Convert nonlocal_goto_handler_labels from an EXPR_LIST to an INSN_LIST
[official-gcc.git] / gcc / rtlanal.c
blob21de0adbdd7c27a610b1c16c2401dcb0d00a3b24
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "insn-config.h"
29 #include "recog.h"
30 #include "target.h"
31 #include "output.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "regs.h"
35 #include "function.h"
36 #include "df.h"
37 #include "tree.h"
38 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
39 #include "addresses.h"
40 #include "rtl-iter.h"
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int computed_jump_p_1 (const_rtx);
47 static void parms_set (rtx, const_rtx, void *);
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
50 const_rtx, enum machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
53 const_rtx, enum machine_mode,
54 unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
56 enum machine_mode,
57 unsigned int);
58 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
59 enum machine_mode, unsigned int);
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62 -1 if a code has no such operand. */
63 static int non_rtx_starting_operands[NUM_RTX_CODE];
65 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
66 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
68 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
69 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
70 SIGN_EXTEND then while narrowing we also have to enforce the
71 representation and sign-extend the value to mode DESTINATION_REP.
73 If the value is already sign-extended to DESTINATION_REP mode we
74 can just switch to DESTINATION mode on it. For each pair of
75 integral modes SOURCE and DESTINATION, when truncating from SOURCE
76 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
77 contains the number of high-order bits in SOURCE that have to be
78 copies of the sign-bit so that we can do this mode-switch to
79 DESTINATION. */
81 static unsigned int
82 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
84 /* Store X into index I of ARRAY. ARRAY is known to have at least I
85 elements. Return the new base of ARRAY. */
87 template <typename T>
88 typename T::value_type *
89 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
90 value_type *base,
91 size_t i, value_type x)
93 if (base == array.stack)
95 if (i < LOCAL_ELEMS)
97 base[i] = x;
98 return base;
100 gcc_checking_assert (i == LOCAL_ELEMS);
101 vec_safe_grow (array.heap, i + 1);
102 base = array.heap->address ();
103 memcpy (base, array.stack, sizeof (array.stack));
104 base[LOCAL_ELEMS] = x;
105 return base;
107 unsigned int length = array.heap->length ();
108 if (length > i)
110 gcc_checking_assert (base == array.heap->address ());
111 base[i] = x;
112 return base;
114 else
116 gcc_checking_assert (i == length);
117 vec_safe_push (array.heap, x);
118 return array.heap->address ();
122 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
123 number of elements added to the worklist. */
125 template <typename T>
126 size_t
127 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
128 value_type *base,
129 size_t end, rtx_type x)
131 const char *format = GET_RTX_FORMAT (GET_CODE (x));
132 size_t orig_end = end;
133 for (int i = 0; format[i]; ++i)
134 if (format[i] == 'e')
136 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
137 if (__builtin_expect (end < LOCAL_ELEMS, true))
138 base[end++] = subx;
139 else
140 base = add_single_to_queue (array, base, end++, subx);
142 else if (format[i] == 'E')
144 int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
145 rtx *vec = x->u.fld[i].rt_rtvec->elem;
146 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
147 for (int j = 0; j < length; j++)
148 base[end++] = T::get_value (vec[j]);
149 else
150 for (int j = 0; j < length; j++)
151 base = add_single_to_queue (array, base, end++,
152 T::get_value (vec[j]));
154 return end - orig_end;
157 template <typename T>
158 void
159 generic_subrtx_iterator <T>::free_array (array_type &array)
161 vec_free (array.heap);
164 template <typename T>
165 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
167 template class generic_subrtx_iterator <const_rtx_accessor>;
168 template class generic_subrtx_iterator <rtx_var_accessor>;
169 template class generic_subrtx_iterator <rtx_ptr_accessor>;
171 /* Return 1 if the value of X is unstable
172 (would be different at a different point in the program).
173 The frame pointer, arg pointer, etc. are considered stable
174 (within one function) and so is anything marked `unchanging'. */
177 rtx_unstable_p (const_rtx x)
179 const RTX_CODE code = GET_CODE (x);
180 int i;
181 const char *fmt;
183 switch (code)
185 case MEM:
186 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
188 case CONST:
189 CASE_CONST_ANY:
190 case SYMBOL_REF:
191 case LABEL_REF:
192 return 0;
194 case REG:
195 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
196 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
197 /* The arg pointer varies if it is not a fixed register. */
198 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
199 return 0;
200 /* ??? When call-clobbered, the value is stable modulo the restore
201 that must happen after a call. This currently screws up local-alloc
202 into believing that the restore is not needed. */
203 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
204 return 0;
205 return 1;
207 case ASM_OPERANDS:
208 if (MEM_VOLATILE_P (x))
209 return 1;
211 /* Fall through. */
213 default:
214 break;
217 fmt = GET_RTX_FORMAT (code);
218 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
219 if (fmt[i] == 'e')
221 if (rtx_unstable_p (XEXP (x, i)))
222 return 1;
224 else if (fmt[i] == 'E')
226 int j;
227 for (j = 0; j < XVECLEN (x, i); j++)
228 if (rtx_unstable_p (XVECEXP (x, i, j)))
229 return 1;
232 return 0;
235 /* Return 1 if X has a value that can vary even between two
236 executions of the program. 0 means X can be compared reliably
237 against certain constants or near-constants.
238 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
239 zero, we are slightly more conservative.
240 The frame pointer and the arg pointer are considered constant. */
242 bool
243 rtx_varies_p (const_rtx x, bool for_alias)
245 RTX_CODE code;
246 int i;
247 const char *fmt;
249 if (!x)
250 return 0;
252 code = GET_CODE (x);
253 switch (code)
255 case MEM:
256 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
258 case CONST:
259 CASE_CONST_ANY:
260 case SYMBOL_REF:
261 case LABEL_REF:
262 return 0;
264 case REG:
265 /* Note that we have to test for the actual rtx used for the frame
266 and arg pointers and not just the register number in case we have
267 eliminated the frame and/or arg pointer and are using it
268 for pseudos. */
269 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
270 /* The arg pointer varies if it is not a fixed register. */
271 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
272 return 0;
273 if (x == pic_offset_table_rtx
274 /* ??? When call-clobbered, the value is stable modulo the restore
275 that must happen after a call. This currently screws up
276 local-alloc into believing that the restore is not needed, so we
277 must return 0 only if we are called from alias analysis. */
278 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
279 return 0;
280 return 1;
282 case LO_SUM:
283 /* The operand 0 of a LO_SUM is considered constant
284 (in fact it is related specifically to operand 1)
285 during alias analysis. */
286 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
287 || rtx_varies_p (XEXP (x, 1), for_alias);
289 case ASM_OPERANDS:
290 if (MEM_VOLATILE_P (x))
291 return 1;
293 /* Fall through. */
295 default:
296 break;
299 fmt = GET_RTX_FORMAT (code);
300 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
301 if (fmt[i] == 'e')
303 if (rtx_varies_p (XEXP (x, i), for_alias))
304 return 1;
306 else if (fmt[i] == 'E')
308 int j;
309 for (j = 0; j < XVECLEN (x, i); j++)
310 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
311 return 1;
314 return 0;
317 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
318 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
319 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
320 references on strict alignment machines. */
322 static int
323 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
324 enum machine_mode mode, bool unaligned_mems)
326 enum rtx_code code = GET_CODE (x);
328 /* The offset must be a multiple of the mode size if we are considering
329 unaligned memory references on strict alignment machines. */
330 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
332 HOST_WIDE_INT actual_offset = offset;
334 #ifdef SPARC_STACK_BOUNDARY_HACK
335 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
336 the real alignment of %sp. However, when it does this, the
337 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
338 if (SPARC_STACK_BOUNDARY_HACK
339 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
340 actual_offset -= STACK_POINTER_OFFSET;
341 #endif
343 if (actual_offset % GET_MODE_SIZE (mode) != 0)
344 return 1;
347 switch (code)
349 case SYMBOL_REF:
350 if (SYMBOL_REF_WEAK (x))
351 return 1;
352 if (!CONSTANT_POOL_ADDRESS_P (x))
354 tree decl;
355 HOST_WIDE_INT decl_size;
357 if (offset < 0)
358 return 1;
359 if (size == 0)
360 size = GET_MODE_SIZE (mode);
361 if (size == 0)
362 return offset != 0;
364 /* If the size of the access or of the symbol is unknown,
365 assume the worst. */
366 decl = SYMBOL_REF_DECL (x);
368 /* Else check that the access is in bounds. TODO: restructure
369 expr_size/tree_expr_size/int_expr_size and just use the latter. */
370 if (!decl)
371 decl_size = -1;
372 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
373 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
374 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
375 : -1);
376 else if (TREE_CODE (decl) == STRING_CST)
377 decl_size = TREE_STRING_LENGTH (decl);
378 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
379 decl_size = int_size_in_bytes (TREE_TYPE (decl));
380 else
381 decl_size = -1;
383 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
386 return 0;
388 case LABEL_REF:
389 return 0;
391 case REG:
392 /* Stack references are assumed not to trap, but we need to deal with
393 nonsensical offsets. */
394 if (x == frame_pointer_rtx)
396 HOST_WIDE_INT adj_offset = offset - STARTING_FRAME_OFFSET;
397 if (size == 0)
398 size = GET_MODE_SIZE (mode);
399 if (FRAME_GROWS_DOWNWARD)
401 if (adj_offset < frame_offset || adj_offset + size - 1 >= 0)
402 return 1;
404 else
406 if (adj_offset < 0 || adj_offset + size - 1 >= frame_offset)
407 return 1;
409 return 0;
411 /* ??? Need to add a similar guard for nonsensical offsets. */
412 if (x == hard_frame_pointer_rtx
413 || x == stack_pointer_rtx
414 /* The arg pointer varies if it is not a fixed register. */
415 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
416 return 0;
417 /* All of the virtual frame registers are stack references. */
418 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
419 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
420 return 0;
421 return 1;
423 case CONST:
424 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
425 mode, unaligned_mems);
427 case PLUS:
428 /* An address is assumed not to trap if:
429 - it is the pic register plus a constant. */
430 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
431 return 0;
433 /* - or it is an address that can't trap plus a constant integer. */
434 if (CONST_INT_P (XEXP (x, 1))
435 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
436 size, mode, unaligned_mems))
437 return 0;
439 return 1;
441 case LO_SUM:
442 case PRE_MODIFY:
443 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
444 mode, unaligned_mems);
446 case PRE_DEC:
447 case PRE_INC:
448 case POST_DEC:
449 case POST_INC:
450 case POST_MODIFY:
451 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
452 mode, unaligned_mems);
454 default:
455 break;
458 /* If it isn't one of the case above, it can cause a trap. */
459 return 1;
462 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
465 rtx_addr_can_trap_p (const_rtx x)
467 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
470 /* Return true if X is an address that is known to not be zero. */
472 bool
473 nonzero_address_p (const_rtx x)
475 const enum rtx_code code = GET_CODE (x);
477 switch (code)
479 case SYMBOL_REF:
480 return !SYMBOL_REF_WEAK (x);
482 case LABEL_REF:
483 return true;
485 case REG:
486 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
487 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
488 || x == stack_pointer_rtx
489 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
490 return true;
491 /* All of the virtual frame registers are stack references. */
492 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
493 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
494 return true;
495 return false;
497 case CONST:
498 return nonzero_address_p (XEXP (x, 0));
500 case PLUS:
501 /* Handle PIC references. */
502 if (XEXP (x, 0) == pic_offset_table_rtx
503 && CONSTANT_P (XEXP (x, 1)))
504 return true;
505 return false;
507 case PRE_MODIFY:
508 /* Similar to the above; allow positive offsets. Further, since
509 auto-inc is only allowed in memories, the register must be a
510 pointer. */
511 if (CONST_INT_P (XEXP (x, 1))
512 && INTVAL (XEXP (x, 1)) > 0)
513 return true;
514 return nonzero_address_p (XEXP (x, 0));
516 case PRE_INC:
517 /* Similarly. Further, the offset is always positive. */
518 return true;
520 case PRE_DEC:
521 case POST_DEC:
522 case POST_INC:
523 case POST_MODIFY:
524 return nonzero_address_p (XEXP (x, 0));
526 case LO_SUM:
527 return nonzero_address_p (XEXP (x, 1));
529 default:
530 break;
533 /* If it isn't one of the case above, might be zero. */
534 return false;
537 /* Return 1 if X refers to a memory location whose address
538 cannot be compared reliably with constant addresses,
539 or if X refers to a BLKmode memory object.
540 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
541 zero, we are slightly more conservative. */
543 bool
544 rtx_addr_varies_p (const_rtx x, bool for_alias)
546 enum rtx_code code;
547 int i;
548 const char *fmt;
550 if (x == 0)
551 return 0;
553 code = GET_CODE (x);
554 if (code == MEM)
555 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
557 fmt = GET_RTX_FORMAT (code);
558 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
559 if (fmt[i] == 'e')
561 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
562 return 1;
564 else if (fmt[i] == 'E')
566 int j;
567 for (j = 0; j < XVECLEN (x, i); j++)
568 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
569 return 1;
571 return 0;
574 /* Return the CALL in X if there is one. */
577 get_call_rtx_from (rtx x)
579 if (INSN_P (x))
580 x = PATTERN (x);
581 if (GET_CODE (x) == PARALLEL)
582 x = XVECEXP (x, 0, 0);
583 if (GET_CODE (x) == SET)
584 x = SET_SRC (x);
585 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
586 return x;
587 return NULL_RTX;
590 /* Return the value of the integer term in X, if one is apparent;
591 otherwise return 0.
592 Only obvious integer terms are detected.
593 This is used in cse.c with the `related_value' field. */
595 HOST_WIDE_INT
596 get_integer_term (const_rtx x)
598 if (GET_CODE (x) == CONST)
599 x = XEXP (x, 0);
601 if (GET_CODE (x) == MINUS
602 && CONST_INT_P (XEXP (x, 1)))
603 return - INTVAL (XEXP (x, 1));
604 if (GET_CODE (x) == PLUS
605 && CONST_INT_P (XEXP (x, 1)))
606 return INTVAL (XEXP (x, 1));
607 return 0;
610 /* If X is a constant, return the value sans apparent integer term;
611 otherwise return 0.
612 Only obvious integer terms are detected. */
615 get_related_value (const_rtx x)
617 if (GET_CODE (x) != CONST)
618 return 0;
619 x = XEXP (x, 0);
620 if (GET_CODE (x) == PLUS
621 && CONST_INT_P (XEXP (x, 1)))
622 return XEXP (x, 0);
623 else if (GET_CODE (x) == MINUS
624 && CONST_INT_P (XEXP (x, 1)))
625 return XEXP (x, 0);
626 return 0;
629 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
630 to somewhere in the same object or object_block as SYMBOL. */
632 bool
633 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
635 tree decl;
637 if (GET_CODE (symbol) != SYMBOL_REF)
638 return false;
640 if (offset == 0)
641 return true;
643 if (offset > 0)
645 if (CONSTANT_POOL_ADDRESS_P (symbol)
646 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
647 return true;
649 decl = SYMBOL_REF_DECL (symbol);
650 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
651 return true;
654 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
655 && SYMBOL_REF_BLOCK (symbol)
656 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
657 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
658 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
659 return true;
661 return false;
664 /* Split X into a base and a constant offset, storing them in *BASE_OUT
665 and *OFFSET_OUT respectively. */
667 void
668 split_const (rtx x, rtx *base_out, rtx *offset_out)
670 if (GET_CODE (x) == CONST)
672 x = XEXP (x, 0);
673 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
675 *base_out = XEXP (x, 0);
676 *offset_out = XEXP (x, 1);
677 return;
680 *base_out = x;
681 *offset_out = const0_rtx;
684 /* Return the number of places FIND appears within X. If COUNT_DEST is
685 zero, we do not count occurrences inside the destination of a SET. */
688 count_occurrences (const_rtx x, const_rtx find, int count_dest)
690 int i, j;
691 enum rtx_code code;
692 const char *format_ptr;
693 int count;
695 if (x == find)
696 return 1;
698 code = GET_CODE (x);
700 switch (code)
702 case REG:
703 CASE_CONST_ANY:
704 case SYMBOL_REF:
705 case CODE_LABEL:
706 case PC:
707 case CC0:
708 return 0;
710 case EXPR_LIST:
711 count = count_occurrences (XEXP (x, 0), find, count_dest);
712 if (XEXP (x, 1))
713 count += count_occurrences (XEXP (x, 1), find, count_dest);
714 return count;
716 case MEM:
717 if (MEM_P (find) && rtx_equal_p (x, find))
718 return 1;
719 break;
721 case SET:
722 if (SET_DEST (x) == find && ! count_dest)
723 return count_occurrences (SET_SRC (x), find, count_dest);
724 break;
726 default:
727 break;
730 format_ptr = GET_RTX_FORMAT (code);
731 count = 0;
733 for (i = 0; i < GET_RTX_LENGTH (code); i++)
735 switch (*format_ptr++)
737 case 'e':
738 count += count_occurrences (XEXP (x, i), find, count_dest);
739 break;
741 case 'E':
742 for (j = 0; j < XVECLEN (x, i); j++)
743 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
744 break;
747 return count;
751 /* Return TRUE if OP is a register or subreg of a register that
752 holds an unsigned quantity. Otherwise, return FALSE. */
754 bool
755 unsigned_reg_p (rtx op)
757 if (REG_P (op)
758 && REG_EXPR (op)
759 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
760 return true;
762 if (GET_CODE (op) == SUBREG
763 && SUBREG_PROMOTED_SIGN (op))
764 return true;
766 return false;
770 /* Nonzero if register REG appears somewhere within IN.
