2018-04-04 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / gimple-ssa-store-merging.c
blob6f6538bf37eaa72b45a4bd0a32a53668a7648a9c
1 /* GIMPLE store merging and byte swapping passes.
2 Copyright (C) 2009-2018 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The purpose of the store merging pass is to combine multiple memory
22 stores of constant values, values loaded from memory or bitwise operations
23 on those to consecutive memory locations into fewer wider stores.
24 For example, if we have a sequence peforming four byte stores to
25 consecutive memory locations:
26 [p ] := imm1;
27 [p + 1B] := imm2;
28 [p + 2B] := imm3;
29 [p + 3B] := imm4;
30 we can transform this into a single 4-byte store if the target supports it:
31 [p] := imm1:imm2:imm3:imm4 //concatenated immediates according to endianness.
33 Or:
34 [p ] := [q ];
35 [p + 1B] := [q + 1B];
36 [p + 2B] := [q + 2B];
37 [p + 3B] := [q + 3B];
38 if there is no overlap can be transformed into a single 4-byte
39 load followed by single 4-byte store.
41 Or:
42 [p ] := [q ] ^ imm1;
43 [p + 1B] := [q + 1B] ^ imm2;
44 [p + 2B] := [q + 2B] ^ imm3;
45 [p + 3B] := [q + 3B] ^ imm4;
46 if there is no overlap can be transformed into a single 4-byte
47 load, xored with imm1:imm2:imm3:imm4 and stored using a single 4-byte store.
49 The algorithm is applied to each basic block in three phases:
51 1) Scan through the basic block recording assignments to
52 destinations that can be expressed as a store to memory of a certain size
53 at a certain bit offset from expressions we can handle. For bit-fields
54 we also note the surrounding bit region, bits that could be stored in
55 a read-modify-write operation when storing the bit-field. Record store
56 chains to different bases in a hash_map (m_stores) and make sure to
57 terminate such chains when appropriate (for example when when the stored
58 values get used subsequently).
59 These stores can be a result of structure element initializers, array stores
60 etc. A store_immediate_info object is recorded for every such store.
61 Record as many such assignments to a single base as possible until a
62 statement that interferes with the store sequence is encountered.
63 Each store has up to 2 operands, which can be an immediate constant
64 or a memory load, from which the value to be stored can be computed.
65 At most one of the operands can be a constant. The operands are recorded
66 in store_operand_info struct.
68 2) Analyze the chain of stores recorded in phase 1) (i.e. the vector of
69 store_immediate_info objects) and coalesce contiguous stores into
70 merged_store_group objects. For bit-fields stores, we don't need to
71 require the stores to be contiguous, just their surrounding bit regions
72 have to be contiguous. If the expression being stored is different
73 between adjacent stores, such as one store storing a constant and
74 following storing a value loaded from memory, or if the loaded memory
75 objects are not adjacent, a new merged_store_group is created as well.
77 For example, given the stores:
78 [p ] := 0;
79 [p + 1B] := 1;
80 [p + 3B] := 0;
81 [p + 4B] := 1;
82 [p + 5B] := 0;
83 [p + 6B] := 0;
84 This phase would produce two merged_store_group objects, one recording the
85 two bytes stored in the memory region [p : p + 1] and another
86 recording the four bytes stored in the memory region [p + 3 : p + 6].
88 3) The merged_store_group objects produced in phase 2) are processed
89 to generate the sequence of wider stores that set the contiguous memory
90 regions to the sequence of bytes that correspond to it. This may emit
91 multiple stores per store group to handle contiguous stores that are not
92 of a size that is a power of 2. For example it can try to emit a 40-bit
93 store as a 32-bit store followed by an 8-bit store.
94 We try to emit as wide stores as we can while respecting STRICT_ALIGNMENT or
95 TARGET_SLOW_UNALIGNED_ACCESS rules.
97 Note on endianness and example:
98 Consider 2 contiguous 16-bit stores followed by 2 contiguous 8-bit stores:
99 [p ] := 0x1234;
100 [p + 2B] := 0x5678;
101 [p + 4B] := 0xab;
102 [p + 5B] := 0xcd;
104 The memory layout for little-endian (LE) and big-endian (BE) must be:
105 p |LE|BE|
106 ---------
107 0 |34|12|
108 1 |12|34|
109 2 |78|56|
110 3 |56|78|
111 4 |ab|ab|
112 5 |cd|cd|
114 To merge these into a single 48-bit merged value 'val' in phase 2)
115 on little-endian we insert stores to higher (consecutive) bitpositions
116 into the most significant bits of the merged value.
117 The final merged value would be: 0xcdab56781234
119 For big-endian we insert stores to higher bitpositions into the least
120 significant bits of the merged value.
121 The final merged value would be: 0x12345678abcd
123 Then, in phase 3), we want to emit this 48-bit value as a 32-bit store
124 followed by a 16-bit store. Again, we must consider endianness when
125 breaking down the 48-bit value 'val' computed above.
126 For little endian we emit:
127 [p] (32-bit) := 0x56781234; // val & 0x0000ffffffff;
128 [p + 4B] (16-bit) := 0xcdab; // (val & 0xffff00000000) >> 32;
130 Whereas for big-endian we emit:
131 [p] (32-bit) := 0x12345678; // (val & 0xffffffff0000) >> 16;
132 [p + 4B] (16-bit) := 0xabcd; // val & 0x00000000ffff; */
134 #include "config.h"
135 #include "system.h"
136 #include "coretypes.h"
137 #include "backend.h"
138 #include "tree.h"
139 #include "gimple.h"
140 #include "builtins.h"
141 #include "fold-const.h"
142 #include "tree-pass.h"
143 #include "ssa.h"
144 #include "gimple-pretty-print.h"
145 #include "alias.h"
146 #include "fold-const.h"
147 #include "params.h"
148 #include "print-tree.h"
149 #include "tree-hash-traits.h"
150 #include "gimple-iterator.h"
151 #include "gimplify.h"
152 #include "stor-layout.h"
153 #include "timevar.h"
154 #include "tree-cfg.h"
155 #include "tree-eh.h"
156 #include "target.h"
157 #include "gimplify-me.h"
158 #include "rtl.h"
159 #include "expr.h" /* For get_bit_range. */
160 #include "optabs-tree.h"
161 #include "selftest.h"
163 /* The maximum size (in bits) of the stores this pass should generate. */
164 #define MAX_STORE_BITSIZE (BITS_PER_WORD)
165 #define MAX_STORE_BYTES (MAX_STORE_BITSIZE / BITS_PER_UNIT)
167 /* Limit to bound the number of aliasing checks for loads with the same
168 vuse as the corresponding store. */
169 #define MAX_STORE_ALIAS_CHECKS 64
171 namespace {
173 struct bswap_stat
175 /* Number of hand-written 16-bit nop / bswaps found. */
176 int found_16bit;
178 /* Number of hand-written 32-bit nop / bswaps found. */
179 int found_32bit;
181 /* Number of hand-written 64-bit nop / bswaps found. */
182 int found_64bit;
183 } nop_stats, bswap_stats;
185 /* A symbolic number structure is used to detect byte permutation and selection
186 patterns of a source. To achieve that, its field N contains an artificial
187 number consisting of BITS_PER_MARKER sized markers tracking where does each
188 byte come from in the source:
190 0 - target byte has the value 0
191 FF - target byte has an unknown value (eg. due to sign extension)
192 1..size - marker value is the byte index in the source (0 for lsb).
194 To detect permutations on memory sources (arrays and structures), a symbolic
195 number is also associated:
196 - a base address BASE_ADDR and an OFFSET giving the address of the source;
197 - a range which gives the difference between the highest and lowest accessed
198 memory location to make such a symbolic number;
199 - the address SRC of the source element of lowest address as a convenience
200 to easily get BASE_ADDR + offset + lowest bytepos;
201 - number of expressions N_OPS bitwise ored together to represent
202 approximate cost of the computation.
204 Note 1: the range is different from size as size reflects the size of the
205 type of the current expression. For instance, for an array char a[],
206 (short) a[0] | (short) a[3] would have a size of 2 but a range of 4 while
207 (short) a[0] | ((short) a[0] << 1) would still have a size of 2 but this
208 time a range of 1.
210 Note 2: for non-memory sources, range holds the same value as size.
212 Note 3: SRC points to the SSA_NAME in case of non-memory source. */
214 struct symbolic_number {
215 uint64_t n;
216 tree type;
217 tree base_addr;
218 tree offset;
219 poly_int64_pod bytepos;
220 tree src;
221 tree alias_set;
222 tree vuse;
223 unsigned HOST_WIDE_INT range;
224 int n_ops;
227 #define BITS_PER_MARKER 8
228 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
229 #define MARKER_BYTE_UNKNOWN MARKER_MASK
230 #define HEAD_MARKER(n, size) \
231 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
233 /* The number which the find_bswap_or_nop_1 result should match in
234 order to have a nop. The number is masked according to the size of
235 the symbolic number before using it. */
236 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
237 (uint64_t)0x08070605 << 32 | 0x04030201)
239 /* The number which the find_bswap_or_nop_1 result should match in
240 order to have a byte swap. The number is masked according to the
241 size of the symbolic number before using it. */
242 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
243 (uint64_t)0x01020304 << 32 | 0x05060708)
245 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
246 number N. Return false if the requested operation is not permitted
247 on a symbolic number. */
249 inline bool
250 do_shift_rotate (enum tree_code code,
251 struct symbolic_number *n,
252 int count)
254 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
255 unsigned head_marker;
257 if (count % BITS_PER_UNIT != 0)
258 return false;
259 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
261 /* Zero out the extra bits of N in order to avoid them being shifted
262 into the significant bits. */
263 if (size < 64 / BITS_PER_MARKER)
264 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
266 switch (code)
268 case LSHIFT_EXPR:
269 n->n <<= count;
270 break;
271 case RSHIFT_EXPR:
272 head_marker = HEAD_MARKER (n->n, size);
273 n->n >>= count;
274 /* Arithmetic shift of signed type: result is dependent on the value. */
275 if (!TYPE_UNSIGNED (n->type) && head_marker)
276 for (i = 0; i < count / BITS_PER_MARKER; i++)
277 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
278 << ((size - 1 - i) * BITS_PER_MARKER);
279 break;
280 case LROTATE_EXPR:
281 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
282 break;
283 case RROTATE_EXPR:
284 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
285 break;
286 default:
287 return false;
289 /* Zero unused bits for size. */
290 if (size < 64 / BITS_PER_MARKER)
291 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
292 return true;
295 /* Perform sanity checking for the symbolic number N and the gimple
296 statement STMT. */
298 inline bool
299 verify_symbolic_number_p (struct symbolic_number *n, gimple *stmt)
301 tree lhs_type;
303 lhs_type = gimple_expr_type (stmt);
305 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
306 return false;
308 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
309 return false;
311 return true;
314 /* Initialize the symbolic number N for the bswap pass from the base element
315 SRC manipulated by the bitwise OR expression. */
317 bool
318 init_symbolic_number (struct symbolic_number *n, tree src)
320 int size;
322 if (! INTEGRAL_TYPE_P (TREE_TYPE (src)))
323 return false;
325 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
326 n->src = src;
328 /* Set up the symbolic number N by setting each byte to a value between 1 and
329 the byte size of rhs1. The highest order byte is set to n->size and the
330 lowest order byte to 1. */
331 n->type = TREE_TYPE (src);
332 size = TYPE_PRECISION (n->type);
333 if (size % BITS_PER_UNIT != 0)
334 return false;
335 size /= BITS_PER_UNIT;
336 if (size > 64 / BITS_PER_MARKER)
337 return false;
338 n->range = size;
339 n->n = CMPNOP;
340 n->n_ops = 1;
342 if (size < 64 / BITS_PER_MARKER)
343 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
345 return true;
348 /* Check if STMT might be a byte swap or a nop from a memory source and returns
349 the answer. If so, REF is that memory source and the base of the memory area
350 accessed and the offset of the access from that base are recorded in N. */
352 bool
353 find_bswap_or_nop_load (gimple *stmt, tree ref, struct symbolic_number *n)
355 /* Leaf node is an array or component ref. Memorize its base and
356 offset from base to compare to other such leaf node. */
357 poly_int64 bitsize, bitpos, bytepos;
358 machine_mode mode;
359 int unsignedp, reversep, volatilep;
360 tree offset, base_addr;
362 /* Not prepared to handle PDP endian. */
363 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
364 return false;
366 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
367 return false;
369 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
370 &unsignedp, &reversep, &volatilep);
372 if (TREE_CODE (base_addr) == TARGET_MEM_REF)
373 /* Do not rewrite TARGET_MEM_REF. */
374 return false;
375 else if (TREE_CODE (base_addr) == MEM_REF)
377 poly_offset_int bit_offset = 0;
378 tree off = TREE_OPERAND (base_addr, 1);
380 if (!integer_zerop (off))
382 poly_offset_int boff = mem_ref_offset (base_addr);
383 boff <<= LOG2_BITS_PER_UNIT;
384 bit_offset += boff;
387 base_addr = TREE_OPERAND (base_addr, 0);
389 /* Avoid returning a negative bitpos as this may wreak havoc later. */
390 if (maybe_lt (bit_offset, 0))
392 tree byte_offset = wide_int_to_tree
393 (sizetype, bits_to_bytes_round_down (bit_offset));
394 bit_offset = num_trailing_bits (bit_offset);
395 if (offset)
396 offset = size_binop (PLUS_EXPR, offset, byte_offset);
397 else
398 offset = byte_offset;
401 bitpos += bit_offset.force_shwi ();
403 else
404 base_addr = build_fold_addr_expr (base_addr);
406 if (!multiple_p (bitpos, BITS_PER_UNIT, &bytepos))
407 return false;
408 if (!multiple_p (bitsize, BITS_PER_UNIT))
409 return false;
410 if (reversep)
411 return false;
413 if (!init_symbolic_number (n, ref))
414 return false;
415 n->base_addr = base_addr;
416 n->offset = offset;
417 n->bytepos = bytepos;
418 n->alias_set = reference_alias_ptr_type (ref);
419 n->vuse = gimple_vuse (stmt);
420 return true;
423 /* Compute the symbolic number N representing the result of a bitwise OR on 2
424 symbolic number N1 and N2 whose source statements are respectively
425 SOURCE_STMT1 and SOURCE_STMT2. */
427 gimple *
428 perform_symbolic_merge (gimple *source_stmt1, struct symbolic_number *n1,
429 gimple *source_stmt2, struct symbolic_number *n2,
430 struct symbolic_number *n)
432 int i, size;
433 uint64_t mask;
434 gimple *source_stmt;
435 struct symbolic_number *n_start;
437 tree rhs1 = gimple_assign_rhs1 (source_stmt1);
438 if (TREE_CODE (rhs1) == BIT_FIELD_REF
439 && TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
440 rhs1 = TREE_OPERAND (rhs1, 0);
441 tree rhs2 = gimple_assign_rhs1 (source_stmt2);
442 if (TREE_CODE (rhs2) == BIT_FIELD_REF
443 && TREE_CODE (TREE_OPERAND (rhs2, 0)) == SSA_NAME)
444 rhs2 = TREE_OPERAND (rhs2, 0);
446 /* Sources are different, cancel bswap if they are not memory location with
447 the same base (array, structure, ...). */
448 if (rhs1 != rhs2)
450 uint64_t inc;
451 HOST_WIDE_INT start1, start2, start_sub, end_sub, end1, end2, end;
452 struct symbolic_number *toinc_n_ptr, *n_end;
453 basic_block bb1, bb2;
455 if (!n1->base_addr || !n2->base_addr
456 || !operand_equal_p (n1->base_addr, n2->base_addr, 0))
457 return NULL;
459 if (!n1->offset != !n2->offset
460 || (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0)))
461 return NULL;
463 start1 = 0;
464 if (!(n2->bytepos - n1->bytepos).is_constant (&start2))
465 return NULL;
467 if (start1 < start2)
469 n_start = n1;
470 start_sub = start2 - start1;
472 else
474 n_start = n2;
475 start_sub = start1 - start2;
478 bb1 = gimple_bb (source_stmt1);
479 bb2 = gimple_bb (source_stmt2);
480 if (dominated_by_p (CDI_DOMINATORS, bb1, bb2))
481 source_stmt = source_stmt1;
482 else
483 source_stmt = source_stmt2;
485 /* Find the highest address at which a load is performed and
486 compute related info. */
487 end1 = start1 + (n1->range - 1);
488 end2 = start2 + (n2->range - 1);
489 if (end1 < end2)
491 end = end2;
492 end_sub = end2 - end1;
494 else
496 end = end1;
497 end_sub = end1 - end2;
499 n_end = (end2 > end1) ? n2 : n1;
501 /* Find symbolic number whose lsb is the most significant. */
502 if (BYTES_BIG_ENDIAN)
503 toinc_n_ptr = (n_end == n1) ? n2 : n1;
504 else
505 toinc_n_ptr = (n_start == n1) ? n2 : n1;
507 n->range = end - MIN (start1, start2) + 1;
509 /* Check that the range of memory covered can be represented by
510 a symbolic number. */
511 if (n->range > 64 / BITS_PER_MARKER)
512 return NULL;
514 /* Reinterpret byte marks in symbolic number holding the value of
515 bigger weight according to target endianness. */
516 inc = BYTES_BIG_ENDIAN ? end_sub : start_sub;
517 size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT;
518 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
520 unsigned marker
521 = (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
522 if (marker && marker != MARKER_BYTE_UNKNOWN)
523 toinc_n_ptr->n += inc;
526 else
528 n->range = n1->range;
529 n_start = n1;
530 source_stmt = source_stmt1;
533 if (!n1->alias_set
534 || alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set))
535 n->alias_set = n1->alias_set;
536 else
537 n->alias_set = ptr_type_node;
538 n->vuse = n_start->vuse;
539 n->base_addr = n_start->base_addr;
540 n->offset = n_start->offset;
541 n->src = n_start->src;
542 n->bytepos = n_start->bytepos;
543 n->type = n_start->type;
544 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
546 for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER)
548 uint64_t masked1, masked2;
550 masked1 = n1->n & mask;
551 masked2 = n2->n & mask;
552 if (masked1 && masked2 && masked1 != masked2)
553 return NULL;
555 n->n = n1->n | n2->n;
556 n->n_ops = n1->n_ops + n2->n_ops;
558 return source_stmt;
561 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
562 the operation given by the rhs of STMT on the result. If the operation
563 could successfully be executed the function returns a gimple stmt whose
564 rhs's first tree is the expression of the source operand and NULL
565 otherwise. */
567 gimple *
568 find_bswap_or_nop_1 (gimple *stmt, struct symbolic_number *n, int limit)
570 enum tree_code code;
571 tree rhs1, rhs2 = NULL;
572 gimple *rhs1_stmt, *rhs2_stmt, *source_stmt1;
573 enum gimple_rhs_class rhs_class;
575 if (!limit || !is_gimple_assign (stmt))
576 return NULL;
578 rhs1 = gimple_assign_rhs1 (stmt);
580 if (find_bswap_or_nop_load (stmt, rhs1, n))
581 return stmt;
583 /* Handle BIT_FIELD_REF. */
584 if (TREE_CODE (rhs1) == BIT_FIELD_REF
585 && TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
587 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TREE_OPERAND (rhs1, 1));
588 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (TREE_OPERAND (rhs1, 2));
589 if (bitpos % BITS_PER_UNIT == 0
590 && bitsize % BITS_PER_UNIT == 0
591 && init_symbolic_number (n, TREE_OPERAND (rhs1, 0)))
593 /* Handle big-endian bit numbering in BIT_FIELD_REF. */
594 if (BYTES_BIG_ENDIAN)
595 bitpos = TYPE_PRECISION (n->type) - bitpos - bitsize;
597 /* Shift. */
598 if (!do_shift_rotate (RSHIFT_EXPR, n, bitpos))
599 return NULL;
601 /* Mask. */
602 uint64_t mask = 0;
603 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
604 for (unsigned i = 0; i < bitsize / BITS_PER_UNIT;
605 i++, tmp <<= BITS_PER_UNIT)
606 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
607 n->n &= mask;
609 /* Convert. */
610 n->type = TREE_TYPE (rhs1);
611 if (!n->base_addr)
612 n->range = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
614 return verify_symbolic_number_p (n, stmt) ? stmt : NULL;
617 return NULL;
620 if (TREE_CODE (rhs1) != SSA_NAME)
621 return NULL;
623 code = gimple_assign_rhs_code (stmt);
624 rhs_class = gimple_assign_rhs_class (stmt);
625 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
627 if (rhs_class == GIMPLE_BINARY_RHS)
628 rhs2 = gimple_assign_rhs2 (stmt);
630 /* Handle unary rhs and binary rhs with integer constants as second
631 operand. */
633 if (rhs_class == GIMPLE_UNARY_RHS
634 || (rhs_class == GIMPLE_BINARY_RHS
635 && TREE_CODE (rhs2) == INTEGER_CST))
637 if (code != BIT_AND_EXPR
638 && code != LSHIFT_EXPR
639 && code != RSHIFT_EXPR
