PR target/79494
[official-gcc.git] / libsanitizer / tsan / tsan_rtl.h
blob522c76002a1bba90d6eff940a97587edafeab1bd
1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 // Main internal TSan header file.
12 // Ground rules:
13 // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
14 // function-scope locals)
15 // - All functions/classes/etc reside in namespace __tsan, except for those
16 // declared in tsan_interface.h.
17 // - Platform-specific files should be used instead of ifdefs (*).
18 // - No system headers included in header files (*).
19 // - Platform specific headres included only into platform-specific files (*).
21 // (*) Except when inlining is critical for performance.
22 //===----------------------------------------------------------------------===//
24 #ifndef TSAN_RTL_H
25 #define TSAN_RTL_H
27 #include "sanitizer_common/sanitizer_allocator.h"
28 #include "sanitizer_common/sanitizer_allocator_internal.h"
29 #include "sanitizer_common/sanitizer_asm.h"
30 #include "sanitizer_common/sanitizer_common.h"
31 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
32 #include "sanitizer_common/sanitizer_libignore.h"
33 #include "sanitizer_common/sanitizer_suppressions.h"
34 #include "sanitizer_common/sanitizer_thread_registry.h"
35 #include "tsan_clock.h"
36 #include "tsan_defs.h"
37 #include "tsan_flags.h"
38 #include "tsan_sync.h"
39 #include "tsan_trace.h"
40 #include "tsan_vector.h"
41 #include "tsan_report.h"
42 #include "tsan_platform.h"
43 #include "tsan_mutexset.h"
44 #include "tsan_ignoreset.h"
45 #include "tsan_stack_trace.h"
47 #if SANITIZER_WORDSIZE != 64
48 # error "ThreadSanitizer is supported only on 64-bit platforms"
49 #endif
51 namespace __tsan {
53 #if !SANITIZER_GO
54 struct MapUnmapCallback;
55 #if defined(__mips64) || defined(__aarch64__) || defined(__powerpc__)
56 static const uptr kAllocatorSpace = 0;
57 static const uptr kAllocatorSize = SANITIZER_MMAP_RANGE_SIZE;
58 static const uptr kAllocatorRegionSizeLog = 20;
59 static const uptr kAllocatorNumRegions =
60 kAllocatorSize >> kAllocatorRegionSizeLog;
61 typedef TwoLevelByteMap<(kAllocatorNumRegions >> 12), 1 << 12,
62 MapUnmapCallback> ByteMap;
63 typedef SizeClassAllocator32<kAllocatorSpace, kAllocatorSize, 0,
64 CompactSizeClassMap, kAllocatorRegionSizeLog, ByteMap,
65 MapUnmapCallback> PrimaryAllocator;
66 #else
67 struct AP64 { // Allocator64 parameters. Deliberately using a short name.
68 static const uptr kSpaceBeg = Mapping::kHeapMemBeg;
69 static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg;
70 static const uptr kMetadataSize = 0;
71 typedef DefaultSizeClassMap SizeClassMap;
72 typedef __tsan::MapUnmapCallback MapUnmapCallback;
73 static const uptr kFlags = 0;
75 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
76 #endif
77 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
78 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
79 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
80 SecondaryAllocator> Allocator;
81 Allocator *allocator();
82 #endif
84 void TsanCheckFailed(const char *file, int line, const char *cond,
85 u64 v1, u64 v2);
87 const u64 kShadowRodata = (u64)-1; // .rodata shadow marker
89 // FastState (from most significant bit):
90 // ignore : 1
91 // tid : kTidBits
92 // unused : -
93 // history_size : 3
94 // epoch : kClkBits
95 class FastState {
96 public:
97 FastState(u64 tid, u64 epoch) {
98 x_ = tid << kTidShift;
99 x_ |= epoch;
100 DCHECK_EQ(tid, this->tid());
101 DCHECK_EQ(epoch, this->epoch());
102 DCHECK_EQ(GetIgnoreBit(), false);
105 explicit FastState(u64 x)
106 : x_(x) {
109 u64 raw() const {
110 return x_;
113 u64 tid() const {
114 u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
115 return res;
118 u64 TidWithIgnore() const {
119 u64 res = x_ >> kTidShift;
120 return res;
123 u64 epoch() const {
124 u64 res = x_ & ((1ull << kClkBits) - 1);
125 return res;
128 void IncrementEpoch() {
129 u64 old_epoch = epoch();
130 x_ += 1;
131 DCHECK_EQ(old_epoch + 1, epoch());
132 (void)old_epoch;
135 void SetIgnoreBit() { x_ |= kIgnoreBit; }
136 void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
137 bool GetIgnoreBit() const { return (s64)x_ < 0; }
139 void SetHistorySize(int hs) {
140 CHECK_GE(hs, 0);
141 CHECK_LE(hs, 7);
142 x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift);
145 ALWAYS_INLINE
146 int GetHistorySize() const {
147 return (int)((x_ >> kHistoryShift) & kHistoryMask);
150 void ClearHistorySize() {
151 SetHistorySize(0);
154 ALWAYS_INLINE
155 u64 GetTracePos() const {
156 const int hs = GetHistorySize();
157 // When hs == 0, the trace consists of 2 parts.
