2004-12-01 David Edelsohn <edelsohn@gnu.org>
[official-gcc.git] / gcc / cfg.c
blobc469661edc081312f1d9ce439fa19f9871c94658
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the data structure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
33 - Edge manipulation
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
41 - clear_bb_flags
42 - Consistency checking
43 verify_flow_info
44 - Dumping and debugging
45 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "hard-reg-set.h"
55 #include "regs.h"
56 #include "flags.h"
57 #include "output.h"
58 #include "function.h"
59 #include "except.h"
60 #include "toplev.h"
61 #include "tm_p.h"
62 #include "alloc-pool.h"
63 #include "timevar.h"
64 #include "ggc.h"
66 /* The obstack on which the flow graph components are allocated. */
68 struct bitmap_obstack reg_obstack;
70 /* Number of basic blocks in the current function. */
72 int n_basic_blocks;
74 /* First free basic block number. */
76 int last_basic_block;
78 /* Number of edges in the current function. */
80 int n_edges;
82 /* The basic block array. */
84 varray_type basic_block_info;
86 /* The special entry and exit blocks. */
87 basic_block ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR;
89 /* Memory alloc pool for bb member rbi. */
90 alloc_pool rbi_pool;
92 void debug_flow_info (void);
93 static void free_edge (edge);
95 /* Indicate the presence of the profile. */
96 enum profile_status profile_status;
98 /* Called once at initialization time. */
100 void
101 init_flow (void)
103 n_edges = 0;
105 ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (*ENTRY_BLOCK_PTR));
106 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
107 EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (*EXIT_BLOCK_PTR));
108 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
109 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
110 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
113 /* Helper function for remove_edge and clear_edges. Frees edge structure
114 without actually unlinking it from the pred/succ lists. */
116 static void
117 free_edge (edge e ATTRIBUTE_UNUSED)
119 n_edges--;
120 ggc_free (e);
123 /* Free the memory associated with the edge structures. */
125 void
126 clear_edges (void)
128 basic_block bb;
129 edge e;
130 edge_iterator ei;
132 FOR_EACH_BB (bb)
134 FOR_EACH_EDGE (e, ei, bb->succs)
135 free_edge (e);
136 VEC_truncate (edge, bb->succs, 0);
137 VEC_truncate (edge, bb->preds, 0);
140 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
141 free_edge (e);
142 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
143 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
145 gcc_assert (!n_edges);
148 /* Allocate memory for basic_block. */
150 basic_block
151 alloc_block (void)
153 basic_block bb;
154 bb = ggc_alloc_cleared (sizeof (*bb));
155 return bb;
158 /* Create memory pool for rbi_pool. */
160 void
161 alloc_rbi_pool (void)
163 rbi_pool = create_alloc_pool ("rbi pool",
164 sizeof (struct reorder_block_def),
165 n_basic_blocks + 2);
168 /* Free rbi_pool. */
170 void
171 free_rbi_pool (void)
173 free_alloc_pool (rbi_pool);
176 /* Initialize rbi (the structure containing data used by basic block
177 duplication and reordering) for the given basic block. */
179 void
180 initialize_bb_rbi (basic_block bb)
182 gcc_assert (!bb->rbi);
183 bb->rbi = pool_alloc (rbi_pool);
184 memset (bb->rbi, 0, sizeof (struct reorder_block_def));
187 /* Link block B to chain after AFTER. */
188 void
189 link_block (basic_block b, basic_block after)
191 b->next_bb = after->next_bb;
192 b->prev_bb = after;
193 after->next_bb = b;
194 b->next_bb->prev_bb = b;
197 /* Unlink block B from chain. */
198 void
199 unlink_block (basic_block b)
201 b->next_bb->prev_bb = b->prev_bb;
202 b->prev_bb->next_bb = b->next_bb;
203 b->prev_bb = NULL;
204 b->next_bb = NULL;
207 /* Sequentially order blocks and compact the arrays. */
208 void
209 compact_blocks (void)
211 int i;
212 basic_block bb;
214 i = 0;
215 FOR_EACH_BB (bb)
217 BASIC_BLOCK (i) = bb;
218 bb->index = i;
219 i++;
222 gcc_assert (i == n_basic_blocks);
224 for (; i < last_basic_block; i++)
225 BASIC_BLOCK (i) = NULL;
227 last_basic_block = n_basic_blocks;
230 /* Remove block B from the basic block array. */
232 void
233 expunge_block (basic_block b)
235 unlink_block (b);
236 BASIC_BLOCK (b->index) = NULL;
237 n_basic_blocks--;
238 /* We should be able to ggc_free here, but we are not.
