* xcoffout.c (xcoff_tls_data_section_name): Define.
[official-gcc.git] / gcc / caller-save.c
blob77d299f36cc743a3d525050cf1bf4ad11a68f703
1 /* Save and restore call-clobbered registers which are live across a call.
2 Copyright (C) 1989, 1992, 1994, 1995, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "insn-config.h"
29 #include "flags.h"
30 #include "hard-reg-set.h"
31 #include "recog.h"
32 #include "basic-block.h"
33 #include "df.h"
34 #include "reload.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "diagnostic-core.h"
38 #include "tm_p.h"
39 #include "addresses.h"
40 #include "ggc.h"
41 #include "dumpfile.h"
43 #define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
45 #define regno_save_mode \
46 (this_target_reload->x_regno_save_mode)
47 #define cached_reg_save_code \
48 (this_target_reload->x_cached_reg_save_code)
49 #define cached_reg_restore_code \
50 (this_target_reload->x_cached_reg_restore_code)
52 /* For each hard register, a place on the stack where it can be saved,
53 if needed. */
55 static rtx
56 regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
58 /* The number of elements in the subsequent array. */
59 static int save_slots_num;
61 /* Allocated slots so far. */
62 static rtx save_slots[FIRST_PSEUDO_REGISTER];
64 /* Set of hard regs currently residing in save area (during insn scan). */
66 static HARD_REG_SET hard_regs_saved;
68 /* Number of registers currently in hard_regs_saved. */
70 static int n_regs_saved;
72 /* Computed by mark_referenced_regs, all regs referenced in a given
73 insn. */
74 static HARD_REG_SET referenced_regs;
77 typedef void refmarker_fn (rtx *loc, enum machine_mode mode, int hardregno,
78 void *mark_arg);
80 static int reg_save_code (int, enum machine_mode);
81 static int reg_restore_code (int, enum machine_mode);
83 struct saved_hard_reg;
84 static void initiate_saved_hard_regs (void);
85 static void new_saved_hard_reg (int, int);
86 static void finish_saved_hard_regs (void);
87 static int saved_hard_reg_compare_func (const void *, const void *);
89 static void mark_set_regs (rtx, const_rtx, void *);
90 static void mark_referenced_regs (rtx *, refmarker_fn *mark, void *mark_arg);
91 static refmarker_fn mark_reg_as_referenced;
92 static refmarker_fn replace_reg_with_saved_mem;
93 static int insert_save (struct insn_chain *, int, int, HARD_REG_SET *,
94 enum machine_mode *);
95 static int insert_restore (struct insn_chain *, int, int, int,
96 enum machine_mode *);
97 static struct insn_chain *insert_one_insn (struct insn_chain *, int, int,
98 rtx);
99 static void add_stored_regs (rtx, const_rtx, void *);
103 static GTY(()) rtx savepat;
104 static GTY(()) rtx restpat;
105 static GTY(()) rtx test_reg;
106 static GTY(()) rtx test_mem;
107 static GTY(()) rtx saveinsn;
108 static GTY(()) rtx restinsn;
110 /* Return the INSN_CODE used to save register REG in mode MODE. */
111 static int
112 reg_save_code (int reg, enum machine_mode mode)
114 bool ok;
115 if (cached_reg_save_code[reg][mode])
116 return cached_reg_save_code[reg][mode];
117 if (!HARD_REGNO_MODE_OK (reg, mode))
119 /* Depending on how HARD_REGNO_MODE_OK is defined, range propagation
120 might deduce here that reg >= FIRST_PSEUDO_REGISTER. So the assert
121 below silences a warning. */
122 gcc_assert (reg < FIRST_PSEUDO_REGISTER);
123 cached_reg_save_code[reg][mode] = -1;
124 cached_reg_restore_code[reg][mode] = -1;
125 return -1;
128 /* Update the register number and modes of the register
129 and memory operand. */
130 SET_REGNO_RAW (test_reg, reg);
131 PUT_MODE (test_reg, mode);
132 PUT_MODE (test_mem, mode);
134 /* Force re-recognition of the modified insns. */
135 INSN_CODE (saveinsn) = -1;
136 INSN_CODE (restinsn) = -1;
138 cached_reg_save_code[reg][mode] = recog_memoized (saveinsn);
139 cached_reg_restore_code[reg][mode] = recog_memoized (restinsn);
141 /* Now extract both insns and see if we can meet their
142 constraints. */
143 ok = (cached_reg_save_code[reg][mode] != -1
144 && cached_reg_restore_code[reg][mode] != -1);
145 if (ok)
147 extract_insn (saveinsn);
148 ok = constrain_operands (1);
149 extract_insn (restinsn);
150 ok &= constrain_operands (1);
153 if (! ok)
155 cached_reg_save_code[reg][mode] = -1;
156 cached_reg_restore_code[reg][mode] = -1;
158 gcc_assert (cached_reg_save_code[reg][mode]);
159 return cached_reg_save_code[reg][mode];
162 /* Return the INSN_CODE used to restore register REG in mode MODE. */
163 static int
164 reg_restore_code (int reg, enum machine_mode mode)
166 if (cached_reg_restore_code[reg][mode])
167 return cached_reg_restore_code[reg][mode];
168 /* Populate our cache. */
169 reg_save_code (reg, mode);
170 return cached_reg_restore_code[reg][mode];
173 /* Initialize for caller-save.
175 Look at all the hard registers that are used by a call and for which
176 reginfo.c has not already excluded from being used across a call.
