Fix typo in my last entry.
[official-gcc.git] / gcc / combine.c
blob16385767e66a1ff2055d09066667574b27281183
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tm_p.h"
79 #include "flags.h"
80 #include "regs.h"
81 #include "hard-reg-set.h"
82 #include "basic-block.h"
83 #include "insn-config.h"
84 #include "function.h"
85 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
86 #include "expr.h"
87 #include "insn-attr.h"
88 #include "recog.h"
89 #include "real.h"
90 #include "toplev.h"
92 /* It is not safe to use ordinary gen_lowpart in combine.
93 Use gen_lowpart_for_combine instead. See comments there. */
94 #define gen_lowpart dont_use_gen_lowpart_you_dummy
96 /* Number of attempts to combine instructions in this function. */
98 static int combine_attempts;
100 /* Number of attempts that got as far as substitution in this function. */
102 static int combine_merges;
104 /* Number of instructions combined with added SETs in this function. */
106 static int combine_extras;
108 /* Number of instructions combined in this function. */
110 static int combine_successes;
112 /* Totals over entire compilation. */
114 static int total_attempts, total_merges, total_extras, total_successes;
117 /* Vector mapping INSN_UIDs to cuids.
118 The cuids are like uids but increase monotonically always.
119 Combine always uses cuids so that it can compare them.
120 But actually renumbering the uids, which we used to do,
121 proves to be a bad idea because it makes it hard to compare
122 the dumps produced by earlier passes with those from later passes. */
124 static int *uid_cuid;
125 static int max_uid_cuid;
127 /* Get the cuid of an insn. */
129 #define INSN_CUID(INSN) \
130 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
132 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
133 BITS_PER_WORD would invoke undefined behavior. Work around it. */
135 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
136 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
138 #define nonzero_bits(X, M) \
139 cached_nonzero_bits (X, M, NULL_RTX, VOIDmode, 0)
141 #define num_sign_bit_copies(X, M) \
142 cached_num_sign_bit_copies (X, M, NULL_RTX, VOIDmode, 0)
144 /* Maximum register number, which is the size of the tables below. */
146 static unsigned int combine_max_regno;
148 /* Record last point of death of (hard or pseudo) register n. */
150 static rtx *reg_last_death;
152 /* Record last point of modification of (hard or pseudo) register n. */
154 static rtx *reg_last_set;
156 /* Record the cuid of the last insn that invalidated memory
157 (anything that writes memory, and subroutine calls, but not pushes). */
159 static int mem_last_set;
161 /* Record the cuid of the last CALL_INSN
162 so we can tell whether a potential combination crosses any calls. */
164 static int last_call_cuid;
166 /* When `subst' is called, this is the insn that is being modified
167 (by combining in a previous insn). The PATTERN of this insn
168 is still the old pattern partially modified and it should not be
169 looked at, but this may be used to examine the successors of the insn
170 to judge whether a simplification is valid. */
172 static rtx subst_insn;
174 /* This is the lowest CUID that `subst' is currently dealing with.
175 get_last_value will not return a value if the register was set at or
176 after this CUID. If not for this mechanism, we could get confused if
177 I2 or I1 in try_combine were an insn that used the old value of a register
178 to obtain a new value. In that case, we might erroneously get the
179 new value of the register when we wanted the old one. */
181 static int subst_low_cuid;
183 /* This contains any hard registers that are used in newpat; reg_dead_at_p
184 must consider all these registers to be always live. */
186 static HARD_REG_SET newpat_used_regs;
188 /* This is an insn to which a LOG_LINKS entry has been added. If this
189 insn is the earlier than I2 or I3, combine should rescan starting at
190 that location. */
192 static rtx added_links_insn;
194 /* Basic block in which we are performing combines. */
195 static basic_block this_basic_block;
197 /* A bitmap indicating which blocks had registers go dead at entry.
198 After combine, we'll need to re-do global life analysis with
199 those blocks as starting points. */
200 static sbitmap refresh_blocks;
202 /* The next group of arrays allows the recording of the last value assigned
203 to (hard or pseudo) register n. We use this information to see if an
204 operation being processed is redundant given a prior operation performed
205 on the register. For example, an `and' with a constant is redundant if
206 all the zero bits are already known to be turned off.
208 We use an approach similar to that used by cse, but change it in the
209 following ways:
211 (1) We do not want to reinitialize at each label.
212 (2) It is useful, but not critical, to know the actual value assigned
213 to a register. Often just its form is helpful.
215 Therefore, we maintain the following arrays:
217 reg_last_set_value the last value assigned
218 reg_last_set_label records the value of label_tick when the
219 register was assigned
220 reg_last_set_table_tick records the value of label_tick when a
221 value using the register is assigned
222 reg_last_set_invalid set to nonzero when it is not valid
223 to use the value of this register in some
224 register's value
226 To understand the usage of these tables, it is important to understand
227 the distinction between the value in reg_last_set_value being valid
228 and the register being validly contained in some other expression in the
229 table.
231 Entry I in reg_last_set_value is valid if it is nonzero, and either
232 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
234 Register I may validly appear in any expression returned for the value
235 of another register if reg_n_sets[i] is 1. It may also appear in the
236 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
237 reg_last_set_invalid[j] is zero.
239 If an expression is found in the table containing a register which may
240 not validly appear in an expression, the register is replaced by
241 something that won't match, (clobber (const_int 0)).
243 reg_last_set_invalid[i] is set nonzero when register I is being assigned
244 to and reg_last_set_table_tick[i] == label_tick. */
246 /* Record last value assigned to (hard or pseudo) register n. */
248 static rtx *reg_last_set_value;
250 /* Record the value of label_tick when the value for register n is placed in
251 reg_last_set_value[n]. */
253 static int *reg_last_set_label;
255 /* Record the value of label_tick when an expression involving register n
256 is placed in reg_last_set_value. */
258 static int *reg_last_set_table_tick;
260 /* Set nonzero if references to register n in expressions should not be
261 used. */
263 static char *reg_last_set_invalid;
265 /* Incremented for each label. */
267 static int label_tick;
269 /* Some registers that are set more than once and used in more than one
270 basic block are nevertheless always set in similar ways. For example,
271 a QImode register may be loaded from memory in two places on a machine
272 where byte loads zero extend.
274 We record in the following array what we know about the nonzero
275 bits of a register, specifically which bits are known to be zero.
277 If an entry is zero, it means that we don't know anything special. */
279 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
281 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
282 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
284 static enum machine_mode nonzero_bits_mode;
286 /* Nonzero if we know that a register has some leading bits that are always
287 equal to the sign bit. */
289 static unsigned char *reg_sign_bit_copies;
291 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
292 It is zero while computing them and after combine has completed. This
293 former test prevents propagating values based on previously set values,
294 which can be incorrect if a variable is modified in a loop. */
296 static int nonzero_sign_valid;
298 /* These arrays are maintained in parallel with reg_last_set_value
299 and are used to store the mode in which the register was last set,
300 the bits that were known to be zero when it was last set, and the
301 number of sign bits copies it was known to have when it was last set. */
303 static enum machine_mode *reg_last_set_mode;
304 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
305 static char *reg_last_set_sign_bit_copies;
307 /* Record one modification to rtl structure
308 to be undone by storing old_contents into *where.
309 is_int is 1 if the contents are an int. */
311 struct undo
313 struct undo *next;
314 int is_int;
315 union {rtx r; int i;} old_contents;
316 union {rtx *r; int *i;} where;
319 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
320 num_undo says how many are currently recorded.
322 other_insn is nonzero if we have modified some other insn in the process
323 of working on subst_insn. It must be verified too. */
325 struct undobuf
327 struct undo *undos;
328 struct undo *frees;
329 rtx other_insn;
332 static struct undobuf undobuf;
334 /* Number of times the pseudo being substituted for
335 was found and replaced. */
337 static int n_occurrences;
339 static void do_SUBST (rtx *, rtx);
340 static void do_SUBST_INT (int *, int);
341 static void init_reg_last_arrays (void);
342 static void setup_incoming_promotions (void);
343 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
344 static int cant_combine_insn_p (rtx);
345 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
346 static int sets_function_arg_p (rtx);
347 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
348 static int contains_muldiv (rtx);
349 static rtx try_combine (rtx, rtx, rtx, int *);
350 static void undo_all (void);
351 static void undo_commit (void);
352 static rtx *find_split_point (rtx *, rtx);
353 static rtx subst (rtx, rtx, rtx, int, int);
354 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
355 static rtx simplify_if_then_else (rtx);
356 static rtx simplify_set (rtx);
357 static rtx simplify_logical (rtx, int);
358 static rtx expand_compound_operation (rtx);
359 static rtx expand_field_assignment (rtx);
360 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
361 rtx, unsigned HOST_WIDE_INT, int, int, int);
362 static rtx extract_left_shift (rtx, int);
363 static rtx make_compound_operation (rtx, enum rtx_code);
364 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
365 unsigned HOST_WIDE_INT *);
366 static rtx force_to_mode (rtx, enum machine_mode,
367 unsigned HOST_WIDE_INT, rtx, int);
368 static rtx if_then_else_cond (rtx, rtx *, rtx *);
369 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
370 static int rtx_equal_for_field_assignment_p (rtx, rtx);
371 static rtx make_field_assignment (rtx);
372 static rtx apply_distributive_law (rtx);
373 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
374 unsigned HOST_WIDE_INT);
375 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
376 rtx, enum machine_mode,
377 unsigned HOST_WIDE_INT);
378 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
379 enum machine_mode,
380 unsigned HOST_WIDE_INT);
381 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
382 enum machine_mode,
383 unsigned int);
384 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
385 enum machine_mode, unsigned int);
386 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
387 HOST_WIDE_INT, enum machine_mode, int *);
388 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
389 int);
390 static int recog_for_combine (rtx *, rtx, rtx *);
391 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
392 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
393 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
394 static void update_table_tick (rtx);
395 static void record_value_for_reg (rtx, rtx, rtx);
396 static void check_promoted_subreg (rtx, rtx);
397 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
398 static void record_dead_and_set_regs (rtx);
399 static int get_last_value_validate (rtx *, rtx, int, int);
400 static rtx get_last_value (rtx);
401 static int use_crosses_set_p (rtx, int);
402 static void reg_dead_at_p_1 (rtx, rtx, void *);
403 static int reg_dead_at_p (rtx, rtx);
404 static void move_deaths (rtx, rtx, int, rtx, rtx *);
405 static int reg_bitfield_target_p (rtx, rtx);
406 static void distribute_notes (rtx, rtx, rtx, rtx);
407 static void distribute_links (rtx);
408 static void mark_used_regs_combine (rtx);
409 static int insn_cuid (rtx);
410 static void record_promoted_value (rtx, rtx);
411 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
412 static enum rtx_code combine_reversed_comparison_code (rtx);
414 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
415 insn. The substitution can be undone by undo_all. If INTO is already
416 set to NEWVAL, do not record this change. Because computing NEWVAL might
417 also call SUBST, we have to compute it before we put anything into
418 the undo table. */
420 static void
421 do_SUBST (rtx *into, rtx newval)
423 struct undo *buf;
424 rtx oldval = *into;
426 if (oldval == newval)
427 return;
429 /* We'd like to catch as many invalid transformations here as
430 possible. Unfortunately, there are way too many mode changes
431 that are perfectly valid, so we'd waste too much effort for
432 little gain doing the checks here. Focus on catching invalid
433 transformations involving integer constants. */
434 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
435 && GET_CODE (newval) == CONST_INT)
437 /* Sanity check that we're replacing oldval with a CONST_INT
438 that is a valid sign-extension for the original mode. */
439 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
440 GET_MODE (oldval)))
441 abort ();
443 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
444 CONST_INT is not valid, because after the replacement, the
445 original mode would be gone. Unfortunately, we can't tell
446 when do_SUBST is called to replace the operand thereof, so we
447 perform this test on oldval instead, checking whether an
448 invalid replacement took place before we got here. */
449 if ((GET_CODE (oldval) == SUBREG
450 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
451 || (GET_CODE (oldval) == ZERO_EXTEND
452 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
453 abort ();
456 if (undobuf.frees)
457 buf = undobuf.frees, undobuf.frees = buf->next;
458 else
459 buf = (struct undo *) xmalloc (sizeof (struct undo));
461 buf->is_int = 0;
462 buf->where.r = into;
463 buf->old_contents.r = oldval;
464 *into = newval;
466 buf->next = undobuf.undos, undobuf.undos = buf;
469 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
471 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
472 for the value of a HOST_WIDE_INT value (including CONST_INT) is
473 not safe. */
475 static void
476 do_SUBST_INT (int *into, int newval)
478 struct undo *buf;
479 int oldval = *into;
481 if (oldval == newval)
482 return;
484 if (undobuf.frees)
485 buf = undobuf.frees, undobuf.frees = buf->next;
486 else
487 buf = (struct undo *) xmalloc (sizeof (struct undo));
489 buf->is_int = 1;
490 buf->where.i = into;
491 buf->old_contents.i = oldval;
492 *into = newval;
494 buf->next = undobuf.undos, undobuf.undos = buf;
497 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
499 /* Main entry point for combiner. F is the first insn of the function.
500 NREGS is the first unused pseudo-reg number.
502 Return nonzero if the combiner has turned an indirect jump
503 instruction into a direct jump. */
505 combine_instructions (rtx f, unsigned int nregs)
507 rtx insn, next;
508 #ifdef HAVE_cc0
509 rtx prev;
510 #endif
511 int i;
512 rtx links, nextlinks;
514 int new_direct_jump_p = 0;
516 combine_attempts = 0;
517 combine_merges = 0;
518 combine_extras = 0;
519 combine_successes = 0;
521 combine_max_regno = nregs;
523 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
524 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
525 reg_sign_bit_copies
526 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
528 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
529 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
530 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
531 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
532 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
533 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
534 reg_last_set_mode
535 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
536 reg_last_set_nonzero_bits
537 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
538 reg_last_set_sign_bit_copies
539 = (char *) xmalloc (nregs * sizeof (char));
541 init_reg_last_arrays ();
543 init_recog_no_volatile ();
545 /* Compute maximum uid value so uid_cuid can be allocated. */
547 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
548 if (INSN_UID (insn) > i)
549 i = INSN_UID (insn);
551 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
552 max_uid_cuid = i;
554 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
556 /* Don't use reg_nonzero_bits when computing it. This can cause problems
557 when, for example, we have j <<= 1 in a loop. */
559 nonzero_sign_valid = 0;
561 /* Compute the mapping from uids to cuids.
562 Cuids are numbers assigned to insns, like uids,
563 except that cuids increase monotonically through the code.
565 Scan all SETs and see if we can deduce anything about what
566 bits are known to be zero for some registers and how many copies
567 of the sign bit are known to exist for those registers.
569 Also set any known values so that we can use it while searching
570 for what bits are known to be set. */
572 label_tick = 1;
574 setup_incoming_promotions ();
576 refresh_blocks = sbitmap_alloc (last_basic_block);
577 sbitmap_zero (refresh_blocks);
579 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
581 uid_cuid[INSN_UID (insn)] = ++i;
582 subst_low_cuid = i;
583 subst_insn = insn;
585 if (INSN_P (insn))
587 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
588 NULL);
589 record_dead_and_set_regs (insn);
591 #ifdef AUTO_INC_DEC
592 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
593 if (REG_NOTE_KIND (links) == REG_INC)
594 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
595 NULL);
596 #endif
599 if (GET_CODE (insn) == CODE_LABEL)
600 label_tick++;
603 nonzero_sign_valid = 1;
605 /* Now scan all the insns in forward order. */
607 label_tick = 1;
608 last_call_cuid = 0;
609 mem_last_set = 0;
610 init_reg_last_arrays ();
611 setup_incoming_promotions ();
613 FOR_EACH_BB (this_basic_block)
615 for (insn = this_basic_block->head;
616 insn != NEXT_INSN (this_basic_block->end);
617 insn = next ? next : NEXT_INSN (insn))
619 next = 0;
621 if (GET_CODE (insn) == CODE_LABEL)
622 label_tick++;
624 else if (INSN_P (insn))
626 /* See if we know about function return values before this
627 insn based upon SUBREG flags. */
628 check_promoted_subreg (insn, PATTERN (insn));
630 /* Try this insn with each insn it links back to. */
632 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
633 if ((next = try_combine (insn, XEXP (links, 0),
634 NULL_RTX, &new_direct_jump_p)) != 0)
635 goto retry;
637 /* Try each sequence of three linked insns ending with this one. */
639 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
641 rtx link = XEXP (links, 0);
643 /* If the linked insn has been replaced by a note, then there
644 is no point in pursuing this chain any further. */
645 if (GET_CODE (link) == NOTE)
646 continue;
648 for (nextlinks = LOG_LINKS (link);
649 nextlinks;
650 nextlinks = XEXP (nextlinks, 1))
651 if ((next = try_combine (insn, link,
652 XEXP (nextlinks, 0),
653 &new_direct_jump_p)) != 0)
654 goto retry;
657 #ifdef HAVE_cc0
658 /* Try to combine a jump insn that uses CC0
659 with a preceding insn that sets CC0, and maybe with its
660 logical predecessor as well.
661 This is how we make decrement-and-branch insns.
662 We need this special code because data flow connections
663 via CC0 do not get entered in LOG_LINKS. */
665 if (GET_CODE (insn) == JUMP_INSN
666 && (prev = prev_nonnote_insn (insn)) != 0
667 && GET_CODE (prev) == INSN
668 && sets_cc0_p (PATTERN (prev)))
670 if ((next = try_combine (insn, prev,
671 NULL_RTX, &new_direct_jump_p)) != 0)
672 goto retry;
674 for (nextlinks = LOG_LINKS (prev); nextlinks;
675 nextlinks = XEXP (nextlinks, 1))
676 if ((next = try_combine (insn, prev,
677 XEXP (nextlinks, 0),
678 &new_direct_jump_p)) != 0)
679 goto retry;
682 /* Do the same for an insn that explicitly references CC0. */
683 if (GET_CODE (insn) == INSN
684 && (prev = prev_nonnote_insn (insn)) != 0
685 && GET_CODE (prev) == INSN
686 && sets_cc0_p (PATTERN (prev))
687 && GET_CODE (PATTERN (insn)) == SET
688 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
690 if ((next = try_combine (insn, prev,
691 NULL_RTX, &new_direct_jump_p)) != 0)
692 goto retry;
694 for (nextlinks = LOG_LINKS (prev); nextlinks;
695 nextlinks = XEXP (nextlinks, 1))
696 if ((next = try_combine (insn, prev,
697 XEXP (nextlinks, 0),
698 &new_direct_jump_p)) != 0)
699 goto retry;
702 /* Finally, see if any of the insns that this insn links to
703 explicitly references CC0. If so, try this insn, that insn,
704 and its predecessor if it sets CC0. */
705 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
706 if (GET_CODE (XEXP (links, 0)) == INSN
707 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
708 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
709 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
710 && GET_CODE (prev) == INSN
711 && sets_cc0_p (PATTERN (prev))
712 && (next = try_combine (insn, XEXP (links, 0),
713 prev, &new_direct_jump_p)) != 0)
714 goto retry;
715 #endif
717 /* Try combining an insn with two different insns whose results it
718 uses. */
719 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
720 for (nextlinks = XEXP (links, 1); nextlinks;
721 nextlinks = XEXP (nextlinks, 1))
722 if ((next = try_combine (insn, XEXP (links, 0),
723 XEXP (nextlinks, 0),
724 &new_direct_jump_p)) != 0)
725 goto retry;
727 if (GET_CODE (insn) != NOTE)
728 record_dead_and_set_regs (insn);
730 retry:
735 clear_bb_flags ();
737 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
738 BASIC_BLOCK (i)->flags |= BB_DIRTY);
739 new_direct_jump_p |= purge_all_dead_edges (0);
740 delete_noop_moves (f);
742 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
743 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
744 | PROP_KILL_DEAD_CODE);
746 /* Clean up. */
747 sbitmap_free (refresh_blocks);
748 free (reg_nonzero_bits);
749 free (reg_sign_bit_copies);
750 free (reg_last_death);
751 free (reg_last_set);
752 free (reg_last_set_value);
753 free (reg_last_set_table_tick);
754 free (reg_last_set_label);
755 free (reg_last_set_invalid);
756 free (reg_last_set_mode);
757 free (reg_last_set_nonzero_bits);
758 free (reg_last_set_sign_bit_copies);
759 free (uid_cuid);
762 struct undo *undo, *next;
763 for (undo = undobuf.frees; undo; undo = next)
765 next = undo->next;
766 free (undo);
768 undobuf.frees = 0;
771 total_attempts += combine_attempts;
772 total_merges += combine_merges;
773 total_extras += combine_extras;
774 total_successes += combine_successes;
776 nonzero_sign_valid = 0;
778 /* Make recognizer allow volatile MEMs again. */
779 init_recog ();
781 return new_direct_jump_p;
784 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
786 static void
787 init_reg_last_arrays (void)
789 unsigned int nregs = combine_max_regno;
791 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
792 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
793 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
794 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
795 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
796 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
797 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
798 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
799 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
802 /* Set up any promoted values for incoming argument registers. */
804 static void
805 setup_incoming_promotions (void)
807 #ifdef PROMOTE_FUNCTION_ARGS
808 unsigned int regno;
809 rtx reg;
810 enum machine_mode mode;
811 int unsignedp;
812 rtx first = get_insns ();
814 #ifndef OUTGOING_REGNO
815 #define OUTGOING_REGNO(N) N
816 #endif
817 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
818 /* Check whether this register can hold an incoming pointer
819 argument. FUNCTION_ARG_REGNO_P tests outgoing register
820 numbers, so translate if necessary due to register windows. */
821 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
822 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
824 record_value_for_reg
825 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
826 : SIGN_EXTEND),
827 GET_MODE (reg),
828 gen_rtx_CLOBBER (mode, const0_rtx)));
830 #endif
833 /* Called via note_stores. If X is a pseudo that is narrower than
834 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
836 If we are setting only a portion of X and we can't figure out what
837 portion, assume all bits will be used since we don't know what will
838 be happening.
840 Similarly, set how many bits of X are known to be copies of the sign bit
841 at all locations in the function. This is the smallest number implied
842 by any set of X. */
844 static void
845 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
846 void *data ATTRIBUTE_UNUSED)
848 unsigned int num;
850 if (GET_CODE (x) == REG
851 && REGNO (x) >= FIRST_PSEUDO_REGISTER
852 /* If this register is undefined at the start of the file, we can't
853 say what its contents were. */
854 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
855 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
857 if (set == 0 || GET_CODE (set) == CLOBBER)
859 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
860 reg_sign_bit_copies[REGNO (x)] = 1;
861 return;
864 /* If this is a complex assignment, see if we can convert it into a
865 simple assignment. */
866 set = expand_field_assignment (set);
868 /* If this is a simple assignment, or we have a paradoxical SUBREG,
869 set what we know about X. */
871 if (SET_DEST (set) == x
872 || (GET_CODE (SET_DEST (set)) == SUBREG
873 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
874 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
875 && SUBREG_REG (SET_DEST (set)) == x))
877 rtx src = SET_SRC (set);
879 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
880 /* If X is narrower than a word and SRC is a non-negative
881 constant that would appear negative in the mode of X,
882 sign-extend it for use in reg_nonzero_bits because some
883 machines (maybe most) will actually do the sign-extension
884 and this is the conservative approach.
886 ??? For 2.5, try to tighten up the MD files in this regard
887 instead of this kludge. */
889 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
890 && GET_CODE (src) == CONST_INT
891 && INTVAL (src) > 0
892 && 0 != (INTVAL (src)
893 & ((HOST_WIDE_INT) 1
894 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
895 src = GEN_INT (INTVAL (src)
896 | ((HOST_WIDE_INT) (-1)
897 << GET_MODE_BITSIZE (GET_MODE (x))));
898 #endif
900 /* Don't call nonzero_bits if it cannot change anything. */
901 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
902 reg_nonzero_bits[REGNO (x)]
903 |= nonzero_bits (src, nonzero_bits_mode);
904 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
905 if (reg_sign_bit_copies[REGNO (x)] == 0
906 || reg_sign_bit_copies[REGNO (x)] > num)
907 reg_sign_bit_copies[REGNO (x)] = num;
909 else
911 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
912 reg_sign_bit_copies[REGNO (x)] = 1;
917 /* See if INSN can be combined into I3. PRED and SUCC are optionally
918 insns that were previously combined into I3 or that will be combined
919 into the merger of INSN and I3.
921 Return 0 if the combination is not allowed for any reason.
923 If the combination is allowed, *PDEST will be set to the single
924 destination of INSN and *PSRC to the single source, and this function
925 will return 1. */
927 static int
928 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
929 rtx *pdest, rtx *psrc)
931 int i;
932 rtx set = 0, src, dest;
933 rtx p;
934 #ifdef AUTO_INC_DEC
935 rtx link;
936 #endif
937 int all_adjacent = (succ ? (next_active_insn (insn) == succ
938 && next_active_insn (succ) == i3)
939 : next_active_insn (insn) == i3);
941 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
942 or a PARALLEL consisting of such a SET and CLOBBERs.
944 If INSN has CLOBBER parallel parts, ignore them for our processing.
945 By definition, these happen during the execution of the insn. When it
946 is merged with another insn, all bets are off. If they are, in fact,
947 needed and aren't also supplied in I3, they may be added by
948 recog_for_combine. Otherwise, it won't match.
950 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
951 note.
953 Get the source and destination of INSN. If more than one, can't
954 combine. */
956 if (GET_CODE (PATTERN (insn)) == SET)
957 set = PATTERN (insn);
958 else if (GET_CODE (PATTERN (insn)) == PARALLEL
959 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
961 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
963 rtx elt = XVECEXP (PATTERN (insn), 0, i);
965 switch (GET_CODE (elt))
967 /* This is important to combine floating point insns
968 for the SH4 port. */
969 case USE:
970 /* Combining an isolated USE doesn't make sense.
971 We depend here on combinable_i3pat to reject them. */
972 /* The code below this loop only verifies that the inputs of
973 the SET in INSN do not change. We call reg_set_between_p
974 to verify that the REG in the USE does not change between
975 I3 and INSN.
976 If the USE in INSN was for a pseudo register, the matching
977 insn pattern will likely match any register; combining this
978 with any other USE would only be safe if we knew that the
979 used registers have identical values, or if there was
980 something to tell them apart, e.g. different modes. For
981 now, we forgo such complicated tests and simply disallow
982 combining of USES of pseudo registers with any other USE. */
983 if (GET_CODE (XEXP (elt, 0)) == REG
984 && GET_CODE (PATTERN (i3)) == PARALLEL)
986 rtx i3pat = PATTERN (i3);
987 int i = XVECLEN (i3pat, 0) - 1;
988 unsigned int regno = REGNO (XEXP (elt, 0));
992 rtx i3elt = XVECEXP (i3pat, 0, i);
994 if (GET_CODE (i3elt) == USE
995 && GET_CODE (XEXP (i3elt, 0)) == REG
996 && (REGNO (XEXP (i3elt, 0)) == regno
997 ? reg_set_between_p (XEXP (elt, 0),
998 PREV_INSN (insn), i3)
999 : regno >= FIRST_PSEUDO_REGISTER))
1000 return 0;
1002 while (--i >= 0);
1004 break;
1006 /* We can ignore CLOBBERs. */
1007 case CLOBBER:
1008 break;
1010 case SET:
1011 /* Ignore SETs whose result isn't used but not those that
1012 have side-effects. */
1013 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1014 && ! side_effects_p (elt))
1015 break;
1017 /* If we have already found a SET, this is a second one and
1018 so we cannot combine with this insn. */
1019 if (set)
1020 return 0;
1022 set = elt;
1023 break;
1025 default:
1026 /* Anything else means we can't combine. */
1027 return 0;
1031 if (set == 0
1032 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1033 so don't do anything with it. */
1034 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1035 return 0;
1037 else
1038 return 0;
1040 if (set == 0)
1041 return 0;
1043 set = expand_field_assignment (set);
1044 src = SET_SRC (set), dest = SET_DEST (set);
1046 /* Don't eliminate a store in the stack pointer. */
1047 if (dest == stack_pointer_rtx
1048 /* Don't combine with an insn that sets a register to itself if it has
1049 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1050 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1051 /* Can't merge an ASM_OPERANDS. */
1052 || GET_CODE (src) == ASM_OPERANDS
1053 /* Can't merge a function call. */
1054 || GET_CODE (src) == CALL
1055 /* Don't eliminate a function call argument. */
1056 || (GET_CODE (i3) == CALL_INSN
1057 && (find_reg_fusage (i3, USE, dest)
1058 || (GET_CODE (dest) == REG
1059 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1060 && global_regs[REGNO (dest)])))
1061 /* Don't substitute into an incremented register. */
1062 || FIND_REG_INC_NOTE (i3, dest)
1063 || (succ && FIND_REG_INC_NOTE (succ, dest))
1064 #if 0
1065 /* Don't combine the end of a libcall into anything. */
1066 /* ??? This gives worse code, and appears to be unnecessary, since no
1067 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1068 use REG_RETVAL notes for noconflict blocks, but other code here
1069 makes sure that those insns don't disappear. */
1070 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1071 #endif
1072 /* Make sure that DEST is not used after SUCC but before I3. */
1073 || (succ && ! all_adjacent
1074 && reg_used_between_p (dest, succ, i3))
1075 /* Make sure that the value that is to be substituted for the register
1076 does not use any registers whose values alter in between. However,
1077 If the insns are adjacent, a use can't cross a set even though we
1078 think it might (this can happen for a sequence of insns each setting
1079 the same destination; reg_last_set of that register might point to
1080 a NOTE). If INSN has a REG_EQUIV note, the register is always
1081 equivalent to the memory so the substitution is valid even if there
1082 are intervening stores. Also, don't move a volatile asm or
1083 UNSPEC_VOLATILE across any other insns. */
1084 || (! all_adjacent
1085 && (((GET_CODE (src) != MEM
1086 || ! find_reg_note (insn, REG_EQUIV, src))
1087 && use_crosses_set_p (src, INSN_CUID (insn)))
1088 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1089 || GET_CODE (src) == UNSPEC_VOLATILE))
1090 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1091 better register allocation by not doing the combine. */
1092 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1093 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1094 /* Don't combine across a CALL_INSN, because that would possibly
1095 change whether the life span of some REGs crosses calls or not,
1096 and it is a pain to update that information.
1097 Exception: if source is a constant, moving it later can't hurt.
1098 Accept that special case, because it helps -fforce-addr a lot. */
1099 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1100 return 0;
1102 /* DEST must either be a REG or CC0. */
1103 if (GET_CODE (dest) == REG)
1105 /* If register alignment is being enforced for multi-word items in all
1106 cases except for parameters, it is possible to have a register copy
1107 insn referencing a hard register that is not allowed to contain the
1108 mode being copied and which would not be valid as an operand of most
1109 insns. Eliminate this problem by not combining with such an insn.
1111 Also, on some machines we don't want to extend the life of a hard
1112 register. */
1114 if (GET_CODE (src) == REG
1115 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1116 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1117 /* Don't extend the life of a hard register unless it is
1118 user variable (if we have few registers) or it can't
1119 fit into the desired register (meaning something special
1120 is going on).
1121 Also avoid substituting a return register into I3, because
1122 reload can't handle a conflict with constraints of other
1123 inputs. */
1124 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1125 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1126 return 0;
1128 else if (GET_CODE (dest) != CC0)
1129 return 0;
1131 /* Don't substitute for a register intended as a clobberable operand.
1132 Similarly, don't substitute an expression containing a register that
1133 will be clobbered in I3. */
1134 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1135 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1136 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1137 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1138 src)
1139 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1140 return 0;
1142 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1143 or not), reject, unless nothing volatile comes between it and I3 */
1145 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1147 /* Make sure succ doesn't contain a volatile reference. */
1148 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1149 return 0;
1151 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1152 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1153 return 0;
1156 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1157 to be an explicit register variable, and was chosen for a reason. */
1159 if (GET_CODE (src) == ASM_OPERANDS
1160 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1161 return 0;
1163 /* If there are any volatile insns between INSN and I3, reject, because
1164 they might affect machine state. */
1166 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1167 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1168 return 0;
1170 /* If INSN or I2 contains an autoincrement or autodecrement,
1171 make sure that register is not used between there and I3,
1172 and not already used in I3 either.
1173 Also insist that I3 not be a jump; if it were one
1174 and the incremented register were spilled, we would lose. */
1176 #ifdef AUTO_INC_DEC
1177 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1178 if (REG_NOTE_KIND (link) == REG_INC
1179 && (GET_CODE (i3) == JUMP_INSN
1180 || reg_used_between_p (XEXP (link, 0), insn, i3)
1181 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1182 return 0;
1183 #endif
1185 #ifdef HAVE_cc0
1186 /* Don't combine an insn that follows a CC0-setting insn.
1187 An insn that uses CC0 must not be separated from the one that sets it.
1188 We do, however, allow I2 to follow a CC0-setting insn if that insn
1189 is passed as I1; in that case it will be deleted also.
1190 We also allow combining in this case if all the insns are adjacent
1191 because that would leave the two CC0 insns adjacent as well.
1192 It would be more logical to test whether CC0 occurs inside I1 or I2,
1193 but that would be much slower, and this ought to be equivalent. */
1195 p = prev_nonnote_insn (insn);
1196 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1197 && ! all_adjacent)
1198 return 0;
1199 #endif
1201 /* If we get here, we have passed all the tests and the combination is
1202 to be allowed. */
1204 *pdest = dest;
1205 *psrc = src;
1207 return 1;
1210 /* Check if PAT is an insn - or a part of it - used to set up an
1211 argument for a function in a hard register. */
1213 static int
1214 sets_function_arg_p (rtx pat)
1216 int i;
1217 rtx inner_dest;
1219 switch (GET_CODE (pat))
1221 case INSN:
1222 return sets_function_arg_p (PATTERN (pat));
1224 case PARALLEL:
1225 for (i = XVECLEN (pat, 0); --i >= 0;)
1226 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1227 return 1;
1229 break;
1231 case SET:
1232 inner_dest = SET_DEST (pat);
1233 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1234 || GET_CODE (inner_dest) == SUBREG
1235 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1236 inner_dest = XEXP (inner_dest, 0);
1238 return (GET_CODE (inner_dest) == REG
1239 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1240 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1242 default:
1243 break;
1246 return 0;
1249 /* LOC is the location within I3 that contains its pattern or the component
1250 of a PARALLEL of the pattern. We validate that it is valid for combining.
1252 One problem is if I3 modifies its output, as opposed to replacing it
1253 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1254 so would produce an insn that is not equivalent to the original insns.
1256 Consider:
1258 (set (reg:DI 101) (reg:DI 100))
1259 (set (subreg:SI (reg:DI 101) 0) <foo>)
1261 This is NOT equivalent to:
1263 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1264 (set (reg:DI 101) (reg:DI 100))])
1266 Not only does this modify 100 (in which case it might still be valid
1267 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1269 We can also run into a problem if I2 sets a register that I1
1270 uses and I1 gets directly substituted into I3 (not via I2). In that
1271 case, we would be getting the wrong value of I2DEST into I3, so we
1272 must reject the combination. This case occurs when I2 and I1 both
1273 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1274 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1275 of a SET must prevent combination from occurring.
1277 Before doing the above check, we first try to expand a field assignment
1278 into a set of logical operations.
1280 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1281 we place a register that is both set and used within I3. If more than one
1282 such register is detected, we fail.
1284 Return 1 if the combination is valid, zero otherwise. */
1286 static int
1287 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1288 int i1_not_in_src, rtx *pi3dest_killed)
1290 rtx x = *loc;
1292 if (GET_CODE (x) == SET)
1294 rtx set = x ;
1295 rtx dest = SET_DEST (set);
1296 rtx src = SET_SRC (set);
1297 rtx inner_dest = dest;
1299 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1300 || GET_CODE (inner_dest) == SUBREG
1301 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1302 inner_dest = XEXP (inner_dest, 0);
1304 /* Check for the case where I3 modifies its output, as
1305 discussed above. */
1306 if ((inner_dest != dest
1307 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1308 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1310 /* This is the same test done in can_combine_p except we can't test
1311 all_adjacent; we don't have to, since this instruction will stay
1312 in place, thus we are not considering increasing the lifetime of
1313 INNER_DEST.
1315 Also, if this insn sets a function argument, combining it with
1316 something that might need a spill could clobber a previous
1317 function argument; the all_adjacent test in can_combine_p also
1318 checks this; here, we do a more specific test for this case. */
1320 || (GET_CODE (inner_dest) == REG
1321 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1322 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1323 GET_MODE (inner_dest))))
1324 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1325 return 0;
1327 /* If DEST is used in I3, it is being killed in this insn,
1328 so record that for later.
1329 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1330 STACK_POINTER_REGNUM, since these are always considered to be
1331 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1332 if (pi3dest_killed && GET_CODE (dest) == REG
1333 && reg_referenced_p (dest, PATTERN (i3))
1334 && REGNO (dest) != FRAME_POINTER_REGNUM
1335 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1336 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1337 #endif
1338 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1339 && (REGNO (dest) != ARG_POINTER_REGNUM
1340 || ! fixed_regs [REGNO (dest)])
1341 #endif
1342 && REGNO (dest) != STACK_POINTER_REGNUM)
1344 if (*pi3dest_killed)
1345 return 0;
1347 *pi3dest_killed = dest;
1351 else if (GET_CODE (x) == PARALLEL)
1353 int i;
1355 for (i = 0; i < XVECLEN (x, 0); i++)
1356 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1357 i1_not_in_src, pi3dest_killed))
1358 return 0;
1361 return 1;
1364 /* Return 1 if X is an arithmetic expression that contains a multiplication
1365 and division. We don't count multiplications by powers of two here. */
1367 static int
1368 contains_muldiv (rtx x)
1370 switch (GET_CODE (x))
1372 case MOD: case DIV: case UMOD: case UDIV:
1373 return 1;
1375 case MULT:
1376 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1377 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1378 default:
1379 switch (GET_RTX_CLASS (GET_CODE (x)))
1381 case 'c': case '<': case '2':
1382 return contains_muldiv (XEXP (x, 0))
1383 || contains_muldiv (XEXP (x, 1));
1385 case '1':
1386 return contains_muldiv (XEXP (x, 0));
1388 default:
1389 return 0;
1394 /* Determine whether INSN can be used in a combination. Return nonzero if
1395 not. This is used in try_combine to detect early some cases where we
1396 can't perform combinations. */
1398 static int
1399 cant_combine_insn_p (rtx insn)
1401 rtx set;
1402 rtx src, dest;
1404 /* If this isn't really an insn, we can't do anything.
1405 This can occur when flow deletes an insn that it has merged into an
1406 auto-increment address. */
1407 if (! INSN_P (insn))
1408 return 1;
1410 /* Never combine loads and stores involving hard regs that are likely
1411 to be spilled. The register allocator can usually handle such
1412 reg-reg moves by tying. If we allow the combiner to make
1413 substitutions of likely-spilled regs, we may abort in reload.
1414 As an exception, we allow combinations involving fixed regs; these are
1415 not available to the register allocator so there's no risk involved. */
1417 set = single_set (insn);
1418 if (! set)
1419 return 0;
1420 src = SET_SRC (set);
1421 dest = SET_DEST (set);
1422 if (GET_CODE (src) == SUBREG)
1423 src = SUBREG_REG (src);
1424 if (GET_CODE (dest) == SUBREG)
1425 dest = SUBREG_REG (dest);
1426 if (REG_P (src) && REG_P (dest)
1427 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1428 && ! fixed_regs[REGNO (src)]
1429 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1430 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1431 && ! fixed_regs[REGNO (dest)]
1432 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1433 return 1;
1435 return 0;
1438 /* Try to combine the insns I1 and I2 into I3.
1439 Here I1 and I2 appear earlier than I3.
1440 I1 can be zero; then we combine just I2 into I3.
1442 If we are combining three insns and the resulting insn is not recognized,
1443 try splitting it into two insns. If that happens, I2 and I3 are retained
1444 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1445 are pseudo-deleted.
1447 Return 0 if the combination does not work. Then nothing is changed.
1448 If we did the combination, return the insn at which combine should
1449 resume scanning.
1451 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1452 new direct jump instruction. */
1454 static rtx
1455 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1457 /* New patterns for I3 and I2, respectively. */
1458 rtx newpat, newi2pat = 0;
1459 int substed_i2 = 0, substed_i1 = 0;
1460 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1461 int added_sets_1, added_sets_2;
1462 /* Total number of SETs to put into I3. */
1463 int total_sets;
1464 /* Nonzero is I2's body now appears in I3. */
1465 int i2_is_used;
1466 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1467 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1468 /* Contains I3 if the destination of I3 is used in its source, which means
1469 that the old life of I3 is being killed. If that usage is placed into
1470 I2 and not in I3, a REG_DEAD note must be made. */
1471 rtx i3dest_killed = 0;
1472 /* SET_DEST and SET_SRC of I2 and I1. */
1473 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1474 /* PATTERN (I2), or a copy of it in certain cases. */
1475 rtx i2pat;
1476 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1477 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1478 int i1_feeds_i3 = 0;
1479 /* Notes that must be added to REG_NOTES in I3 and I2. */
1480 rtx new_i3_notes, new_i2_notes;
1481 /* Notes that we substituted I3 into I2 instead of the normal case. */
1482 int i3_subst_into_i2 = 0;
1483 /* Notes that I1, I2 or I3 is a MULT operation. */
1484 int have_mult = 0;
1486 int maxreg;
1487 rtx temp;
1488 rtx link;
1489 int i;
1491 /* Exit early if one of the insns involved can't be used for
1492 combinations. */
1493 if (cant_combine_insn_p (i3)
1494 || cant_combine_insn_p (i2)
1495 || (i1 && cant_combine_insn_p (i1))
1496 /* We also can't do anything if I3 has a
1497 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1498 libcall. */
1499 #if 0
1500 /* ??? This gives worse code, and appears to be unnecessary, since no
1501 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1502 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1503 #endif
1505 return 0;
1507 combine_attempts++;
1508 undobuf.other_insn = 0;
1510 /* Reset the hard register usage information. */
1511 CLEAR_HARD_REG_SET (newpat_used_regs);
1513 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1514 code below, set I1 to be the earlier of the two insns. */
1515 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1516 temp = i1, i1 = i2, i2 = temp;
1518 added_links_insn = 0;
1520 /* First check for one important special-case that the code below will
1521 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1522 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1523 we may be able to replace that destination with the destination of I3.
1524 This occurs in the common code where we compute both a quotient and
1525 remainder into a structure, in which case we want to do the computation
1526 directly into the structure to avoid register-register copies.
1528 Note that this case handles both multiple sets in I2 and also
1529 cases where I2 has a number of CLOBBER or PARALLELs.
1531 We make very conservative checks below and only try to handle the
1532 most common cases of this. For example, we only handle the case
1533 where I2 and I3 are adjacent to avoid making difficult register
1534 usage tests. */
1536 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1537 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1538 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1539 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1540 && GET_CODE (PATTERN (i2)) == PARALLEL
1541 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1542 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1543 below would need to check what is inside (and reg_overlap_mentioned_p
1544 doesn't support those codes anyway). Don't allow those destinations;
1545 the resulting insn isn't likely to be recognized anyway. */
1546 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1547 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1548 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1549 SET_DEST (PATTERN (i3)))
1550 && next_real_insn (i2) == i3)
1552 rtx p2 = PATTERN (i2);
1554 /* Make sure that the destination of I3,
1555 which we are going to substitute into one output of I2,
1556 is not used within another output of I2. We must avoid making this:
1557 (parallel [(set (mem (reg 69)) ...)
1558 (set (reg 69) ...)])
1559 which is not well-defined as to order of actions.
1560 (Besides, reload can't handle output reloads for this.)
1562 The problem can also happen if the dest of I3 is a memory ref,
1563 if another dest in I2 is an indirect memory ref. */
1564 for (i = 0; i < XVECLEN (p2, 0); i++)
1565 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1566 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1567 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1568 SET_DEST (XVECEXP (p2, 0, i))))
1569 break;
1571 if (i == XVECLEN (p2, 0))
1572 for (i = 0; i < XVECLEN (p2, 0); i++)
1573 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1574 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1575 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1577 combine_merges++;
1579 subst_insn = i3;
1580 subst_low_cuid = INSN_CUID (i2);
1582 added_sets_2 = added_sets_1 = 0;
1583 i2dest = SET_SRC (PATTERN (i3));
1585 /* Replace the dest in I2 with our dest and make the resulting
1586 insn the new pattern for I3. Then skip to where we
1587 validate the pattern. Everything was set up above. */
1588 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1589 SET_DEST (PATTERN (i3)));
1591 newpat = p2;
1592 i3_subst_into_i2 = 1;
1593 goto validate_replacement;
1597 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1598 one of those words to another constant, merge them by making a new
1599 constant. */
1600 if (i1 == 0
1601 && (temp = single_set (i2)) != 0
1602 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1603 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1604 && GET_CODE (SET_DEST (temp)) == REG
1605 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1606 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1607 && GET_CODE (PATTERN (i3)) == SET
1608 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1609 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1610 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1611 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1612 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1614 HOST_WIDE_INT lo, hi;
1616 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1617 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1618 else
1620 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1621 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1624 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1626 /* We don't handle the case of the target word being wider
1627 than a host wide int. */
1628 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1629 abort ();
1631 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1632 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1633 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1635 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1636 hi = INTVAL (SET_SRC (PATTERN (i3)));
1637 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1639 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1640 >> (HOST_BITS_PER_WIDE_INT - 1));
1642 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1643 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1644 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1645 (INTVAL (SET_SRC (PATTERN (i3)))));
1646 if (hi == sign)
1647 hi = lo < 0 ? -1 : 0;
1649 else
1650 /* We don't handle the case of the higher word not fitting
1651 entirely in either hi or lo. */
1652 abort ();
1654 combine_merges++;
1655 subst_insn = i3;
1656 subst_low_cuid = INSN_CUID (i2);
1657 added_sets_2 = added_sets_1 = 0;
1658 i2dest = SET_DEST (temp);
1660 SUBST (SET_SRC (temp),
1661 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1663 newpat = PATTERN (i2);
1664 goto validate_replacement;
1667 #ifndef HAVE_cc0
1668 /* If we have no I1 and I2 looks like:
1669 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1670 (set Y OP)])
1671 make up a dummy I1 that is
1672 (set Y OP)
1673 and change I2 to be
1674 (set (reg:CC X) (compare:CC Y (const_int 0)))
1676 (We can ignore any trailing CLOBBERs.)
