->mult
= const1_rtx
;
439 if (iv
->extend_mode
== mode
)
442 if (GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (iv
->mode
))
445 iv
->extend
= IV_UNKNOWN_EXTEND
;
448 iv
->base
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->delta
,
449 simplify_gen_binary (MULT
, iv
->extend_mode
,
450 iv
->base
, iv
->mult
));
451 iv
->step
= simplify_gen_binary (MULT
, iv
->extend_mode
, iv
->step
, iv
->mult
);
452 iv
->mult
= const1_rtx
;
453 iv
->delta
= const0_rtx
;
454 iv
->first_special
= false;
459 /* Evaluates application of EXTEND to MODE on IV. */
462 iv_extend (struct rtx_iv
*iv
, enum iv_extend_code extend
, enum machine_mode mode
)
464 /* If iv is invariant, just calculate the new value. */
465 if (iv
->step
== const0_rtx
466 && !iv
->first_special
)
468 rtx val
= get_iv_value (iv
, const0_rtx
);
469 val
= simplify_gen_unary (iv_extend_to_rtx_code (extend
), mode
,
470 val
, iv
->extend_mode
);
472 iv
->extend
= IV_UNKNOWN_EXTEND
;
473 iv
->mode
= iv
->extend_mode
= mode
;
474 iv
->delta
= const0_rtx
;
475 iv
->mult
= const1_rtx
;
479 if (mode
!= iv
->extend_mode
)
482 if (iv
->extend
!= IV_UNKNOWN_EXTEND
483 && iv
->extend
!= extend
)
491 /* Evaluates negation of IV. */
494 iv_neg (struct rtx_iv
*iv
)
496 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
498 iv
->base
= simplify_gen_unary (NEG
, iv
->extend_mode
,
499 iv
->base
, iv
->extend_mode
);
500 iv
->step
= simplify_gen_unary (NEG
, iv
->extend_mode
,
501 iv
->step
, iv
->extend_mode
);
505 iv
->delta
= simplify_gen_unary (NEG
, iv
->extend_mode
,
506 iv
->delta
, iv
->extend_mode
);
507 iv
->mult
= simplify_gen_unary (NEG
, iv
->extend_mode
,
508 iv
->mult
, iv
->extend_mode
);
514 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
517 iv_add (struct rtx_iv
*iv0
, struct rtx_iv
*iv1
, enum rtx_code op
)
519 enum machine_mode mode
;
522 /* Extend the constant to extend_mode of the other operand if necessary. */
523 if (iv0
->extend
== IV_UNKNOWN_EXTEND
524 && iv0
->mode
== iv0
->extend_mode
525 && iv0
->step
== const0_rtx
526 && GET_MODE_SIZE (iv0
->extend_mode
) < GET_MODE_SIZE (iv1
->extend_mode
))
528 iv0
->extend_mode
= iv1
->extend_mode
;
529 iv0
->base
= simplify_gen_unary (ZERO_EXTEND
, iv0
->extend_mode
,
530 iv0
->base
, iv0
->mode
);
532 if (iv1
->extend
== IV_UNKNOWN_EXTEND
533 && iv1
->mode
== iv1
->extend_mode
534 && iv1
->step
== const0_rtx
535 && GET_MODE_SIZE (iv1
->extend_mode
) < GET_MODE_SIZE (iv0
->extend_mode
))
537 iv1
->extend_mode
= iv0
->extend_mode
;
538 iv1
->base
= simplify_gen_unary (ZERO_EXTEND
, iv1
->extend_mode
,
539 iv1
->base
, iv1
->mode
);
542 mode
= iv0
->extend_mode
;
543 if (mode
!= iv1
->extend_mode
)
546 if (iv0
->extend
== IV_UNKNOWN_EXTEND
547 && iv1
->extend
== IV_UNKNOWN_EXTEND
)
549 if (iv0
->mode
!= iv1
->mode
)
552 iv0
->base
= simplify_gen_binary (op
, mode
, iv0
->base
, iv1
->base
);
553 iv0
->step
= simplify_gen_binary (op
, mode
, iv0
->step
, iv1
->step
);
558 /* Handle addition of constant. */
559 if (iv1
->extend
== IV_UNKNOWN_EXTEND
561 && iv1
->step
== const0_rtx
)
563 iv0
->delta
= simplify_gen_binary (op
, mode
, iv0
->delta
, iv1
->base
);
567 if (iv0
->extend
== IV_UNKNOWN_EXTEND
569 && iv0
->step
== const0_rtx
)
577 iv0
->delta
= simplify_gen_binary (PLUS
, mode
, iv0
->delta
, arg
);
584 /* Evaluates multiplication of IV by constant CST. */
587 iv_mult (struct rtx_iv
*iv
, rtx mby
)
589 enum machine_mode mode
= iv
->extend_mode
;
591 if (GET_MODE (mby
) != VOIDmode
592 && GET_MODE (mby
) != mode
)
595 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
597 iv
->base
= simplify_gen_binary (MULT
, mode
, iv
->base
, mby
);
598 iv
->step
= simplify_gen_binary (MULT
, mode
, iv
->step
, mby
);
602 iv
->delta
= simplify_gen_binary (MULT
, mode
, iv
->delta
, mby
);
603 iv
->mult
= simplify_gen_binary (MULT
, mode
, iv
->mult
, mby
);
609 /* Evaluates shift of IV by constant CST. */
612 iv_shift (struct rtx_iv
*iv
, rtx mby
)
614 enum machine_mode mode
= iv
->extend_mode
;
616 if (GET_MODE (mby
) != VOIDmode
617 && GET_MODE (mby
) != mode
)
620 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
622 iv
->base
= simplify_gen_binary (ASHIFT
, mode
, iv
->base
, mby
);
623 iv
->step
= simplify_gen_binary (ASHIFT
, mode
, iv
->step
, mby
);
627 iv
->delta
= simplify_gen_binary (ASHIFT
, mode
, iv
->delta
, mby
);
628 iv
->mult
= simplify_gen_binary (ASHIFT
, mode
, iv
->mult
, mby
);
634 /* The recursive part of get_biv_step. Gets the value of the single value
635 defined by DEF wrto initial value of REG inside loop, in shape described
639 get_biv_step_1 (df_ref def
, rtx reg
,
640 rtx
*inner_step
, enum machine_mode
*inner_mode
,
641 enum iv_extend_code
*extend
, enum machine_mode outer_mode
,
644 rtx set
, rhs
, op0
= NULL_RTX
, op1
= NULL_RTX
;
645 rtx next
, nextr
, tmp
;
647 rtx insn
= DF_REF_INSN (def
);
649 enum iv_grd_result res
;
651 set
= single_set (insn
);
655 rhs
= find_reg_equal_equiv_note (insn
);
661 code
= GET_CODE (rhs
);
674 if (code
== PLUS
&& CONSTANT_P (op0
))
676 tmp
= op0
; op0
= op1
; op1
= tmp
;
679 if (!simple_reg_p (op0
)
680 || !CONSTANT_P (op1
))
683 if (GET_MODE (rhs
) != outer_mode
)
685 /* ppc64 uses expressions like
687 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
689 this is equivalent to
691 (set x':DI (plus:DI y:DI 1))
692 (set x:SI (subreg:SI (x':DI)). */
693 if (GET_CODE (op0
) != SUBREG
)
695 if (GET_MODE (SUBREG_REG (op0
)) != outer_mode
)
704 if (GET_MODE (rhs
) != outer_mode
)
708 if (!simple_reg_p (op0
))
718 if (GET_CODE (next
) == SUBREG
)
720 if (!subreg_lowpart_p (next
))
723 nextr
= SUBREG_REG (next
);
724 if (GET_MODE (nextr
) != outer_mode
)
730 res
= iv_get_reaching_def (insn
, nextr
, &next_def
);
732 if (res
== GRD_INVALID
|| res
== GRD_INVARIANT
)
735 if (res
== GRD_MAYBE_BIV
)
737 if (!rtx_equal_p (nextr
, reg
))
740 *inner_step
= const0_rtx
;
741 *extend
= IV_UNKNOWN_EXTEND
;
742 *inner_mode
= outer_mode
;
743 *outer_step
= const0_rtx
;
745 else if (!get_biv_step_1 (next_def
, reg
,
746 inner_step
, inner_mode
, extend
, outer_mode
,
750 if (GET_CODE (next
) == SUBREG
)
752 enum machine_mode amode
= GET_MODE (next
);
754 if (GET_MODE_SIZE (amode
) > GET_MODE_SIZE (*inner_mode
))
758 *inner_step
= simplify_gen_binary (PLUS
, outer_mode
,
759 *inner_step
, *outer_step
);
760 *outer_step
= const0_rtx
;
761 *extend
= IV_UNKNOWN_EXTEND
;
772 if (*inner_mode
== outer_mode
773 /* See comment in previous switch. */
774 || GET_MODE (rhs
) != outer_mode
)
775 *inner_step
= simplify_gen_binary (code
, outer_mode
,
778 *outer_step
= simplify_gen_binary (code
, outer_mode
,
784 gcc_assert (GET_MODE (op0
) == *inner_mode
785 && *extend
== IV_UNKNOWN_EXTEND
786 && *outer_step
== const0_rtx
);
788 *extend
= (code
== SIGN_EXTEND
) ? IV_SIGN_EXTEND
: IV_ZERO_EXTEND
;