178 Ensure that we can find a mode to save the register and that there is a
179 simple insn to save and restore the register. This latter check avoids
180 problems that would occur if we tried to save the MQ register of some
181 machines directly into memory. */
183 void
184 init_caller_save (void)
186 rtx addr_reg;
187 int offset;
188 rtx address;
189 int i, j;
191 if (caller_save_initialized_p)
192 return;
194 caller_save_initialized_p = true;
196 CLEAR_HARD_REG_SET (no_caller_save_reg_set);
197 /* First find all the registers that we need to deal with and all
198 the modes that they can have. If we can't find a mode to use,
199 we can't have the register live over calls. */
201 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
203 if (call_used_regs[i]
204 && !TEST_HARD_REG_BIT (call_fixed_reg_set, i))
206 for (j = 1; j <= MOVE_MAX_WORDS; j++)
208 regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j,
209 VOIDmode);
210 if (regno_save_mode[i][j] == VOIDmode && j == 1)
212 SET_HARD_REG_BIT (call_fixed_reg_set, i);
216 else
217 regno_save_mode[i][1] = VOIDmode;
220 /* The following code tries to approximate the conditions under which
221 we can easily save and restore a register without scratch registers or
222 other complexities. It will usually work, except under conditions where
223 the validity of an insn operand is dependent on the address offset.
224 No such cases are currently known.
226 We first find a typical offset from some BASE_REG_CLASS register.
227 This address is chosen by finding the first register in the class
228 and by finding the smallest power of two that is a valid offset from
229 that register in every mode we will use to save registers. */
231 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
232 if (TEST_HARD_REG_BIT
233 (reg_class_contents
234 [(int) base_reg_class (regno_save_mode[i][1], ADDR_SPACE_GENERIC,
235 PLUS, CONST_INT)], i))
236 break;
238 gcc_assert (i < FIRST_PSEUDO_REGISTER);
240 addr_reg = gen_rtx_REG (Pmode, i);
242 for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
244 address = gen_rtx_PLUS (Pmode, addr_reg, GEN_INT (offset));
246 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
247 if (regno_save_mode[i][1] != VOIDmode
248 && ! strict_memory_address_p (regno_save_mode[i][1], address))
249 break;
251 if (i == FIRST_PSEUDO_REGISTER)
252 break;
255 /* If we didn't find a valid address, we must use register indirect. */
256 if (offset == 0)
257 address = addr_reg;
259 /* Next we try to form an insn to save and restore the register. We
260 see if such an insn is recognized and meets its constraints.
262 To avoid lots of unnecessary RTL allocation, we construct all the RTL
263 once, then modify the memory and register operands in-place. */
265 test_reg = gen_rtx_REG (VOIDmode, 0);
266 test_mem = gen_rtx_MEM (VOIDmode, address);
267 savepat = gen_rtx_SET (VOIDmode, test_mem, test_reg);
268 restpat = gen_rtx_SET (VOIDmode, test_reg, test_mem);
270 saveinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, savepat, 0, -1, 0);
271 restinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, restpat, 0, -1, 0);
273 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
274 for (j = 1; j <= MOVE_MAX_WORDS; j++)
275 if (reg_save_code (i,regno_save_mode[i][j]) == -1)
277 regno_save_mode[i][j] = VOIDmode;
278 if (j == 1)
280 SET_HARD_REG_BIT (call_fixed_reg_set, i);
281 if (call_used_regs[i])
282 SET_HARD_REG_BIT (no_caller_save_reg_set, i);
289 /* Initialize save areas by showing that we haven't allocated any yet. */
291 void
292 init_save_areas (void)
294 int i, j;
296 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
297 for (j = 1; j <= MOVE_MAX_WORDS; j++)
298 regno_save_mem[i][j] = 0;
299 save_slots_num = 0;
303 /* The structure represents a hard register which should be saved
304 through the call. It is used when the integrated register
305 allocator (IRA) is used and sharing save slots is on. */
306 struct saved_hard_reg
308 /* Order number starting with 0. */
309 int num;
310 /* The hard regno. */
311 int hard_regno;
312 /* Execution frequency of all calls through which given hard
313 register should be saved. */
314 int call_freq;
315 /* Stack slot reserved to save the hard register through calls. */
316 rtx slot;
317 /* True if it is first hard register in the chain of hard registers
318 sharing the same stack slot. */
319 int first_p;
320 /* Order number of the next hard register structure with the same
321 slot in the chain. -1 represents end of the chain. */
322 int next;
325 /* Map: hard register number to the corresponding structure. */
326 static struct saved_hard_reg *hard_reg_map[FIRST_PSEUDO_REGISTER];
328 /* The number of all structures representing hard registers should be
329 saved, in order words, the number of used elements in the following
330 array. */
331 static int saved_regs_num;
333 /* Pointers to all the structures. Index is the order number of the
334 corresponding structure. */
335 static struct saved_hard_reg *all_saved_regs[FIRST_PSEUDO_REGISTER];
337 /* First called function for work with saved hard registers. */
338 static void
339 initiate_saved_hard_regs (void)
341 int i;
343 saved_regs_num = 0;
344 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
345 hard_reg_map[i] = NULL;
348 /* Allocate and return new saved hard register with given REGNO and
349 CALL_FREQ. */
350 static void
351 new_saved_hard_reg (int regno, int call_freq)
353 struct saved_hard_reg *saved_reg;
355 saved_reg
356 = (struct saved_hard_reg *) xmalloc (sizeof (struct saved_hard_reg));
357 hard_reg_map[regno] = all_saved_regs[saved_regs_num] = saved_reg;
358 saved_reg->num = saved_regs_num++;
359 saved_reg->hard_regno = regno;
360 saved_reg->call_freq = call_freq;
361 saved_reg->first_p = FALSE;
362 saved_reg->next = -1;
365 /* Free memory allocated for the saved hard registers. */
366 static void
367 finish_saved_hard_regs (void)
369 int i;
371 for (i = 0; i < saved_regs_num; i++)
372 free (all_saved_regs[i]);
375 /* The function is used to sort the saved hard register structures
376 according their frequency. */
377 static int
378 saved_hard_reg_compare_func (const void *v1p, const void *v2p)
380 const struct saved_hard_reg *p1 = *(struct saved_hard_reg * const *) v1p;
381 const struct saved_hard_reg *p2 = *(struct saved_hard_reg * const *) v2p;
383 if (flag_omit_frame_pointer)
385 if (p1->call_freq - p2->call_freq != 0)
386 return p1->call_freq - p2->call_freq;
388 else if (p2->call_freq - p1->call_freq != 0)
389 return p2->call_freq - p1->call_freq;
391 return p1->num - p2->num;
394 /* Allocate save areas for any hard registers that might need saving.