239 The dead SSA_NAMES are left pointing to dead statements that are pointing
240 to dead basic blocks making garbage collector to die.
241 We should be able to release all dead SSA_NAMES and at the same time we should
242 clear out BB pointer of dead statements consistently. */
245 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
246 created edge. Use this only if you are sure that this edge can't
247 possibly already exist. */
249 edge
250 unchecked_make_edge (basic_block src, basic_block dst, int flags)
252 edge e;
253 e = ggc_alloc_cleared (sizeof (*e));
254 n_edges++;
256 VEC_safe_push (edge, src->succs, e);
257 VEC_safe_push (edge, dst->preds, e);
259 e->src = src;
260 e->dest = dst;
261 e->flags = flags;
262 e->dest_idx = EDGE_COUNT (dst->preds) - 1;
264 execute_on_growing_pred (e);
266 return e;
269 /* Create an edge connecting SRC and DST with FLAGS optionally using
270 edge cache CACHE. Return the new edge, NULL if already exist. */
272 edge
273 cached_make_edge (sbitmap *edge_cache, basic_block src, basic_block dst, int flags)
275 int use_edge_cache;
276 edge e;
278 /* Don't bother with edge cache for ENTRY or EXIT, if there aren't that
279 many edges to them, or we didn't allocate memory for it. */
280 use_edge_cache = (edge_cache
281 && src != ENTRY_BLOCK_PTR && dst != EXIT_BLOCK_PTR);
283 /* Make sure we don't add duplicate edges. */
284 switch (use_edge_cache)
286 default:
287 /* Quick test for non-existence of the edge. */
288 if (! TEST_BIT (edge_cache[src->index], dst->index))
289 break;
291 /* The edge exists; early exit if no work to do. */
292 if (flags == 0)
293 return NULL;
295 /* Fall through. */
296 case 0:
297 e = find_edge (src, dst);
298 if (e)
300 e->flags |= flags;
301 return NULL;
303 break;
306 e = unchecked_make_edge (src, dst, flags);
308 if (use_edge_cache)
309 SET_BIT (edge_cache[src->index], dst->index);
311 return e;
314 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
315 created edge or NULL if already exist. */
317 edge
318 make_edge (basic_block src, basic_block dest, int flags)
320 return cached_make_edge (NULL, src, dest, flags);
323 /* Create an edge connecting SRC to DEST and set probability by knowing
324 that it is the single edge leaving SRC. */
326 edge
327 make_single_succ_edge (basic_block src, basic_block dest, int flags)
329 edge e = make_edge (src, dest, flags);
331 e->probability = REG_BR_PROB_BASE;
332 e->count = src->count;
333 return e;
336 /* This function will remove an edge from the flow graph. */
338 void
339 remove_edge (edge e)
341 edge tmp;
342 basic_block src, dest;
343 unsigned int dest_idx;
344 bool found = false;
345 edge_iterator ei;
347 execute_on_shrinking_pred (e);
349 src = e->src;
350 dest = e->dest;
351 dest_idx = e->dest_idx;
353 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
355 if (tmp == e)
357 VEC_unordered_remove (edge, src->succs, ei.index);
358 found = true;
359 break;
361 else
362 ei_next (&ei);
365 gcc_assert (found);
367 VEC_unordered_remove (edge, dest->preds, dest_idx);
369 /* If we removed an edge in the middle of the edge vector, we need
370 to update dest_idx of the edge that moved into the "hole". */
371 if (dest_idx < EDGE_COUNT (dest->preds))
372 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
374 free_edge (e);
377 /* Redirect an edge's successor from one block to another. */
379 void
380 redirect_edge_succ (edge e, basic_block new_succ)
382 basic_block dest = e->dest;
383 unsigned int dest_idx = e->dest_idx;
385 execute_on_shrinking_pred (e);
387 VEC_unordered_remove (edge, dest->preds, dest_idx);
389 /* If we removed an edge in the middle of the edge vector, we need
390 to update dest_idx of the edge that moved into the "hole". */
391 if (dest_idx < EDGE_COUNT (dest->preds))
392 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
394 /* Reconnect the edge to the new successor block. */
395 VEC_safe_push (edge, new_succ->preds, e);
396 e->dest = new_succ;
397 e->dest_idx = EDGE_COUNT (new_succ->preds) - 1;
398 execute_on_growing_pred (e);
401 /* Like previous but avoid possible duplicate edge. */
403 edge
404 redirect_edge_succ_nodup (edge e, basic_block new_succ)
406 edge s;
408 s = find_edge (e->src, new_succ);
409 if (s && s != e)
411 s->flags |= e->flags;
412 s->probability += e->probability;
413 if (s->probability > REG_BR_PROB_BASE)
414 s->probability = REG_BR_PROB_BASE;
415 s->count += e->count;
416 remove_edge (e);
417 e = s;
419 else
420 redirect_edge_succ (e, new_succ);
422 return e;
425 /* Redirect an edge's predecessor from one block to another. */
427 void
428 redirect_edge_pred (edge e, basic_block new_pred)
430 edge tmp;
431 edge_iterator ei;
432 bool found = false;
434 /* Disconnect the edge from the old predecessor block. */
435 for (ei = ei_start (e->src->succs); (tmp = ei_safe_edge (ei)); )
437 if (tmp == e)
439 VEC_unordered_remove (edge, e->src->succs, ei.index);
440 found = true;
441 break;
443 else
444 ei_next (&ei);
447 gcc_assert (found);
449 /* Reconnect the edge to the new predecessor block. */
450 VEC_safe_push (edge, new_pred->succs, e);
451 e->src = new_pred;
454 /* Clear all basic block flags, with the exception of partitioning. */
455 void
456 clear_bb_flags (void)
458 basic_block bb;
460 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
461 bb->flags = BB_PARTITION (bb);
464 /* Check the consistency of profile information. We can't do that
465 in verify_flow_info, as the counts may get invalid for incompletely
466 solved graphs, later eliminating of conditionals or roundoff errors.