798 /* Gets the operation on register REG inside loop, in shape
800 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
802 If the operation cannot be described in this shape, return false.
803 LAST_DEF is the definition of REG that dominates loop latch. */
806 get_biv_step (df_ref last_def
, rtx reg
, rtx
*inner_step
,
807 enum machine_mode
*inner_mode
, enum iv_extend_code
*extend
,
808 enum machine_mode
*outer_mode
, rtx
*outer_step
)
810 *outer_mode
= GET_MODE (reg
);
812 if (!get_biv_step_1 (last_def
, reg
,
813 inner_step
, inner_mode
, extend
, *outer_mode
,
817 gcc_assert ((*inner_mode
== *outer_mode
) != (*extend
!= IV_UNKNOWN_EXTEND
));
818 gcc_assert (*inner_mode
!= *outer_mode
|| *outer_step
== const0_rtx
);
823 /* Records information that DEF is induction variable IV. */
826 record_iv (df_ref def
, struct rtx_iv
*iv
)
828 struct rtx_iv
*recorded_iv
= XNEW (struct rtx_iv
);
831 check_iv_ref_table_size ();
832 DF_REF_IV_SET (def
, recorded_iv
);
835 /* If DEF was already analyzed for bivness, store the description of the biv to
836 IV and return true. Otherwise return false. */
839 analyzed_for_bivness_p (rtx def
, struct rtx_iv
*iv
)
841 struct biv_entry
*biv
=
842 (struct biv_entry
*) htab_find_with_hash (bivs
, def
, REGNO (def
));
852 record_biv (rtx def
, struct rtx_iv
*iv
)
854 struct biv_entry
*biv
= XNEW (struct biv_entry
);
855 void **slot
= htab_find_slot_with_hash (bivs
, def
, REGNO (def
), INSERT
);
857 biv
->regno
= REGNO (def
);
863 /* Determines whether DEF is a biv and if so, stores its description
867 iv_analyze_biv (rtx def
, struct rtx_iv
*iv
)
869 rtx inner_step
, outer_step
;
870 enum machine_mode inner_mode
, outer_mode
;
871 enum iv_extend_code extend
;
876 fprintf (dump_file
, "Analyzing ");
877 print_rtl (dump_file
, def
);
878 fprintf (dump_file
, " for bivness.\n");
883 if (!CONSTANT_P (def
))
886 return iv_constant (iv
, def
, VOIDmode
);
889 if (!latch_dominating_def (def
, &last_def
))
892 fprintf (dump_file
, " not simple.\n");
897 return iv_constant (iv
, def
, VOIDmode
);
899 if (analyzed_for_bivness_p (def
, iv
))
902 fprintf (dump_file
, " already analysed.\n");
903 return iv
->base
!= NULL_RTX
;
906 if (!get_biv_step (last_def
, def
, &inner_step
, &inner_mode
, &extend
,
907 &outer_mode
, &outer_step
))
913 /* Loop transforms base to es (base + inner_step) + outer_step,
914 where es means extend of subreg between inner_mode and outer_mode.
915 The corresponding induction variable is
917 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
919 iv
->base
= simplify_gen_binary (MINUS
, outer_mode
, def
, outer_step
);
920 iv
->step
= simplify_gen_binary (PLUS
, outer_mode
, inner_step
, outer_step
);
921 iv
->mode
= inner_mode
;
922 iv
->extend_mode
= outer_mode
;
924 iv
->mult
= const1_rtx
;
925 iv
->delta
= outer_step
;
926 iv
->first_special
= inner_mode
!= outer_mode
;
931 fprintf (dump_file
, " ");
932 dump_iv_info (dump_file
, iv
);
933 fprintf (dump_file
, "\n");
936 record_biv (def
, iv
);
937 return iv
->base
!= NULL_RTX
;
940 /* Analyzes expression RHS used at INSN and stores the result to *IV.
941 The mode of the induction variable is MODE. */
944 iv_analyze_expr (rtx insn
, rtx rhs
, enum machine_mode mode
, struct rtx_iv
*iv
)
946 rtx mby
= NULL_RTX
, tmp
;
947 rtx op0
= NULL_RTX
, op1
= NULL_RTX
;
948 struct rtx_iv iv0
, iv1
;
949 enum rtx_code code
= GET_CODE (rhs
);
950 enum machine_mode omode
= mode
;
956 gcc_assert (GET_MODE (rhs
) == mode
|| GET_MODE (rhs
) == VOIDmode
);
962 if (!iv_analyze_op (insn
, rhs
, iv
))
965 if (iv
->mode
== VOIDmode
)
968 iv
->extend_mode
= mode
;
984 omode
= GET_MODE (op0
);
996 if (!CONSTANT_P (mby
))
1002 if (!CONSTANT_P (mby
))
1007 op0
= XEXP (rhs
, 0);
1008 mby
= XEXP (rhs
, 1);
1009 if (!CONSTANT_P (mby
))
1018 && !iv_analyze_expr (insn
, op0
, omode
, &iv0
))
1022 && !iv_analyze_expr (insn
, op1
, omode
, &iv1
))
1028 if (!iv_extend (&iv0
, IV_SIGN_EXTEND
, mode
))
1033 if (!iv_extend (&iv0
, IV_ZERO_EXTEND
, mode
))
1044 if (!iv_add (&iv0
, &iv1
, code
))
1049 if (!iv_mult (&iv0
, mby
))
1054 if (!iv_shift (&iv0
, mby
))
1063 return iv
->base
!= NULL_RTX
;
1066 /* Analyzes iv DEF and stores the result to *IV. */
1069 iv_analyze_def (df_ref def
, struct rtx_iv
*iv
)
1071 rtx insn
= DF_REF_INSN (def
);
1072 rtx reg
= DF_REF_REG (def
);
1077 fprintf (dump_file
, "Analyzing def of ");
1078 print_rtl (dump_file
, reg
);
1079 fprintf (dump_file
, " in insn ");
1080 print_rtl_single (dump_file
, insn
);
1083 check_iv_ref_table_size ();
1084 if (DF_REF_IV (def
))
1087 fprintf (dump_file
, " already analysed.\n");
1088 *iv
= *DF_REF_IV (def
);
1089 return iv
->base
!= NULL_RTX
;
1092 iv
->mode
= VOIDmode
;
1093 iv
->base
= NULL_RTX
;
1094 iv
->step
= NULL_RTX
;
1099 set
= single_set (insn
);
1103 if (!REG_P (SET_DEST (set
)))
1106 gcc_assert (SET_DEST (set
) == reg
);
1107 rhs
= find_reg_equal_equiv_note (insn
);
1109 rhs
= XEXP (rhs
, 0);
1111 rhs
= SET_SRC (set
);
1113 iv_analyze_expr (insn
, rhs
, GET_MODE (reg
), iv
);
1114 record_iv (def
, iv
);
1118 print_rtl (dump_file
, reg
);
1119 fprintf (dump_file
, " in insn ");
1120 print_rtl_single (dump_file
, insn
);
1121 fprintf (dump_file
, " is ");
1122 dump_iv_info (dump_file
, iv
);
1123 fprintf (dump_file
, "\n");
1126 return iv
->base
!= NULL_RTX
;
1129 /* Analyzes operand OP of INSN and stores the result to *IV. */
1132 iv_analyze_op (rtx insn
, rtx op
, struct rtx_iv
*iv
)
1135 enum iv_grd_result res
;
1139 fprintf (dump_file
, "Analyzing operand ");
1140 print_rtl (dump_file
, op
);
1141 fprintf (dump_file
, " of insn ");
1142 print_rtl_single (dump_file
, insn
);
1145 if (function_invariant_p (op
))
1146 res
= GRD_INVARIANT
;
1147 else if (GET_CODE (op
) == SUBREG
)
1149 if (!subreg_lowpart_p (op
))
1152 if (!iv_analyze_op (insn
, SUBREG_REG (op
), iv
))
1155 return iv_subreg (iv
, GET_MODE (op
));
1159 res
= iv_get_reaching_def (insn
, op
, &def
);
1160 if (res
== GRD_INVALID
)
1163 fprintf (dump_file
, " not simple.\n");
1168 if (res
== GRD_INVARIANT
)
1170 iv_constant (iv
, op
, VOIDmode
);
1174 fprintf (dump_file
, " ");
1175 dump_iv_info (dump_file
, iv
);
1176 fprintf (dump_file
, "\n");
1181 if (res
== GRD_MAYBE_BIV
)
1182 return iv_analyze_biv (op
, iv
);
1184 return iv_analyze_def (def
, iv
);
1187 /* Analyzes value VAL at INSN and stores the result to *IV. */
1190 iv_analyze (rtx insn
, rtx val
, struct rtx_iv
*iv
)
1194 /* We must find the insn in that val is used, so that we get to UD chains.