640 && code != LROTATE_EXPR
641 && code != RROTATE_EXPR
642 && !CONVERT_EXPR_CODE_P (code))
643 return NULL;
645 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
647 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
648 we have to initialize the symbolic number. */
649 if (!source_stmt1)
651 if (gimple_assign_load_p (stmt)
652 || !init_symbolic_number (n, rhs1))
653 return NULL;
654 source_stmt1 = stmt;
657 switch (code)
659 case BIT_AND_EXPR:
661 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
662 uint64_t val = int_cst_value (rhs2), mask = 0;
663 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
665 /* Only constants masking full bytes are allowed. */
666 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
667 if ((val & tmp) != 0 && (val & tmp) != tmp)
668 return NULL;
669 else if (val & tmp)
670 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
672 n->n &= mask;
674 break;
675 case LSHIFT_EXPR:
676 case RSHIFT_EXPR:
677 case LROTATE_EXPR:
678 case RROTATE_EXPR:
679 if (!do_shift_rotate (code, n, (int) TREE_INT_CST_LOW (rhs2)))
680 return NULL;
681 break;
682 CASE_CONVERT:
684 int i, type_size, old_type_size;
685 tree type;
687 type = gimple_expr_type (stmt);
688 type_size = TYPE_PRECISION (type);
689 if (type_size % BITS_PER_UNIT != 0)
690 return NULL;
691 type_size /= BITS_PER_UNIT;
692 if (type_size > 64 / BITS_PER_MARKER)
693 return NULL;
695 /* Sign extension: result is dependent on the value. */
696 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
697 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
698 && HEAD_MARKER (n->n, old_type_size))
699 for (i = 0; i < type_size - old_type_size; i++)
700 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
701 << ((type_size - 1 - i) * BITS_PER_MARKER);
703 if (type_size < 64 / BITS_PER_MARKER)
705 /* If STMT casts to a smaller type mask out the bits not
706 belonging to the target type. */
707 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
709 n->type = type;
710 if (!n->base_addr)
711 n->range = type_size;
713 break;
714 default:
715 return NULL;
717 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
720 /* Handle binary rhs. */
722 if (rhs_class == GIMPLE_BINARY_RHS)
724 struct symbolic_number n1, n2;
725 gimple *source_stmt, *source_stmt2;
727 if (code != BIT_IOR_EXPR)
728 return NULL;
730 if (TREE_CODE (rhs2) != SSA_NAME)
731 return NULL;
733 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
735 switch (code)
737 case BIT_IOR_EXPR:
738 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
740 if (!source_stmt1)
741 return NULL;
743 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
745 if (!source_stmt2)
746 return NULL;
748 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
749 return NULL;
751 if (n1.vuse != n2.vuse)
752 return NULL;
754 source_stmt
755 = perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n);
757 if (!source_stmt)
758 return NULL;
760 if (!verify_symbolic_number_p (n, stmt))
761 return NULL;
763 break;
764 default:
765 return NULL;
767 return source_stmt;
769 return NULL;
772 /* Helper for find_bswap_or_nop and try_coalesce_bswap to compute
773 *CMPXCHG, *CMPNOP and adjust *N. */
775 void
776 find_bswap_or_nop_finalize (struct symbolic_number *n, uint64_t *cmpxchg,
777 uint64_t *cmpnop)
779 unsigned rsize;
780 uint64_t tmpn, mask;
782 /* The number which the find_bswap_or_nop_1 result should match in order
783 to have a full byte swap. The number is shifted to the right
784 according to the size of the symbolic number before using it. */
785 *cmpxchg = CMPXCHG;
786 *cmpnop = CMPNOP;
788 /* Find real size of result (highest non-zero byte). */
789 if (n->base_addr)
790 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
791 else
792 rsize = n->range;
794 /* Zero out the bits corresponding to untouched bytes in original gimple
795 expression. */
796 if (n->range < (int) sizeof (int64_t))
798 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
799 *cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
800 *cmpnop &= mask;
803 /* Zero out the bits corresponding to unused bytes in the result of the
804 gimple expression. */
805 if (rsize < n->range)
807 if (BYTES_BIG_ENDIAN)
809 mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
810 *cmpxchg &= mask;
811 *cmpnop >>= (n->range - rsize) * BITS_PER_MARKER;
813 else
815 mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
816 *cmpxchg >>= (n->range - rsize) * BITS_PER_MARKER;
817 *cmpnop &= mask;
819 n->range = rsize;
822 n->range *= BITS_PER_UNIT;
825 /* Check if STMT completes a bswap implementation or a read in a given
826 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
827 accordingly. It also sets N to represent the kind of operations
828 performed: size of the resulting expression and whether it works on
829 a memory source, and if so alias-set and vuse. At last, the
830 function returns a stmt whose rhs's first tree is the source
831 expression. */
833 gimple *
834 find_bswap_or_nop (gimple *stmt, struct symbolic_number *n, bool *bswap)
836 /* The last parameter determines the depth search limit. It usually
837 correlates directly to the number n of bytes to be touched. We
838 increase that number by log2(n) + 1 here in order to also
839 cover signed -> unsigned conversions of the src operand as can be seen
840 in libgcc, and for initial shift/and operation of the src operand. */
841 int limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
842 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
843 gimple *ins_stmt = find_bswap_or_nop_1 (stmt, n, limit);
845 if (!ins_stmt)
846 return NULL;
848 uint64_t cmpxchg, cmpnop;
849 find_bswap_or_nop_finalize (n, &cmpxchg, &cmpnop);
851 /* A complete byte swap should make the symbolic number to start with
852 the largest digit in the highest order byte. Unchanged symbolic
853 number indicates a read with same endianness as target architecture. */
854 if (n->n == cmpnop)
855 *bswap = false;
856 else if (n->n == cmpxchg)
857 *bswap = true;
858 else
859 return NULL;
861 /* Useless bit manipulation performed by code. */
862 if (!n->base_addr && n->n == cmpnop && n->n_ops == 1)
863 return NULL;
865 return ins_stmt;
868 const pass_data pass_data_optimize_bswap =
870 GIMPLE_PASS, /* type */
871 "bswap", /* name */
872 OPTGROUP_NONE, /* optinfo_flags */
873 TV_NONE, /* tv_id */
874 PROP_ssa, /* properties_required */
875 0, /* properties_provided */
876 0, /* properties_destroyed */
877 0, /* todo_flags_start */
878 0, /* todo_flags_finish */
881 class pass_optimize_bswap : public gimple_opt_pass
883 public:
884 pass_optimize_bswap (gcc::context *ctxt)
885 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
888 /* opt_pass methods: */
889 virtual bool gate (function *)
891 return flag_expensive_optimizations && optimize && BITS_PER_UNIT == 8;
894 virtual unsigned int execute (function *);
896 }; // class pass_optimize_bswap
898 /* Perform the bswap optimization: replace the expression computed in the rhs
899 of gsi_stmt (GSI) (or if NULL add instead of replace) by an equivalent
900 bswap, load or load + bswap expression.
901 Which of these alternatives replace the rhs is given by N->base_addr (non
902 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
903 load to perform are also given in N while the builtin bswap invoke is given
904 in FNDEL. Finally, if a load is involved, INS_STMT refers to one of the
905 load statements involved to construct the rhs in gsi_stmt (GSI) and
906 N->range gives the size of the rhs expression for maintaining some
907 statistics.
909 Note that if the replacement involve a load and if gsi_stmt (GSI) is
910 non-NULL, that stmt is moved just after INS_STMT to do the load with the
911 same VUSE which can lead to gsi_stmt (GSI) changing of basic block. */
913 tree
914 bswap_replace (gimple_stmt_iterator gsi, gimple *ins_stmt, tree fndecl,
915 tree bswap_type, tree load_type, struct symbolic_number *n,
916 bool bswap)
918 tree src, tmp, tgt = NULL_TREE;
919 gimple *bswap_stmt;
921 gimple *cur_stmt = gsi_stmt (gsi);
922 src = n->src;
923 if (cur_stmt)
924 tgt = gimple_assign_lhs (cur_stmt);
926 /* Need to load the value from memory first. */
927 if (n->base_addr)
929 gimple_stmt_iterator gsi_ins = gsi;
930 if (ins_stmt)
931 gsi_ins = gsi_for_stmt (ins_stmt);
932 tree addr_expr, addr_tmp, val_expr, val_tmp;
933 tree load_offset_ptr, aligned_load_type;
934 gimple *load_stmt;
935 unsigned align = get_object_alignment (src);
936 poly_int64 load_offset = 0;
938 if (cur_stmt)
940 basic_block ins_bb = gimple_bb (ins_stmt);
941 basic_block cur_bb = gimple_bb (cur_stmt);
942 if (!dominated_by_p (CDI_DOMINATORS, cur_bb, ins_bb))
943 return NULL_TREE;
945 /* Move cur_stmt just before one of the load of the original
946 to ensure it has the same VUSE. See PR61517 for what could
947 go wrong. */
948 if (gimple_bb (cur_stmt) != gimple_bb (ins_stmt))
949 reset_flow_sensitive_info (gimple_assign_lhs (cur_stmt));
950 gsi_move_before (&gsi, &gsi_ins);
951 gsi = gsi_for_stmt (cur_stmt);
953 else
954 gsi = gsi_ins;
956 /* Compute address to load from and cast according to the size
957 of the load. */
958 addr_expr = build_fold_addr_expr (src);
959 if (is_gimple_mem_ref_addr (addr_expr))
960 addr_tmp = unshare_expr (addr_expr);
961 else
963 addr_tmp = unshare_expr (n->base_addr);
964 if (!is_gimple_mem_ref_addr (addr_tmp))
965 addr_tmp = force_gimple_operand_gsi_1 (&gsi, addr_tmp,
966 is_gimple_mem_ref_addr,
967 NULL_TREE, true,
968 GSI_SAME_STMT);
969 load_offset = n->bytepos;
970 if (n->offset)
972 tree off
973 = force_gimple_operand_gsi (&gsi, unshare_expr (n->offset),
974 true, NULL_TREE, true,
975 GSI_SAME_STMT);
976 gimple *stmt
977 = gimple_build_assign (make_ssa_name (TREE_TYPE (addr_tmp)),
978 POINTER_PLUS_EXPR, addr_tmp, off);
979 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
980 addr_tmp = gimple_assign_lhs (stmt);
984 /* Perform the load. */
985 aligned_load_type = load_type;
986 if (align < TYPE_ALIGN (load_type))
987 aligned_load_type = build_aligned_type (load_type, align);
988 load_offset_ptr = build_int_cst (n->alias_set, load_offset);
989 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
990 load_offset_ptr);
992 if (!bswap)
994 if (n->range == 16)
995 nop_stats.found_16bit++;
996 else if (n->range == 32)
997 nop_stats.found_32bit++;
998 else
1000 gcc_assert (n->range == 64);
1001 nop_stats.found_64bit++;
1004 /* Convert the result of load if necessary. */
1005 if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), load_type))
1007 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
1008 "load_dst");
1009 load_stmt = gimple_build_assign (val_tmp, val_expr);
1010 gimple_set_vuse (load_stmt, n->vuse);
1011 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
1012 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
1013 update_stmt (cur_stmt);
1015 else if (cur_stmt)
1017 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
1018 gimple_set_vuse (cur_stmt, n->vuse);
1019 update_stmt (cur_stmt);
1021 else
1023 tgt = make_ssa_name (load_type);
1024 cur_stmt = gimple_build_assign (tgt, MEM_REF, val_expr);
1025 gimple_set_vuse (cur_stmt, n->vuse);
1026 gsi_insert_before (&gsi, cur_stmt, GSI_SAME_STMT);
1029 if (dump_file)
1031 fprintf (dump_file,
1032 "%d bit load in target endianness found at: ",
1033 (int) n->range);
1034 print_gimple_stmt (dump_file, cur_stmt, 0);
1036 return tgt;
1038 else
1040 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
1041 load_stmt = gimple_build_assign (val_tmp, val_expr);
1042 gimple_set_vuse (load_stmt, n->vuse);
1043 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
1045 src = val_tmp;
1047 else if (!bswap)
1049 gimple *g = NULL;
1050 if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), TREE_TYPE (src)))
1052 if (!is_gimple_val (src))
1053 return NULL_TREE;
1054 g = gimple_build_assign (tgt, NOP_EXPR, src);
1056 else if (cur_stmt)
1057 g = gimple_build_assign (tgt, src);
1058 else
1059 tgt = src;
1060 if (n->range == 16)
1061 nop_stats.found_16bit++;
1062 else if (n->range == 32)
1063 nop_stats.found_32bit++;
1064 else
1066 gcc_assert (n->range == 64);
1067 nop_stats.found_64bit++;
1069 if (dump_file)
1071 fprintf (dump_file,
1072 "%d bit reshuffle in target endianness found at: ",
1073 (int) n->range);
1074 if (cur_stmt)
1075 print_gimple_stmt (dump_file, cur_stmt, 0);
1076 else
1078 print_generic_expr (dump_file, tgt, 0);
1079 fprintf (dump_file, "\n");
1082 if (cur_stmt)
1083 gsi_replace (&gsi, g, true);
1084 return tgt;
1086 else if (TREE_CODE (src) == BIT_FIELD_REF)
1087 src = TREE_OPERAND (src, 0);
1089 if (n->range == 16)
1090 bswap_stats.found_16bit++;
1091 else if (n->range == 32)
1092 bswap_stats.found_32bit++;
1093 else
1095 gcc_assert (n->range == 64);
1096 bswap_stats.found_64bit++;
1099 tmp = src;
1101 /* Convert the src expression if necessary. */
1102 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
1104 gimple *convert_stmt;
1106 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
1107 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
1108 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
1111 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
1112 are considered as rotation of 2N bit values by N bits is generally not
1113 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
1114 gives 0x03040102 while a bswap for that value is 0x04030201. */
1115 if (bswap && n->range == 16)
1117 tree count = build_int_cst (NULL, BITS_PER_UNIT);
1118 src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count);
1119 bswap_stmt = gimple_build_assign (NULL, src);
1121 else
1122 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
1124 if (tgt == NULL_TREE)
1125 tgt = make_ssa_name (bswap_type);
1126 tmp = tgt;
1128 /* Convert the result if necessary. */
1129 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
1131 gimple *convert_stmt;
1133 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
1134 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
1135 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
1138 gimple_set_lhs (bswap_stmt, tmp);
1140 if (dump_file)
1142 fprintf (dump_file, "%d bit bswap implementation found at: ",
1143 (int) n->range);
1144 if (cur_stmt)
1145 print_gimple_stmt (dump_file, cur_stmt, 0);
1146 else
1148 print_generic_expr (dump_file, tgt, 0);
1149 fprintf (dump_file, "\n");
1153 if (cur_stmt)
1155 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
1156 gsi_remove (&gsi, true);
1158 else
1159 gsi_insert_before (&gsi, bswap_stmt, GSI_SAME_STMT);
1160 return tgt;
1163 /* Find manual byte swap implementations as well as load in a given
1164 endianness. Byte swaps are turned into a bswap builtin invokation
1165 while endian loads are converted to bswap builtin invokation or
1166 simple load according to the target endianness. */
1168 unsigned int
1169 pass_optimize_bswap::execute (function *fun)
1171 basic_block bb;
1172 bool bswap32_p, bswap64_p;
1173 bool changed = false;
1174 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1176 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
1177 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1178 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
1179 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1180 || (bswap32_p && word_mode == SImode)));
1182 /* Determine the argument type of the builtins. The code later on
1183 assumes that the return and argument type are the same. */
1184 if (bswap32_p)
1186 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1187 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1190 if (bswap64_p)
1192 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1193 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1196 memset (&nop_stats, 0, sizeof (nop_stats));
1197 memset (&bswap_stats, 0, sizeof (bswap_stats));
1198 calculate_dominance_info (CDI_DOMINATORS);
1200 FOR_EACH_BB_FN (bb, fun)
1202 gimple_stmt_iterator gsi;
1204 /* We do a reverse scan for bswap patterns to make sure we get the
1205 widest match. As bswap pattern matching doesn't handle previously
1206 inserted smaller bswap replacements as sub-patterns, the wider
1207 variant wouldn't be detected. */
1208 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
1210 gimple *ins_stmt, *cur_stmt = gsi_stmt (gsi);
1211 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
1212 enum tree_code code;
1213 struct symbolic_number n;
1214 bool bswap;
1216 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
1217 might be moved to a different basic block by bswap_replace and gsi
1218 must not points to it if that's the case. Moving the gsi_prev
1219 there make sure that gsi points to the statement previous to
1220 cur_stmt while still making sure that all statements are
1221 considered in this basic block. */
1222 gsi_prev (&gsi);
1224 if (!is_gimple_assign (cur_stmt))
1225 continue;
1227 code = gimple_assign_rhs_code (cur_stmt);
1228 switch (code)
1230 case LROTATE_EXPR:
1231 case RROTATE_EXPR:
1232 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
1233 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
1234 % BITS_PER_UNIT)
1235 continue;
1236 /* Fall through. */
1237 case BIT_IOR_EXPR:
1238 break;
1239 default:
1240 continue;
1243 ins_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
1245 if (!ins_stmt)
1246 continue;
1248 switch (n.range)
1250 case 16:
1251 /* Already in canonical form, nothing to do. */
1252 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
1253 continue;
1254 load_type = bswap_type = uint16_type_node;
1255 break;
1256 case 32:
1257 load_type = uint32_type_node;
1258 if (bswap32_p)
1260 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1261 bswap_type = bswap32_type;
1263 break;
1264 case 64:
1265 load_type = uint64_type_node;
1266 if (bswap64_p)
1268 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1269 bswap_type = bswap64_type;
1271 break;
1272 default:
1273 continue;
1276 if (bswap && !fndecl && n.range != 16)
1277 continue;
1279 if (bswap_replace (gsi_for_stmt (cur_stmt), ins_stmt, fndecl,
1280 bswap_type, load_type, &n, bswap))
1281 changed = true;
1285 statistics_counter_event (fun, "16-bit nop implementations found",
1286 nop_stats.found_16bit);
1287 statistics_counter_event (fun, "32-bit nop implementations found",
1288 nop_stats.found_32bit);
1289 statistics_counter_event (fun, "64-bit nop implementations found",
1290 nop_stats.found_64bit);
1291 statistics_counter_event (fun, "16-bit bswap implementations found",
1292 bswap_stats.found_16bit);
1293 statistics_counter_event (fun, "32-bit bswap implementations found",
1294 bswap_stats.found_32bit);
1295 statistics_counter_event (fun, "64-bit bswap implementations found",
1296 bswap_stats.found_64bit);
1298 return (changed ? TODO_update_ssa : 0);
1301 } // anon namespace
1303 gimple_opt_pass *
1304 make_pass_optimize_bswap (gcc::context *ctxt)
1306 return new pass_optimize_bswap (ctxt);
1309 namespace {
1311 /* Struct recording one operand for the store, which is either a constant,
1312 then VAL represents the constant and all the other fields are zero,
1313 or a memory load, then VAL represents the reference, BASE_ADDR is non-NULL
1314 and the other fields also reflect the memory load. */
1316 struct store_operand_info
1318 tree val;
1319 tree base_addr;
1320 poly_uint64 bitsize;
1321 poly_uint64 bitpos;
1322 poly_uint64 bitregion_start;
1323 poly_uint64 bitregion_end;
1324 gimple *stmt;
1325 bool bit_not_p;
1326 store_operand_info ();
1329 store_operand_info::store_operand_info ()
1330 : val (NULL_TREE), base_addr (NULL_TREE), bitsize (0), bitpos (0),
1331 bitregion_start (0), bitregion_end (0), stmt (NULL), bit_not_p (false)
1335 /* Struct recording the information about a single store of an immediate
1336 to memory. These are created in the first phase and coalesced into
1337 merged_store_group objects in the second phase. */
1339 struct store_immediate_info
1341 unsigned HOST_WIDE_INT bitsize;
1342 unsigned HOST_WIDE_INT bitpos;
1343 unsigned HOST_WIDE_INT bitregion_start;
1344 /* This is one past the last bit of the bit region. */
1345 unsigned HOST_WIDE_INT bitregion_end;
1346 gimple *stmt;
1347 unsigned int order;
1348 /* INTEGER_CST for constant stores, MEM_REF for memory copy or
1349 BIT_*_EXPR for logical bitwise operation.
1350 LROTATE_EXPR if it can be only bswap optimized and
1351 ops are not really meaningful.