771 Also works if REG is not a register; in this case it checks
772 for a subexpression of IN that is Lisp "equal" to REG. */
775 reg_mentioned_p (const_rtx reg, const_rtx in)
777 const char *fmt;
778 int i;
779 enum rtx_code code;
781 if (in == 0)
782 return 0;
784 if (reg == in)
785 return 1;
787 if (GET_CODE (in) == LABEL_REF)
788 return reg == XEXP (in, 0);
790 code = GET_CODE (in);
792 switch (code)
794 /* Compare registers by number. */
795 case REG:
796 return REG_P (reg) && REGNO (in) == REGNO (reg);
798 /* These codes have no constituent expressions
799 and are unique. */
800 case SCRATCH:
801 case CC0:
802 case PC:
803 return 0;
805 CASE_CONST_ANY:
806 /* These are kept unique for a given value. */
807 return 0;
809 default:
810 break;
813 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
814 return 1;
816 fmt = GET_RTX_FORMAT (code);
818 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
820 if (fmt[i] == 'E')
822 int j;
823 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
824 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
825 return 1;
827 else if (fmt[i] == 'e'
828 && reg_mentioned_p (reg, XEXP (in, i)))
829 return 1;
831 return 0;
834 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
835 no CODE_LABEL insn. */
838 no_labels_between_p (const_rtx beg, const_rtx end)
840 rtx p;
841 if (beg == end)
842 return 0;
843 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
844 if (LABEL_P (p))
845 return 0;
846 return 1;
849 /* Nonzero if register REG is used in an insn between
850 FROM_INSN and TO_INSN (exclusive of those two). */
853 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
855 rtx_insn *insn;
857 if (from_insn == to_insn)
858 return 0;
860 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
861 if (NONDEBUG_INSN_P (insn)
862 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
863 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
864 return 1;
865 return 0;
868 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
869 is entirely replaced by a new value and the only use is as a SET_DEST,
870 we do not consider it a reference. */
873 reg_referenced_p (const_rtx x, const_rtx body)
875 int i;
877 switch (GET_CODE (body))
879 case SET:
880 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
881 return 1;
883 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
884 of a REG that occupies all of the REG, the insn references X if
885 it is mentioned in the destination. */
886 if (GET_CODE (SET_DEST (body)) != CC0
887 && GET_CODE (SET_DEST (body)) != PC
888 && !REG_P (SET_DEST (body))
889 && ! (GET_CODE (SET_DEST (body)) == SUBREG
890 && REG_P (SUBREG_REG (SET_DEST (body)))
891 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
892 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
893 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
894 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
895 && reg_overlap_mentioned_p (x, SET_DEST (body)))
896 return 1;
897 return 0;
899 case ASM_OPERANDS:
900 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
901 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
902 return 1;
903 return 0;
905 case CALL:
906 case USE:
907 case IF_THEN_ELSE:
908 return reg_overlap_mentioned_p (x, body);
910 case TRAP_IF:
911 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
913 case PREFETCH:
914 return reg_overlap_mentioned_p (x, XEXP (body, 0));
916 case UNSPEC:
917 case UNSPEC_VOLATILE:
918 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
919 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
920 return 1;
921 return 0;
923 case PARALLEL:
924 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
925 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
926 return 1;
927 return 0;
929 case CLOBBER:
930 if (MEM_P (XEXP (body, 0)))
931 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
932 return 1;
933 return 0;
935 case COND_EXEC:
936 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
937 return 1;
938 return reg_referenced_p (x, COND_EXEC_CODE (body));
940 default:
941 return 0;
945 /* Nonzero if register REG is set or clobbered in an insn between
946 FROM_INSN and TO_INSN (exclusive of those two). */
949 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
951 const rtx_insn *insn;
953 if (from_insn == to_insn)
954 return 0;
956 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
957 if (INSN_P (insn) && reg_set_p (reg, insn))
958 return 1;
959 return 0;
962 /* Internals of reg_set_between_p. */
964 reg_set_p (const_rtx reg, const_rtx insn)
966 /* We can be passed an insn or part of one. If we are passed an insn,
967 check if a side-effect of the insn clobbers REG. */
968 if (INSN_P (insn)
969 && (FIND_REG_INC_NOTE (insn, reg)
970 || (CALL_P (insn)
971 && ((REG_P (reg)
972 && REGNO (reg) < FIRST_PSEUDO_REGISTER
973 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
974 GET_MODE (reg), REGNO (reg)))
975 || MEM_P (reg)
976 || find_reg_fusage (insn, CLOBBER, reg)))))
977 return 1;
979 return set_of (reg, insn) != NULL_RTX;
982 /* Similar to reg_set_between_p, but check all registers in X. Return 0
983 only if none of them are modified between START and END. Return 1 if
984 X contains a MEM; this routine does use memory aliasing. */
987 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
989 const enum rtx_code code = GET_CODE (x);
990 const char *fmt;
991 int i, j;
992 rtx_insn *insn;
994 if (start == end)
995 return 0;
997 switch (code)
999 CASE_CONST_ANY:
1000 case CONST:
1001 case SYMBOL_REF:
1002 case LABEL_REF:
1003 return 0;
1005 case PC:
1006 case CC0:
1007 return 1;
1009 case MEM:
1010 if (modified_between_p (XEXP (x, 0), start, end))
1011 return 1;
1012 if (MEM_READONLY_P (x))
1013 return 0;
1014 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1015 if (memory_modified_in_insn_p (x, insn))
1016 return 1;
1017 return 0;
1018 break;
1020 case REG:
1021 return reg_set_between_p (x, start, end);
1023 default:
1024 break;
1027 fmt = GET_RTX_FORMAT (code);
1028 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1030 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1031 return 1;
1033 else if (fmt[i] == 'E')
1034 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1035 if (modified_between_p (XVECEXP (x, i, j), start, end))
1036 return 1;
1039 return 0;
1042 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1043 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1044 does use memory aliasing. */
1047 modified_in_p (const_rtx x, const_rtx insn)
1049 const enum rtx_code code = GET_CODE (x);
1050 const char *fmt;
1051 int i, j;
1053 switch (code)
1055 CASE_CONST_ANY:
1056 case CONST:
1057 case SYMBOL_REF:
1058 case LABEL_REF:
1059 return 0;
1061 case PC:
1062 case CC0:
1063 return 1;
1065 case MEM:
1066 if (modified_in_p (XEXP (x, 0), insn))
1067 return 1;
1068 if (MEM_READONLY_P (x))
1069 return 0;
1070 if (memory_modified_in_insn_p (x, insn))
1071 return 1;
1072 return 0;
1073 break;
1075 case REG:
1076 return reg_set_p (x, insn);
1078 default:
1079 break;
1082 fmt = GET_RTX_FORMAT (code);
1083 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1085 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1086 return 1;
1088 else if (fmt[i] == 'E')
1089 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1090 if (modified_in_p (XVECEXP (x, i, j), insn))
1091 return 1;
1094 return 0;
1097 /* Helper function for set_of. */
1098 struct set_of_data
1100 const_rtx found;
1101 const_rtx pat;
1104 static void
1105 set_of_1 (rtx x, const_rtx pat, void *data1)
1107 struct set_of_data *const data = (struct set_of_data *) (data1);
1108 if (rtx_equal_p (x, data->pat)
1109 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1110 data->found = pat;
1113 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1114 (either directly or via STRICT_LOW_PART and similar modifiers). */
1115 const_rtx
1116 set_of (const_rtx pat, const_rtx insn)
1118 struct set_of_data data;
1119 data.found = NULL_RTX;
1120 data.pat = pat;
1121 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1122 return data.found;
1125 /* Add all hard register in X to *PSET. */
1126 void
1127 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1129 subrtx_iterator::array_type array;
1130 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1132 const_rtx x = *iter;
1133 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1134 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1138 /* This function, called through note_stores, collects sets and
1139 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1140 by DATA. */
1141 void
1142 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1144 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1145 if (REG_P (x) && HARD_REGISTER_P (x))
1146 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1149 /* Examine INSN, and compute the set of hard registers written by it.
1150 Store it in *PSET. Should only be called after reload. */
1151 void
1152 find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset, bool implicit)
1154 rtx link;
1156 CLEAR_HARD_REG_SET (*pset);
1157 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1158 if (CALL_P (insn))
1160 if (implicit)
1161 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1163 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1164 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1166 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1167 if (REG_NOTE_KIND (link) == REG_INC)
1168 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1171 /* Like record_hard_reg_sets, but called through note_uses. */
1172 void
1173 record_hard_reg_uses (rtx *px, void *data)
1175 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1178 /* Given an INSN, return a SET expression if this insn has only a single SET.
1179 It may also have CLOBBERs, USEs, or SET whose output
1180 will not be used, which we ignore. */
1183 single_set_2 (const_rtx insn, const_rtx pat)
1185 rtx set = NULL;
1186 int set_verified = 1;
1187 int i;
1189 if (GET_CODE (pat) == PARALLEL)
1191 for (i = 0; i < XVECLEN (pat, 0); i++)
1193 rtx sub = XVECEXP (pat, 0, i);
1194 switch (GET_CODE (sub))
1196 case USE:
1197 case CLOBBER:
1198 break;
1200 case SET:
1201 /* We can consider insns having multiple sets, where all
1202 but one are dead as single set insns. In common case
1203 only single set is present in the pattern so we want
1204 to avoid checking for REG_UNUSED notes unless necessary.
1206 When we reach set first time, we just expect this is
1207 the single set we are looking for and only when more
1208 sets are found in the insn, we check them. */
1209 if (!set_verified)
1211 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1212 && !side_effects_p (set))
1213 set = NULL;
1214 else
1215 set_verified = 1;
1217 if (!set)
1218 set = sub, set_verified = 0;
1219 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1220 || side_effects_p (sub))
1221 return NULL_RTX;
1222 break;
1224 default:
1225 return NULL_RTX;
1229 return set;
1232 /* Given an INSN, return nonzero if it has more than one SET, else return
1233 zero. */
1236 multiple_sets (const_rtx insn)
1238 int found;
1239 int i;
1241 /* INSN must be an insn. */
1242 if (! INSN_P (insn))
1243 return 0;
1245 /* Only a PARALLEL can have multiple SETs. */
1246 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1248 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1249 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1251 /* If we have already found a SET, then return now. */
1252 if (found)
1253 return 1;
1254 else
1255 found = 1;
1259 /* Either zero or one SET. */
1260 return 0;
1263 /* Return nonzero if the destination of SET equals the source
1264 and there are no side effects. */
1267 set_noop_p (const_rtx set)
1269 rtx src = SET_SRC (set);
1270 rtx dst = SET_DEST (set);
1272 if (dst == pc_rtx && src == pc_rtx)
1273 return 1;
1275 if (MEM_P (dst) && MEM_P (src))
1276 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1278 if (GET_CODE (dst) == ZERO_EXTRACT)
1279 return rtx_equal_p (XEXP (dst, 0), src)
1280 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1281 && !side_effects_p (src);
1283 if (GET_CODE (dst) == STRICT_LOW_PART)
1284 dst = XEXP (dst, 0);
1286 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1288 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1289 return 0;
1290 src = SUBREG_REG (src);
1291 dst = SUBREG_REG (dst);
1294 /* It is a NOOP if destination overlaps with selected src vector
1295 elements. */
1296 if (GET_CODE (src) == VEC_SELECT
1297 && REG_P (XEXP (src, 0)) && REG_P (dst)
1298 && HARD_REGISTER_P (XEXP (src, 0))
1299 && HARD_REGISTER_P (dst))
1301 int i;
1302 rtx par = XEXP (src, 1);
1303 rtx src0 = XEXP (src, 0);
1304 int c0 = INTVAL (XVECEXP (par, 0, 0));
1305 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1307 for (i = 1; i < XVECLEN (par, 0); i++)
1308 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1309 return 0;
1310 return
1311 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1312 offset, GET_MODE (dst)) == (int) REGNO (dst);
1315 return (REG_P (src) && REG_P (dst)
1316 && REGNO (src) == REGNO (dst));
1319 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1320 value to itself. */
1323 noop_move_p (const_rtx insn)
1325 rtx pat = PATTERN (insn);
1327 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1328 return 1;
1330 /* Insns carrying these notes are useful later on. */
1331 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1332 return 0;
1334 /* Check the code to be executed for COND_EXEC. */
1335 if (GET_CODE (pat) == COND_EXEC)
1336 pat = COND_EXEC_CODE (pat);
1338 if (GET_CODE (pat) == SET && set_noop_p (pat))
1339 return 1;
1341 if (GET_CODE (pat) == PARALLEL)
1343 int i;
1344 /* If nothing but SETs of registers to themselves,
1345 this insn can also be deleted. */
1346 for (i = 0; i < XVECLEN (pat, 0); i++)
1348 rtx tem = XVECEXP (pat, 0, i);
1350 if (GET_CODE (tem) == USE
1351 || GET_CODE (tem) == CLOBBER)
1352 continue;
1354 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1355 return 0;
1358 return 1;
1360 return 0;
1364 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1365 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1366 If the object was modified, if we hit a partial assignment to X, or hit a
1367 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1368 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1369 be the src. */
1372 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1374 rtx p;
1376 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1377 p = PREV_INSN (p))
1378 if (INSN_P (p))
1380 rtx set = single_set (p);
1381 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1383 if (set && rtx_equal_p (x, SET_DEST (set)))
1385 rtx src = SET_SRC (set);
1387 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1388 src = XEXP (note, 0);
1390 if ((valid_to == NULL_RTX
1391 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1392 /* Reject hard registers because we don't usually want
1393 to use them; we'd rather use a pseudo. */
1394 && (! (REG_P (src)
1395 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1397 *pinsn = p;
1398 return src;
1402 /* If set in non-simple way, we don't have a value. */
1403 if (reg_set_p (x, p))
1404 break;
1407 return x;
1410 /* Return nonzero if register in range [REGNO, ENDREGNO)
1411 appears either explicitly or implicitly in X
1412 other than being stored into.
1414 References contained within the substructure at LOC do not count.
1415 LOC may be zero, meaning don't ignore anything. */
1418 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1419 rtx *loc)
1421 int i;
1422 unsigned int x_regno;
1423 RTX_CODE code;
1424 const char *fmt;
1426 repeat:
1427 /* The contents of a REG_NONNEG note is always zero, so we must come here
1428 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1429 if (x == 0)
1430 return 0;
1432 code = GET_CODE (x);
1434 switch (code)
1436 case REG:
1437 x_regno = REGNO (x);
1439 /* If we modifying the stack, frame, or argument pointer, it will
1440 clobber a virtual register. In fact, we could be more precise,
1441 but it isn't worth it. */
1442 if ((x_regno == STACK_POINTER_REGNUM
1443 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1444 || x_regno == ARG_POINTER_REGNUM
1445 #endif
1446 || x_regno == FRAME_POINTER_REGNUM)
1447 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1448 return 1;
1450 return endregno > x_regno && regno < END_REGNO (x);
1452 case SUBREG:
1453 /* If this is a SUBREG of a hard reg, we can see exactly which
1454 registers are being modified. Otherwise, handle normally. */
1455 if (REG_P (SUBREG_REG (x))
1456 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1458 unsigned int inner_regno = subreg_regno (x);
1459 unsigned int inner_endregno
1460 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1461 ? subreg_nregs (x) : 1);
1463 return endregno > inner_regno && regno < inner_endregno;
1465 break;
1467 case CLOBBER:
1468 case SET:
1469 if (&SET_DEST (x) != loc
1470 /* Note setting a SUBREG counts as referring to the REG it is in for
1471 a pseudo but not for hard registers since we can
1472 treat each word individually. */
1473 && ((GET_CODE (SET_DEST (x)) == SUBREG
1474 && loc != &SUBREG_REG (SET_DEST (x))
1475 && REG_P (SUBREG_REG (SET_DEST (x)))
1476 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1477 && refers_to_regno_p (regno, endregno,
1478 SUBREG_REG (SET_DEST (x)), loc))
1479 || (!REG_P (SET_DEST (x))
1480 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1481 return 1;
1483 if (code == CLOBBER || loc == &SET_SRC (x))
1484 return 0;
1485 x = SET_SRC (x);
1486 goto repeat;
1488 default:
1489 break;
1492 /* X does not match, so try its subexpressions. */
1494 fmt = GET_RTX_FORMAT (code);
1495 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1497 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1499 if (i == 0)
1501 x = XEXP (x, 0);
1502 goto repeat;
1504 else
1505 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1506 return 1;
1508 else if (fmt[i] == 'E')
1510 int j;
1511 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1512 if (loc != &XVECEXP (x, i, j)
1513 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1514 return 1;
1517 return 0;
1520 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1521 we check if any register number in X conflicts with the relevant register
1522 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1523 contains a MEM (we don't bother checking for memory addresses that can't
1524 conflict because we expect this to be a rare case. */
1527 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1529 unsigned int regno, endregno;
1531 /* If either argument is a constant, then modifying X can not
1532 affect IN. Here we look at IN, we can profitably combine
1533 CONSTANT_P (x) with the switch statement below. */
1534 if (CONSTANT_P (in))
1535 return 0;
1537 recurse:
1538 switch (GET_CODE (x))
1540 case STRICT_LOW_PART:
1541 case ZERO_EXTRACT:
1542 case SIGN_EXTRACT:
1543 /* Overly conservative. */
1544 x = XEXP (x, 0);
1545 goto recurse;
1547 case SUBREG:
1548 regno = REGNO (SUBREG_REG (x));
1549 if (regno < FIRST_PSEUDO_REGISTER)
1550 regno = subreg_regno (x);
1551 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1552 ? subreg_nregs (x) : 1);
1553 goto do_reg;
1555 case REG:
1556 regno = REGNO (x);
1557 endregno = END_REGNO (x);
1558 do_reg:
1559 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1561 case MEM:
1563 const char *fmt;
1564 int i;
1566 if (MEM_P (in))
1567 return 1;
1569 fmt = GET_RTX_FORMAT (GET_CODE (in));
1570 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1571 if (fmt[i] == 'e')
1573 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1574 return 1;
1576 else if (fmt[i] == 'E')
1578 int j;
1579 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1580 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1581 return 1;
1584 return 0;
1587 case SCRATCH:
1588 case PC:
1589 case CC0:
1590 return reg_mentioned_p (x, in);
1592 case PARALLEL:
1594 int i;
1596 /* If any register in here refers to it we return true. */
1597 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1598 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1599 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1600 return 1;
1601 return 0;
1604 default:
1605 gcc_assert (CONSTANT_P (x));
1606 return 0;
1610 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1611 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1612 ignored by note_stores, but passed to FUN.
1614 FUN receives three arguments:
1615 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1616 2. the SET or CLOBBER rtx that does the store,
1617 3. the pointer DATA provided to note_stores.
1619 If the item being stored in or clobbered is a SUBREG of a hard register,
1620 the SUBREG will be passed. */
1622 void
1623 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1625 int i;
1627 if (GET_CODE (x) == COND_EXEC)
1628 x = COND_EXEC_CODE (x);
1630 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1632 rtx dest = SET_DEST (x);
1634 while ((GET_CODE (dest) == SUBREG
1635 && (!REG_P (SUBREG_REG (dest))
1636 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1637 || GET_CODE (dest) == ZERO_EXTRACT
1638 || GET_CODE (dest) == STRICT_LOW_PART)
1639 dest = XEXP (dest, 0);
1641 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1642 each of whose first operand is a register. */
1643 if (GET_CODE (dest) == PARALLEL)
1645 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1646 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1647 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1649 else
1650 (*fun) (dest, x, data);
1653 else if (GET_CODE (x) == PARALLEL)
1654 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1655 note_stores (XVECEXP (x, 0, i), fun, data);
1658 /* Like notes_stores, but call FUN for each expression that is being
1659 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1660 FUN for each expression, not any interior subexpressions. FUN receives a
1661 pointer to the expression and the DATA passed to this function.