395 We take a conservative approach here and look for call-clobbered hard
396 registers that are assigned to pseudos that cross calls. This may
397 overestimate slightly (especially if some of these registers are later
398 used as spill registers), but it should not be significant.
400 For IRA we use priority coloring to decrease stack slots needed for
401 saving hard registers through calls. We build conflicts for them
402 to do coloring.
404 Future work:
406 In the fallback case we should iterate backwards across all possible
407 modes for the save, choosing the largest available one instead of
408 falling back to the smallest mode immediately. (eg TF -> DF -> SF).
410 We do not try to use "move multiple" instructions that exist
411 on some machines (such as the 68k moveml). It could be a win to try
412 and use them when possible. The hard part is doing it in a way that is
413 machine independent since they might be saving non-consecutive
414 registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
416 void
417 setup_save_areas (void)
419 int i, j, k, freq;
420 HARD_REG_SET hard_regs_used;
421 struct saved_hard_reg *saved_reg;
422 rtx insn;
423 struct insn_chain *chain, *next;
424 unsigned int regno;
425 HARD_REG_SET hard_regs_to_save, used_regs, this_insn_sets;
426 reg_set_iterator rsi;
428 CLEAR_HARD_REG_SET (hard_regs_used);
430 /* Find every CALL_INSN and record which hard regs are live across the
431 call into HARD_REG_MAP and HARD_REGS_USED. */
432 initiate_saved_hard_regs ();
433 /* Create hard reg saved regs. */
434 for (chain = reload_insn_chain; chain != 0; chain = next)
436 rtx cheap;
438 insn = chain->insn;
439 next = chain->next;
440 if (!CALL_P (insn)
441 || find_reg_note (insn, REG_NORETURN, NULL))
442 continue;
443 freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn));
444 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
445 &chain->live_throughout);
446 COPY_HARD_REG_SET (used_regs, call_used_reg_set);
448 /* Record all registers set in this call insn. These don't
449 need to be saved. N.B. the call insn might set a subreg
450 of a multi-hard-reg pseudo; then the pseudo is considered
451 live during the call, but the subreg that is set
452 isn't. */
453 CLEAR_HARD_REG_SET (this_insn_sets);
454 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
455 /* Sibcalls are considered to set the return value. */
456 if (SIBLING_CALL_P (insn) && crtl->return_rtx)
457 mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
459 AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
460 AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
461 AND_HARD_REG_SET (hard_regs_to_save, used_regs);
462 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
463 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
465 if (hard_reg_map[regno] != NULL)
466 hard_reg_map[regno]->call_freq += freq;
467 else
468 new_saved_hard_reg (regno, freq);
469 SET_HARD_REG_BIT (hard_regs_used, regno);
471 cheap = find_reg_note (insn, REG_RETURNED, NULL);
472 if (cheap)
473 cheap = XEXP (cheap, 0);
474 /* Look through all live pseudos, mark their hard registers. */
475 EXECUTE_IF_SET_IN_REG_SET
476 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
478 int r = reg_renumber[regno];
479 int bound;
481 if (r < 0 || regno_reg_rtx[regno] == cheap)
482 continue;
484 bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
485 for (; r < bound; r++)
486 if (TEST_HARD_REG_BIT (used_regs, r))
488 if (hard_reg_map[r] != NULL)
489 hard_reg_map[r]->call_freq += freq;
490 else
491 new_saved_hard_reg (r, freq);
492 SET_HARD_REG_BIT (hard_regs_to_save, r);
493 SET_HARD_REG_BIT (hard_regs_used, r);
498 /* If requested, figure out which hard regs can share save slots. */
499 if (optimize && flag_ira_share_save_slots)
501 rtx slot;
502 char *saved_reg_conflicts;
503 int next_k;
504 struct saved_hard_reg *saved_reg2, *saved_reg3;
505 int call_saved_regs_num;
506 struct saved_hard_reg *call_saved_regs[FIRST_PSEUDO_REGISTER];
507 int best_slot_num;
508 int prev_save_slots_num;
509 rtx prev_save_slots[FIRST_PSEUDO_REGISTER];
511 /* Find saved hard register conflicts. */
512 saved_reg_conflicts = (char *) xmalloc (saved_regs_num * saved_regs_num);
513 memset (saved_reg_conflicts, 0, saved_regs_num * saved_regs_num);
514 for (chain = reload_insn_chain; chain != 0; chain = next)
516 rtx cheap;
517 call_saved_regs_num = 0;
518 insn = chain->insn;
519 next = chain->next;
520 if (!CALL_P (insn)
521 || find_reg_note (insn, REG_NORETURN, NULL))
522 continue;
524 cheap = find_reg_note (insn, REG_RETURNED, NULL);
525 if (cheap)
526 cheap = XEXP (cheap, 0);
528 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
529 &chain->live_throughout);
530 COPY_HARD_REG_SET (used_regs, call_used_reg_set);
532 /* Record all registers set in this call insn. These don't
533 need to be saved. N.B. the call insn might set a subreg
534 of a multi-hard-reg pseudo; then the pseudo is considered
535 live during the call, but the subreg that is set
536 isn't. */
537 CLEAR_HARD_REG_SET (this_insn_sets);
538 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
539 /* Sibcalls are considered to set the return value,
540 compare df-scan.c:df_get_call_refs. */
541 if (SIBLING_CALL_P (insn) && crtl->return_rtx)
542 mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