1352 NOP_EXPR if bswap optimization detected identity, ops
1353 are not meaningful. */
1354 enum tree_code rhs_code;
1355 /* Two fields for bswap optimization purposes. */
1356 struct symbolic_number n;
1357 gimple *ins_stmt;
1358 /* True if BIT_{AND,IOR,XOR}_EXPR result is inverted before storing. */
1359 bool bit_not_p;
1360 /* True if ops have been swapped and thus ops[1] represents
1361 rhs1 of BIT_{AND,IOR,XOR}_EXPR and ops[0] represents rhs2. */
1362 bool ops_swapped_p;
1363 /* Operands. For BIT_*_EXPR rhs_code both operands are used, otherwise
1364 just the first one. */
1365 store_operand_info ops[2];
1366 store_immediate_info (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
1367 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
1368 gimple *, unsigned int, enum tree_code,
1369 struct symbolic_number &, gimple *, bool,
1370 const store_operand_info &,
1371 const store_operand_info &);
1374 store_immediate_info::store_immediate_info (unsigned HOST_WIDE_INT bs,
1375 unsigned HOST_WIDE_INT bp,
1376 unsigned HOST_WIDE_INT brs,
1377 unsigned HOST_WIDE_INT bre,
1378 gimple *st,
1379 unsigned int ord,
1380 enum tree_code rhscode,
1381 struct symbolic_number &nr,
1382 gimple *ins_stmtp,
1383 bool bitnotp,
1384 const store_operand_info &op0r,
1385 const store_operand_info &op1r)
1386 : bitsize (bs), bitpos (bp), bitregion_start (brs), bitregion_end (bre),
1387 stmt (st), order (ord), rhs_code (rhscode), n (nr),
1388 ins_stmt (ins_stmtp), bit_not_p (bitnotp), ops_swapped_p (false)
1389 #if __cplusplus >= 201103L
1390 , ops { op0r, op1r }
1393 #else
1395 ops[0] = op0r;
1396 ops[1] = op1r;
1398 #endif
1400 /* Struct representing a group of stores to contiguous memory locations.
1401 These are produced by the second phase (coalescing) and consumed in the
1402 third phase that outputs the widened stores. */
1404 struct merged_store_group
1406 unsigned HOST_WIDE_INT start;
1407 unsigned HOST_WIDE_INT width;
1408 unsigned HOST_WIDE_INT bitregion_start;
1409 unsigned HOST_WIDE_INT bitregion_end;
1410 /* The size of the allocated memory for val and mask. */
1411 unsigned HOST_WIDE_INT buf_size;
1412 unsigned HOST_WIDE_INT align_base;
1413 poly_uint64 load_align_base[2];
1415 unsigned int align;
1416 unsigned int load_align[2];
1417 unsigned int first_order;
1418 unsigned int last_order;
1420 auto_vec<store_immediate_info *> stores;
1421 /* We record the first and last original statements in the sequence because
1422 we'll need their vuse/vdef and replacement position. It's easier to keep
1423 track of them separately as 'stores' is reordered by apply_stores. */
1424 gimple *last_stmt;
1425 gimple *first_stmt;
1426 unsigned char *val;
1427 unsigned char *mask;
1429 merged_store_group (store_immediate_info *);
1430 ~merged_store_group ();
1431 void merge_into (store_immediate_info *);
1432 void merge_overlapping (store_immediate_info *);
1433 bool apply_stores ();
1434 private:
1435 void do_merge (store_immediate_info *);
1438 /* Debug helper. Dump LEN elements of byte array PTR to FD in hex. */
1440 static void
1441 dump_char_array (FILE *fd, unsigned char *ptr, unsigned int len)
1443 if (!fd)
1444 return;
1446 for (unsigned int i = 0; i < len; i++)
1447 fprintf (fd, "%x ", ptr[i]);
1448 fprintf (fd, "\n");
1451 /* Shift left the bytes in PTR of SZ elements by AMNT bits, carrying over the
1452 bits between adjacent elements. AMNT should be within
1453 [0, BITS_PER_UNIT).
1454 Example, AMNT = 2:
1455 00011111|11100000 << 2 = 01111111|10000000
1456 PTR[1] | PTR[0] PTR[1] | PTR[0]. */
1458 static void
1459 shift_bytes_in_array (unsigned char *ptr, unsigned int sz, unsigned int amnt)
1461 if (amnt == 0)
1462 return;
1464 unsigned char carry_over = 0U;
1465 unsigned char carry_mask = (~0U) << (unsigned char) (BITS_PER_UNIT - amnt);
1466 unsigned char clear_mask = (~0U) << amnt;
1468 for (unsigned int i = 0; i < sz; i++)
1470 unsigned prev_carry_over = carry_over;
1471 carry_over = (ptr[i] & carry_mask) >> (BITS_PER_UNIT - amnt);
1473 ptr[i] <<= amnt;
1474 if (i != 0)
1476 ptr[i] &= clear_mask;
1477 ptr[i] |= prev_carry_over;
1482 /* Like shift_bytes_in_array but for big-endian.
1483 Shift right the bytes in PTR of SZ elements by AMNT bits, carrying over the
1484 bits between adjacent elements. AMNT should be within
1485 [0, BITS_PER_UNIT).
1486 Example, AMNT = 2:
1487 00011111|11100000 >> 2 = 00000111|11111000
1488 PTR[0] | PTR[1] PTR[0] | PTR[1]. */
1490 static void
1491 shift_bytes_in_array_right (unsigned char *ptr, unsigned int sz,
1492 unsigned int amnt)
1494 if (amnt == 0)
1495 return;
1497 unsigned char carry_over = 0U;
1498 unsigned char carry_mask = ~(~0U << amnt);
1500 for (unsigned int i = 0; i < sz; i++)
1502 unsigned prev_carry_over = carry_over;
1503 carry_over = ptr[i] & carry_mask;
1505 carry_over <<= (unsigned char) BITS_PER_UNIT - amnt;
1506 ptr[i] >>= amnt;
1507 ptr[i] |= prev_carry_over;
1511 /* Clear out LEN bits starting from bit START in the byte array
1512 PTR. This clears the bits to the *right* from START.
1513 START must be within [0, BITS_PER_UNIT) and counts starting from
1514 the least significant bit. */
1516 static void
1517 clear_bit_region_be (unsigned char *ptr, unsigned int start,
1518 unsigned int len)
1520 if (len == 0)
1521 return;
1522 /* Clear len bits to the right of start. */
1523 else if (len <= start + 1)
1525 unsigned char mask = (~(~0U << len));
1526 mask = mask << (start + 1U - len);
1527 ptr[0] &= ~mask;
1529 else if (start != BITS_PER_UNIT - 1)
1531 clear_bit_region_be (ptr, start, (start % BITS_PER_UNIT) + 1);
1532 clear_bit_region_be (ptr + 1, BITS_PER_UNIT - 1,
1533 len - (start % BITS_PER_UNIT) - 1);
1535 else if (start == BITS_PER_UNIT - 1
1536 && len > BITS_PER_UNIT)
1538 unsigned int nbytes = len / BITS_PER_UNIT;
1539 memset (ptr, 0, nbytes);
1540 if (len % BITS_PER_UNIT != 0)
1541 clear_bit_region_be (ptr + nbytes, BITS_PER_UNIT - 1,
1542 len % BITS_PER_UNIT);
1544 else
1545 gcc_unreachable ();
1548 /* In the byte array PTR clear the bit region starting at bit
1549 START and is LEN bits wide.
1550 For regions spanning multiple bytes do this recursively until we reach
1551 zero LEN or a region contained within a single byte. */
1553 static void
1554 clear_bit_region (unsigned char *ptr, unsigned int start,
1555 unsigned int len)
1557 /* Degenerate base case. */
1558 if (len == 0)
1559 return;
1560 else if (start >= BITS_PER_UNIT)
1561 clear_bit_region (ptr + 1, start - BITS_PER_UNIT, len);
1562 /* Second base case. */
1563 else if ((start + len) <= BITS_PER_UNIT)
1565 unsigned char mask = (~0U) << (unsigned char) (BITS_PER_UNIT - len);
1566 mask >>= BITS_PER_UNIT - (start + len);
1568 ptr[0] &= ~mask;
1570 return;
1572 /* Clear most significant bits in a byte and proceed with the next byte. */
1573 else if (start != 0)
1575 clear_bit_region (ptr, start, BITS_PER_UNIT - start);
1576 clear_bit_region (ptr + 1, 0, len - (BITS_PER_UNIT - start));
1578 /* Whole bytes need to be cleared. */
1579 else if (start == 0 && len > BITS_PER_UNIT)
1581 unsigned int nbytes = len / BITS_PER_UNIT;
1582 /* We could recurse on each byte but we clear whole bytes, so a simple
1583 memset will do. */
1584 memset (ptr, '\0', nbytes);
1585 /* Clear the remaining sub-byte region if there is one. */
1586 if (len % BITS_PER_UNIT != 0)
1587 clear_bit_region (ptr + nbytes, 0, len % BITS_PER_UNIT);
1589 else
1590 gcc_unreachable ();
1593 /* Write BITLEN bits of EXPR to the byte array PTR at
1594 bit position BITPOS. PTR should contain TOTAL_BYTES elements.
1595 Return true if the operation succeeded. */
1597 static bool
1598 encode_tree_to_bitpos (tree expr, unsigned char *ptr, int bitlen, int bitpos,
1599 unsigned int total_bytes)
1601 unsigned int first_byte = bitpos / BITS_PER_UNIT;
1602 tree tmp_int = expr;
1603 bool sub_byte_op_p = ((bitlen % BITS_PER_UNIT)
1604 || (bitpos % BITS_PER_UNIT)
1605 || !int_mode_for_size (bitlen, 0).exists ());
1607 if (!sub_byte_op_p)
1608 return native_encode_expr (tmp_int, ptr + first_byte, total_bytes) != 0;
1610 /* LITTLE-ENDIAN
1611 We are writing a non byte-sized quantity or at a position that is not
1612 at a byte boundary.
1613 |--------|--------|--------| ptr + first_byte
1615 xxx xxxxxxxx xxx< bp>
1616 |______EXPR____|
1618 First native_encode_expr EXPR into a temporary buffer and shift each
1619 byte in the buffer by 'bp' (carrying the bits over as necessary).
1620 |00000000|00xxxxxx|xxxxxxxx| << bp = |000xxxxx|xxxxxxxx|xxx00000|
1621 <------bitlen---->< bp>
1622 Then we clear the destination bits:
1623 |---00000|00000000|000-----| ptr + first_byte
1624 <-------bitlen--->< bp>
1626 Finally we ORR the bytes of the shifted EXPR into the cleared region:
1627 |---xxxxx||xxxxxxxx||xxx-----| ptr + first_byte.
1629 BIG-ENDIAN
1630 We are writing a non byte-sized quantity or at a position that is not
1631 at a byte boundary.
1632 ptr + first_byte |--------|--------|--------|
1634 <bp >xxx xxxxxxxx xxx
1635 |_____EXPR_____|
1637 First native_encode_expr EXPR into a temporary buffer and shift each
1638 byte in the buffer to the right by (carrying the bits over as necessary).
1639 We shift by as much as needed to align the most significant bit of EXPR
1640 with bitpos:
1641 |00xxxxxx|xxxxxxxx| >> 3 = |00000xxx|xxxxxxxx|xxxxx000|
1642 <---bitlen----> <bp ><-----bitlen----->
1643 Then we clear the destination bits:
1644 ptr + first_byte |-----000||00000000||00000---|
1645 <bp ><-------bitlen----->
1647 Finally we ORR the bytes of the shifted EXPR into the cleared region:
1648 ptr + first_byte |---xxxxx||xxxxxxxx||xxx-----|.
1649 The awkwardness comes from the fact that bitpos is counted from the
1650 most significant bit of a byte. */
1652 /* We must be dealing with fixed-size data at this point, since the
1653 total size is also fixed. */
1654 fixed_size_mode mode = as_a <fixed_size_mode> (TYPE_MODE (TREE_TYPE (expr)));
1655 /* Allocate an extra byte so that we have space to shift into. */
1656 unsigned int byte_size = GET_MODE_SIZE (mode) + 1;
1657 unsigned char *tmpbuf = XALLOCAVEC (unsigned char, byte_size);
1658 memset (tmpbuf, '\0', byte_size);
1659 /* The store detection code should only have allowed constants that are
1660 accepted by native_encode_expr. */
1661 if (native_encode_expr (expr, tmpbuf, byte_size - 1) == 0)
1662 gcc_unreachable ();
1664 /* The native_encode_expr machinery uses TYPE_MODE to determine how many
1665 bytes to write. This means it can write more than
1666 ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT bytes (for example
1667 write 8 bytes for a bitlen of 40). Skip the bytes that are not within
1668 bitlen and zero out the bits that are not relevant as well (that may
1669 contain a sign bit due to sign-extension). */
1670 unsigned int padding
1671 = byte_size - ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT - 1;
1672 /* On big-endian the padding is at the 'front' so just skip the initial
1673 bytes. */
1674 if (BYTES_BIG_ENDIAN)
1675 tmpbuf += padding;
1677 byte_size -= padding;
1679 if (bitlen % BITS_PER_UNIT != 0)
1681 if (BYTES_BIG_ENDIAN)
1682 clear_bit_region_be (tmpbuf, BITS_PER_UNIT - 1,
1683 BITS_PER_UNIT - (bitlen % BITS_PER_UNIT));
1684 else
1685 clear_bit_region (tmpbuf, bitlen,
1686 byte_size * BITS_PER_UNIT - bitlen);
1688 /* Left shifting relies on the last byte being clear if bitlen is
1689 a multiple of BITS_PER_UNIT, which might not be clear if
1690 there are padding bytes. */
1691 else if (!BYTES_BIG_ENDIAN)
1692 tmpbuf[byte_size - 1] = '\0';
1694 /* Clear the bit region in PTR where the bits from TMPBUF will be
1695 inserted into. */
1696 if (BYTES_BIG_ENDIAN)
1697 clear_bit_region_be (ptr + first_byte,
1698 BITS_PER_UNIT - 1 - (bitpos % BITS_PER_UNIT), bitlen);
1699 else
1700 clear_bit_region (ptr + first_byte, bitpos % BITS_PER_UNIT, bitlen);
1702 int shift_amnt;
1703 int bitlen_mod = bitlen % BITS_PER_UNIT;
1704 int bitpos_mod = bitpos % BITS_PER_UNIT;
1706 bool skip_byte = false;
1707 if (BYTES_BIG_ENDIAN)
1709 /* BITPOS and BITLEN are exactly aligned and no shifting
1710 is necessary. */
1711 if (bitpos_mod + bitlen_mod == BITS_PER_UNIT
1712 || (bitpos_mod == 0 && bitlen_mod == 0))
1713 shift_amnt = 0;
1714 /* |. . . . . . . .|
1715 <bp > <blen >.
1716 We always shift right for BYTES_BIG_ENDIAN so shift the beginning
1717 of the value until it aligns with 'bp' in the next byte over. */
1718 else if (bitpos_mod + bitlen_mod < BITS_PER_UNIT)
1720 shift_amnt = bitlen_mod + bitpos_mod;
1721 skip_byte = bitlen_mod != 0;
1723 /* |. . . . . . . .|
1724 <----bp--->
1725 <---blen---->.
1726 Shift the value right within the same byte so it aligns with 'bp'. */
1727 else
1728 shift_amnt = bitlen_mod + bitpos_mod - BITS_PER_UNIT;
1730 else
1731 shift_amnt = bitpos % BITS_PER_UNIT;
1733 /* Create the shifted version of EXPR. */
1734 if (!BYTES_BIG_ENDIAN)
1736 shift_bytes_in_array (tmpbuf, byte_size, shift_amnt);
1737 if (shift_amnt == 0)
1738 byte_size--;
1740 else
1742 gcc_assert (BYTES_BIG_ENDIAN);
1743 shift_bytes_in_array_right (tmpbuf, byte_size, shift_amnt);
1744 /* If shifting right forced us to move into the next byte skip the now
1745 empty byte. */
1746 if (skip_byte)
1748 tmpbuf++;
1749 byte_size--;
1753 /* Insert the bits from TMPBUF. */
1754 for (unsigned int i = 0; i < byte_size; i++)
1755 ptr[first_byte + i] |= tmpbuf[i];
1757 return true;
1760 /* Sorting function for store_immediate_info objects.
1761 Sorts them by bitposition. */
1763 static int
1764 sort_by_bitpos (const void *x, const void *y)
1766 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
1767 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
1769 if ((*tmp)->bitpos < (*tmp2)->bitpos)
1770 return -1;
1771 else if ((*tmp)->bitpos > (*tmp2)->bitpos)
1772 return 1;
1773 else
1774 /* If they are the same let's use the order which is guaranteed to
1775 be different. */
1776 return (*tmp)->order - (*tmp2)->order;
1779 /* Sorting function for store_immediate_info objects.
