Clean up some minor white space issues in trans-decl.c and trans-expr.c
[official-gcc.git] / gcc / ira.c
blob7ac6a542ad2e601ed0a6801bb996ef296b987491
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "tm_p.h"
375 #include "insn-config.h"
376 #include "regs.h"
377 #include "ira.h"
378 #include "ira-int.h"
379 #include "diagnostic-core.h"
380 #include "cfgrtl.h"
381 #include "cfgbuild.h"
382 #include "cfgcleanup.h"
383 #include "expr.h"
384 #include "tree-pass.h"
385 #include "output.h"
386 #include "reload.h"
387 #include "cfgloop.h"
388 #include "lra.h"
389 #include "dce.h"
390 #include "dbgcnt.h"
391 #include "rtl-iter.h"
392 #include "shrink-wrap.h"
393 #include "print-rtl.h"
395 struct target_ira default_target_ira;
396 struct target_ira_int default_target_ira_int;
397 #if SWITCHABLE_TARGET
398 struct target_ira *this_target_ira = &default_target_ira;
399 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
400 #endif
402 /* A modified value of flag `-fira-verbose' used internally. */
403 int internal_flag_ira_verbose;
405 /* Dump file of the allocator if it is not NULL. */
406 FILE *ira_dump_file;
408 /* The number of elements in the following array. */
409 int ira_spilled_reg_stack_slots_num;
411 /* The following array contains info about spilled pseudo-registers
412 stack slots used in current function so far. */
413 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415 /* Correspondingly overall cost of the allocation, overall cost before
416 reload, cost of the allocnos assigned to hard-registers, cost of
417 the allocnos assigned to memory, cost of loads, stores and register
418 move insns generated for pseudo-register live range splitting (see
419 ira-emit.c). */
420 int64_t ira_overall_cost, overall_cost_before;
421 int64_t ira_reg_cost, ira_mem_cost;
422 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
423 int ira_move_loops_num, ira_additional_jumps_num;
425 /* All registers that can be eliminated. */
427 HARD_REG_SET eliminable_regset;
429 /* Value of max_reg_num () before IRA work start. This value helps
430 us to recognize a situation when new pseudos were created during
431 IRA work. */
432 static int max_regno_before_ira;
434 /* Temporary hard reg set used for a different calculation. */
435 static HARD_REG_SET temp_hard_regset;
437 #define last_mode_for_init_move_cost \
438 (this_target_ira_int->x_last_mode_for_init_move_cost)
441 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
442 static void
443 setup_reg_mode_hard_regset (void)
445 int i, m, hard_regno;
447 for (m = 0; m < NUM_MACHINE_MODES; m++)
448 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
451 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
452 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
453 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
454 hard_regno + i);
459 #define no_unit_alloc_regs \
460 (this_target_ira_int->x_no_unit_alloc_regs)
462 /* The function sets up the three arrays declared above. */
463 static void
464 setup_class_hard_regs (void)
466 int cl, i, hard_regno, n;
467 HARD_REG_SET processed_hard_reg_set;
469 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
470 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
472 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
473 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
474 CLEAR_HARD_REG_SET (processed_hard_reg_set);
475 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
477 ira_non_ordered_class_hard_regs[cl][i] = -1;
478 ira_class_hard_reg_index[cl][i] = -1;
480 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
482 #ifdef REG_ALLOC_ORDER
483 hard_regno = reg_alloc_order[i];
484 #else
485 hard_regno = i;
486 #endif
487 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
488 continue;
489 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
490 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
491 ira_class_hard_reg_index[cl][hard_regno] = -1;
492 else
494 ira_class_hard_reg_index[cl][hard_regno] = n;
495 ira_class_hard_regs[cl][n++] = hard_regno;
498 ira_class_hard_regs_num[cl] = n;
499 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
500 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
501 ira_non_ordered_class_hard_regs[cl][n++] = i;
502 ira_assert (ira_class_hard_regs_num[cl] == n);
506 /* Set up global variables defining info about hard registers for the
507 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
508 that we can use the hard frame pointer for the allocation. */
509 static void
510 setup_alloc_regs (bool use_hard_frame_p)
512 #ifdef ADJUST_REG_ALLOC_ORDER
513 ADJUST_REG_ALLOC_ORDER;
514 #endif
515 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
516 if (! use_hard_frame_p)
517 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
518 setup_class_hard_regs ();
523 #define alloc_reg_class_subclasses \
524 (this_target_ira_int->x_alloc_reg_class_subclasses)
526 /* Initialize the table of subclasses of each reg class. */
527 static void