158 const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
159 return epoch() & mask;
162 private:
163 friend class Shadow;
164 static const int kTidShift = 64 - kTidBits - 1;
165 static const u64 kIgnoreBit = 1ull << 63;
166 static const u64 kFreedBit = 1ull << 63;
167 static const u64 kHistoryShift = kClkBits;
168 static const u64 kHistoryMask = 7;
169 u64 x_;
172 // Shadow (from most significant bit):
173 // freed : 1
174 // tid : kTidBits
175 // is_atomic : 1
176 // is_read : 1
177 // size_log : 2
178 // addr0 : 3
179 // epoch : kClkBits
180 class Shadow : public FastState {
181 public:
182 explicit Shadow(u64 x)
183 : FastState(x) {
186 explicit Shadow(const FastState &s)
187 : FastState(s.x_) {
188 ClearHistorySize();
191 void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
192 DCHECK_EQ((x_ >> kClkBits) & 31, 0);
193 DCHECK_LE(addr0, 7);
194 DCHECK_LE(kAccessSizeLog, 3);
195 x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits;
196 DCHECK_EQ(kAccessSizeLog, size_log());
197 DCHECK_EQ(addr0, this->addr0());
200 void SetWrite(unsigned kAccessIsWrite) {
201 DCHECK_EQ(x_ & kReadBit, 0);
202 if (!kAccessIsWrite)
203 x_ |= kReadBit;
204 DCHECK_EQ(kAccessIsWrite, IsWrite());
207 void SetAtomic(bool kIsAtomic) {
208 DCHECK(!IsAtomic());
209 if (kIsAtomic)
210 x_ |= kAtomicBit;
211 DCHECK_EQ(IsAtomic(), kIsAtomic);
214 bool IsAtomic() const {
215 return x_ & kAtomicBit;
218 bool IsZero() const {
219 return x_ == 0;
222 static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
223 u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
224 DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
225 return shifted_xor == 0;
228 static ALWAYS_INLINE
229 bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
230 u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31;
231 return masked_xor == 0;
234 static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2,
235 unsigned kS2AccessSize) {
236 bool res = false;
237 u64 diff = s1.addr0() - s2.addr0();
238 if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT
239 // if (s1.addr0() + size1) > s2.addr0()) return true;
240 if (s1.size() > -diff)
241 res = true;
242 } else {
243 // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
244 if (kS2AccessSize > diff)
245 res = true;
247 DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2));
248 DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1));
249 return res;
252 u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; }
253 u64 ALWAYS_INLINE size() const { return 1ull << size_log(); }
254 bool ALWAYS_INLINE IsWrite() const { return !IsRead(); }
255 bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; }
257 // The idea behind the freed bit is as follows.
258 // When the memory is freed (or otherwise unaccessible) we write to the shadow
259 // values with tid/epoch related to the free and the freed bit set.
260 // During memory accesses processing the freed bit is considered
261 // as msb of tid. So any access races with shadow with freed bit set
262 // (it is as if write from a thread with which we never synchronized before).
263 // This allows us to detect accesses to freed memory w/o additional
264 // overheads in memory access processing and at the same time restore
265 // tid/epoch of free.