1195 Since the function is sometimes called on result of get_condition,
1196 this does not necessarily have to be directly INSN; scan also the
1198 if (simple_reg_p (val
))
1200 if (GET_CODE (val
) == SUBREG
)
1201 reg
= SUBREG_REG (val
);
1205 while (!df_find_use (insn
, reg
))
1206 insn
= NEXT_INSN (insn
);
1209 return iv_analyze_op (insn
, val
, iv
);
1212 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1215 iv_analyze_result (rtx insn
, rtx def
, struct rtx_iv
*iv
)
1219 adef
= df_find_def (insn
, def
);
1223 return iv_analyze_def (adef
, iv
);
1226 /* Checks whether definition of register REG in INSN is a basic induction
1227 variable. IV analysis must have been initialized (via a call to
1228 iv_analysis_loop_init) for this function to produce a result. */
1231 biv_p (rtx insn
, rtx reg
)
1234 df_ref def
, last_def
;
1236 if (!simple_reg_p (reg
))
1239 def
= df_find_def (insn
, reg
);
1240 gcc_assert (def
!= NULL
);
1241 if (!latch_dominating_def (reg
, &last_def
))
1243 if (last_def
!= def
)
1246 if (!iv_analyze_biv (reg
, &iv
))
1249 return iv
.step
!= const0_rtx
;
1252 /* Calculates value of IV at ITERATION-th iteration. */
1255 get_iv_value (struct rtx_iv
*iv
, rtx iteration
)
1259 /* We would need to generate some if_then_else patterns, and so far
1260 it is not needed anywhere. */
1261 gcc_assert (!iv
->first_special
);
1263 if (iv
->step
!= const0_rtx
&& iteration
!= const0_rtx
)
1264 val
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->base
,
1265 simplify_gen_binary (MULT
, iv
->extend_mode
,
1266 iv
->step
, iteration
));
1270 if (iv
->extend_mode
== iv
->mode
)
1273 val
= lowpart_subreg (iv
->mode
, val
, iv
->extend_mode
);
1275 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
1278 val
= simplify_gen_unary (iv_extend_to_rtx_code (iv
->extend
),
1279 iv
->extend_mode
, val
, iv
->mode
);
1280 val
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->delta
,
1281 simplify_gen_binary (MULT
, iv
->extend_mode
,
1287 /* Free the data for an induction variable analysis. */
1290 iv_analysis_done (void)
1296 df_finish_pass (true);
1298 free (iv_ref_table
);
1299 iv_ref_table
= NULL
;
1300 iv_ref_table_size
= 0;
1305 /* Computes inverse to X modulo (1 << MOD). */
1307 static unsigned HOST_WIDEST_INT
1308 inverse (unsigned HOST_WIDEST_INT x
, int mod
)
1310 unsigned HOST_WIDEST_INT mask
=
1311 ((unsigned HOST_WIDEST_INT
) 1 << (mod
- 1) << 1) - 1;
1312 unsigned HOST_WIDEST_INT rslt
= 1;
1315 for (i
= 0; i
< mod
- 1; i
++)
1317 rslt
= (rslt
* x
) & mask
;
1324 /* Checks whether register *REG is in set ALT. Callback for for_each_rtx. */
1327 altered_reg_used (rtx
*reg
, void *alt
)
1332 return REGNO_REG_SET_P ((bitmap
) alt
, REGNO (*reg
));
1335 /* Marks registers altered by EXPR in set ALT. */
1338 mark_altered (rtx expr
, const_rtx by ATTRIBUTE_UNUSED
, void *alt
)
1340 if (GET_CODE (expr
) == SUBREG
)
1341 expr
= SUBREG_REG (expr
);
1345 SET_REGNO_REG_SET ((bitmap
) alt
, REGNO (expr
));
1348 /* Checks whether RHS is simple enough to process. */
1351 simple_rhs_p (rtx rhs
)
1355 if (function_invariant_p (rhs
)
1356 || (REG_P (rhs
) && !HARD_REGISTER_P (rhs
)))
1359 switch (GET_CODE (rhs
))
1364 op0
= XEXP (rhs
, 0);
1365 op1
= XEXP (rhs
, 1);
1366 /* Allow reg OP const and reg OP reg. */
1367 if (!(REG_P (op0
) && !HARD_REGISTER_P (op0
))
1368 && !function_invariant_p (op0
))
1370 if (!(REG_P (op1
) && !HARD_REGISTER_P (op1
))
1371 && !function_invariant_p (op1
))
1380 op0
= XEXP (rhs
, 0);
1381 op1
= XEXP (rhs
, 1);
1382 /* Allow reg OP const. */
1383 if (!(REG_P (op0
) && !HARD_REGISTER_P (op0
)))
1385 if (!function_invariant_p (op1
))
1395 /* If REG has a single definition, replace it with its known value in EXPR.
1396 Callback for for_each_rtx. */
1399 replace_single_def_regs (rtx
*reg
, void *expr1
)
1404 rtx
*expr
= (rtx
*)expr1
;
1409 regno
= REGNO (*reg
);
1413 adef
= DF_REG_DEF_CHAIN (regno
);
1414 if (adef
== NULL
|| DF_REF_NEXT_REG (adef
) != NULL
1415 || DF_REF_IS_ARTIFICIAL (adef
))
1418 set
= single_set (DF_REF_INSN (adef
));
1419 if (set
== NULL
|| !REG_P (SET_DEST (set
))
1420 || REGNO (SET_DEST (set
)) != regno
)
1423 note
= find_reg_equal_equiv_note (DF_REF_INSN (adef
));
1425 if (note
&& function_invariant_p (XEXP (note
, 0)))
1427 src
= XEXP (note
, 0);
1430 src
= SET_SRC (set
);
1434 regno
= REGNO (src
);
1439 if (!function_invariant_p (src
))
1442 *expr
= simplify_replace_rtx (*expr
, *reg
, src
);
1446 /* A subroutine of simplify_using_initial_values, this function examines INSN
1447 to see if it contains a suitable set that we can use to make a replacement.