544 AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
545 AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
546 AND_HARD_REG_SET (hard_regs_to_save, used_regs);
547 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
548 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
550 gcc_assert (hard_reg_map[regno] != NULL);
551 call_saved_regs[call_saved_regs_num++] = hard_reg_map[regno];
553 /* Look through all live pseudos, mark their hard registers. */
554 EXECUTE_IF_SET_IN_REG_SET
555 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
557 int r = reg_renumber[regno];
558 int bound;
560 if (r < 0 || regno_reg_rtx[regno] == cheap)
561 continue;
563 bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
564 for (; r < bound; r++)
565 if (TEST_HARD_REG_BIT (used_regs, r))
566 call_saved_regs[call_saved_regs_num++] = hard_reg_map[r];
568 for (i = 0; i < call_saved_regs_num; i++)
570 saved_reg = call_saved_regs[i];
571 for (j = 0; j < call_saved_regs_num; j++)
572 if (i != j)
574 saved_reg2 = call_saved_regs[j];
575 saved_reg_conflicts[saved_reg->num * saved_regs_num
576 + saved_reg2->num]
577 = saved_reg_conflicts[saved_reg2->num * saved_regs_num
578 + saved_reg->num]
579 = TRUE;
583 /* Sort saved hard regs. */
584 qsort (all_saved_regs, saved_regs_num, sizeof (struct saved_hard_reg *),
585 saved_hard_reg_compare_func);
586 /* Initiate slots available from the previous reload
587 iteration. */
588 prev_save_slots_num = save_slots_num;
589 memcpy (prev_save_slots, save_slots, save_slots_num * sizeof (rtx));
590 save_slots_num = 0;
591 /* Allocate stack slots for the saved hard registers. */
592 for (i = 0; i < saved_regs_num; i++)
594 saved_reg = all_saved_regs[i];
595 regno = saved_reg->hard_regno;
596 for (j = 0; j < i; j++)
598 saved_reg2 = all_saved_regs[j];
599 if (! saved_reg2->first_p)
600 continue;
601 slot = saved_reg2->slot;
602 for (k = j; k >= 0; k = next_k)
604 saved_reg3 = all_saved_regs[k];
605 next_k = saved_reg3->next;
606 if (saved_reg_conflicts[saved_reg->num * saved_regs_num
607 + saved_reg3->num])
608 break;
610 if (k < 0
611 && (GET_MODE_SIZE (regno_save_mode[regno][1])
612 <= GET_MODE_SIZE (regno_save_mode
613 [saved_reg2->hard_regno][1])))
615 saved_reg->slot
616 = adjust_address_nv
617 (slot, regno_save_mode[saved_reg->hard_regno][1], 0);
618 regno_save_mem[regno][1] = saved_reg->slot;
619 saved_reg->next = saved_reg2->next;
620 saved_reg2->next = i;
621 if (dump_file != NULL)
622 fprintf (dump_file, "%d uses slot of %d\n",
623 regno, saved_reg2->hard_regno);
624 break;
627 if (j == i)
629 saved_reg->first_p = TRUE;
630 for (best_slot_num = -1, j = 0; j < prev_save_slots_num; j++)
632 slot = prev_save_slots[j];
633 if (slot == NULL_RTX)
634 continue;
635 if (GET_MODE_SIZE (regno_save_mode[regno][1])
636 <= GET_MODE_SIZE (GET_MODE (slot))
637 && best_slot_num < 0)
638 best_slot_num = j;
639 if (GET_MODE (slot) == regno_save_mode[regno][1])
640 break;
642 if (best_slot_num >= 0)
644 saved_reg->slot = prev_save_slots[best_slot_num];
645 saved_reg->slot
646 = adjust_address_nv
647 (saved_reg->slot,
648 regno_save_mode[saved_reg->hard_regno][1], 0);
649 if (dump_file != NULL)
650 fprintf (dump_file,
651 "%d uses a slot from prev iteration\n", regno);
652 prev_save_slots[best_slot_num] = NULL_RTX;
653 if (best_slot_num + 1 == prev_save_slots_num)
654 prev_save_slots_num--;
656 else
658 saved_reg->slot
659 = assign_stack_local_1
660 (regno_save_mode[regno][1],
661 GET_MODE_SIZE (regno_save_mode[regno][1]), 0,
662 ASLK_REDUCE_ALIGN);
663 if (dump_file != NULL)
664 fprintf (dump_file, "%d uses a new slot\n", regno);
666 regno_save_mem[regno][1] = saved_reg->slot;
667 save_slots[save_slots_num++] = saved_reg->slot;
670 free (saved_reg_conflicts);
671 finish_saved_hard_regs ();
673 else
675 /* We are not sharing slots.
677 Run through all the call-used hard-registers and allocate
678 space for each in the caller-save area. Try to allocate space
679 in a manner which allows multi-register saves/restores to be done. */
681 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
682 for (j = MOVE_MAX_WORDS; j > 0; j--)
684 int do_save = 1;
686 /* If no mode exists for this size, try another. Also break out
687 if we have already saved this hard register. */
688 if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
689 continue;
691 /* See if any register in this group has been saved. */
692 for (k = 0; k < j; k++)
693 if (regno_save_mem[i + k][1])
695 do_save = 0;
696 break;
698 if (! do_save)
699 continue;
701 for (k = 0; k < j; k++)
702 if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
704 do_save = 0;
705 break;
707 if (! do_save)
708 continue;
710 /* We have found an acceptable mode to store in. Since
711 hard register is always saved in the widest mode
712 available, the mode may be wider than necessary, it is
713 OK to reduce the alignment of spill space. We will
714 verify that it is equal to or greater than required
715 when we restore and save the hard register in
716 insert_restore and insert_save. */
717 regno_save_mem[i][j]
718 = assign_stack_local_1 (regno_save_mode[i][j],
719 GET_MODE_SIZE (regno_save_mode[i][j]),
720 0, ASLK_REDUCE_ALIGN);
722 /* Setup single word save area just in case... */
723 for (k = 0; k < j; k++)
724 /* This should not depend on WORDS_BIG_ENDIAN.