1663 Note that this is not quite the same test as that done in reg_referenced_p
1664 since that considers something as being referenced if it is being
1665 partially set, while we do not. */
1667 void
1668 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1670 rtx body = *pbody;
1671 int i;
1673 switch (GET_CODE (body))
1675 case COND_EXEC:
1676 (*fun) (&COND_EXEC_TEST (body), data);
1677 note_uses (&COND_EXEC_CODE (body), fun, data);
1678 return;
1680 case PARALLEL:
1681 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1682 note_uses (&XVECEXP (body, 0, i), fun, data);
1683 return;
1685 case SEQUENCE:
1686 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1687 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1688 return;
1690 case USE:
1691 (*fun) (&XEXP (body, 0), data);
1692 return;
1694 case ASM_OPERANDS:
1695 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1696 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1697 return;
1699 case TRAP_IF:
1700 (*fun) (&TRAP_CONDITION (body), data);
1701 return;
1703 case PREFETCH:
1704 (*fun) (&XEXP (body, 0), data);
1705 return;
1707 case UNSPEC:
1708 case UNSPEC_VOLATILE:
1709 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1710 (*fun) (&XVECEXP (body, 0, i), data);
1711 return;
1713 case CLOBBER:
1714 if (MEM_P (XEXP (body, 0)))
1715 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1716 return;
1718 case SET:
1720 rtx dest = SET_DEST (body);
1722 /* For sets we replace everything in source plus registers in memory
1723 expression in store and operands of a ZERO_EXTRACT. */
1724 (*fun) (&SET_SRC (body), data);
1726 if (GET_CODE (dest) == ZERO_EXTRACT)
1728 (*fun) (&XEXP (dest, 1), data);
1729 (*fun) (&XEXP (dest, 2), data);
1732 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1733 dest = XEXP (dest, 0);
1735 if (MEM_P (dest))
1736 (*fun) (&XEXP (dest, 0), data);
1738 return;
1740 default:
1741 /* All the other possibilities never store. */
1742 (*fun) (pbody, data);
1743 return;
1747 /* Return nonzero if X's old contents don't survive after INSN.
1748 This will be true if X is (cc0) or if X is a register and
1749 X dies in INSN or because INSN entirely sets X.
1751 "Entirely set" means set directly and not through a SUBREG, or
1752 ZERO_EXTRACT, so no trace of the old contents remains.
1753 Likewise, REG_INC does not count.
1755 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1756 but for this use that makes no difference, since regs don't overlap
1757 during their lifetimes. Therefore, this function may be used
1758 at any time after deaths have been computed.
1760 If REG is a hard reg that occupies multiple machine registers, this
1761 function will only return 1 if each of those registers will be replaced
1762 by INSN. */
1765 dead_or_set_p (const_rtx insn, const_rtx x)
1767 unsigned int regno, end_regno;
1768 unsigned int i;
1770 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1771 if (GET_CODE (x) == CC0)
1772 return 1;
1774 gcc_assert (REG_P (x));
1776 regno = REGNO (x);
1777 end_regno = END_REGNO (x);
1778 for (i = regno; i < end_regno; i++)
1779 if (! dead_or_set_regno_p (insn, i))
1780 return 0;
1782 return 1;
1785 /* Return TRUE iff DEST is a register or subreg of a register and
1786 doesn't change the number of words of the inner register, and any
1787 part of the register is TEST_REGNO. */
1789 static bool
1790 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1792 unsigned int regno, endregno;
1794 if (GET_CODE (dest) == SUBREG
1795 && (((GET_MODE_SIZE (GET_MODE (dest))
1796 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1797 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1798 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1799 dest = SUBREG_REG (dest);
1801 if (!REG_P (dest))
1802 return false;
1804 regno = REGNO (dest);
1805 endregno = END_REGNO (dest);
1806 return (test_regno >= regno && test_regno < endregno);
1809 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1810 any member matches the covers_regno_no_parallel_p criteria. */
1812 static bool
1813 covers_regno_p (const_rtx dest, unsigned int test_regno)
1815 if (GET_CODE (dest) == PARALLEL)
1817 /* Some targets place small structures in registers for return
1818 values of functions, and those registers are wrapped in
1819 PARALLELs that we may see as the destination of a SET. */
1820 int i;
1822 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1824 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1825 if (inner != NULL_RTX
1826 && covers_regno_no_parallel_p (inner, test_regno))
1827 return true;
1830 return false;
1832 else
1833 return covers_regno_no_parallel_p (dest, test_regno);
1836 /* Utility function for dead_or_set_p to check an individual register. */
1839 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1841 const_rtx pattern;
1843 /* See if there is a death note for something that includes TEST_REGNO. */
1844 if (find_regno_note (insn, REG_DEAD, test_regno))
1845 return 1;
1847 if (CALL_P (insn)
1848 && find_regno_fusage (insn, CLOBBER, test_regno))
1849 return 1;
1851 pattern = PATTERN (insn);
1853 /* If a COND_EXEC is not executed, the value survives. */
1854 if (GET_CODE (pattern) == COND_EXEC)
1855 return 0;
1857 if (GET_CODE (pattern) == SET)
1858 return covers_regno_p (SET_DEST (pattern), test_regno);
1859 else if (GET_CODE (pattern) == PARALLEL)
1861 int i;
1863 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1865 rtx body = XVECEXP (pattern, 0, i);
1867 if (GET_CODE (body) == COND_EXEC)
1868 body = COND_EXEC_CODE (body);
1870 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1871 && covers_regno_p (SET_DEST (body), test_regno))
1872 return 1;
1876 return 0;
1879 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1880 If DATUM is nonzero, look for one whose datum is DATUM. */
1883 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1885 rtx link;
1887 gcc_checking_assert (insn);
1889 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1890 if (! INSN_P (insn))
1891 return 0;
1892 if (datum == 0)
1894 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1895 if (REG_NOTE_KIND (link) == kind)
1896 return link;
1897 return 0;
1900 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1901 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1902 return link;
1903 return 0;
1906 /* Return the reg-note of kind KIND in insn INSN which applies to register
1907 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1908 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1909 it might be the case that the note overlaps REGNO. */
1912 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1914 rtx link;
1916 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1917 if (! INSN_P (insn))
1918 return 0;
1920 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1921 if (REG_NOTE_KIND (link) == kind
1922 /* Verify that it is a register, so that scratch and MEM won't cause a
1923 problem here. */
1924 && REG_P (XEXP (link, 0))
1925 && REGNO (XEXP (link, 0)) <= regno
1926 && END_REGNO (XEXP (link, 0)) > regno)
1927 return link;
1928 return 0;
1931 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1932 has such a note. */
1935 find_reg_equal_equiv_note (const_rtx insn)
1937 rtx link;
1939 if (!INSN_P (insn))
1940 return 0;
1942 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1943 if (REG_NOTE_KIND (link) == REG_EQUAL
1944 || REG_NOTE_KIND (link) == REG_EQUIV)
1946 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1947 insns that have multiple sets. Checking single_set to
1948 make sure of this is not the proper check, as explained
1949 in the comment in set_unique_reg_note.
1951 This should be changed into an assert. */
1952 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1953 return 0;
1954 return link;
1956 return NULL;
1959 /* Check whether INSN is a single_set whose source is known to be
1960 equivalent to a constant. Return that constant if so, otherwise
1961 return null. */
1964 find_constant_src (const_rtx insn)
1966 rtx note, set, x;
1968 set = single_set (insn);
1969 if (set)
1971 x = avoid_constant_pool_reference (SET_SRC (set));
1972 if (CONSTANT_P (x))
1973 return x;
1976 note = find_reg_equal_equiv_note (insn);
1977 if (note && CONSTANT_P (XEXP (note, 0)))
1978 return XEXP (note, 0);
1980 return NULL_RTX;
1983 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1984 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1987 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1989 /* If it's not a CALL_INSN, it can't possibly have a
1990 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1991 if (!CALL_P (insn))
1992 return 0;
1994 gcc_assert (datum);
1996 if (!REG_P (datum))
1998 rtx link;
2000 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2001 link;
2002 link = XEXP (link, 1))
2003 if (GET_CODE (XEXP (link, 0)) == code
2004 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2005 return 1;
2007 else
2009 unsigned int regno = REGNO (datum);
2011 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2012 to pseudo registers, so don't bother checking. */
2014 if (regno < FIRST_PSEUDO_REGISTER)
2016 unsigned int end_regno = END_HARD_REGNO (datum);
2017 unsigned int i;
2019 for (i = regno; i < end_regno; i++)
2020 if (find_regno_fusage (insn, code, i))
2021 return 1;
2025 return 0;
2028 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2029 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2032 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2034 rtx link;
2036 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2037 to pseudo registers, so don't bother checking. */
2039 if (regno >= FIRST_PSEUDO_REGISTER
2040 || !CALL_P (insn) )
2041 return 0;
2043 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2045 rtx op, reg;
2047 if (GET_CODE (op = XEXP (link, 0)) == code
2048 && REG_P (reg = XEXP (op, 0))
2049 && REGNO (reg) <= regno
2050 && END_HARD_REGNO (reg) > regno)
2051 return 1;
2054 return 0;
2058 /* Return true if KIND is an integer REG_NOTE. */
2060 static bool
2061 int_reg_note_p (enum reg_note kind)
2063 return kind == REG_BR_PROB;
2066 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2067 stored as the pointer to the next register note. */
2070 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2072 rtx note;
2074 gcc_checking_assert (!int_reg_note_p (kind));
2075 switch (kind)
2077 case REG_CC_SETTER:
2078 case REG_CC_USER:
2079 case REG_LABEL_TARGET:
2080 case REG_LABEL_OPERAND:
2081 case REG_TM:
2082 /* These types of register notes use an INSN_LIST rather than an
2083 EXPR_LIST, so that copying is done right and dumps look
2084 better. */
2085 note = alloc_INSN_LIST (datum, list);
2086 PUT_REG_NOTE_KIND (note, kind);
2087 break;
2089 default:
2090 note = alloc_EXPR_LIST (kind, datum, list);
2091 break;
2094 return note;
2097 /* Add register note with kind KIND and datum DATUM to INSN. */
2099 void
2100 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2102 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2105 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2107 void
2108 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2110 gcc_checking_assert (int_reg_note_p (kind));
2111 REG_NOTES (insn) = gen_rtx_INT_LIST ((enum machine_mode) kind,
2112 datum, REG_NOTES (insn));
2115 /* Add a register note like NOTE to INSN. */
2117 void
2118 add_shallow_copy_of_reg_note (rtx insn, rtx note)
2120 if (GET_CODE (note) == INT_LIST)
2121 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2122 else
2123 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2126 /* Remove register note NOTE from the REG_NOTES of INSN. */
2128 void
2129 remove_note (rtx insn, const_rtx note)
2131 rtx link;
2133 if (note == NULL_RTX)
2134 return;
2136 if (REG_NOTES (insn) == note)
2137 REG_NOTES (insn) = XEXP (note, 1);
2138 else
2139 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2140 if (XEXP (link, 1) == note)
2142 XEXP (link, 1) = XEXP (note, 1);
2143 break;
2146 switch (REG_NOTE_KIND (note))
2148 case REG_EQUAL:
2149 case REG_EQUIV:
2150 df_notes_rescan (as_a <rtx_insn *> (insn));
2151 break;
2152 default:
2153 break;
2157 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2159 void
2160 remove_reg_equal_equiv_notes (rtx insn)
2162 rtx *loc;
2164 loc = &REG_NOTES (insn);
2165 while (*loc)
2167 enum reg_note kind = REG_NOTE_KIND (*loc);
2168 if (kind == REG_EQUAL || kind == REG_EQUIV)
2169 *loc = XEXP (*loc, 1);
2170 else
2171 loc = &XEXP (*loc, 1);
2175 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2177 void
2178 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2180 df_ref eq_use;
2182 if (!df)
2183 return;
2185 /* This loop is a little tricky. We cannot just go down the chain because
2186 it is being modified by some actions in the loop. So we just iterate
2187 over the head. We plan to drain the list anyway. */
2188 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2190 rtx_insn *insn = DF_REF_INSN (eq_use);
2191 rtx note = find_reg_equal_equiv_note (insn);
2193 /* This assert is generally triggered when someone deletes a REG_EQUAL
2194 or REG_EQUIV note by hacking the list manually rather than calling
2195 remove_note. */
2196 gcc_assert (note);
2198 remove_note (insn, note);
2202 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2203 return 1 if it is found. A simple equality test is used to determine if
2204 NODE matches. */
2207 in_expr_list_p (const_rtx listp, const_rtx node)
2209 const_rtx x;
2211 for (x = listp; x; x = XEXP (x, 1))
2212 if (node == XEXP (x, 0))
2213 return 1;
2215 return 0;
2218 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2219 remove that entry from the list if it is found.
2221 A simple equality test is used to determine if NODE matches. */
2223 void
2224 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2226 rtx_expr_list *temp = *listp;
2227 rtx prev = NULL_RTX;
2229 while (temp)
2231 if (node == temp->element ())
2233 /* Splice the node out of the list. */
2234 if (prev)
2235 XEXP (prev, 1) = temp->next ();
2236 else
2237 *listp = temp->next ();
2239 return;
2242 prev = temp;
2243 temp = temp->next ();
2247 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2248 remove that entry from the list if it is found.
2250 A simple equality test is used to determine if NODE matches. */
2252 void
2253 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2255 rtx_insn_list *temp = *listp;
2256 rtx prev = NULL;
2258 while (temp)
2260 if (node == temp->insn ())
2262 /* Splice the node out of the list. */
2263 if (prev)
2264 XEXP (prev, 1) = temp->next ();
2265 else
2266 *listp = temp->next ();
2268 return;
2271 prev = temp;
2272 temp = temp->next ();
2276 /* Nonzero if X contains any volatile instructions. These are instructions
2277 which may cause unpredictable machine state instructions, and thus no
2278 instructions or register uses should be moved or combined across them.
2279 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2282 volatile_insn_p (const_rtx x)
2284 const RTX_CODE code = GET_CODE (x);
2285 switch (code)
2287 case LABEL_REF:
2288 case SYMBOL_REF:
2289 case CONST:
2290 CASE_CONST_ANY:
2291 case CC0:
2292 case PC:
2293 case REG:
2294 case SCRATCH:
2295 case CLOBBER:
2296 case ADDR_VEC:
2297 case ADDR_DIFF_VEC:
2298 case CALL:
2299 case MEM:
2300 return 0;
2302 case UNSPEC_VOLATILE:
2303 return 1;
2305 case ASM_INPUT:
2306 case ASM_OPERANDS:
2307 if (MEM_VOLATILE_P (x))
2308 return 1;
2310 default:
2311 break;
2314 /* Recursively scan the operands of this expression. */
2317 const char *const fmt = GET_RTX_FORMAT (code);
2318 int i;
2320 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2322 if (fmt[i] == 'e')
2324 if (volatile_insn_p (XEXP (x, i)))
2325 return 1;
2327 else if (fmt[i] == 'E')
2329 int j;
2330 for (j = 0; j < XVECLEN (x, i); j++)
2331 if (volatile_insn_p (XVECEXP (x, i, j)))
2332 return 1;
2336 return 0;
2339 /* Nonzero if X contains any volatile memory references
2340 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2343 volatile_refs_p (const_rtx x)
2345 const RTX_CODE code = GET_CODE (x);
2346 switch (code)
2348 case LABEL_REF:
2349 case SYMBOL_REF:
2350 case CONST:
2351 CASE_CONST_ANY:
2352 case CC0:
2353 case PC:
2354 case REG:
2355 case SCRATCH:
2356 case CLOBBER:
2357 case ADDR_VEC:
2358 case ADDR_DIFF_VEC:
2359 return 0;
2361 case UNSPEC_VOLATILE:
2362 return 1;
2364 case MEM:
2365 case ASM_INPUT:
2366 case ASM_OPERANDS:
2367 if (MEM_VOLATILE_P (x))
2368 return 1;
2370 default:
2371 break;
2374 /* Recursively scan the operands of this expression. */
2377 const char *const fmt = GET_RTX_FORMAT (code);
2378 int i;
2380 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2382 if (fmt[i] == 'e')
2384 if (volatile_refs_p (XEXP (x, i)))
2385 return 1;
2387 else if (fmt[i] == 'E')
2389 int j;
2390 for (j = 0; j < XVECLEN (x, i); j++)
2391 if (volatile_refs_p (XVECEXP (x, i, j)))
2392 return 1;
2396 return 0;
2399 /* Similar to above, except that it also rejects register pre- and post-
2400 incrementing. */
2403 side_effects_p (const_rtx x)
2405 const RTX_CODE code = GET_CODE (x);
2406 switch (code)
2408 case LABEL_REF:
2409 case SYMBOL_REF:
2410 case CONST:
2411 CASE_CONST_ANY:
2412 case CC0:
2413 case PC:
2414 case REG:
2415 case SCRATCH:
2416 case ADDR_VEC:
2417 case ADDR_DIFF_VEC:
2418 case VAR_LOCATION:
2419 return 0;
2421 case CLOBBER:
2422 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2423 when some combination can't be done. If we see one, don't think
2424 that we can simplify the expression. */
2425 return (GET_MODE (x) != VOIDmode);
2427 case PRE_INC:
2428 case PRE_DEC:
2429 case POST_INC:
2430 case POST_DEC:
2431 case PRE_MODIFY:
2432 case POST_MODIFY:
2433 case CALL:
2434 case UNSPEC_VOLATILE:
2435 return 1;
2437 case MEM:
2438 case ASM_INPUT:
2439 case ASM_OPERANDS:
2440 if (MEM_VOLATILE_P (x))
2441 return 1;
2443 default:
2444 break;
2447 /* Recursively scan the operands of this expression. */
2450 const char *fmt = GET_RTX_FORMAT (code);
2451 int i;
2453 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2455 if (fmt[i] == 'e')
2457 if (side_effects_p (XEXP (x, i)))
2458 return 1;
2460 else if (fmt[i] == 'E')
2462 int j;
2463 for (j = 0; j < XVECLEN (x, i); j++)
2464 if (side_effects_p (XVECEXP (x, i, j)))
2465 return 1;
2469 return 0;
2472 /* Return nonzero if evaluating rtx X might cause a trap.
2473 FLAGS controls how to consider MEMs. A nonzero means the context
2474 of the access may have changed from the original, such that the
2475 address may have become invalid. */
2478 may_trap_p_1 (const_rtx x, unsigned flags)
2480 int i;
2481 enum rtx_code code;
2482 const char *fmt;
2484 /* We make no distinction currently, but this function is part of
2485 the internal target-hooks ABI so we keep the parameter as
2486 "unsigned flags". */
2487 bool code_changed = flags != 0;
2489 if (x == 0)
2490 return 0;
2491 code = GET_CODE (x);
2492 switch (code)
2494 /* Handle these cases quickly. */
2495 CASE_CONST_ANY:
2496 case SYMBOL_REF:
2497 case LABEL_REF:
2498 case CONST:
2499 case PC:
2500 case CC0:
2501 case REG:
2502 case SCRATCH:
2503 return 0;
2505 case UNSPEC:
2506 return targetm.unspec_may_trap_p (x, flags);
2508 case UNSPEC_VOLATILE:
2509 case ASM_INPUT:
2510 case TRAP_IF:
2511 return 1;
2513 case ASM_OPERANDS:
2514 return MEM_VOLATILE_P (x);
2516 /* Memory ref can trap unless it's a static var or a stack slot. */
2517 case MEM:
2518 /* Recognize specific pattern of stack checking probes. */
2519 if (flag_stack_check
2520 && MEM_VOLATILE_P (x)
2521 && XEXP (x, 0) == stack_pointer_rtx)
2522 return 1;
2523 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2524 reference; moving it out of context such as when moving code
2525 when optimizing, might cause its address to become invalid. */
2526 code_changed
2527 || !MEM_NOTRAP_P (x))
2529 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2530 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2531 GET_MODE (x), code_changed);
2534 return 0;
2536 /* Division by a non-constant might trap. */
2537 case DIV:
2538 case MOD:
2539 case UDIV:
2540 case UMOD:
2541 if (HONOR_SNANS (GET_MODE (x)))
2542 return 1;
2543 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2544 return flag_trapping_math;
2545 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2546 return 1;
2547 break;
2549 case EXPR_LIST:
2550 /* An EXPR_LIST is used to represent a function call. This
2551 certainly may trap. */
2552 return 1;
2554 case GE:
2555 case GT:
2556 case LE:
2557 case LT:
2558 case LTGT:
2559 case COMPARE:
2560 /* Some floating point comparisons may trap. */
2561 if (!flag_trapping_math)
2562 break;
2563 /* ??? There is no machine independent way to check for tests that trap
2564 when COMPARE is used, though many targets do make this distinction.