1678 This undoes a previous combination and allows us to match a branch-and-
1679 decrement insn. */
1681 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1682 && XVECLEN (PATTERN (i2), 0) >= 2
1683 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1684 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1685 == MODE_CC)
1686 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1687 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1688 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1689 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1690 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1691 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1693 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1694 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1695 break;
1697 if (i == 1)
1699 /* We make I1 with the same INSN_UID as I2. This gives it
1700 the same INSN_CUID for value tracking. Our fake I1 will
1701 never appear in the insn stream so giving it the same INSN_UID
1702 as I2 will not cause a problem. */
1704 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1705 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1706 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1707 NULL_RTX);
1709 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1710 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1711 SET_DEST (PATTERN (i1)));
1714 #endif
1716 /* Verify that I2 and I1 are valid for combining. */
1717 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1718 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1720 undo_all ();
1721 return 0;
1724 /* Record whether I2DEST is used in I2SRC and similarly for the other
1725 cases. Knowing this will help in register status updating below. */
1726 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1727 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1728 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1730 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1731 in I2SRC. */
1732 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1734 /* Ensure that I3's pattern can be the destination of combines. */
1735 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1736 i1 && i2dest_in_i1src && i1_feeds_i3,
1737 &i3dest_killed))
1739 undo_all ();
1740 return 0;
1743 /* See if any of the insns is a MULT operation. Unless one is, we will
1744 reject a combination that is, since it must be slower. Be conservative
1745 here. */
1746 if (GET_CODE (i2src) == MULT
1747 || (i1 != 0 && GET_CODE (i1src) == MULT)
1748 || (GET_CODE (PATTERN (i3)) == SET
1749 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1750 have_mult = 1;
1752 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1753 We used to do this EXCEPT in one case: I3 has a post-inc in an
1754 output operand. However, that exception can give rise to insns like
1755 mov r3,(r3)+
1756 which is a famous insn on the PDP-11 where the value of r3 used as the
1757 source was model-dependent. Avoid this sort of thing. */
1759 #if 0
1760 if (!(GET_CODE (PATTERN (i3)) == SET
1761 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1762 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1763 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1764 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1765 /* It's not the exception. */
1766 #endif
1767 #ifdef AUTO_INC_DEC
1768 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1769 if (REG_NOTE_KIND (link) == REG_INC
1770 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1771 || (i1 != 0
1772 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1774 undo_all ();
1775 return 0;
1777 #endif
1779 /* See if the SETs in I1 or I2 need to be kept around in the merged
1780 instruction: whenever the value set there is still needed past I3.
1781 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1783 For the SET in I1, we have two cases: If I1 and I2 independently
1784 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1785 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1786 in I1 needs to be kept around unless I1DEST dies or is set in either
1787 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1788 I1DEST. If so, we know I1 feeds into I2. */
1790 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1792 added_sets_1
1793 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1794 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1796 /* If the set in I2 needs to be kept around, we must make a copy of
1797 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1798 PATTERN (I2), we are only substituting for the original I1DEST, not into
1799 an already-substituted copy. This also prevents making self-referential
1800 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1801 I2DEST. */
1803 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1804 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1805 : PATTERN (i2));
1807 if (added_sets_2)
1808 i2pat = copy_rtx (i2pat);
1810 combine_merges++;
1812 /* Substitute in the latest insn for the regs set by the earlier ones. */
1814 maxreg = max_reg_num ();
1816 subst_insn = i3;
1818 /* It is possible that the source of I2 or I1 may be performing an
1819 unneeded operation, such as a ZERO_EXTEND of something that is known
1820 to have the high part zero. Handle that case by letting subst look at
1821 the innermost one of them.
1823 Another way to do this would be to have a function that tries to
1824 simplify a single insn instead of merging two or more insns. We don't
1825 do this because of the potential of infinite loops and because
1826 of the potential extra memory required. However, doing it the way
1827 we are is a bit of a kludge and doesn't catch all cases.
1829 But only do this if -fexpensive-optimizations since it slows things down
1830 and doesn't usually win. */
1832 if (flag_expensive_optimizations)
1834 /* Pass pc_rtx so no substitutions are done, just simplifications.
1835 The cases that we are interested in here do not involve the few
1836 cases were is_replaced is checked. */
1837 if (i1)
1839 subst_low_cuid = INSN_CUID (i1);
1840 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1842 else
1844 subst_low_cuid = INSN_CUID (i2);
1845 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1849 #ifndef HAVE_cc0
1850 /* Many machines that don't use CC0 have insns that can both perform an
1851 arithmetic operation and set the condition code. These operations will
1852 be represented as a PARALLEL with the first element of the vector
1853 being a COMPARE of an arithmetic operation with the constant zero.
1854 The second element of the vector will set some pseudo to the result
1855 of the same arithmetic operation. If we simplify the COMPARE, we won't
1856 match such a pattern and so will generate an extra insn. Here we test
1857 for this case, where both the comparison and the operation result are
1858 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1859 I2SRC. Later we will make the PARALLEL that contains I2. */
1861 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1862 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1863 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1864 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1866 #ifdef EXTRA_CC_MODES
1867 rtx *cc_use;
1868 enum machine_mode compare_mode;
1869 #endif
1871 newpat = PATTERN (i3);
1872 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1874 i2_is_used = 1;
1876 #ifdef EXTRA_CC_MODES
1877 /* See if a COMPARE with the operand we substituted in should be done
1878 with the mode that is currently being used. If not, do the same
1879 processing we do in `subst' for a SET; namely, if the destination
1880 is used only once, try to replace it with a register of the proper
1881 mode and also replace the COMPARE. */
1882 if (undobuf.other_insn == 0
1883 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1884 &undobuf.other_insn))
1885 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1886 i2src, const0_rtx))
1887 != GET_MODE (SET_DEST (newpat))))
1889 unsigned int regno = REGNO (SET_DEST (newpat));
1890 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1892 if (regno < FIRST_PSEUDO_REGISTER
1893 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1894 && ! REG_USERVAR_P (SET_DEST (newpat))))
1896 if (regno >= FIRST_PSEUDO_REGISTER)
1897 SUBST (regno_reg_rtx[regno], new_dest);
1899 SUBST (SET_DEST (newpat), new_dest);
1900 SUBST (XEXP (*cc_use, 0), new_dest);
1901 SUBST (SET_SRC (newpat),
1902 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1904 else
1905 undobuf.other_insn = 0;
1907 #endif
1909 else
1910 #endif
1912 n_occurrences = 0; /* `subst' counts here */
1914 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1915 need to make a unique copy of I2SRC each time we substitute it
1916 to avoid self-referential rtl. */
1918 subst_low_cuid = INSN_CUID (i2);
1919 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1920 ! i1_feeds_i3 && i1dest_in_i1src);
1921 substed_i2 = 1;
1923 /* Record whether i2's body now appears within i3's body. */
1924 i2_is_used = n_occurrences;
1927 /* If we already got a failure, don't try to do more. Otherwise,
1928 try to substitute in I1 if we have it. */
1930 if (i1 && GET_CODE (newpat) != CLOBBER)
1932 /* Before we can do this substitution, we must redo the test done
1933 above (see detailed comments there) that ensures that I1DEST
1934 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1936 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1937 0, (rtx*) 0))
1939 undo_all ();
1940 return 0;
1943 n_occurrences = 0;
1944 subst_low_cuid = INSN_CUID (i1);
1945 newpat = subst (newpat, i1dest, i1src, 0, 0);
1946 substed_i1 = 1;
1949 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1950 to count all the ways that I2SRC and I1SRC can be used. */
1951 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1952 && i2_is_used + added_sets_2 > 1)
1953 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1954 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1955 > 1))
1956 /* Fail if we tried to make a new register (we used to abort, but there's
1957 really no reason to). */
1958 || max_reg_num () != maxreg
1959 /* Fail if we couldn't do something and have a CLOBBER. */
1960 || GET_CODE (newpat) == CLOBBER
1961 /* Fail if this new pattern is a MULT and we didn't have one before
1962 at the outer level. */
1963 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1964 && ! have_mult))
1966 undo_all ();
1967 return 0;
1970 /* If the actions of the earlier insns must be kept
1971 in addition to substituting them into the latest one,
1972 we must make a new PARALLEL for the latest insn
1973 to hold additional the SETs. */
1975 if (added_sets_1 || added_sets_2)
1977 combine_extras++;
1979 if (GET_CODE (newpat) == PARALLEL)
1981 rtvec old = XVEC (newpat, 0);
1982 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1983 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1984 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
1985 sizeof (old->elem[0]) * old->num_elem);
1987 else
1989 rtx old = newpat;
1990 total_sets = 1 + added_sets_1 + added_sets_2;
1991 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1992 XVECEXP (newpat, 0, 0) = old;
1995 if (added_sets_1)
1996 XVECEXP (newpat, 0, --total_sets)
1997 = (GET_CODE (PATTERN (i1)) == PARALLEL
1998 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2000 if (added_sets_2)
2002 /* If there is no I1, use I2's body as is. We used to also not do
2003 the subst call below if I2 was substituted into I3,
2004 but that could lose a simplification. */
2005 if (i1 == 0)
2006 XVECEXP (newpat, 0, --total_sets) = i2pat;
2007 else
2008 /* See comment where i2pat is assigned. */
2009 XVECEXP (newpat, 0, --total_sets)
2010 = subst (i2pat, i1dest, i1src, 0, 0);
2014 /* We come here when we are replacing a destination in I2 with the
2015 destination of I3. */
2016 validate_replacement:
2018 /* Note which hard regs this insn has as inputs. */
2019 mark_used_regs_combine (newpat);
2021 /* Is the result of combination a valid instruction? */
2022 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2024 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2025 the second SET's destination is a register that is unused. In that case,
2026 we just need the first SET. This can occur when simplifying a divmod
2027 insn. We *must* test for this case here because the code below that
2028 splits two independent SETs doesn't handle this case correctly when it
2029 updates the register status. Also check the case where the first
2030 SET's destination is unused. That would not cause incorrect code, but
2031 does cause an unneeded insn to remain. */
2033 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2034 && XVECLEN (newpat, 0) == 2
2035 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2036 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2037 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2038 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2039 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2040 && asm_noperands (newpat) < 0)
2042 newpat = XVECEXP (newpat, 0, 0);
2043 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2046 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2047 && XVECLEN (newpat, 0) == 2
2048 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2049 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2050 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2051 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2052 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2053 && asm_noperands (newpat) < 0)
2055 newpat = XVECEXP (newpat, 0, 1);
2056 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2059 /* If we were combining three insns and the result is a simple SET
2060 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2061 insns. There are two ways to do this. It can be split using a
2062 machine-specific method (like when you have an addition of a large
2063 constant) or by combine in the function find_split_point. */
2065 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2066 && asm_noperands (newpat) < 0)
2068 rtx m_split, *split;
2069 rtx ni2dest = i2dest;
2071 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2072 use I2DEST as a scratch register will help. In the latter case,
2073 convert I2DEST to the mode of the source of NEWPAT if we can. */
2075 m_split = split_insns (newpat, i3);
2077 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2078 inputs of NEWPAT. */
2080 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2081 possible to try that as a scratch reg. This would require adding
2082 more code to make it work though. */
2084 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2086 /* If I2DEST is a hard register or the only use of a pseudo,
2087 we can change its mode. */
2088 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2089 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2090 && GET_CODE (i2dest) == REG
2091 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2092 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2093 && ! REG_USERVAR_P (i2dest))))
2094 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2095 REGNO (i2dest));
2097 m_split = split_insns (gen_rtx_PARALLEL
2098 (VOIDmode,
2099 gen_rtvec (2, newpat,
2100 gen_rtx_CLOBBER (VOIDmode,
2101 ni2dest))),
2102 i3);
2103 /* If the split with the mode-changed register didn't work, try
2104 the original register. */
2105 if (! m_split && ni2dest != i2dest)
2107 ni2dest = i2dest;
2108 m_split = split_insns (gen_rtx_PARALLEL
2109 (VOIDmode,
2110 gen_rtvec (2, newpat,
2111 gen_rtx_CLOBBER (VOIDmode,
2112 i2dest))),
2113 i3);
2117 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2119 m_split = PATTERN (m_split);
2120 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2121 if (insn_code_number >= 0)
2122 newpat = m_split;
2124 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2125 && (next_real_insn (i2) == i3
2126 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2128 rtx i2set, i3set;
2129 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2130 newi2pat = PATTERN (m_split);
2132 i3set = single_set (NEXT_INSN (m_split));
2133 i2set = single_set (m_split);
2135 /* In case we changed the mode of I2DEST, replace it in the
2136 pseudo-register table here. We can't do it above in case this
2137 code doesn't get executed and we do a split the other way. */
2139 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2140 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2142 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2144 /* If I2 or I3 has multiple SETs, we won't know how to track
2145 register status, so don't use these insns. If I2's destination
2146 is used between I2 and I3, we also can't use these insns. */
2148 if (i2_code_number >= 0 && i2set && i3set
2149 && (next_real_insn (i2) == i3
2150 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2151 insn_code_number = recog_for_combine (&newi3pat, i3,
2152 &new_i3_notes);
2153 if (insn_code_number >= 0)
2154 newpat = newi3pat;
2156 /* It is possible that both insns now set the destination of I3.
2157 If so, we must show an extra use of it. */
2159 if (insn_code_number >= 0)
2161 rtx new_i3_dest = SET_DEST (i3set);
2162 rtx new_i2_dest = SET_DEST (i2set);
2164 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2165 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2166 || GET_CODE (new_i3_dest) == SUBREG)
2167 new_i3_dest = XEXP (new_i3_dest, 0);
2169 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2170 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2171 || GET_CODE (new_i2_dest) == SUBREG)
2172 new_i2_dest = XEXP (new_i2_dest, 0);
2174 if (GET_CODE (new_i3_dest) == REG
2175 && GET_CODE (new_i2_dest) == REG
2176 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2177 REG_N_SETS (REGNO (new_i2_dest))++;
2181 /* If we can split it and use I2DEST, go ahead and see if that
2182 helps things be recognized. Verify that none of the registers
2183 are set between I2 and I3. */
2184 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2185 #ifdef HAVE_cc0
2186 && GET_CODE (i2dest) == REG
2187 #endif
2188 /* We need I2DEST in the proper mode. If it is a hard register
2189 or the only use of a pseudo, we can change its mode. */
2190 && (GET_MODE (*split) == GET_MODE (i2dest)
2191 || GET_MODE (*split) == VOIDmode
2192 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2193 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2194 && ! REG_USERVAR_P (i2dest)))
2195 && (next_real_insn (i2) == i3
2196 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2197 /* We can't overwrite I2DEST if its value is still used by
2198 NEWPAT. */
2199 && ! reg_referenced_p (i2dest, newpat))
2201 rtx newdest = i2dest;
2202 enum rtx_code split_code = GET_CODE (*split);
2203 enum machine_mode split_mode = GET_MODE (*split);
2205 /* Get NEWDEST as a register in the proper mode. We have already
2206 validated that we can do this. */
2207 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2209 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2211 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2212 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2215 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2216 an ASHIFT. This can occur if it was inside a PLUS and hence
2217 appeared to be a memory address. This is a kludge. */
2218 if (split_code == MULT
2219 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2220 && INTVAL (XEXP (*split, 1)) > 0
2221 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2223 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2224 XEXP (*split, 0), GEN_INT (i)));
2225 /* Update split_code because we may not have a multiply
2226 anymore. */
2227 split_code = GET_CODE (*split);
2230 #ifdef INSN_SCHEDULING
2231 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2232 be written as a ZERO_EXTEND. */
2233 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2235 #ifdef LOAD_EXTEND_OP
2236 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2237 what it really is. */
2238 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2239 == SIGN_EXTEND)
2240 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2241 SUBREG_REG (*split)));
2242 else
2243 #endif
2244 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2245 SUBREG_REG (*split)));
2247 #endif
2249 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2250 SUBST (*split, newdest);
2251 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2253 /* If the split point was a MULT and we didn't have one before,
2254 don't use one now. */
2255 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2256 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2260 /* Check for a case where we loaded from memory in a narrow mode and
2261 then sign extended it, but we need both registers. In that case,
2262 we have a PARALLEL with both loads from the same memory location.
2263 We can split this into a load from memory followed by a register-register
2264 copy. This saves at least one insn, more if register allocation can
2265 eliminate the copy.
2267 We cannot do this if the destination of the first assignment is a
2268 condition code register or cc0. We eliminate this case by making sure
2269 the SET_DEST and SET_SRC have the same mode.
2271 We cannot do this if the destination of the second assignment is
2272 a register that we have already assumed is zero-extended. Similarly
2273 for a SUBREG of such a register. */
2275 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2276 && GET_CODE (newpat) == PARALLEL
2277 && XVECLEN (newpat, 0) == 2
2278 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2279 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2280 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2281 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2282 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2283 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2284 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2285 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2286 INSN_CUID (i2))
2287 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2288 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2289 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2290 (GET_CODE (temp) == REG
2291 && reg_nonzero_bits[REGNO (temp)] != 0
2292 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2293 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2294 && (reg_nonzero_bits[REGNO (temp)]
2295 != GET_MODE_MASK (word_mode))))
2296 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2297 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2298 (GET_CODE (temp) == REG
2299 && reg_nonzero_bits[REGNO (temp)] != 0
2300 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2301 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2302 && (reg_nonzero_bits[REGNO (temp)]
2303 != GET_MODE_MASK (word_mode)))))
2304 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2305 SET_SRC (XVECEXP (newpat, 0, 1)))
2306 && ! find_reg_note (i3, REG_UNUSED,
2307 SET_DEST (XVECEXP (newpat, 0, 0))))
2309 rtx ni2dest;
2311 newi2pat = XVECEXP (newpat, 0, 0);
2312 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2313 newpat = XVECEXP (newpat, 0, 1);
2314 SUBST (SET_SRC (newpat),
2315 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2316 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2318 if (i2_code_number >= 0)
2319 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2321 if (insn_code_number >= 0)
2323 rtx insn;
2324 rtx link;
2326 /* If we will be able to accept this, we have made a change to the
2327 destination of I3. This can invalidate a LOG_LINKS pointing
2328 to I3. No other part of combine.c makes such a transformation.
2330 The new I3 will have a destination that was previously the
2331 destination of I1 or I2 and which was used in i2 or I3. Call
2332 distribute_links to make a LOG_LINK from the next use of
2333 that destination. */
2335 PATTERN (i3) = newpat;
2336 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2338 /* I3 now uses what used to be its destination and which is
2339 now I2's destination. That means we need a LOG_LINK from
2340 I3 to I2. But we used to have one, so we still will.
2342 However, some later insn might be using I2's dest and have
2343 a LOG_LINK pointing at I3. We must remove this link.
2344 The simplest way to remove the link is to point it at I1,
2345 which we know will be a NOTE. */
2347 for (insn = NEXT_INSN (i3);
2348 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2349 || insn != this_basic_block->next_bb->head);
2350 insn = NEXT_INSN (insn))
2352 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2354 for (link = LOG_LINKS (insn); link;
2355 link = XEXP (link, 1))
2356 if (XEXP (link, 0) == i3)
2357 XEXP (link, 0) = i1;
2359 break;
2365 /* Similarly, check for a case where we have a PARALLEL of two independent
2366 SETs but we started with three insns. In this case, we can do the sets
2367 as two separate insns. This case occurs when some SET allows two
2368 other insns to combine, but the destination of that SET is still live. */
2370 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2371 && GET_CODE (newpat) == PARALLEL
2372 && XVECLEN (newpat, 0) == 2
2373 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2374 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2375 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2376 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2377 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2378 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2379 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2380 INSN_CUID (i2))
2381 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2382 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2383 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2384 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2385 XVECEXP (newpat, 0, 0))
2386 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2387 XVECEXP (newpat, 0, 1))
2388 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2389 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2391 /* Normally, it doesn't matter which of the two is done first,
2392 but it does if one references cc0. In that case, it has to
2393 be first. */
2394 #ifdef HAVE_cc0
2395 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2397 newi2pat = XVECEXP (newpat, 0, 0);
2398 newpat = XVECEXP (newpat, 0, 1);
2400 else
2401 #endif
2403 newi2pat = XVECEXP (newpat, 0, 1);
2404 newpat = XVECEXP (newpat, 0, 0);
2407 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2409 if (i2_code_number >= 0)
2410 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2413 /* If it still isn't recognized, fail and change things back the way they
2414 were. */
2415 if ((insn_code_number < 0
2416 /* Is the result a reasonable ASM_OPERANDS? */
2417 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2419 undo_all ();
2420 return 0;
2423 /* If we had to change another insn, make sure it is valid also. */
2424 if (undobuf.other_insn)
2426 rtx other_pat = PATTERN (undobuf.other_insn);
2427 rtx new_other_notes;
2428 rtx note, next;
2430 CLEAR_HARD_REG_SET (newpat_used_regs);
2432 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2433 &new_other_notes);
2435 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2437 undo_all ();
2438 return 0;
2441 PATTERN (undobuf.other_insn) = other_pat;
2443 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2444 are still valid. Then add any non-duplicate notes added by
2445 recog_for_combine. */
2446 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2448 next = XEXP (note, 1);
2450 if (REG_NOTE_KIND (note) == REG_UNUSED
2451 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2453 if (GET_CODE (XEXP (note, 0)) == REG)
2454 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2456 remove_note (undobuf.other_insn, note);
2460 for (note = new_other_notes; note; note = XEXP (note, 1))
2461 if (GET_CODE (XEXP (note, 0)) == REG)
2462 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2464 distribute_notes (new_other_notes, undobuf.other_insn,
2465 undobuf.other_insn, NULL_RTX);
2467 #ifdef HAVE_cc0
2468 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2469 they are adjacent to each other or not. */
2471 rtx p = prev_nonnote_insn (i3);
2472 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2473 && sets_cc0_p (newi2pat))
2475 undo_all ();
2476 return 0;
2479 #endif
2481 /* We now know that we can do this combination. Merge the insns and
2482 update the status of registers and LOG_LINKS. */
2485 rtx i3notes, i2notes, i1notes = 0;
2486 rtx i3links, i2links, i1links = 0;
2487 rtx midnotes = 0;
2488 unsigned int regno;
2490 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2491 clear them. */
2492 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2493 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2494 if (i1)
2495 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2497 /* Ensure that we do not have something that should not be shared but
2498 occurs multiple times in the new insns. Check this by first
2499 resetting all the `used' flags and then copying anything is shared. */
2501 reset_used_flags (i3notes);
2502 reset_used_flags (i2notes);
2503 reset_used_flags (i1notes);
2504 reset_used_flags (newpat);
2505 reset_used_flags (newi2pat);
2506 if (undobuf.other_insn)
2507 reset_used_flags (PATTERN (undobuf.other_insn));
2509 i3notes = copy_rtx_if_shared (i3notes);
2510 i2notes = copy_rtx_if_shared (i2notes);
2511 i1notes = copy_rtx_if_shared (i1notes);
2512 newpat = copy_rtx_if_shared (newpat);
2513 newi2pat = copy_rtx_if_shared (newi2pat);
2514 if (undobuf.other_insn)
2515 reset_used_flags (PATTERN (undobuf.other_insn));
2517 INSN_CODE (i3) = insn_code_number;
2518 PATTERN (i3) = newpat;
2520 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2522 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2524 reset_used_flags (call_usage);
2525 call_usage = copy_rtx (call_usage);
2527 if (substed_i2)
2528 replace_rtx (call_usage, i2dest, i2src);
2530 if (substed_i1)
2531 replace_rtx (call_usage, i1dest, i1src);
2533 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2536 if (undobuf.other_insn)
2537 INSN_CODE (undobuf.other_insn) = other_code_number;
2539 /* We had one special case above where I2 had more than one set and
2540 we replaced a destination of one of those sets with the destination
2541 of I3. In that case, we have to update LOG_LINKS of insns later
2542 in this basic block. Note that this (expensive) case is rare.
2544 Also, in this case, we must pretend that all REG_NOTEs for I2
2545 actually came from I3, so that REG_UNUSED notes from I2 will be
2546 properly handled. */
2548 if (i3_subst_into_i2)
2550 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2551 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2552 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2553 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2554 && ! find_reg_note (i2, REG_UNUSED,
2555 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2556 for (temp = NEXT_INSN (i2);
2557 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2558 || this_basic_block->head != temp);
2559 temp = NEXT_INSN (temp))
2560 if (temp != i3 && INSN_P (temp))
2561 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2562 if (XEXP (link, 0) == i2)
2563 XEXP (link, 0) = i3;
2565 if (i3notes)
2567 rtx link = i3notes;
2568 while (XEXP (link, 1))
2569 link = XEXP (link, 1);
2570 XEXP (link, 1) = i2notes;
2572 else
2573 i3notes = i2notes;
2574 i2notes = 0;
2577 LOG_LINKS (i3) = 0;
2578 REG_NOTES (i3) = 0;
2579 LOG_LINKS (i2) = 0;
2580 REG_NOTES (i2) = 0;
2582 if (newi2pat)
2584 INSN_CODE (i2) = i2_code_number;
2585 PATTERN (i2) = newi2pat;
2587 else
2589 PUT_CODE (i2, NOTE);
2590 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2591 NOTE_SOURCE_FILE (i2) = 0;
2594 if (i1)
2596 LOG_LINKS (i1) = 0;
2597 REG_NOTES (i1) = 0;
2598 PUT_CODE (i1, NOTE);
2599 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2600 NOTE_SOURCE_FILE (i1) = 0;
2603 /* Get death notes for everything that is now used in either I3 or
2604 I2 and used to die in a previous insn. If we built two new
2605 patterns, move from I1 to I2 then I2 to I3 so that we get the
2606 proper movement on registers that I2 modifies. */
2608 if (newi2pat)
2610 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2611 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2613 else
2614 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2615 i3, &midnotes);
2617 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2618 if (i3notes)
2619 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2620 if (i2notes)
2621 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2622 if (i1notes)
2623 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2624 if (midnotes)
2625 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2627 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2628 know these are REG_UNUSED and want them to go to the desired insn,
2629 so we always pass it as i3. We have not counted the notes in
2630 reg_n_deaths yet, so we need to do so now. */
2632 if (newi2pat && new_i2_notes)
2634 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2635 if (GET_CODE (XEXP (temp, 0)) == REG)
2636 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2638 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2641 if (new_i3_notes)
2643 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2644 if (GET_CODE (XEXP (temp, 0)) == REG)
2645 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2647 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2650 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2651 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2652 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2653 in that case, it might delete I2. Similarly for I2 and I1.
2654 Show an additional death due to the REG_DEAD note we make here. If
2655 we discard it in distribute_notes, we will decrement it again. */
2657 if (i3dest_killed)
2659 if (GET_CODE (i3dest_killed) == REG)
2660 REG_N_DEATHS (REGNO (i3dest_killed))++;
2662 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2663 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2664 NULL_RTX),
2665 NULL_RTX, i2, NULL_RTX);
2666 else
2667 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2668 NULL_RTX),
2669 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2672 if (i2dest_in_i2src)
2674 if (GET_CODE (i2dest) == REG)
2675 REG_N_DEATHS (REGNO (i2dest))++;
2677 if (newi2pat && reg_set_p (i2dest, newi2pat))
2678 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2679 NULL_RTX, i2, NULL_RTX);
2680 else
2681 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2682 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2685 if (i1dest_in_i1src)
2687 if (GET_CODE (i1dest) == REG)
2688 REG_N_DEATHS (REGNO (i1dest))++;
2690 if (newi2pat && reg_set_p (i1dest, newi2pat))
2691 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2692 NULL_RTX, i2, NULL_RTX);
2693 else
2694 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2695 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2698 distribute_links (i3links);
2699 distribute_links (i2links);
2700 distribute_links (i1links);
2702 if (GET_CODE (i2dest) == REG)
2704 rtx link;
2705 rtx i2_insn = 0, i2_val = 0, set;
2707 /* The insn that used to set this register doesn't exist, and
2708 this life of the register may not exist either. See if one of
2709 I3's links points to an insn that sets I2DEST. If it does,
2710 that is now the last known value for I2DEST. If we don't update
2711 this and I2 set the register to a value that depended on its old
2712 contents, we will get confused. If this insn is used, thing
2713 will be set correctly in combine_instructions. */
2715 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2716 if ((set = single_set (XEXP (link, 0))) != 0
2717 && rtx_equal_p (i2dest, SET_DEST (set)))
2718 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2720 record_value_for_reg (i2dest, i2_insn, i2_val);
2722 /* If the reg formerly set in I2 died only once and that was in I3,
2723 zero its use count so it won't make `reload' do any work. */
2724 if (! added_sets_2
2725 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2726 && ! i2dest_in_i2src)
2728 regno = REGNO (i2dest);
2729 REG_N_SETS (regno)--;
2733 if (i1 && GET_CODE (i1dest) == REG)
2735 rtx link;
2736 rtx i1_insn = 0, i1_val = 0, set;
2738 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2739 if ((set = single_set (XEXP (link, 0))) != 0
2740 && rtx_equal_p (i1dest, SET_DEST (set)))
2741 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2743 record_value_for_reg (i1dest, i1_insn, i1_val);
2745 regno = REGNO (i1dest);
2746 if (! added_sets_1 && ! i1dest_in_i1src)
2747 REG_N_SETS (regno)--;
2750 /* Update reg_nonzero_bits et al for any changes that may have been made
2751 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2752 important. Because newi2pat can affect nonzero_bits of newpat */
2753 if (newi2pat)
2754 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2755 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2757 /* Set new_direct_jump_p if a new return or simple jump instruction
2758 has been created.
2760 If I3 is now an unconditional jump, ensure that it has a
2761 BARRIER following it since it may have initially been a
2762 conditional jump. It may also be the last nonnote insn. */
2764 if (returnjump_p (i3) || any_uncondjump_p (i3))
2766 *new_direct_jump_p = 1;
2768 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2769 || GET_CODE (temp) != BARRIER)
2770 emit_barrier_after (i3);
2773 if (undobuf.other_insn != NULL_RTX
2774 && (returnjump_p (undobuf.other_insn)
2775 || any_uncondjump_p (undobuf.other_insn)))
2777 *new_direct_jump_p = 1;
2779 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2780 || GET_CODE (temp) != BARRIER)
2781 emit_barrier_after (undobuf.other_insn);
2784 /* An NOOP jump does not need barrier, but it does need cleaning up
2785 of CFG. */
2786 if (GET_CODE (newpat) == SET
2787 && SET_SRC (newpat) == pc_rtx
2788 && SET_DEST (newpat) == pc_rtx)
2789 *new_direct_jump_p = 1;
2792 combine_successes++;
2793 undo_commit ();
2795 if (added_links_insn
2796 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2797 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2798 return added_links_insn;
2799 else
2800 return newi2pat ? i2 : i3;
2803 /* Undo all the modifications recorded in undobuf. */
2805 static void
2806 undo_all (void)
2808 struct undo *undo, *next;
2810 for (undo = undobuf.undos; undo; undo = next)
2812 next = undo->next;
2813 if (undo->is_int)
2814 *undo->where.i = undo->old_contents.i;
2815 else
2816 *undo->where.r = undo->old_contents.r;
2818 undo->next = undobuf.frees;
2819 undobuf.frees = undo;
2822 undobuf.undos = 0;
2825 /* We've committed to accepting the changes we made. Move all
2826 of the undos to the free list. */
2828 static void
2829 undo_commit (void)
2831 struct undo *undo, *next;
2833 for (undo = undobuf.undos; undo; undo = next)
2835 next = undo->next;
2836 undo->next = undobuf.frees;
2837 undobuf.frees = undo;
2839 undobuf.undos = 0;
2843 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2844 where we have an arithmetic expression and return that point. LOC will
2845 be inside INSN.
2847 try_combine will call this function to see if an insn can be split into
2848 two insns. */
2850 static rtx *
2851 find_split_point (rtx *loc, rtx insn)
2853 rtx x = *loc;
2854 enum rtx_code code = GET_CODE (x);
2855 rtx *split;
2856 unsigned HOST_WIDE_INT len = 0;
2857 HOST_WIDE_INT pos = 0;
2858 int unsignedp = 0;
2859 rtx inner = NULL_RTX;
2861 /* First special-case some codes. */
2862 switch (code)
2864 case SUBREG:
2865 #ifdef INSN_SCHEDULING
2866 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2867 point. */
2868 if (GET_CODE (SUBREG_REG (x)) == MEM)
2869 return loc;
2870 #endif
2871 return find_split_point (&SUBREG_REG (x), insn);
2873 case MEM:
2874 #ifdef HAVE_lo_sum
2875 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2876 using LO_SUM and HIGH. */
2877 if (GET_CODE (XEXP (x, 0)) == CONST
2878 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2880 SUBST (XEXP (x, 0),
2881 gen_rtx_LO_SUM (Pmode,
2882 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2883 XEXP (x, 0)));
2884 return &XEXP (XEXP (x, 0), 0);
2886 #endif
2888 /* If we have a PLUS whose second operand is a constant and the
2889 address is not valid, perhaps will can split it up using
2890 the machine-specific way to split large constants. We use
2891 the first pseudo-reg (one of the virtual regs) as a placeholder;
2892 it will not remain in the result. */
2893 if (GET_CODE (XEXP (x, 0)) == PLUS
2894 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2895 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2897 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2898 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2899 subst_insn);
2901 /* This should have produced two insns, each of which sets our
2902 placeholder. If the source of the second is a valid address,
2903 we can make put both sources together and make a split point
2904 in the middle. */
2906 if (seq
2907 && NEXT_INSN (seq) != NULL_RTX
2908 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2909 && GET_CODE (seq) == INSN
2910 && GET_CODE (PATTERN (seq)) == SET
2911 && SET_DEST (PATTERN (seq)) == reg
2912 && ! reg_mentioned_p (reg,
2913 SET_SRC (PATTERN (seq)))
2914 && GET_CODE (NEXT_INSN (seq)) == INSN
2915 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2916 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
2917 && memory_address_p (GET_MODE (x),
2918 SET_SRC (PATTERN (NEXT_INSN (seq)))))
2920 rtx src1 = SET_SRC (PATTERN (seq));
2921 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
2923 /* Replace the placeholder in SRC2 with SRC1. If we can
2924 find where in SRC2 it was placed, that can become our
2925 split point and we can replace this address with SRC2.
2926 Just try two obvious places. */
2928 src2 = replace_rtx (src2, reg, src1);
2929 split = 0;
2930 if (XEXP (src2, 0) == src1)
2931 split = &XEXP (src2, 0);
2932 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2933 && XEXP (XEXP (src2, 0), 0) == src1)
2934 split = &XEXP (XEXP (src2, 0), 0);
2936 if (split)
2938 SUBST (XEXP (x, 0), src2);
2939 return split;
2943 /* If that didn't work, perhaps the first operand is complex and
2944 needs to be computed separately, so make a split point there.
2945 This will occur on machines that just support REG + CONST
2946 and have a constant moved through some previous computation. */
2948 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2949 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2950 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2951 == 'o')))
2952 return &XEXP (XEXP (x, 0), 0);
2954 break;
2956 case SET:
2957 #ifdef HAVE_cc0
2958 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2959 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2960 we need to put the operand into a register. So split at that
2961 point. */
2963 if (SET_DEST (x) == cc0_rtx
2964 && GET_CODE (SET_SRC (x)) != COMPARE
2965 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2966 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2967 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2968 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2969 return &SET_SRC (x);
2970 #endif
2972 /* See if we can split SET_SRC as it stands. */
2973 split = find_split_point (&SET_SRC (x), insn);
2974 if (split && split != &SET_SRC (x))
2975 return split;
2977 /* See if we can split SET_DEST as it stands. */
2978 split = find_split_point (&SET_DEST (x), insn);
2979 if (split && split != &SET_DEST (x))
2980 return split;
2982 /* See if this is a bitfield assignment with everything constant. If
2983 so, this is an IOR of an AND, so split it into that. */
2984 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2985 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2986 <= HOST_BITS_PER_WIDE_INT)
2987 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2988 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2989 && GET_CODE (SET_SRC (x)) == CONST_INT
2990 && ((INTVAL (XEXP (SET_DEST (x), 1))
2991 + INTVAL (XEXP (SET_DEST (x), 2)))
2992 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2993 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2995 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
2996 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
2997 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
2998 rtx dest = XEXP (SET_DEST (x), 0);
2999 enum machine_mode mode = GET_MODE (dest);
3000 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3002 if (BITS_BIG_ENDIAN)
3003 pos = GET_MODE_BITSIZE (mode) - len - pos;
3005 if (src == mask)
3006 SUBST (SET_SRC (x),
3007 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3008 else
3009 SUBST (SET_SRC (x),
3010 gen_binary (IOR, mode,
3011 gen_binary (AND, mode, dest,
3012 gen_int_mode (~(mask << pos),
3013 mode)),
3014 GEN_INT (src << pos)));
3016 SUBST (SET_DEST (x), dest);
3018 split = find_split_point (&SET_SRC (x), insn);
3019 if (split && split != &SET_SRC (x))
3020 return split;
3023 /* Otherwise, see if this is an operation that we can split into two.
3024 If so, try to split that. */
3025 code = GET_CODE (SET_SRC (x));
3027 switch (code)
3029 case AND:
3030 /* If we are AND'ing with a large constant that is only a single
3031 bit and the result is only being used in a context where we
3032 need to know if it is zero or nonzero, replace it with a bit
3033 extraction. This will avoid the large constant, which might
3034 have taken more than one insn to make. If the constant were
3035 not a valid argument to the AND but took only one insn to make,
3036 this is no worse, but if it took more than one insn, it will
3037 be better. */
3039 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3040 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3041 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3042 && GET_CODE (SET_DEST (x)) == REG
3043 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3044 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3045 && XEXP (*split, 0) == SET_DEST (x)
3046 && XEXP (*split, 1) == const0_rtx)
3048 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3049 XEXP (SET_SRC (x), 0),
3050 pos, NULL_RTX, 1, 1, 0, 0);
3051 if (extraction != 0)
3053 SUBST (SET_SRC (x), extraction);
3054 return find_split_point (loc, insn);
3057 break;
3059 case NE:
3060 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3061 is known to be on, this can be converted into a NEG of a shift. */
3062 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3063 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3064 && 1 <= (pos = exact_log2
3065 (nonzero_bits (XEXP (SET_SRC (x), 0),
3066 GET_MODE (XEXP (SET_SRC (x), 0))))))
3068 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3070 SUBST (SET_SRC (x),
3071 gen_rtx_NEG (mode,
3072 gen_rtx_LSHIFTRT (mode,
3073 XEXP (SET_SRC (x), 0),
3074 GEN_INT (pos))));
3076 split = find_split_point (&SET_SRC (x), insn);
3077 if (split && split != &SET_SRC (x))
3078 return split;
3080 break;
3082 case SIGN_EXTEND:
3083 inner = XEXP (SET_SRC (x), 0);
3085 /* We can't optimize if either mode is a partial integer
3086 mode as we don't know how many bits are significant
3087 in those modes. */
3088 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3089 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3090 break;
3092 pos = 0;
3093 len = GET_MODE_BITSIZE (GET_MODE (inner));
3094 unsignedp = 0;
3095 break;
3097 case SIGN_EXTRACT:
3098 case ZERO_EXTRACT:
3099 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3100 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3102 inner = XEXP (SET_SRC (x), 0);
3103 len = INTVAL (XEXP (SET_SRC (x), 1));
3104 pos = INTVAL (XEXP (SET_SRC (x), 2));
3106 if (BITS_BIG_ENDIAN)
3107 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3108 unsignedp = (code == ZERO_EXTRACT);
3110 break;
3112 default:
3113 break;
3116 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3118 enum machine_mode mode = GET_MODE (SET_SRC (x));
3120 /* For unsigned, we have a choice of a shift followed by an
3121 AND or two shifts. Use two shifts for field sizes where the
3122 constant might be too large. We assume here that we can
3123 always at least get 8-bit constants in an AND insn, which is
3124 true for every current RISC. */
3126 if (unsignedp && len <= 8)
3128 SUBST (SET_SRC (x),
3129 gen_rtx_AND (mode,
3130 gen_rtx_LSHIFTRT
3131 (mode, gen_lowpart_for_combine (mode, inner),
3132 GEN_INT (pos)),
3133 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3135 split = find_split_point (&SET_SRC (x), insn);
3136 if (split && split != &SET_SRC (x))
3137 return split;
3139 else
3141 SUBST (SET_SRC (x),
3142 gen_rtx_fmt_ee
3143 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3144 gen_rtx_ASHIFT (mode,
3145 gen_lowpart_for_combine (mode, inner),
3146 GEN_INT (GET_MODE_BITSIZE (mode)
3147 - len - pos)),
3148 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3150 split = find_split_point (&SET_SRC (x), insn);
3151 if (split && split != &SET_SRC (x))
3152 return split;
3156 /* See if this is a simple operation with a constant as the second
3157 operand. It might be that this constant is out of range and hence
3158 could be used as a split point. */
3159 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3160 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3161 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3162 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3163 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3164 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3165 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3166 == 'o'))))
3167 return &XEXP (SET_SRC (x), 1);
3169 /* Finally, see if this is a simple operation with its first operand
3170 not in a register. The operation might require this operand in a
3171 register, so return it as a split point. We can always do this
3172 because if the first operand were another operation, we would have
3173 already found it as a split point. */
3174 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3175 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3176 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3177 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3178 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3179 return &XEXP (SET_SRC (x), 0);
3181 return 0;
3183 case AND:
3184 case IOR:
3185 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3186 it is better to write this as (not (ior A B)) so we can split it.
3187 Similarly for IOR. */
3188 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3190 SUBST (*loc,
3191 gen_rtx_NOT (GET_MODE (x),
3192 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3193 GET_MODE (x),
3194 XEXP (XEXP (x, 0), 0),
3195 XEXP (XEXP (x, 1), 0))));
3196 return find_split_point (loc, insn);
3199 /* Many RISC machines have a large set of logical insns. If the
3200 second operand is a NOT, put it first so we will try to split the
3201 other operand first. */
3202 if (GET_CODE (XEXP (x, 1)) == NOT)
3204 rtx tem = XEXP (x, 0);
3205 SUBST (XEXP (x, 0), XEXP (x, 1));
3206 SUBST (XEXP (x, 1), tem);
3208 break;
3210 default:
3211 break;
3214 /* Otherwise, select our actions depending on our rtx class. */
3215 switch (GET_RTX_CLASS (code))
3217 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3218 case '3':
3219 split = find_split_point (&XEXP (x, 2), insn);
3220 if (split)
3221 return split;
3222 /* ... fall through ... */
3223 case '2':
3224 case 'c':
3225 case '<':
3226 split = find_split_point (&XEXP (x, 1), insn);
3227 if (split)
3228 return split;
3229 /* ... fall through ... */
3230 case '1':
3231 /* Some machines have (and (shift ...) ...) insns. If X is not
3232 an AND, but XEXP (X, 0) is, use it as our split point. */
3233 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3234 return &XEXP (x, 0);
3236 split = find_split_point (&XEXP (x, 0), insn);
3237 if (split)
3238 return split;
3239 return loc;
3242 /* Otherwise, we don't have a split point. */
3243 return 0;
3246 /* Throughout X, replace FROM with TO, and return the result.
3247 The result is TO if X is FROM;
3248 otherwise the result is X, but its contents may have been modified.
3249 If they were modified, a record was made in undobuf so that
3250 undo_all will (among other things) return X to its original state.
3252 If the number of changes necessary is too much to record to undo,
3253 the excess changes are not made, so the result is invalid.
3254 The changes already made can still be undone.
3255 undobuf.num_undo is incremented for such changes, so by testing that
3256 the caller can tell whether the result is valid.
3258 `n_occurrences' is incremented each time FROM is replaced.
3260 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3262 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3263 by copying if `n_occurrences' is nonzero. */
3265 static rtx
3266 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3268 enum rtx_code code = GET_CODE (x);
3269 enum machine_mode op0_mode = VOIDmode;
3270 const char *fmt;
3271 int len, i;
3272 rtx new;
3274 /* Two expressions are equal if they are identical copies of a shared
3275 RTX or if they are both registers with the same register number
3276 and mode. */
3278 #define COMBINE_RTX_EQUAL_P(X,Y) \
3279 ((X) == (Y) \
3280 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3281 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3283 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3285 n_occurrences++;
3286 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3289 /* If X and FROM are the same register but different modes, they will
3290 not have been seen as equal above. However, flow.c will make a
3291 LOG_LINKS entry for that case. If we do nothing, we will try to
3292 rerecognize our original insn and, when it succeeds, we will
3293 delete the feeding insn, which is incorrect.