725 The order of words in regs is the same as in memory. */
726 regno_save_mem[i + k][1]
727 = adjust_address_nv (regno_save_mem[i][j],
728 regno_save_mode[i + k][1],
729 k * UNITS_PER_WORD);
733 /* Now loop again and set the alias set of any save areas we made to
734 the alias set used to represent frame objects. */
735 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
736 for (j = MOVE_MAX_WORDS; j > 0; j--)
737 if (regno_save_mem[i][j] != 0)
738 set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ());
743 /* Find the places where hard regs are live across calls and save them. */
745 void
746 save_call_clobbered_regs (void)
748 struct insn_chain *chain, *next, *last = NULL;
749 enum machine_mode save_mode [FIRST_PSEUDO_REGISTER];
751 /* Computed in mark_set_regs, holds all registers set by the current
752 instruction. */
753 HARD_REG_SET this_insn_sets;
755 CLEAR_HARD_REG_SET (hard_regs_saved);
756 n_regs_saved = 0;
758 for (chain = reload_insn_chain; chain != 0; chain = next)
760 rtx insn = chain->insn;
761 enum rtx_code code = GET_CODE (insn);
763 next = chain->next;
765 gcc_assert (!chain->is_caller_save_insn);
767 if (NONDEBUG_INSN_P (insn))
769 /* If some registers have been saved, see if INSN references
770 any of them. We must restore them before the insn if so. */
772 if (n_regs_saved)
774 int regno;
775 HARD_REG_SET this_insn_sets;
777 if (code == JUMP_INSN)
778 /* Restore all registers if this is a JUMP_INSN. */
779 COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
780 else
782 CLEAR_HARD_REG_SET (referenced_regs);
783 mark_referenced_regs (&PATTERN (insn),
784 mark_reg_as_referenced, NULL);
785 AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
788 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
789 if (TEST_HARD_REG_BIT (referenced_regs, regno))
790 regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS,
791 save_mode);
792 /* If a saved register is set after the call, this means we no
793 longer should restore it. This can happen when parts of a
794 multi-word pseudo do not conflict with other pseudos, so
795 IRA may allocate the same hard register for both. One may
796 be live across the call, while the other is set
797 afterwards. */
798 CLEAR_HARD_REG_SET (this_insn_sets);
799 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
800 AND_COMPL_HARD_REG_SET (hard_regs_saved, this_insn_sets);
803 if (code == CALL_INSN
804 && ! SIBLING_CALL_P (insn)
805 && ! find_reg_note (insn, REG_NORETURN, NULL))
807 unsigned regno;
808 HARD_REG_SET hard_regs_to_save;
809 reg_set_iterator rsi;
810 rtx cheap;
812 cheap = find_reg_note (insn, REG_RETURNED, NULL);
813 if (cheap)
814 cheap = XEXP (cheap, 0);
816 /* Use the register life information in CHAIN to compute which
817 regs are live during the call. */
818 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
819 &chain->live_throughout);
820 /* Save hard registers always in the widest mode available. */
821 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
822 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
823 save_mode [regno] = regno_save_mode [regno][1];
824 else
825 save_mode [regno] = VOIDmode;
827 /* Look through all live pseudos, mark their hard registers
828 and choose proper mode for saving. */
829 EXECUTE_IF_SET_IN_REG_SET
830 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
832 int r = reg_renumber[regno];
833 int nregs;
834 enum machine_mode mode;
836 if (r < 0 || regno_reg_rtx[regno] == cheap)
837 continue;
838 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
839 mode = HARD_REGNO_CALLER_SAVE_MODE
840 (r, nregs, PSEUDO_REGNO_MODE (regno));
841 if (GET_MODE_BITSIZE (mode)
842 > GET_MODE_BITSIZE (save_mode[r]))
843 save_mode[r] = mode;
844 while (nregs-- > 0)
845 SET_HARD_REG_BIT (hard_regs_to_save, r + nregs);
848 /* Record all registers set in this call insn. These don't need
849 to be saved. N.B. the call insn might set a subreg of a
850 multi-hard-reg pseudo; then the pseudo is considered live
851 during the call, but the subreg that is set isn't. */
852 CLEAR_HARD_REG_SET (this_insn_sets);
853 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
855 /* Compute which hard regs must be saved before this call. */
856 AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
857 AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
858 AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
859 AND_HARD_REG_SET (hard_regs_to_save, call_used_reg_set);
861 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
862 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
863 regno += insert_save (chain, 1, regno, &hard_regs_to_save, save_mode);
865 /* Must recompute n_regs_saved. */
866 n_regs_saved = 0;
867 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
868 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
869 n_regs_saved++;
871 if (cheap
872 && HARD_REGISTER_P (cheap)
873 && TEST_HARD_REG_BIT (call_used_reg_set, REGNO (cheap)))
875 rtx dest, newpat;
876 rtx pat = PATTERN (insn);
877 if (GET_CODE (pat) == PARALLEL)
878 pat = XVECEXP (pat, 0, 0);
879 dest = SET_DEST (pat);
880 newpat = gen_rtx_SET (VOIDmode, cheap, copy_rtx (dest));
881 chain = insert_one_insn (chain, 0, -1, newpat);
884 last = chain;
886 else if (DEBUG_INSN_P (insn) && n_regs_saved)
887 mark_referenced_regs (&PATTERN (insn),
888 replace_reg_with_saved_mem,
889 save_mode);
891 if (chain->next == 0 || chain->next->block != chain->block)
893 int regno;
894 /* At the end of the basic block, we must restore any registers that
895 remain saved. If the last insn in the block is a JUMP_INSN, put
896 the restore before the insn, otherwise, put it after the insn. */
898 if (n_regs_saved
899 && DEBUG_INSN_P (insn)
900 && last
901 && last->block == chain->block)
903 rtx ins, prev;
904 basic_block bb = BLOCK_FOR_INSN (insn);
906 /* When adding hard reg restores after a DEBUG_INSN, move
907 all notes between last real insn and this DEBUG_INSN after
908 the DEBUG_INSN, otherwise we could get code
909 -g/-g0 differences. */
910 for (ins = PREV_INSN (insn); ins != last->insn; ins = prev)
912 prev = PREV_INSN (ins);
913 if (NOTE_P (ins))
915 NEXT_INSN (prev) = NEXT_INSN (ins);
916 PREV_INSN (NEXT_INSN (ins)) = prev;
917 PREV_INSN (ins) = insn;
918 NEXT_INSN (ins) = NEXT_INSN (insn);
919 NEXT_INSN (insn) = ins;
920 if (NEXT_INSN (ins))
921 PREV_INSN (NEXT_INSN (ins)) = ins;
922 if (BB_END (bb) == insn)
923 BB_END (bb) = ins;
925 else
926 gcc_assert (DEBUG_INSN_P (ins));
929 last = NULL;
931 if (n_regs_saved)
932 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
933 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
934 regno += insert_restore (chain, JUMP_P (insn),
935 regno, MOVE_MAX_WORDS, save_mode);
940 /* Here from note_stores, or directly from save_call_clobbered_regs, when
941 an insn stores a value in a register.