1448 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1449 the set; return false otherwise. */
1452 suitable_set_for_replacement (rtx insn
, rtx
*dest
, rtx
*src
)
1454 rtx set
= single_set (insn
);
1455 rtx lhs
= NULL_RTX
, rhs
;
1460 lhs
= SET_DEST (set
);
1464 rhs
= find_reg_equal_equiv_note (insn
);
1466 rhs
= XEXP (rhs
, 0);
1468 rhs
= SET_SRC (set
);
1470 if (!simple_rhs_p (rhs
))
1478 /* Using the data returned by suitable_set_for_replacement, replace DEST
1479 with SRC in *EXPR and return the new expression. Also call
1480 replace_single_def_regs if the replacement changed something. */
1482 replace_in_expr (rtx
*expr
, rtx dest
, rtx src
)
1485 *expr
= simplify_replace_rtx (*expr
, dest
, src
);
1488 while (for_each_rtx (expr
, replace_single_def_regs
, expr
) != 0)
1492 /* Checks whether A implies B. */
1495 implies_p (rtx a
, rtx b
)
1497 rtx op0
, op1
, opb0
, opb1
, r
;
1498 enum machine_mode mode
;
1500 if (GET_CODE (a
) == EQ
)
1507 r
= simplify_replace_rtx (b
, op0
, op1
);
1508 if (r
== const_true_rtx
)
1514 r
= simplify_replace_rtx (b
, op1
, op0
);
1515 if (r
== const_true_rtx
)
1520 if (b
== const_true_rtx
)
1523 if ((GET_RTX_CLASS (GET_CODE (a
)) != RTX_COMM_COMPARE
1524 && GET_RTX_CLASS (GET_CODE (a
)) != RTX_COMPARE
)
1525 || (GET_RTX_CLASS (GET_CODE (b
)) != RTX_COMM_COMPARE
1526 && GET_RTX_CLASS (GET_CODE (b
)) != RTX_COMPARE
))
1534 mode
= GET_MODE (op0
);
1535 if (mode
!= GET_MODE (opb0
))
1537 else if (mode
== VOIDmode
)
1539 mode
= GET_MODE (op1
);
1540 if (mode
!= GET_MODE (opb1
))
1544 /* A < B implies A + 1 <= B. */
1545 if ((GET_CODE (a
) == GT
|| GET_CODE (a
) == LT
)
1546 && (GET_CODE (b
) == GE
|| GET_CODE (b
) == LE
))
1549 if (GET_CODE (a
) == GT
)
1556 if (GET_CODE (b
) == GE
)
1563 if (SCALAR_INT_MODE_P (mode
)
1564 && rtx_equal_p (op1
, opb1
)
1565 && simplify_gen_binary (MINUS
, mode
, opb0
, op0
) == const1_rtx
)
1570 /* A < B or A > B imply A != B. TODO: Likewise
1571 A + n < B implies A != B + n if neither wraps. */
1572 if (GET_CODE (b
) == NE
1573 && (GET_CODE (a
) == GT
|| GET_CODE (a
) == GTU
1574 || GET_CODE (a
) == LT
|| GET_CODE (a
) == LTU
))
1576 if (rtx_equal_p (op0
, opb0
)
1577 && rtx_equal_p (op1
, opb1
))
1581 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1582 if (GET_CODE (a
) == NE
1583 && op1
== const0_rtx
)
1585 if ((GET_CODE (b
) == GTU
1586 && opb1
== const0_rtx
)
1587 || (GET_CODE (b
) == GEU
1588 && opb1
== const1_rtx
))
1589 return rtx_equal_p (op0
, opb0
);
1592 /* A != N is equivalent to A - (N + 1) <u -1. */
1593 if (GET_CODE (a
) == NE
1594 && CONST_INT_P (op1
)
1595 && GET_CODE (b
) == LTU
1596 && opb1
== constm1_rtx
1597 && GET_CODE (opb0
) == PLUS
1598 && CONST_INT_P (XEXP (opb0
, 1))
1599 /* Avoid overflows. */
1600 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1601 != ((unsigned HOST_WIDE_INT
)1
1602 << (HOST_BITS_PER_WIDE_INT
- 1)) - 1)
1603 && INTVAL (XEXP (opb0
, 1)) + 1 == -INTVAL (op1
))
1604 return rtx_equal_p (op0
, XEXP (opb0
, 0));
1606 /* Likewise, A != N implies A - N > 0. */
1607 if (GET_CODE (a
) == NE
1608 && CONST_INT_P (op1
))
1610 if (GET_CODE (b
) == GTU
1611 && GET_CODE (opb0
) == PLUS
1612 && opb1
== const0_rtx
1613 && CONST_INT_P (XEXP (opb0
, 1))
1614 /* Avoid overflows. */
1615 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1616 != ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
1617 && rtx_equal_p (XEXP (opb0
, 0), op0
))
1618 return INTVAL (op1
) == -INTVAL (XEXP (opb0
, 1));
1619 if (GET_CODE (b
) == GEU
1620 && GET_CODE (opb0
) == PLUS
1621 && opb1
== const1_rtx
1622 && CONST_INT_P (XEXP (opb0
, 1))
1623 /* Avoid overflows. */
1624 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1625 != ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
1626 && rtx_equal_p (XEXP (opb0
, 0), op0
))
1627 return INTVAL (op1
) == -INTVAL (XEXP (opb0
, 1));
1630 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1631 if ((GET_CODE (a
) == GT
|| GET_CODE (a
) == GE
)
1632 && CONST_INT_P (op1
)
1633 && ((GET_CODE (a
) == GT
&& op1
== constm1_rtx
)
1634 || INTVAL (op1
) >= 0)
1635 && GET_CODE (b
) == LTU
1636 && CONST_INT_P (opb1
)
1637 && rtx_equal_p (op0
, opb0
))
1638 return INTVAL (opb1
) < 0;
1643 /* Canonicalizes COND so that
1645 (1) Ensure that operands are ordered according to
1646 swap_commutative_operands_p.
1647 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1648 for GE, GEU, and LEU. */
1651 canon_condition (rtx cond
)
1656 enum machine_mode mode
;
1658 code
= GET_CODE (cond
);
1659 op0
= XEXP (cond
, 0);
1660 op1
= XEXP (cond
, 1);
1662 if (swap_commutative_operands_p (op0
, op1
))
1664 code
= swap_condition (code
);
1670 mode
= GET_MODE (op0
);
1671 if (mode
== VOIDmode
)
1672 mode
= GET_MODE (op1
);
1673 gcc_assert (mode
!= VOIDmode
);
1675 if (CONST_INT_P (op1
)
1676 && GET_MODE_CLASS (mode
) != MODE_CC
1677 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
1679 HOST_WIDE_INT const_val
= INTVAL (op1
);
1680 unsigned HOST_WIDE_INT uconst_val
= const_val
;
1681 unsigned HOST_WIDE_INT max_val
1682 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (mode
);
1687 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
1688 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
1691 /* When cross-compiling, const_val might be sign-extended from
1692 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
1694 if ((HOST_WIDE_INT
) (const_val
& max_val
)
1695 != (((HOST_WIDE_INT
) 1
1696 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
1697 code
= GT
, op1
= gen_int_mode (const_val
- 1, mode
);
1701 if (uconst_val
< max_val
)
1702 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, mode
);
1706 if (uconst_val
!= 0)
1707 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, mode
);
1715 if (op0
!= XEXP (cond
, 0)
1716 || op1
!= XEXP (cond
, 1)
1717 || code
!= GET_CODE (cond
)
1718 || GET_MODE (cond
) != SImode
)
1719 cond
= gen_rtx_fmt_ee (code
, SImode
, op0
, op1
);
1724 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1725 set of altered regs. */
1728 simplify_using_condition (rtx cond
, rtx
*expr
, regset altered
)
1730 rtx rev
, reve
, exp
= *expr
;
1732 /* If some register gets altered later, we do not really speak about its
1733 value at the time of comparison. */
1735 && for_each_rtx (&cond
, altered_reg_used
, altered
))
1738 if (GET_CODE (cond
) == EQ
1739 && REG_P (XEXP (cond
, 0)) && CONSTANT_P (XEXP (cond
, 1)))
1741 *expr
= simplify_replace_rtx (*expr
, XEXP (cond
, 0), XEXP (cond
, 1));
1745 if (!COMPARISON_P (exp
))
1748 rev
= reversed_condition (cond
);
1749 reve
= reversed_condition (exp
);
1751 cond
= canon_condition (cond
);
1752 exp
= canon_condition (exp
);
1754 rev
= canon_condition (rev
);
1756 reve
= canon_condition (reve
);
1758 if (rtx_equal_p (exp
, cond
))
1760 *expr
= const_true_rtx
;
1764 if (rev
&& rtx_equal_p (exp
, rev
))
1770 if (implies_p (cond
, exp
))
1772 *expr
= const_true_rtx
;
1776 if (reve
&& implies_p (cond
, reve
))
1782 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1784 if (rev
&& implies_p (exp
, rev
))
1790 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1791 if (rev
&& reve
&& implies_p (reve
, rev
))
1793 *expr
= const_true_rtx
;
1797 /* We would like to have some other tests here. TODO. */
1802 /* Use relationship between A and *B to eventually eliminate *B.