467 It is still practical to have them reported for debugging of simple
468 testcases. */
469 void
470 check_bb_profile (basic_block bb, FILE * file)
472 edge e;
473 int sum = 0;
474 gcov_type lsum;
475 edge_iterator ei;
477 if (profile_status == PROFILE_ABSENT)
478 return;
480 if (bb != EXIT_BLOCK_PTR)
482 FOR_EACH_EDGE (e, ei, bb->succs)
483 sum += e->probability;
484 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
485 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
486 sum * 100.0 / REG_BR_PROB_BASE);
487 lsum = 0;
488 FOR_EACH_EDGE (e, ei, bb->succs)
489 lsum += e->count;
490 if (EDGE_COUNT (bb->succs)
491 && (lsum - bb->count > 100 || lsum - bb->count < -100))
492 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
493 (int) lsum, (int) bb->count);
495 if (bb != ENTRY_BLOCK_PTR)
497 sum = 0;
498 FOR_EACH_EDGE (e, ei, bb->preds)
499 sum += EDGE_FREQUENCY (e);
500 if (abs (sum - bb->frequency) > 100)
501 fprintf (file,
502 "Invalid sum of incoming frequencies %i, should be %i\n",
503 sum, bb->frequency);
504 lsum = 0;
505 FOR_EACH_EDGE (e, ei, bb->preds)
506 lsum += e->count;
507 if (lsum - bb->count > 100 || lsum - bb->count < -100)
508 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
509 (int) lsum, (int) bb->count);
513 void
514 dump_flow_info (FILE *file)
516 int i;
517 basic_block bb;
518 static const char * const reg_class_names[] = REG_CLASS_NAMES;
520 if (reg_n_info)
522 int max_regno = max_reg_num ();
523 fprintf (file, "%d registers.\n", max_regno);
524 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
525 if (REG_N_REFS (i))
527 enum reg_class class, altclass;
529 fprintf (file, "\nRegister %d used %d times across %d insns",
530 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
531 if (REG_BASIC_BLOCK (i) >= 0)
532 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
533 if (REG_N_SETS (i))
534 fprintf (file, "; set %d time%s", REG_N_SETS (i),
535 (REG_N_SETS (i) == 1) ? "" : "s");
536 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
537 fprintf (file, "; user var");
538 if (REG_N_DEATHS (i) != 1)
539 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
540 if (REG_N_CALLS_CROSSED (i) == 1)
541 fprintf (file, "; crosses 1 call");
542 else if (REG_N_CALLS_CROSSED (i))
543 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
544 if (regno_reg_rtx[i] != NULL
545 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
546 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
548 class = reg_preferred_class (i);
549 altclass = reg_alternate_class (i);
550 if (class != GENERAL_REGS || altclass != ALL_REGS)
552 if (altclass == ALL_REGS || class == ALL_REGS)
553 fprintf (file, "; pref %s", reg_class_names[(int) class]);
554 else if (altclass == NO_REGS)
555 fprintf (file, "; %s or none", reg_class_names[(int) class]);
556 else
557 fprintf (file, "; pref %s, else %s",
558 reg_class_names[(int) class],
559 reg_class_names[(int) altclass]);
562 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
563 fprintf (file, "; pointer");
564 fprintf (file, ".\n");
568 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
569 FOR_EACH_BB (bb)
571 edge e;
572 edge_iterator ei;
574 fprintf (file, "\nBasic block %d ", bb->index);
575 fprintf (file, "prev %d, next %d, ",
576 bb->prev_bb->index, bb->next_bb->index);
577 fprintf (file, "loop_depth %d, count ", bb->loop_depth);
578 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
579 fprintf (file, ", freq %i", bb->frequency);
580 if (maybe_hot_bb_p (bb))
581 fprintf (file, ", maybe hot");
582 if (probably_never_executed_bb_p (bb))
583 fprintf (file, ", probably never executed");
584 fprintf (file, ".\n");
586 fprintf (file, "Predecessors: ");
587 FOR_EACH_EDGE (e, ei, bb->preds)
588 dump_edge_info (file, e, 0);
590 fprintf (file, "\nSuccessors: ");
591 FOR_EACH_EDGE (e, ei, bb->succs)
592 dump_edge_info (file, e, 1);