2565 For instance, sparc uses CCFPE for compares which generate exceptions
2566 and CCFP for compares which do not generate exceptions. */
2567 if (HONOR_NANS (GET_MODE (x)))
2568 return 1;
2569 /* But often the compare has some CC mode, so check operand
2570 modes as well. */
2571 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2572 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2573 return 1;
2574 break;
2576 case EQ:
2577 case NE:
2578 if (HONOR_SNANS (GET_MODE (x)))
2579 return 1;
2580 /* Often comparison is CC mode, so check operand modes. */
2581 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2582 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2583 return 1;
2584 break;
2586 case FIX:
2587 /* Conversion of floating point might trap. */
2588 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2589 return 1;
2590 break;
2592 case NEG:
2593 case ABS:
2594 case SUBREG:
2595 /* These operations don't trap even with floating point. */
2596 break;
2598 default:
2599 /* Any floating arithmetic may trap. */
2600 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2601 return 1;
2604 fmt = GET_RTX_FORMAT (code);
2605 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2607 if (fmt[i] == 'e')
2609 if (may_trap_p_1 (XEXP (x, i), flags))
2610 return 1;
2612 else if (fmt[i] == 'E')
2614 int j;
2615 for (j = 0; j < XVECLEN (x, i); j++)
2616 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2617 return 1;
2620 return 0;
2623 /* Return nonzero if evaluating rtx X might cause a trap. */
2626 may_trap_p (const_rtx x)
2628 return may_trap_p_1 (x, 0);
2631 /* Same as above, but additionally return nonzero if evaluating rtx X might
2632 cause a fault. We define a fault for the purpose of this function as a
2633 erroneous execution condition that cannot be encountered during the normal
2634 execution of a valid program; the typical example is an unaligned memory
2635 access on a strict alignment machine. The compiler guarantees that it
2636 doesn't generate code that will fault from a valid program, but this
2637 guarantee doesn't mean anything for individual instructions. Consider
2638 the following example:
2640 struct S { int d; union { char *cp; int *ip; }; };
2642 int foo(struct S *s)
2644 if (s->d == 1)
2645 return *s->ip;
2646 else
2647 return *s->cp;
2650 on a strict alignment machine. In a valid program, foo will never be
2651 invoked on a structure for which d is equal to 1 and the underlying
2652 unique field of the union not aligned on a 4-byte boundary, but the
2653 expression *s->ip might cause a fault if considered individually.
2655 At the RTL level, potentially problematic expressions will almost always
2656 verify may_trap_p; for example, the above dereference can be emitted as
2657 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2658 However, suppose that foo is inlined in a caller that causes s->cp to
2659 point to a local character variable and guarantees that s->d is not set
2660 to 1; foo may have been effectively translated into pseudo-RTL as:
2662 if ((reg:SI) == 1)
2663 (set (reg:SI) (mem:SI (%fp - 7)))
2664 else
2665 (set (reg:QI) (mem:QI (%fp - 7)))
2667 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2668 memory reference to a stack slot, but it will certainly cause a fault
2669 on a strict alignment machine. */
2672 may_trap_or_fault_p (const_rtx x)
2674 return may_trap_p_1 (x, 1);
2677 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2678 i.e., an inequality. */
2681 inequality_comparisons_p (const_rtx x)
2683 const char *fmt;
2684 int len, i;
2685 const enum rtx_code code = GET_CODE (x);
2687 switch (code)
2689 case REG:
2690 case SCRATCH:
2691 case PC:
2692 case CC0:
2693 CASE_CONST_ANY:
2694 case CONST:
2695 case LABEL_REF:
2696 case SYMBOL_REF:
2697 return 0;
2699 case LT:
2700 case LTU:
2701 case GT:
2702 case GTU:
2703 case LE:
2704 case LEU:
2705 case GE:
2706 case GEU:
2707 return 1;
2709 default:
2710 break;
2713 len = GET_RTX_LENGTH (code);
2714 fmt = GET_RTX_FORMAT (code);
2716 for (i = 0; i < len; i++)
2718 if (fmt[i] == 'e')
2720 if (inequality_comparisons_p (XEXP (x, i)))
2721 return 1;
2723 else if (fmt[i] == 'E')
2725 int j;
2726 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2727 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2728 return 1;
2732 return 0;
2735 /* Replace any occurrence of FROM in X with TO. The function does
2736 not enter into CONST_DOUBLE for the replace.
2738 Note that copying is not done so X must not be shared unless all copies
2739 are to be modified. */
2742 replace_rtx (rtx x, rtx from, rtx to)
2744 int i, j;
2745 const char *fmt;
2747 if (x == from)
2748 return to;
2750 /* Allow this function to make replacements in EXPR_LISTs. */
2751 if (x == 0)
2752 return 0;
2754 if (GET_CODE (x) == SUBREG)
2756 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2758 if (CONST_INT_P (new_rtx))
2760 x = simplify_subreg (GET_MODE (x), new_rtx,
2761 GET_MODE (SUBREG_REG (x)),
2762 SUBREG_BYTE (x));
2763 gcc_assert (x);
2765 else
2766 SUBREG_REG (x) = new_rtx;
2768 return x;
2770 else if (GET_CODE (x) == ZERO_EXTEND)
2772 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2774 if (CONST_INT_P (new_rtx))
2776 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2777 new_rtx, GET_MODE (XEXP (x, 0)));
2778 gcc_assert (x);
2780 else
2781 XEXP (x, 0) = new_rtx;
2783 return x;
2786 fmt = GET_RTX_FORMAT (GET_CODE (x));
2787 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2789 if (fmt[i] == 'e')
2790 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2791 else if (fmt[i] == 'E')
2792 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2793 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2796 return x;
2799 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
2800 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
2802 void
2803 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
2805 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
2806 rtx x = *loc;
2807 if (JUMP_TABLE_DATA_P (x))
2809 x = PATTERN (x);
2810 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
2811 int len = GET_NUM_ELEM (vec);
2812 for (int i = 0; i < len; ++i)
2814 rtx ref = RTVEC_ELT (vec, i);
2815 if (XEXP (ref, 0) == old_label)
2817 XEXP (ref, 0) = new_label;
2818 if (update_label_nuses)
2820 ++LABEL_NUSES (new_label);
2821 --LABEL_NUSES (old_label);
2825 return;
2828 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2829 field. This is not handled by the iterator because it doesn't
2830 handle unprinted ('0') fields. */
2831 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
2832 JUMP_LABEL (x) = new_label;
2834 subrtx_ptr_iterator::array_type array;
2835 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
2837 rtx *loc = *iter;
2838 if (rtx x = *loc)
2840 if (GET_CODE (x) == SYMBOL_REF
2841 && CONSTANT_POOL_ADDRESS_P (x))
2843 rtx c = get_pool_constant (x);
2844 if (rtx_referenced_p (old_label, c))
2846 /* Create a copy of constant C; replace the label inside
2847 but do not update LABEL_NUSES because uses in constant pool
2848 are not counted. */
2849 rtx new_c = copy_rtx (c);
2850 replace_label (&new_c, old_label, new_label, false);
2852 /* Add the new constant NEW_C to constant pool and replace
2853 the old reference to constant by new reference. */
2854 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
2855 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
2859 if ((GET_CODE (x) == LABEL_REF
2860 || GET_CODE (x) == INSN_LIST)
2861 && XEXP (x, 0) == old_label)
2863 XEXP (x, 0) = new_label;
2864 if (update_label_nuses)
2866 ++LABEL_NUSES (new_label);
2867 --LABEL_NUSES (old_label);
2874 void
2875 replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
2876 bool update_label_nuses)
2878 rtx insn_as_rtx = insn;
2879 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
2880 gcc_checking_assert (insn_as_rtx == insn);
2883 /* Return true if X is referenced in BODY. */
2885 bool
2886 rtx_referenced_p (const_rtx x, const_rtx body)
2888 subrtx_iterator::array_type array;
2889 FOR_EACH_SUBRTX (iter, array, body, ALL)
2890 if (const_rtx y = *iter)
2892 /* Check if a label_ref Y refers to label X. */
2893 if (GET_CODE (y) == LABEL_REF && LABEL_P (y) && XEXP (y, 0) == x)
2894 return true;
2896 if (rtx_equal_p (x, y))
2897 return true;
2899 /* If Y is a reference to pool constant traverse the constant. */
2900 if (GET_CODE (y) == SYMBOL_REF
2901 && CONSTANT_POOL_ADDRESS_P (y))
2902 iter.substitute (get_pool_constant (y));
2904 return false;
2907 /* If INSN is a tablejump return true and store the label (before jump table) to
2908 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2910 bool
2911 tablejump_p (const_rtx insn, rtx *labelp, rtx_jump_table_data **tablep)
2913 rtx label, table;
2915 if (!JUMP_P (insn))
2916 return false;
2918 label = JUMP_LABEL (insn);
2919 if (label != NULL_RTX && !ANY_RETURN_P (label)
2920 && (table = NEXT_INSN (label)) != NULL_RTX
2921 && JUMP_TABLE_DATA_P (table))
2923 if (labelp)
2924 *labelp = label;
2925 if (tablep)
2926 *tablep = as_a <rtx_jump_table_data *> (table);
2927 return true;
2929 return false;
2932 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2933 constant that is not in the constant pool and not in the condition
2934 of an IF_THEN_ELSE. */
2936 static int
2937 computed_jump_p_1 (const_rtx x)
2939 const enum rtx_code code = GET_CODE (x);
2940 int i, j;
2941 const char *fmt;
2943 switch (code)
2945 case LABEL_REF:
2946 case PC:
2947 return 0;
2949 case CONST:
2950 CASE_CONST_ANY:
2951 case SYMBOL_REF:
2952 case REG:
2953 return 1;
2955 case MEM:
2956 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2957 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2959 case IF_THEN_ELSE:
2960 return (computed_jump_p_1 (XEXP (x, 1))
2961 || computed_jump_p_1 (XEXP (x, 2)));
2963 default:
2964 break;
2967 fmt = GET_RTX_FORMAT (code);
2968 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2970 if (fmt[i] == 'e'
2971 && computed_jump_p_1 (XEXP (x, i)))
2972 return 1;
2974 else if (fmt[i] == 'E')
2975 for (j = 0; j < XVECLEN (x, i); j++)
2976 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2977 return 1;
2980 return 0;
2983 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2985 Tablejumps and casesi insns are not considered indirect jumps;
2986 we can recognize them by a (use (label_ref)). */
2989 computed_jump_p (const_rtx insn)
2991 int i;
2992 if (JUMP_P (insn))
2994 rtx pat = PATTERN (insn);
2996 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2997 if (JUMP_LABEL (insn) != NULL)
2998 return 0;
3000 if (GET_CODE (pat) == PARALLEL)
3002 int len = XVECLEN (pat, 0);
3003 int has_use_labelref = 0;
3005 for (i = len - 1; i >= 0; i--)
3006 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3007 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3008 == LABEL_REF))
3010 has_use_labelref = 1;
3011 break;
3014 if (! has_use_labelref)
3015 for (i = len - 1; i >= 0; i--)
3016 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3017 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3018 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3019 return 1;
3021 else if (GET_CODE (pat) == SET
3022 && SET_DEST (pat) == pc_rtx
3023 && computed_jump_p_1 (SET_SRC (pat)))
3024 return 1;
3026 return 0;
3029 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
3030 calls. Processes the subexpressions of EXP and passes them to F. */
3031 static int
3032 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
3034 int result, i, j;
3035 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
3036 rtx *x;
3038 for (; format[n] != '\0'; n++)
3040 switch (format[n])
3042 case 'e':
3043 /* Call F on X. */
3044 x = &XEXP (exp, n);
3045 result = (*f) (x, data);
3046 if (result == -1)
3047 /* Do not traverse sub-expressions. */
3048 continue;
3049 else if (result != 0)
3050 /* Stop the traversal. */
3051 return result;
3053 if (*x == NULL_RTX)
3054 /* There are no sub-expressions. */
3055 continue;
3057 i = non_rtx_starting_operands[GET_CODE (*x)];
3058 if (i >= 0)
3060 result = for_each_rtx_1 (*x, i, f, data);
3061 if (result != 0)
3062 return result;
3064 break;
3066 case 'V':
3067 case 'E':
3068 if (XVEC (exp, n) == 0)
3069 continue;
3070 for (j = 0; j < XVECLEN (exp, n); ++j)
3072 /* Call F on X. */
3073 x = &XVECEXP (exp, n, j);
3074 result = (*f) (x, data);
3075 if (result == -1)
3076 /* Do not traverse sub-expressions. */
3077 continue;
3078 else if (result != 0)
3079 /* Stop the traversal. */
3080 return result;
3082 if (*x == NULL_RTX)
3083 /* There are no sub-expressions. */
3084 continue;
3086 i = non_rtx_starting_operands[GET_CODE (*x)];
3087 if (i >= 0)
3089 result = for_each_rtx_1 (*x, i, f, data);
3090 if (result != 0)
3091 return result;
3094 break;
3096 default:
3097 /* Nothing to do. */
3098 break;
3102 return 0;
3105 /* Traverse X via depth-first search, calling F for each
3106 sub-expression (including X itself). F is also passed the DATA.
3107 If F returns -1, do not traverse sub-expressions, but continue
3108 traversing the rest of the tree. If F ever returns any other
3109 nonzero value, stop the traversal, and return the value returned
3110 by F. Otherwise, return 0. This function does not traverse inside
3111 tree structure that contains RTX_EXPRs, or into sub-expressions
3112 whose format code is `0' since it is not known whether or not those
3113 codes are actually RTL.
3115 This routine is very general, and could (should?) be used to
3116 implement many of the other routines in this file. */
3119 for_each_rtx (rtx *x, rtx_function f, void *data)
3121 int result;
3122 int i;
3124 /* Call F on X. */
3125 result = (*f) (x, data);
3126 if (result == -1)
3127 /* Do not traverse sub-expressions. */
3128 return 0;
3129 else if (result != 0)
3130 /* Stop the traversal. */
3131 return result;
3133 if (*x == NULL_RTX)
3134 /* There are no sub-expressions. */
3135 return 0;
3137 i = non_rtx_starting_operands[GET_CODE (*x)];
3138 if (i < 0)
3139 return 0;
3141 return for_each_rtx_1 (*x, i, f, data);
3144 /* Like "for_each_rtx", but for calling on an rtx_insn **. */
3147 for_each_rtx_in_insn (rtx_insn **insn, rtx_function f, void *data)
3149 rtx insn_as_rtx = *insn;
3150 int result;
3152 result = for_each_rtx (&insn_as_rtx, f, data);
3154 if (insn_as_rtx != *insn)
3155 *insn = safe_as_a <rtx_insn *> (insn_as_rtx);
3157 return result;
3162 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3163 the equivalent add insn and pass the result to FN, using DATA as the
3164 final argument. */
3166 static int
3167 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3169 rtx x = XEXP (mem, 0);
3170 switch (GET_CODE (x))
3172 case PRE_INC:
3173 case POST_INC:
3175 int size = GET_MODE_SIZE (GET_MODE (mem));
3176 rtx r1 = XEXP (x, 0);
3177 rtx c = gen_int_mode (size, GET_MODE (r1));
3178 return fn (mem, x, r1, r1, c, data);
3181 case PRE_DEC:
3182 case POST_DEC:
3184 int size = GET_MODE_SIZE (GET_MODE (mem));
3185 rtx r1 = XEXP (x, 0);
3186 rtx c = gen_int_mode (-size, GET_MODE (r1));
3187 return fn (mem, x, r1, r1, c, data);
3190 case PRE_MODIFY:
3191 case POST_MODIFY:
3193 rtx r1 = XEXP (x, 0);
3194 rtx add = XEXP (x, 1);
3195 return fn (mem, x, r1, add, NULL, data);
3198 default:
3199 gcc_unreachable ();
3203 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3204 For each such autoinc operation found, call FN, passing it
3205 the innermost enclosing MEM, the operation itself, the RTX modified
3206 by the operation, two RTXs (the second may be NULL) that, once
3207 added, represent the value to be held by the modified RTX
3208 afterwards, and DATA. FN is to return 0 to continue the
3209 traversal or any other value to have it returned to the caller of
3210 for_each_inc_dec. */
3213 for_each_inc_dec (rtx x,
3214 for_each_inc_dec_fn fn,
3215 void *data)
3217 subrtx_var_iterator::array_type array;
3218 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3220 rtx mem = *iter;
3221 if (mem
3222 && MEM_P (mem)
3223 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3225 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3226 if (res != 0)
3227 return res;
3228 iter.skip_subrtxes ();
3231 return 0;
3235 /* Searches X for any reference to REGNO, returning the rtx of the
3236 reference found if any. Otherwise, returns NULL_RTX. */
3239 regno_use_in (unsigned int regno, rtx x)
3241 const char *fmt;
3242 int i, j;
3243 rtx tem;
3245 if (REG_P (x) && REGNO (x) == regno)
3246 return x;
3248 fmt = GET_RTX_FORMAT (GET_CODE (x));
3249 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3251 if (fmt[i] == 'e')
3253 if ((tem = regno_use_in (regno, XEXP (x, i))))
3254 return tem;
3256 else if (fmt[i] == 'E')
3257 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3258 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3259 return tem;
3262 return NULL_RTX;
3265 /* Return a value indicating whether OP, an operand of a commutative
3266 operation, is preferred as the first or second operand. The higher
3267 the value, the stronger the preference for being the first operand.
3268 We use negative values to indicate a preference for the first operand
3269 and positive values for the second operand. */
3272 commutative_operand_precedence (rtx op)
3274 enum rtx_code code = GET_CODE (op);
3276 /* Constants always come the second operand. Prefer "nice" constants. */
3277 if (code == CONST_INT)
3278 return -8;
3279 if (code == CONST_WIDE_INT)
3280 return -8;
3281 if (code == CONST_DOUBLE)
3282 return -7;
3283 if (code == CONST_FIXED)
3284 return -7;
3285 op = avoid_constant_pool_reference (op);
3286 code = GET_CODE (op);
3288 switch (GET_RTX_CLASS (code))
3290 case RTX_CONST_OBJ:
3291 if (code == CONST_INT)
3292 return -6;
3293 if (code == CONST_WIDE_INT)
3294 return -6;
3295 if (code == CONST_DOUBLE)
3296 return -5;
3297 if (code == CONST_FIXED)
3298 return -5;
3299 return -4;
3301 case RTX_EXTRA:
3302 /* SUBREGs of objects should come second. */
3303 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3304 return -3;
3305 return 0;
3307 case RTX_OBJ:
3308 /* Complex expressions should be the first, so decrease priority
3309 of objects. Prefer pointer objects over non pointer objects. */
3310 if ((REG_P (op) && REG_POINTER (op))
3311 || (MEM_P (op) && MEM_POINTER (op)))
3312 return -1;
3313 return -2;
3315 case RTX_COMM_ARITH:
3316 /* Prefer operands that are themselves commutative to be first.