1803 OP is the operation we consider. */
1806 eliminate_implied_condition (enum rtx_code op
, rtx a
, rtx
*b
)
1811 /* If A implies *B, we may replace *B by true. */
1812 if (implies_p (a
, *b
))
1813 *b
= const_true_rtx
;
1817 /* If *B implies A, we may replace *B by false. */
1818 if (implies_p (*b
, a
))
1827 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1828 operation we consider. */
1831 eliminate_implied_conditions (enum rtx_code op
, rtx
*head
, rtx tail
)
1835 for (elt
= tail
; elt
; elt
= XEXP (elt
, 1))
1836 eliminate_implied_condition (op
, *head
, &XEXP (elt
, 0));
1837 for (elt
= tail
; elt
; elt
= XEXP (elt
, 1))
1838 eliminate_implied_condition (op
, XEXP (elt
, 0), head
);
1841 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1842 is a list, its elements are assumed to be combined using OP. */
1845 simplify_using_initial_values (struct loop
*loop
, enum rtx_code op
, rtx
*expr
)
1847 bool expression_valid
;
1848 rtx head
, tail
, insn
, cond_list
, last_valid_expr
;
1850 regset altered
, this_altered
;
1856 if (CONSTANT_P (*expr
))
1859 if (GET_CODE (*expr
) == EXPR_LIST
)
1861 head
= XEXP (*expr
, 0);
1862 tail
= XEXP (*expr
, 1);
1864 eliminate_implied_conditions (op
, &head
, tail
);
1869 neutral
= const_true_rtx
;
1874 neutral
= const0_rtx
;
1875 aggr
= const_true_rtx
;
1882 simplify_using_initial_values (loop
, UNKNOWN
, &head
);
1885 XEXP (*expr
, 0) = aggr
;
1886 XEXP (*expr
, 1) = NULL_RTX
;
1889 else if (head
== neutral
)
1892 simplify_using_initial_values (loop
, op
, expr
);
1895 simplify_using_initial_values (loop
, op
, &tail
);
1897 if (tail
&& XEXP (tail
, 0) == aggr
)
1903 XEXP (*expr
, 0) = head
;
1904 XEXP (*expr
, 1) = tail
;
1908 gcc_assert (op
== UNKNOWN
);
1911 if (for_each_rtx (expr
, replace_single_def_regs
, expr
) == 0)
1913 if (CONSTANT_P (*expr
))
1916 e
= loop_preheader_edge (loop
);
1917 if (e
->src
== ENTRY_BLOCK_PTR
)
1920 altered
= ALLOC_REG_SET (®_obstack
);
1921 this_altered
= ALLOC_REG_SET (®_obstack
);
1923 expression_valid
= true;
1924 last_valid_expr
= *expr
;
1925 cond_list
= NULL_RTX
;
1928 insn
= BB_END (e
->src
);
1929 if (any_condjump_p (insn
))
1931 rtx cond
= get_condition (BB_END (e
->src
), NULL
, false, true);
1933 if (cond
&& (e
->flags
& EDGE_FALLTHRU
))
1934 cond
= reversed_condition (cond
);
1938 simplify_using_condition (cond
, expr
, altered
);
1942 if (CONSTANT_P (*expr
))
1944 for (note
= cond_list
; note
; note
= XEXP (note
, 1))
1946 simplify_using_condition (XEXP (note
, 0), expr
, altered
);
1947 if (CONSTANT_P (*expr
))
1951 cond_list
= alloc_EXPR_LIST (0, cond
, cond_list
);
1955 FOR_BB_INSNS_REVERSE (e
->src
, insn
)
1963 CLEAR_REG_SET (this_altered
);
1964 note_stores (PATTERN (insn
), mark_altered
, this_altered
);
1967 /* Kill all call clobbered registers. */
1969 hard_reg_set_iterator hrsi
;
1970 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call
,
1972 SET_REGNO_REG_SET (this_altered
, i
);
1975 if (suitable_set_for_replacement (insn
, &dest
, &src
))
1977 rtx
*pnote
, *pnote_next
;
1979 replace_in_expr (expr
, dest
, src
);
1980 if (CONSTANT_P (*expr
))
1983 for (pnote
= &cond_list
; *pnote
; pnote
= pnote_next
)
1986 rtx old_cond
= XEXP (note
, 0);
1988 pnote_next
= &XEXP (note
, 1);
1989 replace_in_expr (&XEXP (note
, 0), dest
, src
);
1991 /* We can no longer use a condition that has been simplified
1992 to a constant, and simplify_using_condition will abort if
1994 if (CONSTANT_P (XEXP (note
, 0)))
1996 *pnote
= *pnote_next
;
1998 free_EXPR_LIST_node (note
);
2000 /* Retry simplifications with this condition if either the
2001 expression or the condition changed. */
2002 else if (old_cond
!= XEXP (note
, 0) || old
!= *expr
)
2003 simplify_using_condition (XEXP (note
, 0), expr
, altered
);
2008 rtx
*pnote
, *pnote_next
;
2010 /* If we did not use this insn to make a replacement, any overlap
2011 between stores in this insn and our expression will cause the
2012 expression to become invalid. */
2013 if (for_each_rtx (expr
, altered_reg_used
, this_altered
))
2016 /* Likewise for the conditions. */
2017 for (pnote
= &cond_list
; *pnote
; pnote
= pnote_next
)
2020 rtx old_cond
= XEXP (note
, 0);
2022 pnote_next
= &XEXP (note
, 1);
2023 if (for_each_rtx (&old_cond
, altered_reg_used
, this_altered
))
2025 *pnote
= *pnote_next
;
2027 free_EXPR_LIST_node (note
);
2032 if (CONSTANT_P (*expr
))
2035 IOR_REG_SET (altered
, this_altered
);
2037 /* If the expression now contains regs that have been altered, we
2038 can't return it to the caller. However, it is still valid for
2039 further simplification, so keep searching to see if we can
2040 eventually turn it into a constant. */
2041 if (for_each_rtx (expr
, altered_reg_used
, altered
))
2042 expression_valid
= false;
2043 if (expression_valid
)
2044 last_valid_expr
= *expr
;
2047 if (!single_pred_p (e
->src
)
2048 || single_pred (e
->src
) == ENTRY_BLOCK_PTR
)
2050 e
= single_pred_edge (e
->src
);
2054 free_EXPR_LIST_list (&cond_list
);
2055 if (!CONSTANT_P (*expr
))
2056 *expr
= last_valid_expr
;
2057 FREE_REG_SET (altered
);
2058 FREE_REG_SET (this_altered
);
2061 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2062 that IV occurs as left operands of comparison COND and its signedness
2063 is SIGNED_P to DESC. */
2066 shorten_into_mode (struct rtx_iv
*iv
, enum machine_mode mode
,
2067 enum rtx_code cond
, bool signed_p
, struct niter_desc
*desc
)
2069 rtx mmin
, mmax
, cond_over
, cond_under
;
2071 get_mode_bounds (mode
, signed_p
, iv
->extend_mode
, &mmin
, &mmax
);
2072 cond_under
= simplify_gen_relational (LT
, SImode
, iv
->extend_mode
,
2074 cond_over
= simplify_gen_relational (GT
, SImode
, iv
->extend_mode
,
2083 if (cond_under
!= const0_rtx
)
2085 alloc_EXPR_LIST (0, cond_under
, desc
->infinite
);
2086 if (cond_over
!= const0_rtx
)
2087 desc
->noloop_assumptions
=
2088 alloc_EXPR_LIST (0, cond_over
, desc
->noloop_assumptions
);
2095 if (cond_over
!= const0_rtx
)
2097 alloc_EXPR_LIST (0, cond_over
, desc
->infinite
);
2098 if (cond_under
!= const0_rtx
)
2099 desc
->noloop_assumptions
=
2100 alloc_EXPR_LIST (0, cond_under
, desc
->noloop_assumptions
);
2104 if (cond_over
!= const0_rtx
)
2106 alloc_EXPR_LIST (0, cond_over
, desc
->infinite
);
2107 if (cond_under
!= const0_rtx
)
2109 alloc_EXPR_LIST (0, cond_under
, desc
->infinite
);
2117 iv
->extend
= signed_p
? IV_SIGN_EXTEND
: IV_ZERO_EXTEND
;
2120 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2121 subregs of the same mode if possible (sometimes it is necessary to add
2122 some assumptions to DESC). */
2125 canonicalize_iv_subregs (struct rtx_iv
*iv0
, struct rtx_iv
*iv1
,
2126 enum rtx_code cond
, struct niter_desc
*desc
)
2128 enum machine_mode comp_mode
;
2131 /* If the ivs behave specially in the first iteration, or are
2132 added/multiplied after extending, we ignore them. */
2133 if (iv0
->first_special
|| iv0
->mult
!= const1_rtx
|| iv0
->delta
!= const0_rtx
)
2135 if (iv1
->first_special
|| iv1
->mult
!= const1_rtx
|| iv1
->delta
!= const0_rtx
)
2138 /* If there is some extend, it must match signedness of the comparison. */
2143 if (iv0
->extend
== IV_ZERO_EXTEND
2144 || iv1
->extend
== IV_ZERO_EXTEND
)
2151 if (iv0
->extend
== IV_SIGN_EXTEND
2152 || iv1
->extend
== IV_SIGN_EXTEND
)
2158 if (iv0
->extend
!= IV_UNKNOWN_EXTEND
2159 && iv1
->extend
!= IV_UNKNOWN_EXTEND
2160 && iv0
->extend
!= iv1
->extend
)
2164 if (iv0
->extend
!= IV_UNKNOWN_EXTEND
)
2165 signed_p
= iv0
->extend
== IV_SIGN_EXTEND
;
2166 if (iv1
->extend
!= IV_UNKNOWN_EXTEND
)
2167 signed_p
= iv1
->extend
== IV_SIGN_EXTEND
;
2174 /* Values of both variables should be computed in the same mode. These
2175 might indeed be different, if we have comparison like
2177 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2179 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2180 in different modes. This does not seem impossible to handle, but
2181 it hardly ever occurs in practice.