1780 Sorts them by the order field. */
1782 static int
1783 sort_by_order (const void *x, const void *y)
1785 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
1786 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
1788 if ((*tmp)->order < (*tmp2)->order)
1789 return -1;
1790 else if ((*tmp)->order > (*tmp2)->order)
1791 return 1;
1793 gcc_unreachable ();
1796 /* Initialize a merged_store_group object from a store_immediate_info
1797 object. */
1799 merged_store_group::merged_store_group (store_immediate_info *info)
1801 start = info->bitpos;
1802 width = info->bitsize;
1803 bitregion_start = info->bitregion_start;
1804 bitregion_end = info->bitregion_end;
1805 /* VAL has memory allocated for it in apply_stores once the group
1806 width has been finalized. */
1807 val = NULL;
1808 mask = NULL;
1809 unsigned HOST_WIDE_INT align_bitpos = 0;
1810 get_object_alignment_1 (gimple_assign_lhs (info->stmt),
1811 &align, &align_bitpos);
1812 align_base = start - align_bitpos;
1813 for (int i = 0; i < 2; ++i)
1815 store_operand_info &op = info->ops[i];
1816 if (op.base_addr == NULL_TREE)
1818 load_align[i] = 0;
1819 load_align_base[i] = 0;
1821 else
1823 get_object_alignment_1 (op.val, &load_align[i], &align_bitpos);
1824 load_align_base[i] = op.bitpos - align_bitpos;
1827 stores.create (1);
1828 stores.safe_push (info);
1829 last_stmt = info->stmt;
1830 last_order = info->order;
1831 first_stmt = last_stmt;
1832 first_order = last_order;
1833 buf_size = 0;
1836 merged_store_group::~merged_store_group ()
1838 if (val)
1839 XDELETEVEC (val);
1842 /* Helper method for merge_into and merge_overlapping to do
1843 the common part. */
1844 void
1845 merged_store_group::do_merge (store_immediate_info *info)
1847 bitregion_start = MIN (bitregion_start, info->bitregion_start);
1848 bitregion_end = MAX (bitregion_end, info->bitregion_end);
1850 unsigned int this_align;
1851 unsigned HOST_WIDE_INT align_bitpos = 0;
1852 get_object_alignment_1 (gimple_assign_lhs (info->stmt),
1853 &this_align, &align_bitpos);
1854 if (this_align > align)
1856 align = this_align;
1857 align_base = info->bitpos - align_bitpos;
1859 for (int i = 0; i < 2; ++i)
1861 store_operand_info &op = info->ops[i];
1862 if (!op.base_addr)
1863 continue;
1865 get_object_alignment_1 (op.val, &this_align, &align_bitpos);
1866 if (this_align > load_align[i])
1868 load_align[i] = this_align;
1869 load_align_base[i] = op.bitpos - align_bitpos;
1873 gimple *stmt = info->stmt;
1874 stores.safe_push (info);
1875 if (info->order > last_order)
1877 last_order = info->order;
1878 last_stmt = stmt;
1880 else if (info->order < first_order)
1882 first_order = info->order;
1883 first_stmt = stmt;
1887 /* Merge a store recorded by INFO into this merged store.
1888 The store is not overlapping with the existing recorded
1889 stores. */
1891 void
1892 merged_store_group::merge_into (store_immediate_info *info)
1894 /* Make sure we're inserting in the position we think we're inserting. */
1895 gcc_assert (info->bitpos >= start + width
1896 && info->bitregion_start <= bitregion_end);
1898 width = info->bitpos + info->bitsize - start;
1899 do_merge (info);
1902 /* Merge a store described by INFO into this merged store.
1903 INFO overlaps in some way with the current store (i.e. it's not contiguous
1904 which is handled by merged_store_group::merge_into). */
1906 void
1907 merged_store_group::merge_overlapping (store_immediate_info *info)
1909 /* If the store extends the size of the group, extend the width. */
1910 if (info->bitpos + info->bitsize > start + width)
1911 width = info->bitpos + info->bitsize - start;
1913 do_merge (info);
1916 /* Go through all the recorded stores in this group in program order and
1917 apply their values to the VAL byte array to create the final merged
1918 value. Return true if the operation succeeded. */
1920 bool
1921 merged_store_group::apply_stores ()
1923 /* Make sure we have more than one store in the group, otherwise we cannot
1924 merge anything. */
1925 if (bitregion_start % BITS_PER_UNIT != 0
1926 || bitregion_end % BITS_PER_UNIT != 0
1927 || stores.length () == 1)
1928 return false;
1930 stores.qsort (sort_by_order);
1931 store_immediate_info *info;
1932 unsigned int i;
1933 /* Create a buffer of a size that is 2 times the number of bytes we're
1934 storing. That way native_encode_expr can write power-of-2-sized
1935 chunks without overrunning. */
1936 buf_size = 2 * ((bitregion_end - bitregion_start) / BITS_PER_UNIT);
1937 val = XNEWVEC (unsigned char, 2 * buf_size);
1938 mask = val + buf_size;
1939 memset (val, 0, buf_size);
1940 memset (mask, ~0U, buf_size);
1942 FOR_EACH_VEC_ELT (stores, i, info)
1944 unsigned int pos_in_buffer = info->bitpos - bitregion_start;
1945 tree cst = NULL_TREE;
1946 if (info->ops[0].val && info->ops[0].base_addr == NULL_TREE)
1947 cst = info->ops[0].val;
1948 else if (info->ops[1].val && info->ops[1].base_addr == NULL_TREE)
1949 cst = info->ops[1].val;
1950 bool ret = true;
1951 if (cst)
1952 ret = encode_tree_to_bitpos (cst, val, info->bitsize,
1953 pos_in_buffer, buf_size);
1954 if (cst && dump_file && (dump_flags & TDF_DETAILS))
1956 if (ret)
1958 fprintf (dump_file, "After writing ");
1959 print_generic_expr (dump_file, cst, 0);
1960 fprintf (dump_file, " of size " HOST_WIDE_INT_PRINT_DEC
1961 " at position %d the merged region contains:\n",
1962 info->bitsize, pos_in_buffer);
1963 dump_char_array (dump_file, val, buf_size);
1965 else
1966 fprintf (dump_file, "Failed to merge stores\n");
1968 if (!ret)
1969 return false;
1970 unsigned char *m = mask + (pos_in_buffer / BITS_PER_UNIT);
1971 if (BYTES_BIG_ENDIAN)
1972 clear_bit_region_be (m, (BITS_PER_UNIT - 1
1973 - (pos_in_buffer % BITS_PER_UNIT)),
1974 info->bitsize);
1975 else
1976 clear_bit_region (m, pos_in_buffer % BITS_PER_UNIT, info->bitsize);
1978 stores.qsort (sort_by_bitpos);
1979 return true;
1982 /* Structure describing the store chain. */
1984 struct imm_store_chain_info
1986 /* Doubly-linked list that imposes an order on chain processing.
1987 PNXP (prev's next pointer) points to the head of a list, or to
1988 the next field in the previous chain in the list.
1989 See pass_store_merging::m_stores_head for more rationale. */
1990 imm_store_chain_info *next, **pnxp;
1991 tree base_addr;
1992 auto_vec<store_immediate_info *> m_store_info;
1993 auto_vec<merged_store_group *> m_merged_store_groups;
1995 imm_store_chain_info (imm_store_chain_info *&inspt, tree b_a)
1996 : next (inspt), pnxp (&inspt), base_addr (b_a)
1998 inspt = this;
1999 if (next)
2001 gcc_checking_assert (pnxp == next->pnxp);
2002 next->pnxp = &next;
2005 ~imm_store_chain_info ()
2007 *pnxp = next;
2008 if (next)
2010 gcc_checking_assert (&next == next->pnxp);
2011 next->pnxp = pnxp;
2014 bool terminate_and_process_chain ();
2015 bool try_coalesce_bswap (merged_store_group *, unsigned int, unsigned int);
2016 bool coalesce_immediate_stores ();
2017 bool output_merged_store (merged_store_group *);
2018 bool output_merged_stores ();
2021 const pass_data pass_data_tree_store_merging = {
2022 GIMPLE_PASS, /* type */
2023 "store-merging", /* name */
2024 OPTGROUP_NONE, /* optinfo_flags */
2025 TV_GIMPLE_STORE_MERGING, /* tv_id */
2026 PROP_ssa, /* properties_required */
2027 0, /* properties_provided */
2028 0, /* properties_destroyed */
2029 0, /* todo_flags_start */
2030 TODO_update_ssa, /* todo_flags_finish */
2033 class pass_store_merging : public gimple_opt_pass
2035 public:
2036 pass_store_merging (gcc::context *ctxt)
2037 : gimple_opt_pass (pass_data_tree_store_merging, ctxt), m_stores_head ()
2041 /* Pass not supported for PDP-endianness, nor for insane hosts
2042 or target character sizes where native_{encode,interpret}_expr
2043 doesn't work properly. */
2044 virtual bool
2045 gate (function *)
2047 return flag_store_merging
2048 && WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN
2049 && CHAR_BIT == 8
2050 && BITS_PER_UNIT == 8;
2053 virtual unsigned int execute (function *);
2055 private:
2056 hash_map<tree_operand_hash, struct imm_store_chain_info *> m_stores;
2058 /* Form a doubly-linked stack of the elements of m_stores, so that
2059 we can iterate over them in a predictable way. Using this order
2060 avoids extraneous differences in the compiler output just because
2061 of tree pointer variations (e.g. different chains end up in
2062 different positions of m_stores, so they are handled in different
2063 orders, so they allocate or release SSA names in different
2064 orders, and when they get reused, subsequent passes end up
2065 getting different SSA names, which may ultimately change
2066 decisions when going out of SSA). */
2067 imm_store_chain_info *m_stores_head;
2069 void process_store (gimple *);
2070 bool terminate_and_process_all_chains ();
2071 bool terminate_all_aliasing_chains (imm_store_chain_info **, gimple *);
2072 bool terminate_and_release_chain (imm_store_chain_info *);
2073 }; // class pass_store_merging
2075 /* Terminate and process all recorded chains. Return true if any changes
2076 were made. */
2078 bool
2079 pass_store_merging::terminate_and_process_all_chains ()
2081 bool ret = false;
2082 while (m_stores_head)
2083 ret |= terminate_and_release_chain (m_stores_head);
2084 gcc_assert (m_stores.elements () == 0);
2085 gcc_assert (m_stores_head == NULL);
2087 return ret;
2090 /* Terminate all chains that are affected by the statement STMT.
2091 CHAIN_INFO is the chain we should ignore from the checks if
2092 non-NULL. */
2094 bool
2095 pass_store_merging::terminate_all_aliasing_chains (imm_store_chain_info
2096 **chain_info,
2097 gimple *stmt)
2099 bool ret = false;
2101 /* If the statement doesn't touch memory it can't alias. */
2102 if (!gimple_vuse (stmt))
2103 return false;
2105 tree store_lhs = gimple_store_p (stmt) ? gimple_get_lhs (stmt) : NULL_TREE;
2106 for (imm_store_chain_info *next = m_stores_head, *cur = next; cur; cur = next)
2108 next = cur->next;
2110 /* We already checked all the stores in chain_info and terminated the
2111 chain if necessary. Skip it here. */
2112 if (chain_info && *chain_info == cur)
2113 continue;
2115 store_immediate_info *info;
2116 unsigned int i;
2117 FOR_EACH_VEC_ELT (cur->m_store_info, i, info)
2119 tree lhs = gimple_assign_lhs (info->stmt);
2120 if (ref_maybe_used_by_stmt_p (stmt, lhs)
2121 || stmt_may_clobber_ref_p (stmt, lhs)
2122 || (store_lhs && refs_output_dependent_p (store_lhs, lhs)))
2124 if (dump_file && (dump_flags & TDF_DETAILS))
2126 fprintf (dump_file, "stmt causes chain termination:\n");
2127 print_gimple_stmt (dump_file, stmt, 0);
2129 terminate_and_release_chain (cur);
2130 ret = true;
2131 break;
2136 return ret;
2139 /* Helper function. Terminate the recorded chain storing to base object
2140 BASE. Return true if the merging and output was successful. The m_stores
2141 entry is removed after the processing in any case. */
2143 bool
2144 pass_store_merging::terminate_and_release_chain (imm_store_chain_info *chain_info)
2146 bool ret = chain_info->terminate_and_process_chain ();
2147 m_stores.remove (chain_info->base_addr);
2148 delete chain_info;
2149 return ret;
2152 /* Return true if stmts in between FIRST (inclusive) and LAST (exclusive)
2153 may clobber REF. FIRST and LAST must be in the same basic block and
2154 have non-NULL vdef. We want to be able to sink load of REF across
2155 stores between FIRST and LAST, up to right before LAST. */
2157 bool
2158 stmts_may_clobber_ref_p (gimple *first, gimple *last, tree ref)
2160 ao_ref r;
2161 ao_ref_init (&r, ref);
2162 unsigned int count = 0;
2163 tree vop = gimple_vdef (last);
2164 gimple *stmt;
2166 gcc_checking_assert (gimple_bb (first) == gimple_bb (last));
2169 stmt = SSA_NAME_DEF_STMT (vop);
2170 if (stmt_may_clobber_ref_p_1 (stmt, &r))
2171 return true;
2172 if (gimple_store_p (stmt)
2173 && refs_anti_dependent_p (ref, gimple_get_lhs (stmt)))
2174 return true;
2175 /* Avoid quadratic compile time by bounding the number of checks
2176 we perform. */
2177 if (++count > MAX_STORE_ALIAS_CHECKS)
2178 return true;
2179 vop = gimple_vuse (stmt);
2181 while (stmt != first);
2182 return false;
2185 /* Return true if INFO->ops[IDX] is mergeable with the
2186 corresponding loads already in MERGED_STORE group.
2187 BASE_ADDR is the base address of the whole store group. */
2189 bool
2190 compatible_load_p (merged_store_group *merged_store,
2191 store_immediate_info *info,
2192 tree base_addr, int idx)
2194 store_immediate_info *infof = merged_store->stores[0];
2195 if (!info->ops[idx].base_addr
2196 || maybe_ne (info->ops[idx].bitpos - infof->ops[idx].bitpos,
2197 info->bitpos - infof->bitpos)
2198 || !operand_equal_p (info->ops[idx].base_addr,
2199 infof->ops[idx].base_addr, 0))
2200 return false;
2202 store_immediate_info *infol = merged_store->stores.last ();
2203 tree load_vuse = gimple_vuse (info->ops[idx].stmt);
2204 /* In this case all vuses should be the same, e.g.
2205 _1 = s.a; _2 = s.b; _3 = _1 | 1; t.a = _3; _4 = _2 | 2; t.b = _4;
2207 _1 = s.a; _2 = s.b; t.a = _1; t.b = _2;
2208 and we can emit the coalesced load next to any of those loads. */
2209 if (gimple_vuse (infof->ops[idx].stmt) == load_vuse
2210 && gimple_vuse (infol->ops[idx].stmt) == load_vuse)
2211 return true;
2213 /* Otherwise, at least for now require that the load has the same
2214 vuse as the store. See following examples. */
2215 if (gimple_vuse (info->stmt) != load_vuse)
2216 return false;
2218 if (gimple_vuse (infof->stmt) != gimple_vuse (infof->ops[idx].stmt)
2219 || (infof != infol
2220 && gimple_vuse (infol->stmt) != gimple_vuse (infol->ops[idx].stmt)))
2221 return false;
2223 /* If the load is from the same location as the store, already
2224 the construction of the immediate chain info guarantees no intervening
2225 stores, so no further checks are needed. Example:
2226 _1 = s.a; _2 = _1 & -7; s.a = _2; _3 = s.b; _4 = _3 & -7; s.b = _4; */
2227 if (known_eq (info->ops[idx].bitpos, info->bitpos)
2228 && operand_equal_p (info->ops[idx].base_addr, base_addr, 0))
2229 return true;
2231 /* Otherwise, we need to punt if any of the loads can be clobbered by any
2232 of the stores in the group, or any other stores in between those.
2233 Previous calls to compatible_load_p ensured that for all the
2234 merged_store->stores IDX loads, no stmts starting with
2235 merged_store->first_stmt and ending right before merged_store->last_stmt
2236 clobbers those loads. */
2237 gimple *first = merged_store->first_stmt;
2238 gimple *last = merged_store->last_stmt;
2239 unsigned int i;
2240 store_immediate_info *infoc;
2241 /* The stores are sorted by increasing store bitpos, so if info->stmt store
2242 comes before the so far first load, we'll be changing
2243 merged_store->first_stmt. In that case we need to give up if
2244 any of the earlier processed loads clobber with the stmts in the new
2245 range. */
2246 if (info->order < merged_store->first_order)
2248 FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
2249 if (stmts_may_clobber_ref_p (info->stmt, first, infoc->ops[idx].val))
2250 return false;
2251 first = info->stmt;
2253 /* Similarly, we could change merged_store->last_stmt, so ensure
2254 in that case no stmts in the new range clobber any of the earlier
2255 processed loads. */
2256 else if (info->order > merged_store->last_order)
2258 FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
2259 if (stmts_may_clobber_ref_p (last, info->stmt, infoc->ops[idx].val))
2260 return false;
2261 last = info->stmt;
2263 /* And finally, we'd be adding a new load to the set, ensure it isn't
2264 clobbered in the new range. */
2265 if (stmts_may_clobber_ref_p (first, last, info->ops[idx].val))
2266 return false;
2268 /* Otherwise, we are looking for:
2269 _1 = s.a; _2 = _1 ^ 15; t.a = _2; _3 = s.b; _4 = _3 ^ 15; t.b = _4;
2271 _1 = s.a; t.a = _1; _2 = s.b; t.b = _2; */
2272 return true;
2275 /* Add all refs loaded to compute VAL to REFS vector. */
2277 void
2278 gather_bswap_load_refs (vec<tree> *refs, tree val)
2280 if (TREE_CODE (val) != SSA_NAME)
2281 return;
2283 gimple *stmt = SSA_NAME_DEF_STMT (val);
2284 if (!is_gimple_assign (stmt))
2285 return;
2287 if (gimple_assign_load_p (stmt))
2289 refs->safe_push (gimple_assign_rhs1 (stmt));
2290 return;
2293 switch (gimple_assign_rhs_class (stmt))
2295 case GIMPLE_BINARY_RHS:
2296 gather_bswap_load_refs (refs, gimple_assign_rhs2 (stmt));
2297 /* FALLTHRU */
2298 case GIMPLE_UNARY_RHS:
2299 gather_bswap_load_refs (refs, gimple_assign_rhs1 (stmt));
2300 break;
2301 default:
2302 gcc_unreachable ();
2306 /* Check if there are any stores in M_STORE_INFO after index I
2307 (where M_STORE_INFO must be sorted by sort_by_bitpos) that overlap
2308 a potential group ending with END that have their order
2309 smaller than LAST_ORDER. RHS_CODE is the kind of store in the
2310 group. Return true if there are no such stores.
2311 Consider:
2312 MEM[(long long int *)p_28] = 0;
2313 MEM[(long long int *)p_28 + 8B] = 0;
2314 MEM[(long long int *)p_28 + 16B] = 0;
2315 MEM[(long long int *)p_28 + 24B] = 0;
2316 _129 = (int) _130;
2317 MEM[(int *)p_28 + 8B] = _129;
2318 MEM[(int *)p_28].a = -1;
2319 We already have
2320 MEM[(long long int *)p_28] = 0;
2321 MEM[(int *)p_28].a = -1;
2322 stmts in the current group and need to consider if it is safe to
2323 add MEM[(long long int *)p_28 + 8B] = 0; store into the same group.