266 void MarkAsFreed() {
267 x_ |= kFreedBit;
270 bool IsFreed() const {
271 return x_ & kFreedBit;
274 bool GetFreedAndReset() {
275 bool res = x_ & kFreedBit;
276 x_ &= ~kFreedBit;
277 return res;
280 bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
281 bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift)
282 | (u64(kIsAtomic) << kAtomicShift));
283 DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
284 return v;
287 bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
288 bool v = ((x_ >> kReadShift) & 3)
289 <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
290 DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
291 (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
292 return v;
295 bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
296 bool v = ((x_ >> kReadShift) & 3)
297 >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
298 DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
299 (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
300 return v;
303 private:
304 static const u64 kReadShift = 5 + kClkBits;
305 static const u64 kReadBit = 1ull << kReadShift;
306 static const u64 kAtomicShift = 6 + kClkBits;
307 static const u64 kAtomicBit = 1ull << kAtomicShift;
309 u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; }
311 static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) {
312 if (s1.addr0() == s2.addr0()) return true;
313 if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
314 return true;
315 if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
316 return true;
317 return false;
321 struct ThreadSignalContext;
323 struct JmpBuf {
324 uptr sp;
325 uptr mangled_sp;
326 int int_signal_send;
327 bool in_blocking_func;
328 uptr in_signal_handler;
329 uptr *shadow_stack_pos;
332 // A Processor represents a physical thread, or a P for Go.
333 // It is used to store internal resources like allocate cache, and does not
334 // participate in race-detection logic (invisible to end user).
335 // In C++ it is tied to an OS thread just like ThreadState, however ideally
336 // it should be tied to a CPU (this way we will have fewer allocator caches).
337 // In Go it is tied to a P, so there are significantly fewer Processor's than
338 // ThreadState's (which are tied to Gs).
339 // A ThreadState must be wired with a Processor to handle events.
340 struct Processor {
341 ThreadState *thr; // currently wired thread, or nullptr
342 #if !SANITIZER_GO
343 AllocatorCache alloc_cache;
344 InternalAllocatorCache internal_alloc_cache;
345 #endif
346 DenseSlabAllocCache block_cache;
347 DenseSlabAllocCache sync_cache;
348 DenseSlabAllocCache clock_cache;
349 DDPhysicalThread *dd_pt;
352 #if !SANITIZER_GO
353 // ScopedGlobalProcessor temporary setups a global processor for the current
354 // thread, if it does not have one. Intended for interceptors that can run
355 // at the very thread end, when we already destroyed the thread processor.
356 struct ScopedGlobalProcessor {
357 ScopedGlobalProcessor();
358 ~ScopedGlobalProcessor();
360 #endif
362 // This struct is stored in TLS.
363 struct ThreadState {
364 FastState fast_state;
365 // Synch epoch represents the threads's epoch before the last synchronization
366 // action. It allows to reduce number of shadow state updates.
367 // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
368 // if we are processing write to X from the same thread at epoch=200,
369 // we do nothing, because both writes happen in the same 'synch epoch'.
370 // That is, if another memory access does not race with the former write,
371 // it does not race with the latter as well.
372 // QUESTION: can we can squeeze this into ThreadState::Fast?
373 // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
374 // taken by epoch between synchs.
375 // This way we can save one load from tls.
376 u64 fast_synch_epoch;
377 // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
378 // We do not distinguish beteween ignoring reads and writes
379 // for better performance.
380 int ignore_reads_and_writes;
381 int ignore_sync;
382 // Go does not support ignores.
383 #if !SANITIZER_GO
384 IgnoreSet mop_ignore_set;
385 IgnoreSet sync_ignore_set;
386 #endif
387 // C/C++ uses fixed size shadow stack embed into Trace.
388 // Go uses malloc-allocated shadow stack with dynamic size.
389 uptr *shadow_stack;
390 uptr *shadow_stack_end;
391 uptr *shadow_stack_pos;
392 u64 *racy_shadow_addr;
393 u64 racy_state[2];
394 MutexSet mset;
395 ThreadClock clock;
396 #if !SANITIZER_GO
397 Vector<JmpBuf> jmp_bufs;
398 int ignore_interceptors;
399 #endif
400 #if TSAN_COLLECT_STATS
401 u64 stat[StatCnt];
402 #endif
403 const int tid;
404 const int unique_id;
405 bool in_symbolizer;
406 bool in_ignored_lib;
407 bool is_inited;
408 bool is_dead;
409 bool is_freeing;
410 bool is_vptr_access;
411 const uptr stk_addr;
412 const uptr stk_size;
413 const uptr tls_addr;
414 const uptr tls_size;
415 ThreadContext *tctx;
417 #if SANITIZER_DEBUG && !SANITIZER_GO
418 InternalDeadlockDetector internal_deadlock_detector;
419 #endif
420 DDLogicalThread *dd_lt;
422 // Current wired Processor, or nullptr. Required to handle any events.