942 Set the proper bit or bits in this_insn_sets. All pseudos that have
943 been assigned hard regs have had their register number changed already,
944 so we can ignore pseudos. */
945 static void
946 mark_set_regs (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *data)
948 int regno, endregno, i;
949 HARD_REG_SET *this_insn_sets = (HARD_REG_SET *) data;
951 if (GET_CODE (reg) == SUBREG)
953 rtx inner = SUBREG_REG (reg);
954 if (!REG_P (inner) || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
955 return;
956 regno = subreg_regno (reg);
957 endregno = regno + subreg_nregs (reg);
959 else if (REG_P (reg)
960 && REGNO (reg) < FIRST_PSEUDO_REGISTER)
962 regno = REGNO (reg);
963 endregno = END_HARD_REGNO (reg);
965 else
966 return;
968 for (i = regno; i < endregno; i++)
969 SET_HARD_REG_BIT (*this_insn_sets, i);
972 /* Here from note_stores when an insn stores a value in a register.
973 Set the proper bit or bits in the passed regset. All pseudos that have
974 been assigned hard regs have had their register number changed already,
975 so we can ignore pseudos. */
976 static void
977 add_stored_regs (rtx reg, const_rtx setter, void *data)
979 int regno, endregno, i;
980 enum machine_mode mode = GET_MODE (reg);
981 int offset = 0;
983 if (GET_CODE (setter) == CLOBBER)
984 return;
986 if (GET_CODE (reg) == SUBREG
987 && REG_P (SUBREG_REG (reg))
988 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
990 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
991 GET_MODE (SUBREG_REG (reg)),
992 SUBREG_BYTE (reg),
993 GET_MODE (reg));
994 regno = REGNO (SUBREG_REG (reg)) + offset;
995 endregno = regno + subreg_nregs (reg);
997 else
999 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
1000 return;
1002 regno = REGNO (reg) + offset;
1003 endregno = end_hard_regno (mode, regno);
1006 for (i = regno; i < endregno; i++)
1007 SET_REGNO_REG_SET ((regset) data, i);
1010 /* Walk X and record all referenced registers in REFERENCED_REGS. */
1011 static void
1012 mark_referenced_regs (rtx *loc, refmarker_fn *mark, void *arg)
1014 enum rtx_code code = GET_CODE (*loc);
1015 const char *fmt;
1016 int i, j;
1018 if (code == SET)
1019 mark_referenced_regs (&SET_SRC (*loc), mark, arg);
1020 if (code == SET || code == CLOBBER)
1022 loc = &SET_DEST (*loc);
1023 code = GET_CODE (*loc);
1024 if ((code == REG && REGNO (*loc) < FIRST_PSEUDO_REGISTER)
1025 || code == PC || code == CC0
1026 || (code == SUBREG && REG_P (SUBREG_REG (*loc))
1027 && REGNO (SUBREG_REG (*loc)) < FIRST_PSEUDO_REGISTER
1028 /* If we're setting only part of a multi-word register,
1029 we shall mark it as referenced, because the words
1030 that are not being set should be restored. */
1031 && ((GET_MODE_SIZE (GET_MODE (*loc))
1032 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc))))
1033 || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc)))
1034 <= UNITS_PER_WORD))))
1035 return;
1037 if (code == MEM || code == SUBREG)
1039 loc = &XEXP (*loc, 0);
1040 code = GET_CODE (*loc);
1043 if (code == REG)
1045 int regno = REGNO (*loc);
1046 int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
1047 : reg_renumber[regno]);
1049 if (hardregno >= 0)
1050 mark (loc, GET_MODE (*loc), hardregno, arg);
1051 else if (arg)
1052 /* ??? Will we ever end up with an equiv expression in a debug
1053 insn, that would have required restoring a reg, or will
1054 reload take care of it for us? */
1055 return;
1056 /* If this is a pseudo that did not get a hard register, scan its
1057 memory location, since it might involve the use of another
1058 register, which might be saved. */
1059 else if (reg_equiv_mem (regno) != 0)
1060 mark_referenced_regs (&XEXP (reg_equiv_mem (regno), 0), mark, arg);
1061 else if (reg_equiv_address (regno) != 0)
1062 mark_referenced_regs (&reg_equiv_address (regno), mark, arg);
1063 return;
1066 fmt = GET_RTX_FORMAT (code);
1067 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1069 if (fmt[i] == 'e')
1070 mark_referenced_regs (&XEXP (*loc, i), mark, arg);
1071 else if (fmt[i] == 'E')
1072 for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
1073 mark_referenced_regs (&XVECEXP (*loc, i, j), mark, arg);
1077 /* Parameter function for mark_referenced_regs() that adds registers
1078 present in the insn and in equivalent mems and addresses to
1079 referenced_regs. */
1081 static void
1082 mark_reg_as_referenced (rtx *loc ATTRIBUTE_UNUSED,
1083 enum machine_mode mode,
1084 int hardregno,
1085 void *arg ATTRIBUTE_UNUSED)
1087 add_to_hard_reg_set (&referenced_regs, mode, hardregno);
1090 /* Parameter function for mark_referenced_regs() that replaces
1091 registers referenced in a debug_insn that would have been restored,
1092 should it be a non-debug_insn, with their save locations. */
1094 static void
1095 replace_reg_with_saved_mem (rtx *loc,
1096 enum machine_mode mode,
1097 int regno,
1098 void *arg)
1100 unsigned int i, nregs = hard_regno_nregs [regno][mode];
1101 rtx mem;
1102 enum machine_mode *save_mode = (enum machine_mode *)arg;
1104 for (i = 0; i < nregs; i++)
1105 if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1106 break;
1108 /* If none of the registers in the range would need restoring, we're
1109 all set. */
1110 if (i == nregs)
1111 return;
1113 while (++i < nregs)