2324 There is an overlap between that store and the MEM[(int *)p_28 + 8B] = _129;
2325 store though, so if we add the MEM[(long long int *)p_28 + 8B] = 0;
2326 into the group and merging of those 3 stores is successful, merged
2327 stmts will be emitted at the latest store from that group, i.e.
2328 LAST_ORDER, which is the MEM[(int *)p_28].a = -1; store.
2329 The MEM[(int *)p_28 + 8B] = _129; store that originally follows
2330 the MEM[(long long int *)p_28 + 8B] = 0; would now be before it,
2331 so we need to refuse merging MEM[(long long int *)p_28 + 8B] = 0;
2332 into the group. That way it will be its own store group and will
2333 not be touched. If RHS_CODE is INTEGER_CST and there are overlapping
2334 INTEGER_CST stores, those are mergeable using merge_overlapping,
2335 so don't return false for those. */
2337 static bool
2338 check_no_overlap (vec<store_immediate_info *> m_store_info, unsigned int i,
2339 enum tree_code rhs_code, unsigned int last_order,
2340 unsigned HOST_WIDE_INT end)
2342 unsigned int len = m_store_info.length ();
2343 for (++i; i < len; ++i)
2345 store_immediate_info *info = m_store_info[i];
2346 if (info->bitpos >= end)
2347 break;
2348 if (info->order < last_order
2349 && (rhs_code != INTEGER_CST || info->rhs_code != INTEGER_CST))
2350 return false;
2352 return true;
2355 /* Return true if m_store_info[first] and at least one following store
2356 form a group which store try_size bitsize value which is byte swapped
2357 from a memory load or some value, or identity from some value.
2358 This uses the bswap pass APIs. */
2360 bool
2361 imm_store_chain_info::try_coalesce_bswap (merged_store_group *merged_store,
2362 unsigned int first,
2363 unsigned int try_size)
2365 unsigned int len = m_store_info.length (), last = first;
2366 unsigned HOST_WIDE_INT width = m_store_info[first]->bitsize;
2367 if (width >= try_size)
2368 return false;
2369 for (unsigned int i = first + 1; i < len; ++i)
2371 if (m_store_info[i]->bitpos != m_store_info[first]->bitpos + width
2372 || m_store_info[i]->ins_stmt == NULL)
2373 return false;
2374 width += m_store_info[i]->bitsize;
2375 if (width >= try_size)
2377 last = i;
2378 break;
2381 if (width != try_size)
2382 return false;
2384 bool allow_unaligned
2385 = !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED);
2386 /* Punt if the combined store would not be aligned and we need alignment. */
2387 if (!allow_unaligned)
2389 unsigned int align = merged_store->align;
2390 unsigned HOST_WIDE_INT align_base = merged_store->align_base;
2391 for (unsigned int i = first + 1; i <= last; ++i)
2393 unsigned int this_align;
2394 unsigned HOST_WIDE_INT align_bitpos = 0;
2395 get_object_alignment_1 (gimple_assign_lhs (m_store_info[i]->stmt),
2396 &this_align, &align_bitpos);
2397 if (this_align > align)
2399 align = this_align;
2400 align_base = m_store_info[i]->bitpos - align_bitpos;
2403 unsigned HOST_WIDE_INT align_bitpos
2404 = (m_store_info[first]->bitpos - align_base) & (align - 1);
2405 if (align_bitpos)
2406 align = least_bit_hwi (align_bitpos);
2407 if (align < try_size)
2408 return false;
2411 tree type;
2412 switch (try_size)
2414 case 16: type = uint16_type_node; break;
2415 case 32: type = uint32_type_node; break;
2416 case 64: type = uint64_type_node; break;
2417 default: gcc_unreachable ();
2419 struct symbolic_number n;
2420 gimple *ins_stmt = NULL;
2421 int vuse_store = -1;
2422 unsigned int first_order = merged_store->first_order;
2423 unsigned int last_order = merged_store->last_order;
2424 gimple *first_stmt = merged_store->first_stmt;
2425 gimple *last_stmt = merged_store->last_stmt;
2426 unsigned HOST_WIDE_INT end = merged_store->start + merged_store->width;
2427 store_immediate_info *infof = m_store_info[first];
2429 for (unsigned int i = first; i <= last; ++i)
2431 store_immediate_info *info = m_store_info[i];
2432 struct symbolic_number this_n = info->n;
2433 this_n.type = type;
2434 if (!this_n.base_addr)
2435 this_n.range = try_size / BITS_PER_UNIT;
2436 else
2437 /* Update vuse in case it has changed by output_merged_stores. */
2438 this_n.vuse = gimple_vuse (info->ins_stmt);
2439 unsigned int bitpos = info->bitpos - infof->bitpos;
2440 if (!do_shift_rotate (LSHIFT_EXPR, &this_n,
2441 BYTES_BIG_ENDIAN
2442 ? try_size - info->bitsize - bitpos
2443 : bitpos))
2444 return false;
2445 if (this_n.base_addr && vuse_store)
2447 unsigned int j;
2448 for (j = first; j <= last; ++j)
2449 if (this_n.vuse == gimple_vuse (m_store_info[j]->stmt))
2450 break;
2451 if (j > last)
2453 if (vuse_store == 1)
2454 return false;
2455 vuse_store = 0;
2458 if (i == first)
2460 n = this_n;
2461 ins_stmt = info->ins_stmt;
2463 else
2465 if (n.base_addr && n.vuse != this_n.vuse)
2467 if (vuse_store == 0)
2468 return false;
2469 vuse_store = 1;
2471 if (info->order > last_order)
2473 last_order = info->order;
2474 last_stmt = info->stmt;
2476 else if (info->order < first_order)
2478 first_order = info->order;
2479 first_stmt = info->stmt;
2481 end = MAX (end, info->bitpos + info->bitsize);
2483 ins_stmt = perform_symbolic_merge (ins_stmt, &n, info->ins_stmt,
2484 &this_n, &n);
2485 if (ins_stmt == NULL)
2486 return false;
2490 uint64_t cmpxchg, cmpnop;
2491 find_bswap_or_nop_finalize (&n, &cmpxchg, &cmpnop);
2493 /* A complete byte swap should make the symbolic number to start with
2494 the largest digit in the highest order byte. Unchanged symbolic
2495 number indicates a read with same endianness as target architecture. */
2496 if (n.n != cmpnop && n.n != cmpxchg)
2497 return false;
2499 if (n.base_addr == NULL_TREE && !is_gimple_val (n.src))
2500 return false;
2502 if (!check_no_overlap (m_store_info, last, LROTATE_EXPR, last_order, end))
2503 return false;
2505 /* Don't handle memory copy this way if normal non-bswap processing
2506 would handle it too. */
2507 if (n.n == cmpnop && (unsigned) n.n_ops == last - first + 1)
2509 unsigned int i;
2510 for (i = first; i <= last; ++i)
2511 if (m_store_info[i]->rhs_code != MEM_REF)
2512 break;
2513 if (i == last + 1)
2514 return false;
2517 if (n.n == cmpxchg)
2518 switch (try_size)
2520 case 16:
2521 /* Will emit LROTATE_EXPR. */
2522 break;
2523 case 32:
2524 if (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2525 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing)
2526 break;
2527 return false;
2528 case 64:
2529 if (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2530 && optab_handler (bswap_optab, DImode) != CODE_FOR_nothing)
2531 break;
2532 return false;
2533 default:
2534 gcc_unreachable ();
2537 if (!allow_unaligned && n.base_addr)
2539 unsigned int align = get_object_alignment (n.src);
2540 if (align < try_size)
2541 return false;
2544 /* If each load has vuse of the corresponding store, need to verify
2545 the loads can be sunk right before the last store. */
2546 if (vuse_store == 1)
2548 auto_vec<tree, 64> refs;
2549 for (unsigned int i = first; i <= last; ++i)
2550 gather_bswap_load_refs (&refs,
2551 gimple_assign_rhs1 (m_store_info[i]->stmt));
2553 unsigned int i;
2554 tree ref;
2555 FOR_EACH_VEC_ELT (refs, i, ref)
2556 if (stmts_may_clobber_ref_p (first_stmt, last_stmt, ref))
2557 return false;
2558 n.vuse = NULL_TREE;
2561 infof->n = n;
2562 infof->ins_stmt = ins_stmt;
2563 for (unsigned int i = first; i <= last; ++i)
2565 m_store_info[i]->rhs_code = n.n == cmpxchg ? LROTATE_EXPR : NOP_EXPR;
2566 m_store_info[i]->ops[0].base_addr = NULL_TREE;
2567 m_store_info[i]->ops[1].base_addr = NULL_TREE;
2568 if (i != first)
2569 merged_store->merge_into (m_store_info[i]);
2572 return true;
2575 /* Go through the candidate stores recorded in m_store_info and merge them
2576 into merged_store_group objects recorded into m_merged_store_groups
2577 representing the widened stores. Return true if coalescing was successful
2578 and the number of widened stores is fewer than the original number
2579 of stores. */
2581 bool
2582 imm_store_chain_info::coalesce_immediate_stores ()
2584 /* Anything less can't be processed. */
2585 if (m_store_info.length () < 2)
2586 return false;
2588 if (dump_file && (dump_flags & TDF_DETAILS))
2589 fprintf (dump_file, "Attempting to coalesce %u stores in chain.\n",
2590 m_store_info.length ());
2592 store_immediate_info *info;
2593 unsigned int i, ignore = 0;
2595 /* Order the stores by the bitposition they write to. */
2596 m_store_info.qsort (sort_by_bitpos);
2598 info = m_store_info[0];
2599 merged_store_group *merged_store = new merged_store_group (info);
2601 FOR_EACH_VEC_ELT (m_store_info, i, info)
2603 if (dump_file && (dump_flags & TDF_DETAILS))
2605 fprintf (dump_file, "Store %u:\nbitsize:" HOST_WIDE_INT_PRINT_DEC
2606 " bitpos:" HOST_WIDE_INT_PRINT_DEC " val:\n",
2607 i, info->bitsize, info->bitpos);
2608 print_generic_expr (dump_file, gimple_assign_rhs1 (info->stmt));
2609 fprintf (dump_file, "\n------------\n");
2612 if (i <= ignore)
2613 continue;
2615 /* First try to handle group of stores like:
2616 p[0] = data >> 24;
2617 p[1] = data >> 16;
2618 p[2] = data >> 8;
2619 p[3] = data;
2620 using the bswap framework. */
2621 if (info->bitpos == merged_store->start + merged_store->width
2622 && merged_store->stores.length () == 1
2623 && merged_store->stores[0]->ins_stmt != NULL
2624 && info->ins_stmt != NULL)
2626 unsigned int try_size;
2627 for (try_size = 64; try_size >= 16; try_size >>= 1)
2628 if (try_coalesce_bswap (merged_store, i - 1, try_size))
2629 break;
2631 if (try_size >= 16)
2633 ignore = i + merged_store->stores.length () - 1;
2634 m_merged_store_groups.safe_push (merged_store);
2635 if (ignore < m_store_info.length ())
2636 merged_store = new merged_store_group (m_store_info[ignore]);
2637 else
2638 merged_store = NULL;
2639 continue;
2643 /* |---store 1---|
2644 |---store 2---|
2645 Overlapping stores. */
2646 if (IN_RANGE (info->bitpos, merged_store->start,
2647 merged_store->start + merged_store->width - 1))
2649 /* Only allow overlapping stores of constants. */
2650 if (info->rhs_code == INTEGER_CST
2651 && merged_store->stores[0]->rhs_code == INTEGER_CST)
2653 merged_store->merge_overlapping (info);
2654 continue;
2657 /* |---store 1---||---store 2---|
2658 This store is consecutive to the previous one.
2659 Merge it into the current store group. There can be gaps in between
2660 the stores, but there can't be gaps in between bitregions. */
2661 else if (info->rhs_code != LROTATE_EXPR
2662 && info->bitregion_start <= merged_store->bitregion_end
2663 && info->rhs_code == merged_store->stores[0]->rhs_code)
2665 store_immediate_info *infof = merged_store->stores[0];
2667 /* All the rhs_code ops that take 2 operands are commutative,
2668 swap the operands if it could make the operands compatible. */
2669 if (infof->ops[0].base_addr
2670 && infof->ops[1].base_addr
2671 && info->ops[0].base_addr
2672 && info->ops[1].base_addr
2673 && known_eq (info->ops[1].bitpos - infof->ops[0].bitpos,
2674 info->bitpos - infof->bitpos)
2675 && operand_equal_p (info->ops[1].base_addr,
2676 infof->ops[0].base_addr, 0))
2678 std::swap (info->ops[0], info->ops[1]);
2679 info->ops_swapped_p = true;
2681 if ((infof->ops[0].base_addr
2682 ? compatible_load_p (merged_store, info, base_addr, 0)
2683 : !info->ops[0].base_addr)
2684 && (infof->ops[1].base_addr
2685 ? compatible_load_p (merged_store, info, base_addr, 1)
2686 : !info->ops[1].base_addr)
2687 && check_no_overlap (m_store_info, i, info->rhs_code,
2688 MAX (merged_store->last_order,
2689 info->order),
2690 MAX (merged_store->start
2691 + merged_store->width,
2692 info->bitpos + info->bitsize)))
2694 merged_store->merge_into (info);
2695 continue;
2699 /* |---store 1---| <gap> |---store 2---|.
2700 Gap between stores or the rhs not compatible. Start a new group. */
2702 /* Try to apply all the stores recorded for the group to determine
2703 the bitpattern they write and discard it if that fails.
2704 This will also reject single-store groups. */
2705 if (!merged_store->apply_stores ())
2706 delete merged_store;
2707 else
2708 m_merged_store_groups.safe_push (merged_store);
2710 merged_store = new merged_store_group (info);
2713 /* Record or discard the last store group. */
2714 if (merged_store)
2716 if (!merged_store->apply_stores ())
2717 delete merged_store;
2718 else
2719 m_merged_store_groups.safe_push (merged_store);
2722 gcc_assert (m_merged_store_groups.length () <= m_store_info.length ());
2723 bool success
2724 = !m_merged_store_groups.is_empty ()
2725 && m_merged_store_groups.length () < m_store_info.length ();
2727 if (success && dump_file)
2728 fprintf (dump_file, "Coalescing successful!\n"
2729 "Merged into %u stores\n",
2730 m_merged_store_groups.length ());
2732 return success;
2735 /* Return the type to use for the merged stores or loads described by STMTS.
2736 This is needed to get the alias sets right. If IS_LOAD, look for rhs,
2737 otherwise lhs. Additionally set *CLIQUEP and *BASEP to MR_DEPENDENCE_*
2738 of the MEM_REFs if any. */
2740 static tree
2741 get_alias_type_for_stmts (vec<gimple *> &stmts, bool is_load,
2742 unsigned short *cliquep, unsigned short *basep)
2744 gimple *stmt;
2745 unsigned int i;
2746 tree type = NULL_TREE;
2747 tree ret = NULL_TREE;
2748 *cliquep = 0;
2749 *basep = 0;
2751 FOR_EACH_VEC_ELT (stmts, i, stmt)
2753 tree ref = is_load ? gimple_assign_rhs1 (stmt)
2754 : gimple_assign_lhs (stmt);
2755 tree type1 = reference_alias_ptr_type (ref);
2756 tree base = get_base_address (ref);
2758 if (i == 0)
2760 if (TREE_CODE (base) == MEM_REF)
2762 *cliquep = MR_DEPENDENCE_CLIQUE (base);
2763 *basep = MR_DEPENDENCE_BASE (base);
2765 ret = type = type1;
2766 continue;
2768 if (!alias_ptr_types_compatible_p (type, type1))
2769 ret = ptr_type_node;
2770 if (TREE_CODE (base) != MEM_REF
2771 || *cliquep != MR_DEPENDENCE_CLIQUE (base)
2772 || *basep != MR_DEPENDENCE_BASE (base))
2774 *cliquep = 0;
2775 *basep = 0;
2778 return ret;
2781 /* Return the location_t information we can find among the statements
2782 in STMTS. */
2784 static location_t
2785 get_location_for_stmts (vec<gimple *> &stmts)
2787 gimple *stmt;
2788 unsigned int i;
2790 FOR_EACH_VEC_ELT (stmts, i, stmt)
2791 if (gimple_has_location (stmt))
2792 return gimple_location (stmt);
2794 return UNKNOWN_LOCATION;
2797 /* Used to decribe a store resulting from splitting a wide store in smaller
2798 regularly-sized stores in split_group. */
2800 struct split_store
2802 unsigned HOST_WIDE_INT bytepos;
2803 unsigned HOST_WIDE_INT size;
2804 unsigned HOST_WIDE_INT align;
2805 auto_vec<store_immediate_info *> orig_stores;
2806 /* True if there is a single orig stmt covering the whole split store. */
2807 bool orig;
2808 split_store (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
2809 unsigned HOST_WIDE_INT);
2812 /* Simple constructor. */
2814 split_store::split_store (unsigned HOST_WIDE_INT bp,
2815 unsigned HOST_WIDE_INT sz,
2816 unsigned HOST_WIDE_INT al)
2817 : bytepos (bp), size (sz), align (al), orig (false)
2819 orig_stores.create (0);
2822 /* Record all stores in GROUP that write to the region starting at BITPOS and
2823 is of size BITSIZE. Record infos for such statements in STORES if
2824 non-NULL. The stores in GROUP must be sorted by bitposition. Return INFO
2825 if there is exactly one original store in the range. */
2827 static store_immediate_info *
2828 find_constituent_stores (struct merged_store_group *group,
2829 vec<store_immediate_info *> *stores,
2830 unsigned int *first,
2831 unsigned HOST_WIDE_INT bitpos,
2832 unsigned HOST_WIDE_INT bitsize)
2834 store_immediate_info *info, *ret = NULL;
2835 unsigned int i;
2836 bool second = false;
2837 bool update_first = true;
2838 unsigned HOST_WIDE_INT end = bitpos + bitsize;
2839 for (i = *first; group->stores.iterate (i, &info); ++i)
2841 unsigned HOST_WIDE_INT stmt_start = info->bitpos;
2842 unsigned HOST_WIDE_INT stmt_end = stmt_start + info->bitsize;
2843 if (stmt_end <= bitpos)
2845 /* BITPOS passed to this function never decreases from within the
2846 same split_group call, so optimize and don't scan info records
2847 which are known to end before or at BITPOS next time.