3317 This helps to make things linear. In particular,
3318 (and (and (reg) (reg)) (not (reg))) is canonical. */
3319 return 4;
3321 case RTX_BIN_ARITH:
3322 /* If only one operand is a binary expression, it will be the first
3323 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3324 is canonical, although it will usually be further simplified. */
3325 return 2;
3327 case RTX_UNARY:
3328 /* Then prefer NEG and NOT. */
3329 if (code == NEG || code == NOT)
3330 return 1;
3332 default:
3333 return 0;
3337 /* Return 1 iff it is necessary to swap operands of commutative operation
3338 in order to canonicalize expression. */
3340 bool
3341 swap_commutative_operands_p (rtx x, rtx y)
3343 return (commutative_operand_precedence (x)
3344 < commutative_operand_precedence (y));
3347 /* Return 1 if X is an autoincrement side effect and the register is
3348 not the stack pointer. */
3350 auto_inc_p (const_rtx x)
3352 switch (GET_CODE (x))
3354 case PRE_INC:
3355 case POST_INC:
3356 case PRE_DEC:
3357 case POST_DEC:
3358 case PRE_MODIFY:
3359 case POST_MODIFY:
3360 /* There are no REG_INC notes for SP. */
3361 if (XEXP (x, 0) != stack_pointer_rtx)
3362 return 1;
3363 default:
3364 break;
3366 return 0;
3369 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3371 loc_mentioned_in_p (rtx *loc, const_rtx in)
3373 enum rtx_code code;
3374 const char *fmt;
3375 int i, j;
3377 if (!in)
3378 return 0;
3380 code = GET_CODE (in);
3381 fmt = GET_RTX_FORMAT (code);
3382 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3384 if (fmt[i] == 'e')
3386 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3387 return 1;
3389 else if (fmt[i] == 'E')
3390 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3391 if (loc == &XVECEXP (in, i, j)
3392 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3393 return 1;
3395 return 0;
3398 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3399 and SUBREG_BYTE, return the bit offset where the subreg begins
3400 (counting from the least significant bit of the operand). */
3402 unsigned int
3403 subreg_lsb_1 (enum machine_mode outer_mode,
3404 enum machine_mode inner_mode,
3405 unsigned int subreg_byte)
3407 unsigned int bitpos;
3408 unsigned int byte;
3409 unsigned int word;
3411 /* A paradoxical subreg begins at bit position 0. */
3412 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3413 return 0;
3415 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3416 /* If the subreg crosses a word boundary ensure that
3417 it also begins and ends on a word boundary. */
3418 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3419 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3420 && (subreg_byte % UNITS_PER_WORD
3421 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3423 if (WORDS_BIG_ENDIAN)
3424 word = (GET_MODE_SIZE (inner_mode)
3425 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3426 else
3427 word = subreg_byte / UNITS_PER_WORD;
3428 bitpos = word * BITS_PER_WORD;
3430 if (BYTES_BIG_ENDIAN)
3431 byte = (GET_MODE_SIZE (inner_mode)
3432 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3433 else
3434 byte = subreg_byte % UNITS_PER_WORD;
3435 bitpos += byte * BITS_PER_UNIT;
3437 return bitpos;
3440 /* Given a subreg X, return the bit offset where the subreg begins
3441 (counting from the least significant bit of the reg). */
3443 unsigned int
3444 subreg_lsb (const_rtx x)
3446 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3447 SUBREG_BYTE (x));
3450 /* Fill in information about a subreg of a hard register.
3451 xregno - A regno of an inner hard subreg_reg (or what will become one).
3452 xmode - The mode of xregno.
3453 offset - The byte offset.
3454 ymode - The mode of a top level SUBREG (or what may become one).
3455 info - Pointer to structure to fill in. */
3456 void
3457 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3458 unsigned int offset, enum machine_mode ymode,
3459 struct subreg_info *info)
3461 int nregs_xmode, nregs_ymode;
3462 int mode_multiple, nregs_multiple;
3463 int offset_adj, y_offset, y_offset_adj;
3464 int regsize_xmode, regsize_ymode;
3465 bool rknown;
3467 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3469 rknown = false;
3471 /* If there are holes in a non-scalar mode in registers, we expect
3472 that it is made up of its units concatenated together. */
3473 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3475 enum machine_mode xmode_unit;
3477 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3478 if (GET_MODE_INNER (xmode) == VOIDmode)
3479 xmode_unit = xmode;
3480 else
3481 xmode_unit = GET_MODE_INNER (xmode);
3482 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3483 gcc_assert (nregs_xmode
3484 == (GET_MODE_NUNITS (xmode)
3485 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3486 gcc_assert (hard_regno_nregs[xregno][xmode]
3487 == (hard_regno_nregs[xregno][xmode_unit]
3488 * GET_MODE_NUNITS (xmode)));
3490 /* You can only ask for a SUBREG of a value with holes in the middle
3491 if you don't cross the holes. (Such a SUBREG should be done by
3492 picking a different register class, or doing it in memory if
3493 necessary.) An example of a value with holes is XCmode on 32-bit
3494 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3495 3 for each part, but in memory it's two 128-bit parts.
3496 Padding is assumed to be at the end (not necessarily the 'high part')
3497 of each unit. */
3498 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3499 < GET_MODE_NUNITS (xmode))
3500 && (offset / GET_MODE_SIZE (xmode_unit)
3501 != ((offset + GET_MODE_SIZE (ymode) - 1)
3502 / GET_MODE_SIZE (xmode_unit))))
3504 info->representable_p = false;
3505 rknown = true;
3508 else
3509 nregs_xmode = hard_regno_nregs[xregno][xmode];
3511 nregs_ymode = hard_regno_nregs[xregno][ymode];
3513 /* Paradoxical subregs are otherwise valid. */
3514 if (!rknown
3515 && offset == 0
3516 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3518 info->representable_p = true;
3519 /* If this is a big endian paradoxical subreg, which uses more
3520 actual hard registers than the original register, we must
3521 return a negative offset so that we find the proper highpart
3522 of the register. */
3523 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3524 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3525 info->offset = nregs_xmode - nregs_ymode;
3526 else
3527 info->offset = 0;
3528 info->nregs = nregs_ymode;
3529 return;
3532 /* If registers store different numbers of bits in the different
3533 modes, we cannot generally form this subreg. */
3534 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3535 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3536 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3537 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3539 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3540 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3541 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3543 info->representable_p = false;
3544 info->nregs
3545 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3546 info->offset = offset / regsize_xmode;
3547 return;
3549 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3551 info->representable_p = false;
3552 info->nregs
3553 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3554 info->offset = offset / regsize_xmode;
3555 return;
3559 /* Lowpart subregs are otherwise valid. */
3560 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3562 info->representable_p = true;
3563 rknown = true;
3565 if (offset == 0 || nregs_xmode == nregs_ymode)
3567 info->offset = 0;
3568 info->nregs = nregs_ymode;
3569 return;
3573 /* This should always pass, otherwise we don't know how to verify
3574 the constraint. These conditions may be relaxed but
3575 subreg_regno_offset would need to be redesigned. */
3576 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3577 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3579 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3580 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3582 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3583 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3584 HOST_WIDE_INT off_low = offset & (ysize - 1);
3585 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3586 offset = (xsize - ysize - off_high) | off_low;
3588 /* The XMODE value can be seen as a vector of NREGS_XMODE
3589 values. The subreg must represent a lowpart of given field.
3590 Compute what field it is. */
3591 offset_adj = offset;
3592 offset_adj -= subreg_lowpart_offset (ymode,
3593 mode_for_size (GET_MODE_BITSIZE (xmode)
3594 / nregs_xmode,
3595 MODE_INT, 0));
3597 /* Size of ymode must not be greater than the size of xmode. */
3598 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3599 gcc_assert (mode_multiple != 0);
3601 y_offset = offset / GET_MODE_SIZE (ymode);
3602 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3603 nregs_multiple = nregs_xmode / nregs_ymode;
3605 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3606 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3608 if (!rknown)
3610 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3611 rknown = true;
3613 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3614 info->nregs = nregs_ymode;
3617 /* This function returns the regno offset of a subreg expression.
3618 xregno - A regno of an inner hard subreg_reg (or what will become one).
3619 xmode - The mode of xregno.
3620 offset - The byte offset.
3621 ymode - The mode of a top level SUBREG (or what may become one).
3622 RETURN - The regno offset which would be used. */
3623 unsigned int
3624 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3625 unsigned int offset, enum machine_mode ymode)
3627 struct subreg_info info;
3628 subreg_get_info (xregno, xmode, offset, ymode, &info);
3629 return info.offset;
3632 /* This function returns true when the offset is representable via
3633 subreg_offset in the given regno.
3634 xregno - A regno of an inner hard subreg_reg (or what will become one).
3635 xmode - The mode of xregno.
3636 offset - The byte offset.
3637 ymode - The mode of a top level SUBREG (or what may become one).
3638 RETURN - Whether the offset is representable. */
3639 bool
3640 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3641 unsigned int offset, enum machine_mode ymode)
3643 struct subreg_info info;
3644 subreg_get_info (xregno, xmode, offset, ymode, &info);
3645 return info.representable_p;
3648 /* Return the number of a YMODE register to which
3650 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3652 can be simplified. Return -1 if the subreg can't be simplified.
3654 XREGNO is a hard register number. */
3657 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3658 unsigned int offset, enum machine_mode ymode)
3660 struct subreg_info info;
3661 unsigned int yregno;
3663 #ifdef CANNOT_CHANGE_MODE_CLASS
3664 /* Give the backend a chance to disallow the mode change. */
3665 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3666 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3667 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3668 /* We can use mode change in LRA for some transformations. */
3669 && ! lra_in_progress)
3670 return -1;
3671 #endif
3673 /* We shouldn't simplify stack-related registers. */
3674 if ((!reload_completed || frame_pointer_needed)
3675 && xregno == FRAME_POINTER_REGNUM)
3676 return -1;
3678 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3679 && xregno == ARG_POINTER_REGNUM)
3680 return -1;
3682 if (xregno == STACK_POINTER_REGNUM
3683 /* We should convert hard stack register in LRA if it is
3684 possible. */
3685 && ! lra_in_progress)
3686 return -1;
3688 /* Try to get the register offset. */
3689 subreg_get_info (xregno, xmode, offset, ymode, &info);
3690 if (!info.representable_p)
3691 return -1;
3693 /* Make sure that the offsetted register value is in range. */
3694 yregno = xregno + info.offset;
3695 if (!HARD_REGISTER_NUM_P (yregno))
3696 return -1;
3698 /* See whether (reg:YMODE YREGNO) is valid.
3700 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3701 This is a kludge to work around how complex FP arguments are passed
3702 on IA-64 and should be fixed. See PR target/49226. */
3703 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3704 && HARD_REGNO_MODE_OK (xregno, xmode))
3705 return -1;
3707 return (int) yregno;
3710 /* Return the final regno that a subreg expression refers to. */
3711 unsigned int
3712 subreg_regno (const_rtx x)
3714 unsigned int ret;
3715 rtx subreg = SUBREG_REG (x);
3716 int regno = REGNO (subreg);
3718 ret = regno + subreg_regno_offset (regno,
3719 GET_MODE (subreg),
3720 SUBREG_BYTE (x),
3721 GET_MODE (x));
3722 return ret;
3726 /* Return the number of registers that a subreg expression refers
3727 to. */
3728 unsigned int
3729 subreg_nregs (const_rtx x)
3731 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3734 /* Return the number of registers that a subreg REG with REGNO
3735 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3736 changed so that the regno can be passed in. */
3738 unsigned int
3739 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3741 struct subreg_info info;
3742 rtx subreg = SUBREG_REG (x);
3744 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3745 &info);
3746 return info.nregs;
3750 struct parms_set_data
3752 int nregs;
3753 HARD_REG_SET regs;
3756 /* Helper function for noticing stores to parameter registers. */
3757 static void
3758 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3760 struct parms_set_data *const d = (struct parms_set_data *) data;
3761 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3762 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3764 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3765 d->nregs--;
3769 /* Look backward for first parameter to be loaded.
3770 Note that loads of all parameters will not necessarily be
3771 found if CSE has eliminated some of them (e.g., an argument
3772 to the outer function is passed down as a parameter).
3773 Do not skip BOUNDARY. */
3774 rtx_insn *
3775 find_first_parameter_load (rtx call_insn, rtx boundary)
3777 struct parms_set_data parm;
3778 rtx p, before, first_set;
3780 /* Since different machines initialize their parameter registers
3781 in different orders, assume nothing. Collect the set of all
3782 parameter registers. */
3783 CLEAR_HARD_REG_SET (parm.regs);
3784 parm.nregs = 0;
3785 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3786 if (GET_CODE (XEXP (p, 0)) == USE
3787 && REG_P (XEXP (XEXP (p, 0), 0)))
3789 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3791 /* We only care about registers which can hold function
3792 arguments. */
3793 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3794 continue;
3796 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3797 parm.nregs++;
3799 before = call_insn;
3800 first_set = call_insn;
3802 /* Search backward for the first set of a register in this set. */
3803 while (parm.nregs && before != boundary)
3805 before = PREV_INSN (before);
3807 /* It is possible that some loads got CSEed from one call to
3808 another. Stop in that case. */
3809 if (CALL_P (before))
3810 break;
3812 /* Our caller needs either ensure that we will find all sets
3813 (in case code has not been optimized yet), or take care
3814 for possible labels in a way by setting boundary to preceding
3815 CODE_LABEL. */
3816 if (LABEL_P (before))
3818 gcc_assert (before == boundary);
3819 break;
3822 if (INSN_P (before))
3824 int nregs_old = parm.nregs;
3825 note_stores (PATTERN (before), parms_set, &parm);
3826 /* If we found something that did not set a parameter reg,
3827 we're done. Do not keep going, as that might result
3828 in hoisting an insn before the setting of a pseudo
3829 that is used by the hoisted insn. */
3830 if (nregs_old != parm.nregs)
3831 first_set = before;
3832 else
3833 break;
3836 return safe_as_a <rtx_insn *> (first_set);
3839 /* Return true if we should avoid inserting code between INSN and preceding
3840 call instruction. */
3842 bool
3843 keep_with_call_p (const_rtx insn)
3845 rtx set;
3847 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3849 if (REG_P (SET_DEST (set))
3850 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3851 && fixed_regs[REGNO (SET_DEST (set))]
3852 && general_operand (SET_SRC (set), VOIDmode))
3853 return true;
3854 if (REG_P (SET_SRC (set))
3855 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3856 && REG_P (SET_DEST (set))
3857 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3858 return true;
3859 /* There may be a stack pop just after the call and before the store
3860 of the return register. Search for the actual store when deciding
3861 if we can break or not. */
3862 if (SET_DEST (set) == stack_pointer_rtx)
3864 /* This CONST_CAST is okay because next_nonnote_insn just
3865 returns its argument and we assign it to a const_rtx
3866 variable. */
3867 const rtx_insn *i2 = next_nonnote_insn (CONST_CAST_RTX (insn));
3868 if (i2 && keep_with_call_p (i2))
3869 return true;
3872 return false;
3875 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3876 to non-complex jumps. That is, direct unconditional, conditional,
3877 and tablejumps, but not computed jumps or returns. It also does
3878 not apply to the fallthru case of a conditional jump. */
3880 bool
3881 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3883 rtx tmp = JUMP_LABEL (jump_insn);
3884 rtx_jump_table_data *table;
3886 if (label == tmp)
3887 return true;
3889 if (tablejump_p (jump_insn, NULL, &table))
3891 rtvec vec = table->get_labels ();
3892 int i, veclen = GET_NUM_ELEM (vec);
3894 for (i = 0; i < veclen; ++i)
3895 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3896 return true;
3899 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3900 return true;
3902 return false;
3906 /* Return an estimate of the cost of computing rtx X.
3907 One use is in cse, to decide which expression to keep in the hash table.
3908 Another is in rtl generation, to pick the cheapest way to multiply.
3909 Other uses like the latter are expected in the future.
3911 X appears as operand OPNO in an expression with code OUTER_CODE.
3912 SPEED specifies whether costs optimized for speed or size should
3913 be returned. */
3916 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3918 int i, j;
3919 enum rtx_code code;
3920 const char *fmt;
3921 int total;
3922 int factor;
3924 if (x == 0)
3925 return 0;
3927 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3928 many insns, taking N times as long. */
3929 factor = GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD;
3930 if (factor == 0)
3931 factor = 1;
3933 /* Compute the default costs of certain things.
3934 Note that targetm.rtx_costs can override the defaults. */
3936 code = GET_CODE (x);
3937 switch (code)
3939 case MULT:
3940 /* Multiplication has time-complexity O(N*N), where N is the
3941 number of units (translated from digits) when using
3942 schoolbook long multiplication. */
3943 total = factor * factor * COSTS_N_INSNS (5);
3944 break;
3945 case DIV:
3946 case UDIV:
3947 case MOD:
3948 case UMOD:
3949 /* Similarly, complexity for schoolbook long division. */
3950 total = factor * factor * COSTS_N_INSNS (7);
3951 break;
3952 case USE:
3953 /* Used in combine.c as a marker. */
3954 total = 0;
3955 break;
3956 case SET:
3957 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3958 the mode for the factor. */
3959 factor = GET_MODE_SIZE (GET_MODE (SET_DEST (x))) / UNITS_PER_WORD;
3960 if (factor == 0)
3961 factor = 1;
3962 /* Pass through. */
3963 default:
3964 total = factor * COSTS_N_INSNS (1);
3967 switch (code)
3969 case REG:
3970 return 0;
3972 case SUBREG:
3973 total = 0;
3974 /* If we can't tie these modes, make this expensive. The larger
3975 the mode, the more expensive it is. */
3976 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3977 return COSTS_N_INSNS (2 + factor);
3978 break;
3980 default:
3981 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3982 return total;
3983 break;
3986 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3987 which is already in total. */
3989 fmt = GET_RTX_FORMAT (code);
3990 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3991 if (fmt[i] == 'e')
3992 total += rtx_cost (XEXP (x, i), code, i, speed);
3993 else if (fmt[i] == 'E')
3994 for (j = 0; j < XVECLEN (x, i); j++)
3995 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3997 return total;
4000 /* Fill in the structure C with information about both speed and size rtx
4001 costs for X, which is operand OPNO in an expression with code OUTER. */
4003 void
4004 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
4005 struct full_rtx_costs *c)
4007 c->speed = rtx_cost (x, outer, opno, true);
4008 c->size = rtx_cost (x, outer, opno, false);
4012 /* Return cost of address expression X.