3295 So force this insn not to match in this (rare) case. */
3296 if (! in_dest && code == REG && GET_CODE (from) == REG
3297 && REGNO (x) == REGNO (from))
3298 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3300 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3301 of which may contain things that can be combined. */
3302 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3303 return x;
3305 /* It is possible to have a subexpression appear twice in the insn.
3306 Suppose that FROM is a register that appears within TO.
3307 Then, after that subexpression has been scanned once by `subst',
3308 the second time it is scanned, TO may be found. If we were
3309 to scan TO here, we would find FROM within it and create a
3310 self-referent rtl structure which is completely wrong. */
3311 if (COMBINE_RTX_EQUAL_P (x, to))
3312 return to;
3314 /* Parallel asm_operands need special attention because all of the
3315 inputs are shared across the arms. Furthermore, unsharing the
3316 rtl results in recognition failures. Failure to handle this case
3317 specially can result in circular rtl.
3319 Solve this by doing a normal pass across the first entry of the
3320 parallel, and only processing the SET_DESTs of the subsequent
3321 entries. Ug. */
3323 if (code == PARALLEL
3324 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3325 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3327 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3329 /* If this substitution failed, this whole thing fails. */
3330 if (GET_CODE (new) == CLOBBER
3331 && XEXP (new, 0) == const0_rtx)
3332 return new;
3334 SUBST (XVECEXP (x, 0, 0), new);
3336 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3338 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3340 if (GET_CODE (dest) != REG
3341 && GET_CODE (dest) != CC0
3342 && GET_CODE (dest) != PC)
3344 new = subst (dest, from, to, 0, unique_copy);
3346 /* If this substitution failed, this whole thing fails. */
3347 if (GET_CODE (new) == CLOBBER
3348 && XEXP (new, 0) == const0_rtx)
3349 return new;
3351 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3355 else
3357 len = GET_RTX_LENGTH (code);
3358 fmt = GET_RTX_FORMAT (code);
3360 /* We don't need to process a SET_DEST that is a register, CC0,
3361 or PC, so set up to skip this common case. All other cases
3362 where we want to suppress replacing something inside a
3363 SET_SRC are handled via the IN_DEST operand. */
3364 if (code == SET
3365 && (GET_CODE (SET_DEST (x)) == REG
3366 || GET_CODE (SET_DEST (x)) == CC0
3367 || GET_CODE (SET_DEST (x)) == PC))
3368 fmt = "ie";
3370 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3371 constant. */
3372 if (fmt[0] == 'e')
3373 op0_mode = GET_MODE (XEXP (x, 0));
3375 for (i = 0; i < len; i++)
3377 if (fmt[i] == 'E')
3379 int j;
3380 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3382 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3384 new = (unique_copy && n_occurrences
3385 ? copy_rtx (to) : to);
3386 n_occurrences++;
3388 else
3390 new = subst (XVECEXP (x, i, j), from, to, 0,
3391 unique_copy);
3393 /* If this substitution failed, this whole thing
3394 fails. */
3395 if (GET_CODE (new) == CLOBBER
3396 && XEXP (new, 0) == const0_rtx)
3397 return new;
3400 SUBST (XVECEXP (x, i, j), new);
3403 else if (fmt[i] == 'e')
3405 /* If this is a register being set, ignore it. */
3406 new = XEXP (x, i);
3407 if (in_dest
3408 && (code == SUBREG || code == STRICT_LOW_PART
3409 || code == ZERO_EXTRACT)
3410 && i == 0
3411 && GET_CODE (new) == REG)
3414 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3416 /* In general, don't install a subreg involving two
3417 modes not tieable. It can worsen register
3418 allocation, and can even make invalid reload
3419 insns, since the reg inside may need to be copied
3420 from in the outside mode, and that may be invalid
3421 if it is an fp reg copied in integer mode.
3423 We allow two exceptions to this: It is valid if
3424 it is inside another SUBREG and the mode of that
3425 SUBREG and the mode of the inside of TO is
3426 tieable and it is valid if X is a SET that copies
3427 FROM to CC0. */
3429 if (GET_CODE (to) == SUBREG
3430 && ! MODES_TIEABLE_P (GET_MODE (to),
3431 GET_MODE (SUBREG_REG (to)))
3432 && ! (code == SUBREG
3433 && MODES_TIEABLE_P (GET_MODE (x),
3434 GET_MODE (SUBREG_REG (to))))
3435 #ifdef HAVE_cc0
3436 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3437 #endif
3439 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3441 #ifdef CANNOT_CHANGE_MODE_CLASS
3442 if (code == SUBREG
3443 && GET_CODE (to) == REG
3444 && REGNO (to) < FIRST_PSEUDO_REGISTER
3445 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3446 GET_MODE (to),
3447 GET_MODE (x)))
3448 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3449 #endif
3451 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3452 n_occurrences++;
3454 else
3455 /* If we are in a SET_DEST, suppress most cases unless we
3456 have gone inside a MEM, in which case we want to
3457 simplify the address. We assume here that things that
3458 are actually part of the destination have their inner
3459 parts in the first expression. This is true for SUBREG,
3460 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3461 things aside from REG and MEM that should appear in a
3462 SET_DEST. */
3463 new = subst (XEXP (x, i), from, to,
3464 (((in_dest
3465 && (code == SUBREG || code == STRICT_LOW_PART
3466 || code == ZERO_EXTRACT))
3467 || code == SET)
3468 && i == 0), unique_copy);
3470 /* If we found that we will have to reject this combination,
3471 indicate that by returning the CLOBBER ourselves, rather than
3472 an expression containing it. This will speed things up as
3473 well as prevent accidents where two CLOBBERs are considered
3474 to be equal, thus producing an incorrect simplification. */
3476 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3477 return new;
3479 if (GET_CODE (new) == CONST_INT && GET_CODE (x) == SUBREG)
3481 enum machine_mode mode = GET_MODE (x);
3483 x = simplify_subreg (GET_MODE (x), new,
3484 GET_MODE (SUBREG_REG (x)),
3485 SUBREG_BYTE (x));
3486 if (! x)
3487 x = gen_rtx_CLOBBER (mode, const0_rtx);
3489 else if (GET_CODE (new) == CONST_INT
3490 && GET_CODE (x) == ZERO_EXTEND)
3492 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3493 new, GET_MODE (XEXP (x, 0)));
3494 if (! x)
3495 abort ();
3497 else
3498 SUBST (XEXP (x, i), new);
3503 /* Try to simplify X. If the simplification changed the code, it is likely
3504 that further simplification will help, so loop, but limit the number
3505 of repetitions that will be performed. */
3507 for (i = 0; i < 4; i++)
3509 /* If X is sufficiently simple, don't bother trying to do anything
3510 with it. */
3511 if (code != CONST_INT && code != REG && code != CLOBBER)
3512 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3514 if (GET_CODE (x) == code)
3515 break;
3517 code = GET_CODE (x);
3519 /* We no longer know the original mode of operand 0 since we
3520 have changed the form of X) */
3521 op0_mode = VOIDmode;
3524 return x;
3527 /* Simplify X, a piece of RTL. We just operate on the expression at the
3528 outer level; call `subst' to simplify recursively. Return the new
3529 expression.
3531 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3532 will be the iteration even if an expression with a code different from
3533 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3535 static rtx
3536 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int last,
3537 int in_dest)
3539 enum rtx_code code = GET_CODE (x);
3540 enum machine_mode mode = GET_MODE (x);
3541 rtx temp;
3542 rtx reversed;
3543 int i;
3545 /* If this is a commutative operation, put a constant last and a complex
3546 expression first. We don't need to do this for comparisons here. */
3547 if (GET_RTX_CLASS (code) == 'c'
3548 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3550 temp = XEXP (x, 0);
3551 SUBST (XEXP (x, 0), XEXP (x, 1));
3552 SUBST (XEXP (x, 1), temp);
3555 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3556 sign extension of a PLUS with a constant, reverse the order of the sign
3557 extension and the addition. Note that this not the same as the original
3558 code, but overflow is undefined for signed values. Also note that the
3559 PLUS will have been partially moved "inside" the sign-extension, so that
3560 the first operand of X will really look like:
3561 (ashiftrt (plus (ashift A C4) C5) C4).
3562 We convert this to
3563 (plus (ashiftrt (ashift A C4) C2) C4)
3564 and replace the first operand of X with that expression. Later parts
3565 of this function may simplify the expression further.
3567 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3568 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3569 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3571 We do this to simplify address expressions. */
3573 if ((code == PLUS || code == MINUS || code == MULT)
3574 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3575 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3576 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3577 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3578 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3579 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3580 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3581 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3582 XEXP (XEXP (XEXP (x, 0), 0), 1),
3583 XEXP (XEXP (x, 0), 1))) != 0)
3585 rtx new
3586 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3587 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3588 INTVAL (XEXP (XEXP (x, 0), 1)));
3590 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3591 INTVAL (XEXP (XEXP (x, 0), 1)));
3593 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3596 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3597 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3598 things. Check for cases where both arms are testing the same
3599 condition.
3601 Don't do anything if all operands are very simple. */
3603 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3604 || GET_RTX_CLASS (code) == '<')
3605 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3606 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3607 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3608 == 'o')))
3609 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3610 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3611 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3612 == 'o')))))
3613 || (GET_RTX_CLASS (code) == '1'
3614 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3615 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3616 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3617 == 'o'))))))
3619 rtx cond, true_rtx, false_rtx;
3621 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3622 if (cond != 0
3623 /* If everything is a comparison, what we have is highly unlikely
3624 to be simpler, so don't use it. */
3625 && ! (GET_RTX_CLASS (code) == '<'
3626 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3627 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3629 rtx cop1 = const0_rtx;
3630 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3632 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3633 return x;
3635 /* Simplify the alternative arms; this may collapse the true and
3636 false arms to store-flag values. */
3637 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3638 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3640 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3641 is unlikely to be simpler. */
3642 if (general_operand (true_rtx, VOIDmode)
3643 && general_operand (false_rtx, VOIDmode))
3645 enum rtx_code reversed;
3647 /* Restarting if we generate a store-flag expression will cause
3648 us to loop. Just drop through in this case. */
3650 /* If the result values are STORE_FLAG_VALUE and zero, we can
3651 just make the comparison operation. */
3652 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3653 x = gen_binary (cond_code, mode, cond, cop1);
3654 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3655 && ((reversed = reversed_comparison_code_parts
3656 (cond_code, cond, cop1, NULL))
3657 != UNKNOWN))
3658 x = gen_binary (reversed, mode, cond, cop1);
3660 /* Likewise, we can make the negate of a comparison operation
3661 if the result values are - STORE_FLAG_VALUE and zero. */
3662 else if (GET_CODE (true_rtx) == CONST_INT
3663 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3664 && false_rtx == const0_rtx)
3665 x = simplify_gen_unary (NEG, mode,
3666 gen_binary (cond_code, mode, cond,
3667 cop1),
3668 mode);
3669 else if (GET_CODE (false_rtx) == CONST_INT
3670 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3671 && true_rtx == const0_rtx
3672 && ((reversed = reversed_comparison_code_parts
3673 (cond_code, cond, cop1, NULL))
3674 != UNKNOWN))
3675 x = simplify_gen_unary (NEG, mode,
3676 gen_binary (reversed, mode,
3677 cond, cop1),
3678 mode);
3679 else
3680 return gen_rtx_IF_THEN_ELSE (mode,
3681 gen_binary (cond_code, VOIDmode,
3682 cond, cop1),
3683 true_rtx, false_rtx);
3685 code = GET_CODE (x);
3686 op0_mode = VOIDmode;
3691 /* Try to fold this expression in case we have constants that weren't
3692 present before. */
3693 temp = 0;
3694 switch (GET_RTX_CLASS (code))
3696 case '1':
3697 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3698 break;
3699 case '<':
3701 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3702 if (cmp_mode == VOIDmode)
3704 cmp_mode = GET_MODE (XEXP (x, 1));
3705 if (cmp_mode == VOIDmode)
3706 cmp_mode = op0_mode;
3708 temp = simplify_relational_operation (code, cmp_mode,
3709 XEXP (x, 0), XEXP (x, 1));
3711 #ifdef FLOAT_STORE_FLAG_VALUE
3712 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3714 if (temp == const0_rtx)
3715 temp = CONST0_RTX (mode);
3716 else
3717 temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3718 mode);
3720 #endif
3721 break;
3722 case 'c':
3723 case '2':
3724 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3725 break;
3726 case 'b':
3727 case '3':
3728 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3729 XEXP (x, 1), XEXP (x, 2));
3730 break;
3733 if (temp)
3735 x = temp;
3736 code = GET_CODE (temp);
3737 op0_mode = VOIDmode;
3738 mode = GET_MODE (temp);
3741 /* First see if we can apply the inverse distributive law. */
3742 if (code == PLUS || code == MINUS
3743 || code == AND || code == IOR || code == XOR)
3745 x = apply_distributive_law (x);
3746 code = GET_CODE (x);
3747 op0_mode = VOIDmode;
3750 /* If CODE is an associative operation not otherwise handled, see if we
3751 can associate some operands. This can win if they are constants or
3752 if they are logically related (i.e. (a & b) & a). */
3753 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3754 || code == AND || code == IOR || code == XOR
3755 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3756 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3757 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3759 if (GET_CODE (XEXP (x, 0)) == code)
3761 rtx other = XEXP (XEXP (x, 0), 0);
3762 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3763 rtx inner_op1 = XEXP (x, 1);
3764 rtx inner;
3766 /* Make sure we pass the constant operand if any as the second
3767 one if this is a commutative operation. */
3768 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3770 rtx tem = inner_op0;
3771 inner_op0 = inner_op1;
3772 inner_op1 = tem;
3774 inner = simplify_binary_operation (code == MINUS ? PLUS
3775 : code == DIV ? MULT
3776 : code,
3777 mode, inner_op0, inner_op1);
3779 /* For commutative operations, try the other pair if that one
3780 didn't simplify. */
3781 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3783 other = XEXP (XEXP (x, 0), 1);
3784 inner = simplify_binary_operation (code, mode,
3785 XEXP (XEXP (x, 0), 0),
3786 XEXP (x, 1));
3789 if (inner)
3790 return gen_binary (code, mode, other, inner);
3794 /* A little bit of algebraic simplification here. */
3795 switch (code)
3797 case MEM:
3798 /* Ensure that our address has any ASHIFTs converted to MULT in case
3799 address-recognizing predicates are called later. */
3800 temp = make_compound_operation (XEXP (x, 0), MEM);
3801 SUBST (XEXP (x, 0), temp);
3802 break;
3804 case SUBREG:
3805 if (op0_mode == VOIDmode)
3806 op0_mode = GET_MODE (SUBREG_REG (x));
3808 /* simplify_subreg can't use gen_lowpart_for_combine. */
3809 if (CONSTANT_P (SUBREG_REG (x))
3810 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3811 /* Don't call gen_lowpart_for_combine if the inner mode
3812 is VOIDmode and we cannot simplify it, as SUBREG without
3813 inner mode is invalid. */
3814 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3815 || gen_lowpart_common (mode, SUBREG_REG (x))))
3816 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3818 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3819 break;
3821 rtx temp;
3822 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3823 SUBREG_BYTE (x));
3824 if (temp)
3825 return temp;
3828 /* Don't change the mode of the MEM if that would change the meaning
3829 of the address. */
3830 if (GET_CODE (SUBREG_REG (x)) == MEM
3831 && (MEM_VOLATILE_P (SUBREG_REG (x))
3832 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3833 return gen_rtx_CLOBBER (mode, const0_rtx);
3835 /* Note that we cannot do any narrowing for non-constants since
3836 we might have been counting on using the fact that some bits were
3837 zero. We now do this in the SET. */
3839 break;
3841 case NOT:
3842 /* (not (plus X -1)) can become (neg X). */
3843 if (GET_CODE (XEXP (x, 0)) == PLUS
3844 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3845 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3847 /* Similarly, (not (neg X)) is (plus X -1). */
3848 if (GET_CODE (XEXP (x, 0)) == NEG)
3849 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3851 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3852 if (GET_CODE (XEXP (x, 0)) == XOR
3853 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3854 && (temp = simplify_unary_operation (NOT, mode,
3855 XEXP (XEXP (x, 0), 1),
3856 mode)) != 0)
3857 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3859 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3860 other than 1, but that is not valid. We could do a similar
3861 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3862 but this doesn't seem common enough to bother with. */
3863 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3864 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3865 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3866 const1_rtx, mode),
3867 XEXP (XEXP (x, 0), 1));
3869 if (GET_CODE (XEXP (x, 0)) == SUBREG
3870 && subreg_lowpart_p (XEXP (x, 0))
3871 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3872 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3873 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3874 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3876 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3878 x = gen_rtx_ROTATE (inner_mode,
3879 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3880 inner_mode),
3881 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3882 return gen_lowpart_for_combine (mode, x);
3885 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3886 reversing the comparison code if valid. */
3887 if (STORE_FLAG_VALUE == -1
3888 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3889 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3890 XEXP (XEXP (x, 0), 1))))
3891 return reversed;
3893 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3894 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3895 perform the above simplification. */
3897 if (STORE_FLAG_VALUE == -1
3898 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3899 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3900 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3901 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3903 /* Apply De Morgan's laws to reduce number of patterns for machines
3904 with negating logical insns (and-not, nand, etc.). If result has
3905 only one NOT, put it first, since that is how the patterns are
3906 coded. */
3908 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3910 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3911 enum machine_mode op_mode;
3913 op_mode = GET_MODE (in1);
3914 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3916 op_mode = GET_MODE (in2);
3917 if (op_mode == VOIDmode)
3918 op_mode = mode;
3919 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3921 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3923 rtx tem = in2;
3924 in2 = in1; in1 = tem;
3927 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3928 mode, in1, in2);
3930 break;
3932 case NEG:
3933 /* (neg (plus X 1)) can become (not X). */
3934 if (GET_CODE (XEXP (x, 0)) == PLUS
3935 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3936 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
3938 /* Similarly, (neg (not X)) is (plus X 1). */
3939 if (GET_CODE (XEXP (x, 0)) == NOT)
3940 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3942 /* (neg (minus X Y)) can become (minus Y X). This transformation
3943 isn't safe for modes with signed zeros, since if X and Y are
3944 both +0, (minus Y X) is the same as (minus X Y). If the rounding
3945 mode is towards +infinity (or -infinity) then the two expressions
3946 will be rounded differently. */
3947 if (GET_CODE (XEXP (x, 0)) == MINUS
3948 && !HONOR_SIGNED_ZEROS (mode)
3949 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
3950 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
3951 XEXP (XEXP (x, 0), 0));
3953 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
3954 if (GET_CODE (XEXP (x, 0)) == PLUS
3955 && !HONOR_SIGNED_ZEROS (mode)
3956 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
3958 temp = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 0), 0), mode);
3959 temp = combine_simplify_rtx (temp, mode, last, in_dest);
3960 return gen_binary (MINUS, mode, temp, XEXP (XEXP (x, 0), 1));
3963 /* (neg (mult A B)) becomes (mult (neg A) B).
3964 This works even for floating-point values. */
3965 if (GET_CODE (XEXP (x, 0)) == MULT)
3967 temp = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 0), 0), mode);
3968 return gen_binary (MULT, mode, temp, XEXP (XEXP (x, 0), 1));
3971 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3972 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
3973 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3974 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3976 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3977 if we can then eliminate the NEG (e.g.,
3978 if the operand is a constant). */
3980 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
3982 temp = simplify_unary_operation (NEG, mode,
3983 XEXP (XEXP (x, 0), 0), mode);
3984 if (temp)
3985 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
3988 temp = expand_compound_operation (XEXP (x, 0));
3990 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3991 replaced by (lshiftrt X C). This will convert
3992 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3994 if (GET_CODE (temp) == ASHIFTRT
3995 && GET_CODE (XEXP (temp, 1)) == CONST_INT
3996 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3997 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3998 INTVAL (XEXP (temp, 1)));
4000 /* If X has only a single bit that might be nonzero, say, bit I, convert
4001 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4002 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4003 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4004 or a SUBREG of one since we'd be making the expression more
4005 complex if it was just a register. */
4007 if (GET_CODE (temp) != REG
4008 && ! (GET_CODE (temp) == SUBREG
4009 && GET_CODE (SUBREG_REG (temp)) == REG)
4010 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4012 rtx temp1 = simplify_shift_const
4013 (NULL_RTX, ASHIFTRT, mode,
4014 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4015 GET_MODE_BITSIZE (mode) - 1 - i),
4016 GET_MODE_BITSIZE (mode) - 1 - i);
4018 /* If all we did was surround TEMP with the two shifts, we
4019 haven't improved anything, so don't use it. Otherwise,
4020 we are better off with TEMP1. */
4021 if (GET_CODE (temp1) != ASHIFTRT
4022 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4023 || XEXP (XEXP (temp1, 0), 0) != temp)
4024 return temp1;
4026 break;
4028 case TRUNCATE:
4029 /* We can't handle truncation to a partial integer mode here
4030 because we don't know the real bitsize of the partial
4031 integer mode. */
4032 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4033 break;
4035 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4036 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4037 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4038 SUBST (XEXP (x, 0),
4039 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4040 GET_MODE_MASK (mode), NULL_RTX, 0));
4042 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4043 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4044 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4045 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4046 return XEXP (XEXP (x, 0), 0);
4048 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4049 (OP:SI foo:SI) if OP is NEG or ABS. */
4050 if ((GET_CODE (XEXP (x, 0)) == ABS
4051 || GET_CODE (XEXP (x, 0)) == NEG)
4052 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4053 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4054 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4055 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4056 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4058 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4059 (truncate:SI x). */
4060 if (GET_CODE (XEXP (x, 0)) == SUBREG
4061 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4062 && subreg_lowpart_p (XEXP (x, 0)))
4063 return SUBREG_REG (XEXP (x, 0));
4065 /* If we know that the value is already truncated, we can
4066 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4067 is nonzero for the corresponding modes. But don't do this
4068 for an (LSHIFTRT (MULT ...)) since this will cause problems
4069 with the umulXi3_highpart patterns. */
4070 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4071 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4072 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4073 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4074 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4075 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4076 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4078 /* A truncate of a comparison can be replaced with a subreg if
4079 STORE_FLAG_VALUE permits. This is like the previous test,
4080 but it works even if the comparison is done in a mode larger
4081 than HOST_BITS_PER_WIDE_INT. */
4082 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4083 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4084 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4085 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4087 /* Similarly, a truncate of a register whose value is a
4088 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4089 permits. */
4090 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4091 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4092 && (temp = get_last_value (XEXP (x, 0)))
4093 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4094 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4096 break;
4098 case FLOAT_TRUNCATE:
4099 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4100 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4101 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4102 return XEXP (XEXP (x, 0), 0);
4104 /* (float_truncate:SF (float_truncate:DF foo:XF))
4105 = (float_truncate:SF foo:XF).
4106 This may elliminate double rounding, so it is unsafe.
4108 (float_truncate:SF (float_extend:XF foo:DF))
4109 = (float_truncate:SF foo:DF).
4111 (float_truncate:DF (float_extend:XF foo:SF))
4112 = (float_extend:SF foo:DF). */
4113 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4114 && flag_unsafe_math_optimizations)
4115 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4116 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4117 0)))
4118 > GET_MODE_SIZE (mode)
4119 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4120 mode,
4121 XEXP (XEXP (x, 0), 0), mode);
4123 /* (float_truncate (float x)) is (float x) */
4124 if (GET_CODE (XEXP (x, 0)) == FLOAT
4125 && (flag_unsafe_math_optimizations
4126 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4127 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4128 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4129 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4130 return simplify_gen_unary (FLOAT, mode,
4131 XEXP (XEXP (x, 0), 0),
4132 GET_MODE (XEXP (XEXP (x, 0), 0)));
4134 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4135 (OP:SF foo:SF) if OP is NEG or ABS. */
4136 if ((GET_CODE (XEXP (x, 0)) == ABS
4137 || GET_CODE (XEXP (x, 0)) == NEG)
4138 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4139 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4140 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4141 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4143 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4144 is (float_truncate:SF x). */
4145 if (GET_CODE (XEXP (x, 0)) == SUBREG
4146 && subreg_lowpart_p (XEXP (x, 0))
4147 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4148 return SUBREG_REG (XEXP (x, 0));
4149 break;
4150 case FLOAT_EXTEND:
4151 /* (float_extend (float_extend x)) is (float_extend x)
4153 (float_extend (float x)) is (float x) assuming that double
4154 rounding can't happen.
4156 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4157 || (GET_CODE (XEXP (x, 0)) == FLOAT
4158 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4159 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4160 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4161 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4162 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4163 XEXP (XEXP (x, 0), 0),
4164 GET_MODE (XEXP (XEXP (x, 0), 0)));
4166 break;
4167 #ifdef HAVE_cc0
4168 case COMPARE:
4169 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4170 using cc0, in which case we want to leave it as a COMPARE
4171 so we can distinguish it from a register-register-copy. */
4172 if (XEXP (x, 1) == const0_rtx)
4173 return XEXP (x, 0);
4175 /* x - 0 is the same as x unless x's mode has signed zeros and
4176 allows rounding towards -infinity. Under those conditions,
4177 0 - 0 is -0. */
4178 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4179 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4180 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4181 return XEXP (x, 0);
4182 break;
4183 #endif
4185 case CONST:
4186 /* (const (const X)) can become (const X). Do it this way rather than
4187 returning the inner CONST since CONST can be shared with a
4188 REG_EQUAL note. */
4189 if (GET_CODE (XEXP (x, 0)) == CONST)
4190 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4191 break;
4193 #ifdef HAVE_lo_sum
4194 case LO_SUM:
4195 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4196 can add in an offset. find_split_point will split this address up
4197 again if it doesn't match. */
4198 if (GET_CODE (XEXP (x, 0)) == HIGH
4199 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4200 return XEXP (x, 1);
4201 break;
4202 #endif
4204 case PLUS:
4205 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4207 if (GET_CODE (XEXP (x, 0)) == MULT
4208 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4210 rtx in1, in2;
4212 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4213 in2 = XEXP (XEXP (x, 0), 1);
4214 return gen_binary (MINUS, mode, XEXP (x, 1),
4215 gen_binary (MULT, mode, in1, in2));
4218 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4219 outermost. That's because that's the way indexed addresses are
4220 supposed to appear. This code used to check many more cases, but
4221 they are now checked elsewhere. */
4222 if (GET_CODE (XEXP (x, 0)) == PLUS
4223 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4224 return gen_binary (PLUS, mode,
4225 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4226 XEXP (x, 1)),
4227 XEXP (XEXP (x, 0), 1));
4229 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4230 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4231 bit-field and can be replaced by either a sign_extend or a
4232 sign_extract. The `and' may be a zero_extend and the two
4233 <c>, -<c> constants may be reversed. */
4234 if (GET_CODE (XEXP (x, 0)) == XOR
4235 && GET_CODE (XEXP (x, 1)) == CONST_INT
4236 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4237 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4238 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4239 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4240 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4241 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4242 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4243 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4244 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4245 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4246 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4247 == (unsigned int) i + 1))))
4248 return simplify_shift_const
4249 (NULL_RTX, ASHIFTRT, mode,
4250 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4251 XEXP (XEXP (XEXP (x, 0), 0), 0),
4252 GET_MODE_BITSIZE (mode) - (i + 1)),
4253 GET_MODE_BITSIZE (mode) - (i + 1));
4255 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4256 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4257 is 1. This produces better code than the alternative immediately
4258 below. */
4259 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4260 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4261 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4262 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4263 XEXP (XEXP (x, 0), 0),
4264 XEXP (XEXP (x, 0), 1))))
4265 return
4266 simplify_gen_unary (NEG, mode, reversed, mode);
4268 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4269 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4270 the bitsize of the mode - 1. This allows simplification of
4271 "a = (b & 8) == 0;" */
4272 if (XEXP (x, 1) == constm1_rtx
4273 && GET_CODE (XEXP (x, 0)) != REG
4274 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4275 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4276 && nonzero_bits (XEXP (x, 0), mode) == 1)
4277 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4278 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4279 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4280 GET_MODE_BITSIZE (mode) - 1),
4281 GET_MODE_BITSIZE (mode) - 1);
4283 /* If we are adding two things that have no bits in common, convert
4284 the addition into an IOR. This will often be further simplified,
4285 for example in cases like ((a & 1) + (a & 2)), which can
4286 become a & 3. */
4288 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4289 && (nonzero_bits (XEXP (x, 0), mode)
4290 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4292 /* Try to simplify the expression further. */
4293 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4294 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4296 /* If we could, great. If not, do not go ahead with the IOR
4297 replacement, since PLUS appears in many special purpose
4298 address arithmetic instructions. */
4299 if (GET_CODE (temp) != CLOBBER && temp != tor)
4300 return temp;
4302 break;
4304 case MINUS:
4305 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4306 by reversing the comparison code if valid. */
4307 if (STORE_FLAG_VALUE == 1
4308 && XEXP (x, 0) == const1_rtx
4309 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4310 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4311 XEXP (XEXP (x, 1), 0),
4312 XEXP (XEXP (x, 1), 1))))
4313 return reversed;
4315 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4316 (and <foo> (const_int pow2-1)) */
4317 if (GET_CODE (XEXP (x, 1)) == AND
4318 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4319 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4320 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4321 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4322 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4324 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4326 if (GET_CODE (XEXP (x, 1)) == MULT
4327 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4329 rtx in1, in2;
4331 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4332 in2 = XEXP (XEXP (x, 1), 1);
4333 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4334 XEXP (x, 0));
4337 /* Canonicalize (minus (neg A) (mult B C)) to
4338 (minus (mult (neg B) C) A). */
4339 if (GET_CODE (XEXP (x, 1)) == MULT
4340 && GET_CODE (XEXP (x, 0)) == NEG)
4342 rtx in1, in2;
4344 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4345 in2 = XEXP (XEXP (x, 1), 1);
4346 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4347 XEXP (XEXP (x, 0), 0));
4350 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4351 integers. */
4352 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4353 return gen_binary (MINUS, mode,
4354 gen_binary (MINUS, mode, XEXP (x, 0),
4355 XEXP (XEXP (x, 1), 0)),
4356 XEXP (XEXP (x, 1), 1));
4357 break;
4359 case MULT:
4360 /* If we have (mult (plus A B) C), apply the distributive law and then
4361 the inverse distributive law to see if things simplify. This
4362 occurs mostly in addresses, often when unrolling loops. */
4364 if (GET_CODE (XEXP (x, 0)) == PLUS)
4366 x = apply_distributive_law
4367 (gen_binary (PLUS, mode,
4368 gen_binary (MULT, mode,
4369 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4370 gen_binary (MULT, mode,
4371 XEXP (XEXP (x, 0), 1),
4372 copy_rtx (XEXP (x, 1)))));
4374 if (GET_CODE (x) != MULT)
4375 return x;
4377 /* Try simplify a*(b/c) as (a*b)/c. */
4378 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4379 && GET_CODE (XEXP (x, 0)) == DIV)
4381 rtx tem = simplify_binary_operation (MULT, mode,
4382 XEXP (XEXP (x, 0), 0),
4383 XEXP (x, 1));
4384 if (tem)
4385 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4387 break;
4389 case UDIV:
4390 /* If this is a divide by a power of two, treat it as a shift if
4391 its first operand is a shift. */
4392 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4393 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4394 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4395 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4396 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4397 || GET_CODE (XEXP (x, 0)) == ROTATE
4398 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4399 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4400 break;
4402 case EQ: case NE:
4403 case GT: case GTU: case GE: case GEU:
4404 case LT: case LTU: case LE: case LEU:
4405 case UNEQ: case LTGT:
4406 case UNGT: case UNGE:
4407 case UNLT: case UNLE:
4408 case UNORDERED: case ORDERED:
4409 /* If the first operand is a condition code, we can't do anything
4410 with it. */
4411 if (GET_CODE (XEXP (x, 0)) == COMPARE
4412 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4413 && ! CC0_P (XEXP (x, 0))))
4415 rtx op0 = XEXP (x, 0);
4416 rtx op1 = XEXP (x, 1);
4417 enum rtx_code new_code;
4419 if (GET_CODE (op0) == COMPARE)
4420 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4422 /* Simplify our comparison, if possible. */
4423 new_code = simplify_comparison (code, &op0, &op1);
4425 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4426 if only the low-order bit is possibly nonzero in X (such as when
4427 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4428 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4429 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4430 (plus X 1).
4432 Remove any ZERO_EXTRACT we made when thinking this was a
4433 comparison. It may now be simpler to use, e.g., an AND. If a
4434 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4435 the call to make_compound_operation in the SET case. */
4437 if (STORE_FLAG_VALUE == 1
4438 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4439 && op1 == const0_rtx
4440 && mode == GET_MODE (op0)
4441 && nonzero_bits (op0, mode) == 1)
4442 return gen_lowpart_for_combine (mode,
4443 expand_compound_operation (op0));
4445 else if (STORE_FLAG_VALUE == 1
4446 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4447 && op1 == const0_rtx
4448 && mode == GET_MODE (op0)
4449 && (num_sign_bit_copies (op0, mode)
4450 == GET_MODE_BITSIZE (mode)))
4452 op0 = expand_compound_operation (op0);
4453 return simplify_gen_unary (NEG, mode,
4454 gen_lowpart_for_combine (mode, op0),
4455 mode);
4458 else if (STORE_FLAG_VALUE == 1
4459 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4460 && op1 == const0_rtx
4461 && mode == GET_MODE (op0)
4462 && nonzero_bits (op0, mode) == 1)
4464 op0 = expand_compound_operation (op0);
4465 return gen_binary (XOR, mode,
4466 gen_lowpart_for_combine (mode, op0),
4467 const1_rtx);
4470 else if (STORE_FLAG_VALUE == 1
4471 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4472 && op1 == const0_rtx
4473 && mode == GET_MODE (op0)
4474 && (num_sign_bit_copies (op0, mode)
4475 == GET_MODE_BITSIZE (mode)))
4477 op0 = expand_compound_operation (op0);
4478 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4481 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4482 those above. */
4483 if (STORE_FLAG_VALUE == -1
4484 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4485 && op1 == const0_rtx
4486 && (num_sign_bit_copies (op0, mode)
4487 == GET_MODE_BITSIZE (mode)))
4488 return gen_lowpart_for_combine (mode,
4489 expand_compound_operation (op0));
4491 else if (STORE_FLAG_VALUE == -1
4492 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4493 && op1 == const0_rtx
4494 && mode == GET_MODE (op0)
4495 && nonzero_bits (op0, mode) == 1)
4497 op0 = expand_compound_operation (op0);
4498 return simplify_gen_unary (NEG, mode,
4499 gen_lowpart_for_combine (mode, op0),
4500 mode);
4503 else if (STORE_FLAG_VALUE == -1
4504 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4505 && op1 == const0_rtx
4506 && mode == GET_MODE (op0)
4507 && (num_sign_bit_copies (op0, mode)
4508 == GET_MODE_BITSIZE (mode)))
4510 op0 = expand_compound_operation (op0);
4511 return simplify_gen_unary (NOT, mode,
4512 gen_lowpart_for_combine (mode, op0),
4513 mode);
4516 /* If X is 0/1, (eq X 0) is X-1. */
4517 else if (STORE_FLAG_VALUE == -1
4518 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4519 && op1 == const0_rtx
4520 && mode == GET_MODE (op0)
4521 && nonzero_bits (op0, mode) == 1)
4523 op0 = expand_compound_operation (op0);
4524 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4527 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4528 one bit that might be nonzero, we can convert (ne x 0) to
4529 (ashift x c) where C puts the bit in the sign bit. Remove any
4530 AND with STORE_FLAG_VALUE when we are done, since we are only
4531 going to test the sign bit. */
4532 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4533 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4534 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4535 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4536 && op1 == const0_rtx
4537 && mode == GET_MODE (op0)
4538 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4540 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4541 expand_compound_operation (op0),
4542 GET_MODE_BITSIZE (mode) - 1 - i);
4543 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4544 return XEXP (x, 0);
4545 else
4546 return x;
4549 /* If the code changed, return a whole new comparison. */
4550 if (new_code != code)
4551 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4553 /* Otherwise, keep this operation, but maybe change its operands.
4554 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4555 SUBST (XEXP (x, 0), op0);
4556 SUBST (XEXP (x, 1), op1);
4558 break;
4560 case IF_THEN_ELSE:
4561 return simplify_if_then_else (x);
4563 case ZERO_EXTRACT:
4564 case SIGN_EXTRACT:
4565 case ZERO_EXTEND:
4566 case SIGN_EXTEND:
4567 /* If we are processing SET_DEST, we are done. */
4568 if (in_dest)
4569 return x;
4571 return expand_compound_operation (x);
4573 case SET:
4574 return simplify_set (x);
4576 case AND:
4577 case IOR:
4578 case XOR:
4579 return simplify_logical (x, last);
4581 case ABS:
4582 /* (abs (neg <foo>)) -> (abs <foo>) */
4583 if (GET_CODE (XEXP (x, 0)) == NEG)
4584 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4586 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4587 do nothing. */
4588 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4589 break;
4591 /* If operand is something known to be positive, ignore the ABS. */
4592 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4593 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4594 <= HOST_BITS_PER_WIDE_INT)
4595 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4596 & ((HOST_WIDE_INT) 1
4597 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4598 == 0)))
4599 return XEXP (x, 0);
4601 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4602 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4603 return gen_rtx_NEG (mode, XEXP (x, 0));
4605 break;
4607 case FFS:
4608 /* (ffs (*_extend <X>)) = (ffs <X>) */
4609 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4610 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4611 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4612 break;
4614 case POPCOUNT:
4615 case PARITY:
4616 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4617 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4618 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4619 break;
4621 case FLOAT:
4622 /* (float (sign_extend <X>)) = (float <X>). */
4623 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4624 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4625 break;
4627 case ASHIFT:
4628 case LSHIFTRT:
4629 case ASHIFTRT:
4630 case ROTATE:
4631 case ROTATERT:
4632 /* If this is a shift by a constant amount, simplify it. */
4633 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4634 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4635 INTVAL (XEXP (x, 1)));
4637 #ifdef SHIFT_COUNT_TRUNCATED
4638 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4639 SUBST (XEXP (x, 1),
4640 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4641 ((HOST_WIDE_INT) 1
4642 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4643 - 1,
4644 NULL_RTX, 0));
4645 #endif
4647 break;
4649 case VEC_SELECT:
4651 rtx op0 = XEXP (x, 0);
4652 rtx op1 = XEXP (x, 1);
4653 int len;
4655 if (GET_CODE (op1) != PARALLEL)
4656 abort ();
4657 len = XVECLEN (op1, 0);
4658 if (len == 1
4659 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4660 && GET_CODE (op0) == VEC_CONCAT)
4662 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4664 /* Try to find the element in the VEC_CONCAT. */
4665 for (;;)
4667 if (GET_MODE (op0) == GET_MODE (x))
4668 return op0;
4669 if (GET_CODE (op0) == VEC_CONCAT)
4671 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4672 if (op0_size < offset)
4673 op0 = XEXP (op0, 0);
4674 else
4676 offset -= op0_size;
4677 op0 = XEXP (op0, 1);
4680 else
4681 break;
4686 break;
4688 default:
4689 break;
4692 return x;
4695 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4697 static rtx
4698 simplify_if_then_else (rtx x)
4700 enum machine_mode mode = GET_MODE (x);
4701 rtx cond = XEXP (x, 0);
4702 rtx true_rtx = XEXP (x, 1);
4703 rtx false_rtx = XEXP (x, 2);
4704 enum rtx_code true_code = GET_CODE (cond);
4705 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4706 rtx temp;
4707 int i;
4708 enum rtx_code false_code;
4709 rtx reversed;
4711 /* Simplify storing of the truth value. */
4712 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4713 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4715 /* Also when the truth value has to be reversed. */
4716 if (comparison_p
4717 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4718 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4719 XEXP (cond, 1))))
4720 return reversed;
4722 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4723 in it is being compared against certain values. Get the true and false
4724 comparisons and see if that says anything about the value of each arm. */
4726 if (comparison_p
4727 && ((false_code = combine_reversed_comparison_code (cond))
4728 != UNKNOWN)
4729 && GET_CODE (XEXP (cond, 0)) == REG)
4731 HOST_WIDE_INT nzb;
4732 rtx from = XEXP (cond, 0);
4733 rtx true_val = XEXP (cond, 1);
4734 rtx false_val = true_val;
4735 int swapped = 0;
4737 /* If FALSE_CODE is EQ, swap the codes and arms. */
4739 if (false_code == EQ)
4741 swapped = 1, true_code = EQ, false_code = NE;
4742 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4745 /* If we are comparing against zero and the expression being tested has
4746 only a single bit that might be nonzero, that is its value when it is
4747 not equal to zero. Similarly if it is known to be -1 or 0. */
4749 if (true_code == EQ && true_val == const0_rtx
4750 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4751 false_code = EQ, false_val = GEN_INT (nzb);
4752 else if (true_code == EQ && true_val == const0_rtx
4753 && (num_sign_bit_copies (from, GET_MODE (from))
4754 == GET_MODE_BITSIZE (GET_MODE (from))))
4755 false_code = EQ, false_val = constm1_rtx;
4757 /* Now simplify an arm if we know the value of the register in the
4758 branch and it is used in the arm. Be careful due to the potential
4759 of locally-shared RTL. */
4761 if (reg_mentioned_p (from, true_rtx))
4762 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4763 from, true_val),
4764 pc_rtx, pc_rtx, 0, 0);
4765 if (reg_mentioned_p (from, false_rtx))
4766 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4767 from, false_val),
4768 pc_rtx, pc_rtx, 0, 0);
4770 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4771 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4773 true_rtx = XEXP (x, 1);
4774 false_rtx = XEXP (x, 2);
4775 true_code = GET_CODE (cond);
4778 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4779 reversed, do so to avoid needing two sets of patterns for
4780 subtract-and-branch insns. Similarly if we have a constant in the true
4781 arm, the false arm is the same as the first operand of the comparison, or
4782 the false arm is more complicated than the true arm. */
4784 if (comparison_p
4785 && combine_reversed_comparison_code (cond) != UNKNOWN
4786 && (true_rtx == pc_rtx
4787 || (CONSTANT_P (true_rtx)
4788 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4789 || true_rtx == const0_rtx
4790 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4791 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4792 || (GET_CODE (true_rtx) == SUBREG
4793 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4794 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4795 || reg_mentioned_p (true_rtx, false_rtx)
4796 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4798 true_code = reversed_comparison_code (cond, NULL);
4799 SUBST (XEXP (x, 0),
4800 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4801 XEXP (cond, 1)));
4803 SUBST (XEXP (x, 1), false_rtx);
4804 SUBST (XEXP (x, 2), true_rtx);
4806 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4807 cond = XEXP (x, 0);
4809 /* It is possible that the conditional has been simplified out. */
4810 true_code = GET_CODE (cond);
4811 comparison_p = GET_RTX_CLASS (true_code) == '<';
4814 /* If the two arms are identical, we don't need the comparison. */
4816 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4817 return true_rtx;
4819 /* Convert a == b ? b : a to "a". */
4820 if (true_code == EQ && ! side_effects_p (cond)
4821 && !HONOR_NANS (mode)
4822 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4823 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4824 return false_rtx;
4825 else if (true_code == NE && ! side_effects_p (cond)
4826 && !HONOR_NANS (mode)
4827 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4828 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4829 return true_rtx;
4831 /* Look for cases where we have (abs x) or (neg (abs X)). */
4833 if (GET_MODE_CLASS (mode) == MODE_INT
4834 && GET_CODE (false_rtx) == NEG
4835 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4836 && comparison_p
4837 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4838 && ! side_effects_p (true_rtx))
4839 switch (true_code)
4841 case GT:
4842 case GE:
4843 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4844 case LT:
4845 case LE:
4846 return
4847 simplify_gen_unary (NEG, mode,
4848 simplify_gen_unary (ABS, mode, true_rtx, mode),
4849 mode);
4850 default:
4851 break;
4854 /* Look for MIN or MAX. */
4856 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4857 && comparison_p
4858 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4859 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4860 && ! side_effects_p (cond))
4861 switch (true_code)
4863 case GE:
4864 case GT:
4865 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4866 case LE:
4867 case LT:
4868 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4869 case GEU:
4870 case GTU:
4871 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4872 case LEU:
4873 case LTU:
4874 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4875 default:
4876 break;
4879 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4880 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4881 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4882 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4883 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4884 neither 1 or -1, but it isn't worth checking for. */
4886 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4887 && comparison_p
4888 && GET_MODE_CLASS (mode) == MODE_INT
4889 && ! side_effects_p (x))
4891 rtx t = make_compound_operation (true_rtx, SET);
4892 rtx f = make_compound_operation (false_rtx, SET);
4893 rtx cond_op0 = XEXP (cond, 0);
4894 rtx cond_op1 = XEXP (cond, 1);
4895 enum rtx_code op = NIL, extend_op = NIL;
4896 enum machine_mode m = mode;
4897 rtx z = 0, c1 = NULL_RTX;
4899 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4900 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4901 || GET_CODE (t) == ASHIFT
4902 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4903 && rtx_equal_p (XEXP (t, 0), f))
4904 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4906 /* If an identity-zero op is commutative, check whether there
4907 would be a match if we swapped the operands. */
4908 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4909 || GET_CODE (t) == XOR)
4910 && rtx_equal_p (XEXP (t, 1), f))
4911 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4912 else if (GET_CODE (t) == SIGN_EXTEND
4913 && (GET_CODE (XEXP (t, 0)) == PLUS
4914 || GET_CODE (XEXP (t, 0)) == MINUS
4915 || GET_CODE (XEXP (t, 0)) == IOR
4916 || GET_CODE (XEXP (t, 0)) == XOR
4917 || GET_CODE (XEXP (t, 0)) == ASHIFT
4918 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4919 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4920 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4921 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4922 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4923 && (num_sign_bit_copies (f, GET_MODE (f))
4924 > (unsigned int)
4925 (GET_MODE_BITSIZE (mode)
4926 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4928 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4929 extend_op = SIGN_EXTEND;
4930 m = GET_MODE (XEXP (t, 0));
4932 else if (GET_CODE (t) == SIGN_EXTEND
4933 && (GET_CODE (XEXP (t, 0)) == PLUS
4934 || GET_CODE (XEXP (t, 0)) == IOR
4935 || GET_CODE (XEXP (t, 0)) == XOR)
4936 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4937 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4938 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4939 && (num_sign_bit_copies (f, GET_MODE (f))
4940 > (unsigned int)
4941 (GET_MODE_BITSIZE (mode)
4942 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4944 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4945 extend_op = SIGN_EXTEND;
4946 m = GET_MODE (XEXP (t, 0));
4948 else if (GET_CODE (t) == ZERO_EXTEND
4949 && (GET_CODE (XEXP (t, 0)) == PLUS
4950 || GET_CODE (XEXP (t, 0)) == MINUS
4951 || GET_CODE (XEXP (t, 0)) == IOR
4952 || GET_CODE (XEXP (t, 0)) == XOR
4953 || GET_CODE (XEXP (t, 0)) == ASHIFT
4954 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4955 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4956 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4957 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4958 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4959 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4960 && ((nonzero_bits (f, GET_MODE (f))
4961 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4962 == 0))
4964 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4965 extend_op = ZERO_EXTEND;
4966 m = GET_MODE (XEXP (t, 0));
4968 else if (GET_CODE (t) == ZERO_EXTEND
4969 && (GET_CODE (XEXP (t, 0)) == PLUS
4970 || GET_CODE (XEXP (t, 0)) == IOR
4971 || GET_CODE (XEXP (t, 0)) == XOR)
4972 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4973 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4974 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4975 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4976 && ((nonzero_bits (f, GET_MODE (f))
4977 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4978 == 0))
4980 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4981 extend_op = ZERO_EXTEND;
4982 m = GET_MODE (XEXP (t, 0));
4985 if (z)
4987 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4988 pc_rtx, pc_rtx, 0, 0);
4989 temp = gen_binary (MULT, m, temp,
4990 gen_binary (MULT, m, c1, const_true_rtx));
4991 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4992 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4994 if (extend_op != NIL)
4995 temp = simplify_gen_unary (extend_op, mode, temp, m);
4997 return temp;
5001 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5002 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5003 negation of a single bit, we can convert this operation to a shift. We
5004 can actually do this more generally, but it doesn't seem worth it. */
5006 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5007 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5008 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5009 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5010 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5011 == GET_MODE_BITSIZE (mode))
5012 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5013 return
5014 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5015 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
5017 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5018 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5019 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5020 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5021 == nonzero_bits (XEXP (cond, 0), mode)
5022 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5023 return XEXP (cond, 0);
5025 return x;
5028 /* Simplify X, a SET expression. Return the new expression. */
5030 static rtx
5031 simplify_set (rtx x)
5033 rtx src = SET_SRC (x);
5034 rtx dest = SET_DEST (x);
5035 enum machine_mode mode
5036 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5037 rtx other_insn;
5038 rtx *cc_use;
5040 /* (set (pc) (return)) gets written as (return). */
5041 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5042 return src;
5044 /* Now that we know for sure which bits of SRC we are using, see if we can
5045 simplify the expression for the object knowing that we only need the
5046 low-order bits. */
5048 if (GET_MODE_CLASS (mode) == MODE_INT
5049 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5051 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5052 SUBST (SET_SRC (x), src);
5055 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5056 the comparison result and try to simplify it unless we already have used
5057 undobuf.other_insn. */
5058 if ((GET_MODE_CLASS (mode) == MODE_CC
5059 || GET_CODE (src) == COMPARE
5060 || CC0_P (dest))
5061 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5062 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5063 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
5064 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5066 enum rtx_code old_code = GET_CODE (*cc_use);
5067 enum rtx_code new_code;
5068 rtx op0, op1, tmp;
5069 int other_changed = 0;
5070 enum machine_mode compare_mode = GET_MODE (dest);
5071 enum machine_mode tmp_mode;
5073 if (GET_CODE (src) == COMPARE)
5074 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5075 else
5076 op0 = src, op1 = const0_rtx;
5078 /* Check whether the comparison is known at compile time. */
5079 if (GET_MODE (op0) != VOIDmode)
5080 tmp_mode = GET_MODE (op0);
5081 else if (GET_MODE (op1) != VOIDmode)
5082 tmp_mode = GET_MODE (op1);
5083 else
5084 tmp_mode = compare_mode;
5085 tmp = simplify_relational_operation (old_code, tmp_mode, op0, op1);
5086 if (tmp != NULL_RTX)
5088 rtx pat = PATTERN (other_insn);
5089 undobuf.other_insn = other_insn;
5090 SUBST (*cc_use, tmp);
5092 /* Attempt to simplify CC user. */
5093 if (GET_CODE (pat) == SET)
5095 rtx new = simplify_rtx (SET_SRC (pat));
5096 if (new != NULL_RTX)
5097 SUBST (SET_SRC (pat), new);
5100 /* Convert X into a no-op move. */
5101 SUBST (SET_DEST (x), pc_rtx);
5102 SUBST (SET_SRC (x), pc_rtx);
5103 return x;
5106 /* Simplify our comparison, if possible. */
5107 new_code = simplify_comparison (old_code, &op0, &op1);
5109 #ifdef EXTRA_CC_MODES
5110 /* If this machine has CC modes other than CCmode, check to see if we
5111 need to use a different CC mode here. */
5112 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5113 #endif /* EXTRA_CC_MODES */
5115 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5116 /* If the mode changed, we have to change SET_DEST, the mode in the
5117 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5118 a hard register, just build new versions with the proper mode. If it
5119 is a pseudo, we lose unless it is only time we set the pseudo, in
5120 which case we can safely change its mode. */
5121 if (compare_mode != GET_MODE (dest))
5123 unsigned int regno = REGNO (dest);
5124 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5126 if (regno < FIRST_PSEUDO_REGISTER
5127 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5129 if (regno >= FIRST_PSEUDO_REGISTER)
5130 SUBST (regno_reg_rtx[regno], new_dest);
5132 SUBST (SET_DEST (x), new_dest);
5133 SUBST (XEXP (*cc_use, 0), new_dest);
5134 other_changed = 1;
5136 dest = new_dest;
5139 #endif
5141 /* If the code changed, we have to build a new comparison in
5142 undobuf.other_insn. */
5143 if (new_code != old_code)
5145 unsigned HOST_WIDE_INT mask;
5147 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5148 dest, const0_rtx));
5150 /* If the only change we made was to change an EQ into an NE or
5151 vice versa, OP0 has only one bit that might be nonzero, and OP1
5152 is zero, check if changing the user of the condition code will
5153 produce a valid insn. If it won't, we can keep the original code
5154 in that insn by surrounding our operation with an XOR. */
5156 if (((old_code == NE && new_code == EQ)
5157 || (old_code == EQ && new_code == NE))
5158 && ! other_changed && op1 == const0_rtx
5159 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5160 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5162 rtx pat = PATTERN (other_insn), note = 0;
5164 if ((recog_for_combine (&pat, other_insn, &note) < 0
5165 && ! check_asm_operands (pat)))
5167 PUT_CODE (*cc_use, old_code);
5168 other_insn = 0;
5170 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5174 other_changed = 1;
5177 if (other_changed)
5178 undobuf.other_insn = other_insn;
5180 #ifdef HAVE_cc0
5181 /* If we are now comparing against zero, change our source if
5182 needed. If we do not use cc0, we always have a COMPARE. */
5183 if (op1 == const0_rtx && dest == cc0_rtx)
5185 SUBST (SET_SRC (x), op0);
5186 src = op0;
5188 else
5189 #endif
5191 /* Otherwise, if we didn't previously have a COMPARE in the
5192 correct mode, we need one. */
5193 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5195 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5196 src = SET_SRC (x);
5198 else
5200 /* Otherwise, update the COMPARE if needed. */
5201 SUBST (XEXP (src, 0), op0);
5202 SUBST (XEXP (src, 1), op1);
5205 else
5207 /* Get SET_SRC in a form where we have placed back any
5208 compound expressions. Then do the checks below. */
5209 src = make_compound_operation (src, SET);
5210 SUBST (SET_SRC (x), src);
5213 #ifdef WORD_REGISTER_OPERATIONS
5214 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5215 and X being a REG or (subreg (reg)), we may be able to convert this to
5216 (set (subreg:m2 x) (op)).