2848 Only do it if all stores before this one also pass this. */
2849 if (update_first)
2850 *first = i + 1;
2851 continue;
2853 else
2854 update_first = false;
2856 /* The stores in GROUP are ordered by bitposition so if we're past
2857 the region for this group return early. */
2858 if (stmt_start >= end)
2859 return ret;
2861 if (stores)
2863 stores->safe_push (info);
2864 if (ret)
2866 ret = NULL;
2867 second = true;
2870 else if (ret)
2871 return NULL;
2872 if (!second)
2873 ret = info;
2875 return ret;
2878 /* Return how many SSA_NAMEs used to compute value to store in the INFO
2879 store have multiple uses. If any SSA_NAME has multiple uses, also
2880 count statements needed to compute it. */
2882 static unsigned
2883 count_multiple_uses (store_immediate_info *info)
2885 gimple *stmt = info->stmt;
2886 unsigned ret = 0;
2887 switch (info->rhs_code)
2889 case INTEGER_CST:
2890 return 0;
2891 case BIT_AND_EXPR:
2892 case BIT_IOR_EXPR:
2893 case BIT_XOR_EXPR:
2894 if (info->bit_not_p)
2896 if (!has_single_use (gimple_assign_rhs1 (stmt)))
2897 ret = 1; /* Fall through below to return
2898 the BIT_NOT_EXPR stmt and then
2899 BIT_{AND,IOR,XOR}_EXPR and anything it
2900 uses. */
2901 else
2902 /* stmt is after this the BIT_NOT_EXPR. */
2903 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
2905 if (!has_single_use (gimple_assign_rhs1 (stmt)))
2907 ret += 1 + info->ops[0].bit_not_p;
2908 if (info->ops[1].base_addr)
2909 ret += 1 + info->ops[1].bit_not_p;
2910 return ret + 1;
2912 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
2913 /* stmt is now the BIT_*_EXPR. */
2914 if (!has_single_use (gimple_assign_rhs1 (stmt)))
2915 ret += 1 + info->ops[info->ops_swapped_p].bit_not_p;
2916 else if (info->ops[info->ops_swapped_p].bit_not_p)
2918 gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
2919 if (!has_single_use (gimple_assign_rhs1 (stmt2)))
2920 ++ret;
2922 if (info->ops[1].base_addr == NULL_TREE)
2924 gcc_checking_assert (!info->ops_swapped_p);
2925 return ret;
2927 if (!has_single_use (gimple_assign_rhs2 (stmt)))
2928 ret += 1 + info->ops[1 - info->ops_swapped_p].bit_not_p;
2929 else if (info->ops[1 - info->ops_swapped_p].bit_not_p)
2931 gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
2932 if (!has_single_use (gimple_assign_rhs1 (stmt2)))
2933 ++ret;
2935 return ret;
2936 case MEM_REF:
2937 if (!has_single_use (gimple_assign_rhs1 (stmt)))
2938 return 1 + info->ops[0].bit_not_p;
2939 else if (info->ops[0].bit_not_p)
2941 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
2942 if (!has_single_use (gimple_assign_rhs1 (stmt)))
2943 return 1;
2945 return 0;
2946 default:
2947 gcc_unreachable ();
2951 /* Split a merged store described by GROUP by populating the SPLIT_STORES
2952 vector (if non-NULL) with split_store structs describing the byte offset
2953 (from the base), the bit size and alignment of each store as well as the
2954 original statements involved in each such split group.
2955 This is to separate the splitting strategy from the statement
2956 building/emission/linking done in output_merged_store.
2957 Return number of new stores.
2958 If ALLOW_UNALIGNED_STORE is false, then all stores must be aligned.
2959 If ALLOW_UNALIGNED_LOAD is false, then all loads must be aligned.
2960 If SPLIT_STORES is NULL, it is just a dry run to count number of
2961 new stores. */
2963 static unsigned int
2964 split_group (merged_store_group *group, bool allow_unaligned_store,
2965 bool allow_unaligned_load,
2966 vec<struct split_store *> *split_stores,
2967 unsigned *total_orig,
2968 unsigned *total_new)
2970 unsigned HOST_WIDE_INT pos = group->bitregion_start;
2971 unsigned HOST_WIDE_INT size = group->bitregion_end - pos;
2972 unsigned HOST_WIDE_INT bytepos = pos / BITS_PER_UNIT;
2973 unsigned HOST_WIDE_INT group_align = group->align;
2974 unsigned HOST_WIDE_INT align_base = group->align_base;
2975 unsigned HOST_WIDE_INT group_load_align = group_align;
2976 bool any_orig = false;
2978 gcc_assert ((size % BITS_PER_UNIT == 0) && (pos % BITS_PER_UNIT == 0));
2980 if (group->stores[0]->rhs_code == LROTATE_EXPR
2981 || group->stores[0]->rhs_code == NOP_EXPR)
2983 /* For bswap framework using sets of stores, all the checking
2984 has been done earlier in try_coalesce_bswap and needs to be
2985 emitted as a single store. */
2986 if (total_orig)
2988 /* Avoid the old/new stmt count heuristics. It should be
2989 always beneficial. */
2990 total_new[0] = 1;
2991 total_orig[0] = 2;
2994 if (split_stores)
2996 unsigned HOST_WIDE_INT align_bitpos
2997 = (group->start - align_base) & (group_align - 1);
2998 unsigned HOST_WIDE_INT align = group_align;
2999 if (align_bitpos)
3000 align = least_bit_hwi (align_bitpos);
3001 bytepos = group->start / BITS_PER_UNIT;
3002 struct split_store *store
3003 = new split_store (bytepos, group->width, align);
3004 unsigned int first = 0;
3005 find_constituent_stores (group, &store->orig_stores,
3006 &first, group->start, group->width);
3007 split_stores->safe_push (store);
3010 return 1;
3013 unsigned int ret = 0, first = 0;
3014 unsigned HOST_WIDE_INT try_pos = bytepos;
3016 if (total_orig)
3018 unsigned int i;
3019 store_immediate_info *info = group->stores[0];
3021 total_new[0] = 0;
3022 total_orig[0] = 1; /* The orig store. */
3023 info = group->stores[0];
3024 if (info->ops[0].base_addr)
3025 total_orig[0]++;
3026 if (info->ops[1].base_addr)
3027 total_orig[0]++;
3028 switch (info->rhs_code)
3030 case BIT_AND_EXPR:
3031 case BIT_IOR_EXPR:
3032 case BIT_XOR_EXPR:
3033 total_orig[0]++; /* The orig BIT_*_EXPR stmt. */
3034 break;
3035 default:
3036 break;
3038 total_orig[0] *= group->stores.length ();
3040 FOR_EACH_VEC_ELT (group->stores, i, info)
3042 total_new[0] += count_multiple_uses (info);
3043 total_orig[0] += (info->bit_not_p
3044 + info->ops[0].bit_not_p
3045 + info->ops[1].bit_not_p);
3049 if (!allow_unaligned_load)
3050 for (int i = 0; i < 2; ++i)
3051 if (group->load_align[i])
3052 group_load_align = MIN (group_load_align, group->load_align[i]);
3054 while (size > 0)
3056 if ((allow_unaligned_store || group_align <= BITS_PER_UNIT)
3057 && group->mask[try_pos - bytepos] == (unsigned char) ~0U)
3059 /* Skip padding bytes. */
3060 ++try_pos;
3061 size -= BITS_PER_UNIT;
3062 continue;
3065 unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT;
3066 unsigned int try_size = MAX_STORE_BITSIZE, nonmasked;
3067 unsigned HOST_WIDE_INT align_bitpos
3068 = (try_bitpos - align_base) & (group_align - 1);
3069 unsigned HOST_WIDE_INT align = group_align;
3070 if (align_bitpos)
3071 align = least_bit_hwi (align_bitpos);
3072 if (!allow_unaligned_store)
3073 try_size = MIN (try_size, align);
3074 if (!allow_unaligned_load)
3076 /* If we can't do or don't want to do unaligned stores
3077 as well as loads, we need to take the loads into account
3078 as well. */
3079 unsigned HOST_WIDE_INT load_align = group_load_align;
3080 align_bitpos = (try_bitpos - align_base) & (load_align - 1);
3081 if (align_bitpos)
3082 load_align = least_bit_hwi (align_bitpos);
3083 for (int i = 0; i < 2; ++i)
3084 if (group->load_align[i])
3086 align_bitpos
3087 = known_alignment (try_bitpos
3088 - group->stores[0]->bitpos
3089 + group->stores[0]->ops[i].bitpos
3090 - group->load_align_base[i]);
3091 if (align_bitpos & (group_load_align - 1))
3093 unsigned HOST_WIDE_INT a = least_bit_hwi (align_bitpos);
3094 load_align = MIN (load_align, a);
3097 try_size = MIN (try_size, load_align);
3099 store_immediate_info *info
3100 = find_constituent_stores (group, NULL, &first, try_bitpos, try_size);
3101 if (info)
3103 /* If there is just one original statement for the range, see if
3104 we can just reuse the original store which could be even larger
3105 than try_size. */
3106 unsigned HOST_WIDE_INT stmt_end
3107 = ROUND_UP (info->bitpos + info->bitsize, BITS_PER_UNIT);
3108 info = find_constituent_stores (group, NULL, &first, try_bitpos,
3109 stmt_end - try_bitpos);
3110 if (info && info->bitpos >= try_bitpos)
3112 try_size = stmt_end - try_bitpos;
3113 goto found;
3117 /* Approximate store bitsize for the case when there are no padding
3118 bits. */
3119 while (try_size > size)
3120 try_size /= 2;
3121 /* Now look for whole padding bytes at the end of that bitsize. */
3122 for (nonmasked = try_size / BITS_PER_UNIT; nonmasked > 0; --nonmasked)
3123 if (group->mask[try_pos - bytepos + nonmasked - 1]
3124 != (unsigned char) ~0U)
3125 break;
3126 if (nonmasked == 0)
3128 /* If entire try_size range is padding, skip it. */
3129 try_pos += try_size / BITS_PER_UNIT;
3130 size -= try_size;
3131 continue;
3133 /* Otherwise try to decrease try_size if second half, last 3 quarters
3134 etc. are padding. */
3135 nonmasked *= BITS_PER_UNIT;
3136 while (nonmasked <= try_size / 2)
3137 try_size /= 2;
3138 if (!allow_unaligned_store && group_align > BITS_PER_UNIT)
3140 /* Now look for whole padding bytes at the start of that bitsize. */
3141 unsigned int try_bytesize = try_size / BITS_PER_UNIT, masked;
3142 for (masked = 0; masked < try_bytesize; ++masked)
3143 if (group->mask[try_pos - bytepos + masked] != (unsigned char) ~0U)
3144 break;
3145 masked *= BITS_PER_UNIT;
3146 gcc_assert (masked < try_size);
3147 if (masked >= try_size / 2)
3149 while (masked >= try_size / 2)
3151 try_size /= 2;
3152 try_pos += try_size / BITS_PER_UNIT;
3153 size -= try_size;
3154 masked -= try_size;
3156 /* Need to recompute the alignment, so just retry at the new
3157 position. */
3158 continue;
3162 found:
3163 ++ret;
3165 if (split_stores)
3167 struct split_store *store
3168 = new split_store (try_pos, try_size, align);
3169 info = find_constituent_stores (group, &store->orig_stores,
3170 &first, try_bitpos, try_size);
3171 if (info
3172 && info->bitpos >= try_bitpos
3173 && info->bitpos + info->bitsize <= try_bitpos + try_size)
3175 store->orig = true;
3176 any_orig = true;
3178 split_stores->safe_push (store);
3181 try_pos += try_size / BITS_PER_UNIT;
3182 size -= try_size;
3185 if (total_orig)
3187 unsigned int i;
3188 struct split_store *store;
3189 /* If we are reusing some original stores and any of the
3190 original SSA_NAMEs had multiple uses, we need to subtract
3191 those now before we add the new ones. */
3192 if (total_new[0] && any_orig)
3194 FOR_EACH_VEC_ELT (*split_stores, i, store)
3195 if (store->orig)
3196 total_new[0] -= count_multiple_uses (store->orig_stores[0]);
3198 total_new[0] += ret; /* The new store. */
3199 store_immediate_info *info = group->stores[0];
3200 if (info->ops[0].base_addr)
3201 total_new[0] += ret;
3202 if (info->ops[1].base_addr)
3203 total_new[0] += ret;
3204 switch (info->rhs_code)
3206 case BIT_AND_EXPR:
3207 case BIT_IOR_EXPR:
3208 case BIT_XOR_EXPR:
3209 total_new[0] += ret; /* The new BIT_*_EXPR stmt. */
3210 break;
3211 default:
3212 break;
3214 FOR_EACH_VEC_ELT (*split_stores, i, store)
3216 unsigned int j;
3217 bool bit_not_p[3] = { false, false, false };
3218 /* If all orig_stores have certain bit_not_p set, then
3219 we'd use a BIT_NOT_EXPR stmt and need to account for it.
3220 If some orig_stores have certain bit_not_p set, then
3221 we'd use a BIT_XOR_EXPR with a mask and need to account for
3222 it. */
3223 FOR_EACH_VEC_ELT (store->orig_stores, j, info)
3225 if (info->ops[0].bit_not_p)
3226 bit_not_p[0] = true;
3227 if (info->ops[1].bit_not_p)
3228 bit_not_p[1] = true;
3229 if (info->bit_not_p)
3230 bit_not_p[2] = true;
3232 total_new[0] += bit_not_p[0] + bit_not_p[1] + bit_not_p[2];
3237 return ret;
3240 /* Return the operation through which the operand IDX (if < 2) or
3241 result (IDX == 2) should be inverted. If NOP_EXPR, no inversion
3242 is done, if BIT_NOT_EXPR, all bits are inverted, if BIT_XOR_EXPR,
3243 the bits should be xored with mask. */
3245 static enum tree_code
3246 invert_op (split_store *split_store, int idx, tree int_type, tree &mask)
3248 unsigned int i;
3249 store_immediate_info *info;
3250 unsigned int cnt = 0;
3251 bool any_paddings = false;
3252 FOR_EACH_VEC_ELT (split_store->orig_stores, i, info)
3254 bool bit_not_p = idx < 2 ? info->ops[idx].bit_not_p : info->bit_not_p;
3255 if (bit_not_p)
3257 ++cnt;
3258 tree lhs = gimple_assign_lhs (info->stmt);
3259 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3260 && TYPE_PRECISION (TREE_TYPE (lhs)) < info->bitsize)
3261 any_paddings = true;
3264 mask = NULL_TREE;
3265 if (cnt == 0)
3266 return NOP_EXPR;
3267 if (cnt == split_store->orig_stores.length () && !any_paddings)
3268 return BIT_NOT_EXPR;
3270 unsigned HOST_WIDE_INT try_bitpos = split_store->bytepos * BITS_PER_UNIT;
3271 unsigned buf_size = split_store->size / BITS_PER_UNIT;
3272 unsigned char *buf
3273 = XALLOCAVEC (unsigned char, buf_size);
3274 memset (buf, ~0U, buf_size);
3275 FOR_EACH_VEC_ELT (split_store->orig_stores, i, info)
3277 bool bit_not_p = idx < 2 ? info->ops[idx].bit_not_p : info->bit_not_p;
3278 if (!bit_not_p)
3279 continue;
3280 /* Clear regions with bit_not_p and invert afterwards, rather than
3281 clear regions with !bit_not_p, so that gaps in between stores aren't
3282 set in the mask. */
3283 unsigned HOST_WIDE_INT bitsize = info->bitsize;
3284 unsigned HOST_WIDE_INT prec = bitsize;
3285 unsigned int pos_in_buffer = 0;
3286 if (any_paddings)
3288 tree lhs = gimple_assign_lhs (info->stmt);
3289 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3290 && TYPE_PRECISION (TREE_TYPE (lhs)) < bitsize)
3291 prec = TYPE_PRECISION (TREE_TYPE (lhs));
3293 if (info->bitpos < try_bitpos)
3295 gcc_assert (info->bitpos + bitsize > try_bitpos);
3296 if (!BYTES_BIG_ENDIAN)
3298 if (prec <= try_bitpos - info->bitpos)
3299 continue;
3300 prec -= try_bitpos - info->bitpos;
3302 bitsize -= try_bitpos - info->bitpos;
3303 if (BYTES_BIG_ENDIAN && prec > bitsize)
3304 prec = bitsize;
3306 else
3307 pos_in_buffer = info->bitpos - try_bitpos;
3308 if (prec < bitsize)
3310 /* If this is a bool inversion, invert just the least significant
3311 prec bits rather than all bits of it. */
3312 if (BYTES_BIG_ENDIAN)
3314 pos_in_buffer += bitsize - prec;
3315 if (pos_in_buffer >= split_store->size)
3316 continue;
3318 bitsize = prec;
3320 if (pos_in_buffer + bitsize > split_store->size)
3321 bitsize = split_store->size - pos_in_buffer;
3322 unsigned char *p = buf + (pos_in_buffer / BITS_PER_UNIT);
3323 if (BYTES_BIG_ENDIAN)
3324 clear_bit_region_be (p, (BITS_PER_UNIT - 1
3325 - (pos_in_buffer % BITS_PER_UNIT)), bitsize);
3326 else
3327 clear_bit_region (p, pos_in_buffer % BITS_PER_UNIT, bitsize);
3329 for (unsigned int i = 0; i < buf_size; ++i)
3330 buf[i] = ~buf[i];
3331 mask = native_interpret_expr (int_type, buf, buf_size);
3332 return BIT_XOR_EXPR;
3335 /* Given a merged store group GROUP output the widened version of it.
3336 The store chain is against the base object BASE.
3337 Try store sizes of at most MAX_STORE_BITSIZE bits wide and don't output
3338 unaligned stores for STRICT_ALIGNMENT targets or if it's too expensive.
3339 Make sure that the number of statements output is less than the number of
3340 original statements. If a better sequence is possible emit it and
3341 return true. */
3343 bool
3344 imm_store_chain_info::output_merged_store (merged_store_group *group)
3346 unsigned HOST_WIDE_INT start_byte_pos
3347 = group->bitregion_start / BITS_PER_UNIT;
3349 unsigned int orig_num_stmts = group->stores.length ();
3350 if (orig_num_stmts < 2)
3351 return false;
3353 auto_vec<struct split_store *, 32> split_stores;
3354 split_stores.create (0);
3355 bool allow_unaligned_store
3356 = !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED);
3357 bool allow_unaligned_load = allow_unaligned_store;
3358 if (allow_unaligned_store)
3360 /* If unaligned stores are allowed, see how many stores we'd emit
3361 for unaligned and how many stores we'd emit for aligned stores.
3362 Only use unaligned stores if it allows fewer stores than aligned. */
3363 unsigned aligned_cnt
3364 = split_group (group, false, allow_unaligned_load, NULL, NULL, NULL);
3365 unsigned unaligned_cnt
3366 = split_group (group, true, allow_unaligned_load, NULL, NULL, NULL);
3367 if (aligned_cnt <= unaligned_cnt)
3368 allow_unaligned_store = false;
3370 unsigned total_orig, total_new;
3371 split_group (group, allow_unaligned_store, allow_unaligned_load,
3372 &split_stores, &total_orig, &total_new);
3374 if (split_stores.length () >= orig_num_stmts)
3376 /* We didn't manage to reduce the number of statements. Bail out. */
3377 if (dump_file && (dump_flags & TDF_DETAILS))
3378 fprintf (dump_file, "Exceeded original number of stmts (%u)."