2183 The only exception is the case when one of operands is invariant.
2184 For example pentium 3 generates comparisons like
2185 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2186 definitely do not want this prevent the optimization. */
2187 comp_mode
= iv0
->extend_mode
;
2188 if (GET_MODE_BITSIZE (comp_mode
) < GET_MODE_BITSIZE (iv1
->extend_mode
))
2189 comp_mode
= iv1
->extend_mode
;
2191 if (iv0
->extend_mode
!= comp_mode
)
2193 if (iv0
->mode
!= iv0
->extend_mode
2194 || iv0
->step
!= const0_rtx
)
2197 iv0
->base
= simplify_gen_unary (signed_p
? SIGN_EXTEND
: ZERO_EXTEND
,
2198 comp_mode
, iv0
->base
, iv0
->mode
);
2199 iv0
->extend_mode
= comp_mode
;
2202 if (iv1
->extend_mode
!= comp_mode
)
2204 if (iv1
->mode
!= iv1
->extend_mode
2205 || iv1
->step
!= const0_rtx
)
2208 iv1
->base
= simplify_gen_unary (signed_p
? SIGN_EXTEND
: ZERO_EXTEND
,
2209 comp_mode
, iv1
->base
, iv1
->mode
);
2210 iv1
->extend_mode
= comp_mode
;
2213 /* Check that both ivs belong to a range of a single mode. If one of the
2214 operands is an invariant, we may need to shorten it into the common
2216 if (iv0
->mode
== iv0
->extend_mode
2217 && iv0
->step
== const0_rtx
2218 && iv0
->mode
!= iv1
->mode
)
2219 shorten_into_mode (iv0
, iv1
->mode
, cond
, signed_p
, desc
);
2221 if (iv1
->mode
== iv1
->extend_mode
2222 && iv1
->step
== const0_rtx
2223 && iv0
->mode
!= iv1
->mode
)
2224 shorten_into_mode (iv1
, iv0
->mode
, swap_condition (cond
), signed_p
, desc
);
2226 if (iv0
->mode
!= iv1
->mode
)
2229 desc
->mode
= iv0
->mode
;
2230 desc
->signed_p
= signed_p
;
2235 /* Tries to estimate the maximum number of iterations in LOOP, and return the
2236 result. This function is called from iv_number_of_iterations with
2237 a number of fields in DESC already filled in. OLD_NITER is the original
2238 expression for the number of iterations, before we tried to simplify it. */
2240 static unsigned HOST_WIDEST_INT
2241 determine_max_iter (struct loop
*loop
, struct niter_desc
*desc
, rtx old_niter
)
2243 rtx niter
= desc
->niter_expr
;
2244 rtx mmin
, mmax
, cmp
;
2245 unsigned HOST_WIDEST_INT nmax
, inc
;
2246 unsigned HOST_WIDEST_INT andmax
= 0;
2248 /* We used to look for constant operand 0 of AND,
2249 but canonicalization should always make this impossible. */
2250 gcc_checking_assert (GET_CODE (niter
) != AND
2251 || !CONST_INT_P (XEXP (niter
, 0)));
2253 if (GET_CODE (niter
) == AND
2254 && CONST_INT_P (XEXP (niter
, 1)))
2256 andmax
= UINTVAL (XEXP (niter
, 1));
2257 niter
= XEXP (niter
, 0);
2260 get_mode_bounds (desc
->mode
, desc
->signed_p
, desc
->mode
, &mmin
, &mmax
);
2261 nmax
= INTVAL (mmax
) - INTVAL (mmin
);
2263 if (GET_CODE (niter
) == UDIV
)
2265 if (!CONST_INT_P (XEXP (niter
, 1)))
2267 inc
= INTVAL (XEXP (niter
, 1));
2268 niter
= XEXP (niter
, 0);
2273 /* We could use a binary search here, but for now improving the upper
2274 bound by just one eliminates one important corner case. */
2275 cmp
= simplify_gen_relational (desc
->signed_p
? LT
: LTU
, VOIDmode
,
2276 desc
->mode
, old_niter
, mmax
);
2277 simplify_using_initial_values (loop
, UNKNOWN
, &cmp
);
2278 if (cmp
== const_true_rtx
)
2283 fprintf (dump_file
, ";; improved upper bound by one.\n");
2287 nmax
= MIN (nmax
, andmax
);
2289 fprintf (dump_file
, ";; Determined upper bound "HOST_WIDEST_INT_PRINT_DEC
".\n",
2294 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2295 the result into DESC. Very similar to determine_number_of_iterations
2296 (basically its rtl version), complicated by things like subregs. */
2299 iv_number_of_iterations (struct loop
*loop
, rtx insn
, rtx condition
,
2300 struct niter_desc
*desc
)
2302 rtx op0
, op1
, delta
, step
, bound
, may_xform
, tmp
, tmp0
, tmp1
;
2303 struct rtx_iv iv0
, iv1
, tmp_iv
;
2304 rtx assumption
, may_not_xform
;
2306 enum machine_mode mode
, comp_mode
;
2307 rtx mmin
, mmax
, mode_mmin
, mode_mmax
;
2308 unsigned HOST_WIDEST_INT s
, size
, d
, inv
, max
;
2309 HOST_WIDEST_INT up
, down
, inc
, step_val
;
2310 int was_sharp
= false;
2314 /* The meaning of these assumptions is this:
2316 then the rest of information does not have to be valid
2317 if noloop_assumptions then the loop does not roll
2318 if infinite then this exit is never used */
2320 desc
->assumptions
= NULL_RTX
;
2321 desc
->noloop_assumptions
= NULL_RTX
;
2322 desc
->infinite
= NULL_RTX
;
2323 desc
->simple_p
= true;
2325 desc
->const_iter
= false;
2326 desc
->niter_expr
= NULL_RTX
;
2328 cond
= GET_CODE (condition
);
2329 gcc_assert (COMPARISON_P (condition
));
2331 mode
= GET_MODE (XEXP (condition
, 0));
2332 if (mode
== VOIDmode
)
2333 mode
= GET_MODE (XEXP (condition
, 1));
2334 /* The constant comparisons should be folded. */
2335 gcc_assert (mode
!= VOIDmode
);
2337 /* We only handle integers or pointers. */
2338 if (GET_MODE_CLASS (mode
) != MODE_INT
2339 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
2342 op0
= XEXP (condition
, 0);
2343 if (!iv_analyze (insn
, op0
, &iv0
))
2345 if (iv0
.extend_mode
== VOIDmode
)
2346 iv0
.mode
= iv0
.extend_mode
= mode
;
2348 op1
= XEXP (condition
, 1);
2349 if (!iv_analyze (insn
, op1
, &iv1
))
2351 if (iv1
.extend_mode
== VOIDmode
)
2352 iv1
.mode
= iv1
.extend_mode
= mode
;
2354 if (GET_MODE_BITSIZE (iv0
.extend_mode
) > HOST_BITS_PER_WIDE_INT
2355 || GET_MODE_BITSIZE (iv1
.extend_mode
) > HOST_BITS_PER_WIDE_INT
)
2358 /* Check condition and normalize it. */
2366 tmp_iv
= iv0
; iv0
= iv1
; iv1
= tmp_iv
;
2367 cond
= swap_condition (cond
);
2379 /* Handle extends. This is relatively nontrivial, so we only try in some
2380 easy cases, when we can canonicalize the ivs (possibly by adding some
2381 assumptions) to shape subreg (base + i * step). This function also fills
2382 in desc->mode and desc->signed_p. */
2384 if (!canonicalize_iv_subregs (&iv0
, &iv1
, cond
, desc
))
2387 comp_mode
= iv0
.extend_mode
;
2389 size
= GET_MODE_BITSIZE (mode
);
2390 get_mode_bounds (mode
, (cond
== LE
|| cond
== LT
), comp_mode
, &mmin
, &mmax
);
2391 mode_mmin
= lowpart_subreg (mode
, mmin
, comp_mode
);
2392 mode_mmax
= lowpart_subreg (mode
, mmax
, comp_mode
);
2394 if (!CONST_INT_P (iv0
.step
) || !CONST_INT_P (iv1
.step
))
2397 /* We can take care of the case of two induction variables chasing each other
2398 if the test is NE. I have never seen a loop using it, but still it is
2400 if (iv0
.step
!= const0_rtx
&& iv1
.step
!= const0_rtx
)
2405 iv0
.step
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.step
, iv1
.step
);
2406 iv1
.step
= const0_rtx
;
2409 /* This is either infinite loop or the one that ends immediately, depending
2410 on initial values. Unswitching should remove this kind of conditions. */
2411 if (iv0
.step
== const0_rtx
&& iv1
.step
== const0_rtx
)
2416 if (iv0
.step
== const0_rtx
)
2417 step_val
= -INTVAL (iv1
.step
);
2419 step_val
= INTVAL (iv0
.step
);
2421 /* Ignore loops of while (i-- < 10) type. */
2425 step_is_pow2
= !(step_val
& (step_val
- 1));
2429 /* We do not care about whether the step is power of two in this
2431 step_is_pow2
= false;
2435 /* Some more condition normalization. We must record some assumptions
2436 due to overflows. */
2441 /* We want to take care only of non-sharp relationals; this is easy,
2442 as in cases the overflow would make the transformation unsafe
2443 the loop does not roll. Seemingly it would make more sense to want
2444 to take care of sharp relationals instead, as NE is more similar to
2445 them, but the problem is that here the transformation would be more
2446 difficult due to possibly infinite loops. */
2447 if (iv0
.step
== const0_rtx
)
2449 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2450 assumption
= simplify_gen_relational (EQ
, SImode
, mode
, tmp
,
2452 if (assumption
== const_true_rtx
)
2453 goto zero_iter_simplify
;
2454 iv0
.base
= simplify_gen_binary (PLUS
, comp_mode
,
2455 iv0
.base
, const1_rtx
);
2459 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2460 assumption
= simplify_gen_relational (EQ
, SImode
, mode
, tmp
,
2462 if (assumption
== const_true_rtx
)
2463 goto zero_iter_simplify
;
2464 iv1
.base
= simplify_gen_binary (PLUS
, comp_mode
,
2465 iv1
.base
, constm1_rtx
);