5218 On a machine where WORD_REGISTER_OPERATIONS is defined, this
5219 transformation is safe as long as M1 and M2 have the same number
5220 of words.
5222 However, on a machine without WORD_REGISTER_OPERATIONS defined,
5223 we cannot apply this transformation because it would create a
5224 paradoxical subreg in SET_DEST. */
5226 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5227 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5228 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5229 / UNITS_PER_WORD)
5230 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5231 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5232 #ifdef CANNOT_CHANGE_MODE_CLASS
5233 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5234 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5235 GET_MODE (SUBREG_REG (src)),
5236 GET_MODE (src)))
5237 #endif
5238 && (GET_CODE (dest) == REG
5239 || (GET_CODE (dest) == SUBREG
5240 && GET_CODE (SUBREG_REG (dest)) == REG)))
5242 SUBST (SET_DEST (x),
5243 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5244 dest));
5245 SUBST (SET_SRC (x), SUBREG_REG (src));
5247 src = SET_SRC (x), dest = SET_DEST (x);
5249 #endif
5251 #ifdef HAVE_cc0
5252 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5253 in SRC. */
5254 if (dest == cc0_rtx
5255 && GET_CODE (src) == SUBREG
5256 && subreg_lowpart_p (src)
5257 && (GET_MODE_BITSIZE (GET_MODE (src))
5258 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5260 rtx inner = SUBREG_REG (src);
5261 enum machine_mode inner_mode = GET_MODE (inner);
5263 /* Here we make sure that we don't have a sign bit on. */
5264 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5265 && (nonzero_bits (inner, inner_mode)
5266 < ((unsigned HOST_WIDE_INT) 1
5267 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5269 SUBST (SET_SRC (x), inner);
5270 src = SET_SRC (x);
5273 #endif
5275 #ifdef LOAD_EXTEND_OP
5276 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5277 would require a paradoxical subreg. Replace the subreg with a
5278 zero_extend to avoid the reload that would otherwise be required. */
5280 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5281 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5282 && SUBREG_BYTE (src) == 0
5283 && (GET_MODE_SIZE (GET_MODE (src))
5284 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5285 && GET_CODE (SUBREG_REG (src)) == MEM)
5287 SUBST (SET_SRC (x),
5288 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5289 GET_MODE (src), SUBREG_REG (src)));
5291 src = SET_SRC (x);
5293 #endif
5295 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5296 are comparing an item known to be 0 or -1 against 0, use a logical
5297 operation instead. Check for one of the arms being an IOR of the other
5298 arm with some value. We compute three terms to be IOR'ed together. In
5299 practice, at most two will be nonzero. Then we do the IOR's. */
5301 if (GET_CODE (dest) != PC
5302 && GET_CODE (src) == IF_THEN_ELSE
5303 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5304 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5305 && XEXP (XEXP (src, 0), 1) == const0_rtx
5306 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5307 #ifdef HAVE_conditional_move
5308 && ! can_conditionally_move_p (GET_MODE (src))
5309 #endif
5310 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5311 GET_MODE (XEXP (XEXP (src, 0), 0)))
5312 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5313 && ! side_effects_p (src))
5315 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5316 ? XEXP (src, 1) : XEXP (src, 2));
5317 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5318 ? XEXP (src, 2) : XEXP (src, 1));
5319 rtx term1 = const0_rtx, term2, term3;
5321 if (GET_CODE (true_rtx) == IOR
5322 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5323 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5324 else if (GET_CODE (true_rtx) == IOR
5325 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5326 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5327 else if (GET_CODE (false_rtx) == IOR
5328 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5329 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5330 else if (GET_CODE (false_rtx) == IOR
5331 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5332 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5334 term2 = gen_binary (AND, GET_MODE (src),
5335 XEXP (XEXP (src, 0), 0), true_rtx);
5336 term3 = gen_binary (AND, GET_MODE (src),
5337 simplify_gen_unary (NOT, GET_MODE (src),
5338 XEXP (XEXP (src, 0), 0),
5339 GET_MODE (src)),
5340 false_rtx);
5342 SUBST (SET_SRC (x),
5343 gen_binary (IOR, GET_MODE (src),
5344 gen_binary (IOR, GET_MODE (src), term1, term2),
5345 term3));
5347 src = SET_SRC (x);
5350 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5351 whole thing fail. */
5352 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5353 return src;
5354 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5355 return dest;
5356 else
5357 /* Convert this into a field assignment operation, if possible. */
5358 return make_field_assignment (x);
5361 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5362 result. LAST is nonzero if this is the last retry. */
5364 static rtx
5365 simplify_logical (rtx x, int last)
5367 enum machine_mode mode = GET_MODE (x);
5368 rtx op0 = XEXP (x, 0);
5369 rtx op1 = XEXP (x, 1);
5370 rtx reversed;
5372 switch (GET_CODE (x))
5374 case AND:
5375 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5376 insn (and may simplify more). */
5377 if (GET_CODE (op0) == XOR
5378 && rtx_equal_p (XEXP (op0, 0), op1)
5379 && ! side_effects_p (op1))
5380 x = gen_binary (AND, mode,
5381 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5382 op1);
5384 if (GET_CODE (op0) == XOR
5385 && rtx_equal_p (XEXP (op0, 1), op1)
5386 && ! side_effects_p (op1))
5387 x = gen_binary (AND, mode,
5388 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5389 op1);
5391 /* Similarly for (~(A ^ B)) & A. */
5392 if (GET_CODE (op0) == NOT
5393 && GET_CODE (XEXP (op0, 0)) == XOR
5394 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5395 && ! side_effects_p (op1))
5396 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5398 if (GET_CODE (op0) == NOT
5399 && GET_CODE (XEXP (op0, 0)) == XOR
5400 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5401 && ! side_effects_p (op1))
5402 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5404 /* We can call simplify_and_const_int only if we don't lose
5405 any (sign) bits when converting INTVAL (op1) to
5406 "unsigned HOST_WIDE_INT". */
5407 if (GET_CODE (op1) == CONST_INT
5408 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5409 || INTVAL (op1) > 0))
5411 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5413 /* If we have (ior (and (X C1) C2)) and the next restart would be
5414 the last, simplify this by making C1 as small as possible
5415 and then exit. */
5416 if (last
5417 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5418 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5419 && GET_CODE (op1) == CONST_INT)
5420 return gen_binary (IOR, mode,
5421 gen_binary (AND, mode, XEXP (op0, 0),
5422 GEN_INT (INTVAL (XEXP (op0, 1))
5423 & ~INTVAL (op1))), op1);
5425 if (GET_CODE (x) != AND)
5426 return x;
5428 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5429 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5430 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5433 /* Convert (A | B) & A to A. */
5434 if (GET_CODE (op0) == IOR
5435 && (rtx_equal_p (XEXP (op0, 0), op1)
5436 || rtx_equal_p (XEXP (op0, 1), op1))
5437 && ! side_effects_p (XEXP (op0, 0))
5438 && ! side_effects_p (XEXP (op0, 1)))
5439 return op1;
5441 /* In the following group of tests (and those in case IOR below),
5442 we start with some combination of logical operations and apply
5443 the distributive law followed by the inverse distributive law.
5444 Most of the time, this results in no change. However, if some of
5445 the operands are the same or inverses of each other, simplifications
5446 will result.
5448 For example, (and (ior A B) (not B)) can occur as the result of
5449 expanding a bit field assignment. When we apply the distributive
5450 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5451 which then simplifies to (and (A (not B))).
5453 If we have (and (ior A B) C), apply the distributive law and then
5454 the inverse distributive law to see if things simplify. */
5456 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5458 x = apply_distributive_law
5459 (gen_binary (GET_CODE (op0), mode,
5460 gen_binary (AND, mode, XEXP (op0, 0), op1),
5461 gen_binary (AND, mode, XEXP (op0, 1),
5462 copy_rtx (op1))));
5463 if (GET_CODE (x) != AND)
5464 return x;
5467 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5468 return apply_distributive_law
5469 (gen_binary (GET_CODE (op1), mode,
5470 gen_binary (AND, mode, XEXP (op1, 0), op0),
5471 gen_binary (AND, mode, XEXP (op1, 1),
5472 copy_rtx (op0))));
5474 /* Similarly, taking advantage of the fact that
5475 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5477 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5478 return apply_distributive_law
5479 (gen_binary (XOR, mode,
5480 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5481 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5482 XEXP (op1, 1))));
5484 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5485 return apply_distributive_law
5486 (gen_binary (XOR, mode,
5487 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5488 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5489 break;
5491 case IOR:
5492 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5493 if (GET_CODE (op1) == CONST_INT
5494 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5495 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5496 return op1;
5498 /* Convert (A & B) | A to A. */
5499 if (GET_CODE (op0) == AND
5500 && (rtx_equal_p (XEXP (op0, 0), op1)
5501 || rtx_equal_p (XEXP (op0, 1), op1))
5502 && ! side_effects_p (XEXP (op0, 0))
5503 && ! side_effects_p (XEXP (op0, 1)))
5504 return op1;
5506 /* If we have (ior (and A B) C), apply the distributive law and then
5507 the inverse distributive law to see if things simplify. */
5509 if (GET_CODE (op0) == AND)
5511 x = apply_distributive_law
5512 (gen_binary (AND, mode,
5513 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5514 gen_binary (IOR, mode, XEXP (op0, 1),
5515 copy_rtx (op1))));
5517 if (GET_CODE (x) != IOR)
5518 return x;
5521 if (GET_CODE (op1) == AND)
5523 x = apply_distributive_law
5524 (gen_binary (AND, mode,
5525 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5526 gen_binary (IOR, mode, XEXP (op1, 1),
5527 copy_rtx (op0))));
5529 if (GET_CODE (x) != IOR)
5530 return x;
5533 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5534 mode size to (rotate A CX). */
5536 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5537 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5538 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5539 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5540 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5541 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5542 == GET_MODE_BITSIZE (mode)))
5543 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5544 (GET_CODE (op0) == ASHIFT
5545 ? XEXP (op0, 1) : XEXP (op1, 1)));
5547 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5548 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5549 does not affect any of the bits in OP1, it can really be done
5550 as a PLUS and we can associate. We do this by seeing if OP1
5551 can be safely shifted left C bits. */
5552 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5553 && GET_CODE (XEXP (op0, 0)) == PLUS
5554 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5555 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5556 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5558 int count = INTVAL (XEXP (op0, 1));
5559 HOST_WIDE_INT mask = INTVAL (op1) << count;
5561 if (mask >> count == INTVAL (op1)
5562 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5564 SUBST (XEXP (XEXP (op0, 0), 1),
5565 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5566 return op0;
5569 break;
5571 case XOR:
5572 /* If we are XORing two things that have no bits in common,
5573 convert them into an IOR. This helps to detect rotation encoded
5574 using those methods and possibly other simplifications. */
5576 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5577 && (nonzero_bits (op0, mode)
5578 & nonzero_bits (op1, mode)) == 0)
5579 return (gen_binary (IOR, mode, op0, op1));
5581 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5582 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5583 (NOT y). */
5585 int num_negated = 0;
5587 if (GET_CODE (op0) == NOT)
5588 num_negated++, op0 = XEXP (op0, 0);
5589 if (GET_CODE (op1) == NOT)
5590 num_negated++, op1 = XEXP (op1, 0);
5592 if (num_negated == 2)
5594 SUBST (XEXP (x, 0), op0);
5595 SUBST (XEXP (x, 1), op1);
5597 else if (num_negated == 1)
5598 return
5599 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5600 mode);
5603 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5604 correspond to a machine insn or result in further simplifications
5605 if B is a constant. */
5607 if (GET_CODE (op0) == AND
5608 && rtx_equal_p (XEXP (op0, 1), op1)
5609 && ! side_effects_p (op1))
5610 return gen_binary (AND, mode,
5611 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5612 op1);
5614 else if (GET_CODE (op0) == AND
5615 && rtx_equal_p (XEXP (op0, 0), op1)
5616 && ! side_effects_p (op1))
5617 return gen_binary (AND, mode,
5618 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5619 op1);
5621 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5622 comparison if STORE_FLAG_VALUE is 1. */
5623 if (STORE_FLAG_VALUE == 1
5624 && op1 == const1_rtx
5625 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5626 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5627 XEXP (op0, 1))))
5628 return reversed;
5630 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5631 is (lt foo (const_int 0)), so we can perform the above
5632 simplification if STORE_FLAG_VALUE is 1. */
5634 if (STORE_FLAG_VALUE == 1
5635 && op1 == const1_rtx
5636 && GET_CODE (op0) == LSHIFTRT
5637 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5638 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5639 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5641 /* (xor (comparison foo bar) (const_int sign-bit))
5642 when STORE_FLAG_VALUE is the sign bit. */
5643 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5644 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5645 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5646 && op1 == const_true_rtx
5647 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5648 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5649 XEXP (op0, 1))))
5650 return reversed;
5652 break;
5654 default:
5655 abort ();
5658 return x;
5661 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5662 operations" because they can be replaced with two more basic operations.
5663 ZERO_EXTEND is also considered "compound" because it can be replaced with
5664 an AND operation, which is simpler, though only one operation.
5666 The function expand_compound_operation is called with an rtx expression
5667 and will convert it to the appropriate shifts and AND operations,
5668 simplifying at each stage.
5670 The function make_compound_operation is called to convert an expression
5671 consisting of shifts and ANDs into the equivalent compound expression.
5672 It is the inverse of this function, loosely speaking. */
5674 static rtx
5675 expand_compound_operation (rtx x)
5677 unsigned HOST_WIDE_INT pos = 0, len;
5678 int unsignedp = 0;
5679 unsigned int modewidth;
5680 rtx tem;
5682 switch (GET_CODE (x))
5684 case ZERO_EXTEND:
5685 unsignedp = 1;
5686 case SIGN_EXTEND:
5687 /* We can't necessarily use a const_int for a multiword mode;
5688 it depends on implicitly extending the value.
5689 Since we don't know the right way to extend it,
5690 we can't tell whether the implicit way is right.
5692 Even for a mode that is no wider than a const_int,
5693 we can't win, because we need to sign extend one of its bits through
5694 the rest of it, and we don't know which bit. */
5695 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5696 return x;
5698 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5699 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5700 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5701 reloaded. If not for that, MEM's would very rarely be safe.
5703 Reject MODEs bigger than a word, because we might not be able
5704 to reference a two-register group starting with an arbitrary register
5705 (and currently gen_lowpart might crash for a SUBREG). */
5707 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5708 return x;
5710 /* Reject MODEs that aren't scalar integers because turning vector
5711 or complex modes into shifts causes problems. */
5713 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5714 return x;
5716 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5717 /* If the inner object has VOIDmode (the only way this can happen
5718 is if it is an ASM_OPERANDS), we can't do anything since we don't
5719 know how much masking to do. */
5720 if (len == 0)
5721 return x;
5723 break;
5725 case ZERO_EXTRACT:
5726 unsignedp = 1;
5727 case SIGN_EXTRACT:
5728 /* If the operand is a CLOBBER, just return it. */
5729 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5730 return XEXP (x, 0);
5732 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5733 || GET_CODE (XEXP (x, 2)) != CONST_INT
5734 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5735 return x;
5737 /* Reject MODEs that aren't scalar integers because turning vector
5738 or complex modes into shifts causes problems. */
5740 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5741 return x;
5743 len = INTVAL (XEXP (x, 1));
5744 pos = INTVAL (XEXP (x, 2));
5746 /* If this goes outside the object being extracted, replace the object
5747 with a (use (mem ...)) construct that only combine understands
5748 and is used only for this purpose. */
5749 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5750 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5752 if (BITS_BIG_ENDIAN)
5753 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5755 break;
5757 default:
5758 return x;
5760 /* Convert sign extension to zero extension, if we know that the high
5761 bit is not set, as this is easier to optimize. It will be converted
5762 back to cheaper alternative in make_extraction. */
5763 if (GET_CODE (x) == SIGN_EXTEND
5764 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5765 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5766 & ~(((unsigned HOST_WIDE_INT)
5767 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5768 >> 1))
5769 == 0)))
5771 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5772 rtx temp2 = expand_compound_operation (temp);
5774 /* Make sure this is a profitable operation. */
5775 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5776 return temp2;
5777 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5778 return temp;
5779 else
5780 return x;
5783 /* We can optimize some special cases of ZERO_EXTEND. */
5784 if (GET_CODE (x) == ZERO_EXTEND)
5786 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5787 know that the last value didn't have any inappropriate bits
5788 set. */
5789 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5790 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5791 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5792 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5793 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5794 return XEXP (XEXP (x, 0), 0);
5796 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5797 if (GET_CODE (XEXP (x, 0)) == SUBREG
5798 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5799 && subreg_lowpart_p (XEXP (x, 0))
5800 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5801 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5802 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5803 return SUBREG_REG (XEXP (x, 0));
5805 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5806 is a comparison and STORE_FLAG_VALUE permits. This is like
5807 the first case, but it works even when GET_MODE (x) is larger
5808 than HOST_WIDE_INT. */
5809 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5810 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5811 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5812 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5813 <= HOST_BITS_PER_WIDE_INT)
5814 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5815 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5816 return XEXP (XEXP (x, 0), 0);
5818 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5819 if (GET_CODE (XEXP (x, 0)) == SUBREG
5820 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5821 && subreg_lowpart_p (XEXP (x, 0))
5822 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5823 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5824 <= HOST_BITS_PER_WIDE_INT)
5825 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5826 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5827 return SUBREG_REG (XEXP (x, 0));
5831 /* If we reach here, we want to return a pair of shifts. The inner
5832 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5833 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5834 logical depending on the value of UNSIGNEDP.
5836 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5837 converted into an AND of a shift.
5839 We must check for the case where the left shift would have a negative
5840 count. This can happen in a case like (x >> 31) & 255 on machines
5841 that can't shift by a constant. On those machines, we would first
5842 combine the shift with the AND to produce a variable-position
5843 extraction. Then the constant of 31 would be substituted in to produce
5844 a such a position. */
5846 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5847 if (modewidth + len >= pos)
5848 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5849 GET_MODE (x),
5850 simplify_shift_const (NULL_RTX, ASHIFT,
5851 GET_MODE (x),
5852 XEXP (x, 0),
5853 modewidth - pos - len),
5854 modewidth - len);
5856 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5857 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5858 simplify_shift_const (NULL_RTX, LSHIFTRT,
5859 GET_MODE (x),
5860 XEXP (x, 0), pos),
5861 ((HOST_WIDE_INT) 1 << len) - 1);
5862 else
5863 /* Any other cases we can't handle. */
5864 return x;
5866 /* If we couldn't do this for some reason, return the original
5867 expression. */
5868 if (GET_CODE (tem) == CLOBBER)
5869 return x;
5871 return tem;
5874 /* X is a SET which contains an assignment of one object into
5875 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5876 or certain SUBREGS). If possible, convert it into a series of
5877 logical operations.
5879 We half-heartedly support variable positions, but do not at all
5880 support variable lengths. */
5882 static rtx
5883 expand_field_assignment (rtx x)
5885 rtx inner;
5886 rtx pos; /* Always counts from low bit. */
5887 int len;
5888 rtx mask;
5889 enum machine_mode compute_mode;
5891 /* Loop until we find something we can't simplify. */
5892 while (1)
5894 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5895 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5897 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5898 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5899 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5901 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5902 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5904 inner = XEXP (SET_DEST (x), 0);
5905 len = INTVAL (XEXP (SET_DEST (x), 1));
5906 pos = XEXP (SET_DEST (x), 2);
5908 /* If the position is constant and spans the width of INNER,
5909 surround INNER with a USE to indicate this. */
5910 if (GET_CODE (pos) == CONST_INT
5911 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5912 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5914 if (BITS_BIG_ENDIAN)
5916 if (GET_CODE (pos) == CONST_INT)
5917 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5918 - INTVAL (pos));
5919 else if (GET_CODE (pos) == MINUS
5920 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5921 && (INTVAL (XEXP (pos, 1))
5922 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5923 /* If position is ADJUST - X, new position is X. */
5924 pos = XEXP (pos, 0);
5925 else
5926 pos = gen_binary (MINUS, GET_MODE (pos),
5927 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5928 - len),
5929 pos);
5933 /* A SUBREG between two modes that occupy the same numbers of words
5934 can be done by moving the SUBREG to the source. */
5935 else if (GET_CODE (SET_DEST (x)) == SUBREG
5936 /* We need SUBREGs to compute nonzero_bits properly. */
5937 && nonzero_sign_valid
5938 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5939 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5940 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5941 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5943 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5944 gen_lowpart_for_combine
5945 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5946 SET_SRC (x)));
5947 continue;
5949 else
5950 break;
5952 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5953 inner = SUBREG_REG (inner);
5955 compute_mode = GET_MODE (inner);
5957 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5958 if (! SCALAR_INT_MODE_P (compute_mode))
5960 enum machine_mode imode;
5962 /* Don't do anything for vector or complex integral types. */
5963 if (! FLOAT_MODE_P (compute_mode))
5964 break;
5966 /* Try to find an integral mode to pun with. */
5967 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5968 if (imode == BLKmode)
5969 break;
5971 compute_mode = imode;
5972 inner = gen_lowpart_for_combine (imode, inner);
5975 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5976 if (len < HOST_BITS_PER_WIDE_INT)
5977 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5978 else
5979 break;
5981 /* Now compute the equivalent expression. Make a copy of INNER
5982 for the SET_DEST in case it is a MEM into which we will substitute;
5983 we don't want shared RTL in that case. */
5984 x = gen_rtx_SET
5985 (VOIDmode, copy_rtx (inner),
5986 gen_binary (IOR, compute_mode,
5987 gen_binary (AND, compute_mode,
5988 simplify_gen_unary (NOT, compute_mode,
5989 gen_binary (ASHIFT,
5990 compute_mode,
5991 mask, pos),
5992 compute_mode),
5993 inner),
5994 gen_binary (ASHIFT, compute_mode,
5995 gen_binary (AND, compute_mode,
5996 gen_lowpart_for_combine
5997 (compute_mode, SET_SRC (x)),
5998 mask),
5999 pos)));
6002 return x;
6005 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6006 it is an RTX that represents a variable starting position; otherwise,
6007 POS is the (constant) starting bit position (counted from the LSB).
6009 INNER may be a USE. This will occur when we started with a bitfield
6010 that went outside the boundary of the object in memory, which is
6011 allowed on most machines. To isolate this case, we produce a USE
6012 whose mode is wide enough and surround the MEM with it. The only
6013 code that understands the USE is this routine. If it is not removed,
6014 it will cause the resulting insn not to match.
6016 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6017 signed reference.
6019 IN_DEST is nonzero if this is a reference in the destination of a
6020 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6021 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6022 be used.
6024 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6025 ZERO_EXTRACT should be built even for bits starting at bit 0.
6027 MODE is the desired mode of the result (if IN_DEST == 0).
6029 The result is an RTX for the extraction or NULL_RTX if the target
6030 can't handle it. */
6032 static rtx
6033 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6034 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6035 int in_dest, int in_compare)
6037 /* This mode describes the size of the storage area
6038 to fetch the overall value from. Within that, we
6039 ignore the POS lowest bits, etc. */
6040 enum machine_mode is_mode = GET_MODE (inner);
6041 enum machine_mode inner_mode;
6042 enum machine_mode wanted_inner_mode = byte_mode;
6043 enum machine_mode wanted_inner_reg_mode = word_mode;
6044 enum machine_mode pos_mode = word_mode;
6045 enum machine_mode extraction_mode = word_mode;
6046 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6047 int spans_byte = 0;
6048 rtx new = 0;
6049 rtx orig_pos_rtx = pos_rtx;
6050 HOST_WIDE_INT orig_pos;
6052 /* Get some information about INNER and get the innermost object. */
6053 if (GET_CODE (inner) == USE)
6054 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6055 /* We don't need to adjust the position because we set up the USE
6056 to pretend that it was a full-word object. */
6057 spans_byte = 1, inner = XEXP (inner, 0);
6058 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6060 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6061 consider just the QI as the memory to extract from.
6062 The subreg adds or removes high bits; its mode is
6063 irrelevant to the meaning of this extraction,
6064 since POS and LEN count from the lsb. */
6065 if (GET_CODE (SUBREG_REG (inner)) == MEM)
6066 is_mode = GET_MODE (SUBREG_REG (inner));
6067 inner = SUBREG_REG (inner);
6069 else if (GET_CODE (inner) == ASHIFT
6070 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6071 && pos_rtx == 0 && pos == 0
6072 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6074 /* We're extracting the least significant bits of an rtx
6075 (ashift X (const_int C)), where LEN > C. Extract the
6076 least significant (LEN - C) bits of X, giving an rtx
6077 whose mode is MODE, then shift it left C times. */
6078 new = make_extraction (mode, XEXP (inner, 0),
6079 0, 0, len - INTVAL (XEXP (inner, 1)),
6080 unsignedp, in_dest, in_compare);
6081 if (new != 0)
6082 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6085 inner_mode = GET_MODE (inner);
6087 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6088 pos = INTVAL (pos_rtx), pos_rtx = 0;
6090 /* See if this can be done without an extraction. We never can if the
6091 width of the field is not the same as that of some integer mode. For
6092 registers, we can only avoid the extraction if the position is at the
6093 low-order bit and this is either not in the destination or we have the
6094 appropriate STRICT_LOW_PART operation available.
6096 For MEM, we can avoid an extract if the field starts on an appropriate
6097 boundary and we can change the mode of the memory reference. However,
6098 we cannot directly access the MEM if we have a USE and the underlying
6099 MEM is not TMODE. This combination means that MEM was being used in a
6100 context where bits outside its mode were being referenced; that is only
6101 valid in bit-field insns. */
6103 if (tmode != BLKmode
6104 && ! (spans_byte && inner_mode != tmode)
6105 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6106 && GET_CODE (inner) != MEM
6107 && (! in_dest
6108 || (GET_CODE (inner) == REG
6109 && have_insn_for (STRICT_LOW_PART, tmode))))
6110 || (GET_CODE (inner) == MEM && pos_rtx == 0
6111 && (pos
6112 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6113 : BITS_PER_UNIT)) == 0
6114 /* We can't do this if we are widening INNER_MODE (it
6115 may not be aligned, for one thing). */
6116 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6117 && (inner_mode == tmode
6118 || (! mode_dependent_address_p (XEXP (inner, 0))
6119 && ! MEM_VOLATILE_P (inner))))))
6121 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6122 field. If the original and current mode are the same, we need not
6123 adjust the offset. Otherwise, we do if bytes big endian.
6125 If INNER is not a MEM, get a piece consisting of just the field
6126 of interest (in this case POS % BITS_PER_WORD must be 0). */
6128 if (GET_CODE (inner) == MEM)
6130 HOST_WIDE_INT offset;
6132 /* POS counts from lsb, but make OFFSET count in memory order. */
6133 if (BYTES_BIG_ENDIAN)
6134 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6135 else
6136 offset = pos / BITS_PER_UNIT;
6138 new = adjust_address_nv (inner, tmode, offset);
6140 else if (GET_CODE (inner) == REG)
6142 if (tmode != inner_mode)
6144 if (in_dest)
6146 /* We can't call gen_lowpart_for_combine here since we always want
6147 a SUBREG and it would sometimes return a new hard register. */
6148 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6150 if (WORDS_BIG_ENDIAN
6151 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6152 final_word = ((GET_MODE_SIZE (inner_mode)
6153 - GET_MODE_SIZE (tmode))
6154 / UNITS_PER_WORD) - final_word;
6156 final_word *= UNITS_PER_WORD;
6157 if (BYTES_BIG_ENDIAN &&
6158 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6159 final_word += (GET_MODE_SIZE (inner_mode)
6160 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6162 /* Avoid creating invalid subregs, for example when
6163 simplifying (x>>32)&255. */
6164 if (final_word >= GET_MODE_SIZE (inner_mode))
6165 return NULL_RTX;
6167 new = gen_rtx_SUBREG (tmode, inner, final_word);
6169 else
6170 new = gen_lowpart_for_combine (tmode, inner);
6172 else
6173 new = inner;
6175 else
6176 new = force_to_mode (inner, tmode,
6177 len >= HOST_BITS_PER_WIDE_INT
6178 ? ~(unsigned HOST_WIDE_INT) 0
6179 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6180 NULL_RTX, 0);
6182 /* If this extraction is going into the destination of a SET,
6183 make a STRICT_LOW_PART unless we made a MEM. */
6185 if (in_dest)
6186 return (GET_CODE (new) == MEM ? new
6187 : (GET_CODE (new) != SUBREG
6188 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6189 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6191 if (mode == tmode)
6192 return new;
6194 if (GET_CODE (new) == CONST_INT)
6195 return gen_int_mode (INTVAL (new), mode);
6197 /* If we know that no extraneous bits are set, and that the high
6198 bit is not set, convert the extraction to the cheaper of
6199 sign and zero extension, that are equivalent in these cases. */
6200 if (flag_expensive_optimizations
6201 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6202 && ((nonzero_bits (new, tmode)
6203 & ~(((unsigned HOST_WIDE_INT)
6204 GET_MODE_MASK (tmode))
6205 >> 1))
6206 == 0)))
6208 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6209 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6211 /* Prefer ZERO_EXTENSION, since it gives more information to
6212 backends. */
6213 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6214 return temp;
6215 return temp1;
6218 /* Otherwise, sign- or zero-extend unless we already are in the
6219 proper mode. */
6221 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6222 mode, new));
6225 /* Unless this is a COMPARE or we have a funny memory reference,
6226 don't do anything with zero-extending field extracts starting at
6227 the low-order bit since they are simple AND operations. */
6228 if (pos_rtx == 0 && pos == 0 && ! in_dest
6229 && ! in_compare && ! spans_byte && unsignedp)
6230 return 0;
6232 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6233 we would be spanning bytes or if the position is not a constant and the
6234 length is not 1. In all other cases, we would only be going outside
6235 our object in cases when an original shift would have been
6236 undefined. */
6237 if (! spans_byte && GET_CODE (inner) == MEM
6238 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6239 || (pos_rtx != 0 && len != 1)))
6240 return 0;
6242 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6243 and the mode for the result. */
6244 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6246 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6247 pos_mode = mode_for_extraction (EP_insv, 2);
6248 extraction_mode = mode_for_extraction (EP_insv, 3);
6251 if (! in_dest && unsignedp
6252 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6254 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6255 pos_mode = mode_for_extraction (EP_extzv, 3);
6256 extraction_mode = mode_for_extraction (EP_extzv, 0);
6259 if (! in_dest && ! unsignedp
6260 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6262 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6263 pos_mode = mode_for_extraction (EP_extv, 3);
6264 extraction_mode = mode_for_extraction (EP_extv, 0);
6267 /* Never narrow an object, since that might not be safe. */
6269 if (mode != VOIDmode
6270 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6271 extraction_mode = mode;
6273 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6274 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6275 pos_mode = GET_MODE (pos_rtx);
6277 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6278 if we have to change the mode of memory and cannot, the desired mode is
6279 EXTRACTION_MODE. */
6280 if (GET_CODE (inner) != MEM)
6281 wanted_inner_mode = wanted_inner_reg_mode;
6282 else if (inner_mode != wanted_inner_mode
6283 && (mode_dependent_address_p (XEXP (inner, 0))
6284 || MEM_VOLATILE_P (inner)))
6285 wanted_inner_mode = extraction_mode;
6287 orig_pos = pos;
6289 if (BITS_BIG_ENDIAN)
6291 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6292 BITS_BIG_ENDIAN style. If position is constant, compute new
6293 position. Otherwise, build subtraction.
6294 Note that POS is relative to the mode of the original argument.
6295 If it's a MEM we need to recompute POS relative to that.
6296 However, if we're extracting from (or inserting into) a register,
6297 we want to recompute POS relative to wanted_inner_mode. */
6298 int width = (GET_CODE (inner) == MEM
6299 ? GET_MODE_BITSIZE (is_mode)
6300 : GET_MODE_BITSIZE (wanted_inner_mode));
6302 if (pos_rtx == 0)
6303 pos = width - len - pos;
6304 else
6305 pos_rtx
6306 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6307 /* POS may be less than 0 now, but we check for that below.
6308 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6311 /* If INNER has a wider mode, make it smaller. If this is a constant
6312 extract, try to adjust the byte to point to the byte containing
6313 the value. */
6314 if (wanted_inner_mode != VOIDmode
6315 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6316 && ((GET_CODE (inner) == MEM
6317 && (inner_mode == wanted_inner_mode
6318 || (! mode_dependent_address_p (XEXP (inner, 0))
6319 && ! MEM_VOLATILE_P (inner))))))
6321 int offset = 0;
6323 /* The computations below will be correct if the machine is big
6324 endian in both bits and bytes or little endian in bits and bytes.
6325 If it is mixed, we must adjust. */
6327 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6328 adjust OFFSET to compensate. */
6329 if (BYTES_BIG_ENDIAN
6330 && ! spans_byte
6331 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6332 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6334 /* If this is a constant position, we can move to the desired byte. */
6335 if (pos_rtx == 0)
6337 offset += pos / BITS_PER_UNIT;
6338 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6341 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6342 && ! spans_byte
6343 && is_mode != wanted_inner_mode)
6344 offset = (GET_MODE_SIZE (is_mode)
6345 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6347 if (offset != 0 || inner_mode != wanted_inner_mode)
6348 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6351 /* If INNER is not memory, we can always get it into the proper mode. If we
6352 are changing its mode, POS must be a constant and smaller than the size
6353 of the new mode. */
6354 else if (GET_CODE (inner) != MEM)
6356 if (GET_MODE (inner) != wanted_inner_mode
6357 && (pos_rtx != 0
6358 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6359 return 0;
6361 inner = force_to_mode (inner, wanted_inner_mode,
6362 pos_rtx
6363 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6364 ? ~(unsigned HOST_WIDE_INT) 0
6365 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6366 << orig_pos),
6367 NULL_RTX, 0);
6370 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6371 have to zero extend. Otherwise, we can just use a SUBREG. */
6372 if (pos_rtx != 0
6373 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6375 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6377 /* If we know that no extraneous bits are set, and that the high
6378 bit is not set, convert extraction to cheaper one - either
6379 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6380 cases. */
6381 if (flag_expensive_optimizations
6382 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6383 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6384 & ~(((unsigned HOST_WIDE_INT)
6385 GET_MODE_MASK (GET_MODE (pos_rtx)))
6386 >> 1))
6387 == 0)))
6389 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6391 /* Prefer ZERO_EXTENSION, since it gives more information to
6392 backends. */
6393 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6394 temp = temp1;
6396 pos_rtx = temp;
6398 else if (pos_rtx != 0
6399 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6400 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6402 /* Make POS_RTX unless we already have it and it is correct. If we don't
6403 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6404 be a CONST_INT. */
6405 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6406 pos_rtx = orig_pos_rtx;
6408 else if (pos_rtx == 0)
6409 pos_rtx = GEN_INT (pos);
6411 /* Make the required operation. See if we can use existing rtx. */
6412 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6413 extraction_mode, inner, GEN_INT (len), pos_rtx);
6414 if (! in_dest)
6415 new = gen_lowpart_for_combine (mode, new);
6417 return new;
6420 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6421 with any other operations in X. Return X without that shift if so. */
6423 static rtx
6424 extract_left_shift (rtx x, int count)
6426 enum rtx_code code = GET_CODE (x);
6427 enum machine_mode mode = GET_MODE (x);
6428 rtx tem;
6430 switch (code)
6432 case ASHIFT:
6433 /* This is the shift itself. If it is wide enough, we will return
6434 either the value being shifted if the shift count is equal to
6435 COUNT or a shift for the difference. */
6436 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6437 && INTVAL (XEXP (x, 1)) >= count)
6438 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6439 INTVAL (XEXP (x, 1)) - count);
6440 break;
6442 case NEG: case NOT:
6443 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6444 return simplify_gen_unary (code, mode, tem, mode);
6446 break;
6448 case PLUS: case IOR: case XOR: case AND:
6449 /* If we can safely shift this constant and we find the inner shift,
6450 make a new operation. */
6451 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6452 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6453 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6454 return gen_binary (code, mode, tem,
6455 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6457 break;
6459 default:
6460 break;
6463 return 0;
6466 /* Look at the expression rooted at X. Look for expressions
6467 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6468 Form these expressions.
6470 Return the new rtx, usually just X.
6472 Also, for machines like the VAX that don't have logical shift insns,
6473 try to convert logical to arithmetic shift operations in cases where
6474 they are equivalent. This undoes the canonicalizations to logical
6475 shifts done elsewhere.