594 if (bb->global_live_at_start)
596 fprintf (file, "\nRegisters live at start:");
597 dump_regset (bb->global_live_at_start, file);
600 if (bb->global_live_at_end)
602 fprintf (file, "\nRegisters live at end:");
603 dump_regset (bb->global_live_at_end, file);
606 putc ('\n', file);
607 check_bb_profile (bb, file);
610 putc ('\n', file);
613 void
614 debug_flow_info (void)
616 dump_flow_info (stderr);
619 void
620 dump_edge_info (FILE *file, edge e, int do_succ)
622 basic_block side = (do_succ ? e->dest : e->src);
624 if (side == ENTRY_BLOCK_PTR)
625 fputs (" ENTRY", file);
626 else if (side == EXIT_BLOCK_PTR)
627 fputs (" EXIT", file);
628 else
629 fprintf (file, " %d", side->index);
631 if (e->probability)
632 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
634 if (e->count)
636 fprintf (file, " count:");
637 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
640 if (e->flags)
642 static const char * const bitnames[] = {
643 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
644 "can_fallthru", "irreducible", "sibcall", "loop_exit",
645 "true", "false", "exec"
647 int comma = 0;
648 int i, flags = e->flags;
650 fputs (" (", file);
651 for (i = 0; flags; i++)
652 if (flags & (1 << i))
654 flags &= ~(1 << i);
656 if (comma)
657 fputc (',', file);
658 if (i < (int) ARRAY_SIZE (bitnames))
659 fputs (bitnames[i], file);
660 else
661 fprintf (file, "%d", i);
662 comma = 1;
665 fputc (')', file);
669 /* Simple routines to easily allocate AUX fields of basic blocks. */
671 static struct obstack block_aux_obstack;
672 static void *first_block_aux_obj = 0;
673 static struct obstack edge_aux_obstack;
674 static void *first_edge_aux_obj = 0;
676 /* Allocate a memory block of SIZE as BB->aux. The obstack must
677 be first initialized by alloc_aux_for_blocks. */
679 inline void
680 alloc_aux_for_block (basic_block bb, int size)
682 /* Verify that aux field is clear. */
683 gcc_assert (!bb->aux && first_block_aux_obj);
684 bb->aux = obstack_alloc (&block_aux_obstack, size);
685 memset (bb->aux, 0, size);
688 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
689 alloc_aux_for_block for each basic block. */
691 void
692 alloc_aux_for_blocks (int size)
694 static int initialized;
696 if (!initialized)
698 gcc_obstack_init (&block_aux_obstack);
699 initialized = 1;
701 else
702 /* Check whether AUX data are still allocated. */
703 gcc_assert (!first_block_aux_obj);
705 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
706 if (size)
708 basic_block bb;
710 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
711 alloc_aux_for_block (bb, size);
715 /* Clear AUX pointers of all blocks. */
717 void
718 clear_aux_for_blocks (void)
720 basic_block bb;
722 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
723 bb->aux = NULL;
726 /* Free data allocated in block_aux_obstack and clear AUX pointers
727 of all blocks. */
729 void
730 free_aux_for_blocks (void)
732 gcc_assert (first_block_aux_obj);
733 obstack_free (&block_aux_obstack, first_block_aux_obj);
734 first_block_aux_obj = NULL;
736 clear_aux_for_blocks ();
739 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
740 be first initialized by alloc_aux_for_edges. */
742 inline void
743 alloc_aux_for_edge (edge e, int size)
745 /* Verify that aux field is clear. */
746 gcc_assert (!e->aux && first_edge_aux_obj);
747 e->aux = obstack_alloc (&edge_aux_obstack, size);
748 memset (e->aux, 0, size);
751 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
752 alloc_aux_for_edge for each basic edge. */
754 void
755 alloc_aux_for_edges (int size)
757 static int initialized;
759 if (!initialized)
761 gcc_obstack_init (&edge_aux_obstack);
762 initialized = 1;
764 else
765 /* Check whether AUX data are still allocated. */
766 gcc_assert (!first_edge_aux_obj);
768 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
769 if (size)
771 basic_block bb;