3379 " Not profitable to emit new sequence.\n",
3380 orig_num_stmts);
3381 return false;
3383 if (total_orig <= total_new)
3385 /* If number of estimated new statements is above estimated original
3386 statements, bail out too. */
3387 if (dump_file && (dump_flags & TDF_DETAILS))
3388 fprintf (dump_file, "Estimated number of original stmts (%u)"
3389 " not larger than estimated number of new"
3390 " stmts (%u).\n",
3391 total_orig, total_new);
3392 return false;
3395 gimple_stmt_iterator last_gsi = gsi_for_stmt (group->last_stmt);
3396 gimple_seq seq = NULL;
3397 tree last_vdef, new_vuse;
3398 last_vdef = gimple_vdef (group->last_stmt);
3399 new_vuse = gimple_vuse (group->last_stmt);
3400 tree bswap_res = NULL_TREE;
3402 if (group->stores[0]->rhs_code == LROTATE_EXPR
3403 || group->stores[0]->rhs_code == NOP_EXPR)
3405 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
3406 gimple *ins_stmt = group->stores[0]->ins_stmt;
3407 struct symbolic_number *n = &group->stores[0]->n;
3408 bool bswap = group->stores[0]->rhs_code == LROTATE_EXPR;
3410 switch (n->range)
3412 case 16:
3413 load_type = bswap_type = uint16_type_node;
3414 break;
3415 case 32:
3416 load_type = uint32_type_node;
3417 if (bswap)
3419 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
3420 bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
3422 break;
3423 case 64:
3424 load_type = uint64_type_node;
3425 if (bswap)
3427 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
3428 bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
3430 break;
3431 default:
3432 gcc_unreachable ();
3435 /* If the loads have each vuse of the corresponding store,
3436 we've checked the aliasing already in try_coalesce_bswap and
3437 we want to sink the need load into seq. So need to use new_vuse
3438 on the load. */
3439 if (n->base_addr)
3441 if (n->vuse == NULL)
3443 n->vuse = new_vuse;
3444 ins_stmt = NULL;
3446 else
3447 /* Update vuse in case it has changed by output_merged_stores. */
3448 n->vuse = gimple_vuse (ins_stmt);
3450 bswap_res = bswap_replace (gsi_start (seq), ins_stmt, fndecl,
3451 bswap_type, load_type, n, bswap);
3452 gcc_assert (bswap_res);
3455 gimple *stmt = NULL;
3456 split_store *split_store;
3457 unsigned int i;
3458 auto_vec<gimple *, 32> orig_stmts;
3459 gimple_seq this_seq;
3460 tree addr = force_gimple_operand_1 (unshare_expr (base_addr), &this_seq,
3461 is_gimple_mem_ref_addr, NULL_TREE);
3462 gimple_seq_add_seq_without_update (&seq, this_seq);
3464 tree load_addr[2] = { NULL_TREE, NULL_TREE };
3465 gimple_seq load_seq[2] = { NULL, NULL };
3466 gimple_stmt_iterator load_gsi[2] = { gsi_none (), gsi_none () };
3467 for (int j = 0; j < 2; ++j)
3469 store_operand_info &op = group->stores[0]->ops[j];
3470 if (op.base_addr == NULL_TREE)
3471 continue;
3473 store_immediate_info *infol = group->stores.last ();
3474 if (gimple_vuse (op.stmt) == gimple_vuse (infol->ops[j].stmt))
3476 /* We can't pick the location randomly; while we've verified
3477 all the loads have the same vuse, they can be still in different
3478 basic blocks and we need to pick the one from the last bb:
3479 int x = q[0];
3480 if (x == N) return;
3481 int y = q[1];
3482 p[0] = x;
3483 p[1] = y;
3484 otherwise if we put the wider load at the q[0] load, we might
3485 segfault if q[1] is not mapped. */
3486 basic_block bb = gimple_bb (op.stmt);
3487 gimple *ostmt = op.stmt;
3488 store_immediate_info *info;
3489 FOR_EACH_VEC_ELT (group->stores, i, info)
3491 gimple *tstmt = info->ops[j].stmt;
3492 basic_block tbb = gimple_bb (tstmt);
3493 if (dominated_by_p (CDI_DOMINATORS, tbb, bb))
3495 ostmt = tstmt;
3496 bb = tbb;
3499 load_gsi[j] = gsi_for_stmt (ostmt);
3500 load_addr[j]
3501 = force_gimple_operand_1 (unshare_expr (op.base_addr),
3502 &load_seq[j], is_gimple_mem_ref_addr,
3503 NULL_TREE);
3505 else if (operand_equal_p (base_addr, op.base_addr, 0))
3506 load_addr[j] = addr;
3507 else
3509 load_addr[j]
3510 = force_gimple_operand_1 (unshare_expr (op.base_addr),
3511 &this_seq, is_gimple_mem_ref_addr,
3512 NULL_TREE);
3513 gimple_seq_add_seq_without_update (&seq, this_seq);
3517 FOR_EACH_VEC_ELT (split_stores, i, split_store)
3519 unsigned HOST_WIDE_INT try_size = split_store->size;
3520 unsigned HOST_WIDE_INT try_pos = split_store->bytepos;
3521 unsigned HOST_WIDE_INT align = split_store->align;
3522 tree dest, src;
3523 location_t loc;
3524 if (split_store->orig)
3526 /* If there is just a single constituent store which covers
3527 the whole area, just reuse the lhs and rhs. */
3528 gimple *orig_stmt = split_store->orig_stores[0]->stmt;
3529 dest = gimple_assign_lhs (orig_stmt);
3530 src = gimple_assign_rhs1 (orig_stmt);
3531 loc = gimple_location (orig_stmt);
3533 else
3535 store_immediate_info *info;
3536 unsigned short clique, base;
3537 unsigned int k;
3538 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3539 orig_stmts.safe_push (info->stmt);
3540 tree offset_type
3541 = get_alias_type_for_stmts (orig_stmts, false, &clique, &base);
3542 loc = get_location_for_stmts (orig_stmts);
3543 orig_stmts.truncate (0);
3545 tree int_type = build_nonstandard_integer_type (try_size, UNSIGNED);
3546 int_type = build_aligned_type (int_type, align);
3547 dest = fold_build2 (MEM_REF, int_type, addr,
3548 build_int_cst (offset_type, try_pos));
3549 if (TREE_CODE (dest) == MEM_REF)
3551 MR_DEPENDENCE_CLIQUE (dest) = clique;
3552 MR_DEPENDENCE_BASE (dest) = base;
3555 tree mask = integer_zero_node;
3556 if (!bswap_res)
3557 mask = native_interpret_expr (int_type,
3558 group->mask + try_pos
3559 - start_byte_pos,
3560 group->buf_size);
3562 tree ops[2];
3563 for (int j = 0;
3564 j < 1 + (split_store->orig_stores[0]->ops[1].val != NULL_TREE);
3565 ++j)
3567 store_operand_info &op = split_store->orig_stores[0]->ops[j];
3568 if (bswap_res)
3569 ops[j] = bswap_res;
3570 else if (op.base_addr)
3572 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3573 orig_stmts.safe_push (info->ops[j].stmt);
3575 offset_type = get_alias_type_for_stmts (orig_stmts, true,
3576 &clique, &base);
3577 location_t load_loc = get_location_for_stmts (orig_stmts);
3578 orig_stmts.truncate (0);
3580 unsigned HOST_WIDE_INT load_align = group->load_align[j];
3581 unsigned HOST_WIDE_INT align_bitpos
3582 = known_alignment (try_pos * BITS_PER_UNIT
3583 - split_store->orig_stores[0]->bitpos
3584 + op.bitpos);
3585 if (align_bitpos & (load_align - 1))
3586 load_align = least_bit_hwi (align_bitpos);
3588 tree load_int_type
3589 = build_nonstandard_integer_type (try_size, UNSIGNED);
3590 load_int_type
3591 = build_aligned_type (load_int_type, load_align);
3593 poly_uint64 load_pos
3594 = exact_div (try_pos * BITS_PER_UNIT
3595 - split_store->orig_stores[0]->bitpos
3596 + op.bitpos,
3597 BITS_PER_UNIT);
3598 ops[j] = fold_build2 (MEM_REF, load_int_type, load_addr[j],
3599 build_int_cst (offset_type, load_pos));
3600 if (TREE_CODE (ops[j]) == MEM_REF)
3602 MR_DEPENDENCE_CLIQUE (ops[j]) = clique;
3603 MR_DEPENDENCE_BASE (ops[j]) = base;
3605 if (!integer_zerop (mask))
3606 /* The load might load some bits (that will be masked off
3607 later on) uninitialized, avoid -W*uninitialized
3608 warnings in that case. */
3609 TREE_NO_WARNING (ops[j]) = 1;
3611 stmt = gimple_build_assign (make_ssa_name (int_type),
3612 ops[j]);
3613 gimple_set_location (stmt, load_loc);
3614 if (gsi_bb (load_gsi[j]))
3616 gimple_set_vuse (stmt, gimple_vuse (op.stmt));
3617 gimple_seq_add_stmt_without_update (&load_seq[j], stmt);
3619 else
3621 gimple_set_vuse (stmt, new_vuse);
3622 gimple_seq_add_stmt_without_update (&seq, stmt);
3624 ops[j] = gimple_assign_lhs (stmt);
3625 tree xor_mask;
3626 enum tree_code inv_op
3627 = invert_op (split_store, j, int_type, xor_mask);
3628 if (inv_op != NOP_EXPR)
3630 stmt = gimple_build_assign (make_ssa_name (int_type),
3631 inv_op, ops[j], xor_mask);
3632 gimple_set_location (stmt, load_loc);
3633 ops[j] = gimple_assign_lhs (stmt);
3635 if (gsi_bb (load_gsi[j]))
3636 gimple_seq_add_stmt_without_update (&load_seq[j],
3637 stmt);
3638 else
3639 gimple_seq_add_stmt_without_update (&seq, stmt);
3642 else
3643 ops[j] = native_interpret_expr (int_type,
3644 group->val + try_pos
3645 - start_byte_pos,
3646 group->buf_size);
3649 switch (split_store->orig_stores[0]->rhs_code)
3651 case BIT_AND_EXPR:
3652 case BIT_IOR_EXPR:
3653 case BIT_XOR_EXPR:
3654 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3656 tree rhs1 = gimple_assign_rhs1 (info->stmt);
3657 orig_stmts.safe_push (SSA_NAME_DEF_STMT (rhs1));
3659 location_t bit_loc;
3660 bit_loc = get_location_for_stmts (orig_stmts);
3661 orig_stmts.truncate (0);
3663 stmt
3664 = gimple_build_assign (make_ssa_name (int_type),
3665 split_store->orig_stores[0]->rhs_code,
3666 ops[0], ops[1]);
3667 gimple_set_location (stmt, bit_loc);
3668 /* If there is just one load and there is a separate
3669 load_seq[0], emit the bitwise op right after it. */
3670 if (load_addr[1] == NULL_TREE && gsi_bb (load_gsi[0]))
3671 gimple_seq_add_stmt_without_update (&load_seq[0], stmt);
3672 /* Otherwise, if at least one load is in seq, we need to
3673 emit the bitwise op right before the store. If there
3674 are two loads and are emitted somewhere else, it would
3675 be better to emit the bitwise op as early as possible;
3676 we don't track where that would be possible right now
3677 though. */
3678 else
3679 gimple_seq_add_stmt_without_update (&seq, stmt);
3680 src = gimple_assign_lhs (stmt);
3681 tree xor_mask;
3682 enum tree_code inv_op;
3683 inv_op = invert_op (split_store, 2, int_type, xor_mask);
3684 if (inv_op != NOP_EXPR)
3686 stmt = gimple_build_assign (make_ssa_name (int_type),
3687 inv_op, src, xor_mask);
3688 gimple_set_location (stmt, bit_loc);
3689 if (load_addr[1] == NULL_TREE && gsi_bb (load_gsi[0]))
3690 gimple_seq_add_stmt_without_update (&load_seq[0], stmt);
3691 else
3692 gimple_seq_add_stmt_without_update (&seq, stmt);
3693 src = gimple_assign_lhs (stmt);
3695 break;
3696 case LROTATE_EXPR:
3697 case NOP_EXPR:
3698 src = ops[0];
3699 if (!is_gimple_val (src))
3701 stmt = gimple_build_assign (make_ssa_name (TREE_TYPE (src)),
3702 src);
3703 gimple_seq_add_stmt_without_update (&seq, stmt);
3704 src = gimple_assign_lhs (stmt);
3706 if (!useless_type_conversion_p (int_type, TREE_TYPE (src)))
3708 stmt = gimple_build_assign (make_ssa_name (int_type),
3709 NOP_EXPR, src);
3710 gimple_seq_add_stmt_without_update (&seq, stmt);
3711 src = gimple_assign_lhs (stmt);
3713 inv_op = invert_op (split_store, 2, int_type, xor_mask);
3714 if (inv_op != NOP_EXPR)
3716 stmt = gimple_build_assign (make_ssa_name (int_type),
3717 inv_op, src, xor_mask);
3718 gimple_set_location (stmt, loc);
3719 gimple_seq_add_stmt_without_update (&seq, stmt);
3720 src = gimple_assign_lhs (stmt);
3722 break;
3723 default:
3724 src = ops[0];
3725 break;
3728 if (!integer_zerop (mask))
3730 tree tem = make_ssa_name (int_type);
3731 tree load_src = unshare_expr (dest);
3732 /* The load might load some or all bits uninitialized,
3733 avoid -W*uninitialized warnings in that case.
3734 As optimization, it would be nice if all the bits are
3735 provably uninitialized (no stores at all yet or previous
3736 store a CLOBBER) we'd optimize away the load and replace
3737 it e.g. with 0. */
3738 TREE_NO_WARNING (load_src) = 1;
3739 stmt = gimple_build_assign (tem, load_src);
3740 gimple_set_location (stmt, loc);
3741 gimple_set_vuse (stmt, new_vuse);
3742 gimple_seq_add_stmt_without_update (&seq, stmt);
3744 /* FIXME: If there is a single chunk of zero bits in mask,
3745 perhaps use BIT_INSERT_EXPR instead? */
3746 stmt = gimple_build_assign (make_ssa_name (int_type),
3747 BIT_AND_EXPR, tem, mask);
3748 gimple_set_location (stmt, loc);
3749 gimple_seq_add_stmt_without_update (&seq, stmt);
3750 tem = gimple_assign_lhs (stmt);
3752 if (TREE_CODE (src) == INTEGER_CST)
3753 src = wide_int_to_tree (int_type,
3754 wi::bit_and_not (wi::to_wide (src),
3755 wi::to_wide (mask)));
3756 else
3758 tree nmask
3759 = wide_int_to_tree (int_type,
3760 wi::bit_not (wi::to_wide (mask)));
3761 stmt = gimple_build_assign (make_ssa_name (int_type),
3762 BIT_AND_EXPR, src, nmask);
3763 gimple_set_location (stmt, loc);
3764 gimple_seq_add_stmt_without_update (&seq, stmt);
3765 src = gimple_assign_lhs (stmt);
3767 stmt = gimple_build_assign (make_ssa_name (int_type),
3768 BIT_IOR_EXPR, tem, src);
3769 gimple_set_location (stmt, loc);
3770 gimple_seq_add_stmt_without_update (&seq, stmt);
3771 src = gimple_assign_lhs (stmt);
3775 stmt = gimple_build_assign (dest, src);
3776 gimple_set_location (stmt, loc);
3777 gimple_set_vuse (stmt, new_vuse);
3778 gimple_seq_add_stmt_without_update (&seq, stmt);
3780 tree new_vdef;
3781 if (i < split_stores.length () - 1)
3782 new_vdef = make_ssa_name (gimple_vop (cfun), stmt);
3783 else
3784 new_vdef = last_vdef;
3786 gimple_set_vdef (stmt, new_vdef);
3787 SSA_NAME_DEF_STMT (new_vdef) = stmt;
3788 new_vuse = new_vdef;
3791 FOR_EACH_VEC_ELT (split_stores, i, split_store)
3792 delete split_store;
3794 gcc_assert (seq);
3795 if (dump_file)
3797 fprintf (dump_file,
3798 "New sequence of %u stmts to replace old one of %u stmts\n",
3799 split_stores.length (), orig_num_stmts);
3800 if (dump_flags & TDF_DETAILS)
3801 print_gimple_seq (dump_file, seq, 0, TDF_VOPS | TDF_MEMSYMS);
3803 gsi_insert_seq_after (&last_gsi, seq, GSI_SAME_STMT);
3804 for (int j = 0; j < 2; ++j)
3805 if (load_seq[j])
3806 gsi_insert_seq_after (&load_gsi[j], load_seq[j], GSI_SAME_STMT);
3808 return true;
3811 /* Process the merged_store_group objects created in the coalescing phase.
3812 The stores are all against the base object BASE.
3813 Try to output the widened stores and delete the original statements if
3814 successful. Return true iff any changes were made. */
3816 bool
3817 imm_store_chain_info::output_merged_stores ()
3819 unsigned int i;
3820 merged_store_group *merged_store;
3821 bool ret = false;
3822 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_store)
3824 if (output_merged_store (merged_store))
3826 unsigned int j;
3827 store_immediate_info *store;
3828 FOR_EACH_VEC_ELT (merged_store->stores, j, store)
3830 gimple *stmt = store->stmt;
3831 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
3832 gsi_remove (&gsi, true);
3833 if (stmt != merged_store->last_stmt)
3835 unlink_stmt_vdef (stmt);
3836 release_defs (stmt);
3839 ret = true;
3842 if (ret && dump_file)
3843 fprintf (dump_file, "Merging successful!\n");
3845 return ret;
3848 /* Coalesce the store_immediate_info objects recorded against the base object
3849 BASE in the first phase and output them.
3850 Delete the allocated structures.
3851 Return true if any changes were made. */
3853 bool
3854 imm_store_chain_info::terminate_and_process_chain ()
3856 /* Process store chain. */
3857 bool ret = false;
3858 if (m_store_info.length () > 1)
3860 ret = coalesce_immediate_stores ();
3861 if (ret)
3862 ret = output_merged_stores ();
3865 /* Delete all the entries we allocated ourselves. */
3866 store_immediate_info *info;
3867 unsigned int i;
3868 FOR_EACH_VEC_ELT (m_store_info, i, info)
3869 delete info;
3871 merged_store_group *merged_info;
3872 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_info)
3873 delete merged_info;
3875 return ret;
3878 /* Return true iff LHS is a destination potentially interesting for
3879 store merging. In practice these are the codes that get_inner_reference
3880 can process. */
3882 static bool
3883 lhs_valid_for_store_merging_p (tree lhs)
3885 tree_code code = TREE_CODE (lhs);
3887 if (code == ARRAY_REF || code == ARRAY_RANGE_REF || code == MEM_REF
3888 || code == COMPONENT_REF || code == BIT_FIELD_REF)
3889 return true;
3891 return false;
3894 /* Return true if the tree RHS is a constant we want to consider
3895 during store merging. In practice accept all codes that
3896 native_encode_expr accepts. */
3898 static bool
3899 rhs_valid_for_store_merging_p (tree rhs)
3901 unsigned HOST_WIDE_INT size;
3902 return (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (rhs))).is_constant (&size)
3903 && native_encode_expr (rhs, NULL, size) != 0);
3906 /* If MEM is a memory reference usable for store merging (either as
3907 store destination or for loads), return the non-NULL base_addr
3908 and set *PBITSIZE, *PBITPOS, *PBITREGION_START and *PBITREGION_END.