423 Processor *proc1;
424 #if !SANITIZER_GO
425 Processor *proc() { return proc1; }
426 #else
427 Processor *proc();
428 #endif
430 atomic_uintptr_t in_signal_handler;
431 ThreadSignalContext *signal_ctx;
433 #if !SANITIZER_GO
434 u32 last_sleep_stack_id;
435 ThreadClock last_sleep_clock;
436 #endif
438 // Set in regions of runtime that must be signal-safe and fork-safe.
439 // If set, malloc must not be called.
440 int nomalloc;
442 const ReportDesc *current_report;
444 explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
445 unsigned reuse_count,
446 uptr stk_addr, uptr stk_size,
447 uptr tls_addr, uptr tls_size);
450 #if !SANITIZER_GO
451 #if SANITIZER_MAC || SANITIZER_ANDROID
452 ThreadState *cur_thread();
453 void cur_thread_finalize();
454 #else
455 __attribute__((tls_model("initial-exec")))
456 extern THREADLOCAL char cur_thread_placeholder[];
457 INLINE ThreadState *cur_thread() {
458 return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
460 INLINE void cur_thread_finalize() { }
461 #endif // SANITIZER_MAC || SANITIZER_ANDROID
462 #endif // SANITIZER_GO
464 class ThreadContext : public ThreadContextBase {
465 public:
466 explicit ThreadContext(int tid);
467 ~ThreadContext();
468 ThreadState *thr;
469 u32 creation_stack_id;
470 SyncClock sync;
471 // Epoch at which the thread had started.
472 // If we see an event from the thread stamped by an older epoch,
473 // the event is from a dead thread that shared tid with this thread.
474 u64 epoch0;
475 u64 epoch1;
477 // Override superclass callbacks.
478 void OnDead() override;
479 void OnJoined(void *arg) override;
480 void OnFinished() override;
481 void OnStarted(void *arg) override;
482 void OnCreated(void *arg) override;
483 void OnReset() override;
484 void OnDetached(void *arg) override;
487 struct RacyStacks {
488 MD5Hash hash[2];
489 bool operator==(const RacyStacks &other) const {
490 if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
491 return true;
492 if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
493 return true;
494 return false;
498 struct RacyAddress {
499 uptr addr_min;
500 uptr addr_max;
503 struct FiredSuppression {
504 ReportType type;
505 uptr pc_or_addr;
506 Suppression *supp;
509 struct Context {
510 Context();
512 bool initialized;
513 bool after_multithreaded_fork;
515 MetaMap metamap;
517 Mutex report_mtx;
518 int nreported;
519 int nmissed_expected;
520 atomic_uint64_t last_symbolize_time_ns;
522 void *background_thread;
523 atomic_uint32_t stop_background_thread;
525 ThreadRegistry *thread_registry;
527 Mutex racy_mtx;
528 Vector<RacyStacks> racy_stacks;
529 Vector<RacyAddress> racy_addresses;
530 // Number of fired suppressions may be large enough.
531 Mutex fired_suppressions_mtx;
532 InternalMmapVector<FiredSuppression> fired_suppressions;
533 DDetector *dd;
535 ClockAlloc clock_alloc;
537 Flags flags;
539 u64 stat[StatCnt];
540 u64 int_alloc_cnt[MBlockTypeCount];
541 u64 int_alloc_siz[MBlockTypeCount];
544 extern Context *ctx; // The one and the only global runtime context.