773 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
775 edge e;
776 edge_iterator ei;
778 FOR_EACH_EDGE (e, ei, bb->succs)
779 alloc_aux_for_edge (e, size);
784 /* Clear AUX pointers of all edges. */
786 void
787 clear_aux_for_edges (void)
789 basic_block bb;
790 edge e;
792 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
794 edge_iterator ei;
795 FOR_EACH_EDGE (e, ei, bb->succs)
796 e->aux = NULL;
800 /* Free data allocated in edge_aux_obstack and clear AUX pointers
801 of all edges. */
803 void
804 free_aux_for_edges (void)
806 gcc_assert (first_edge_aux_obj);
807 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
808 first_edge_aux_obj = NULL;
810 clear_aux_for_edges ();
813 void
814 debug_bb (basic_block bb)
816 dump_bb (bb, stderr, 0);
819 basic_block
820 debug_bb_n (int n)
822 basic_block bb = BASIC_BLOCK (n);
823 dump_bb (bb, stderr, 0);
824 return bb;
827 /* Dumps cfg related information about basic block BB to FILE. */
829 static void
830 dump_cfg_bb_info (FILE *file, basic_block bb)
832 unsigned i;
833 edge_iterator ei;
834 bool first = true;
835 static const char * const bb_bitnames[] =
837 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
839 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
840 edge e;
842 fprintf (file, "Basic block %d", bb->index);
843 for (i = 0; i < n_bitnames; i++)
844 if (bb->flags & (1 << i))
846 if (first)
847 fprintf (file, " (");
848 else
849 fprintf (file, ", ");
850 first = false;
851 fprintf (file, bb_bitnames[i]);
853 if (!first)
854 fprintf (file, ")");
855 fprintf (file, "\n");
857 fprintf (file, "Predecessors: ");
858 FOR_EACH_EDGE (e, ei, bb->preds)
859 dump_edge_info (file, e, 0);
861 fprintf (file, "\nSuccessors: ");
862 FOR_EACH_EDGE (e, ei, bb->succs)
863 dump_edge_info (file, e, 1);
864 fprintf (file, "\n\n");
867 /* Dumps a brief description of cfg to FILE. */
869 void
870 brief_dump_cfg (FILE *file)
872 basic_block bb;
874 FOR_EACH_BB (bb)
876 dump_cfg_bb_info (file, bb);
880 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
881 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
882 redirected to destination of TAKEN_EDGE.
884 This function may leave the profile inconsistent in the case TAKEN_EDGE
885 frequency or count is believed to be lower than FREQUENCY or COUNT
886 respectively. */
887 void
888 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
889 gcov_type count, edge taken_edge)
891 edge c;
892 int prob;
893 edge_iterator ei;
895 bb->count -= count;
896 if (bb->count < 0)
897 bb->count = 0;
899 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
900 Watch for overflows. */
901 if (bb->frequency)
902 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
903 else
904 prob = 0;
905 if (prob > taken_edge->probability)
907 if (dump_file)
908 fprintf (dump_file, "Jump threading proved probability of edge "
909 "%i->%i too small (it is %i, should be %i).\n",
910 taken_edge->src->index, taken_edge->dest->index,
911 taken_edge->probability, prob);
912 prob = taken_edge->probability;
915 /* Now rescale the probabilities. */
916 taken_edge->probability -= prob;
917 prob = REG_BR_PROB_BASE - prob;
918 bb->frequency -= edge_frequency;
919 if (bb->frequency < 0)
920 bb->frequency = 0;
921 if (prob <= 0)
923 if (dump_file)
924 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
925 "frequency of block should end up being 0, it is %i\n",
926 bb->index, bb->frequency);
927 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
928 ei = ei_start (bb->succs);
929 ei_next (&ei);
930 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
931 c->probability = 0;
933 else if (prob != REG_BR_PROB_BASE)
935 int scale = REG_BR_PROB_BASE / prob;
937 FOR_EACH_EDGE (c, ei, bb->succs)
938 c->probability *= scale;
941 if (bb != taken_edge->src)
942 abort ();
943 taken_edge->count -= count;
944 if (taken_edge->count < 0)
945 taken_edge->count = 0;