3909 Otherwise return NULL, *PBITPOS should be still valid even for that
3910 case. */
3912 static tree
3913 mem_valid_for_store_merging (tree mem, poly_uint64 *pbitsize,
3914 poly_uint64 *pbitpos,
3915 poly_uint64 *pbitregion_start,
3916 poly_uint64 *pbitregion_end)
3918 poly_int64 bitsize, bitpos;
3919 poly_uint64 bitregion_start = 0, bitregion_end = 0;
3920 machine_mode mode;
3921 int unsignedp = 0, reversep = 0, volatilep = 0;
3922 tree offset;
3923 tree base_addr = get_inner_reference (mem, &bitsize, &bitpos, &offset, &mode,
3924 &unsignedp, &reversep, &volatilep);
3925 *pbitsize = bitsize;
3926 if (known_eq (bitsize, 0))
3927 return NULL_TREE;
3929 if (TREE_CODE (mem) == COMPONENT_REF
3930 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (mem, 1)))
3932 get_bit_range (&bitregion_start, &bitregion_end, mem, &bitpos, &offset);
3933 if (maybe_ne (bitregion_end, 0U))
3934 bitregion_end += 1;
3937 if (reversep)
3938 return NULL_TREE;
3940 /* We do not want to rewrite TARGET_MEM_REFs. */
3941 if (TREE_CODE (base_addr) == TARGET_MEM_REF)
3942 return NULL_TREE;
3943 /* In some cases get_inner_reference may return a
3944 MEM_REF [ptr + byteoffset]. For the purposes of this pass
3945 canonicalize the base_addr to MEM_REF [ptr] and take
3946 byteoffset into account in the bitpos. This occurs in
3947 PR 23684 and this way we can catch more chains. */
3948 else if (TREE_CODE (base_addr) == MEM_REF)
3950 poly_offset_int byte_off = mem_ref_offset (base_addr);
3951 poly_offset_int bit_off = byte_off << LOG2_BITS_PER_UNIT;
3952 bit_off += bitpos;
3953 if (known_ge (bit_off, 0) && bit_off.to_shwi (&bitpos))
3955 if (maybe_ne (bitregion_end, 0U))
3957 bit_off = byte_off << LOG2_BITS_PER_UNIT;
3958 bit_off += bitregion_start;
3959 if (bit_off.to_uhwi (&bitregion_start))
3961 bit_off = byte_off << LOG2_BITS_PER_UNIT;
3962 bit_off += bitregion_end;
3963 if (!bit_off.to_uhwi (&bitregion_end))
3964 bitregion_end = 0;
3966 else
3967 bitregion_end = 0;
3970 else
3971 return NULL_TREE;
3972 base_addr = TREE_OPERAND (base_addr, 0);
3974 /* get_inner_reference returns the base object, get at its
3975 address now. */
3976 else
3978 if (maybe_lt (bitpos, 0))
3979 return NULL_TREE;
3980 base_addr = build_fold_addr_expr (base_addr);
3983 if (known_eq (bitregion_end, 0U))
3985 bitregion_start = round_down_to_byte_boundary (bitpos);
3986 bitregion_end = bitpos;
3987 bitregion_end = round_up_to_byte_boundary (bitregion_end + bitsize);
3990 if (offset != NULL_TREE)
3992 /* If the access is variable offset then a base decl has to be
3993 address-taken to be able to emit pointer-based stores to it.
3994 ??? We might be able to get away with re-using the original
3995 base up to the first variable part and then wrapping that inside
3996 a BIT_FIELD_REF. */
3997 tree base = get_base_address (base_addr);
3998 if (! base
3999 || (DECL_P (base) && ! TREE_ADDRESSABLE (base)))
4000 return NULL_TREE;
4002 base_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (base_addr),
4003 base_addr, offset);
4006 *pbitsize = bitsize;
4007 *pbitpos = bitpos;
4008 *pbitregion_start = bitregion_start;
4009 *pbitregion_end = bitregion_end;
4010 return base_addr;
4013 /* Return true if STMT is a load that can be used for store merging.
4014 In that case fill in *OP. BITSIZE, BITPOS, BITREGION_START and
4015 BITREGION_END are properties of the corresponding store. */
4017 static bool
4018 handled_load (gimple *stmt, store_operand_info *op,
4019 poly_uint64 bitsize, poly_uint64 bitpos,
4020 poly_uint64 bitregion_start, poly_uint64 bitregion_end)
4022 if (!is_gimple_assign (stmt))
4023 return false;
4024 if (gimple_assign_rhs_code (stmt) == BIT_NOT_EXPR)
4026 tree rhs1 = gimple_assign_rhs1 (stmt);
4027 if (TREE_CODE (rhs1) == SSA_NAME
4028 && handled_load (SSA_NAME_DEF_STMT (rhs1), op, bitsize, bitpos,
4029 bitregion_start, bitregion_end))
4031 /* Don't allow _1 = load; _2 = ~1; _3 = ~_2; which should have
4032 been optimized earlier, but if allowed here, would confuse the
4033 multiple uses counting. */
4034 if (op->bit_not_p)
4035 return false;
4036 op->bit_not_p = !op->bit_not_p;
4037 return true;
4039 return false;
4041 if (gimple_vuse (stmt)
4042 && gimple_assign_load_p (stmt)
4043 && !stmt_can_throw_internal (stmt)
4044 && !gimple_has_volatile_ops (stmt))
4046 tree mem = gimple_assign_rhs1 (stmt);
4047 op->base_addr
4048 = mem_valid_for_store_merging (mem, &op->bitsize, &op->bitpos,
4049 &op->bitregion_start,
4050 &op->bitregion_end);
4051 if (op->base_addr != NULL_TREE
4052 && known_eq (op->bitsize, bitsize)
4053 && multiple_p (op->bitpos - bitpos, BITS_PER_UNIT)
4054 && known_ge (op->bitpos - op->bitregion_start,
4055 bitpos - bitregion_start)
4056 && known_ge (op->bitregion_end - op->bitpos,
4057 bitregion_end - bitpos))
4059 op->stmt = stmt;
4060 op->val = mem;
4061 op->bit_not_p = false;
4062 return true;
4065 return false;
4068 /* Record the store STMT for store merging optimization if it can be
4069 optimized. */
4071 void
4072 pass_store_merging::process_store (gimple *stmt)
4074 tree lhs = gimple_assign_lhs (stmt);
4075 tree rhs = gimple_assign_rhs1 (stmt);
4076 poly_uint64 bitsize, bitpos;
4077 poly_uint64 bitregion_start, bitregion_end;
4078 tree base_addr
4079 = mem_valid_for_store_merging (lhs, &bitsize, &bitpos,
4080 &bitregion_start, &bitregion_end);
4081 if (known_eq (bitsize, 0U))
4082 return;
4084 bool invalid = (base_addr == NULL_TREE
4085 || (maybe_gt (bitsize,
4086 (unsigned int) MAX_BITSIZE_MODE_ANY_INT)
4087 && (TREE_CODE (rhs) != INTEGER_CST)));
4088 enum tree_code rhs_code = ERROR_MARK;
4089 bool bit_not_p = false;
4090 struct symbolic_number n;
4091 gimple *ins_stmt = NULL;
4092 store_operand_info ops[2];
4093 if (invalid)
4095 else if (rhs_valid_for_store_merging_p (rhs))
4097 rhs_code = INTEGER_CST;
4098 ops[0].val = rhs;
4100 else if (TREE_CODE (rhs) != SSA_NAME)
4101 invalid = true;
4102 else
4104 gimple *def_stmt = SSA_NAME_DEF_STMT (rhs), *def_stmt1, *def_stmt2;
4105 if (!is_gimple_assign (def_stmt))
4106 invalid = true;
4107 else if (handled_load (def_stmt, &ops[0], bitsize, bitpos,
4108 bitregion_start, bitregion_end))
4109 rhs_code = MEM_REF;
4110 else if (gimple_assign_rhs_code (def_stmt) == BIT_NOT_EXPR)
4112 tree rhs1 = gimple_assign_rhs1 (def_stmt);
4113 if (TREE_CODE (rhs1) == SSA_NAME
4114 && is_gimple_assign (SSA_NAME_DEF_STMT (rhs1)))
4116 bit_not_p = true;
4117 def_stmt = SSA_NAME_DEF_STMT (rhs1);
4120 if (rhs_code == ERROR_MARK && !invalid)
4121 switch ((rhs_code = gimple_assign_rhs_code (def_stmt)))
4123 case BIT_AND_EXPR:
4124 case BIT_IOR_EXPR:
4125 case BIT_XOR_EXPR:
4126 tree rhs1, rhs2;
4127 rhs1 = gimple_assign_rhs1 (def_stmt);
4128 rhs2 = gimple_assign_rhs2 (def_stmt);
4129 invalid = true;
4130 if (TREE_CODE (rhs1) != SSA_NAME)
4131 break;
4132 def_stmt1 = SSA_NAME_DEF_STMT (rhs1);
4133 if (!is_gimple_assign (def_stmt1)
4134 || !handled_load (def_stmt1, &ops[0], bitsize, bitpos,
4135 bitregion_start, bitregion_end))
4136 break;
4137 if (rhs_valid_for_store_merging_p (rhs2))
4138 ops[1].val = rhs2;
4139 else if (TREE_CODE (rhs2) != SSA_NAME)
4140 break;
4141 else
4143 def_stmt2 = SSA_NAME_DEF_STMT (rhs2);
4144 if (!is_gimple_assign (def_stmt2))
4145 break;
4146 else if (!handled_load (def_stmt2, &ops[1], bitsize, bitpos,
4147 bitregion_start, bitregion_end))
4148 break;
4150 invalid = false;
4151 break;
4152 default:
4153 invalid = true;
4154 break;
4156 unsigned HOST_WIDE_INT const_bitsize;
4157 if (bitsize.is_constant (&const_bitsize)
4158 && multiple_p (const_bitsize, BITS_PER_UNIT)
4159 && multiple_p (bitpos, BITS_PER_UNIT)
4160 && const_bitsize <= 64
4161 && BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN)
4163 ins_stmt = find_bswap_or_nop_1 (def_stmt, &n, 12);
4164 if (ins_stmt)
4166 uint64_t nn = n.n;
4167 for (unsigned HOST_WIDE_INT i = 0;
4168 i < const_bitsize;
4169 i += BITS_PER_UNIT, nn >>= BITS_PER_MARKER)
4170 if ((nn & MARKER_MASK) == 0
4171 || (nn & MARKER_MASK) == MARKER_BYTE_UNKNOWN)
4173 ins_stmt = NULL;
4174 break;
4176 if (ins_stmt)
4178 if (invalid)
4180 rhs_code = LROTATE_EXPR;
4181 ops[0].base_addr = NULL_TREE;
4182 ops[1].base_addr = NULL_TREE;
4184 invalid = false;
4190 unsigned HOST_WIDE_INT const_bitsize, const_bitpos;
4191 unsigned HOST_WIDE_INT const_bitregion_start, const_bitregion_end;
4192 if (invalid
4193 || !bitsize.is_constant (&const_bitsize)
4194 || !bitpos.is_constant (&const_bitpos)
4195 || !bitregion_start.is_constant (&const_bitregion_start)
4196 || !bitregion_end.is_constant (&const_bitregion_end))
4198 terminate_all_aliasing_chains (NULL, stmt);
4199 return;
4202 if (!ins_stmt)
4203 memset (&n, 0, sizeof (n));
4205 struct imm_store_chain_info **chain_info = NULL;
4206 if (base_addr)
4207 chain_info = m_stores.get (base_addr);
4209 store_immediate_info *info;
4210 if (chain_info)
4212 unsigned int ord = (*chain_info)->m_store_info.length ();
4213 info = new store_immediate_info (const_bitsize, const_bitpos,
4214 const_bitregion_start,
4215 const_bitregion_end,
4216 stmt, ord, rhs_code, n, ins_stmt,
4217 bit_not_p, ops[0], ops[1]);
4218 if (dump_file && (dump_flags & TDF_DETAILS))
4220 fprintf (dump_file, "Recording immediate store from stmt:\n");
4221 print_gimple_stmt (dump_file, stmt, 0);
4223 (*chain_info)->m_store_info.safe_push (info);
4224 terminate_all_aliasing_chains (chain_info, stmt);
4225 /* If we reach the limit of stores to merge in a chain terminate and
4226 process the chain now. */
4227 if ((*chain_info)->m_store_info.length ()
4228 == (unsigned int) PARAM_VALUE (PARAM_MAX_STORES_TO_MERGE))
4230 if (dump_file && (dump_flags & TDF_DETAILS))
4231 fprintf (dump_file,
4232 "Reached maximum number of statements to merge:\n");
4233 terminate_and_release_chain (*chain_info);
4235 return;
4238 /* Store aliases any existing chain? */
4239 terminate_all_aliasing_chains (NULL, stmt);
4240 /* Start a new chain. */
4241 struct imm_store_chain_info *new_chain
4242 = new imm_store_chain_info (m_stores_head, base_addr);
4243 info = new store_immediate_info (const_bitsize, const_bitpos,
4244 const_bitregion_start,
4245 const_bitregion_end,
4246 stmt, 0, rhs_code, n, ins_stmt,
4247 bit_not_p, ops[0], ops[1]);
4248 new_chain->m_store_info.safe_push (info);
4249 m_stores.put (base_addr, new_chain);
4250 if (dump_file && (dump_flags & TDF_DETAILS))
4252 fprintf (dump_file, "Starting new chain with statement:\n");
4253 print_gimple_stmt (dump_file, stmt, 0);
4254 fprintf (dump_file, "The base object is:\n");
4255 print_generic_expr (dump_file, base_addr);
4256 fprintf (dump_file, "\n");
4260 /* Entry point for the pass. Go over each basic block recording chains of
4261 immediate stores. Upon encountering a terminating statement (as defined
4262 by stmt_terminates_chain_p) process the recorded stores and emit the widened
4263 variants. */
4265 unsigned int
4266 pass_store_merging::execute (function *fun)
4268 basic_block bb;
4269 hash_set<gimple *> orig_stmts;
4271 calculate_dominance_info (CDI_DOMINATORS);
4273 FOR_EACH_BB_FN (bb, fun)
4275 gimple_stmt_iterator gsi;
4276 unsigned HOST_WIDE_INT num_statements = 0;
4277 /* Record the original statements so that we can keep track of
4278 statements emitted in this pass and not re-process new
4279 statements. */
4280 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4282 if (is_gimple_debug (gsi_stmt (gsi)))
4283 continue;
4285 if (++num_statements >= 2)
4286 break;
4289 if (num_statements < 2)
4290 continue;
4292 if (dump_file && (dump_flags & TDF_DETAILS))
4293 fprintf (dump_file, "Processing basic block <%d>:\n", bb->index);
4295 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4297 gimple *stmt = gsi_stmt (gsi);
4299 if (is_gimple_debug (stmt))
4300 continue;
4302 if (gimple_has_volatile_ops (stmt))
4304 /* Terminate all chains. */
4305 if (dump_file && (dump_flags & TDF_DETAILS))
4306 fprintf (dump_file, "Volatile access terminates "
4307 "all chains\n");
4308 terminate_and_process_all_chains ();
4309 continue;
4312 if (gimple_assign_single_p (stmt) && gimple_vdef (stmt)
4313 && !stmt_can_throw_internal (stmt)
4314 && lhs_valid_for_store_merging_p (gimple_assign_lhs (stmt)))
4315 process_store (stmt);
4316 else
4317 terminate_all_aliasing_chains (NULL, stmt);
4319 terminate_and_process_all_chains ();
4321 return 0;
4324 } // anon namespace
4326 /* Construct and return a store merging pass object. */
4328 gimple_opt_pass *
4329 make_pass_store_merging (gcc::context *ctxt)
4331 return new pass_store_merging (ctxt);
4334 #if CHECKING_P
4336 namespace selftest {
4338 /* Selftests for store merging helpers. */
4340 /* Assert that all elements of the byte arrays X and Y, both of length N
4341 are equal. */
4343 static void
4344 verify_array_eq (unsigned char *x, unsigned char *y, unsigned int n)
4346 for (unsigned int i = 0; i < n; i++)
4348 if (x[i] != y[i])
4350 fprintf (stderr, "Arrays do not match. X:\n");
4351 dump_char_array (stderr, x, n);
4352 fprintf (stderr, "Y:\n");
4353 dump_char_array (stderr, y, n);
4355 ASSERT_EQ (x[i], y[i]);
4359 /* Test shift_bytes_in_array and that it carries bits across between
4360 bytes correctly. */
4362 static void
4363 verify_shift_bytes_in_array (void)
4365 /* byte 1 | byte 0
4366 00011111 | 11100000. */
4367 unsigned char orig[2] = { 0xe0, 0x1f };
4368 unsigned char in[2];
4369 memcpy (in, orig, sizeof orig);
4371 unsigned char expected[2] = { 0x80, 0x7f };
4372 shift_bytes_in_array (in, sizeof (in), 2);
4373 verify_array_eq (in, expected, sizeof (in));
4375 memcpy (in, orig, sizeof orig);
4376 memcpy (expected, orig, sizeof orig);
4377 /* Check that shifting by zero doesn't change anything. */
4378 shift_bytes_in_array (in, sizeof (in), 0);
4379 verify_array_eq (in, expected, sizeof (in));
4383 /* Test shift_bytes_in_array_right and that it carries bits across between
4384 bytes correctly. */
4386 static void
4387 verify_shift_bytes_in_array_right (void)
4389 /* byte 1 | byte 0
4390 00011111 | 11100000. */
4391 unsigned char orig[2] = { 0x1f, 0xe0};
4392 unsigned char in[2];
4393 memcpy (in, orig, sizeof orig);
4394 unsigned char expected[2] = { 0x07, 0xf8};
4395 shift_bytes_in_array_right (in, sizeof (in), 2);
4396 verify_array_eq (in, expected, sizeof (in));
4398 memcpy (in, orig, sizeof orig);
4399 memcpy (expected, orig, sizeof orig);
4400 /* Check that shifting by zero doesn't change anything. */
4401 shift_bytes_in_array_right (in, sizeof (in), 0);
4402 verify_array_eq (in, expected, sizeof (in));
4405 /* Test clear_bit_region that it clears exactly the bits asked and
4406 nothing more. */
4408 static void
4409 verify_clear_bit_region (void)
4411 /* Start with all bits set and test clearing various patterns in them. */
4412 unsigned char orig[3] = { 0xff, 0xff, 0xff};
4413 unsigned char in[3];
4414 unsigned char expected[3];
4415 memcpy (in, orig, sizeof in);
4417 /* Check zeroing out all the bits. */
4418 clear_bit_region (in, 0, 3 * BITS_PER_UNIT);
4419 expected[0] = expected[1] = expected[2] = 0;
4420 verify_array_eq (in, expected, sizeof in);
4422 memcpy (in, orig, sizeof in);
4423 /* Leave the first and last bits intact. */
4424 clear_bit_region (in, 1, 3 * BITS_PER_UNIT - 2);
4425 expected[0] = 0x1;
4426 expected[1] = 0;
4427 expected[2] = 0x80;
4428 verify_array_eq (in, expected, sizeof in);
4431 /* Test verify_clear_bit_region_be that it clears exactly the bits asked and
4432 nothing more. */
4434 static void
4435 verify_clear_bit_region_be (void)
4437 /* Start with all bits set and test clearing various patterns in them. */
4438 unsigned char orig[3] = { 0xff, 0xff, 0xff};
4439 unsigned char in[3];
4440 unsigned char expected[3];
4441 memcpy (in, orig, sizeof in);
4443 /* Check zeroing out all the bits. */
4444 clear_bit_region_be (in, BITS_PER_UNIT - 1, 3 * BITS_PER_UNIT);
4445 expected[0] = expected[1] = expected[2] = 0;
4446 verify_array_eq (in, expected, sizeof in);
4448 memcpy (in, orig, sizeof in);
4449 /* Leave the first and last bits intact. */
4450 clear_bit_region_be (in, BITS_PER_UNIT - 2, 3 * BITS_PER_UNIT - 2);
4451 expected[0] = 0x80;
4452 expected[1] = 0;
4453 expected[2] = 0x1;
4454 verify_array_eq (in, expected, sizeof in);
4458 /* Run all of the selftests within this file. */
4460 void
4461 store_merging_c_tests (void)
4463 verify_shift_bytes_in_array ();
4464 verify_shift_bytes_in_array_right ();
4465 verify_clear_bit_region ();
4466 verify_clear_bit_region_be ();
4469 } // namespace selftest
4470 #endif /* CHECKING_P. */