6477 We try, as much as possible, to re-use rtl expressions to save memory.
6479 IN_CODE says what kind of expression we are processing. Normally, it is
6480 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6481 being kludges), it is MEM. When processing the arguments of a comparison
6482 or a COMPARE against zero, it is COMPARE. */
6484 static rtx
6485 make_compound_operation (rtx x, enum rtx_code in_code)
6487 enum rtx_code code = GET_CODE (x);
6488 enum machine_mode mode = GET_MODE (x);
6489 int mode_width = GET_MODE_BITSIZE (mode);
6490 rtx rhs, lhs;
6491 enum rtx_code next_code;
6492 int i;
6493 rtx new = 0;
6494 rtx tem;
6495 const char *fmt;
6497 /* Select the code to be used in recursive calls. Once we are inside an
6498 address, we stay there. If we have a comparison, set to COMPARE,
6499 but once inside, go back to our default of SET. */
6501 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6502 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6503 && XEXP (x, 1) == const0_rtx) ? COMPARE
6504 : in_code == COMPARE ? SET : in_code);
6506 /* Process depending on the code of this operation. If NEW is set
6507 nonzero, it will be returned. */
6509 switch (code)
6511 case ASHIFT:
6512 /* Convert shifts by constants into multiplications if inside
6513 an address. */
6514 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6515 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6516 && INTVAL (XEXP (x, 1)) >= 0)
6518 new = make_compound_operation (XEXP (x, 0), next_code);
6519 new = gen_rtx_MULT (mode, new,
6520 GEN_INT ((HOST_WIDE_INT) 1
6521 << INTVAL (XEXP (x, 1))));
6523 break;
6525 case AND:
6526 /* If the second operand is not a constant, we can't do anything
6527 with it. */
6528 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6529 break;
6531 /* If the constant is a power of two minus one and the first operand
6532 is a logical right shift, make an extraction. */
6533 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6534 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6536 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6537 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6538 0, in_code == COMPARE);
6541 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6542 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6543 && subreg_lowpart_p (XEXP (x, 0))
6544 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6545 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6547 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6548 next_code);
6549 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6550 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6551 0, in_code == COMPARE);
6553 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6554 else if ((GET_CODE (XEXP (x, 0)) == XOR
6555 || GET_CODE (XEXP (x, 0)) == IOR)
6556 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6557 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6558 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6560 /* Apply the distributive law, and then try to make extractions. */
6561 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6562 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6563 XEXP (x, 1)),
6564 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6565 XEXP (x, 1)));
6566 new = make_compound_operation (new, in_code);
6569 /* If we are have (and (rotate X C) M) and C is larger than the number
6570 of bits in M, this is an extraction. */
6572 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6573 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6574 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6575 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6577 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6578 new = make_extraction (mode, new,
6579 (GET_MODE_BITSIZE (mode)
6580 - INTVAL (XEXP (XEXP (x, 0), 1))),
6581 NULL_RTX, i, 1, 0, in_code == COMPARE);
6584 /* On machines without logical shifts, if the operand of the AND is
6585 a logical shift and our mask turns off all the propagated sign
6586 bits, we can replace the logical shift with an arithmetic shift. */
6587 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6588 && !have_insn_for (LSHIFTRT, mode)
6589 && have_insn_for (ASHIFTRT, mode)
6590 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6591 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6592 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6593 && mode_width <= HOST_BITS_PER_WIDE_INT)
6595 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6597 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6598 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6599 SUBST (XEXP (x, 0),
6600 gen_rtx_ASHIFTRT (mode,
6601 make_compound_operation
6602 (XEXP (XEXP (x, 0), 0), next_code),
6603 XEXP (XEXP (x, 0), 1)));
6606 /* If the constant is one less than a power of two, this might be
6607 representable by an extraction even if no shift is present.
6608 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6609 we are in a COMPARE. */
6610 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6611 new = make_extraction (mode,
6612 make_compound_operation (XEXP (x, 0),
6613 next_code),
6614 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6616 /* If we are in a comparison and this is an AND with a power of two,
6617 convert this into the appropriate bit extract. */
6618 else if (in_code == COMPARE
6619 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6620 new = make_extraction (mode,
6621 make_compound_operation (XEXP (x, 0),
6622 next_code),
6623 i, NULL_RTX, 1, 1, 0, 1);
6625 break;
6627 case LSHIFTRT:
6628 /* If the sign bit is known to be zero, replace this with an
6629 arithmetic shift. */
6630 if (have_insn_for (ASHIFTRT, mode)
6631 && ! have_insn_for (LSHIFTRT, mode)
6632 && mode_width <= HOST_BITS_PER_WIDE_INT
6633 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6635 new = gen_rtx_ASHIFTRT (mode,
6636 make_compound_operation (XEXP (x, 0),
6637 next_code),
6638 XEXP (x, 1));
6639 break;
6642 /* ... fall through ... */
6644 case ASHIFTRT:
6645 lhs = XEXP (x, 0);
6646 rhs = XEXP (x, 1);
6648 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6649 this is a SIGN_EXTRACT. */
6650 if (GET_CODE (rhs) == CONST_INT
6651 && GET_CODE (lhs) == ASHIFT
6652 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6653 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6655 new = make_compound_operation (XEXP (lhs, 0), next_code);
6656 new = make_extraction (mode, new,
6657 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6658 NULL_RTX, mode_width - INTVAL (rhs),
6659 code == LSHIFTRT, 0, in_code == COMPARE);
6660 break;
6663 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6664 If so, try to merge the shifts into a SIGN_EXTEND. We could
6665 also do this for some cases of SIGN_EXTRACT, but it doesn't
6666 seem worth the effort; the case checked for occurs on Alpha. */
6668 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6669 && ! (GET_CODE (lhs) == SUBREG
6670 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6671 && GET_CODE (rhs) == CONST_INT
6672 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6673 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6674 new = make_extraction (mode, make_compound_operation (new, next_code),
6675 0, NULL_RTX, mode_width - INTVAL (rhs),
6676 code == LSHIFTRT, 0, in_code == COMPARE);
6678 break;
6680 case SUBREG:
6681 /* Call ourselves recursively on the inner expression. If we are
6682 narrowing the object and it has a different RTL code from
6683 what it originally did, do this SUBREG as a force_to_mode. */
6685 tem = make_compound_operation (SUBREG_REG (x), in_code);
6686 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6687 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6688 && subreg_lowpart_p (x))
6690 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6691 NULL_RTX, 0);
6693 /* If we have something other than a SUBREG, we might have
6694 done an expansion, so rerun ourselves. */
6695 if (GET_CODE (newer) != SUBREG)
6696 newer = make_compound_operation (newer, in_code);
6698 return newer;
6701 /* If this is a paradoxical subreg, and the new code is a sign or
6702 zero extension, omit the subreg and widen the extension. If it
6703 is a regular subreg, we can still get rid of the subreg by not
6704 widening so much, or in fact removing the extension entirely. */
6705 if ((GET_CODE (tem) == SIGN_EXTEND
6706 || GET_CODE (tem) == ZERO_EXTEND)
6707 && subreg_lowpart_p (x))
6709 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6710 || (GET_MODE_SIZE (mode) >
6711 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6713 if (! SCALAR_INT_MODE_P (mode))
6714 break;
6715 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6717 else
6718 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6719 return tem;
6721 break;
6723 default:
6724 break;
6727 if (new)
6729 x = gen_lowpart_for_combine (mode, new);
6730 code = GET_CODE (x);
6733 /* Now recursively process each operand of this operation. */
6734 fmt = GET_RTX_FORMAT (code);
6735 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6736 if (fmt[i] == 'e')
6738 new = make_compound_operation (XEXP (x, i), next_code);
6739 SUBST (XEXP (x, i), new);
6742 return x;
6745 /* Given M see if it is a value that would select a field of bits
6746 within an item, but not the entire word. Return -1 if not.
6747 Otherwise, return the starting position of the field, where 0 is the
6748 low-order bit.
6750 *PLEN is set to the length of the field. */
6752 static int
6753 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6755 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6756 int pos = exact_log2 (m & -m);
6757 int len;
6759 if (pos < 0)
6760 return -1;
6762 /* Now shift off the low-order zero bits and see if we have a power of
6763 two minus 1. */
6764 len = exact_log2 ((m >> pos) + 1);
6766 if (len <= 0)
6767 return -1;
6769 *plen = len;
6770 return pos;
6773 /* See if X can be simplified knowing that we will only refer to it in
6774 MODE and will only refer to those bits that are nonzero in MASK.
6775 If other bits are being computed or if masking operations are done
6776 that select a superset of the bits in MASK, they can sometimes be
6777 ignored.
6779 Return a possibly simplified expression, but always convert X to
6780 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6782 Also, if REG is nonzero and X is a register equal in value to REG,
6783 replace X with REG.
6785 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6786 are all off in X. This is used when X will be complemented, by either
6787 NOT, NEG, or XOR. */
6789 static rtx
6790 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6791 rtx reg, int just_select)
6793 enum rtx_code code = GET_CODE (x);
6794 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6795 enum machine_mode op_mode;
6796 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6797 rtx op0, op1, temp;
6799 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6800 code below will do the wrong thing since the mode of such an
6801 expression is VOIDmode.
6803 Also do nothing if X is a CLOBBER; this can happen if X was
6804 the return value from a call to gen_lowpart_for_combine. */
6805 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6806 return x;
6808 /* We want to perform the operation is its present mode unless we know
6809 that the operation is valid in MODE, in which case we do the operation
6810 in MODE. */
6811 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6812 && have_insn_for (code, mode))
6813 ? mode : GET_MODE (x));
6815 /* It is not valid to do a right-shift in a narrower mode
6816 than the one it came in with. */
6817 if ((code == LSHIFTRT || code == ASHIFTRT)
6818 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6819 op_mode = GET_MODE (x);
6821 /* Truncate MASK to fit OP_MODE. */
6822 if (op_mode)
6823 mask &= GET_MODE_MASK (op_mode);
6825 /* When we have an arithmetic operation, or a shift whose count we
6826 do not know, we need to assume that all bit the up to the highest-order
6827 bit in MASK will be needed. This is how we form such a mask. */
6828 if (op_mode)
6829 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6830 ? GET_MODE_MASK (op_mode)
6831 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6832 - 1));
6833 else
6834 fuller_mask = ~(HOST_WIDE_INT) 0;
6836 /* Determine what bits of X are guaranteed to be (non)zero. */
6837 nonzero = nonzero_bits (x, mode);
6839 /* If none of the bits in X are needed, return a zero. */
6840 if (! just_select && (nonzero & mask) == 0)
6841 x = const0_rtx;
6843 /* If X is a CONST_INT, return a new one. Do this here since the
6844 test below will fail. */
6845 if (GET_CODE (x) == CONST_INT)
6847 if (SCALAR_INT_MODE_P (mode))
6848 return gen_int_mode (INTVAL (x) & mask, mode);
6849 else
6851 x = GEN_INT (INTVAL (x) & mask);
6852 return gen_lowpart_common (mode, x);
6856 /* If X is narrower than MODE and we want all the bits in X's mode, just
6857 get X in the proper mode. */
6858 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6859 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6860 return gen_lowpart_for_combine (mode, x);
6862 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6863 MASK are already known to be zero in X, we need not do anything. */
6864 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6865 return x;
6867 switch (code)
6869 case CLOBBER:
6870 /* If X is a (clobber (const_int)), return it since we know we are
6871 generating something that won't match. */
6872 return x;
6874 case USE:
6875 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6876 spanned the boundary of the MEM. If we are now masking so it is
6877 within that boundary, we don't need the USE any more. */
6878 if (! BITS_BIG_ENDIAN
6879 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6880 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6881 break;
6883 case SIGN_EXTEND:
6884 case ZERO_EXTEND:
6885 case ZERO_EXTRACT:
6886 case SIGN_EXTRACT:
6887 x = expand_compound_operation (x);
6888 if (GET_CODE (x) != code)
6889 return force_to_mode (x, mode, mask, reg, next_select);
6890 break;
6892 case REG:
6893 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6894 || rtx_equal_p (reg, get_last_value (x))))
6895 x = reg;
6896 break;
6898 case SUBREG:
6899 if (subreg_lowpart_p (x)
6900 /* We can ignore the effect of this SUBREG if it narrows the mode or
6901 if the constant masks to zero all the bits the mode doesn't
6902 have. */
6903 && ((GET_MODE_SIZE (GET_MODE (x))
6904 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6905 || (0 == (mask
6906 & GET_MODE_MASK (GET_MODE (x))
6907 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6908 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6909 break;
6911 case AND:
6912 /* If this is an AND with a constant, convert it into an AND
6913 whose constant is the AND of that constant with MASK. If it
6914 remains an AND of MASK, delete it since it is redundant. */
6916 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6918 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6919 mask & INTVAL (XEXP (x, 1)));
6921 /* If X is still an AND, see if it is an AND with a mask that
6922 is just some low-order bits. If so, and it is MASK, we don't
6923 need it. */
6925 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6926 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6927 == mask))
6928 x = XEXP (x, 0);
6930 /* If it remains an AND, try making another AND with the bits
6931 in the mode mask that aren't in MASK turned on. If the
6932 constant in the AND is wide enough, this might make a
6933 cheaper constant. */
6935 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6936 && GET_MODE_MASK (GET_MODE (x)) != mask
6937 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6939 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6940 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6941 int width = GET_MODE_BITSIZE (GET_MODE (x));
6942 rtx y;
6944 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6945 number, sign extend it. */
6946 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6947 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6948 cval |= (HOST_WIDE_INT) -1 << width;
6950 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6951 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6952 x = y;
6955 break;
6958 goto binop;
6960 case PLUS:
6961 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6962 low-order bits (as in an alignment operation) and FOO is already
6963 aligned to that boundary, mask C1 to that boundary as well.
6964 This may eliminate that PLUS and, later, the AND. */
6967 unsigned int width = GET_MODE_BITSIZE (mode);
6968 unsigned HOST_WIDE_INT smask = mask;
6970 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6971 number, sign extend it. */
6973 if (width < HOST_BITS_PER_WIDE_INT
6974 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6975 smask |= (HOST_WIDE_INT) -1 << width;
6977 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6978 && exact_log2 (- smask) >= 0
6979 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6980 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6981 return force_to_mode (plus_constant (XEXP (x, 0),
6982 (INTVAL (XEXP (x, 1)) & smask)),
6983 mode, smask, reg, next_select);
6986 /* ... fall through ... */
6988 case MULT:
6989 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6990 most significant bit in MASK since carries from those bits will
6991 affect the bits we are interested in. */
6992 mask = fuller_mask;
6993 goto binop;
6995 case MINUS:
6996 /* If X is (minus C Y) where C's least set bit is larger than any bit
6997 in the mask, then we may replace with (neg Y). */
6998 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6999 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7000 & -INTVAL (XEXP (x, 0))))
7001 > mask))
7003 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7004 GET_MODE (x));
7005 return force_to_mode (x, mode, mask, reg, next_select);
7008 /* Similarly, if C contains every bit in the fuller_mask, then we may
7009 replace with (not Y). */
7010 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7011 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7012 == INTVAL (XEXP (x, 0))))
7014 x = simplify_gen_unary (NOT, GET_MODE (x),
7015 XEXP (x, 1), GET_MODE (x));
7016 return force_to_mode (x, mode, mask, reg, next_select);
7019 mask = fuller_mask;
7020 goto binop;
7022 case IOR:
7023 case XOR:
7024 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7025 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7026 operation which may be a bitfield extraction. Ensure that the
7027 constant we form is not wider than the mode of X. */
7029 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7030 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7031 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7032 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7033 && GET_CODE (XEXP (x, 1)) == CONST_INT
7034 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7035 + floor_log2 (INTVAL (XEXP (x, 1))))
7036 < GET_MODE_BITSIZE (GET_MODE (x)))
7037 && (INTVAL (XEXP (x, 1))
7038 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7040 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7041 << INTVAL (XEXP (XEXP (x, 0), 1)));
7042 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7043 XEXP (XEXP (x, 0), 0), temp);
7044 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7045 XEXP (XEXP (x, 0), 1));
7046 return force_to_mode (x, mode, mask, reg, next_select);
7049 binop:
7050 /* For most binary operations, just propagate into the operation and
7051 change the mode if we have an operation of that mode. */
7053 op0 = gen_lowpart_for_combine (op_mode,
7054 force_to_mode (XEXP (x, 0), mode, mask,
7055 reg, next_select));
7056 op1 = gen_lowpart_for_combine (op_mode,
7057 force_to_mode (XEXP (x, 1), mode, mask,
7058 reg, next_select));
7060 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7061 x = gen_binary (code, op_mode, op0, op1);
7062 break;
7064 case ASHIFT:
7065 /* For left shifts, do the same, but just for the first operand.
7066 However, we cannot do anything with shifts where we cannot
7067 guarantee that the counts are smaller than the size of the mode
7068 because such a count will have a different meaning in a
7069 wider mode. */
7071 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7072 && INTVAL (XEXP (x, 1)) >= 0
7073 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7074 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7075 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7076 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7077 break;
7079 /* If the shift count is a constant and we can do arithmetic in
7080 the mode of the shift, refine which bits we need. Otherwise, use the
7081 conservative form of the mask. */
7082 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7083 && INTVAL (XEXP (x, 1)) >= 0
7084 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7085 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7086 mask >>= INTVAL (XEXP (x, 1));
7087 else
7088 mask = fuller_mask;
7090 op0 = gen_lowpart_for_combine (op_mode,
7091 force_to_mode (XEXP (x, 0), op_mode,
7092 mask, reg, next_select));
7094 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7095 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7096 break;
7098 case LSHIFTRT:
7099 /* Here we can only do something if the shift count is a constant,
7100 this shift constant is valid for the host, and we can do arithmetic
7101 in OP_MODE. */
7103 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7104 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7105 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7107 rtx inner = XEXP (x, 0);
7108 unsigned HOST_WIDE_INT inner_mask;
7110 /* Select the mask of the bits we need for the shift operand. */
7111 inner_mask = mask << INTVAL (XEXP (x, 1));
7113 /* We can only change the mode of the shift if we can do arithmetic
7114 in the mode of the shift and INNER_MASK is no wider than the
7115 width of OP_MODE. */
7116 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
7117 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
7118 op_mode = GET_MODE (x);
7120 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7122 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7123 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7126 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7127 shift and AND produces only copies of the sign bit (C2 is one less
7128 than a power of two), we can do this with just a shift. */
7130 if (GET_CODE (x) == LSHIFTRT
7131 && GET_CODE (XEXP (x, 1)) == CONST_INT
7132 /* The shift puts one of the sign bit copies in the least significant
7133 bit. */
7134 && ((INTVAL (XEXP (x, 1))
7135 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7136 >= GET_MODE_BITSIZE (GET_MODE (x)))
7137 && exact_log2 (mask + 1) >= 0
7138 /* Number of bits left after the shift must be more than the mask
7139 needs. */
7140 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7141 <= GET_MODE_BITSIZE (GET_MODE (x)))
7142 /* Must be more sign bit copies than the mask needs. */
7143 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7144 >= exact_log2 (mask + 1)))
7145 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7146 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7147 - exact_log2 (mask + 1)));
7149 goto shiftrt;
7151 case ASHIFTRT:
7152 /* If we are just looking for the sign bit, we don't need this shift at
7153 all, even if it has a variable count. */
7154 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7155 && (mask == ((unsigned HOST_WIDE_INT) 1
7156 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7157 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7159 /* If this is a shift by a constant, get a mask that contains those bits
7160 that are not copies of the sign bit. We then have two cases: If
7161 MASK only includes those bits, this can be a logical shift, which may
7162 allow simplifications. If MASK is a single-bit field not within
7163 those bits, we are requesting a copy of the sign bit and hence can
7164 shift the sign bit to the appropriate location. */
7166 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7167 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7169 int i = -1;
7171 /* If the considered data is wider than HOST_WIDE_INT, we can't
7172 represent a mask for all its bits in a single scalar.
7173 But we only care about the lower bits, so calculate these. */
7175 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7177 nonzero = ~(HOST_WIDE_INT) 0;
7179 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7180 is the number of bits a full-width mask would have set.
7181 We need only shift if these are fewer than nonzero can
7182 hold. If not, we must keep all bits set in nonzero. */
7184 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7185 < HOST_BITS_PER_WIDE_INT)
7186 nonzero >>= INTVAL (XEXP (x, 1))
7187 + HOST_BITS_PER_WIDE_INT
7188 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7190 else
7192 nonzero = GET_MODE_MASK (GET_MODE (x));
7193 nonzero >>= INTVAL (XEXP (x, 1));
7196 if ((mask & ~nonzero) == 0
7197 || (i = exact_log2 (mask)) >= 0)
7199 x = simplify_shift_const
7200 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7201 i < 0 ? INTVAL (XEXP (x, 1))
7202 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7204 if (GET_CODE (x) != ASHIFTRT)
7205 return force_to_mode (x, mode, mask, reg, next_select);
7209 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7210 even if the shift count isn't a constant. */
7211 if (mask == 1)
7212 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7214 shiftrt:
7216 /* If this is a zero- or sign-extension operation that just affects bits
7217 we don't care about, remove it. Be sure the call above returned
7218 something that is still a shift. */
7220 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7221 && GET_CODE (XEXP (x, 1)) == CONST_INT
7222 && INTVAL (XEXP (x, 1)) >= 0
7223 && (INTVAL (XEXP (x, 1))
7224 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7225 && GET_CODE (XEXP (x, 0)) == ASHIFT
7226 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7227 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7228 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7229 reg, next_select);
7231 break;
7233 case ROTATE:
7234 case ROTATERT:
7235 /* If the shift count is constant and we can do computations
7236 in the mode of X, compute where the bits we care about are.
7237 Otherwise, we can't do anything. Don't change the mode of
7238 the shift or propagate MODE into the shift, though. */
7239 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7240 && INTVAL (XEXP (x, 1)) >= 0)
7242 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7243 GET_MODE (x), GEN_INT (mask),
7244 XEXP (x, 1));
7245 if (temp && GET_CODE (temp) == CONST_INT)
7246 SUBST (XEXP (x, 0),
7247 force_to_mode (XEXP (x, 0), GET_MODE (x),
7248 INTVAL (temp), reg, next_select));
7250 break;
7252 case NEG:
7253 /* If we just want the low-order bit, the NEG isn't needed since it
7254 won't change the low-order bit. */
7255 if (mask == 1)
7256 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7258 /* We need any bits less significant than the most significant bit in
7259 MASK since carries from those bits will affect the bits we are
7260 interested in. */
7261 mask = fuller_mask;
7262 goto unop;
7264 case NOT:
7265 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7266 same as the XOR case above. Ensure that the constant we form is not
7267 wider than the mode of X. */
7269 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7270 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7271 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7272 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7273 < GET_MODE_BITSIZE (GET_MODE (x)))
7274 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7276 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7277 GET_MODE (x));
7278 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7279 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7281 return force_to_mode (x, mode, mask, reg, next_select);
7284 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7285 use the full mask inside the NOT. */
7286 mask = fuller_mask;
7288 unop:
7289 op0 = gen_lowpart_for_combine (op_mode,
7290 force_to_mode (XEXP (x, 0), mode, mask,
7291 reg, next_select));
7292 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7293 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7294 break;
7296 case NE:
7297 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7298 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7299 which is equal to STORE_FLAG_VALUE. */
7300 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7301 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7302 && (nonzero_bits (XEXP (x, 0), mode)
7303 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7304 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7306 break;
7308 case IF_THEN_ELSE:
7309 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7310 written in a narrower mode. We play it safe and do not do so. */
7312 SUBST (XEXP (x, 1),
7313 gen_lowpart_for_combine (GET_MODE (x),
7314 force_to_mode (XEXP (x, 1), mode,
7315 mask, reg, next_select)));
7316 SUBST (XEXP (x, 2),
7317 gen_lowpart_for_combine (GET_MODE (x),
7318 force_to_mode (XEXP (x, 2), mode,
7319 mask, reg, next_select)));
7320 break;
7322 default:
7323 break;
7326 /* Ensure we return a value of the proper mode. */
7327 return gen_lowpart_for_combine (mode, x);
7330 /* Return nonzero if X is an expression that has one of two values depending on
7331 whether some other value is zero or nonzero. In that case, we return the
7332 value that is being tested, *PTRUE is set to the value if the rtx being
7333 returned has a nonzero value, and *PFALSE is set to the other alternative.
7335 If we return zero, we set *PTRUE and *PFALSE to X. */
7337 static rtx
7338 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7340 enum machine_mode mode = GET_MODE (x);
7341 enum rtx_code code = GET_CODE (x);
7342 rtx cond0, cond1, true0, true1, false0, false1;
7343 unsigned HOST_WIDE_INT nz;
7345 /* If we are comparing a value against zero, we are done. */
7346 if ((code == NE || code == EQ)
7347 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7349 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7350 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7351 return XEXP (x, 0);
7354 /* If this is a unary operation whose operand has one of two values, apply
7355 our opcode to compute those values. */
7356 else if (GET_RTX_CLASS (code) == '1'
7357 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7359 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7360 *pfalse = simplify_gen_unary (code, mode, false0,
7361 GET_MODE (XEXP (x, 0)));
7362 return cond0;
7365 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7366 make can't possibly match and would suppress other optimizations. */
7367 else if (code == COMPARE)
7370 /* If this is a binary operation, see if either side has only one of two
7371 values. If either one does or if both do and they are conditional on
7372 the same value, compute the new true and false values. */
7373 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7374 || GET_RTX_CLASS (code) == '<')
7376 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7377 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7379 if ((cond0 != 0 || cond1 != 0)
7380 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7382 /* If if_then_else_cond returned zero, then true/false are the
7383 same rtl. We must copy one of them to prevent invalid rtl
7384 sharing. */
7385 if (cond0 == 0)
7386 true0 = copy_rtx (true0);
7387 else if (cond1 == 0)
7388 true1 = copy_rtx (true1);
7390 *ptrue = gen_binary (code, mode, true0, true1);
7391 *pfalse = gen_binary (code, mode, false0, false1);
7392 return cond0 ? cond0 : cond1;
7395 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7396 operands is zero when the other is nonzero, and vice-versa,
7397 and STORE_FLAG_VALUE is 1 or -1. */
7399 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7400 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7401 || code == UMAX)
7402 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7404 rtx op0 = XEXP (XEXP (x, 0), 1);
7405 rtx op1 = XEXP (XEXP (x, 1), 1);
7407 cond0 = XEXP (XEXP (x, 0), 0);
7408 cond1 = XEXP (XEXP (x, 1), 0);
7410 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7411 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7412 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7413 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7414 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7415 || ((swap_condition (GET_CODE (cond0))
7416 == combine_reversed_comparison_code (cond1))
7417 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7418 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7419 && ! side_effects_p (x))
7421 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7422 *pfalse = gen_binary (MULT, mode,
7423 (code == MINUS
7424 ? simplify_gen_unary (NEG, mode, op1,
7425 mode)
7426 : op1),
7427 const_true_rtx);
7428 return cond0;
7432 /* Similarly for MULT, AND and UMIN, except that for these the result
7433 is always zero. */
7434 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7435 && (code == MULT || code == AND || code == UMIN)
7436 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7438 cond0 = XEXP (XEXP (x, 0), 0);
7439 cond1 = XEXP (XEXP (x, 1), 0);
7441 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7442 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7443 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7444 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7445 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7446 || ((swap_condition (GET_CODE (cond0))
7447 == combine_reversed_comparison_code (cond1))
7448 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7449 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7450 && ! side_effects_p (x))
7452 *ptrue = *pfalse = const0_rtx;
7453 return cond0;
7458 else if (code == IF_THEN_ELSE)
7460 /* If we have IF_THEN_ELSE already, extract the condition and
7461 canonicalize it if it is NE or EQ. */
7462 cond0 = XEXP (x, 0);
7463 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7464 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7465 return XEXP (cond0, 0);
7466 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7468 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7469 return XEXP (cond0, 0);
7471 else
7472 return cond0;
7475 /* If X is a SUBREG, we can narrow both the true and false values
7476 if the inner expression, if there is a condition. */
7477 else if (code == SUBREG
7478 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7479 &true0, &false0)))
7481 *ptrue = simplify_gen_subreg (mode, true0,
7482 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7483 *pfalse = simplify_gen_subreg (mode, false0,
7484 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7486 return cond0;
7489 /* If X is a constant, this isn't special and will cause confusions
7490 if we treat it as such. Likewise if it is equivalent to a constant. */
7491 else if (CONSTANT_P (x)
7492 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7495 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7496 will be least confusing to the rest of the compiler. */
7497 else if (mode == BImode)
7499 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7500 return x;
7503 /* If X is known to be either 0 or -1, those are the true and
7504 false values when testing X. */
7505 else if (x == constm1_rtx || x == const0_rtx
7506 || (mode != VOIDmode
7507 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7509 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7510 return x;
7513 /* Likewise for 0 or a single bit. */
7514 else if (mode != VOIDmode
7515 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7516 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7518 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7519 return x;
7522 /* Otherwise fail; show no condition with true and false values the same. */
7523 *ptrue = *pfalse = x;
7524 return 0;
7527 /* Return the value of expression X given the fact that condition COND
7528 is known to be true when applied to REG as its first operand and VAL
7529 as its second. X is known to not be shared and so can be modified in
7530 place.
7532 We only handle the simplest cases, and specifically those cases that
7533 arise with IF_THEN_ELSE expressions. */
7535 static rtx
7536 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7538 enum rtx_code code = GET_CODE (x);
7539 rtx temp;
7540 const char *fmt;
7541 int i, j;
7543 if (side_effects_p (x))
7544 return x;
7546 /* If either operand of the condition is a floating point value,
7547 then we have to avoid collapsing an EQ comparison. */
7548 if (cond == EQ
7549 && rtx_equal_p (x, reg)
7550 && ! FLOAT_MODE_P (GET_MODE (x))
7551 && ! FLOAT_MODE_P (GET_MODE (val)))
7552 return val;
7554 if (cond == UNEQ && rtx_equal_p (x, reg))
7555 return val;
7557 /* If X is (abs REG) and we know something about REG's relationship
7558 with zero, we may be able to simplify this. */
7560 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7561 switch (cond)
7563 case GE: case GT: case EQ:
7564 return XEXP (x, 0);
7565 case LT: case LE:
7566 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7567 XEXP (x, 0),
7568 GET_MODE (XEXP (x, 0)));
7569 default:
7570 break;
7573 /* The only other cases we handle are MIN, MAX, and comparisons if the
7574 operands are the same as REG and VAL. */
7576 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7578 if (rtx_equal_p (XEXP (x, 0), val))
7579 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7581 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7583 if (GET_RTX_CLASS (code) == '<')
7585 if (comparison_dominates_p (cond, code))
7586 return const_true_rtx;
7588 code = combine_reversed_comparison_code (x);
7589 if (code != UNKNOWN
7590 && comparison_dominates_p (cond, code))
7591 return const0_rtx;
7592 else
7593 return x;
7595 else if (code == SMAX || code == SMIN
7596 || code == UMIN || code == UMAX)
7598 int unsignedp = (code == UMIN || code == UMAX);
7600 /* Do not reverse the condition when it is NE or EQ.
7601 This is because we cannot conclude anything about
7602 the value of 'SMAX (x, y)' when x is not equal to y,
7603 but we can when x equals y. */
7604 if ((code == SMAX || code == UMAX)
7605 && ! (cond == EQ || cond == NE))
7606 cond = reverse_condition (cond);
7608 switch (cond)
7610 case GE: case GT:
7611 return unsignedp ? x : XEXP (x, 1);
7612 case LE: case LT:
7613 return unsignedp ? x : XEXP (x, 0);
7614 case GEU: case GTU:
7615 return unsignedp ? XEXP (x, 1) : x;
7616 case LEU: case LTU:
7617 return unsignedp ? XEXP (x, 0) : x;
7618 default:
7619 break;
7624 else if (code == SUBREG)
7626 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7627 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7629 if (SUBREG_REG (x) != r)
7631 /* We must simplify subreg here, before we lose track of the
7632 original inner_mode. */
7633 new = simplify_subreg (GET_MODE (x), r,
7634 inner_mode, SUBREG_BYTE (x));
7635 if (new)
7636 return new;
7637 else
7638 SUBST (SUBREG_REG (x), r);
7641 return x;
7643 /* We don't have to handle SIGN_EXTEND here, because even in the
7644 case of replacing something with a modeless CONST_INT, a
7645 CONST_INT is already (supposed to be) a valid sign extension for
7646 its narrower mode, which implies it's already properly
7647 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7648 story is different. */
7649 else if (code == ZERO_EXTEND)
7651 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7652 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7654 if (XEXP (x, 0) != r)
7656 /* We must simplify the zero_extend here, before we lose
7657 track of the original inner_mode. */
7658 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7659 r, inner_mode);
7660 if (new)
7661 return new;
7662 else
7663 SUBST (XEXP (x, 0), r);
7666 return x;
7669 fmt = GET_RTX_FORMAT (code);
7670 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7672 if (fmt[i] == 'e')
7673 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7674 else if (fmt[i] == 'E')
7675 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7676 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7677 cond, reg, val));
7680 return x;
7683 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7684 assignment as a field assignment. */
7686 static int
7687 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7689 if (x == y || rtx_equal_p (x, y))
7690 return 1;
7692 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7693 return 0;
7695 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7696 Note that all SUBREGs of MEM are paradoxical; otherwise they
7697 would have been rewritten. */
7698 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7699 && GET_CODE (SUBREG_REG (y)) == MEM
7700 && rtx_equal_p (SUBREG_REG (y),
7701 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7702 return 1;
7704 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7705 && GET_CODE (SUBREG_REG (x)) == MEM
7706 && rtx_equal_p (SUBREG_REG (x),
7707 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7708 return 1;
7710 /* We used to see if get_last_value of X and Y were the same but that's
7711 not correct. In one direction, we'll cause the assignment to have
7712 the wrong destination and in the case, we'll import a register into this
7713 insn that might have already have been dead. So fail if none of the
7714 above cases are true. */
7715 return 0;
7718 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7719 Return that assignment if so.
7721 We only handle the most common cases. */
7723 static rtx
7724 make_field_assignment (rtx x)
7726 rtx dest = SET_DEST (x);
7727 rtx src = SET_SRC (x);
7728 rtx assign;
7729 rtx rhs, lhs;
7730 HOST_WIDE_INT c1;
7731 HOST_WIDE_INT pos;
7732 unsigned HOST_WIDE_INT len;
7733 rtx other;
7734 enum machine_mode mode;
7736 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7737 a clear of a one-bit field. We will have changed it to
7738 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7739 for a SUBREG. */
7741 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7742 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7743 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7744 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7746 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7747 1, 1, 1, 0);
7748 if (assign != 0)
7749 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7750 return x;
7753 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7754 && subreg_lowpart_p (XEXP (src, 0))
7755 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7756 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7757 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7758 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7759 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7761 assign = make_extraction (VOIDmode, dest, 0,
7762 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7763 1, 1, 1, 0);
7764 if (assign != 0)
7765 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7766 return x;
7769 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7770 one-bit field. */
7771 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7772 && XEXP (XEXP (src, 0), 0) == const1_rtx
7773 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7775 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7776 1, 1, 1, 0);
7777 if (assign != 0)
7778 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7779 return x;
7782 /* The other case we handle is assignments into a constant-position
7783 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7784 a mask that has all one bits except for a group of zero bits and
7785 OTHER is known to have zeros where C1 has ones, this is such an
7786 assignment. Compute the position and length from C1. Shift OTHER
7787 to the appropriate position, force it to the required mode, and
7788 make the extraction. Check for the AND in both operands. */
7790 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7791 return x;
7793 rhs = expand_compound_operation (XEXP (src, 0));
7794 lhs = expand_compound_operation (XEXP (src, 1));
7796 if (GET_CODE (rhs) == AND
7797 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7798 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7799 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7800 else if (GET_CODE (lhs) == AND
7801 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7802 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7803 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7804 else
7805 return x;
7807 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7808 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7809 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7810 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7811 return x;
7813 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7814 if (assign == 0)
7815 return x;
7817 /* The mode to use for the source is the mode of the assignment, or of
7818 what is inside a possible STRICT_LOW_PART. */
7819 mode = (GET_CODE (assign) == STRICT_LOW_PART
7820 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7822 /* Shift OTHER right POS places and make it the source, restricting it
7823 to the proper length and mode. */
7825 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7826 GET_MODE (src), other, pos),
7827 mode,
7828 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7829 ? ~(unsigned HOST_WIDE_INT) 0
7830 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7831 dest, 0);
7833 /* If SRC is masked by an AND that does not make a difference in
7834 the value being stored, strip it. */
7835 if (GET_CODE (assign) == ZERO_EXTRACT
7836 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7837 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7838 && GET_CODE (src) == AND
7839 && GET_CODE (XEXP (src, 1)) == CONST_INT
7840 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7841 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7842 src = XEXP (src, 0);
7844 return gen_rtx_SET (VOIDmode, assign, src);
7847 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7848 if so. */
7850 static rtx
7851 apply_distributive_law (rtx x)
7853 enum rtx_code code = GET_CODE (x);
7854 rtx lhs, rhs, other;
7855 rtx tem;
7856 enum rtx_code inner_code;
7858 /* Distributivity is not true for floating point.
7859 It can change the value. So don't do it.
7860 -- rms and moshier@world.std.com. */
7861 if (FLOAT_MODE_P (GET_MODE (x)))
7862 return x;
7864 /* The outer operation can only be one of the following: */
7865 if (code != IOR && code != AND && code != XOR
7866 && code != PLUS && code != MINUS)
7867 return x;
7869 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7871 /* If either operand is a primitive we can't do anything, so get out
7872 fast. */
7873 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7874 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7875 return x;
7877 lhs = expand_compound_operation (lhs);
7878 rhs = expand_compound_operation (rhs);
7879 inner_code = GET_CODE (lhs);
7880 if (inner_code != GET_CODE (rhs))
7881 return x;
7883 /* See if the inner and outer operations distribute. */
7884 switch (inner_code)
7886 case LSHIFTRT:
7887 case ASHIFTRT:
7888 case AND:
7889 case IOR:
7890 /* These all distribute except over PLUS. */
7891 if (code == PLUS || code == MINUS)
7892 return x;
7893 break;
7895 case MULT:
7896 if (code != PLUS && code != MINUS)
7897 return x;
7898 break;
7900 case ASHIFT:
7901 /* This is also a multiply, so it distributes over everything. */
7902 break;
7904 case SUBREG:
7905 /* Non-paradoxical SUBREGs distributes over all operations, provided
7906 the inner modes and byte offsets are the same, this is an extraction
7907 of a low-order part, we don't convert an fp operation to int or
7908 vice versa, and we would not be converting a single-word
7909 operation into a multi-word operation. The latter test is not
7910 required, but it prevents generating unneeded multi-word operations.
7911 Some of the previous tests are redundant given the latter test, but
7912 are retained because they are required for correctness.
7914 We produce the result slightly differently in this case. */
7916 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7917 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7918 || ! subreg_lowpart_p (lhs)
7919 || (GET_MODE_CLASS (GET_MODE (lhs))
7920 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7921 || (GET_MODE_SIZE (GET_MODE (lhs))
7922 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7923 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7924 return x;
7926 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7927 SUBREG_REG (lhs), SUBREG_REG (rhs));
7928 return gen_lowpart_for_combine (GET_MODE (x), tem);
7930 default:
7931 return x;
7934 /* Set LHS and RHS to the inner operands (A and B in the example
7935 above) and set OTHER to the common operand (C in the example).
7936 These is only one way to do this unless the inner operation is
7937 commutative. */
7938 if (GET_RTX_CLASS (inner_code) == 'c'
7939 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7940 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7941 else if (GET_RTX_CLASS (inner_code) == 'c'
7942 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7943 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7944 else if (GET_RTX_CLASS (inner_code) == 'c'
7945 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7946 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7947 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7948 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7949 else
7950 return x;
7952 /* Form the new inner operation, seeing if it simplifies first. */
7953 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7955 /* There is one exception to the general way of distributing:
7956 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7957 if (code == XOR && inner_code == IOR)
7959 inner_code = AND;
7960 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7963 /* We may be able to continuing distributing the result, so call
7964 ourselves recursively on the inner operation before forming the
7965 outer operation, which we return. */
7966 return gen_binary (inner_code, GET_MODE (x),
7967 apply_distributive_law (tem), other);
7970 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7971 in MODE.
7973 Return an equivalent form, if different from X. Otherwise, return X. If
7974 X is zero, we are to always construct the equivalent form. */
7976 static rtx
7977 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
7978 unsigned HOST_WIDE_INT constop)
7980 unsigned HOST_WIDE_INT nonzero;
7981 int i;
7983 /* Simplify VAROP knowing that we will be only looking at some of the
7984 bits in it.
7986 Note by passing in CONSTOP, we guarantee that the bits not set in
7987 CONSTOP are not significant and will never be examined. We must
7988 ensure that is the case by explicitly masking out those bits
7989 before returning. */
7990 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7992 /* If VAROP is a CLOBBER, we will fail so return it. */
7993 if (GET_CODE (varop) == CLOBBER)
7994 return varop;
7996 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7997 to VAROP and return the new constant. */
7998 if (GET_CODE (varop) == CONST_INT)
7999 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
8001 /* See what bits may be nonzero in VAROP. Unlike the general case of
8002 a call to nonzero_bits, here we don't care about bits outside
8003 MODE. */
8005 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8007 /* Turn off all bits in the constant that are known to already be zero.
8008 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8009 which is tested below. */
8011 constop &= nonzero;
8013 /* If we don't have any bits left, return zero. */
8014 if (constop == 0)
8015 return const0_rtx;
8017 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8018 a power of two, we can replace this with an ASHIFT. */
8019 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8020 && (i = exact_log2 (constop)) >= 0)
8021 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8023 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8024 or XOR, then try to apply the distributive law. This may eliminate
8025 operations if either branch can be simplified because of the AND.
8026 It may also make some cases more complex, but those cases probably
8027 won't match a pattern either with or without this. */
8029 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8030 return
8031 gen_lowpart_for_combine
8032 (mode,
8033 apply_distributive_law
8034 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8035 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8036 XEXP (varop, 0), constop),
8037 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8038 XEXP (varop, 1), constop))));
8040 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8041 the AND and see if one of the operands simplifies to zero. If so, we
8042 may eliminate it. */
8044 if (GET_CODE (varop) == PLUS
8045 && exact_log2 (constop + 1) >= 0)
8047 rtx o0, o1;
8049 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8050 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8051 if (o0 == const0_rtx)
8052 return o1;
8053 if (o1 == const0_rtx)
8054 return o0;
8057 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8058 if we already had one (just check for the simplest cases). */
8059 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8060 && GET_MODE (XEXP (x, 0)) == mode
8061 && SUBREG_REG (XEXP (x, 0)) == varop)
8062 varop = XEXP (x, 0);
8063 else
8064 varop = gen_lowpart_for_combine (mode, varop);
8066 /* If we can't make the SUBREG, try to return what we were given. */
8067 if (GET_CODE (varop) == CLOBBER)
8068 return x ? x : varop;
8070 /* If we are only masking insignificant bits, return VAROP. */
8071 if (constop == nonzero)
8072 x = varop;
8073 else
8075 /* Otherwise, return an AND. */
8076 constop = trunc_int_for_mode (constop, mode);
8077 /* See how much, if any, of X we can use. */
8078 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8079 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8081 else
8083 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8084 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8085 SUBST (XEXP (x, 1), GEN_INT (constop));
8087 SUBST (XEXP (x, 0), varop);
8091 return x;
8094 #define nonzero_bits_with_known(X, MODE) \
8095 cached_nonzero_bits (X, MODE, known_x, known_mode, known_ret)
8097 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
8098 It avoids exponential behavior in nonzero_bits1 when X has
8099 identical subexpressions on the first or the second level. */
8101 static unsigned HOST_WIDE_INT
8102 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
8103 enum machine_mode known_mode,
8104 unsigned HOST_WIDE_INT known_ret)
8106 if (x == known_x && mode == known_mode)
8107 return known_ret;
8109 /* Try to find identical subexpressions. If found call
8110 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
8111 precomputed value for the subexpression as KNOWN_RET. */
8113 if (GET_RTX_CLASS (GET_CODE (x)) == '2'
8114 || GET_RTX_CLASS (GET_CODE (x)) == 'c')
8116 rtx x0 = XEXP (x, 0);
8117 rtx x1 = XEXP (x, 1);
8119 /* Check the first level. */
8120 if (x0 == x1)
8121 return nonzero_bits1 (x, mode, x0, mode,
8122 nonzero_bits_with_known (x0, mode));
8124 /* Check the second level. */
8125 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
8126 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
8127 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8128 return nonzero_bits1 (x, mode, x1, mode,
8129 nonzero_bits_with_known (x1, mode));
8131 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
8132 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
8133 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8134 return nonzero_bits1 (x, mode, x0, mode,
8135 nonzero_bits_with_known (x0, mode));
8138 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
8141 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
8142 We don't let nonzero_bits recur into num_sign_bit_copies, because that
8143 is less useful. We can't allow both, because that results in exponential
8144 run time recursion. There is a nullstone testcase that triggered
8145 this. This macro avoids accidental uses of num_sign_bit_copies. */
8146 #define cached_num_sign_bit_copies()
8148 /* Given an expression, X, compute which bits in X can be nonzero.