1114 if (!TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1115 break;
1117 if (i == nregs
1118 && regno_save_mem[regno][nregs])
1120 mem = copy_rtx (regno_save_mem[regno][nregs]);
1122 if (nregs == (unsigned int) hard_regno_nregs[regno][save_mode[regno]])
1123 mem = adjust_address_nv (mem, save_mode[regno], 0);
1125 if (GET_MODE (mem) != mode)
1127 /* This is gen_lowpart_if_possible(), but without validating
1128 the newly-formed address. */
1129 int offset = 0;
1131 if (WORDS_BIG_ENDIAN)
1132 offset = (MAX (GET_MODE_SIZE (GET_MODE (mem)), UNITS_PER_WORD)
1133 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1134 if (BYTES_BIG_ENDIAN)
1135 /* Adjust the address so that the address-after-the-data is
1136 unchanged. */
1137 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1138 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (mem))));
1140 mem = adjust_address_nv (mem, mode, offset);
1143 else
1145 mem = gen_rtx_CONCATN (mode, rtvec_alloc (nregs));
1146 for (i = 0; i < nregs; i++)
1147 if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1149 gcc_assert (regno_save_mem[regno + i][1]);
1150 XVECEXP (mem, 0, i) = copy_rtx (regno_save_mem[regno + i][1]);
1152 else
1154 gcc_assert (save_mode[regno] != VOIDmode);
1155 XVECEXP (mem, 0, i) = gen_rtx_REG (save_mode [regno],
1156 regno + i);
1160 gcc_assert (GET_MODE (mem) == mode);
1161 *loc = mem;
1165 /* Insert a sequence of insns to restore. Place these insns in front of
1166 CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
1167 the maximum number of registers which should be restored during this call.
1168 It should never be less than 1 since we only work with entire registers.
1170 Note that we have verified in init_caller_save that we can do this
1171 with a simple SET, so use it. Set INSN_CODE to what we save there
1172 since the address might not be valid so the insn might not be recognized.
1173 These insns will be reloaded and have register elimination done by
1174 find_reload, so we need not worry about that here.
1176 Return the extra number of registers saved. */
1178 static int
1179 insert_restore (struct insn_chain *chain, int before_p, int regno,
1180 int maxrestore, enum machine_mode *save_mode)
1182 int i, k;
1183 rtx pat = NULL_RTX;
1184 int code;
1185 unsigned int numregs = 0;
1186 struct insn_chain *new_chain;
1187 rtx mem;
1189 /* A common failure mode if register status is not correct in the
1190 RTL is for this routine to be called with a REGNO we didn't
1191 expect to save. That will cause us to write an insn with a (nil)
1192 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1193 later, check for this common case here instead. This will remove
1194 one step in debugging such problems. */
1195 gcc_assert (regno_save_mem[regno][1]);
1197 /* Get the pattern to emit and update our status.
1199 See if we can restore `maxrestore' registers at once. Work
1200 backwards to the single register case. */
1201 for (i = maxrestore; i > 0; i--)
1203 int j;
1204 int ok = 1;
1206 if (regno_save_mem[regno][i] == 0)
1207 continue;
1209 for (j = 0; j < i; j++)
1210 if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
1212 ok = 0;
1213 break;
1215 /* Must do this one restore at a time. */
1216 if (! ok)
1217 continue;
1219 numregs = i;
1220 break;
1223 mem = regno_save_mem [regno][numregs];
1224 if (save_mode [regno] != VOIDmode
1225 && save_mode [regno] != GET_MODE (mem)
1226 && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
1227 /* Check that insn to restore REGNO in save_mode[regno] is
1228 correct. */
1229 && reg_save_code (regno, save_mode[regno]) >= 0)
1230 mem = adjust_address_nv (mem, save_mode[regno], 0);
1231 else
1232 mem = copy_rtx (mem);
1234 /* Verify that the alignment of spill space is equal to or greater
1235 than required. */
1236 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1237 GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1239 pat = gen_rtx_SET (VOIDmode,
1240 gen_rtx_REG (GET_MODE (mem),
1241 regno), mem);
1242 code = reg_restore_code (regno, GET_MODE (mem));
1243 new_chain = insert_one_insn (chain, before_p, code, pat);
1245 /* Clear status for all registers we restored. */
1246 for (k = 0; k < i; k++)
1248 CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
1249 SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1250 n_regs_saved--;
1253 /* Tell our callers how many extra registers we saved/restored. */
1254 return numregs - 1;
1257 /* Like insert_restore above, but save registers instead. */
1259 static int
1260 insert_save (struct insn_chain *chain, int before_p, int regno,
1261 HARD_REG_SET (*to_save), enum machine_mode *save_mode)
1263 int i;
1264 unsigned int k;
1265 rtx pat = NULL_RTX;
1266 int code;
1267 unsigned int numregs = 0;
1268 struct insn_chain *new_chain;
1269 rtx mem;
1271 /* A common failure mode if register status is not correct in the
1272 RTL is for this routine to be called with a REGNO we didn't
1273 expect to save. That will cause us to write an insn with a (nil)
1274 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1275 later, check for this common case here. This will remove one
1276 step in debugging such problems. */
1277 gcc_assert (regno_save_mem[regno][1]);
1279 /* Get the pattern to emit and update our status.