4013 Expect that X is properly formed address reference.
4015 SPEED parameter specify whether costs optimized for speed or size should
4016 be returned. */
4019 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
4021 /* We may be asked for cost of various unusual addresses, such as operands
4022 of push instruction. It is not worthwhile to complicate writing
4023 of the target hook by such cases. */
4025 if (!memory_address_addr_space_p (mode, x, as))
4026 return 1000;
4028 return targetm.address_cost (x, mode, as, speed);
4031 /* If the target doesn't override, compute the cost as with arithmetic. */
4034 default_address_cost (rtx x, enum machine_mode, addr_space_t, bool speed)
4036 return rtx_cost (x, MEM, 0, speed);
4040 unsigned HOST_WIDE_INT
4041 nonzero_bits (const_rtx x, enum machine_mode mode)
4043 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4046 unsigned int
4047 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
4049 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4052 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4053 It avoids exponential behavior in nonzero_bits1 when X has
4054 identical subexpressions on the first or the second level. */
4056 static unsigned HOST_WIDE_INT
4057 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
4058 enum machine_mode known_mode,
4059 unsigned HOST_WIDE_INT known_ret)
4061 if (x == known_x && mode == known_mode)
4062 return known_ret;
4064 /* Try to find identical subexpressions. If found call
4065 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4066 precomputed value for the subexpression as KNOWN_RET. */
4068 if (ARITHMETIC_P (x))
4070 rtx x0 = XEXP (x, 0);
4071 rtx x1 = XEXP (x, 1);
4073 /* Check the first level. */
4074 if (x0 == x1)
4075 return nonzero_bits1 (x, mode, x0, mode,
4076 cached_nonzero_bits (x0, mode, known_x,
4077 known_mode, known_ret));
4079 /* Check the second level. */
4080 if (ARITHMETIC_P (x0)
4081 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4082 return nonzero_bits1 (x, mode, x1, mode,
4083 cached_nonzero_bits (x1, mode, known_x,
4084 known_mode, known_ret));
4086 if (ARITHMETIC_P (x1)
4087 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4088 return nonzero_bits1 (x, mode, x0, mode,
4089 cached_nonzero_bits (x0, mode, known_x,
4090 known_mode, known_ret));
4093 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4096 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4097 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4098 is less useful. We can't allow both, because that results in exponential
4099 run time recursion. There is a nullstone testcase that triggered
4100 this. This macro avoids accidental uses of num_sign_bit_copies. */
4101 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4103 /* Given an expression, X, compute which bits in X can be nonzero.
4104 We don't care about bits outside of those defined in MODE.
4106 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4107 an arithmetic operation, we can do better. */
4109 static unsigned HOST_WIDE_INT
4110 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4111 enum machine_mode known_mode,
4112 unsigned HOST_WIDE_INT known_ret)
4114 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4115 unsigned HOST_WIDE_INT inner_nz;
4116 enum rtx_code code;
4117 enum machine_mode inner_mode;
4118 unsigned int mode_width = GET_MODE_PRECISION (mode);
4120 /* For floating-point and vector values, assume all bits are needed. */
4121 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4122 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4123 return nonzero;
4125 /* If X is wider than MODE, use its mode instead. */
4126 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4128 mode = GET_MODE (x);
4129 nonzero = GET_MODE_MASK (mode);
4130 mode_width = GET_MODE_PRECISION (mode);
4133 if (mode_width > HOST_BITS_PER_WIDE_INT)
4134 /* Our only callers in this case look for single bit values. So
4135 just return the mode mask. Those tests will then be false. */
4136 return nonzero;
4138 #ifndef WORD_REGISTER_OPERATIONS
4139 /* If MODE is wider than X, but both are a single word for both the host
4140 and target machines, we can compute this from which bits of the
4141 object might be nonzero in its own mode, taking into account the fact
4142 that on many CISC machines, accessing an object in a wider mode
4143 causes the high-order bits to become undefined. So they are
4144 not known to be zero. */
4146 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
4147 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4148 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4149 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4151 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4152 known_x, known_mode, known_ret);
4153 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4154 return nonzero;
4156 #endif
4158 code = GET_CODE (x);
4159 switch (code)
4161 case REG:
4162 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4163 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4164 all the bits above ptr_mode are known to be zero. */
4165 /* As we do not know which address space the pointer is referring to,
4166 we can do this only if the target does not support different pointer
4167 or address modes depending on the address space. */
4168 if (target_default_pointer_address_modes_p ()
4169 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4170 && REG_POINTER (x))
4171 nonzero &= GET_MODE_MASK (ptr_mode);
4172 #endif
4174 /* Include declared information about alignment of pointers. */
4175 /* ??? We don't properly preserve REG_POINTER changes across
4176 pointer-to-integer casts, so we can't trust it except for
4177 things that we know must be pointers. See execute/960116-1.c. */
4178 if ((x == stack_pointer_rtx
4179 || x == frame_pointer_rtx
4180 || x == arg_pointer_rtx)
4181 && REGNO_POINTER_ALIGN (REGNO (x)))
4183 unsigned HOST_WIDE_INT alignment
4184 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4186 #ifdef PUSH_ROUNDING
4187 /* If PUSH_ROUNDING is defined, it is possible for the
4188 stack to be momentarily aligned only to that amount,
4189 so we pick the least alignment. */
4190 if (x == stack_pointer_rtx && PUSH_ARGS)
4191 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4192 alignment);
4193 #endif
4195 nonzero &= ~(alignment - 1);
4199 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4200 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4201 known_mode, known_ret,
4202 &nonzero_for_hook);
4204 if (new_rtx)
4205 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4206 known_mode, known_ret);
4208 return nonzero_for_hook;
4211 case CONST_INT:
4212 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4213 /* If X is negative in MODE, sign-extend the value. */
4214 if (INTVAL (x) > 0
4215 && mode_width < BITS_PER_WORD
4216 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4217 != 0)
4218 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4219 #endif
4221 return UINTVAL (x);
4223 case MEM:
4224 #ifdef LOAD_EXTEND_OP
4225 /* In many, if not most, RISC machines, reading a byte from memory
4226 zeros the rest of the register. Noticing that fact saves a lot
4227 of extra zero-extends. */
4228 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4229 nonzero &= GET_MODE_MASK (GET_MODE (x));
4230 #endif
4231 break;
4233 case EQ: case NE:
4234 case UNEQ: case LTGT:
4235 case GT: case GTU: case UNGT:
4236 case LT: case LTU: case UNLT:
4237 case GE: case GEU: case UNGE:
4238 case LE: case LEU: case UNLE:
4239 case UNORDERED: case ORDERED:
4240 /* If this produces an integer result, we know which bits are set.
4241 Code here used to clear bits outside the mode of X, but that is
4242 now done above. */
4243 /* Mind that MODE is the mode the caller wants to look at this
4244 operation in, and not the actual operation mode. We can wind
4245 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4246 that describes the results of a vector compare. */
4247 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4248 && mode_width <= HOST_BITS_PER_WIDE_INT)
4249 nonzero = STORE_FLAG_VALUE;
4250 break;
4252 case NEG:
4253 #if 0
4254 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4255 and num_sign_bit_copies. */
4256 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4257 == GET_MODE_PRECISION (GET_MODE (x)))
4258 nonzero = 1;
4259 #endif
4261 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4262 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4263 break;
4265 case ABS:
4266 #if 0
4267 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4268 and num_sign_bit_copies. */
4269 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4270 == GET_MODE_PRECISION (GET_MODE (x)))
4271 nonzero = 1;
4272 #endif
4273 break;
4275 case TRUNCATE:
4276 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4277 known_x, known_mode, known_ret)
4278 & GET_MODE_MASK (mode));
4279 break;
4281 case ZERO_EXTEND:
4282 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4283 known_x, known_mode, known_ret);
4284 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4285 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4286 break;
4288 case SIGN_EXTEND:
4289 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4290 Otherwise, show all the bits in the outer mode but not the inner
4291 may be nonzero. */
4292 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4293 known_x, known_mode, known_ret);
4294 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4296 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4297 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4298 inner_nz |= (GET_MODE_MASK (mode)
4299 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4302 nonzero &= inner_nz;
4303 break;
4305 case AND:
4306 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4307 known_x, known_mode, known_ret)
4308 & cached_nonzero_bits (XEXP (x, 1), mode,
4309 known_x, known_mode, known_ret);
4310 break;
4312 case XOR: case IOR:
4313 case UMIN: case UMAX: case SMIN: case SMAX:
4315 unsigned HOST_WIDE_INT nonzero0
4316 = cached_nonzero_bits (XEXP (x, 0), mode,
4317 known_x, known_mode, known_ret);
4319 /* Don't call nonzero_bits for the second time if it cannot change
4320 anything. */
4321 if ((nonzero & nonzero0) != nonzero)
4322 nonzero &= nonzero0
4323 | cached_nonzero_bits (XEXP (x, 1), mode,
4324 known_x, known_mode, known_ret);
4326 break;
4328 case PLUS: case MINUS:
4329 case MULT:
4330 case DIV: case UDIV:
4331 case MOD: case UMOD:
4332 /* We can apply the rules of arithmetic to compute the number of
4333 high- and low-order zero bits of these operations. We start by
4334 computing the width (position of the highest-order nonzero bit)
4335 and the number of low-order zero bits for each value. */
4337 unsigned HOST_WIDE_INT nz0
4338 = cached_nonzero_bits (XEXP (x, 0), mode,
4339 known_x, known_mode, known_ret);
4340 unsigned HOST_WIDE_INT nz1
4341 = cached_nonzero_bits (XEXP (x, 1), mode,
4342 known_x, known_mode, known_ret);
4343 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4344 int width0 = floor_log2 (nz0) + 1;
4345 int width1 = floor_log2 (nz1) + 1;
4346 int low0 = floor_log2 (nz0 & -nz0);
4347 int low1 = floor_log2 (nz1 & -nz1);
4348 unsigned HOST_WIDE_INT op0_maybe_minusp
4349 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4350 unsigned HOST_WIDE_INT op1_maybe_minusp
4351 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4352 unsigned int result_width = mode_width;
4353 int result_low = 0;
4355 switch (code)
4357 case PLUS:
4358 result_width = MAX (width0, width1) + 1;
4359 result_low = MIN (low0, low1);
4360 break;
4361 case MINUS:
4362 result_low = MIN (low0, low1);
4363 break;
4364 case MULT:
4365 result_width = width0 + width1;
4366 result_low = low0 + low1;
4367 break;
4368 case DIV:
4369 if (width1 == 0)
4370 break;
4371 if (!op0_maybe_minusp && !op1_maybe_minusp)
4372 result_width = width0;
4373 break;
4374 case UDIV:
4375 if (width1 == 0)
4376 break;
4377 result_width = width0;
4378 break;
4379 case MOD:
4380 if (width1 == 0)
4381 break;
4382 if (!op0_maybe_minusp && !op1_maybe_minusp)
4383 result_width = MIN (width0, width1);
4384 result_low = MIN (low0, low1);
4385 break;
4386 case UMOD:
4387 if (width1 == 0)
4388 break;
4389 result_width = MIN (width0, width1);
4390 result_low = MIN (low0, low1);
4391 break;
4392 default:
4393 gcc_unreachable ();
4396 if (result_width < mode_width)
4397 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4399 if (result_low > 0)
4400 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4402 break;
4404 case ZERO_EXTRACT:
4405 if (CONST_INT_P (XEXP (x, 1))
4406 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4407 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4408 break;
4410 case SUBREG:
4411 /* If this is a SUBREG formed for a promoted variable that has
4412 been zero-extended, we know that at least the high-order bits
4413 are zero, though others might be too. */
4415 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4416 nonzero = GET_MODE_MASK (GET_MODE (x))
4417 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4418 known_x, known_mode, known_ret);
4420 inner_mode = GET_MODE (SUBREG_REG (x));
4421 /* If the inner mode is a single word for both the host and target
4422 machines, we can compute this from which bits of the inner
4423 object might be nonzero. */
4424 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4425 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4427 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4428 known_x, known_mode, known_ret);
4430 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4431 /* If this is a typical RISC machine, we only have to worry
4432 about the way loads are extended. */
4433 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4434 ? val_signbit_known_set_p (inner_mode, nonzero)
4435 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4436 || !MEM_P (SUBREG_REG (x)))
4437 #endif
4439 /* On many CISC machines, accessing an object in a wider mode
4440 causes the high-order bits to become undefined. So they are
4441 not known to be zero. */
4442 if (GET_MODE_PRECISION (GET_MODE (x))
4443 > GET_MODE_PRECISION (inner_mode))
4444 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4445 & ~GET_MODE_MASK (inner_mode));
4448 break;
4450 case ASHIFTRT:
4451 case LSHIFTRT:
4452 case ASHIFT:
4453 case ROTATE:
4454 /* The nonzero bits are in two classes: any bits within MODE
4455 that aren't in GET_MODE (x) are always significant. The rest of the
4456 nonzero bits are those that are significant in the operand of
4457 the shift when shifted the appropriate number of bits. This
4458 shows that high-order bits are cleared by the right shift and
4459 low-order bits by left shifts. */
4460 if (CONST_INT_P (XEXP (x, 1))
4461 && INTVAL (XEXP (x, 1)) >= 0
4462 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4463 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4465 enum machine_mode inner_mode = GET_MODE (x);
4466 unsigned int width = GET_MODE_PRECISION (inner_mode);
4467 int count = INTVAL (XEXP (x, 1));
4468 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4469 unsigned HOST_WIDE_INT op_nonzero
4470 = cached_nonzero_bits (XEXP (x, 0), mode,
4471 known_x, known_mode, known_ret);
4472 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4473 unsigned HOST_WIDE_INT outer = 0;
4475 if (mode_width > width)
4476 outer = (op_nonzero & nonzero & ~mode_mask);
4478 if (code == LSHIFTRT)
4479 inner >>= count;
4480 else if (code == ASHIFTRT)
4482 inner >>= count;
4484 /* If the sign bit may have been nonzero before the shift, we
4485 need to mark all the places it could have been copied to
4486 by the shift as possibly nonzero. */
4487 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4488 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4489 << (width - count);
4491 else if (code == ASHIFT)
4492 inner <<= count;
4493 else
4494 inner = ((inner << (count % width)
4495 | (inner >> (width - (count % width)))) & mode_mask);
4497 nonzero &= (outer | inner);
4499 break;
4501 case FFS:
4502 case POPCOUNT:
4503 /* This is at most the number of bits in the mode. */
4504 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4505 break;
4507 case CLZ:
4508 /* If CLZ has a known value at zero, then the nonzero bits are
4509 that value, plus the number of bits in the mode minus one. */
4510 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4511 nonzero
4512 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4513 else
4514 nonzero = -1;
4515 break;
4517 case CTZ:
4518 /* If CTZ has a known value at zero, then the nonzero bits are
4519 that value, plus the number of bits in the mode minus one. */
4520 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4521 nonzero
4522 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4523 else
4524 nonzero = -1;
4525 break;
4527 case CLRSB:
4528 /* This is at most the number of bits in the mode minus 1. */
4529 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4530 break;
4532 case PARITY:
4533 nonzero = 1;
4534 break;
4536 case IF_THEN_ELSE:
4538 unsigned HOST_WIDE_INT nonzero_true
4539 = cached_nonzero_bits (XEXP (x, 1), mode,
4540 known_x, known_mode, known_ret);
4542 /* Don't call nonzero_bits for the second time if it cannot change
4543 anything. */
4544 if ((nonzero & nonzero_true) != nonzero)
4545 nonzero &= nonzero_true
4546 | cached_nonzero_bits (XEXP (x, 2), mode,
4547 known_x, known_mode, known_ret);
4549 break;
4551 default:
4552 break;
4555 return nonzero;
4558 /* See the macro definition above. */
4559 #undef cached_num_sign_bit_copies
4562 /* The function cached_num_sign_bit_copies is a wrapper around
4563 num_sign_bit_copies1. It avoids exponential behavior in
4564 num_sign_bit_copies1 when X has identical subexpressions on the
4565 first or the second level. */
4567 static unsigned int
4568 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4569 enum machine_mode known_mode,
4570 unsigned int known_ret)
4572 if (x == known_x && mode == known_mode)
4573 return known_ret;
4575 /* Try to find identical subexpressions. If found call
4576 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4577 the precomputed value for the subexpression as KNOWN_RET. */
4579 if (ARITHMETIC_P (x))
4581 rtx x0 = XEXP (x, 0);
4582 rtx x1 = XEXP (x, 1);
4584 /* Check the first level. */
4585 if (x0 == x1)
4586 return
4587 num_sign_bit_copies1 (x, mode, x0, mode,
4588 cached_num_sign_bit_copies (x0, mode, known_x,
4589 known_mode,
4590 known_ret));
4592 /* Check the second level. */
4593 if (ARITHMETIC_P (x0)
4594 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4595 return
4596 num_sign_bit_copies1 (x, mode, x1, mode,
4597 cached_num_sign_bit_copies (x1, mode, known_x,
4598 known_mode,
4599 known_ret));
4601 if (ARITHMETIC_P (x1)
4602 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4603 return
4604 num_sign_bit_copies1 (x, mode, x0, mode,
4605 cached_num_sign_bit_copies (x0, mode, known_x,
4606 known_mode,
4607 known_ret));
4610 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4613 /* Return the number of bits at the high-order end of X that are known to
4614 be equal to the sign bit. X will be used in mode MODE; if MODE is
4615 VOIDmode, X will be used in its own mode. The returned value will always
4616 be between 1 and the number of bits in MODE. */
4618 static unsigned int
4619 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4620 enum machine_mode known_mode,
4621 unsigned int known_ret)
4623 enum rtx_code code = GET_CODE (x);
4624 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4625 int num0, num1, result;
4626 unsigned HOST_WIDE_INT nonzero;
4628 /* If we weren't given a mode, use the mode of X. If the mode is still
4629 VOIDmode, we don't know anything. Likewise if one of the modes is
4630 floating-point. */
4632 if (mode == VOIDmode)
4633 mode = GET_MODE (x);
4635 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4636 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4637 return 1;
4639 /* For a smaller object, just ignore the high bits. */
4640 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4642 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4643 known_x, known_mode, known_ret);
4644 return MAX (1,
4645 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4648 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4650 #ifndef WORD_REGISTER_OPERATIONS
4651 /* If this machine does not do all register operations on the entire
4652 register and MODE is wider than the mode of X, we can say nothing
4653 at all about the high-order bits. */
4654 return 1;
4655 #else
4656 /* Likewise on machines that do, if the mode of the object is smaller
4657 than a word and loads of that size don't sign extend, we can say
4658 nothing about the high order bits. */
4659 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4660 #ifdef LOAD_EXTEND_OP
4661 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4662 #endif
4664 return 1;
4665 #endif
4668 switch (code)
4670 case REG:
4672 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4673 /* If pointers extend signed and this is a pointer in Pmode, say that
4674 all the bits above ptr_mode are known to be sign bit copies. */
4675 /* As we do not know which address space the pointer is referring to,
4676 we can do this only if the target does not support different pointer
4677 or address modes depending on the address space. */
4678 if (target_default_pointer_address_modes_p ()
4679 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4680 && mode == Pmode && REG_POINTER (x))
4681 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4682 #endif
4685 unsigned int copies_for_hook = 1, copies = 1;
4686 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4687 known_mode, known_ret,
4688 &copies_for_hook);
4690 if (new_rtx)
4691 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4692 known_mode, known_ret);
4694 if (copies > 1 || copies_for_hook > 1)
4695 return MAX (copies, copies_for_hook);
4697 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4699 break;
4701 case MEM:
4702 #ifdef LOAD_EXTEND_OP
4703 /* Some RISC machines sign-extend all loads of smaller than a word. */
4704 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4705 return MAX (1, ((int) bitwidth
4706 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4707 #endif
4708 break;
4710 case CONST_INT:
4711 /* If the constant is negative, take its 1's complement and remask.