546 struct ScopedIgnoreInterceptors {
547 ScopedIgnoreInterceptors() {
548 #if !SANITIZER_GO
549 cur_thread()->ignore_interceptors++;
550 #endif
553 ~ScopedIgnoreInterceptors() {
554 #if !SANITIZER_GO
555 cur_thread()->ignore_interceptors--;
556 #endif
560 class ScopedReport {
561 public:
562 explicit ScopedReport(ReportType typ);
563 ~ScopedReport();
565 void AddMemoryAccess(uptr addr, Shadow s, StackTrace stack,
566 const MutexSet *mset);
567 void AddStack(StackTrace stack, bool suppressable = false);
568 void AddThread(const ThreadContext *tctx, bool suppressable = false);
569 void AddThread(int unique_tid, bool suppressable = false);
570 void AddUniqueTid(int unique_tid);
571 void AddMutex(const SyncVar *s);
572 u64 AddMutex(u64 id);
573 void AddLocation(uptr addr, uptr size);
574 void AddSleep(u32 stack_id);
575 void SetCount(int count);
577 const ReportDesc *GetReport() const;
579 private:
580 ReportDesc *rep_;
581 // Symbolizer makes lots of intercepted calls. If we try to process them,
582 // at best it will cause deadlocks on internal mutexes.
583 ScopedIgnoreInterceptors ignore_interceptors_;
585 void AddDeadMutex(u64 id);
587 ScopedReport(const ScopedReport&);
588 void operator = (const ScopedReport&);
591 void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk,
592 MutexSet *mset);
594 template<typename StackTraceTy>
595 void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack) {
596 uptr size = thr->shadow_stack_pos - thr->shadow_stack;
597 uptr start = 0;
598 if (size + !!toppc > kStackTraceMax) {
599 start = size + !!toppc - kStackTraceMax;
600 size = kStackTraceMax - !!toppc;
602 stack->Init(&thr->shadow_stack[start], size, toppc);
606 #if TSAN_COLLECT_STATS
607 void StatAggregate(u64 *dst, u64 *src);
608 void StatOutput(u64 *stat);
609 #endif
611 void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
612 #if TSAN_COLLECT_STATS
613 thr->stat[typ] += n;
614 #endif
616 void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
617 #if TSAN_COLLECT_STATS
618 thr->stat[typ] = n;
619 #endif
622 void MapShadow(uptr addr, uptr size);
623 void MapThreadTrace(uptr addr, uptr size, const char *name);
624 void DontNeedShadowFor(uptr addr, uptr size);
625 void InitializeShadowMemory();
626 void InitializeInterceptors();
627 void InitializeLibIgnore();
628 void InitializeDynamicAnnotations();
630 void ForkBefore(ThreadState *thr, uptr pc);
631 void ForkParentAfter(ThreadState *thr, uptr pc);
632 void ForkChildAfter(ThreadState *thr, uptr pc);
634 void ReportRace(ThreadState *thr);
635 bool OutputReport(ThreadState *thr, const ScopedReport &srep);
636 bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
637 bool IsExpectedReport(uptr addr, uptr size);
638 void PrintMatchedBenignRaces();
640 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
641 # define DPrintf Printf
642 #else
643 # define DPrintf(...)
644 #endif
646 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
647 # define DPrintf2 Printf
648 #else
649 # define DPrintf2(...)
650 #endif
652 u32 CurrentStackId(ThreadState *thr, uptr pc);
653 ReportStack *SymbolizeStackId(u32 stack_id);
654 void PrintCurrentStack(ThreadState *thr, uptr pc);
655 void PrintCurrentStackSlow(uptr pc); // uses libunwind
657 void Initialize(ThreadState *thr);
658 int Finalize(ThreadState *thr);
660 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
661 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
663 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
664 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
665 void MemoryAccessImpl(ThreadState *thr, uptr addr,
666 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
667 u64 *shadow_mem, Shadow cur);
668 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
669 uptr size, bool is_write);
670 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
671 uptr size, uptr step, bool is_write);
672 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
673 int size, bool kAccessIsWrite, bool kIsAtomic);
675 const int kSizeLog1 = 0;
676 const int kSizeLog2 = 1;
677 const int kSizeLog4 = 2;
678 const int kSizeLog8 = 3;
680 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
681 uptr addr, int kAccessSizeLog) {
682 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
685 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
686 uptr addr, int kAccessSizeLog) {
687 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
690 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
691 uptr addr, int kAccessSizeLog) {
692 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
695 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
696 uptr addr, int kAccessSizeLog) {
697 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