8149 We don't care about bits outside of those defined in MODE.
8151 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8152 a shift, AND, or zero_extract, we can do better. */
8154 static unsigned HOST_WIDE_INT
8155 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
8156 enum machine_mode known_mode,
8157 unsigned HOST_WIDE_INT known_ret)
8159 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8160 unsigned HOST_WIDE_INT inner_nz;
8161 enum rtx_code code;
8162 unsigned int mode_width = GET_MODE_BITSIZE (mode);
8163 rtx tem;
8165 /* For floating-point values, assume all bits are needed. */
8166 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8167 return nonzero;
8169 /* If X is wider than MODE, use its mode instead. */
8170 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8172 mode = GET_MODE (x);
8173 nonzero = GET_MODE_MASK (mode);
8174 mode_width = GET_MODE_BITSIZE (mode);
8177 if (mode_width > HOST_BITS_PER_WIDE_INT)
8178 /* Our only callers in this case look for single bit values. So
8179 just return the mode mask. Those tests will then be false. */
8180 return nonzero;
8182 #ifndef WORD_REGISTER_OPERATIONS
8183 /* If MODE is wider than X, but both are a single word for both the host
8184 and target machines, we can compute this from which bits of the
8185 object might be nonzero in its own mode, taking into account the fact
8186 that on many CISC machines, accessing an object in a wider mode
8187 causes the high-order bits to become undefined. So they are
8188 not known to be zero. */
8190 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8191 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8192 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8193 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8195 nonzero &= nonzero_bits_with_known (x, GET_MODE (x));
8196 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8197 return nonzero;
8199 #endif
8201 code = GET_CODE (x);
8202 switch (code)
8204 case REG:
8205 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8206 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8207 all the bits above ptr_mode are known to be zero. */
8208 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8209 && REG_POINTER (x))
8210 nonzero &= GET_MODE_MASK (ptr_mode);
8211 #endif
8213 /* Include declared information about alignment of pointers. */
8214 /* ??? We don't properly preserve REG_POINTER changes across
8215 pointer-to-integer casts, so we can't trust it except for
8216 things that we know must be pointers. See execute/960116-1.c. */
8217 if ((x == stack_pointer_rtx
8218 || x == frame_pointer_rtx
8219 || x == arg_pointer_rtx)
8220 && REGNO_POINTER_ALIGN (REGNO (x)))
8222 unsigned HOST_WIDE_INT alignment
8223 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8225 #ifdef PUSH_ROUNDING
8226 /* If PUSH_ROUNDING is defined, it is possible for the
8227 stack to be momentarily aligned only to that amount,
8228 so we pick the least alignment. */
8229 if (x == stack_pointer_rtx && PUSH_ARGS)
8230 alignment = MIN (PUSH_ROUNDING (1), alignment);
8231 #endif
8233 nonzero &= ~(alignment - 1);
8236 /* If X is a register whose nonzero bits value is current, use it.
8237 Otherwise, if X is a register whose value we can find, use that
8238 value. Otherwise, use the previously-computed global nonzero bits
8239 for this register. */
8241 if (reg_last_set_value[REGNO (x)] != 0
8242 && (reg_last_set_mode[REGNO (x)] == mode
8243 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8244 && GET_MODE_CLASS (mode) == MODE_INT))
8245 && (reg_last_set_label[REGNO (x)] == label_tick
8246 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8247 && REG_N_SETS (REGNO (x)) == 1
8248 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8249 REGNO (x))))
8250 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8251 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8253 tem = get_last_value (x);
8255 if (tem)
8257 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8258 /* If X is narrower than MODE and TEM is a non-negative
8259 constant that would appear negative in the mode of X,
8260 sign-extend it for use in reg_nonzero_bits because some
8261 machines (maybe most) will actually do the sign-extension
8262 and this is the conservative approach.
8264 ??? For 2.5, try to tighten up the MD files in this regard
8265 instead of this kludge. */
8267 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8268 && GET_CODE (tem) == CONST_INT
8269 && INTVAL (tem) > 0
8270 && 0 != (INTVAL (tem)
8271 & ((HOST_WIDE_INT) 1
8272 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8273 tem = GEN_INT (INTVAL (tem)
8274 | ((HOST_WIDE_INT) (-1)
8275 << GET_MODE_BITSIZE (GET_MODE (x))));
8276 #endif
8277 return nonzero_bits_with_known (tem, mode) & nonzero;
8279 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8281 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8283 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8284 /* We don't know anything about the upper bits. */
8285 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8286 return nonzero & mask;
8288 else
8289 return nonzero;
8291 case CONST_INT:
8292 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8293 /* If X is negative in MODE, sign-extend the value. */
8294 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8295 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8296 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8297 #endif
8299 return INTVAL (x);
8301 case MEM:
8302 #ifdef LOAD_EXTEND_OP
8303 /* In many, if not most, RISC machines, reading a byte from memory
8304 zeros the rest of the register. Noticing that fact saves a lot
8305 of extra zero-extends. */
8306 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8307 nonzero &= GET_MODE_MASK (GET_MODE (x));
8308 #endif
8309 break;
8311 case EQ: case NE:
8312 case UNEQ: case LTGT:
8313 case GT: case GTU: case UNGT:
8314 case LT: case LTU: case UNLT:
8315 case GE: case GEU: case UNGE:
8316 case LE: case LEU: case UNLE:
8317 case UNORDERED: case ORDERED:
8319 /* If this produces an integer result, we know which bits are set.
8320 Code here used to clear bits outside the mode of X, but that is
8321 now done above. */
8323 if (GET_MODE_CLASS (mode) == MODE_INT
8324 && mode_width <= HOST_BITS_PER_WIDE_INT)
8325 nonzero = STORE_FLAG_VALUE;
8326 break;
8328 case NEG:
8329 #if 0
8330 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8331 and num_sign_bit_copies. */
8332 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8333 == GET_MODE_BITSIZE (GET_MODE (x)))
8334 nonzero = 1;
8335 #endif
8337 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8338 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8339 break;
8341 case ABS:
8342 #if 0
8343 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8344 and num_sign_bit_copies. */
8345 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8346 == GET_MODE_BITSIZE (GET_MODE (x)))
8347 nonzero = 1;
8348 #endif
8349 break;
8351 case TRUNCATE:
8352 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8353 & GET_MODE_MASK (mode));
8354 break;
8356 case ZERO_EXTEND:
8357 nonzero &= nonzero_bits_with_known (XEXP (x, 0), mode);
8358 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8359 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8360 break;
8362 case SIGN_EXTEND:
8363 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8364 Otherwise, show all the bits in the outer mode but not the inner
8365 may be nonzero. */
8366 inner_nz = nonzero_bits_with_known (XEXP (x, 0), mode);
8367 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8369 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8370 if (inner_nz
8371 & (((HOST_WIDE_INT) 1
8372 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8373 inner_nz |= (GET_MODE_MASK (mode)
8374 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8377 nonzero &= inner_nz;
8378 break;
8380 case AND:
8381 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8382 & nonzero_bits_with_known (XEXP (x, 1), mode));
8383 break;
8385 case XOR: case IOR:
8386 case UMIN: case UMAX: case SMIN: case SMAX:
8388 unsigned HOST_WIDE_INT nonzero0 =
8389 nonzero_bits_with_known (XEXP (x, 0), mode);
8391 /* Don't call nonzero_bits for the second time if it cannot change
8392 anything. */
8393 if ((nonzero & nonzero0) != nonzero)
8394 nonzero &= (nonzero0
8395 | nonzero_bits_with_known (XEXP (x, 1), mode));
8397 break;
8399 case PLUS: case MINUS:
8400 case MULT:
8401 case DIV: case UDIV:
8402 case MOD: case UMOD:
8403 /* We can apply the rules of arithmetic to compute the number of
8404 high- and low-order zero bits of these operations. We start by
8405 computing the width (position of the highest-order nonzero bit)
8406 and the number of low-order zero bits for each value. */
8408 unsigned HOST_WIDE_INT nz0 =
8409 nonzero_bits_with_known (XEXP (x, 0), mode);
8410 unsigned HOST_WIDE_INT nz1 =
8411 nonzero_bits_with_known (XEXP (x, 1), mode);
8412 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
8413 int width0 = floor_log2 (nz0) + 1;
8414 int width1 = floor_log2 (nz1) + 1;
8415 int low0 = floor_log2 (nz0 & -nz0);
8416 int low1 = floor_log2 (nz1 & -nz1);
8417 HOST_WIDE_INT op0_maybe_minusp
8418 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
8419 HOST_WIDE_INT op1_maybe_minusp
8420 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
8421 unsigned int result_width = mode_width;
8422 int result_low = 0;
8424 switch (code)
8426 case PLUS:
8427 result_width = MAX (width0, width1) + 1;
8428 result_low = MIN (low0, low1);
8429 break;
8430 case MINUS:
8431 result_low = MIN (low0, low1);
8432 break;
8433 case MULT:
8434 result_width = width0 + width1;
8435 result_low = low0 + low1;
8436 break;
8437 case DIV:
8438 if (width1 == 0)
8439 break;
8440 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8441 result_width = width0;
8442 break;
8443 case UDIV:
8444 if (width1 == 0)
8445 break;
8446 result_width = width0;
8447 break;
8448 case MOD:
8449 if (width1 == 0)
8450 break;
8451 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8452 result_width = MIN (width0, width1);
8453 result_low = MIN (low0, low1);
8454 break;
8455 case UMOD:
8456 if (width1 == 0)
8457 break;
8458 result_width = MIN (width0, width1);
8459 result_low = MIN (low0, low1);
8460 break;
8461 default:
8462 abort ();
8465 if (result_width < mode_width)
8466 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8468 if (result_low > 0)
8469 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8471 #ifdef POINTERS_EXTEND_UNSIGNED
8472 /* If pointers extend unsigned and this is an addition or subtraction
8473 to a pointer in Pmode, all the bits above ptr_mode are known to be
8474 zero. */
8475 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8476 && (code == PLUS || code == MINUS)
8477 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8478 nonzero &= GET_MODE_MASK (ptr_mode);
8479 #endif
8481 break;
8483 case ZERO_EXTRACT:
8484 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8485 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8486 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8487 break;
8489 case SUBREG:
8490 /* If this is a SUBREG formed for a promoted variable that has
8491 been zero-extended, we know that at least the high-order bits
8492 are zero, though others might be too. */
8494 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8495 nonzero = (GET_MODE_MASK (GET_MODE (x))
8496 & nonzero_bits_with_known (SUBREG_REG (x), GET_MODE (x)));
8498 /* If the inner mode is a single word for both the host and target
8499 machines, we can compute this from which bits of the inner
8500 object might be nonzero. */
8501 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8502 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8503 <= HOST_BITS_PER_WIDE_INT))
8505 nonzero &= nonzero_bits_with_known (SUBREG_REG (x), mode);
8507 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8508 /* If this is a typical RISC machine, we only have to worry
8509 about the way loads are extended. */
8510 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8511 ? (((nonzero
8512 & (((unsigned HOST_WIDE_INT) 1
8513 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8514 != 0))
8515 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8516 || GET_CODE (SUBREG_REG (x)) != MEM)
8517 #endif
8519 /* On many CISC machines, accessing an object in a wider mode
8520 causes the high-order bits to become undefined. So they are
8521 not known to be zero. */
8522 if (GET_MODE_SIZE (GET_MODE (x))
8523 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8524 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8525 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8528 break;
8530 case ASHIFTRT:
8531 case LSHIFTRT:
8532 case ASHIFT:
8533 case ROTATE:
8534 /* The nonzero bits are in two classes: any bits within MODE
8535 that aren't in GET_MODE (x) are always significant. The rest of the
8536 nonzero bits are those that are significant in the operand of
8537 the shift when shifted the appropriate number of bits. This
8538 shows that high-order bits are cleared by the right shift and
8539 low-order bits by left shifts. */
8540 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8541 && INTVAL (XEXP (x, 1)) >= 0
8542 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8544 enum machine_mode inner_mode = GET_MODE (x);
8545 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8546 int count = INTVAL (XEXP (x, 1));
8547 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8548 unsigned HOST_WIDE_INT op_nonzero =
8549 nonzero_bits_with_known (XEXP (x, 0), mode);
8550 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8551 unsigned HOST_WIDE_INT outer = 0;
8553 if (mode_width > width)
8554 outer = (op_nonzero & nonzero & ~mode_mask);
8556 if (code == LSHIFTRT)
8557 inner >>= count;
8558 else if (code == ASHIFTRT)
8560 inner >>= count;
8562 /* If the sign bit may have been nonzero before the shift, we
8563 need to mark all the places it could have been copied to
8564 by the shift as possibly nonzero. */
8565 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8566 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8568 else if (code == ASHIFT)
8569 inner <<= count;
8570 else
8571 inner = ((inner << (count % width)
8572 | (inner >> (width - (count % width)))) & mode_mask);
8574 nonzero &= (outer | inner);
8576 break;
8578 case FFS:
8579 case POPCOUNT:
8580 /* This is at most the number of bits in the mode. */
8581 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
8582 break;
8584 case CLZ:
8585 /* If CLZ has a known value at zero, then the nonzero bits are
8586 that value, plus the number of bits in the mode minus one. */
8587 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8588 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8589 else
8590 nonzero = -1;
8591 break;
8593 case CTZ:
8594 /* If CTZ has a known value at zero, then the nonzero bits are
8595 that value, plus the number of bits in the mode minus one. */
8596 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8597 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8598 else
8599 nonzero = -1;
8600 break;
8602 case PARITY:
8603 nonzero = 1;
8604 break;
8606 case IF_THEN_ELSE:
8607 nonzero &= (nonzero_bits_with_known (XEXP (x, 1), mode)
8608 | nonzero_bits_with_known (XEXP (x, 2), mode));
8609 break;
8611 default:
8612 break;
8615 return nonzero;
8618 /* See the macro definition above. */
8619 #undef cached_num_sign_bit_copies
8621 #define num_sign_bit_copies_with_known(X, M) \
8622 cached_num_sign_bit_copies (X, M, known_x, known_mode, known_ret)
8624 /* The function cached_num_sign_bit_copies is a wrapper around
8625 num_sign_bit_copies1. It avoids exponential behavior in
8626 num_sign_bit_copies1 when X has identical subexpressions on the
8627 first or the second level. */
8629 static unsigned int
8630 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
8631 enum machine_mode known_mode,
8632 unsigned int known_ret)
8634 if (x == known_x && mode == known_mode)
8635 return known_ret;
8637 /* Try to find identical subexpressions. If found call
8638 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
8639 the precomputed value for the subexpression as KNOWN_RET. */
8641 if (GET_RTX_CLASS (GET_CODE (x)) == '2'
8642 || GET_RTX_CLASS (GET_CODE (x)) == 'c')
8644 rtx x0 = XEXP (x, 0);
8645 rtx x1 = XEXP (x, 1);
8647 /* Check the first level. */
8648 if (x0 == x1)
8649 return
8650 num_sign_bit_copies1 (x, mode, x0, mode,
8651 num_sign_bit_copies_with_known (x0, mode));
8653 /* Check the second level. */
8654 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
8655 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
8656 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8657 return
8658 num_sign_bit_copies1 (x, mode, x1, mode,
8659 num_sign_bit_copies_with_known (x1, mode));
8661 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
8662 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
8663 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8664 return
8665 num_sign_bit_copies1 (x, mode, x0, mode,
8666 num_sign_bit_copies_with_known (x0, mode));
8669 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
8672 /* Return the number of bits at the high-order end of X that are known to
8673 be equal to the sign bit. X will be used in mode MODE; if MODE is
8674 VOIDmode, X will be used in its own mode. The returned value will always
8675 be between 1 and the number of bits in MODE. */
8677 static unsigned int
8678 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
8679 enum machine_mode known_mode,
8680 unsigned int known_ret)
8682 enum rtx_code code = GET_CODE (x);
8683 unsigned int bitwidth;
8684 int num0, num1, result;
8685 unsigned HOST_WIDE_INT nonzero;
8686 rtx tem;
8688 /* If we weren't given a mode, use the mode of X. If the mode is still
8689 VOIDmode, we don't know anything. Likewise if one of the modes is
8690 floating-point. */
8692 if (mode == VOIDmode)
8693 mode = GET_MODE (x);
8695 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8696 return 1;
8698 bitwidth = GET_MODE_BITSIZE (mode);
8700 /* For a smaller object, just ignore the high bits. */
8701 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8703 num0 = num_sign_bit_copies_with_known (x, GET_MODE (x));
8704 return MAX (1,
8705 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8708 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8710 #ifndef WORD_REGISTER_OPERATIONS
8711 /* If this machine does not do all register operations on the entire
8712 register and MODE is wider than the mode of X, we can say nothing
8713 at all about the high-order bits. */
8714 return 1;
8715 #else
8716 /* Likewise on machines that do, if the mode of the object is smaller
8717 than a word and loads of that size don't sign extend, we can say
8718 nothing about the high order bits. */
8719 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8720 #ifdef LOAD_EXTEND_OP
8721 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8722 #endif
8724 return 1;
8725 #endif
8728 switch (code)
8730 case REG:
8732 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8733 /* If pointers extend signed and this is a pointer in Pmode, say that
8734 all the bits above ptr_mode are known to be sign bit copies. */
8735 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8736 && REG_POINTER (x))
8737 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8738 #endif
8740 if (reg_last_set_value[REGNO (x)] != 0
8741 && reg_last_set_mode[REGNO (x)] == mode
8742 && (reg_last_set_label[REGNO (x)] == label_tick
8743 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8744 && REG_N_SETS (REGNO (x)) == 1
8745 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8746 REGNO (x))))
8747 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8748 return reg_last_set_sign_bit_copies[REGNO (x)];
8750 tem = get_last_value (x);
8751 if (tem != 0)
8752 return num_sign_bit_copies_with_known (tem, mode);
8754 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8755 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8756 return reg_sign_bit_copies[REGNO (x)];
8757 break;
8759 case MEM:
8760 #ifdef LOAD_EXTEND_OP
8761 /* Some RISC machines sign-extend all loads of smaller than a word. */
8762 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8763 return MAX (1, ((int) bitwidth
8764 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8765 #endif
8766 break;
8768 case CONST_INT:
8769 /* If the constant is negative, take its 1's complement and remask.
8770 Then see how many zero bits we have. */
8771 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8772 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8773 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8774 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8776 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8778 case SUBREG:
8779 /* If this is a SUBREG for a promoted object that is sign-extended
8780 and we are looking at it in a wider mode, we know that at least the
8781 high-order bits are known to be sign bit copies. */
8783 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8785 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8786 return MAX ((int) bitwidth
8787 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8788 num0);
8791 /* For a smaller object, just ignore the high bits. */
8792 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8794 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), VOIDmode);
8795 return MAX (1, (num0
8796 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8797 - bitwidth)));
8800 #ifdef WORD_REGISTER_OPERATIONS
8801 #ifdef LOAD_EXTEND_OP
8802 /* For paradoxical SUBREGs on machines where all register operations
8803 affect the entire register, just look inside. Note that we are
8804 passing MODE to the recursive call, so the number of sign bit copies
8805 will remain relative to that mode, not the inner mode. */
8807 /* This works only if loads sign extend. Otherwise, if we get a
8808 reload for the inner part, it may be loaded from the stack, and
8809 then we lose all sign bit copies that existed before the store
8810 to the stack. */
8812 if ((GET_MODE_SIZE (GET_MODE (x))
8813 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8814 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8815 && GET_CODE (SUBREG_REG (x)) == MEM)
8816 return num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8817 #endif
8818 #endif
8819 break;
8821 case SIGN_EXTRACT:
8822 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8823 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8824 break;
8826 case SIGN_EXTEND:
8827 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8828 + num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode));
8830 case TRUNCATE:
8831 /* For a smaller object, just ignore the high bits. */
8832 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode);
8833 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8834 - bitwidth)));
8836 case NOT:
8837 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8839 case ROTATE: case ROTATERT:
8840 /* If we are rotating left by a number of bits less than the number
8841 of sign bit copies, we can just subtract that amount from the
8842 number. */
8843 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8844 && INTVAL (XEXP (x, 1)) >= 0
8845 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8847 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8848 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8849 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8851 break;
8853 case NEG:
8854 /* In general, this subtracts one sign bit copy. But if the value
8855 is known to be positive, the number of sign bit copies is the
8856 same as that of the input. Finally, if the input has just one bit
8857 that might be nonzero, all the bits are copies of the sign bit. */
8858 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8859 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8860 return num0 > 1 ? num0 - 1 : 1;
8862 nonzero = nonzero_bits (XEXP (x, 0), mode);
8863 if (nonzero == 1)
8864 return bitwidth;
8866 if (num0 > 1
8867 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8868 num0--;
8870 return num0;
8872 case IOR: case AND: case XOR:
8873 case SMIN: case SMAX: case UMIN: case UMAX:
8874 /* Logical operations will preserve the number of sign-bit copies.
8875 MIN and MAX operations always return one of the operands. */
8876 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8877 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8878 return MIN (num0, num1);
8880 case PLUS: case MINUS:
8881 /* For addition and subtraction, we can have a 1-bit carry. However,
8882 if we are subtracting 1 from a positive number, there will not
8883 be such a carry. Furthermore, if the positive number is known to
8884 be 0 or 1, we know the result is either -1 or 0. */
8886 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8887 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8889 nonzero = nonzero_bits (XEXP (x, 0), mode);
8890 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8891 return (nonzero == 1 || nonzero == 0 ? bitwidth
8892 : bitwidth - floor_log2 (nonzero) - 1);
8895 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8896 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8897 result = MAX (1, MIN (num0, num1) - 1);
8899 #ifdef POINTERS_EXTEND_UNSIGNED
8900 /* If pointers extend signed and this is an addition or subtraction
8901 to a pointer in Pmode, all the bits above ptr_mode are known to be
8902 sign bit copies. */
8903 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8904 && (code == PLUS || code == MINUS)
8905 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8906 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8907 - GET_MODE_BITSIZE (ptr_mode) + 1),
8908 result);
8909 #endif
8910 return result;
8912 case MULT:
8913 /* The number of bits of the product is the sum of the number of
8914 bits of both terms. However, unless one of the terms if known
8915 to be positive, we must allow for an additional bit since negating
8916 a negative number can remove one sign bit copy. */
8918 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8919 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8921 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8922 if (result > 0
8923 && (bitwidth > HOST_BITS_PER_WIDE_INT
8924 || (((nonzero_bits (XEXP (x, 0), mode)
8925 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8926 && ((nonzero_bits (XEXP (x, 1), mode)
8927 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8928 result--;
8930 return MAX (1, result);
8932 case UDIV:
8933 /* The result must be <= the first operand. If the first operand
8934 has the high bit set, we know nothing about the number of sign
8935 bit copies. */
8936 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8937 return 1;
8938 else if ((nonzero_bits (XEXP (x, 0), mode)
8939 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8940 return 1;
8941 else
8942 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8944 case UMOD:
8945 /* The result must be <= the second operand. */
8946 return num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8948 case DIV:
8949 /* Similar to unsigned division, except that we have to worry about
8950 the case where the divisor is negative, in which case we have
8951 to add 1. */
8952 result = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8953 if (result > 1
8954 && (bitwidth > HOST_BITS_PER_WIDE_INT
8955 || (nonzero_bits (XEXP (x, 1), mode)
8956 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8957 result--;
8959 return result;
8961 case MOD:
8962 result = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8963 if (result > 1
8964 && (bitwidth > HOST_BITS_PER_WIDE_INT
8965 || (nonzero_bits (XEXP (x, 1), mode)
8966 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8967 result--;
8969 return result;
8971 case ASHIFTRT:
8972 /* Shifts by a constant add to the number of bits equal to the
8973 sign bit. */
8974 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8975 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8976 && INTVAL (XEXP (x, 1)) > 0)
8977 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8979 return num0;
8981 case ASHIFT:
8982 /* Left shifts destroy copies. */
8983 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8984 || INTVAL (XEXP (x, 1)) < 0
8985 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8986 return 1;
8988 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8989 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8991 case IF_THEN_ELSE:
8992 num0 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8993 num1 = num_sign_bit_copies_with_known (XEXP (x, 2), mode);
8994 return MIN (num0, num1);
8996 case EQ: case NE: case GE: case GT: case LE: case LT:
8997 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8998 case GEU: case GTU: case LEU: case LTU:
8999 case UNORDERED: case ORDERED:
9000 /* If the constant is negative, take its 1's complement and remask.
9001 Then see how many zero bits we have. */
9002 nonzero = STORE_FLAG_VALUE;
9003 if (bitwidth <= HOST_BITS_PER_WIDE_INT
9004 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
9005 nonzero = (~nonzero) & GET_MODE_MASK (mode);
9007 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
9008 break;
9010 default:
9011 break;
9014 /* If we haven't been able to figure it out by one of the above rules,
9015 see if some of the high-order bits are known to be zero. If so,
9016 count those bits and return one less than that amount. If we can't
9017 safely compute the mask for this mode, always return BITWIDTH. */
9019 if (bitwidth > HOST_BITS_PER_WIDE_INT)
9020 return 1;
9022 nonzero = nonzero_bits (x, mode);
9023 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
9024 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
9027 /* Return the number of "extended" bits there are in X, when interpreted
9028 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9029 unsigned quantities, this is the number of high-order zero bits.
9030 For signed quantities, this is the number of copies of the sign bit
9031 minus 1. In both case, this function returns the number of "spare"
9032 bits. For example, if two quantities for which this function returns
9033 at least 1 are added, the addition is known not to overflow.
9035 This function will always return 0 unless called during combine, which
9036 implies that it must be called from a define_split. */
9038 unsigned int
9039 extended_count (rtx x, enum machine_mode mode, int unsignedp)
9041 if (nonzero_sign_valid == 0)
9042 return 0;
9044 return (unsignedp
9045 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9046 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
9047 - floor_log2 (nonzero_bits (x, mode)))
9048 : 0)
9049 : num_sign_bit_copies (x, mode) - 1);
9052 /* This function is called from `simplify_shift_const' to merge two
9053 outer operations. Specifically, we have already found that we need
9054 to perform operation *POP0 with constant *PCONST0 at the outermost
9055 position. We would now like to also perform OP1 with constant CONST1
9056 (with *POP0 being done last).
9058 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9059 the resulting operation. *PCOMP_P is set to 1 if we would need to
9060 complement the innermost operand, otherwise it is unchanged.
9062 MODE is the mode in which the operation will be done. No bits outside
9063 the width of this mode matter. It is assumed that the width of this mode
9064 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9066 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
9067 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9068 result is simply *PCONST0.
9070 If the resulting operation cannot be expressed as one operation, we
9071 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9073 static int
9074 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9076 enum rtx_code op0 = *pop0;
9077 HOST_WIDE_INT const0 = *pconst0;
9079 const0 &= GET_MODE_MASK (mode);
9080 const1 &= GET_MODE_MASK (mode);
9082 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9083 if (op0 == AND)
9084 const1 &= const0;
9086 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
9087 if OP0 is SET. */
9089 if (op1 == NIL || op0 == SET)
9090 return 1;
9092 else if (op0 == NIL)
9093 op0 = op1, const0 = const1;
9095 else if (op0 == op1)
9097 switch (op0)
9099 case AND:
9100 const0 &= const1;
9101 break;
9102 case IOR:
9103 const0 |= const1;
9104 break;
9105 case XOR:
9106 const0 ^= const1;
9107 break;
9108 case PLUS:
9109 const0 += const1;
9110 break;
9111 case NEG:
9112 op0 = NIL;
9113 break;
9114 default:
9115 break;
9119 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9120 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9121 return 0;
9123 /* If the two constants aren't the same, we can't do anything. The
9124 remaining six cases can all be done. */
9125 else if (const0 != const1)
9126 return 0;
9128 else
9129 switch (op0)
9131 case IOR:
9132 if (op1 == AND)
9133 /* (a & b) | b == b */
9134 op0 = SET;
9135 else /* op1 == XOR */
9136 /* (a ^ b) | b == a | b */
9138 break;
9140 case XOR:
9141 if (op1 == AND)
9142 /* (a & b) ^ b == (~a) & b */
9143 op0 = AND, *pcomp_p = 1;
9144 else /* op1 == IOR */
9145 /* (a | b) ^ b == a & ~b */
9146 op0 = AND, const0 = ~const0;
9147 break;
9149 case AND:
9150 if (op1 == IOR)
9151 /* (a | b) & b == b */
9152 op0 = SET;
9153 else /* op1 == XOR */
9154 /* (a ^ b) & b) == (~a) & b */
9155 *pcomp_p = 1;
9156 break;
9157 default:
9158 break;
9161 /* Check for NO-OP cases. */
9162 const0 &= GET_MODE_MASK (mode);
9163 if (const0 == 0
9164 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9165 op0 = NIL;
9166 else if (const0 == 0 && op0 == AND)
9167 op0 = SET;
9168 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9169 && op0 == AND)
9170 op0 = NIL;
9172 /* ??? Slightly redundant with the above mask, but not entirely.
9173 Moving this above means we'd have to sign-extend the mode mask
9174 for the final test. */
9175 const0 = trunc_int_for_mode (const0, mode);
9177 *pop0 = op0;
9178 *pconst0 = const0;
9180 return 1;
9183 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9184 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
9185 that we started with.
9187 The shift is normally computed in the widest mode we find in VAROP, as
9188 long as it isn't a different number of words than RESULT_MODE. Exceptions
9189 are ASHIFTRT and ROTATE, which are always done in their original mode, */
9191 static rtx
9192 simplify_shift_const (rtx x, enum rtx_code code,
9193 enum machine_mode result_mode, rtx varop,
9194 int orig_count)
9196 enum rtx_code orig_code = code;
9197 unsigned int count;
9198 int signed_count;
9199 enum machine_mode mode = result_mode;
9200 enum machine_mode shift_mode, tmode;
9201 unsigned int mode_words
9202 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9203 /* We form (outer_op (code varop count) (outer_const)). */
9204 enum rtx_code outer_op = NIL;
9205 HOST_WIDE_INT outer_const = 0;
9206 rtx const_rtx;
9207 int complement_p = 0;
9208 rtx new;
9210 /* Make sure and truncate the "natural" shift on the way in. We don't
9211 want to do this inside the loop as it makes it more difficult to
9212 combine shifts. */
9213 #ifdef SHIFT_COUNT_TRUNCATED
9214 if (SHIFT_COUNT_TRUNCATED)
9215 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9216 #endif
9218 /* If we were given an invalid count, don't do anything except exactly
9219 what was requested. */
9221 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9223 if (x)
9224 return x;
9226 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
9229 count = orig_count;
9231 /* Unless one of the branches of the `if' in this loop does a `continue',
9232 we will `break' the loop after the `if'. */
9234 while (count != 0)
9236 /* If we have an operand of (clobber (const_int 0)), just return that
9237 value. */
9238 if (GET_CODE (varop) == CLOBBER)
9239 return varop;
9241 /* If we discovered we had to complement VAROP, leave. Making a NOT
9242 here would cause an infinite loop. */
9243 if (complement_p)
9244 break;
9246 /* Convert ROTATERT to ROTATE. */
9247 if (code == ROTATERT)
9249 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9250 code = ROTATE;
9251 if (VECTOR_MODE_P (result_mode))
9252 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9253 else
9254 count = bitsize - count;
9257 /* We need to determine what mode we will do the shift in. If the
9258 shift is a right shift or a ROTATE, we must always do it in the mode
9259 it was originally done in. Otherwise, we can do it in MODE, the
9260 widest mode encountered. */
9261 shift_mode
9262 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9263 ? result_mode : mode);
9265 /* Handle cases where the count is greater than the size of the mode
9266 minus 1. For ASHIFT, use the size minus one as the count (this can
9267 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9268 take the count modulo the size. For other shifts, the result is
9269 zero.
9271 Since these shifts are being produced by the compiler by combining
9272 multiple operations, each of which are defined, we know what the
9273 result is supposed to be. */
9275 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
9277 if (code == ASHIFTRT)
9278 count = GET_MODE_BITSIZE (shift_mode) - 1;
9279 else if (code == ROTATE || code == ROTATERT)
9280 count %= GET_MODE_BITSIZE (shift_mode);
9281 else
9283 /* We can't simply return zero because there may be an
9284 outer op. */
9285 varop = const0_rtx;
9286 count = 0;
9287 break;
9291 /* An arithmetic right shift of a quantity known to be -1 or 0
9292 is a no-op. */
9293 if (code == ASHIFTRT
9294 && (num_sign_bit_copies (varop, shift_mode)
9295 == GET_MODE_BITSIZE (shift_mode)))
9297 count = 0;
9298 break;
9301 /* If we are doing an arithmetic right shift and discarding all but
9302 the sign bit copies, this is equivalent to doing a shift by the
9303 bitsize minus one. Convert it into that shift because it will often
9304 allow other simplifications. */
9306 if (code == ASHIFTRT
9307 && (count + num_sign_bit_copies (varop, shift_mode)
9308 >= GET_MODE_BITSIZE (shift_mode)))
9309 count = GET_MODE_BITSIZE (shift_mode) - 1;
9311 /* We simplify the tests below and elsewhere by converting
9312 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9313 `make_compound_operation' will convert it to an ASHIFTRT for
9314 those machines (such as VAX) that don't have an LSHIFTRT. */
9315 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9316 && code == ASHIFTRT
9317 && ((nonzero_bits (varop, shift_mode)
9318 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9319 == 0))
9320 code = LSHIFTRT;
9322 if (code == LSHIFTRT
9323 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9324 && !(nonzero_bits (varop, shift_mode) >> count))
9325 varop = const0_rtx;
9326 if (code == ASHIFT
9327 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9328 && !((nonzero_bits (varop, shift_mode) << count)
9329 & GET_MODE_MASK (shift_mode)))
9330 varop = const0_rtx;
9332 switch (GET_CODE (varop))
9334 case SIGN_EXTEND:
9335 case ZERO_EXTEND:
9336 case SIGN_EXTRACT:
9337 case ZERO_EXTRACT:
9338 new = expand_compound_operation (varop);
9339 if (new != varop)
9341 varop = new;
9342 continue;
9344 break;
9346 case MEM:
9347 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9348 minus the width of a smaller mode, we can do this with a
9349 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9350 if ((code == ASHIFTRT || code == LSHIFTRT)
9351 && ! mode_dependent_address_p (XEXP (varop, 0))
9352 && ! MEM_VOLATILE_P (varop)
9353 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9354 MODE_INT, 1)) != BLKmode)
9356 new = adjust_address_nv (varop, tmode,
9357 BYTES_BIG_ENDIAN ? 0
9358 : count / BITS_PER_UNIT);
9360 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9361 : ZERO_EXTEND, mode, new);
9362 count = 0;
9363 continue;
9365 break;
9367 case USE:
9368 /* Similar to the case above, except that we can only do this if
9369 the resulting mode is the same as that of the underlying
9370 MEM and adjust the address depending on the *bits* endianness
9371 because of the way that bit-field extract insns are defined. */
9372 if ((code == ASHIFTRT || code == LSHIFTRT)
9373 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9374 MODE_INT, 1)) != BLKmode
9375 && tmode == GET_MODE (XEXP (varop, 0)))
9377 if (BITS_BIG_ENDIAN)
9378 new = XEXP (varop, 0);
9379 else
9381 new = copy_rtx (XEXP (varop, 0));
9382 SUBST (XEXP (new, 0),
9383 plus_constant (XEXP (new, 0),
9384 count / BITS_PER_UNIT));
9387 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9388 : ZERO_EXTEND, mode, new);
9389 count = 0;
9390 continue;
9392 break;
9394 case SUBREG:
9395 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9396 the same number of words as what we've seen so far. Then store
9397 the widest mode in MODE. */
9398 if (subreg_lowpart_p (varop)
9399 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9400 > GET_MODE_SIZE (GET_MODE (varop)))
9401 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9402 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9403 == mode_words)
9405 varop = SUBREG_REG (varop);
9406 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9407 mode = GET_MODE (varop);
9408 continue;
9410 break;
9412 case MULT:
9413 /* Some machines use MULT instead of ASHIFT because MULT
9414 is cheaper. But it is still better on those machines to
9415 merge two shifts into one. */
9416 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9417 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9419 varop
9420 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9421 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9422 continue;
9424 break;
9426 case UDIV:
9427 /* Similar, for when divides are cheaper. */
9428 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9429 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9431 varop
9432 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9433 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9434 continue;
9436 break;
9438 case ASHIFTRT:
9439 /* If we are extracting just the sign bit of an arithmetic
9440 right shift, that shift is not needed. However, the sign
9441 bit of a wider mode may be different from what would be
9442 interpreted as the sign bit in a narrower mode, so, if
9443 the result is narrower, don't discard the shift. */
9444 if (code == LSHIFTRT
9445 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9446 && (GET_MODE_BITSIZE (result_mode)
9447 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9449 varop = XEXP (varop, 0);
9450 continue;
9453 /* ... fall through ... */
9455 case LSHIFTRT:
9456 case ASHIFT:
9457 case ROTATE:
9458 /* Here we have two nested shifts. The result is usually the
9459 AND of a new shift with a mask. We compute the result below. */
9460 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9461 && INTVAL (XEXP (varop, 1)) >= 0
9462 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9463 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9464 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9466 enum rtx_code first_code = GET_CODE (varop);
9467 unsigned int first_count = INTVAL (XEXP (varop, 1));
9468 unsigned HOST_WIDE_INT mask;
9469 rtx mask_rtx;
9471 /* We have one common special case. We can't do any merging if
9472 the inner code is an ASHIFTRT of a smaller mode. However, if
9473 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9474 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9475 we can convert it to
9476 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9477 This simplifies certain SIGN_EXTEND operations. */
9478 if (code == ASHIFT && first_code == ASHIFTRT
9479 && count == (unsigned int)
9480 (GET_MODE_BITSIZE (result_mode)
9481 - GET_MODE_BITSIZE (GET_MODE (varop))))
9483 /* C3 has the low-order C1 bits zero. */
9485 mask = (GET_MODE_MASK (mode)
9486 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9488 varop = simplify_and_const_int (NULL_RTX, result_mode,
9489 XEXP (varop, 0), mask);
9490 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9491 varop, count);
9492 count = first_count;
9493 code = ASHIFTRT;
9494 continue;
9497 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9498 than C1 high-order bits equal to the sign bit, we can convert
9499 this to either an ASHIFT or an ASHIFTRT depending on the
9500 two counts.
9502 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9504 if (code == ASHIFTRT && first_code == ASHIFT
9505 && GET_MODE (varop) == shift_mode
9506 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9507 > first_count))
9509 varop = XEXP (varop, 0);
9511 signed_count = count - first_count;
9512 if (signed_count < 0)
9513 count = -signed_count, code = ASHIFT;
9514 else
9515 count = signed_count;
9517 continue;
9520 /* There are some cases we can't do. If CODE is ASHIFTRT,
9521 we can only do this if FIRST_CODE is also ASHIFTRT.
9523 We can't do the case when CODE is ROTATE and FIRST_CODE is
9524 ASHIFTRT.
9526 If the mode of this shift is not the mode of the outer shift,
9527 we can't do this if either shift is a right shift or ROTATE.
9529 Finally, we can't do any of these if the mode is too wide
9530 unless the codes are the same.
9532 Handle the case where the shift codes are the same
9533 first. */
9535 if (code == first_code)
9537 if (GET_MODE (varop) != result_mode
9538 && (code == ASHIFTRT || code == LSHIFTRT
9539 || code == ROTATE))
9540 break;
9542 count += first_count;
9543 varop = XEXP (varop, 0);
9544 continue;
9547 if (code == ASHIFTRT
9548 || (code == ROTATE && first_code == ASHIFTRT)
9549 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9550 || (GET_MODE (varop) != result_mode
9551 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9552 || first_code == ROTATE
9553 || code == ROTATE)))
9554 break;
9556 /* To compute the mask to apply after the shift, shift the
9557 nonzero bits of the inner shift the same way the
9558 outer shift will. */
9560 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9562 mask_rtx
9563 = simplify_binary_operation (code, result_mode, mask_rtx,
9564 GEN_INT (count));
9566 /* Give up if we can't compute an outer operation to use. */
9567 if (mask_rtx == 0
9568 || GET_CODE (mask_rtx) != CONST_INT
9569 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9570 INTVAL (mask_rtx),
9571 result_mode, &complement_p))
9572 break;
9574 /* If the shifts are in the same direction, we add the
9575 counts. Otherwise, we subtract them. */
9576 signed_count = count;
9577 if ((code == ASHIFTRT || code == LSHIFTRT)
9578 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9579 signed_count += first_count;
9580 else
9581 signed_count -= first_count;
9583 /* If COUNT is positive, the new shift is usually CODE,
9584 except for the two exceptions below, in which case it is
9585 FIRST_CODE. If the count is negative, FIRST_CODE should
9586 always be used */
9587 if (signed_count > 0
9588 && ((first_code == ROTATE && code == ASHIFT)
9589 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9590 code = first_code, count = signed_count;
9591 else if (signed_count < 0)
9592 code = first_code, count = -signed_count;
9593 else
9594 count = signed_count;
9596 varop = XEXP (varop, 0);
9597 continue;
9600 /* If we have (A << B << C) for any shift, we can convert this to
9601 (A << C << B). This wins if A is a constant. Only try this if
9602 B is not a constant. */
9604 else if (GET_CODE (varop) == code
9605 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9606 && 0 != (new
9607 = simplify_binary_operation (code, mode,
9608 XEXP (varop, 0),
9609 GEN_INT (count))))
9611 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9612 count = 0;
9613 continue;
9615 break;
9617 case NOT:
9618 /* Make this fit the case below. */
9619 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9620 GEN_INT (GET_MODE_MASK (mode)));
9621 continue;
9623 case IOR:
9624 case AND:
9625 case XOR:
9626 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9627 with C the size of VAROP - 1 and the shift is logical if
9628 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9629 we have an (le X 0) operation. If we have an arithmetic shift
9630 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9631 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9633 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9634 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9635 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9636 && (code == LSHIFTRT || code == ASHIFTRT)
9637 && count == (unsigned int)
9638 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9639 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9641 count = 0;
9642 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9643 const0_rtx);
9645 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9646 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9648 continue;
9651 /* If we have (shift (logical)), move the logical to the outside
9652 to allow it to possibly combine with another logical and the
9653 shift to combine with another shift. This also canonicalizes to
9654 what a ZERO_EXTRACT looks like. Also, some machines have
9655 (and (shift)) insns. */
9657 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9658 && (new = simplify_binary_operation (code, result_mode,
9659 XEXP (varop, 1),
9660 GEN_INT (count))) != 0
9661 && GET_CODE (new) == CONST_INT
9662 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9663 INTVAL (new), result_mode, &complement_p))
9665 varop = XEXP (varop, 0);
9666 continue;
9669 /* If we can't do that, try to simplify the shift in each arm of the
9670 logical expression, make a new logical expression, and apply
9671 the inverse distributive law. */
9673 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9674 XEXP (varop, 0), count);
9675 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9676 XEXP (varop, 1), count);
9678 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9679 varop = apply_distributive_law (varop);
9681 count = 0;
9683 break;
9685 case EQ:
9686 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9687 says that the sign bit can be tested, FOO has mode MODE, C is
9688 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9689 that may be nonzero. */
9690 if (code == LSHIFTRT
9691 && XEXP (varop, 1) == const0_rtx
9692 && GET_MODE (XEXP (varop, 0)) == result_mode
9693 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9694 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9695 && ((STORE_FLAG_VALUE
9696 & ((HOST_WIDE_INT) 1
9697 < (GET_MODE_BITSIZE (result_mode) - 1))))
9698 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9699 && merge_outer_ops (&outer_op, &outer_const, XOR,
9700 (HOST_WIDE_INT) 1, result_mode,
9701 &complement_p))
9703 varop = XEXP (varop, 0);
9704 count = 0;
9705 continue;
9707 break;
9709 case NEG:
9710 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9711 than the number of bits in the mode is equivalent to A. */
9712 if (code == LSHIFTRT
9713 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9714 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9716 varop = XEXP (varop, 0);
9717 count = 0;
9718 continue;
9721 /* NEG commutes with ASHIFT since it is multiplication. Move the
9722 NEG outside to allow shifts to combine. */
9723 if (code == ASHIFT
9724 && merge_outer_ops (&outer_op, &outer_const, NEG,
9725 (HOST_WIDE_INT) 0, result_mode,
9726 &complement_p))
9728 varop = XEXP (varop, 0);
9729 continue;
9731 break;
9733 case PLUS:
9734 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9735 is one less than the number of bits in the mode is
9736 equivalent to (xor A 1). */
9737 if (code == LSHIFTRT
9738 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9739 && XEXP (varop, 1) == constm1_rtx
9740 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9741 && merge_outer_ops (&outer_op, &outer_const, XOR,
9742 (HOST_WIDE_INT) 1, result_mode,
9743 &complement_p))
9745 count = 0;
9746 varop = XEXP (varop, 0);
9747 continue;
9750 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9751 that might be nonzero in BAR are those being shifted out and those
9752 bits are known zero in FOO, we can replace the PLUS with FOO.