2468 if (assumption
!= const0_rtx
)
2469 desc
->noloop_assumptions
=
2470 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2471 cond
= (cond
== LT
) ? LE
: LEU
;
2473 /* It will be useful to be able to tell the difference once more in
2474 LE -> NE reduction. */
2480 /* Take care of trivially infinite loops. */
2483 if (iv0
.step
== const0_rtx
)
2485 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2486 if (rtx_equal_p (tmp
, mode_mmin
))
2489 alloc_EXPR_LIST (0, const_true_rtx
, NULL_RTX
);
2490 /* Fill in the remaining fields somehow. */
2491 goto zero_iter_simplify
;
2496 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2497 if (rtx_equal_p (tmp
, mode_mmax
))
2500 alloc_EXPR_LIST (0, const_true_rtx
, NULL_RTX
);
2501 /* Fill in the remaining fields somehow. */
2502 goto zero_iter_simplify
;
2507 /* If we can we want to take care of NE conditions instead of size
2508 comparisons, as they are much more friendly (most importantly
2509 this takes care of special handling of loops with step 1). We can
2510 do it if we first check that upper bound is greater or equal to
2511 lower bound, their difference is constant c modulo step and that
2512 there is not an overflow. */
2515 if (iv0
.step
== const0_rtx
)
2516 step
= simplify_gen_unary (NEG
, comp_mode
, iv1
.step
, comp_mode
);
2519 delta
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, iv0
.base
);
2520 delta
= lowpart_subreg (mode
, delta
, comp_mode
);
2521 delta
= simplify_gen_binary (UMOD
, mode
, delta
, step
);
2522 may_xform
= const0_rtx
;
2523 may_not_xform
= const_true_rtx
;
2525 if (CONST_INT_P (delta
))
2527 if (was_sharp
&& INTVAL (delta
) == INTVAL (step
) - 1)
2529 /* A special case. We have transformed condition of type
2530 for (i = 0; i < 4; i += 4)
2532 for (i = 0; i <= 3; i += 4)
2533 obviously if the test for overflow during that transformation
2534 passed, we cannot overflow here. Most importantly any
2535 loop with sharp end condition and step 1 falls into this
2536 category, so handling this case specially is definitely
2537 worth the troubles. */
2538 may_xform
= const_true_rtx
;
2540 else if (iv0
.step
== const0_rtx
)
2542 bound
= simplify_gen_binary (PLUS
, comp_mode
, mmin
, step
);
2543 bound
= simplify_gen_binary (MINUS
, comp_mode
, bound
, delta
);
2544 bound
= lowpart_subreg (mode
, bound
, comp_mode
);
2545 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2546 may_xform
= simplify_gen_relational (cond
, SImode
, mode
,
2548 may_not_xform
= simplify_gen_relational (reverse_condition (cond
),
2554 bound
= simplify_gen_binary (MINUS
, comp_mode
, mmax
, step
);
2555 bound
= simplify_gen_binary (PLUS
, comp_mode
, bound
, delta
);
2556 bound
= lowpart_subreg (mode
, bound
, comp_mode
);
2557 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2558 may_xform
= simplify_gen_relational (cond
, SImode
, mode
,
2560 may_not_xform
= simplify_gen_relational (reverse_condition (cond
),
2566 if (may_xform
!= const0_rtx
)
2568 /* We perform the transformation always provided that it is not
2569 completely senseless. This is OK, as we would need this assumption
2570 to determine the number of iterations anyway. */
2571 if (may_xform
!= const_true_rtx
)
2573 /* If the step is a power of two and the final value we have
2574 computed overflows, the cycle is infinite. Otherwise it
2575 is nontrivial to compute the number of iterations. */
2577 desc
->infinite
= alloc_EXPR_LIST (0, may_not_xform
,
2580 desc
->assumptions
= alloc_EXPR_LIST (0, may_xform
,
2584 /* We are going to lose some information about upper bound on
2585 number of iterations in this step, so record the information
2587 inc
= INTVAL (iv0
.step
) - INTVAL (iv1
.step
);
2588 if (CONST_INT_P (iv1
.base
))
2589 up
= INTVAL (iv1
.base
);
2591 up
= INTVAL (mode_mmax
) - inc
;
2592 down
= INTVAL (CONST_INT_P (iv0
.base
)
2595 max
= (up
- down
) / inc
+ 1;
2597 && !desc
->assumptions
)
2598 record_niter_bound (loop
, double_int::from_uhwi (max
),
2601 if (iv0
.step
== const0_rtx
)
2603 iv0
.base
= simplify_gen_binary (PLUS
, comp_mode
, iv0
.base
, delta
);
2604 iv0
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.base
, step
);
2608 iv1
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, delta
);
2609 iv1
.base
= simplify_gen_binary (PLUS
, comp_mode
, iv1
.base
, step
);
2612 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2613 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2614 assumption
= simplify_gen_relational (reverse_condition (cond
),
2615 SImode
, mode
, tmp0
, tmp1
);
2616 if (assumption
== const_true_rtx
)
2617 goto zero_iter_simplify
;
2618 else if (assumption
!= const0_rtx
)
2619 desc
->noloop_assumptions
=
2620 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2625 /* Count the number of iterations. */
2628 /* Everything we do here is just arithmetics modulo size of mode. This
2629 makes us able to do more involved computations of number of iterations
2630 than in other cases. First transform the condition into shape
2631 s * i <> c, with s positive. */
2632 iv1
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, iv0
.base
);
2633 iv0
.base
= const0_rtx
;
2634 iv0
.step
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.step
, iv1
.step
);
2635 iv1
.step
= const0_rtx
;
2636 if (INTVAL (iv0
.step
) < 0)
2638 iv0
.step
= simplify_gen_unary (NEG
, comp_mode
, iv0
.step
, mode
);
2639 iv1
.base
= simplify_gen_unary (NEG
, comp_mode
, iv1
.base
, mode
);
2641 iv0
.step
= lowpart_subreg (mode
, iv0
.step
, comp_mode
);
2643 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2644 is infinite. Otherwise, the number of iterations is
2645 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2646 s
= INTVAL (iv0
.step
); d
= 1;
2653 bound
= GEN_INT (((unsigned HOST_WIDEST_INT
) 1 << (size
- 1 ) << 1) - 1);
2655 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2656 tmp
= simplify_gen_binary (UMOD
, mode
, tmp1
, GEN_INT (d
));
2657 assumption
= simplify_gen_relational (NE
, SImode
, mode
, tmp
, const0_rtx
);
2658 desc
->infinite
= alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2660 tmp
= simplify_gen_binary (UDIV
, mode
, tmp1
, GEN_INT (d
));
2661 inv
= inverse (s
, size
);
2662 tmp
= simplify_gen_binary (MULT
, mode
, tmp
, gen_int_mode (inv
, mode
));
2663 desc
->niter_expr
= simplify_gen_binary (AND
, mode
, tmp
, bound
);
2667 if (iv1
.step
== const0_rtx
)
2668 /* Condition in shape a + s * i <= b
2669 We must know that b + s does not overflow and a <= b + s and then we
2670 can compute number of iterations as (b + s - a) / s. (It might
2671 seem that we in fact could be more clever about testing the b + s
2672 overflow condition using some information about b - a mod s,
2673 but it was already taken into account during LE -> NE transform). */
2676 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2677 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2679 bound
= simplify_gen_binary (MINUS
, mode
, mode_mmax
,
2680 lowpart_subreg (mode
, step
,
2686 /* If s is power of 2, we know that the loop is infinite if
2687 a % s <= b % s and b + s overflows. */
2688 assumption
= simplify_gen_relational (reverse_condition (cond
),
2692 t0
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp0
), step
);
2693 t1
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp1
), step
);
2694 tmp
= simplify_gen_relational (cond
, SImode
, mode
, t0
, t1
);
2695 assumption
= simplify_gen_binary (AND
, SImode
, assumption
, tmp
);
2697 alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2701 assumption
= simplify_gen_relational (cond
, SImode
, mode
,
2704 alloc_EXPR_LIST (0, assumption
, desc
->assumptions
);
2707 tmp
= simplify_gen_binary (PLUS
, comp_mode
, iv1
.base
, iv0
.step
);
2708 tmp
= lowpart_subreg (mode
, tmp
, comp_mode
);
2709 assumption
= simplify_gen_relational (reverse_condition (cond
),
2710 SImode
, mode
, tmp0
, tmp
);
2712 delta
= simplify_gen_binary (PLUS
, mode
, tmp1
, step
);
2713 delta
= simplify_gen_binary (MINUS
, mode
, delta
, tmp0
);
2717 /* Condition in shape a <= b - s * i
2718 We must know that a - s does not overflow and a - s <= b and then
2719 we can again compute number of iterations as (b - (a - s)) / s. */