700 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
701 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
702 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
704 void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
705 void ThreadIgnoreEnd(ThreadState *thr, uptr pc);
706 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
707 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc);
709 void FuncEntry(ThreadState *thr, uptr pc);
710 void FuncExit(ThreadState *thr);
712 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
713 void ThreadStart(ThreadState *thr, int tid, uptr os_id);
714 void ThreadFinish(ThreadState *thr);
715 int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
716 void ThreadJoin(ThreadState *thr, uptr pc, int tid);
717 void ThreadDetach(ThreadState *thr, uptr pc, int tid);
718 void ThreadFinalize(ThreadState *thr);
719 void ThreadSetName(ThreadState *thr, const char *name);
720 int ThreadCount(ThreadState *thr);
721 void ProcessPendingSignals(ThreadState *thr);
723 Processor *ProcCreate();
724 void ProcDestroy(Processor *proc);
725 void ProcWire(Processor *proc, ThreadState *thr);
726 void ProcUnwire(Processor *proc, ThreadState *thr);
728 void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
729 bool rw, bool recursive, bool linker_init);
730 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr);
731 void MutexLock(ThreadState *thr, uptr pc, uptr addr, int rec = 1,
732 bool try_lock = false);
733 int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, bool all = false);
734 void MutexReadLock(ThreadState *thr, uptr pc, uptr addr, bool try_lock = false);
735 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
736 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
737 void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD
738 void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr);
740 void Acquire(ThreadState *thr, uptr pc, uptr addr);
741 // AcquireGlobal synchronizes the current thread with all other threads.
742 // In terms of happens-before relation, it draws a HB edge from all threads
743 // (where they happen to execute right now) to the current thread. We use it to
744 // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
745 // right before executing finalizers. This provides a coarse, but simple
746 // approximation of the actual required synchronization.
747 void AcquireGlobal(ThreadState *thr, uptr pc);
748 void Release(ThreadState *thr, uptr pc, uptr addr);
749 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
750 void AfterSleep(ThreadState *thr, uptr pc);
751 void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
752 void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
753 void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c);
754 void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
756 // The hacky call uses custom calling convention and an assembly thunk.
757 // It is considerably faster that a normal call for the caller
758 // if it is not executed (it is intended for slow paths from hot functions).
759 // The trick is that the call preserves all registers and the compiler
760 // does not treat it as a call.
761 // If it does not work for you, use normal call.
762 #if !SANITIZER_DEBUG && defined(__x86_64__) && !SANITIZER_MAC
763 // The caller may not create the stack frame for itself at all,
764 // so we create a reserve stack frame for it (1024b must be enough).
765 #define HACKY_CALL(f) \
766 __asm__ __volatile__("sub $1024, %%rsp;" \
767 CFI_INL_ADJUST_CFA_OFFSET(1024) \
768 ".hidden " #f "_thunk;" \
769 "call " #f "_thunk;" \
770 "add $1024, %%rsp;" \
771 CFI_INL_ADJUST_CFA_OFFSET(-1024) \
772 ::: "memory", "cc");
773 #else
774 #define HACKY_CALL(f) f()
775 #endif
777 void TraceSwitch(ThreadState *thr);
778 uptr TraceTopPC(ThreadState *thr);
779 uptr TraceSize();
780 uptr TraceParts();
781 Trace *ThreadTrace(int tid);
783 extern "C" void __tsan_trace_switch();
784 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
785 EventType typ, u64 addr) {
786 if (!kCollectHistory)
787 return;
788 DCHECK_GE((int)typ, 0);
789 DCHECK_LE((int)typ, 7);
790 DCHECK_EQ(GetLsb(addr, 61), addr);
791 StatInc(thr, StatEvents);
792 u64 pos = fs.GetTracePos();
793 if (UNLIKELY((pos % kTracePartSize) == 0)) {
794 #if !SANITIZER_GO
795 HACKY_CALL(__tsan_trace_switch);
796 #else
797 TraceSwitch(thr);
798 #endif
800 Event *trace = (Event*)GetThreadTrace(fs.tid());
801 Event *evp = &trace[pos];
802 Event ev = (u64)addr | ((u64)typ << 61);
803 *evp = ev;
806 #if !SANITIZER_GO
807 uptr ALWAYS_INLINE HeapEnd() {
808 return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
810 #endif
812 } // namespace __tsan
814 #endif // TSAN_RTL_H