4712 Then see how many zero bits we have. */
4713 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4714 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4715 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4716 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4718 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4720 case SUBREG:
4721 /* If this is a SUBREG for a promoted object that is sign-extended
4722 and we are looking at it in a wider mode, we know that at least the
4723 high-order bits are known to be sign bit copies. */
4725 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4727 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4728 known_x, known_mode, known_ret);
4729 return MAX ((int) bitwidth
4730 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4731 num0);
4734 /* For a smaller object, just ignore the high bits. */
4735 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4737 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4738 known_x, known_mode, known_ret);
4739 return MAX (1, (num0
4740 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4741 - bitwidth)));
4744 #ifdef WORD_REGISTER_OPERATIONS
4745 #ifdef LOAD_EXTEND_OP
4746 /* For paradoxical SUBREGs on machines where all register operations
4747 affect the entire register, just look inside. Note that we are
4748 passing MODE to the recursive call, so the number of sign bit copies
4749 will remain relative to that mode, not the inner mode. */
4751 /* This works only if loads sign extend. Otherwise, if we get a
4752 reload for the inner part, it may be loaded from the stack, and
4753 then we lose all sign bit copies that existed before the store
4754 to the stack. */
4756 if (paradoxical_subreg_p (x)
4757 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4758 && MEM_P (SUBREG_REG (x)))
4759 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4760 known_x, known_mode, known_ret);
4761 #endif
4762 #endif
4763 break;
4765 case SIGN_EXTRACT:
4766 if (CONST_INT_P (XEXP (x, 1)))
4767 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4768 break;
4770 case SIGN_EXTEND:
4771 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4772 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4773 known_x, known_mode, known_ret));
4775 case TRUNCATE:
4776 /* For a smaller object, just ignore the high bits. */
4777 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4778 known_x, known_mode, known_ret);
4779 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4780 - bitwidth)));
4782 case NOT:
4783 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4784 known_x, known_mode, known_ret);
4786 case ROTATE: case ROTATERT:
4787 /* If we are rotating left by a number of bits less than the number
4788 of sign bit copies, we can just subtract that amount from the
4789 number. */
4790 if (CONST_INT_P (XEXP (x, 1))
4791 && INTVAL (XEXP (x, 1)) >= 0
4792 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4794 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4795 known_x, known_mode, known_ret);
4796 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4797 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4799 break;
4801 case NEG:
4802 /* In general, this subtracts one sign bit copy. But if the value
4803 is known to be positive, the number of sign bit copies is the
4804 same as that of the input. Finally, if the input has just one bit
4805 that might be nonzero, all the bits are copies of the sign bit. */
4806 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4807 known_x, known_mode, known_ret);
4808 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4809 return num0 > 1 ? num0 - 1 : 1;
4811 nonzero = nonzero_bits (XEXP (x, 0), mode);
4812 if (nonzero == 1)
4813 return bitwidth;
4815 if (num0 > 1
4816 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4817 num0--;
4819 return num0;
4821 case IOR: case AND: case XOR:
4822 case SMIN: case SMAX: case UMIN: case UMAX:
4823 /* Logical operations will preserve the number of sign-bit copies.
4824 MIN and MAX operations always return one of the operands. */
4825 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4826 known_x, known_mode, known_ret);
4827 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4828 known_x, known_mode, known_ret);
4830 /* If num1 is clearing some of the top bits then regardless of
4831 the other term, we are guaranteed to have at least that many
4832 high-order zero bits. */
4833 if (code == AND
4834 && num1 > 1
4835 && bitwidth <= HOST_BITS_PER_WIDE_INT
4836 && CONST_INT_P (XEXP (x, 1))
4837 && (UINTVAL (XEXP (x, 1))
4838 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4839 return num1;
4841 /* Similarly for IOR when setting high-order bits. */
4842 if (code == IOR
4843 && num1 > 1
4844 && bitwidth <= HOST_BITS_PER_WIDE_INT
4845 && CONST_INT_P (XEXP (x, 1))
4846 && (UINTVAL (XEXP (x, 1))
4847 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4848 return num1;
4850 return MIN (num0, num1);
4852 case PLUS: case MINUS:
4853 /* For addition and subtraction, we can have a 1-bit carry. However,
4854 if we are subtracting 1 from a positive number, there will not
4855 be such a carry. Furthermore, if the positive number is known to
4856 be 0 or 1, we know the result is either -1 or 0. */
4858 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4859 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4861 nonzero = nonzero_bits (XEXP (x, 0), mode);
4862 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4863 return (nonzero == 1 || nonzero == 0 ? bitwidth
4864 : bitwidth - floor_log2 (nonzero) - 1);
4867 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4868 known_x, known_mode, known_ret);
4869 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4870 known_x, known_mode, known_ret);
4871 result = MAX (1, MIN (num0, num1) - 1);
4873 return result;
4875 case MULT:
4876 /* The number of bits of the product is the sum of the number of
4877 bits of both terms. However, unless one of the terms if known
4878 to be positive, we must allow for an additional bit since negating
4879 a negative number can remove one sign bit copy. */
4881 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4882 known_x, known_mode, known_ret);
4883 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4884 known_x, known_mode, known_ret);
4886 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4887 if (result > 0
4888 && (bitwidth > HOST_BITS_PER_WIDE_INT
4889 || (((nonzero_bits (XEXP (x, 0), mode)
4890 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4891 && ((nonzero_bits (XEXP (x, 1), mode)
4892 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4893 != 0))))
4894 result--;
4896 return MAX (1, result);
4898 case UDIV:
4899 /* The result must be <= the first operand. If the first operand
4900 has the high bit set, we know nothing about the number of sign
4901 bit copies. */
4902 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4903 return 1;
4904 else if ((nonzero_bits (XEXP (x, 0), mode)
4905 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4906 return 1;
4907 else
4908 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4909 known_x, known_mode, known_ret);
4911 case UMOD:
4912 /* The result must be <= the second operand. If the second operand
4913 has (or just might have) the high bit set, we know nothing about
4914 the number of sign bit copies. */
4915 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4916 return 1;
4917 else if ((nonzero_bits (XEXP (x, 1), mode)
4918 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4919 return 1;
4920 else
4921 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4922 known_x, known_mode, known_ret);
4924 case DIV:
4925 /* Similar to unsigned division, except that we have to worry about
4926 the case where the divisor is negative, in which case we have
4927 to add 1. */
4928 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4929 known_x, known_mode, known_ret);
4930 if (result > 1
4931 && (bitwidth > HOST_BITS_PER_WIDE_INT
4932 || (nonzero_bits (XEXP (x, 1), mode)
4933 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4934 result--;
4936 return result;
4938 case MOD:
4939 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4940 known_x, known_mode, known_ret);
4941 if (result > 1
4942 && (bitwidth > HOST_BITS_PER_WIDE_INT
4943 || (nonzero_bits (XEXP (x, 1), mode)
4944 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4945 result--;
4947 return result;
4949 case ASHIFTRT:
4950 /* Shifts by a constant add to the number of bits equal to the
4951 sign bit. */
4952 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4953 known_x, known_mode, known_ret);
4954 if (CONST_INT_P (XEXP (x, 1))
4955 && INTVAL (XEXP (x, 1)) > 0
4956 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4957 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4959 return num0;
4961 case ASHIFT:
4962 /* Left shifts destroy copies. */
4963 if (!CONST_INT_P (XEXP (x, 1))
4964 || INTVAL (XEXP (x, 1)) < 0
4965 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4966 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4967 return 1;
4969 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4970 known_x, known_mode, known_ret);
4971 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4973 case IF_THEN_ELSE:
4974 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4975 known_x, known_mode, known_ret);
4976 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4977 known_x, known_mode, known_ret);
4978 return MIN (num0, num1);
4980 case EQ: case NE: case GE: case GT: case LE: case LT:
4981 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4982 case GEU: case GTU: case LEU: case LTU:
4983 case UNORDERED: case ORDERED:
4984 /* If the constant is negative, take its 1's complement and remask.
4985 Then see how many zero bits we have. */
4986 nonzero = STORE_FLAG_VALUE;
4987 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4988 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4989 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4991 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4993 default:
4994 break;
4997 /* If we haven't been able to figure it out by one of the above rules,
4998 see if some of the high-order bits are known to be zero. If so,
4999 count those bits and return one less than that amount. If we can't
5000 safely compute the mask for this mode, always return BITWIDTH. */
5002 bitwidth = GET_MODE_PRECISION (mode);
5003 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5004 return 1;
5006 nonzero = nonzero_bits (x, mode);
5007 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
5008 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5011 /* Calculate the rtx_cost of a single instruction. A return value of
5012 zero indicates an instruction pattern without a known cost. */
5015 insn_rtx_cost (rtx pat, bool speed)
5017 int i, cost;
5018 rtx set;
5020 /* Extract the single set rtx from the instruction pattern.
5021 We can't use single_set since we only have the pattern. */
5022 if (GET_CODE (pat) == SET)
5023 set = pat;
5024 else if (GET_CODE (pat) == PARALLEL)
5026 set = NULL_RTX;
5027 for (i = 0; i < XVECLEN (pat, 0); i++)
5029 rtx x = XVECEXP (pat, 0, i);
5030 if (GET_CODE (x) == SET)
5032 if (set)
5033 return 0;
5034 set = x;
5037 if (!set)
5038 return 0;
5040 else
5041 return 0;
5043 cost = set_src_cost (SET_SRC (set), speed);
5044 return cost > 0 ? cost : COSTS_N_INSNS (1);
5047 /* Given an insn INSN and condition COND, return the condition in a
5048 canonical form to simplify testing by callers. Specifically:
5050 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5051 (2) Both operands will be machine operands; (cc0) will have been replaced.
5052 (3) If an operand is a constant, it will be the second operand.
5053 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5054 for GE, GEU, and LEU.
5056 If the condition cannot be understood, or is an inequality floating-point
5057 comparison which needs to be reversed, 0 will be returned.
5059 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5061 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5062 insn used in locating the condition was found. If a replacement test
5063 of the condition is desired, it should be placed in front of that
5064 insn and we will be sure that the inputs are still valid.
5066 If WANT_REG is nonzero, we wish the condition to be relative to that
5067 register, if possible. Therefore, do not canonicalize the condition
5068 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5069 to be a compare to a CC mode register.
5071 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5072 and at INSN. */
5075 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5076 rtx_insn **earliest,
5077 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5079 enum rtx_code code;
5080 rtx_insn *prev = insn;
5081 const_rtx set;
5082 rtx tem;
5083 rtx op0, op1;
5084 int reverse_code = 0;
5085 enum machine_mode mode;
5086 basic_block bb = BLOCK_FOR_INSN (insn);
5088 code = GET_CODE (cond);
5089 mode = GET_MODE (cond);
5090 op0 = XEXP (cond, 0);
5091 op1 = XEXP (cond, 1);
5093 if (reverse)
5094 code = reversed_comparison_code (cond, insn);
5095 if (code == UNKNOWN)
5096 return 0;
5098 if (earliest)
5099 *earliest = insn;
5101 /* If we are comparing a register with zero, see if the register is set
5102 in the previous insn to a COMPARE or a comparison operation. Perform
5103 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5104 in cse.c */
5106 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5107 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5108 && op1 == CONST0_RTX (GET_MODE (op0))
5109 && op0 != want_reg)
5111 /* Set nonzero when we find something of interest. */
5112 rtx x = 0;
5114 #ifdef HAVE_cc0
5115 /* If comparison with cc0, import actual comparison from compare
5116 insn. */
5117 if (op0 == cc0_rtx)
5119 if ((prev = prev_nonnote_insn (prev)) == 0
5120 || !NONJUMP_INSN_P (prev)
5121 || (set = single_set (prev)) == 0
5122 || SET_DEST (set) != cc0_rtx)
5123 return 0;
5125 op0 = SET_SRC (set);
5126 op1 = CONST0_RTX (GET_MODE (op0));
5127 if (earliest)
5128 *earliest = prev;
5130 #endif
5132 /* If this is a COMPARE, pick up the two things being compared. */
5133 if (GET_CODE (op0) == COMPARE)
5135 op1 = XEXP (op0, 1);
5136 op0 = XEXP (op0, 0);
5137 continue;
5139 else if (!REG_P (op0))
5140 break;
5142 /* Go back to the previous insn. Stop if it is not an INSN. We also
5143 stop if it isn't a single set or if it has a REG_INC note because
5144 we don't want to bother dealing with it. */
5146 prev = prev_nonnote_nondebug_insn (prev);
5148 if (prev == 0
5149 || !NONJUMP_INSN_P (prev)
5150 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5151 /* In cfglayout mode, there do not have to be labels at the
5152 beginning of a block, or jumps at the end, so the previous
5153 conditions would not stop us when we reach bb boundary. */
5154 || BLOCK_FOR_INSN (prev) != bb)
5155 break;
5157 set = set_of (op0, prev);
5159 if (set
5160 && (GET_CODE (set) != SET
5161 || !rtx_equal_p (SET_DEST (set), op0)))
5162 break;
5164 /* If this is setting OP0, get what it sets it to if it looks
5165 relevant. */
5166 if (set)
5168 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
5169 #ifdef FLOAT_STORE_FLAG_VALUE
5170 REAL_VALUE_TYPE fsfv;
5171 #endif
5173 /* ??? We may not combine comparisons done in a CCmode with
5174 comparisons not done in a CCmode. This is to aid targets
5175 like Alpha that have an IEEE compliant EQ instruction, and
5176 a non-IEEE compliant BEQ instruction. The use of CCmode is
5177 actually artificial, simply to prevent the combination, but
5178 should not affect other platforms.
5180 However, we must allow VOIDmode comparisons to match either
5181 CCmode or non-CCmode comparison, because some ports have
5182 modeless comparisons inside branch patterns.
5184 ??? This mode check should perhaps look more like the mode check
5185 in simplify_comparison in combine. */
5186 if (((GET_MODE_CLASS (mode) == MODE_CC)
5187 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5188 && mode != VOIDmode
5189 && inner_mode != VOIDmode)
5190 break;
5191 if (GET_CODE (SET_SRC (set)) == COMPARE
5192 || (((code == NE
5193 || (code == LT
5194 && val_signbit_known_set_p (inner_mode,
5195 STORE_FLAG_VALUE))
5196 #ifdef FLOAT_STORE_FLAG_VALUE
5197 || (code == LT
5198 && SCALAR_FLOAT_MODE_P (inner_mode)
5199 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5200 REAL_VALUE_NEGATIVE (fsfv)))
5201 #endif
5203 && COMPARISON_P (SET_SRC (set))))
5204 x = SET_SRC (set);
5205 else if (((code == EQ
5206 || (code == GE
5207 && val_signbit_known_set_p (inner_mode,
5208 STORE_FLAG_VALUE))
5209 #ifdef FLOAT_STORE_FLAG_VALUE
5210 || (code == GE
5211 && SCALAR_FLOAT_MODE_P (inner_mode)
5212 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5213 REAL_VALUE_NEGATIVE (fsfv)))
5214 #endif
5216 && COMPARISON_P (SET_SRC (set)))
5218 reverse_code = 1;
5219 x = SET_SRC (set);
5221 else if ((code == EQ || code == NE)
5222 && GET_CODE (SET_SRC (set)) == XOR)
5223 /* Handle sequences like:
5225 (set op0 (xor X Y))
5226 ...(eq|ne op0 (const_int 0))...
5228 in which case:
5230 (eq op0 (const_int 0)) reduces to (eq X Y)
5231 (ne op0 (const_int 0)) reduces to (ne X Y)
5233 This is the form used by MIPS16, for example. */
5234 x = SET_SRC (set);
5235 else
5236 break;
5239 else if (reg_set_p (op0, prev))
5240 /* If this sets OP0, but not directly, we have to give up. */
5241 break;
5243 if (x)
5245 /* If the caller is expecting the condition to be valid at INSN,
5246 make sure X doesn't change before INSN. */
5247 if (valid_at_insn_p)
5248 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5249 break;
5250 if (COMPARISON_P (x))
5251 code = GET_CODE (x);
5252 if (reverse_code)
5254 code = reversed_comparison_code (x, prev);
5255 if (code == UNKNOWN)
5256 return 0;
5257 reverse_code = 0;
5260 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5261 if (earliest)
5262 *earliest = prev;
5266 /* If constant is first, put it last. */
5267 if (CONSTANT_P (op0))
5268 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5270 /* If OP0 is the result of a comparison, we weren't able to find what
5271 was really being compared, so fail. */
5272 if (!allow_cc_mode
5273 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5274 return 0;
5276 /* Canonicalize any ordered comparison with integers involving equality
5277 if we can do computations in the relevant mode and we do not
5278 overflow. */
5280 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5281 && CONST_INT_P (op1)
5282 && GET_MODE (op0) != VOIDmode
5283 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5285 HOST_WIDE_INT const_val = INTVAL (op1);
5286 unsigned HOST_WIDE_INT uconst_val = const_val;
5287 unsigned HOST_WIDE_INT max_val
5288 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5290 switch (code)
5292 case LE:
5293 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5294 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5295 break;
5297 /* When cross-compiling, const_val might be sign-extended from
5298 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5299 case GE:
5300 if ((const_val & max_val)
5301 != ((unsigned HOST_WIDE_INT) 1
5302 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5303 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5304 break;
5306 case LEU:
5307 if (uconst_val < max_val)
5308 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5309 break;
5311 case GEU:
5312 if (uconst_val != 0)
5313 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5314 break;
5316 default:
5317 break;
5321 /* Never return CC0; return zero instead. */
5322 if (CC0_P (op0))
5323 return 0;
5325 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5328 /* Given a jump insn JUMP, return the condition that will cause it to branch
5329 to its JUMP_LABEL. If the condition cannot be understood, or is an
5330 inequality floating-point comparison which needs to be reversed, 0 will
5331 be returned.
5333 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5334 insn used in locating the condition was found. If a replacement test
5335 of the condition is desired, it should be placed in front of that
5336 insn and we will be sure that the inputs are still valid. If EARLIEST
5337 is null, the returned condition will be valid at INSN.
5339 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5340 compare CC mode register.
5342 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5345 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5346 int valid_at_insn_p)
5348 rtx cond;
5349 int reverse;
5350 rtx set;
5352 /* If this is not a standard conditional jump, we can't parse it. */
5353 if (!JUMP_P (jump)
5354 || ! any_condjump_p (jump))
5355 return 0;
5356 set = pc_set (jump);
5358 cond = XEXP (SET_SRC (set), 0);
5360 /* If this branches to JUMP_LABEL when the condition is false, reverse
5361 the condition. */
5362 reverse
5363 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5364 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
5366 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5367 allow_cc_mode, valid_at_insn_p);
5370 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5371 TARGET_MODE_REP_EXTENDED.