1281 See if we can save several registers with a single instruction.
1282 Work backwards to the single register case. */
1283 for (i = MOVE_MAX_WORDS; i > 0; i--)
1285 int j;
1286 int ok = 1;
1287 if (regno_save_mem[regno][i] == 0)
1288 continue;
1290 for (j = 0; j < i; j++)
1291 if (! TEST_HARD_REG_BIT (*to_save, regno + j))
1293 ok = 0;
1294 break;
1296 /* Must do this one save at a time. */
1297 if (! ok)
1298 continue;
1300 numregs = i;
1301 break;
1304 mem = regno_save_mem [regno][numregs];
1305 if (save_mode [regno] != VOIDmode
1306 && save_mode [regno] != GET_MODE (mem)
1307 && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
1308 /* Check that insn to save REGNO in save_mode[regno] is
1309 correct. */
1310 && reg_save_code (regno, save_mode[regno]) >= 0)
1311 mem = adjust_address_nv (mem, save_mode[regno], 0);
1312 else
1313 mem = copy_rtx (mem);
1315 /* Verify that the alignment of spill space is equal to or greater
1316 than required. */
1317 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1318 GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1320 pat = gen_rtx_SET (VOIDmode, mem,
1321 gen_rtx_REG (GET_MODE (mem),
1322 regno));
1323 code = reg_save_code (regno, GET_MODE (mem));
1324 new_chain = insert_one_insn (chain, before_p, code, pat);
1326 /* Set hard_regs_saved and dead_or_set for all the registers we saved. */
1327 for (k = 0; k < numregs; k++)
1329 SET_HARD_REG_BIT (hard_regs_saved, regno + k);
1330 SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1331 n_regs_saved++;
1334 /* Tell our callers how many extra registers we saved/restored. */
1335 return numregs - 1;
1338 /* A for_each_rtx callback used by add_used_regs. Add the hard-register
1339 equivalent of each REG to regset DATA. */
1341 static int
1342 add_used_regs_1 (rtx *loc, void *data)
1344 unsigned int regno;
1345 regset live;
1346 rtx x;
1348 x = *loc;
1349 live = (regset) data;
1350 if (REG_P (x))
1352 regno = REGNO (x);
1353 if (HARD_REGISTER_NUM_P (regno))
1354 bitmap_set_range (live, regno, hard_regno_nregs[regno][GET_MODE (x)]);
1355 else
1356 regno = reg_renumber[regno];
1358 return 0;
1361 /* A note_uses callback used by insert_one_insn. Add the hard-register
1362 equivalent of each REG to regset DATA. */
1364 static void
1365 add_used_regs (rtx *loc, void *data)
1367 for_each_rtx (loc, add_used_regs_1, data);
1370 /* Emit a new caller-save insn and set the code. */
1371 static struct insn_chain *
1372 insert_one_insn (struct insn_chain *chain, int before_p, int code, rtx pat)
1374 rtx insn = chain->insn;
1375 struct insn_chain *new_chain;
1377 #ifdef HAVE_cc0
1378 /* If INSN references CC0, put our insns in front of the insn that sets
1379 CC0. This is always safe, since the only way we could be passed an
1380 insn that references CC0 is for a restore, and doing a restore earlier
1381 isn't a problem. We do, however, assume here that CALL_INSNs don't
1382 reference CC0. Guard against non-INSN's like CODE_LABEL. */
1384 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
1385 && before_p
1386 && reg_referenced_p (cc0_rtx, PATTERN (insn)))
1387 chain = chain->prev, insn = chain->insn;
1388 #endif
1390 new_chain = new_insn_chain ();
1391 if (before_p)
1393 rtx link;
1395 new_chain->prev = chain->prev;
1396 if (new_chain->prev != 0)
1397 new_chain->prev->next = new_chain;
1398 else
1399 reload_insn_chain = new_chain;
1401 chain->prev = new_chain;
1402 new_chain->next = chain;
1403 new_chain->insn = emit_insn_before (pat, insn);
1404 /* ??? It would be nice if we could exclude the already / still saved
1405 registers from the live sets. */
1406 COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1407 note_uses (&PATTERN (chain->insn), add_used_regs,
1408 &new_chain->live_throughout);
1409 /* If CHAIN->INSN is a call, then the registers which contain
1410 the arguments to the function are live in the new insn. */
1411 if (CALL_P (chain->insn))
1412 for (link = CALL_INSN_FUNCTION_USAGE (chain->insn);
1413 link != NULL_RTX;
1414 link = XEXP (link, 1))
1415 note_uses (&XEXP (link, 0), add_used_regs,
1416 &new_chain->live_throughout);
1418 CLEAR_REG_SET (&new_chain->dead_or_set);
1419 if (chain->insn == BB_HEAD (BASIC_BLOCK (chain->block)))
1420 BB_HEAD (BASIC_BLOCK (chain->block)) = new_chain->insn;
1422 else
1424 new_chain->next = chain->next;
1425 if (new_chain->next != 0)
1426 new_chain->next->prev = new_chain;
1427 chain->next = new_chain;
1428 new_chain->prev = chain;
1429 new_chain->insn = emit_insn_after (pat, insn);
1430 /* ??? It would be nice if we could exclude the already / still saved
1431 registers from the live sets, and observe REG_UNUSED notes. */
1432 COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1433 /* Registers that are set in CHAIN->INSN live in the new insn.
1434 (Unless there is a REG_UNUSED note for them, but we don't
1435 look for them here.) */
1436 note_stores (PATTERN (chain->insn), add_stored_regs,
1437 &new_chain->live_throughout);
1438 CLEAR_REG_SET (&new_chain->dead_or_set);
1439 if (chain->insn == BB_END (BASIC_BLOCK (chain->block)))
1440 BB_END (BASIC_BLOCK (chain->block)) = new_chain->insn;
1442 new_chain->block = chain->block;
1443 new_chain->is_caller_save_insn = 1;
1445 INSN_CODE (new_chain->insn) = code;
1446 return new_chain;
1448 #include "gt-caller-save.h"