9753 Similarly in the other operand order. This code occurs when
9754 we are computing the size of a variable-size array. */
9756 if ((code == ASHIFTRT || code == LSHIFTRT)
9757 && count < HOST_BITS_PER_WIDE_INT
9758 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9759 && (nonzero_bits (XEXP (varop, 1), result_mode)
9760 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9762 varop = XEXP (varop, 0);
9763 continue;
9765 else if ((code == ASHIFTRT || code == LSHIFTRT)
9766 && count < HOST_BITS_PER_WIDE_INT
9767 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9768 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9769 >> count)
9770 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9771 & nonzero_bits (XEXP (varop, 1),
9772 result_mode)))
9774 varop = XEXP (varop, 1);
9775 continue;
9778 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9779 if (code == ASHIFT
9780 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9781 && (new = simplify_binary_operation (ASHIFT, result_mode,
9782 XEXP (varop, 1),
9783 GEN_INT (count))) != 0
9784 && GET_CODE (new) == CONST_INT
9785 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9786 INTVAL (new), result_mode, &complement_p))
9788 varop = XEXP (varop, 0);
9789 continue;
9791 break;
9793 case MINUS:
9794 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9795 with C the size of VAROP - 1 and the shift is logical if
9796 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9797 we have a (gt X 0) operation. If the shift is arithmetic with
9798 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9799 we have a (neg (gt X 0)) operation. */
9801 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9802 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9803 && count == (unsigned int)
9804 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9805 && (code == LSHIFTRT || code == ASHIFTRT)
9806 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9807 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9808 == count
9809 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9811 count = 0;
9812 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9813 const0_rtx);
9815 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9816 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9818 continue;
9820 break;
9822 case TRUNCATE:
9823 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9824 if the truncate does not affect the value. */
9825 if (code == LSHIFTRT
9826 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9827 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9828 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9829 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9830 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9832 rtx varop_inner = XEXP (varop, 0);
9834 varop_inner
9835 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9836 XEXP (varop_inner, 0),
9837 GEN_INT
9838 (count + INTVAL (XEXP (varop_inner, 1))));
9839 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9840 count = 0;
9841 continue;
9843 break;
9845 default:
9846 break;
9849 break;
9852 /* We need to determine what mode to do the shift in. If the shift is
9853 a right shift or ROTATE, we must always do it in the mode it was
9854 originally done in. Otherwise, we can do it in MODE, the widest mode
9855 encountered. The code we care about is that of the shift that will
9856 actually be done, not the shift that was originally requested. */
9857 shift_mode
9858 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9859 ? result_mode : mode);
9861 /* We have now finished analyzing the shift. The result should be
9862 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9863 OUTER_OP is non-NIL, it is an operation that needs to be applied
9864 to the result of the shift. OUTER_CONST is the relevant constant,
9865 but we must turn off all bits turned off in the shift.
9867 If we were passed a value for X, see if we can use any pieces of
9868 it. If not, make new rtx. */
9870 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9871 && GET_CODE (XEXP (x, 1)) == CONST_INT
9872 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9873 const_rtx = XEXP (x, 1);
9874 else
9875 const_rtx = GEN_INT (count);
9877 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9878 && GET_MODE (XEXP (x, 0)) == shift_mode
9879 && SUBREG_REG (XEXP (x, 0)) == varop)
9880 varop = XEXP (x, 0);
9881 else if (GET_MODE (varop) != shift_mode)
9882 varop = gen_lowpart_for_combine (shift_mode, varop);
9884 /* If we can't make the SUBREG, try to return what we were given. */
9885 if (GET_CODE (varop) == CLOBBER)
9886 return x ? x : varop;
9888 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9889 if (new != 0)
9890 x = new;
9891 else
9892 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9894 /* If we have an outer operation and we just made a shift, it is
9895 possible that we could have simplified the shift were it not
9896 for the outer operation. So try to do the simplification
9897 recursively. */
9899 if (outer_op != NIL && GET_CODE (x) == code
9900 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9901 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9902 INTVAL (XEXP (x, 1)));
9904 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9905 turn off all the bits that the shift would have turned off. */
9906 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9907 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9908 GET_MODE_MASK (result_mode) >> orig_count);
9910 /* Do the remainder of the processing in RESULT_MODE. */
9911 x = gen_lowpart_for_combine (result_mode, x);
9913 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9914 operation. */
9915 if (complement_p)
9916 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9918 if (outer_op != NIL)
9920 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9921 outer_const = trunc_int_for_mode (outer_const, result_mode);
9923 if (outer_op == AND)
9924 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9925 else if (outer_op == SET)
9926 /* This means that we have determined that the result is
9927 equivalent to a constant. This should be rare. */
9928 x = GEN_INT (outer_const);
9929 else if (GET_RTX_CLASS (outer_op) == '1')
9930 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9931 else
9932 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9935 return x;
9938 /* Like recog, but we receive the address of a pointer to a new pattern.
9939 We try to match the rtx that the pointer points to.
9940 If that fails, we may try to modify or replace the pattern,
9941 storing the replacement into the same pointer object.
9943 Modifications include deletion or addition of CLOBBERs.
9945 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9946 the CLOBBERs are placed.
9948 The value is the final insn code from the pattern ultimately matched,
9949 or -1. */
9951 static int
9952 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9954 rtx pat = *pnewpat;
9955 int insn_code_number;
9956 int num_clobbers_to_add = 0;
9957 int i;
9958 rtx notes = 0;
9959 rtx dummy_insn;
9961 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9962 we use to indicate that something didn't match. If we find such a
9963 thing, force rejection. */
9964 if (GET_CODE (pat) == PARALLEL)
9965 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9966 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9967 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9968 return -1;
9970 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
9971 instruction for pattern recognition. */
9972 dummy_insn = shallow_copy_rtx (insn);
9973 PATTERN (dummy_insn) = pat;
9974 REG_NOTES (dummy_insn) = 0;
9976 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9978 /* If it isn't, there is the possibility that we previously had an insn
9979 that clobbered some register as a side effect, but the combined
9980 insn doesn't need to do that. So try once more without the clobbers
9981 unless this represents an ASM insn. */
9983 if (insn_code_number < 0 && ! check_asm_operands (pat)
9984 && GET_CODE (pat) == PARALLEL)
9986 int pos;
9988 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9989 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9991 if (i != pos)
9992 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9993 pos++;
9996 SUBST_INT (XVECLEN (pat, 0), pos);
9998 if (pos == 1)
9999 pat = XVECEXP (pat, 0, 0);
10001 PATTERN (dummy_insn) = pat;
10002 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
10005 /* Recognize all noop sets, these will be killed by followup pass. */
10006 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10007 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10009 /* If we had any clobbers to add, make a new pattern than contains
10010 them. Then check to make sure that all of them are dead. */
10011 if (num_clobbers_to_add)
10013 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10014 rtvec_alloc (GET_CODE (pat) == PARALLEL
10015 ? (XVECLEN (pat, 0)
10016 + num_clobbers_to_add)
10017 : num_clobbers_to_add + 1));
10019 if (GET_CODE (pat) == PARALLEL)
10020 for (i = 0; i < XVECLEN (pat, 0); i++)
10021 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10022 else
10023 XVECEXP (newpat, 0, 0) = pat;
10025 add_clobbers (newpat, insn_code_number);
10027 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10028 i < XVECLEN (newpat, 0); i++)
10030 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
10031 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10032 return -1;
10033 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
10034 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10036 pat = newpat;
10039 *pnewpat = pat;
10040 *pnotes = notes;
10042 return insn_code_number;
10045 /* Like gen_lowpart but for use by combine. In combine it is not possible
10046 to create any new pseudoregs. However, it is safe to create
10047 invalid memory addresses, because combine will try to recognize
10048 them and all they will do is make the combine attempt fail.
10050 If for some reason this cannot do its job, an rtx
10051 (clobber (const_int 0)) is returned.
10052 An insn containing that will not be recognized. */
10054 #undef gen_lowpart
10056 static rtx
10057 gen_lowpart_for_combine (enum machine_mode mode, rtx x)
10059 rtx result;
10061 if (GET_MODE (x) == mode)
10062 return x;
10064 /* Return identity if this is a CONST or symbolic
10065 reference. */
10066 if (mode == Pmode
10067 && (GET_CODE (x) == CONST
10068 || GET_CODE (x) == SYMBOL_REF
10069 || GET_CODE (x) == LABEL_REF))
10070 return x;
10072 /* We can only support MODE being wider than a word if X is a
10073 constant integer or has a mode the same size. */
10075 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
10076 && ! ((GET_MODE (x) == VOIDmode
10077 && (GET_CODE (x) == CONST_INT
10078 || GET_CODE (x) == CONST_DOUBLE))
10079 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
10080 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10082 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10083 won't know what to do. So we will strip off the SUBREG here and
10084 process normally. */
10085 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
10087 x = SUBREG_REG (x);
10088 if (GET_MODE (x) == mode)
10089 return x;
10092 result = gen_lowpart_common (mode, x);
10093 #ifdef CANNOT_CHANGE_MODE_CLASS
10094 if (result != 0
10095 && GET_CODE (result) == SUBREG
10096 && GET_CODE (SUBREG_REG (result)) == REG
10097 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER)
10098 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (result))
10099 * MAX_MACHINE_MODE
10100 + GET_MODE (result));
10101 #endif
10103 if (result)
10104 return result;
10106 if (GET_CODE (x) == MEM)
10108 int offset = 0;
10110 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10111 address. */
10112 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10113 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10115 /* If we want to refer to something bigger than the original memref,
10116 generate a perverse subreg instead. That will force a reload
10117 of the original memref X. */
10118 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
10119 return gen_rtx_SUBREG (mode, x, 0);
10121 if (WORDS_BIG_ENDIAN)
10122 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
10123 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
10125 if (BYTES_BIG_ENDIAN)
10127 /* Adjust the address so that the address-after-the-data is
10128 unchanged. */
10129 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
10130 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
10133 return adjust_address_nv (x, mode, offset);
10136 /* If X is a comparison operator, rewrite it in a new mode. This
10137 probably won't match, but may allow further simplifications. */
10138 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
10139 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
10141 /* If we couldn't simplify X any other way, just enclose it in a
10142 SUBREG. Normally, this SUBREG won't match, but some patterns may
10143 include an explicit SUBREG or we may simplify it further in combine. */
10144 else
10146 int offset = 0;
10147 rtx res;
10148 enum machine_mode sub_mode = GET_MODE (x);
10150 offset = subreg_lowpart_offset (mode, sub_mode);
10151 if (sub_mode == VOIDmode)
10153 sub_mode = int_mode_for_mode (mode);
10154 x = gen_lowpart_common (sub_mode, x);
10155 if (x == 0)
10156 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
10158 res = simplify_gen_subreg (mode, x, sub_mode, offset);
10159 if (res)
10160 return res;
10161 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10165 /* These routines make binary and unary operations by first seeing if they
10166 fold; if not, a new expression is allocated. */
10168 static rtx
10169 gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
10171 rtx result;
10172 rtx tem;
10174 if (GET_RTX_CLASS (code) == 'c'
10175 && swap_commutative_operands_p (op0, op1))
10176 tem = op0, op0 = op1, op1 = tem;
10178 if (GET_RTX_CLASS (code) == '<')
10180 enum machine_mode op_mode = GET_MODE (op0);
10182 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
10183 just (REL_OP X Y). */
10184 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
10186 op1 = XEXP (op0, 1);
10187 op0 = XEXP (op0, 0);
10188 op_mode = GET_MODE (op0);
10191 if (op_mode == VOIDmode)
10192 op_mode = GET_MODE (op1);
10193 result = simplify_relational_operation (code, op_mode, op0, op1);
10195 else
10196 result = simplify_binary_operation (code, mode, op0, op1);
10198 if (result)
10199 return result;
10201 /* Put complex operands first and constants second. */
10202 if (GET_RTX_CLASS (code) == 'c'
10203 && swap_commutative_operands_p (op0, op1))
10204 return gen_rtx_fmt_ee (code, mode, op1, op0);
10206 /* If we are turning off bits already known off in OP0, we need not do
10207 an AND. */
10208 else if (code == AND && GET_CODE (op1) == CONST_INT
10209 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10210 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
10211 return op0;
10213 return gen_rtx_fmt_ee (code, mode, op0, op1);
10216 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10217 comparison code that will be tested.
10219 The result is a possibly different comparison code to use. *POP0 and
10220 *POP1 may be updated.
10222 It is possible that we might detect that a comparison is either always
10223 true or always false. However, we do not perform general constant
10224 folding in combine, so this knowledge isn't useful. Such tautologies
10225 should have been detected earlier. Hence we ignore all such cases. */
10227 static enum rtx_code
10228 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10230 rtx op0 = *pop0;
10231 rtx op1 = *pop1;
10232 rtx tem, tem1;
10233 int i;
10234 enum machine_mode mode, tmode;
10236 /* Try a few ways of applying the same transformation to both operands. */
10237 while (1)
10239 #ifndef WORD_REGISTER_OPERATIONS
10240 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10241 so check specially. */
10242 if (code != GTU && code != GEU && code != LTU && code != LEU
10243 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10244 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10245 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10246 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10247 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10248 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10249 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10250 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10251 && GET_CODE (XEXP (op1, 1)) == CONST_INT
10252 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10253 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
10254 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
10255 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
10256 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
10257 && (INTVAL (XEXP (op0, 1))
10258 == (GET_MODE_BITSIZE (GET_MODE (op0))
10259 - (GET_MODE_BITSIZE
10260 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10262 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10263 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10265 #endif
10267 /* If both operands are the same constant shift, see if we can ignore the
10268 shift. We can if the shift is a rotate or if the bits shifted out of
10269 this shift are known to be zero for both inputs and if the type of
10270 comparison is compatible with the shift. */
10271 if (GET_CODE (op0) == GET_CODE (op1)
10272 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10273 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10274 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10275 && (code != GT && code != LT && code != GE && code != LE))
10276 || (GET_CODE (op0) == ASHIFTRT
10277 && (code != GTU && code != LTU
10278 && code != GEU && code != LEU)))
10279 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10280 && INTVAL (XEXP (op0, 1)) >= 0
10281 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10282 && XEXP (op0, 1) == XEXP (op1, 1))
10284 enum machine_mode mode = GET_MODE (op0);
10285 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10286 int shift_count = INTVAL (XEXP (op0, 1));
10288 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10289 mask &= (mask >> shift_count) << shift_count;
10290 else if (GET_CODE (op0) == ASHIFT)
10291 mask = (mask & (mask << shift_count)) >> shift_count;
10293 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10294 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10295 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10296 else
10297 break;
10300 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10301 SUBREGs are of the same mode, and, in both cases, the AND would
10302 be redundant if the comparison was done in the narrower mode,
10303 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10304 and the operand's possibly nonzero bits are 0xffffff01; in that case
10305 if we only care about QImode, we don't need the AND). This case
10306 occurs if the output mode of an scc insn is not SImode and
10307 STORE_FLAG_VALUE == 1 (e.g., the 386).
10309 Similarly, check for a case where the AND's are ZERO_EXTEND
10310 operations from some narrower mode even though a SUBREG is not
10311 present. */
10313 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10314 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10315 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10317 rtx inner_op0 = XEXP (op0, 0);
10318 rtx inner_op1 = XEXP (op1, 0);
10319 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10320 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10321 int changed = 0;
10323 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10324 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10325 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10326 && (GET_MODE (SUBREG_REG (inner_op0))
10327 == GET_MODE (SUBREG_REG (inner_op1)))
10328 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10329 <= HOST_BITS_PER_WIDE_INT)
10330 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10331 GET_MODE (SUBREG_REG (inner_op0)))))
10332 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10333 GET_MODE (SUBREG_REG (inner_op1))))))
10335 op0 = SUBREG_REG (inner_op0);
10336 op1 = SUBREG_REG (inner_op1);
10338 /* The resulting comparison is always unsigned since we masked
10339 off the original sign bit. */
10340 code = unsigned_condition (code);
10342 changed = 1;
10345 else if (c0 == c1)
10346 for (tmode = GET_CLASS_NARROWEST_MODE
10347 (GET_MODE_CLASS (GET_MODE (op0)));
10348 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10349 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10351 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10352 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10353 code = unsigned_condition (code);
10354 changed = 1;
10355 break;
10358 if (! changed)
10359 break;
10362 /* If both operands are NOT, we can strip off the outer operation
10363 and adjust the comparison code for swapped operands; similarly for
10364 NEG, except that this must be an equality comparison. */
10365 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10366 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10367 && (code == EQ || code == NE)))
10368 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10370 else
10371 break;
10374 /* If the first operand is a constant, swap the operands and adjust the
10375 comparison code appropriately, but don't do this if the second operand
10376 is already a constant integer. */
10377 if (swap_commutative_operands_p (op0, op1))
10379 tem = op0, op0 = op1, op1 = tem;
10380 code = swap_condition (code);
10383 /* We now enter a loop during which we will try to simplify the comparison.
10384 For the most part, we only are concerned with comparisons with zero,
10385 but some things may really be comparisons with zero but not start
10386 out looking that way. */
10388 while (GET_CODE (op1) == CONST_INT)
10390 enum machine_mode mode = GET_MODE (op0);
10391 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10392 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10393 int equality_comparison_p;
10394 int sign_bit_comparison_p;
10395 int unsigned_comparison_p;
10396 HOST_WIDE_INT const_op;
10398 /* We only want to handle integral modes. This catches VOIDmode,
10399 CCmode, and the floating-point modes. An exception is that we
10400 can handle VOIDmode if OP0 is a COMPARE or a comparison
10401 operation. */
10403 if (GET_MODE_CLASS (mode) != MODE_INT
10404 && ! (mode == VOIDmode
10405 && (GET_CODE (op0) == COMPARE
10406 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10407 break;
10409 /* Get the constant we are comparing against and turn off all bits
10410 not on in our mode. */
10411 const_op = INTVAL (op1);
10412 if (mode != VOIDmode)
10413 const_op = trunc_int_for_mode (const_op, mode);
10414 op1 = GEN_INT (const_op);
10416 /* If we are comparing against a constant power of two and the value
10417 being compared can only have that single bit nonzero (e.g., it was
10418 `and'ed with that bit), we can replace this with a comparison
10419 with zero. */
10420 if (const_op
10421 && (code == EQ || code == NE || code == GE || code == GEU
10422 || code == LT || code == LTU)
10423 && mode_width <= HOST_BITS_PER_WIDE_INT
10424 && exact_log2 (const_op) >= 0
10425 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10427 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10428 op1 = const0_rtx, const_op = 0;
10431 /* Similarly, if we are comparing a value known to be either -1 or
10432 0 with -1, change it to the opposite comparison against zero. */
10434 if (const_op == -1
10435 && (code == EQ || code == NE || code == GT || code == LE
10436 || code == GEU || code == LTU)
10437 && num_sign_bit_copies (op0, mode) == mode_width)
10439 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10440 op1 = const0_rtx, const_op = 0;
10443 /* Do some canonicalizations based on the comparison code. We prefer
10444 comparisons against zero and then prefer equality comparisons.
10445 If we can reduce the size of a constant, we will do that too. */
10447 switch (code)
10449 case LT:
10450 /* < C is equivalent to <= (C - 1) */
10451 if (const_op > 0)
10453 const_op -= 1;
10454 op1 = GEN_INT (const_op);
10455 code = LE;
10456 /* ... fall through to LE case below. */
10458 else
10459 break;
10461 case LE:
10462 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10463 if (const_op < 0)
10465 const_op += 1;
10466 op1 = GEN_INT (const_op);
10467 code = LT;
10470 /* If we are doing a <= 0 comparison on a value known to have
10471 a zero sign bit, we can replace this with == 0. */
10472 else if (const_op == 0
10473 && mode_width <= HOST_BITS_PER_WIDE_INT
10474 && (nonzero_bits (op0, mode)
10475 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10476 code = EQ;
10477 break;
10479 case GE:
10480 /* >= C is equivalent to > (C - 1). */
10481 if (const_op > 0)
10483 const_op -= 1;
10484 op1 = GEN_INT (const_op);
10485 code = GT;
10486 /* ... fall through to GT below. */
10488 else
10489 break;
10491 case GT:
10492 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10493 if (const_op < 0)
10495 const_op += 1;
10496 op1 = GEN_INT (const_op);
10497 code = GE;
10500 /* If we are doing a > 0 comparison on a value known to have
10501 a zero sign bit, we can replace this with != 0. */
10502 else if (const_op == 0
10503 && mode_width <= HOST_BITS_PER_WIDE_INT
10504 && (nonzero_bits (op0, mode)
10505 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10506 code = NE;
10507 break;
10509 case LTU:
10510 /* < C is equivalent to <= (C - 1). */
10511 if (const_op > 0)
10513 const_op -= 1;
10514 op1 = GEN_INT (const_op);
10515 code = LEU;
10516 /* ... fall through ... */
10519 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10520 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10521 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10523 const_op = 0, op1 = const0_rtx;
10524 code = GE;
10525 break;
10527 else
10528 break;
10530 case LEU:
10531 /* unsigned <= 0 is equivalent to == 0 */
10532 if (const_op == 0)
10533 code = EQ;
10535 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10536 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10537 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10539 const_op = 0, op1 = const0_rtx;
10540 code = GE;
10542 break;
10544 case GEU:
10545 /* >= C is equivalent to < (C - 1). */
10546 if (const_op > 1)
10548 const_op -= 1;
10549 op1 = GEN_INT (const_op);
10550 code = GTU;
10551 /* ... fall through ... */
10554 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10555 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10556 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10558 const_op = 0, op1 = const0_rtx;
10559 code = LT;
10560 break;
10562 else
10563 break;
10565 case GTU:
10566 /* unsigned > 0 is equivalent to != 0 */
10567 if (const_op == 0)
10568 code = NE;
10570 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10571 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10572 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10574 const_op = 0, op1 = const0_rtx;
10575 code = LT;
10577 break;
10579 default:
10580 break;
10583 /* Compute some predicates to simplify code below. */
10585 equality_comparison_p = (code == EQ || code == NE);
10586 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10587 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10588 || code == GEU);
10590 /* If this is a sign bit comparison and we can do arithmetic in
10591 MODE, say that we will only be needing the sign bit of OP0. */
10592 if (sign_bit_comparison_p
10593 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10594 op0 = force_to_mode (op0, mode,
10595 ((HOST_WIDE_INT) 1
10596 << (GET_MODE_BITSIZE (mode) - 1)),
10597 NULL_RTX, 0);
10599 /* Now try cases based on the opcode of OP0. If none of the cases
10600 does a "continue", we exit this loop immediately after the
10601 switch. */
10603 switch (GET_CODE (op0))
10605 case ZERO_EXTRACT:
10606 /* If we are extracting a single bit from a variable position in
10607 a constant that has only a single bit set and are comparing it
10608 with zero, we can convert this into an equality comparison
10609 between the position and the location of the single bit. */
10611 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10612 && XEXP (op0, 1) == const1_rtx
10613 && equality_comparison_p && const_op == 0
10614 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10616 if (BITS_BIG_ENDIAN)
10618 enum machine_mode new_mode
10619 = mode_for_extraction (EP_extzv, 1);
10620 if (new_mode == MAX_MACHINE_MODE)
10621 i = BITS_PER_WORD - 1 - i;
10622 else
10624 mode = new_mode;
10625 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10629 op0 = XEXP (op0, 2);
10630 op1 = GEN_INT (i);
10631 const_op = i;
10633 /* Result is nonzero iff shift count is equal to I. */
10634 code = reverse_condition (code);
10635 continue;
10638 /* ... fall through ... */
10640 case SIGN_EXTRACT:
10641 tem = expand_compound_operation (op0);
10642 if (tem != op0)
10644 op0 = tem;
10645 continue;
10647 break;
10649 case NOT:
10650 /* If testing for equality, we can take the NOT of the constant. */
10651 if (equality_comparison_p
10652 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10654 op0 = XEXP (op0, 0);
10655 op1 = tem;
10656 continue;
10659 /* If just looking at the sign bit, reverse the sense of the
10660 comparison. */
10661 if (sign_bit_comparison_p)
10663 op0 = XEXP (op0, 0);
10664 code = (code == GE ? LT : GE);
10665 continue;
10667 break;
10669 case NEG:
10670 /* If testing for equality, we can take the NEG of the constant. */
10671 if (equality_comparison_p
10672 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10674 op0 = XEXP (op0, 0);
10675 op1 = tem;
10676 continue;
10679 /* The remaining cases only apply to comparisons with zero. */
10680 if (const_op != 0)
10681 break;
10683 /* When X is ABS or is known positive,
10684 (neg X) is < 0 if and only if X != 0. */
10686 if (sign_bit_comparison_p
10687 && (GET_CODE (XEXP (op0, 0)) == ABS
10688 || (mode_width <= HOST_BITS_PER_WIDE_INT
10689 && (nonzero_bits (XEXP (op0, 0), mode)
10690 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10692 op0 = XEXP (op0, 0);
10693 code = (code == LT ? NE : EQ);
10694 continue;
10697 /* If we have NEG of something whose two high-order bits are the
10698 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10699 if (num_sign_bit_copies (op0, mode) >= 2)
10701 op0 = XEXP (op0, 0);
10702 code = swap_condition (code);
10703 continue;
10705 break;
10707 case ROTATE:
10708 /* If we are testing equality and our count is a constant, we
10709 can perform the inverse operation on our RHS. */
10710 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10711 && (tem = simplify_binary_operation (ROTATERT, mode,
10712 op1, XEXP (op0, 1))) != 0)
10714 op0 = XEXP (op0, 0);
10715 op1 = tem;
10716 continue;
10719 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10720 a particular bit. Convert it to an AND of a constant of that
10721 bit. This will be converted into a ZERO_EXTRACT. */
10722 if (const_op == 0 && sign_bit_comparison_p
10723 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10724 && mode_width <= HOST_BITS_PER_WIDE_INT)
10726 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10727 ((HOST_WIDE_INT) 1
10728 << (mode_width - 1
10729 - INTVAL (XEXP (op0, 1)))));
10730 code = (code == LT ? NE : EQ);
10731 continue;
10734 /* Fall through. */
10736 case ABS:
10737 /* ABS is ignorable inside an equality comparison with zero. */
10738 if (const_op == 0 && equality_comparison_p)
10740 op0 = XEXP (op0, 0);
10741 continue;
10743 break;
10745 case SIGN_EXTEND:
10746 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10747 to (compare FOO CONST) if CONST fits in FOO's mode and we
10748 are either testing inequality or have an unsigned comparison
10749 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10750 if (! unsigned_comparison_p
10751 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10752 <= HOST_BITS_PER_WIDE_INT)
10753 && ((unsigned HOST_WIDE_INT) const_op
10754 < (((unsigned HOST_WIDE_INT) 1
10755 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10757 op0 = XEXP (op0, 0);
10758 continue;
10760 break;
10762 case SUBREG:
10763 /* Check for the case where we are comparing A - C1 with C2,
10764 both constants are smaller than 1/2 the maximum positive
10765 value in MODE, and the comparison is equality or unsigned.
10766 In that case, if A is either zero-extended to MODE or has
10767 sufficient sign bits so that the high-order bit in MODE
10768 is a copy of the sign in the inner mode, we can prove that it is
10769 safe to do the operation in the wider mode. This simplifies
10770 many range checks. */
10772 if (mode_width <= HOST_BITS_PER_WIDE_INT
10773 && subreg_lowpart_p (op0)
10774 && GET_CODE (SUBREG_REG (op0)) == PLUS
10775 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10776 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10777 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10778 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10779 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10780 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10781 GET_MODE (SUBREG_REG (op0)))
10782 & ~GET_MODE_MASK (mode))
10783 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10784 GET_MODE (SUBREG_REG (op0)))
10785 > (unsigned int)
10786 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10787 - GET_MODE_BITSIZE (mode)))))
10789 op0 = SUBREG_REG (op0);
10790 continue;
10793 /* If the inner mode is narrower and we are extracting the low part,
10794 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10795 if (subreg_lowpart_p (op0)
10796 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10797 /* Fall through */ ;
10798 else
10799 break;
10801 /* ... fall through ... */
10803 case ZERO_EXTEND:
10804 if ((unsigned_comparison_p || equality_comparison_p)
10805 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10806 <= HOST_BITS_PER_WIDE_INT)
10807 && ((unsigned HOST_WIDE_INT) const_op
10808 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10810 op0 = XEXP (op0, 0);
10811 continue;
10813 break;
10815 case PLUS:
10816 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10817 this for equality comparisons due to pathological cases involving
10818 overflows. */
10819 if (equality_comparison_p
10820 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10821 op1, XEXP (op0, 1))))
10823 op0 = XEXP (op0, 0);
10824 op1 = tem;
10825 continue;
10828 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10829 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10830 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10832 op0 = XEXP (XEXP (op0, 0), 0);
10833 code = (code == LT ? EQ : NE);
10834 continue;
10836 break;
10838 case MINUS:
10839 /* We used to optimize signed comparisons against zero, but that
10840 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10841 arrive here as equality comparisons, or (GEU, LTU) are
10842 optimized away. No need to special-case them. */
10844 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10845 (eq B (minus A C)), whichever simplifies. We can only do
10846 this for equality comparisons due to pathological cases involving
10847 overflows. */
10848 if (equality_comparison_p
10849 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10850 XEXP (op0, 1), op1)))
10852 op0 = XEXP (op0, 0);
10853 op1 = tem;
10854 continue;
10857 if (equality_comparison_p
10858 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10859 XEXP (op0, 0), op1)))
10861 op0 = XEXP (op0, 1);
10862 op1 = tem;
10863 continue;
10866 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10867 of bits in X minus 1, is one iff X > 0. */
10868 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10869 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10870 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10871 == mode_width - 1
10872 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10874 op0 = XEXP (op0, 1);
10875 code = (code == GE ? LE : GT);
10876 continue;
10878 break;
10880 case XOR:
10881 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10882 if C is zero or B is a constant. */
10883 if (equality_comparison_p
10884 && 0 != (tem = simplify_binary_operation (XOR, mode,
10885 XEXP (op0, 1), op1)))
10887 op0 = XEXP (op0, 0);
10888 op1 = tem;
10889 continue;
10891 break;
10893 case EQ: case NE:
10894 case UNEQ: case LTGT:
10895 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10896 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10897 case UNORDERED: case ORDERED:
10898 /* We can't do anything if OP0 is a condition code value, rather
10899 than an actual data value. */
10900 if (const_op != 0
10901 || CC0_P (XEXP (op0, 0))
10902 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10903 break;
10905 /* Get the two operands being compared. */
10906 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10907 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10908 else
10909 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10911 /* Check for the cases where we simply want the result of the
10912 earlier test or the opposite of that result. */
10913 if (code == NE || code == EQ
10914 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10915 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10916 && (STORE_FLAG_VALUE
10917 & (((HOST_WIDE_INT) 1
10918 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10919 && (code == LT || code == GE)))
10921 enum rtx_code new_code;
10922 if (code == LT || code == NE)
10923 new_code = GET_CODE (op0);
10924 else
10925 new_code = combine_reversed_comparison_code (op0);
10927 if (new_code != UNKNOWN)
10929 code = new_code;
10930 op0 = tem;
10931 op1 = tem1;
10932 continue;
10935 break;
10937 case IOR:
10938 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10939 iff X <= 0. */
10940 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10941 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10942 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10944 op0 = XEXP (op0, 1);
10945 code = (code == GE ? GT : LE);
10946 continue;
10948 break;
10950 case AND:
10951 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10952 will be converted to a ZERO_EXTRACT later. */
10953 if (const_op == 0 && equality_comparison_p
10954 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10955 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10957 op0 = simplify_and_const_int
10958 (op0, mode, gen_rtx_LSHIFTRT (mode,
10959 XEXP (op0, 1),
10960 XEXP (XEXP (op0, 0), 1)),
10961 (HOST_WIDE_INT) 1);
10962 continue;
10965 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10966 zero and X is a comparison and C1 and C2 describe only bits set
10967 in STORE_FLAG_VALUE, we can compare with X. */
10968 if (const_op == 0 && equality_comparison_p
10969 && mode_width <= HOST_BITS_PER_WIDE_INT
10970 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10971 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10972 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10973 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10974 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10976 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10977 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10978 if ((~STORE_FLAG_VALUE & mask) == 0
10979 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10980 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10981 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10983 op0 = XEXP (XEXP (op0, 0), 0);
10984 continue;
10988 /* If we are doing an equality comparison of an AND of a bit equal
10989 to the sign bit, replace this with a LT or GE comparison of
10990 the underlying value. */
10991 if (equality_comparison_p
10992 && const_op == 0
10993 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10994 && mode_width <= HOST_BITS_PER_WIDE_INT
10995 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10996 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10998 op0 = XEXP (op0, 0);
10999 code = (code == EQ ? GE : LT);
11000 continue;
11003 /* If this AND operation is really a ZERO_EXTEND from a narrower
11004 mode, the constant fits within that mode, and this is either an
11005 equality or unsigned comparison, try to do this comparison in
11006 the narrower mode. */
11007 if ((equality_comparison_p || unsigned_comparison_p)
11008 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11009 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
11010 & GET_MODE_MASK (mode))
11011 + 1)) >= 0
11012 && const_op >> i == 0
11013 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
11015 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
11016 continue;
11019 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11020 fits in both M1 and M2 and the SUBREG is either paradoxical
11021 or represents the low part, permute the SUBREG and the AND
11022 and try again. */
11023 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11025 unsigned HOST_WIDE_INT c1;
11026 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11027 /* Require an integral mode, to avoid creating something like
11028 (AND:SF ...). */
11029 if (SCALAR_INT_MODE_P (tmode)
11030 /* It is unsafe to commute the AND into the SUBREG if the
11031 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11032 not defined. As originally written the upper bits
11033 have a defined value due to the AND operation.
11034 However, if we commute the AND inside the SUBREG then
11035 they no longer have defined values and the meaning of
11036 the code has been changed. */
11037 && (0
11038 #ifdef WORD_REGISTER_OPERATIONS
11039 || (mode_width > GET_MODE_BITSIZE (tmode)
11040 && mode_width <= BITS_PER_WORD)
11041 #endif
11042 || (mode_width <= GET_MODE_BITSIZE (tmode)
11043 && subreg_lowpart_p (XEXP (op0, 0))))
11044 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11045 && mode_width <= HOST_BITS_PER_WIDE_INT
11046 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
11047 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11048 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11049 && c1 != mask
11050 && c1 != GET_MODE_MASK (tmode))
11052 op0 = gen_binary (AND, tmode,
11053 SUBREG_REG (XEXP (op0, 0)),
11054 gen_int_mode (c1, tmode));
11055 op0 = gen_lowpart_for_combine (mode, op0);
11056 continue;
11060 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11061 (eq (and (lshiftrt X) 1) 0). */
11062 if (const_op == 0 && equality_comparison_p
11063 && XEXP (op0, 1) == const1_rtx
11064 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11065 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
11067 op0 = simplify_and_const_int
11068 (op0, mode,
11069 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
11070 XEXP (XEXP (op0, 0), 1)),
11071 (HOST_WIDE_INT) 1);
11072 code = (code == NE ? EQ : NE);
11073 continue;
11075 break;
11077 case ASHIFT:
11078 /* If we have (compare (ashift FOO N) (const_int C)) and
11079 the high order N bits of FOO (N+1 if an inequality comparison)
11080 are known to be zero, we can do this by comparing FOO with C
11081 shifted right N bits so long as the low-order N bits of C are
11082 zero. */
11083 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11084 && INTVAL (XEXP (op0, 1)) >= 0
11085 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11086 < HOST_BITS_PER_WIDE_INT)
11087 && ((const_op
11088 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11089 && mode_width <= HOST_BITS_PER_WIDE_INT
11090 && (nonzero_bits (XEXP (op0, 0), mode)
11091 & ~(mask >> (INTVAL (XEXP (op0, 1))
11092 + ! equality_comparison_p))) == 0)
11094 /* We must perform a logical shift, not an arithmetic one,
11095 as we want the top N bits of C to be zero. */
11096 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11098 temp >>= INTVAL (XEXP (op0, 1));
11099 op1 = gen_int_mode (temp, mode);
11100 op0 = XEXP (op0, 0);
11101 continue;
11104 /* If we are doing a sign bit comparison, it means we are testing
11105 a particular bit. Convert it to the appropriate AND. */
11106 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
11107 && mode_width <= HOST_BITS_PER_WIDE_INT)
11109 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11110 ((HOST_WIDE_INT) 1
11111 << (mode_width - 1
11112 - INTVAL (XEXP (op0, 1)))));
11113 code = (code == LT ? NE : EQ);
11114 continue;
11117 /* If this an equality comparison with zero and we are shifting
11118 the low bit to the sign bit, we can convert this to an AND of the
11119 low-order bit. */
11120 if (const_op == 0 && equality_comparison_p
11121 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11122 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11123 == mode_width - 1)
11125 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11126 (HOST_WIDE_INT) 1);
11127 continue;
11129 break;
11131 case ASHIFTRT:
11132 /* If this is an equality comparison with zero, we can do this
11133 as a logical shift, which might be much simpler. */
11134 if (equality_comparison_p && const_op == 0
11135 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
11137 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11138 XEXP (op0, 0),
11139 INTVAL (XEXP (op0, 1)));
11140 continue;
11143 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11144 do the comparison in a narrower mode. */
11145 if (! unsigned_comparison_p
11146 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11147 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11148 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11149 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11150 MODE_INT, 1)) != BLKmode
11151 && (((unsigned HOST_WIDE_INT) const_op
11152 + (GET_MODE_MASK (tmode) >> 1) + 1)
11153 <= GET_MODE_MASK (tmode)))
11155 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
11156 continue;
11159 /* Likewise if OP0 is a PLUS of a sign extension with a
11160 constant, which is usually represented with the PLUS
11161 between the shifts. */
11162 if (! unsigned_comparison_p
11163 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11164 && GET_CODE (XEXP (op0, 0)) == PLUS
11165 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11166 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11167 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11168 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11169 MODE_INT, 1)) != BLKmode
11170 && (((unsigned HOST_WIDE_INT) const_op
11171 + (GET_MODE_MASK (tmode) >> 1) + 1)
11172 <= GET_MODE_MASK (tmode)))
11174 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11175 rtx add_const = XEXP (XEXP (op0, 0), 1);
11176 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
11177 XEXP (op0, 1));
11179 op0 = gen_binary (PLUS, tmode,
11180 gen_lowpart_for_combine (tmode, inner),
11181 new_const);
11182 continue;
11185 /* ... fall through ... */
11186 case LSHIFTRT:
11187 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11188 the low order N bits of FOO are known to be zero, we can do this
11189 by comparing FOO with C shifted left N bits so long as no
11190 overflow occurs. */
11191 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11192 && INTVAL (XEXP (op0, 1)) >= 0
11193 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11194 && mode_width <= HOST_BITS_PER_WIDE_INT
11195 && (nonzero_bits (XEXP (op0, 0), mode)
11196 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11197 && (((unsigned HOST_WIDE_INT) const_op
11198 + (GET_CODE (op0) != LSHIFTRT
11199 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11200 + 1)
11201 : 0))
11202 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11204 /* If the shift was logical, then we must make the condition
11205 unsigned. */
11206 if (GET_CODE (op0) == LSHIFTRT)
11207 code = unsigned_condition (code);
11209 const_op <<= INTVAL (XEXP (op0, 1));
11210 op1 = GEN_INT (const_op);
11211 op0 = XEXP (op0, 0);
11212 continue;
11215 /* If we are using this shift to extract just the sign bit, we
11216 can replace this with an LT or GE comparison. */
11217 if (const_op == 0
11218 && (equality_comparison_p || sign_bit_comparison_p)
11219 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11220 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11221 == mode_width - 1)
11223 op0 = XEXP (op0, 0);
11224 code = (code == NE || code == GT ? LT : GE);
11225 continue;
11227 break;
11229 default:
11230 break;
11233 break;
11236 /* Now make any compound operations involved in this comparison. Then,
11237 check for an outmost SUBREG on OP0 that is not doing anything or is
11238 paradoxical. The latter transformation must only be performed when
11239 it is known that the "extra" bits will be the same in op0 and op1 or
11240 that they don't matter. There are three cases to consider:
11242 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11243 care bits and we can assume they have any convenient value. So
11244 making the transformation is safe.
11246 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11247 In this case the upper bits of op0 are undefined. We should not make
11248 the simplification in that case as we do not know the contents of
11249 those bits.
11251 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11252 NIL. In that case we know those bits are zeros or ones. We must
11253 also be sure that they are the same as the upper bits of op1.
11255 We can never remove a SUBREG for a non-equality comparison because
11256 the sign bit is in a different place in the underlying object. */
11258 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11259 op1 = make_compound_operation (op1, SET);
11261 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11262 /* Case 3 above, to sometimes allow (subreg (mem x)), isn't
11263 implemented. */
11264 && GET_CODE (SUBREG_REG (op0)) == REG
11265 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11266 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11267 && (code == NE || code == EQ))
11269 if (GET_MODE_SIZE (GET_MODE (op0))
11270 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11272 op0 = SUBREG_REG (op0);
11273 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11275 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11276 <= HOST_BITS_PER_WIDE_INT)
11277 && (nonzero_bits (SUBREG_REG (op0),
11278 GET_MODE (SUBREG_REG (op0)))
11279 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11281 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11283 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11284 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11285 op0 = SUBREG_REG (op0), op1 = tem;
11289 /* We now do the opposite procedure: Some machines don't have compare
11290 insns in all modes. If OP0's mode is an integer mode smaller than a
11291 word and we can't do a compare in that mode, see if there is a larger
11292 mode for which we can do the compare. There are a number of cases in
11293 which we can use the wider mode. */
11295 mode = GET_MODE (op0);
11296 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11297 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11298 && ! have_insn_for (COMPARE, mode))
11299 for (tmode = GET_MODE_WIDER_MODE (mode);
11300 (tmode != VOIDmode
11301 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11302 tmode = GET_MODE_WIDER_MODE (tmode))
11303 if (have_insn_for (COMPARE, tmode))
11305 int zero_extended;
11307 /* If the only nonzero bits in OP0 and OP1 are those in the
11308 narrower mode and this is an equality or unsigned comparison,
11309 we can use the wider mode. Similarly for sign-extended
11310 values, in which case it is true for all comparisons. */
11311 zero_extended = ((code == EQ || code == NE
11312 || code == GEU || code == GTU
11313 || code == LEU || code == LTU)
11314 && (nonzero_bits (op0, tmode)
11315 & ~GET_MODE_MASK (mode)) == 0
11316 && ((GET_CODE (op1) == CONST_INT
11317 || (nonzero_bits (op1, tmode)
11318 & ~GET_MODE_MASK (mode)) == 0)));
11320 if (zero_extended
11321 || ((num_sign_bit_copies (op0, tmode)
11322 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11323 - GET_MODE_BITSIZE (mode)))
11324 && (num_sign_bit_copies (op1, tmode)
11325 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11326 - GET_MODE_BITSIZE (mode)))))
11328 /* If OP0 is an AND and we don't have an AND in MODE either,
11329 make a new AND in the proper mode. */
11330 if (GET_CODE (op0) == AND
11331 && !have_insn_for (AND, mode))
11332 op0 = gen_binary (AND, tmode,
11333 gen_lowpart_for_combine (tmode,
11334 XEXP (op0, 0)),
11335 gen_lowpart_for_combine (tmode,
11336 XEXP (op0, 1)));
11338 op0 = gen_lowpart_for_combine (tmode, op0);
11339 if (zero_extended && GET_CODE (op1) == CONST_INT)
11340 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11341 op1 = gen_lowpart_for_combine (tmode, op1);
11342 break;
11345 /* If this is a test for negative, we can make an explicit
11346 test of the sign bit. */
11348 if (op1 == const0_rtx && (code == LT || code == GE)
11349 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11351 op0 = gen_binary (AND, tmode,
11352 gen_lowpart_for_combine (tmode, op0),
11353 GEN_INT ((HOST_WIDE_INT) 1
11354 << (GET_MODE_BITSIZE (mode) - 1)));
11355 code = (code == LT) ? NE : EQ;
11356 break;
11360 #ifdef CANONICALIZE_COMPARISON
11361 /* If this machine only supports a subset of valid comparisons, see if we
11362 can convert an unsupported one into a supported one. */
11363 CANONICALIZE_COMPARISON (code, op0, op1);
11364 #endif
11366 *pop0 = op0;
11367 *pop1 = op1;
11369 return code;
11372 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11373 searching backward. */
11374 static enum rtx_code
11375 combine_reversed_comparison_code (rtx exp)
11377 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11378 rtx x;
11380 if (code1 != UNKNOWN
11381 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11382 return code1;
11383 /* Otherwise try and find where the condition codes were last set and
11384 use that. */
11385 x = get_last_value (XEXP (exp, 0));
11386 if (!x || GET_CODE (x) != COMPARE)
11387 return UNKNOWN;
11388 return reversed_comparison_code_parts (GET_CODE (exp),
11389 XEXP (x, 0), XEXP (x, 1), NULL);
11392 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11393 Return NULL_RTX in case we fail to do the reversal. */
11394 static rtx
11395 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
11397 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11398 if (reversed_code == UNKNOWN)
11399 return NULL_RTX;
11400 else
11401 return gen_binary (reversed_code, mode, op0, op1);
11404 /* Utility function for following routine. Called when X is part of a value
11405 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11406 for each register mentioned. Similar to mention_regs in cse.c */
11408 static void
11409 update_table_tick (rtx x)
11411 enum rtx_code code = GET_CODE (x);
11412 const char *fmt = GET_RTX_FORMAT (code);
11413 int i;
11415 if (code == REG)
11417 unsigned int regno = REGNO (x);
11418 unsigned int endregno
11419 = regno + (regno < FIRST_PSEUDO_REGISTER
11420 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11421 unsigned int r;
11423 for (r = regno; r < endregno; r++)
11424 reg_last_set_table_tick[r] = label_tick;
11426 return;
11429 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11430 /* Note that we can't have an "E" in values stored; see
11431 get_last_value_validate. */
11432 if (fmt[i] == 'e')
11434 /* Check for identical subexpressions. If x contains
11435 identical subexpression we only have to traverse one of
11436 them. */
11437 if (i == 0
11438 && (GET_RTX_CLASS (code) == '2'
11439 || GET_RTX_CLASS (code) == 'c'))
11441 /* Note that at this point x1 has already been
11442 processed. */
11443 rtx x0 = XEXP (x, 0);
11444 rtx x1 = XEXP (x, 1);
11446 /* If x0 and x1 are identical then there is no need to
11447 process x0. */
11448 if (x0 == x1)
11449 break;
11451 /* If x0 is identical to a subexpression of x1 then while
11452 processing x1, x0 has already been processed. Thus we
11453 are done with x. */
11454 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11455 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11456 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11457 break;
11459 /* If x1 is identical to a subexpression of x0 then we
11460 still have to process the rest of x0. */
11461 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11462 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11463 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11465 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11466 break;
11470 update_table_tick (XEXP (x, i));
11474 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11475 are saying that the register is clobbered and we no longer know its
11476 value. If INSN is zero, don't update reg_last_set; this is only permitted
11477 with VALUE also zero and is used to invalidate the register. */
11479 static void
11480 record_value_for_reg (rtx reg, rtx insn, rtx value)
11482 unsigned int regno = REGNO (reg);
11483 unsigned int endregno
11484 = regno + (regno < FIRST_PSEUDO_REGISTER
11485 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11486 unsigned int i;
11488 /* If VALUE contains REG and we have a previous value for REG, substitute
11489 the previous value. */
11490 if (value && insn && reg_overlap_mentioned_p (reg, value))
11492 rtx tem;
11494 /* Set things up so get_last_value is allowed to see anything set up to
11495 our insn. */
11496 subst_low_cuid = INSN_CUID (insn);
11497 tem = get_last_value (reg);
11499 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11500 it isn't going to be useful and will take a lot of time to process,
11501 so just use the CLOBBER. */
11503 if (tem)
11505 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11506 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11507 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11508 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11509 tem = XEXP (tem, 0);
11511 value = replace_rtx (copy_rtx (value), reg, tem);
11515 /* For each register modified, show we don't know its value, that
11516 we don't know about its bitwise content, that its value has been
11517 updated, and that we don't know the location of the death of the
11518 register. */
11519 for (i = regno; i < endregno; i++)
11521 if (insn)
11522 reg_last_set[i] = insn;
11524 reg_last_set_value[i] = 0;
11525 reg_last_set_mode[i] = 0;
11526 reg_last_set_nonzero_bits[i] = 0;
11527 reg_last_set_sign_bit_copies[i] = 0;
11528 reg_last_death[i] = 0;
11531 /* Mark registers that are being referenced in this value. */
11532 if (value)
11533 update_table_tick (value);
11535 /* Now update the status of each register being set.