5373 Note that we assume that the property of
5374 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5375 narrower than mode B. I.e., if A is a mode narrower than B then in
5376 order to be able to operate on it in mode B, mode A needs to
5377 satisfy the requirements set by the representation of mode B. */
5379 static void
5380 init_num_sign_bit_copies_in_rep (void)
5382 enum machine_mode mode, in_mode;
5384 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5385 in_mode = GET_MODE_WIDER_MODE (mode))
5386 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5387 mode = GET_MODE_WIDER_MODE (mode))
5389 enum machine_mode i;
5391 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5392 extends to the next widest mode. */
5393 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5394 || GET_MODE_WIDER_MODE (mode) == in_mode);
5396 /* We are in in_mode. Count how many bits outside of mode
5397 have to be copies of the sign-bit. */
5398 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5400 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5402 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5403 /* We can only check sign-bit copies starting from the
5404 top-bit. In order to be able to check the bits we
5405 have already seen we pretend that subsequent bits
5406 have to be sign-bit copies too. */
5407 || num_sign_bit_copies_in_rep [in_mode][mode])
5408 num_sign_bit_copies_in_rep [in_mode][mode]
5409 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5414 /* Suppose that truncation from the machine mode of X to MODE is not a
5415 no-op. See if there is anything special about X so that we can
5416 assume it already contains a truncated value of MODE. */
5418 bool
5419 truncated_to_mode (enum machine_mode mode, const_rtx x)
5421 /* This register has already been used in MODE without explicit
5422 truncation. */
5423 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5424 return true;
5426 /* See if we already satisfy the requirements of MODE. If yes we
5427 can just switch to MODE. */
5428 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5429 && (num_sign_bit_copies (x, GET_MODE (x))
5430 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5431 return true;
5433 return false;
5436 /* Return true if RTX code CODE has a single sequence of zero or more
5437 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5438 entry in that case. */
5440 static bool
5441 setup_reg_subrtx_bounds (unsigned int code)
5443 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5444 unsigned int i = 0;
5445 for (; format[i] != 'e'; ++i)
5447 if (!format[i])
5448 /* No subrtxes. Leave start and count as 0. */
5449 return true;
5450 if (format[i] == 'E' || format[i] == 'V')
5451 return false;
5454 /* Record the sequence of 'e's. */
5455 rtx_all_subrtx_bounds[code].start = i;
5457 ++i;
5458 while (format[i] == 'e');
5459 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5460 /* rtl-iter.h relies on this. */
5461 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5463 for (; format[i]; ++i)
5464 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5465 return false;
5467 return true;
5470 /* Initialize non_rtx_starting_operands, which is used to speed up
5471 for_each_rtx, and rtx_all_subrtx_bounds. */
5472 void
5473 init_rtlanal (void)
5475 int i;
5476 for (i = 0; i < NUM_RTX_CODE; i++)
5478 const char *format = GET_RTX_FORMAT (i);
5479 const char *first = strpbrk (format, "eEV");
5480 non_rtx_starting_operands[i] = first ? first - format : -1;
5481 if (!setup_reg_subrtx_bounds (i))
5482 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5483 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5484 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5487 init_num_sign_bit_copies_in_rep ();
5490 /* Check whether this is a constant pool constant. */
5491 bool
5492 constant_pool_constant_p (rtx x)
5494 x = avoid_constant_pool_reference (x);
5495 return CONST_DOUBLE_P (x);
5498 /* If M is a bitmask that selects a field of low-order bits within an item but
5499 not the entire word, return the length of the field. Return -1 otherwise.
5500 M is used in machine mode MODE. */
5503 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5505 if (mode != VOIDmode)
5507 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5508 return -1;
5509 m &= GET_MODE_MASK (mode);
5512 return exact_log2 (m + 1);
5515 /* Return the mode of MEM's address. */
5517 enum machine_mode
5518 get_address_mode (rtx mem)
5520 enum machine_mode mode;
5522 gcc_assert (MEM_P (mem));
5523 mode = GET_MODE (XEXP (mem, 0));
5524 if (mode != VOIDmode)
5525 return mode;
5526 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5529 /* Split up a CONST_DOUBLE or integer constant rtx
5530 into two rtx's for single words,
5531 storing in *FIRST the word that comes first in memory in the target
5532 and in *SECOND the other.
5534 TODO: This function needs to be rewritten to work on any size
5535 integer. */
5537 void
5538 split_double (rtx value, rtx *first, rtx *second)
5540 if (CONST_INT_P (value))
5542 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5544 /* In this case the CONST_INT holds both target words.
5545 Extract the bits from it into two word-sized pieces.
5546 Sign extend each half to HOST_WIDE_INT. */
5547 unsigned HOST_WIDE_INT low, high;
5548 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5549 unsigned bits_per_word = BITS_PER_WORD;
5551 /* Set sign_bit to the most significant bit of a word. */
5552 sign_bit = 1;
5553 sign_bit <<= bits_per_word - 1;
5555 /* Set mask so that all bits of the word are set. We could
5556 have used 1 << BITS_PER_WORD instead of basing the
5557 calculation on sign_bit. However, on machines where
5558 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5559 compiler warning, even though the code would never be
5560 executed. */
5561 mask = sign_bit << 1;
5562 mask--;
5564 /* Set sign_extend as any remaining bits. */
5565 sign_extend = ~mask;
5567 /* Pick the lower word and sign-extend it. */
5568 low = INTVAL (value);
5569 low &= mask;
5570 if (low & sign_bit)
5571 low |= sign_extend;
5573 /* Pick the higher word, shifted to the least significant
5574 bits, and sign-extend it. */
5575 high = INTVAL (value);
5576 high >>= bits_per_word - 1;
5577 high >>= 1;
5578 high &= mask;
5579 if (high & sign_bit)
5580 high |= sign_extend;
5582 /* Store the words in the target machine order. */
5583 if (WORDS_BIG_ENDIAN)
5585 *first = GEN_INT (high);
5586 *second = GEN_INT (low);
5588 else
5590 *first = GEN_INT (low);
5591 *second = GEN_INT (high);
5594 else
5596 /* The rule for using CONST_INT for a wider mode
5597 is that we regard the value as signed.
5598 So sign-extend it. */
5599 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5600 if (WORDS_BIG_ENDIAN)
5602 *first = high;
5603 *second = value;
5605 else
5607 *first = value;
5608 *second = high;
5612 else if (GET_CODE (value) == CONST_WIDE_INT)
5614 /* All of this is scary code and needs to be converted to
5615 properly work with any size integer. */
5616 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5617 if (WORDS_BIG_ENDIAN)
5619 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5620 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5622 else
5624 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5625 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5628 else if (!CONST_DOUBLE_P (value))
5630 if (WORDS_BIG_ENDIAN)
5632 *first = const0_rtx;
5633 *second = value;
5635 else
5637 *first = value;
5638 *second = const0_rtx;
5641 else if (GET_MODE (value) == VOIDmode
5642 /* This is the old way we did CONST_DOUBLE integers. */
5643 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5645 /* In an integer, the words are defined as most and least significant.
5646 So order them by the target's convention. */
5647 if (WORDS_BIG_ENDIAN)
5649 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5650 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5652 else
5654 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5655 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5658 else
5660 REAL_VALUE_TYPE r;
5661 long l[2];
5662 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
5664 /* Note, this converts the REAL_VALUE_TYPE to the target's
5665 format, splits up the floating point double and outputs
5666 exactly 32 bits of it into each of l[0] and l[1] --
5667 not necessarily BITS_PER_WORD bits. */
5668 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
5670 /* If 32 bits is an entire word for the target, but not for the host,
5671 then sign-extend on the host so that the number will look the same
5672 way on the host that it would on the target. See for instance
5673 simplify_unary_operation. The #if is needed to avoid compiler
5674 warnings. */
5676 #if HOST_BITS_PER_LONG > 32
5677 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5679 if (l[0] & ((long) 1 << 31))
5680 l[0] |= ((long) (-1) << 32);
5681 if (l[1] & ((long) 1 << 31))
5682 l[1] |= ((long) (-1) << 32);
5684 #endif
5686 *first = GEN_INT (l[0]);
5687 *second = GEN_INT (l[1]);
5691 /* Return true if X is a sign_extract or zero_extract from the least
5692 significant bit. */
5694 static bool
5695 lsb_bitfield_op_p (rtx x)
5697 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5699 enum machine_mode mode = GET_MODE (XEXP (x, 0));
5700 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5701 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5703 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5705 return false;
5708 /* Strip outer address "mutations" from LOC and return a pointer to the
5709 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5710 stripped expression there.
5712 "Mutations" either convert between modes or apply some kind of
5713 extension, truncation or alignment. */
5715 rtx *
5716 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5718 for (;;)
5720 enum rtx_code code = GET_CODE (*loc);
5721 if (GET_RTX_CLASS (code) == RTX_UNARY)
5722 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5723 used to convert between pointer sizes. */
5724 loc = &XEXP (*loc, 0);
5725 else if (lsb_bitfield_op_p (*loc))
5726 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5727 acts as a combined truncation and extension. */
5728 loc = &XEXP (*loc, 0);
5729 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5730 /* (and ... (const_int -X)) is used to align to X bytes. */
5731 loc = &XEXP (*loc, 0);
5732 else if (code == SUBREG
5733 && !OBJECT_P (SUBREG_REG (*loc))
5734 && subreg_lowpart_p (*loc))
5735 /* (subreg (operator ...) ...) inside and is used for mode
5736 conversion too. */
5737 loc = &SUBREG_REG (*loc);
5738 else
5739 return loc;
5740 if (outer_code)
5741 *outer_code = code;
5745 /* Return true if CODE applies some kind of scale. The scaled value is
5746 is the first operand and the scale is the second. */
5748 static bool
5749 binary_scale_code_p (enum rtx_code code)
5751 return (code == MULT
5752 || code == ASHIFT
5753 /* Needed by ARM targets. */
5754 || code == ASHIFTRT
5755 || code == LSHIFTRT
5756 || code == ROTATE
5757 || code == ROTATERT);
5760 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5761 (see address_info). Return null otherwise. */
5763 static rtx *
5764 get_base_term (rtx *inner)
5766 if (GET_CODE (*inner) == LO_SUM)
5767 inner = strip_address_mutations (&XEXP (*inner, 0));
5768 if (REG_P (*inner)
5769 || MEM_P (*inner)
5770 || GET_CODE (*inner) == SUBREG)
5771 return inner;
5772 return 0;
5775 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5776 (see address_info). Return null otherwise. */
5778 static rtx *
5779 get_index_term (rtx *inner)
5781 /* At present, only constant scales are allowed. */
5782 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5783 inner = strip_address_mutations (&XEXP (*inner, 0));
5784 if (REG_P (*inner)
5785 || MEM_P (*inner)
5786 || GET_CODE (*inner) == SUBREG)
5787 return inner;
5788 return 0;
5791 /* Set the segment part of address INFO to LOC, given that INNER is the
5792 unmutated value. */
5794 static void
5795 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5797 gcc_assert (!info->segment);
5798 info->segment = loc;
5799 info->segment_term = inner;
5802 /* Set the base part of address INFO to LOC, given that INNER is the
5803 unmutated value. */
5805 static void
5806 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5808 gcc_assert (!info->base);
5809 info->base = loc;
5810 info->base_term = inner;
5813 /* Set the index part of address INFO to LOC, given that INNER is the
5814 unmutated value. */
5816 static void
5817 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5819 gcc_assert (!info->index);
5820 info->index = loc;
5821 info->index_term = inner;
5824 /* Set the displacement part of address INFO to LOC, given that INNER
5825 is the constant term. */
5827 static void
5828 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
5830 gcc_assert (!info->disp);
5831 info->disp = loc;
5832 info->disp_term = inner;
5835 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5836 rest of INFO accordingly. */
5838 static void
5839 decompose_incdec_address (struct address_info *info)
5841 info->autoinc_p = true;
5843 rtx *base = &XEXP (*info->inner, 0);
5844 set_address_base (info, base, base);
5845 gcc_checking_assert (info->base == info->base_term);
5847 /* These addresses are only valid when the size of the addressed
5848 value is known. */
5849 gcc_checking_assert (info->mode != VOIDmode);
5852 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5853 of INFO accordingly. */
5855 static void
5856 decompose_automod_address (struct address_info *info)
5858 info->autoinc_p = true;
5860 rtx *base = &XEXP (*info->inner, 0);
5861 set_address_base (info, base, base);
5862 gcc_checking_assert (info->base == info->base_term);
5864 rtx plus = XEXP (*info->inner, 1);
5865 gcc_assert (GET_CODE (plus) == PLUS);
5867 info->base_term2 = &XEXP (plus, 0);
5868 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
5870 rtx *step = &XEXP (plus, 1);
5871 rtx *inner_step = strip_address_mutations (step);
5872 if (CONSTANT_P (*inner_step))
5873 set_address_disp (info, step, inner_step);
5874 else
5875 set_address_index (info, step, inner_step);
5878 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5879 values in [PTR, END). Return a pointer to the end of the used array. */
5881 static rtx **
5882 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
5884 rtx x = *loc;
5885 if (GET_CODE (x) == PLUS)
5887 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
5888 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
5890 else
5892 gcc_assert (ptr != end);
5893 *ptr++ = loc;
5895 return ptr;
5898 /* Evaluate the likelihood of X being a base or index value, returning
5899 positive if it is likely to be a base, negative if it is likely to be
5900 an index, and 0 if we can't tell. Make the magnitude of the return
5901 value reflect the amount of confidence we have in the answer.
5903 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
5905 static int
5906 baseness (rtx x, enum machine_mode mode, addr_space_t as,
5907 enum rtx_code outer_code, enum rtx_code index_code)
5909 /* Believe *_POINTER unless the address shape requires otherwise. */
5910 if (REG_P (x) && REG_POINTER (x))
5911 return 2;
5912 if (MEM_P (x) && MEM_POINTER (x))
5913 return 2;
5915 if (REG_P (x) && HARD_REGISTER_P (x))
5917 /* X is a hard register. If it only fits one of the base
5918 or index classes, choose that interpretation. */
5919 int regno = REGNO (x);
5920 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
5921 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
5922 if (base_p != index_p)
5923 return base_p ? 1 : -1;
5925 return 0;
5928 /* INFO->INNER describes a normal, non-automodified address.
5929 Fill in the rest of INFO accordingly. */
5931 static void
5932 decompose_normal_address (struct address_info *info)
5934 /* Treat the address as the sum of up to four values. */
5935 rtx *ops[4];
5936 size_t n_ops = extract_plus_operands (info->inner, ops,
5937 ops + ARRAY_SIZE (ops)) - ops;
5939 /* If there is more than one component, any base component is in a PLUS. */
5940 if (n_ops > 1)
5941 info->base_outer_code = PLUS;
5943 /* Try to classify each sum operand now. Leave those that could be
5944 either a base or an index in OPS. */
5945 rtx *inner_ops[4];
5946 size_t out = 0;
5947 for (size_t in = 0; in < n_ops; ++in)
5949 rtx *loc = ops[in];
5950 rtx *inner = strip_address_mutations (loc);
5951 if (CONSTANT_P (*inner))
5952 set_address_disp (info, loc, inner);
5953 else if (GET_CODE (*inner) == UNSPEC)
5954 set_address_segment (info, loc, inner);
5955 else
5957 /* The only other possibilities are a base or an index. */
5958 rtx *base_term = get_base_term (inner);
5959 rtx *index_term = get_index_term (inner);
5960 gcc_assert (base_term || index_term);
5961 if (!base_term)
5962 set_address_index (info, loc, index_term);
5963 else if (!index_term)
5964 set_address_base (info, loc, base_term);
5965 else
5967 gcc_assert (base_term == index_term);
5968 ops[out] = loc;
5969 inner_ops[out] = base_term;
5970 ++out;
5975 /* Classify the remaining OPS members as bases and indexes. */
5976 if (out == 1)
5978 /* If we haven't seen a base or an index yet, assume that this is
5979 the base. If we were confident that another term was the base
5980 or index, treat the remaining operand as the other kind. */
5981 if (!info->base)
5982 set_address_base (info, ops[0], inner_ops[0]);
5983 else
5984 set_address_index (info, ops[0], inner_ops[0]);
5986 else if (out == 2)
5988 /* In the event of a tie, assume the base comes first. */
5989 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
5990 GET_CODE (*ops[1]))
5991 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
5992 GET_CODE (*ops[0])))
5994 set_address_base (info, ops[0], inner_ops[0]);
5995 set_address_index (info, ops[1], inner_ops[1]);
5997 else
5999 set_address_base (info, ops[1], inner_ops[1]);
6000 set_address_index (info, ops[0], inner_ops[0]);
6003 else
6004 gcc_assert (out == 0);
6007 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6008 or VOIDmode if not known. AS is the address space associated with LOC.
6009 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6011 void
6012 decompose_address (struct address_info *info, rtx *loc, enum machine_mode mode,
6013 addr_space_t as, enum rtx_code outer_code)
6015 memset (info, 0, sizeof (*info));
6016 info->mode = mode;
6017 info->as = as;
6018 info->addr_outer_code = outer_code;
6019 info->outer = loc;
6020 info->inner = strip_address_mutations (loc, &outer_code);
6021 info->base_outer_code = outer_code;
6022 switch (GET_CODE (*info->inner))
6024 case PRE_DEC:
6025 case PRE_INC:
6026 case POST_DEC:
6027 case POST_INC:
6028 decompose_incdec_address (info);
6029 break;
6031 case PRE_MODIFY:
6032 case POST_MODIFY:
6033 decompose_automod_address (info);
6034 break;
6036 default:
6037 decompose_normal_address (info);
6038 break;
6042 /* Describe address operand LOC in INFO. */
6044 void
6045 decompose_lea_address (struct address_info *info, rtx *loc)
6047 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6050 /* Describe the address of MEM X in INFO. */
6052 void
6053 decompose_mem_address (struct address_info *info, rtx x)
6055 gcc_assert (MEM_P (x));
6056 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6057 MEM_ADDR_SPACE (x), MEM);
6060 /* Update INFO after a change to the address it describes. */
6062 void
6063 update_address (struct address_info *info)
6065 decompose_address (info, info->outer, info->mode, info->as,
6066 info->addr_outer_code);
6069 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6070 more complicated than that. */
6072 HOST_WIDE_INT
6073 get_index_scale (const struct address_info *info)
6075 rtx index = *info->index;
6076 if (GET_CODE (index) == MULT
6077 && CONST_INT_P (XEXP (index, 1))
6078 && info->index_term == &XEXP (index, 0))
6079 return INTVAL (XEXP (index, 1));
6081 if (GET_CODE (index) == ASHIFT
6082 && CONST_INT_P (XEXP (index, 1))
6083 && info->index_term == &XEXP (index, 0))
6084 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
6086 if (info->index == info->index_term)
6087 return 1;
6089 return 0;
6092 /* Return the "index code" of INFO, in the form required by
6093 ok_for_base_p_1. */
6095 enum rtx_code
6096 get_index_code (const struct address_info *info)
6098 if (info->index)
6099 return GET_CODE (*info->index);
6101 if (info->disp)
6102 return GET_CODE (*info->disp);
6104 return SCRATCH;
6107 /* Return true if X contains a thread-local symbol. */
6109 bool
6110 tls_referenced_p (const_rtx x)
6112 if (!targetm.have_tls)
6113 return false;
6115 subrtx_iterator::array_type array;
6116 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
6117 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6118 return true;
6119 return false;