2720 step
= simplify_gen_unary (NEG
, mode
, iv1
.step
, mode
);
2721 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2722 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2724 bound
= simplify_gen_binary (PLUS
, mode
, mode_mmin
,
2725 lowpart_subreg (mode
, step
, comp_mode
));
2730 /* If s is power of 2, we know that the loop is infinite if
2731 a % s <= b % s and a - s overflows. */
2732 assumption
= simplify_gen_relational (reverse_condition (cond
),
2736 t0
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp0
), step
);
2737 t1
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp1
), step
);
2738 tmp
= simplify_gen_relational (cond
, SImode
, mode
, t0
, t1
);
2739 assumption
= simplify_gen_binary (AND
, SImode
, assumption
, tmp
);
2741 alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2745 assumption
= simplify_gen_relational (cond
, SImode
, mode
,
2748 alloc_EXPR_LIST (0, assumption
, desc
->assumptions
);
2751 tmp
= simplify_gen_binary (PLUS
, comp_mode
, iv0
.base
, iv1
.step
);
2752 tmp
= lowpart_subreg (mode
, tmp
, comp_mode
);
2753 assumption
= simplify_gen_relational (reverse_condition (cond
),
2756 delta
= simplify_gen_binary (MINUS
, mode
, tmp0
, step
);
2757 delta
= simplify_gen_binary (MINUS
, mode
, tmp1
, delta
);
2759 if (assumption
== const_true_rtx
)
2760 goto zero_iter_simplify
;
2761 else if (assumption
!= const0_rtx
)
2762 desc
->noloop_assumptions
=
2763 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2764 delta
= simplify_gen_binary (UDIV
, mode
, delta
, step
);
2765 desc
->niter_expr
= delta
;
2768 old_niter
= desc
->niter_expr
;
2770 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2771 if (desc
->assumptions
2772 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2774 simplify_using_initial_values (loop
, IOR
, &desc
->noloop_assumptions
);
2775 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2776 simplify_using_initial_values (loop
, UNKNOWN
, &desc
->niter_expr
);
2778 /* Rerun the simplification. Consider code (created by copying loop headers)
2790 The first pass determines that i = 0, the second pass uses it to eliminate
2791 noloop assumption. */
2793 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2794 if (desc
->assumptions
2795 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2797 simplify_using_initial_values (loop
, IOR
, &desc
->noloop_assumptions
);
2798 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2799 simplify_using_initial_values (loop
, UNKNOWN
, &desc
->niter_expr
);
2801 if (desc
->noloop_assumptions
2802 && XEXP (desc
->noloop_assumptions
, 0) == const_true_rtx
)
2805 if (CONST_INT_P (desc
->niter_expr
))
2807 unsigned HOST_WIDEST_INT val
= INTVAL (desc
->niter_expr
);
2809 desc
->const_iter
= true;
2810 desc
->niter
= val
& GET_MODE_MASK (desc
->mode
);
2812 && !desc
->assumptions
)
2813 record_niter_bound (loop
, double_int::from_uhwi (desc
->niter
),
2818 max
= determine_max_iter (loop
, desc
, old_niter
);
2821 && !desc
->assumptions
)
2822 record_niter_bound (loop
, double_int::from_uhwi (max
),
2825 /* simplify_using_initial_values does a copy propagation on the registers
2826 in the expression for the number of iterations. This prolongs life
2827 ranges of registers and increases register pressure, and usually
2828 brings no gain (and if it happens to do, the cse pass will take care
2829 of it anyway). So prevent this behavior, unless it enabled us to
2830 derive that the number of iterations is a constant. */
2831 desc
->niter_expr
= old_niter
;
2837 /* Simplify the assumptions. */
2838 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2839 if (desc
->assumptions
2840 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2842 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2846 desc
->const_iter
= true;
2848 record_niter_bound (loop
, double_int_zero
,
2850 desc
->noloop_assumptions
= NULL_RTX
;
2851 desc
->niter_expr
= const0_rtx
;
2855 desc
->simple_p
= false;
2859 /* Checks whether E is a simple exit from LOOP and stores its description
2863 check_simple_exit (struct loop
*loop
, edge e
, struct niter_desc
*desc
)
2865 basic_block exit_bb
;
2870 desc
->simple_p
= false;
2872 /* It must belong directly to the loop. */
2873 if (exit_bb
->loop_father
!= loop
)
2876 /* It must be tested (at least) once during any iteration. */
2877 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit_bb
))
2880 /* It must end in a simple conditional jump. */
2881 if (!any_condjump_p (BB_END (exit_bb
)))
2884 ein
= EDGE_SUCC (exit_bb
, 0);
2886 ein
= EDGE_SUCC (exit_bb
, 1);
2889 desc
->in_edge
= ein
;
2891 /* Test whether the condition is suitable. */
2892 if (!(condition
= get_condition (BB_END (ein
->src
), &at
, false, false)))
2895 if (ein
->flags
& EDGE_FALLTHRU
)
2897 condition
= reversed_condition (condition
);
2902 /* Check that we are able to determine number of iterations and fill
2903 in information about it. */
2904 iv_number_of_iterations (loop
, at
, condition
, desc
);
2907 /* Finds a simple exit of LOOP and stores its description into DESC. */
2910 find_simple_exit (struct loop
*loop
, struct niter_desc
*desc
)
2915 struct niter_desc act
;
2919 desc
->simple_p
= false;
2920 body
= get_loop_body (loop
);
2922 for (i
= 0; i
< loop
->num_nodes
; i
++)
2924 FOR_EACH_EDGE (e
, ei
, body
[i
]->succs
)
2926 if (flow_bb_inside_loop_p (loop
, e
->dest
))
2929 check_simple_exit (loop
, e
, &act
);
2937 /* Prefer constant iterations; the less the better. */
2939 || (desc
->const_iter
&& act
.niter
>= desc
->niter
))
2942 /* Also if the actual exit may be infinite, while the old one
2943 not, prefer the old one. */
2944 if (act
.infinite
&& !desc
->infinite
)
2956 fprintf (dump_file
, "Loop %d is simple:\n", loop
->num
);
2957 fprintf (dump_file
, " simple exit %d -> %d\n",
2958 desc
->out_edge
->src
->index
,
2959 desc
->out_edge
->dest
->index
);
2960 if (desc
->assumptions
)
2962 fprintf (dump_file
, " assumptions: ");
2963 print_rtl (dump_file
, desc
->assumptions
);
2964 fprintf (dump_file
, "\n");
2966 if (desc
->noloop_assumptions
)
2968 fprintf (dump_file
, " does not roll if: ");
2969 print_rtl (dump_file
, desc
->noloop_assumptions
);
2970 fprintf (dump_file
, "\n");
2974 fprintf (dump_file
, " infinite if: ");
2975 print_rtl (dump_file
, desc
->infinite
);
2976 fprintf (dump_file
, "\n");
2979 fprintf (dump_file
, " number of iterations: ");
2980 print_rtl (dump_file
, desc
->niter_expr
);
2981 fprintf (dump_file
, "\n");
2983 fprintf (dump_file
, " upper bound: %li\n",
2984 (long)max_loop_iterations_int (loop
));
2985 fprintf (dump_file
, " realistic bound: %li\n",
2986 (long)estimated_loop_iterations_int (loop
));
2989 fprintf (dump_file
, "Loop %d is not simple.\n", loop
->num
);
2995 /* Creates a simple loop description of LOOP if it was not computed
2999 get_simple_loop_desc (struct loop
*loop
)
3001 struct niter_desc
*desc
= simple_loop_desc (loop
);
3006 /* At least desc->infinite is not always initialized by
3007 find_simple_loop_exit. */
3008 desc
= XCNEW (struct niter_desc
);
3009 iv_analysis_loop_init (loop
);
3010 find_simple_exit (loop
, desc
);
3013 if (desc
->simple_p
&& (desc
->assumptions
|| desc
->infinite
))
3015 const char *wording
;
3017 /* Assume that no overflow happens and that the loop is finite.
3018 We already warned at the tree level if we ran optimizations there. */
3019 if (!flag_tree_loop_optimize
&& warn_unsafe_loop_optimizations
)
3024 flag_unsafe_loop_optimizations
3025 ? N_("assuming that the loop is not infinite")
3026 : N_("cannot optimize possibly infinite loops");
3027 warning (OPT_Wunsafe_loop_optimizations
, "%s",
3030 if (desc
->assumptions
)
3033 flag_unsafe_loop_optimizations
3034 ? N_("assuming that the loop counter does not overflow")
3035 : N_("cannot optimize loop, the loop counter may overflow");
3036 warning (OPT_Wunsafe_loop_optimizations
, "%s",
3041 if (flag_unsafe_loop_optimizations
)
3043 desc
->assumptions
= NULL_RTX
;
3044 desc
->infinite
= NULL_RTX
;
3051 /* Releases simple loop description for LOOP. */
3054 free_simple_loop_desc (struct loop
*loop
)
3056 struct niter_desc
*desc
= simple_loop_desc (loop
);