11536 If someone is using this register in this block, set this register
11537 to invalid since we will get confused between the two lives in this
11538 basic block. This makes using this register always invalid. In cse, we
11539 scan the table to invalidate all entries using this register, but this
11540 is too much work for us. */
11542 for (i = regno; i < endregno; i++)
11544 reg_last_set_label[i] = label_tick;
11545 if (value && reg_last_set_table_tick[i] == label_tick)
11546 reg_last_set_invalid[i] = 1;
11547 else
11548 reg_last_set_invalid[i] = 0;
11551 /* The value being assigned might refer to X (like in "x++;"). In that
11552 case, we must replace it with (clobber (const_int 0)) to prevent
11553 infinite loops. */
11554 if (value && ! get_last_value_validate (&value, insn,
11555 reg_last_set_label[regno], 0))
11557 value = copy_rtx (value);
11558 if (! get_last_value_validate (&value, insn,
11559 reg_last_set_label[regno], 1))
11560 value = 0;
11563 /* For the main register being modified, update the value, the mode, the
11564 nonzero bits, and the number of sign bit copies. */
11566 reg_last_set_value[regno] = value;
11568 if (value)
11570 enum machine_mode mode = GET_MODE (reg);
11571 subst_low_cuid = INSN_CUID (insn);
11572 reg_last_set_mode[regno] = mode;
11573 if (GET_MODE_CLASS (mode) == MODE_INT
11574 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11575 mode = nonzero_bits_mode;
11576 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11577 reg_last_set_sign_bit_copies[regno]
11578 = num_sign_bit_copies (value, GET_MODE (reg));
11582 /* Called via note_stores from record_dead_and_set_regs to handle one
11583 SET or CLOBBER in an insn. DATA is the instruction in which the
11584 set is occurring. */
11586 static void
11587 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11589 rtx record_dead_insn = (rtx) data;
11591 if (GET_CODE (dest) == SUBREG)
11592 dest = SUBREG_REG (dest);
11594 if (GET_CODE (dest) == REG)
11596 /* If we are setting the whole register, we know its value. Otherwise
11597 show that we don't know the value. We can handle SUBREG in
11598 some cases. */
11599 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11600 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11601 else if (GET_CODE (setter) == SET
11602 && GET_CODE (SET_DEST (setter)) == SUBREG
11603 && SUBREG_REG (SET_DEST (setter)) == dest
11604 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11605 && subreg_lowpart_p (SET_DEST (setter)))
11606 record_value_for_reg (dest, record_dead_insn,
11607 gen_lowpart_for_combine (GET_MODE (dest),
11608 SET_SRC (setter)));
11609 else
11610 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11612 else if (GET_CODE (dest) == MEM
11613 /* Ignore pushes, they clobber nothing. */
11614 && ! push_operand (dest, GET_MODE (dest)))
11615 mem_last_set = INSN_CUID (record_dead_insn);
11618 /* Update the records of when each REG was most recently set or killed
11619 for the things done by INSN. This is the last thing done in processing
11620 INSN in the combiner loop.
11622 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11623 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11624 and also the similar information mem_last_set (which insn most recently
11625 modified memory) and last_call_cuid (which insn was the most recent
11626 subroutine call). */
11628 static void
11629 record_dead_and_set_regs (rtx insn)
11631 rtx link;
11632 unsigned int i;
11634 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11636 if (REG_NOTE_KIND (link) == REG_DEAD
11637 && GET_CODE (XEXP (link, 0)) == REG)
11639 unsigned int regno = REGNO (XEXP (link, 0));
11640 unsigned int endregno
11641 = regno + (regno < FIRST_PSEUDO_REGISTER
11642 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11643 : 1);
11645 for (i = regno; i < endregno; i++)
11646 reg_last_death[i] = insn;
11648 else if (REG_NOTE_KIND (link) == REG_INC)
11649 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11652 if (GET_CODE (insn) == CALL_INSN)
11654 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11655 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11657 reg_last_set_value[i] = 0;
11658 reg_last_set_mode[i] = 0;
11659 reg_last_set_nonzero_bits[i] = 0;
11660 reg_last_set_sign_bit_copies[i] = 0;
11661 reg_last_death[i] = 0;
11664 last_call_cuid = mem_last_set = INSN_CUID (insn);
11666 /* Don't bother recording what this insn does. It might set the
11667 return value register, but we can't combine into a call
11668 pattern anyway, so there's no point trying (and it may cause
11669 a crash, if e.g. we wind up asking for last_set_value of a
11670 SUBREG of the return value register). */
11671 return;
11674 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11677 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11678 register present in the SUBREG, so for each such SUBREG go back and
11679 adjust nonzero and sign bit information of the registers that are
11680 known to have some zero/sign bits set.
11682 This is needed because when combine blows the SUBREGs away, the
11683 information on zero/sign bits is lost and further combines can be
11684 missed because of that. */
11686 static void
11687 record_promoted_value (rtx insn, rtx subreg)
11689 rtx links, set;
11690 unsigned int regno = REGNO (SUBREG_REG (subreg));
11691 enum machine_mode mode = GET_MODE (subreg);
11693 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11694 return;
11696 for (links = LOG_LINKS (insn); links;)
11698 insn = XEXP (links, 0);
11699 set = single_set (insn);
11701 if (! set || GET_CODE (SET_DEST (set)) != REG
11702 || REGNO (SET_DEST (set)) != regno
11703 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11705 links = XEXP (links, 1);
11706 continue;
11709 if (reg_last_set[regno] == insn)
11711 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11712 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11715 if (GET_CODE (SET_SRC (set)) == REG)
11717 regno = REGNO (SET_SRC (set));
11718 links = LOG_LINKS (insn);
11720 else
11721 break;
11725 /* Scan X for promoted SUBREGs. For each one found,
11726 note what it implies to the registers used in it. */
11728 static void
11729 check_promoted_subreg (rtx insn, rtx x)
11731 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11732 && GET_CODE (SUBREG_REG (x)) == REG)
11733 record_promoted_value (insn, x);
11734 else
11736 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11737 int i, j;
11739 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11740 switch (format[i])
11742 case 'e':
11743 check_promoted_subreg (insn, XEXP (x, i));
11744 break;
11745 case 'V':
11746 case 'E':
11747 if (XVEC (x, i) != 0)
11748 for (j = 0; j < XVECLEN (x, i); j++)
11749 check_promoted_subreg (insn, XVECEXP (x, i, j));
11750 break;
11755 /* Utility routine for the following function. Verify that all the registers
11756 mentioned in *LOC are valid when *LOC was part of a value set when
11757 label_tick == TICK. Return 0 if some are not.
11759 If REPLACE is nonzero, replace the invalid reference with
11760 (clobber (const_int 0)) and return 1. This replacement is useful because
11761 we often can get useful information about the form of a value (e.g., if
11762 it was produced by a shift that always produces -1 or 0) even though
11763 we don't know exactly what registers it was produced from. */
11765 static int
11766 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11768 rtx x = *loc;
11769 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11770 int len = GET_RTX_LENGTH (GET_CODE (x));
11771 int i;
11773 if (GET_CODE (x) == REG)
11775 unsigned int regno = REGNO (x);
11776 unsigned int endregno
11777 = regno + (regno < FIRST_PSEUDO_REGISTER
11778 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11779 unsigned int j;
11781 for (j = regno; j < endregno; j++)
11782 if (reg_last_set_invalid[j]
11783 /* If this is a pseudo-register that was only set once and not
11784 live at the beginning of the function, it is always valid. */
11785 || (! (regno >= FIRST_PSEUDO_REGISTER
11786 && REG_N_SETS (regno) == 1
11787 && (! REGNO_REG_SET_P
11788 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11789 && reg_last_set_label[j] > tick))
11791 if (replace)
11792 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11793 return replace;
11796 return 1;
11798 /* If this is a memory reference, make sure that there were
11799 no stores after it that might have clobbered the value. We don't
11800 have alias info, so we assume any store invalidates it. */
11801 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11802 && INSN_CUID (insn) <= mem_last_set)
11804 if (replace)
11805 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11806 return replace;
11809 for (i = 0; i < len; i++)
11811 if (fmt[i] == 'e')
11813 /* Check for identical subexpressions. If x contains
11814 identical subexpression we only have to traverse one of
11815 them. */
11816 if (i == 1
11817 && (GET_RTX_CLASS (GET_CODE (x)) == '2'
11818 || GET_RTX_CLASS (GET_CODE (x)) == 'c'))
11820 /* Note that at this point x0 has already been checked
11821 and found valid. */
11822 rtx x0 = XEXP (x, 0);
11823 rtx x1 = XEXP (x, 1);
11825 /* If x0 and x1 are identical then x is also valid. */
11826 if (x0 == x1)
11827 return 1;
11829 /* If x1 is identical to a subexpression of x0 then
11830 while checking x0, x1 has already been checked. Thus
11831 it is valid and so as x. */
11832 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11833 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11834 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11835 return 1;
11837 /* If x0 is identical to a subexpression of x1 then x is
11838 valid iff the rest of x1 is valid. */
11839 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11840 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11841 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11842 return
11843 get_last_value_validate (&XEXP (x1,
11844 x0 == XEXP (x1, 0) ? 1 : 0),
11845 insn, tick, replace);
11848 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11849 replace) == 0)
11850 return 0;
11852 /* Don't bother with these. They shouldn't occur anyway. */
11853 else if (fmt[i] == 'E')
11854 return 0;
11857 /* If we haven't found a reason for it to be invalid, it is valid. */
11858 return 1;
11861 /* Get the last value assigned to X, if known. Some registers
11862 in the value may be replaced with (clobber (const_int 0)) if their value
11863 is known longer known reliably. */
11865 static rtx
11866 get_last_value (rtx x)
11868 unsigned int regno;
11869 rtx value;
11871 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11872 then convert it to the desired mode. If this is a paradoxical SUBREG,
11873 we cannot predict what values the "extra" bits might have. */
11874 if (GET_CODE (x) == SUBREG
11875 && subreg_lowpart_p (x)
11876 && (GET_MODE_SIZE (GET_MODE (x))
11877 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11878 && (value = get_last_value (SUBREG_REG (x))) != 0)
11879 return gen_lowpart_for_combine (GET_MODE (x), value);
11881 if (GET_CODE (x) != REG)
11882 return 0;
11884 regno = REGNO (x);
11885 value = reg_last_set_value[regno];
11887 /* If we don't have a value, or if it isn't for this basic block and
11888 it's either a hard register, set more than once, or it's a live
11889 at the beginning of the function, return 0.
11891 Because if it's not live at the beginning of the function then the reg
11892 is always set before being used (is never used without being set).
11893 And, if it's set only once, and it's always set before use, then all
11894 uses must have the same last value, even if it's not from this basic
11895 block. */
11897 if (value == 0
11898 || (reg_last_set_label[regno] != label_tick
11899 && (regno < FIRST_PSEUDO_REGISTER
11900 || REG_N_SETS (regno) != 1
11901 || (REGNO_REG_SET_P
11902 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11903 return 0;
11905 /* If the value was set in a later insn than the ones we are processing,
11906 we can't use it even if the register was only set once. */
11907 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11908 return 0;
11910 /* If the value has all its registers valid, return it. */
11911 if (get_last_value_validate (&value, reg_last_set[regno],
11912 reg_last_set_label[regno], 0))
11913 return value;
11915 /* Otherwise, make a copy and replace any invalid register with
11916 (clobber (const_int 0)). If that fails for some reason, return 0. */
11918 value = copy_rtx (value);
11919 if (get_last_value_validate (&value, reg_last_set[regno],
11920 reg_last_set_label[regno], 1))
11921 return value;
11923 return 0;
11926 /* Return nonzero if expression X refers to a REG or to memory
11927 that is set in an instruction more recent than FROM_CUID. */
11929 static int
11930 use_crosses_set_p (rtx x, int from_cuid)
11932 const char *fmt;
11933 int i;
11934 enum rtx_code code = GET_CODE (x);
11936 if (code == REG)
11938 unsigned int regno = REGNO (x);
11939 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11940 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11942 #ifdef PUSH_ROUNDING
11943 /* Don't allow uses of the stack pointer to be moved,
11944 because we don't know whether the move crosses a push insn. */
11945 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11946 return 1;
11947 #endif
11948 for (; regno < endreg; regno++)
11949 if (reg_last_set[regno]
11950 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11951 return 1;
11952 return 0;
11955 if (code == MEM && mem_last_set > from_cuid)
11956 return 1;
11958 fmt = GET_RTX_FORMAT (code);
11960 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11962 if (fmt[i] == 'E')
11964 int j;
11965 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11966 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11967 return 1;
11969 else if (fmt[i] == 'e'
11970 && use_crosses_set_p (XEXP (x, i), from_cuid))
11971 return 1;
11973 return 0;
11976 /* Define three variables used for communication between the following
11977 routines. */
11979 static unsigned int reg_dead_regno, reg_dead_endregno;
11980 static int reg_dead_flag;
11982 /* Function called via note_stores from reg_dead_at_p.
11984 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11985 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11987 static void
11988 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11990 unsigned int regno, endregno;
11992 if (GET_CODE (dest) != REG)
11993 return;
11995 regno = REGNO (dest);
11996 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11997 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11999 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12000 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12003 /* Return nonzero if REG is known to be dead at INSN.
12005 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12006 referencing REG, it is dead. If we hit a SET referencing REG, it is
12007 live. Otherwise, see if it is live or dead at the start of the basic
12008 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12009 must be assumed to be always live. */
12011 static int
12012 reg_dead_at_p (rtx reg, rtx insn)
12014 basic_block block;
12015 unsigned int i;
12017 /* Set variables for reg_dead_at_p_1. */
12018 reg_dead_regno = REGNO (reg);
12019 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
12020 ? HARD_REGNO_NREGS (reg_dead_regno,
12021 GET_MODE (reg))
12022 : 1);
12024 reg_dead_flag = 0;
12026 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
12027 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12029 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12030 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
12031 return 0;
12034 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
12035 beginning of function. */
12036 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
12037 insn = prev_nonnote_insn (insn))
12039 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12040 if (reg_dead_flag)
12041 return reg_dead_flag == 1 ? 1 : 0;
12043 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12044 return 1;
12047 /* Get the basic block that we were in. */
12048 if (insn == 0)
12049 block = ENTRY_BLOCK_PTR->next_bb;
12050 else
12052 FOR_EACH_BB (block)
12053 if (insn == block->head)
12054 break;
12056 if (block == EXIT_BLOCK_PTR)
12057 return 0;
12060 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12061 if (REGNO_REG_SET_P (block->global_live_at_start, i))
12062 return 0;
12064 return 1;
12067 /* Note hard registers in X that are used. This code is similar to
12068 that in flow.c, but much simpler since we don't care about pseudos. */
12070 static void
12071 mark_used_regs_combine (rtx x)
12073 RTX_CODE code = GET_CODE (x);
12074 unsigned int regno;
12075 int i;
12077 switch (code)
12079 case LABEL_REF:
12080 case SYMBOL_REF:
12081 case CONST_INT:
12082 case CONST:
12083 case CONST_DOUBLE:
12084 case CONST_VECTOR:
12085 case PC:
12086 case ADDR_VEC:
12087 case ADDR_DIFF_VEC:
12088 case ASM_INPUT:
12089 #ifdef HAVE_cc0
12090 /* CC0 must die in the insn after it is set, so we don't need to take
12091 special note of it here. */
12092 case CC0:
12093 #endif
12094 return;
12096 case CLOBBER:
12097 /* If we are clobbering a MEM, mark any hard registers inside the
12098 address as used. */
12099 if (GET_CODE (XEXP (x, 0)) == MEM)
12100 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12101 return;
12103 case REG:
12104 regno = REGNO (x);
12105 /* A hard reg in a wide mode may really be multiple registers.
12106 If so, mark all of them just like the first. */
12107 if (regno < FIRST_PSEUDO_REGISTER)
12109 unsigned int endregno, r;
12111 /* None of this applies to the stack, frame or arg pointers. */
12112 if (regno == STACK_POINTER_REGNUM
12113 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12114 || regno == HARD_FRAME_POINTER_REGNUM
12115 #endif
12116 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12117 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12118 #endif
12119 || regno == FRAME_POINTER_REGNUM)
12120 return;
12122 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12123 for (r = regno; r < endregno; r++)
12124 SET_HARD_REG_BIT (newpat_used_regs, r);
12126 return;
12128 case SET:
12130 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12131 the address. */
12132 rtx testreg = SET_DEST (x);
12134 while (GET_CODE (testreg) == SUBREG
12135 || GET_CODE (testreg) == ZERO_EXTRACT
12136 || GET_CODE (testreg) == SIGN_EXTRACT
12137 || GET_CODE (testreg) == STRICT_LOW_PART)
12138 testreg = XEXP (testreg, 0);
12140 if (GET_CODE (testreg) == MEM)
12141 mark_used_regs_combine (XEXP (testreg, 0));
12143 mark_used_regs_combine (SET_SRC (x));
12145 return;
12147 default:
12148 break;
12151 /* Recursively scan the operands of this expression. */
12154 const char *fmt = GET_RTX_FORMAT (code);
12156 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12158 if (fmt[i] == 'e')
12159 mark_used_regs_combine (XEXP (x, i));
12160 else if (fmt[i] == 'E')
12162 int j;
12164 for (j = 0; j < XVECLEN (x, i); j++)
12165 mark_used_regs_combine (XVECEXP (x, i, j));
12171 /* Remove register number REGNO from the dead registers list of INSN.
12173 Return the note used to record the death, if there was one. */
12176 remove_death (unsigned int regno, rtx insn)
12178 rtx note = find_regno_note (insn, REG_DEAD, regno);
12180 if (note)
12182 REG_N_DEATHS (regno)--;
12183 remove_note (insn, note);
12186 return note;
12189 /* For each register (hardware or pseudo) used within expression X, if its
12190 death is in an instruction with cuid between FROM_CUID (inclusive) and
12191 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12192 list headed by PNOTES.
12194 That said, don't move registers killed by maybe_kill_insn.
12196 This is done when X is being merged by combination into TO_INSN. These
12197 notes will then be distributed as needed. */
12199 static void
12200 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
12201 rtx *pnotes)
12203 const char *fmt;
12204 int len, i;
12205 enum rtx_code code = GET_CODE (x);
12207 if (code == REG)
12209 unsigned int regno = REGNO (x);
12210 rtx where_dead = reg_last_death[regno];
12211 rtx before_dead, after_dead;
12213 /* Don't move the register if it gets killed in between from and to. */
12214 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12215 && ! reg_referenced_p (x, maybe_kill_insn))
12216 return;
12218 /* WHERE_DEAD could be a USE insn made by combine, so first we
12219 make sure that we have insns with valid INSN_CUID values. */
12220 before_dead = where_dead;
12221 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
12222 before_dead = PREV_INSN (before_dead);
12224 after_dead = where_dead;
12225 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
12226 after_dead = NEXT_INSN (after_dead);
12228 if (before_dead && after_dead
12229 && INSN_CUID (before_dead) >= from_cuid
12230 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
12231 || (where_dead != after_dead
12232 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
12234 rtx note = remove_death (regno, where_dead);
12236 /* It is possible for the call above to return 0. This can occur
12237 when reg_last_death points to I2 or I1 that we combined with.
12238 In that case make a new note.
12240 We must also check for the case where X is a hard register
12241 and NOTE is a death note for a range of hard registers
12242 including X. In that case, we must put REG_DEAD notes for
12243 the remaining registers in place of NOTE. */
12245 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12246 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12247 > GET_MODE_SIZE (GET_MODE (x))))
12249 unsigned int deadregno = REGNO (XEXP (note, 0));
12250 unsigned int deadend
12251 = (deadregno + HARD_REGNO_NREGS (deadregno,
12252 GET_MODE (XEXP (note, 0))));
12253 unsigned int ourend
12254 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12255 unsigned int i;
12257 for (i = deadregno; i < deadend; i++)
12258 if (i < regno || i >= ourend)
12259 REG_NOTES (where_dead)
12260 = gen_rtx_EXPR_LIST (REG_DEAD,
12261 regno_reg_rtx[i],
12262 REG_NOTES (where_dead));
12265 /* If we didn't find any note, or if we found a REG_DEAD note that
12266 covers only part of the given reg, and we have a multi-reg hard
12267 register, then to be safe we must check for REG_DEAD notes
12268 for each register other than the first. They could have
12269 their own REG_DEAD notes lying around. */
12270 else if ((note == 0
12271 || (note != 0
12272 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12273 < GET_MODE_SIZE (GET_MODE (x)))))
12274 && regno < FIRST_PSEUDO_REGISTER
12275 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
12277 unsigned int ourend
12278 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12279 unsigned int i, offset;
12280 rtx oldnotes = 0;
12282 if (note)
12283 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
12284 else
12285 offset = 1;
12287 for (i = regno + offset; i < ourend; i++)
12288 move_deaths (regno_reg_rtx[i],
12289 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
12292 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12294 XEXP (note, 1) = *pnotes;
12295 *pnotes = note;
12297 else
12298 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12300 REG_N_DEATHS (regno)++;
12303 return;
12306 else if (GET_CODE (x) == SET)
12308 rtx dest = SET_DEST (x);
12310 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
12312 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12313 that accesses one word of a multi-word item, some
12314 piece of everything register in the expression is used by
12315 this insn, so remove any old death. */
12316 /* ??? So why do we test for equality of the sizes? */
12318 if (GET_CODE (dest) == ZERO_EXTRACT
12319 || GET_CODE (dest) == STRICT_LOW_PART
12320 || (GET_CODE (dest) == SUBREG
12321 && (((GET_MODE_SIZE (GET_MODE (dest))
12322 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12323 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12324 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12326 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12327 return;
12330 /* If this is some other SUBREG, we know it replaces the entire
12331 value, so use that as the destination. */
12332 if (GET_CODE (dest) == SUBREG)
12333 dest = SUBREG_REG (dest);
12335 /* If this is a MEM, adjust deaths of anything used in the address.
12336 For a REG (the only other possibility), the entire value is
12337 being replaced so the old value is not used in this insn. */
12339 if (GET_CODE (dest) == MEM)
12340 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12341 to_insn, pnotes);
12342 return;
12345 else if (GET_CODE (x) == CLOBBER)
12346 return;
12348 len = GET_RTX_LENGTH (code);
12349 fmt = GET_RTX_FORMAT (code);
12351 for (i = 0; i < len; i++)
12353 if (fmt[i] == 'E')
12355 int j;
12356 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12357 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12358 to_insn, pnotes);
12360 else if (fmt[i] == 'e')
12361 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12365 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12366 pattern of an insn. X must be a REG. */
12368 static int
12369 reg_bitfield_target_p (rtx x, rtx body)
12371 int i;
12373 if (GET_CODE (body) == SET)
12375 rtx dest = SET_DEST (body);
12376 rtx target;
12377 unsigned int regno, tregno, endregno, endtregno;
12379 if (GET_CODE (dest) == ZERO_EXTRACT)
12380 target = XEXP (dest, 0);
12381 else if (GET_CODE (dest) == STRICT_LOW_PART)
12382 target = SUBREG_REG (XEXP (dest, 0));
12383 else
12384 return 0;
12386 if (GET_CODE (target) == SUBREG)
12387 target = SUBREG_REG (target);
12389 if (GET_CODE (target) != REG)
12390 return 0;
12392 tregno = REGNO (target), regno = REGNO (x);
12393 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12394 return target == x;
12396 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12397 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12399 return endregno > tregno && regno < endtregno;
12402 else if (GET_CODE (body) == PARALLEL)
12403 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12404 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12405 return 1;
12407 return 0;
12410 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12411 as appropriate. I3 and I2 are the insns resulting from the combination
12412 insns including FROM (I2 may be zero).
12414 Each note in the list is either ignored or placed on some insns, depending
12415 on the type of note. */
12417 static void
12418 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
12420 rtx note, next_note;
12421 rtx tem;
12423 for (note = notes; note; note = next_note)
12425 rtx place = 0, place2 = 0;
12427 /* If this NOTE references a pseudo register, ensure it references
12428 the latest copy of that register. */
12429 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12430 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12431 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12433 next_note = XEXP (note, 1);
12434 switch (REG_NOTE_KIND (note))
12436 case REG_BR_PROB:
12437 case REG_BR_PRED:
12438 /* Doesn't matter much where we put this, as long as it's somewhere.
12439 It is preferable to keep these notes on branches, which is most
12440 likely to be i3. */
12441 place = i3;
12442 break;
12444 case REG_VTABLE_REF:
12445 /* ??? Should remain with *a particular* memory load. Given the
12446 nature of vtable data, the last insn seems relatively safe. */
12447 place = i3;
12448 break;
12450 case REG_NON_LOCAL_GOTO:
12451 if (GET_CODE (i3) == JUMP_INSN)
12452 place = i3;
12453 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12454 place = i2;
12455 else
12456 abort ();
12457 break;
12459 case REG_EH_REGION:
12460 /* These notes must remain with the call or trapping instruction. */
12461 if (GET_CODE (i3) == CALL_INSN)
12462 place = i3;
12463 else if (i2 && GET_CODE (i2) == CALL_INSN)
12464 place = i2;
12465 else if (flag_non_call_exceptions)
12467 if (may_trap_p (i3))
12468 place = i3;
12469 else if (i2 && may_trap_p (i2))
12470 place = i2;
12471 /* ??? Otherwise assume we've combined things such that we
12472 can now prove that the instructions can't trap. Drop the
12473 note in this case. */
12475 else
12476 abort ();
12477 break;
12479 case REG_NORETURN:
12480 case REG_SETJMP:
12481 /* These notes must remain with the call. It should not be
12482 possible for both I2 and I3 to be a call. */
12483 if (GET_CODE (i3) == CALL_INSN)
12484 place = i3;
12485 else if (i2 && GET_CODE (i2) == CALL_INSN)
12486 place = i2;
12487 else
12488 abort ();
12489 break;
12491 case REG_UNUSED:
12492 /* Any clobbers for i3 may still exist, and so we must process
12493 REG_UNUSED notes from that insn.
12495 Any clobbers from i2 or i1 can only exist if they were added by
12496 recog_for_combine. In that case, recog_for_combine created the
12497 necessary REG_UNUSED notes. Trying to keep any original
12498 REG_UNUSED notes from these insns can cause incorrect output
12499 if it is for the same register as the original i3 dest.
12500 In that case, we will notice that the register is set in i3,
12501 and then add a REG_UNUSED note for the destination of i3, which
12502 is wrong. However, it is possible to have REG_UNUSED notes from
12503 i2 or i1 for register which were both used and clobbered, so
12504 we keep notes from i2 or i1 if they will turn into REG_DEAD
12505 notes. */
12507 /* If this register is set or clobbered in I3, put the note there
12508 unless there is one already. */
12509 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12511 if (from_insn != i3)
12512 break;
12514 if (! (GET_CODE (XEXP (note, 0)) == REG
12515 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12516 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12517 place = i3;
12519 /* Otherwise, if this register is used by I3, then this register
12520 now dies here, so we must put a REG_DEAD note here unless there
12521 is one already. */
12522 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12523 && ! (GET_CODE (XEXP (note, 0)) == REG
12524 ? find_regno_note (i3, REG_DEAD,
12525 REGNO (XEXP (note, 0)))
12526 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12528 PUT_REG_NOTE_KIND (note, REG_DEAD);
12529 place = i3;
12531 break;
12533 case REG_EQUAL:
12534 case REG_EQUIV:
12535 case REG_NOALIAS:
12536 /* These notes say something about results of an insn. We can
12537 only support them if they used to be on I3 in which case they
12538 remain on I3. Otherwise they are ignored.
12540 If the note refers to an expression that is not a constant, we
12541 must also ignore the note since we cannot tell whether the
12542 equivalence is still true. It might be possible to do
12543 slightly better than this (we only have a problem if I2DEST
12544 or I1DEST is present in the expression), but it doesn't
12545 seem worth the trouble. */
12547 if (from_insn == i3
12548 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12549 place = i3;
12550 break;
12552 case REG_INC:
12553 case REG_NO_CONFLICT:
12554 /* These notes say something about how a register is used. They must
12555 be present on any use of the register in I2 or I3. */
12556 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12557 place = i3;
12559 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12561 if (place)
12562 place2 = i2;
12563 else
12564 place = i2;
12566 break;
12568 case REG_LABEL:
12569 /* This can show up in several ways -- either directly in the
12570 pattern, or hidden off in the constant pool with (or without?)
12571 a REG_EQUAL note. */
12572 /* ??? Ignore the without-reg_equal-note problem for now. */
12573 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12574 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12575 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12576 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12577 place = i3;
12579 if (i2
12580 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12581 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12582 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12583 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12585 if (place)
12586 place2 = i2;
12587 else
12588 place = i2;
12591 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12592 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12593 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12595 if (JUMP_LABEL (place) != XEXP (note, 0))
12596 abort ();
12597 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12598 LABEL_NUSES (JUMP_LABEL (place))--;
12599 place = 0;
12601 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12603 if (JUMP_LABEL (place2) != XEXP (note, 0))
12604 abort ();
12605 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12606 LABEL_NUSES (JUMP_LABEL (place2))--;
12607 place2 = 0;
12609 break;
12611 case REG_NONNEG:
12612 case REG_WAS_0:
12613 /* These notes say something about the value of a register prior
12614 to the execution of an insn. It is too much trouble to see
12615 if the note is still correct in all situations. It is better
12616 to simply delete it. */
12617 break;
12619 case REG_RETVAL:
12620 /* If the insn previously containing this note still exists,
12621 put it back where it was. Otherwise move it to the previous
12622 insn. Adjust the corresponding REG_LIBCALL note. */
12623 if (GET_CODE (from_insn) != NOTE)
12624 place = from_insn;
12625 else
12627 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12628 place = prev_real_insn (from_insn);
12629 if (tem && place)
12630 XEXP (tem, 0) = place;
12631 /* If we're deleting the last remaining instruction of a
12632 libcall sequence, don't add the notes. */
12633 else if (XEXP (note, 0) == from_insn)
12634 tem = place = 0;
12636 break;
12638 case REG_LIBCALL:
12639 /* This is handled similarly to REG_RETVAL. */
12640 if (GET_CODE (from_insn) != NOTE)
12641 place = from_insn;
12642 else
12644 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12645 place = next_real_insn (from_insn);
12646 if (tem && place)
12647 XEXP (tem, 0) = place;
12648 /* If we're deleting the last remaining instruction of a
12649 libcall sequence, don't add the notes. */
12650 else if (XEXP (note, 0) == from_insn)
12651 tem = place = 0;
12653 break;
12655 case REG_DEAD:
12656 /* If the register is used as an input in I3, it dies there.
12657 Similarly for I2, if it is nonzero and adjacent to I3.
12659 If the register is not used as an input in either I3 or I2
12660 and it is not one of the registers we were supposed to eliminate,
12661 there are two possibilities. We might have a non-adjacent I2
12662 or we might have somehow eliminated an additional register
12663 from a computation. For example, we might have had A & B where
12664 we discover that B will always be zero. In this case we will
12665 eliminate the reference to A.
12667 In both cases, we must search to see if we can find a previous
12668 use of A and put the death note there. */
12670 if (from_insn
12671 && GET_CODE (from_insn) == CALL_INSN
12672 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12673 place = from_insn;
12674 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12675 place = i3;
12676 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12677 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12678 place = i2;
12680 if (place == 0)
12682 basic_block bb = this_basic_block;
12684 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12686 if (! INSN_P (tem))
12688 if (tem == bb->head)
12689 break;
12690 continue;
12693 /* If the register is being set at TEM, see if that is all
12694 TEM is doing. If so, delete TEM. Otherwise, make this
12695 into a REG_UNUSED note instead. */
12696 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12698 rtx set = single_set (tem);
12699 rtx inner_dest = 0;
12700 #ifdef HAVE_cc0
12701 rtx cc0_setter = NULL_RTX;
12702 #endif
12704 if (set != 0)
12705 for (inner_dest = SET_DEST (set);
12706 (GET_CODE (inner_dest) == STRICT_LOW_PART
12707 || GET_CODE (inner_dest) == SUBREG
12708 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12709 inner_dest = XEXP (inner_dest, 0))
12712 /* Verify that it was the set, and not a clobber that
12713 modified the register.
12715 CC0 targets must be careful to maintain setter/user
12716 pairs. If we cannot delete the setter due to side
12717 effects, mark the user with an UNUSED note instead
12718 of deleting it. */
12720 if (set != 0 && ! side_effects_p (SET_SRC (set))
12721 && rtx_equal_p (XEXP (note, 0), inner_dest)
12722 #ifdef HAVE_cc0
12723 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12724 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12725 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12726 #endif
12729 /* Move the notes and links of TEM elsewhere.
12730 This might delete other dead insns recursively.
12731 First set the pattern to something that won't use
12732 any register. */
12734 PATTERN (tem) = pc_rtx;
12736 distribute_notes (REG_NOTES (tem), tem, tem,
12737 NULL_RTX);
12738 distribute_links (LOG_LINKS (tem));
12740 PUT_CODE (tem, NOTE);
12741 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12742 NOTE_SOURCE_FILE (tem) = 0;
12744 #ifdef HAVE_cc0
12745 /* Delete the setter too. */
12746 if (cc0_setter)
12748 PATTERN (cc0_setter) = pc_rtx;
12750 distribute_notes (REG_NOTES (cc0_setter),
12751 cc0_setter, cc0_setter,
12752 NULL_RTX);
12753 distribute_links (LOG_LINKS (cc0_setter));
12755 PUT_CODE (cc0_setter, NOTE);
12756 NOTE_LINE_NUMBER (cc0_setter)
12757 = NOTE_INSN_DELETED;
12758 NOTE_SOURCE_FILE (cc0_setter) = 0;
12760 #endif
12762 /* If the register is both set and used here, put the
12763 REG_DEAD note here, but place a REG_UNUSED note
12764 here too unless there already is one. */
12765 else if (reg_referenced_p (XEXP (note, 0),
12766 PATTERN (tem)))
12768 place = tem;
12770 if (! find_regno_note (tem, REG_UNUSED,
12771 REGNO (XEXP (note, 0))))
12772 REG_NOTES (tem)
12773 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12774 REG_NOTES (tem));
12776 else
12778 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12780 /* If there isn't already a REG_UNUSED note, put one
12781 here. */
12782 if (! find_regno_note (tem, REG_UNUSED,
12783 REGNO (XEXP (note, 0))))
12784 place = tem;
12785 break;
12788 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12789 || (GET_CODE (tem) == CALL_INSN
12790 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12792 place = tem;
12794 /* If we are doing a 3->2 combination, and we have a
12795 register which formerly died in i3 and was not used
12796 by i2, which now no longer dies in i3 and is used in
12797 i2 but does not die in i2, and place is between i2
12798 and i3, then we may need to move a link from place to
12799 i2. */
12800 if (i2 && INSN_UID (place) <= max_uid_cuid
12801 && INSN_CUID (place) > INSN_CUID (i2)
12802 && from_insn
12803 && INSN_CUID (from_insn) > INSN_CUID (i2)
12804 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12806 rtx links = LOG_LINKS (place);
12807 LOG_LINKS (place) = 0;
12808 distribute_links (links);
12810 break;
12813 if (tem == bb->head)
12814 break;
12817 /* We haven't found an insn for the death note and it
12818 is still a REG_DEAD note, but we have hit the beginning
12819 of the block. If the existing life info says the reg
12820 was dead, there's nothing left to do. Otherwise, we'll
12821 need to do a global life update after combine. */
12822 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12823 && REGNO_REG_SET_P (bb->global_live_at_start,
12824 REGNO (XEXP (note, 0))))
12825 SET_BIT (refresh_blocks, this_basic_block->index);
12828 /* If the register is set or already dead at PLACE, we needn't do
12829 anything with this note if it is still a REG_DEAD note.
12830 We can here if it is set at all, not if is it totally replace,
12831 which is what `dead_or_set_p' checks, so also check for it being
12832 set partially. */
12834 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12836 unsigned int regno = REGNO (XEXP (note, 0));
12838 /* Similarly, if the instruction on which we want to place
12839 the note is a noop, we'll need do a global live update
12840 after we remove them in delete_noop_moves. */
12841 if (noop_move_p (place))
12842 SET_BIT (refresh_blocks, this_basic_block->index);
12844 if (dead_or_set_p (place, XEXP (note, 0))
12845 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12847 /* Unless the register previously died in PLACE, clear
12848 reg_last_death. [I no longer understand why this is
12849 being done.] */
12850 if (reg_last_death[regno] != place)
12851 reg_last_death[regno] = 0;
12852 place = 0;
12854 else
12855 reg_last_death[regno] = place;
12857 /* If this is a death note for a hard reg that is occupying
12858 multiple registers, ensure that we are still using all
12859 parts of the object. If we find a piece of the object
12860 that is unused, we must arrange for an appropriate REG_DEAD
12861 note to be added for it. However, we can't just emit a USE
12862 and tag the note to it, since the register might actually
12863 be dead; so we recourse, and the recursive call then finds
12864 the previous insn that used this register. */
12866 if (place && regno < FIRST_PSEUDO_REGISTER
12867 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12869 unsigned int endregno
12870 = regno + HARD_REGNO_NREGS (regno,
12871 GET_MODE (XEXP (note, 0)));
12872 int all_used = 1;
12873 unsigned int i;
12875 for (i = regno; i < endregno; i++)
12876 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12877 && ! find_regno_fusage (place, USE, i))
12878 || dead_or_set_regno_p (place, i))
12879 all_used = 0;
12881 if (! all_used)
12883 /* Put only REG_DEAD notes for pieces that are
12884 not already dead or set. */
12886 for (i = regno; i < endregno;
12887 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12889 rtx piece = regno_reg_rtx[i];
12890 basic_block bb = this_basic_block;
12892 if (! dead_or_set_p (place, piece)
12893 && ! reg_bitfield_target_p (piece,
12894 PATTERN (place)))
12896 rtx new_note
12897 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12899 distribute_notes (new_note, place, place,
12900 NULL_RTX);
12902 else if (! refers_to_regno_p (i, i + 1,
12903 PATTERN (place), 0)
12904 && ! find_regno_fusage (place, USE, i))
12905 for (tem = PREV_INSN (place); ;
12906 tem = PREV_INSN (tem))
12908 if (! INSN_P (tem))
12910 if (tem == bb->head)
12912 SET_BIT (refresh_blocks,
12913 this_basic_block->index);
12914 break;
12916 continue;
12918 if (dead_or_set_p (tem, piece)
12919 || reg_bitfield_target_p (piece,
12920 PATTERN (tem)))
12922 REG_NOTES (tem)
12923 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12924 REG_NOTES (tem));
12925 break;
12931 place = 0;
12935 break;
12937 default:
12938 /* Any other notes should not be present at this point in the
12939 compilation. */
12940 abort ();
12943 if (place)
12945 XEXP (note, 1) = REG_NOTES (place);
12946 REG_NOTES (place) = note;
12948 else if ((REG_NOTE_KIND (note) == REG_DEAD
12949 || REG_NOTE_KIND (note) == REG_UNUSED)
12950 && GET_CODE (XEXP (note, 0)) == REG)
12951 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12953 if (place2)
12955 if ((REG_NOTE_KIND (note) == REG_DEAD
12956 || REG_NOTE_KIND (note) == REG_UNUSED)
12957 && GET_CODE (XEXP (note, 0)) == REG)
12958 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12960 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12961 REG_NOTE_KIND (note),
12962 XEXP (note, 0),
12963 REG_NOTES (place2));
12968 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12969 I3, I2, and I1 to new locations. This is also called in one case to
12970 add a link pointing at I3 when I3's destination is changed. */
12972 static void
12973 distribute_links (rtx links)
12975 rtx link, next_link;
12977 for (link = links; link; link = next_link)
12979 rtx place = 0;
12980 rtx insn;
12981 rtx set, reg;
12983 next_link = XEXP (link, 1);
12985 /* If the insn that this link points to is a NOTE or isn't a single
12986 set, ignore it. In the latter case, it isn't clear what we
12987 can do other than ignore the link, since we can't tell which
12988 register it was for. Such links wouldn't be used by combine
12989 anyway.
12991 It is not possible for the destination of the target of the link to
12992 have been changed by combine. The only potential of this is if we
12993 replace I3, I2, and I1 by I3 and I2. But in that case the
12994 destination of I2 also remains unchanged. */
12996 if (GET_CODE (XEXP (link, 0)) == NOTE
12997 || (set = single_set (XEXP (link, 0))) == 0)
12998 continue;
13000 reg = SET_DEST (set);
13001 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13002 || GET_CODE (reg) == SIGN_EXTRACT
13003 || GET_CODE (reg) == STRICT_LOW_PART)
13004 reg = XEXP (reg, 0);
13006 /* A LOG_LINK is defined as being placed on the first insn that uses
13007 a register and points to the insn that sets the register. Start
13008 searching at the next insn after the target of the link and stop
13009 when we reach a set of the register or the end of the basic block.
13011 Note that this correctly handles the link that used to point from
13012 I3 to I2. Also note that not much searching is typically done here
13013 since most links don't point very far away. */
13015 for (insn = NEXT_INSN (XEXP (link, 0));
13016 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13017 || this_basic_block->next_bb->head != insn));
13018 insn = NEXT_INSN (insn))
13019 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13021 if (reg_referenced_p (reg, PATTERN (insn)))
13022 place = insn;
13023 break;
13025 else if (GET_CODE (insn) == CALL_INSN
13026 && find_reg_fusage (insn, USE, reg))
13028 place = insn;
13029 break;
13032 /* If we found a place to put the link, place it there unless there
13033 is already a link to the same insn as LINK at that point. */
13035 if (place)
13037 rtx link2;
13039 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
13040 if (XEXP (link2, 0) == XEXP (link, 0))
13041 break;
13043 if (link2 == 0)
13045 XEXP (link, 1) = LOG_LINKS (place);
13046 LOG_LINKS (place) = link;
13048 /* Set added_links_insn to the earliest insn we added a
13049 link to. */
13050 if (added_links_insn == 0
13051 || INSN_CUID (added_links_insn) > INSN_CUID (place))
13052 added_links_insn = place;
13058 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
13060 static int
13061 insn_cuid (rtx insn)
13063 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
13064 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
13065 insn = NEXT_INSN (insn);
13067 if (INSN_UID (insn) > max_uid_cuid)
13068 abort ();
13070 return INSN_CUID (insn);
13073 void
13074 dump_combine_stats (FILE *file)
13076 fnotice
13077 (file,
13078 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13079 combine_attempts, combine_merges, combine_extras, combine_successes);
13082 void
13083 dump_combine_total_stats (FILE *file)
13085 fnotice
13086 (file,
13087 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13088 total_attempts, total_merges, total_extras, total_successes);