528 setup_reg_subclasses (void)
530 int i, j;
531 HARD_REG_SET temp_hard_regset2;
533 for (i = 0; i < N_REG_CLASSES; i++)
534 for (j = 0; j < N_REG_CLASSES; j++)
535 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
537 for (i = 0; i < N_REG_CLASSES; i++)
539 if (i == (int) NO_REGS)
540 continue;
542 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
543 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
544 if (hard_reg_set_empty_p (temp_hard_regset))
545 continue;
546 for (j = 0; j < N_REG_CLASSES; j++)
547 if (i != j)
549 enum reg_class *p;
551 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
552 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
553 if (! hard_reg_set_subset_p (temp_hard_regset,
554 temp_hard_regset2))
555 continue;
556 p = &alloc_reg_class_subclasses[j][0];
557 while (*p != LIM_REG_CLASSES) p++;
558 *p = (enum reg_class) i;
565 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
566 static void
567 setup_class_subset_and_memory_move_costs (void)
569 int cl, cl2, mode, cost;
570 HARD_REG_SET temp_hard_regset2;
572 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573 ira_memory_move_cost[mode][NO_REGS][0]
574 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
575 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
577 if (cl != (int) NO_REGS)
578 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
580 ira_max_memory_move_cost[mode][cl][0]
581 = ira_memory_move_cost[mode][cl][0]
582 = memory_move_cost ((machine_mode) mode,
583 (reg_class_t) cl, false);
584 ira_max_memory_move_cost[mode][cl][1]
585 = ira_memory_move_cost[mode][cl][1]
586 = memory_move_cost ((machine_mode) mode,
587 (reg_class_t) cl, true);
588 /* Costs for NO_REGS are used in cost calculation on the
589 1st pass when the preferred register classes are not
590 known yet. In this case we take the best scenario. */
591 if (ira_memory_move_cost[mode][NO_REGS][0]
592 > ira_memory_move_cost[mode][cl][0])
593 ira_max_memory_move_cost[mode][NO_REGS][0]
594 = ira_memory_move_cost[mode][NO_REGS][0]
595 = ira_memory_move_cost[mode][cl][0];
596 if (ira_memory_move_cost[mode][NO_REGS][1]
597 > ira_memory_move_cost[mode][cl][1])
598 ira_max_memory_move_cost[mode][NO_REGS][1]
599 = ira_memory_move_cost[mode][NO_REGS][1]
600 = ira_memory_move_cost[mode][cl][1];
603 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
604 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
606 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
607 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
608 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
609 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
610 ira_class_subset_p[cl][cl2]
611 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
612 if (! hard_reg_set_empty_p (temp_hard_regset2)
613 && hard_reg_set_subset_p (reg_class_contents[cl2],
614 reg_class_contents[cl]))
615 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
617 cost = ira_memory_move_cost[mode][cl2][0];
618 if (cost > ira_max_memory_move_cost[mode][cl][0])
619 ira_max_memory_move_cost[mode][cl][0] = cost;
620 cost = ira_memory_move_cost[mode][cl2][1];
621 if (cost > ira_max_memory_move_cost[mode][cl][1])
622 ira_max_memory_move_cost[mode][cl][1] = cost;
625 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
626 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
628 ira_memory_move_cost[mode][cl][0]
629 = ira_max_memory_move_cost[mode][cl][0];
630 ira_memory_move_cost[mode][cl][1]
631 = ira_max_memory_move_cost[mode][cl][1];
633 setup_reg_subclasses ();
638 /* Define the following macro if allocation through malloc if
639 preferable. */
640 #define IRA_NO_OBSTACK
642 #ifndef IRA_NO_OBSTACK
643 /* Obstack used for storing all dynamic data (except bitmaps) of the
644 IRA. */
645 static struct obstack ira_obstack;
646 #endif
648 /* Obstack used for storing all bitmaps of the IRA. */
649 static struct bitmap_obstack ira_bitmap_obstack;
651 /* Allocate memory of size LEN for IRA data. */
652 void *
653 ira_allocate (size_t len)
655 void *res;
657 #ifndef IRA_NO_OBSTACK
658 res = obstack_alloc (&ira_obstack, len);
659 #else
660 res = xmalloc (len);
661 #endif
662 return res;
665 /* Free memory ADDR allocated for IRA data. */
666 void
667 ira_free (void *addr ATTRIBUTE_UNUSED)
669 #ifndef IRA_NO_OBSTACK
670 /* do nothing */
671 #else
672 free (addr);
673 #endif
677 /* Allocate and returns bitmap for IRA. */
678 bitmap
679 ira_allocate_bitmap (void)
681 return BITMAP_ALLOC (&ira_bitmap_obstack);
684 /* Free bitmap B allocated for IRA. */
685 void
686 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
688 /* do nothing */
693 /* Output information about allocation of all allocnos (except for
694 caps) into file F. */
695 void
696 ira_print_disposition (FILE *f)
698 int i, n, max_regno;
699 ira_allocno_t a;
700 basic_block bb;
702 fprintf (f, "Disposition:");
703 max_regno = max_reg_num ();
704 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
705 for (a = ira_regno_allocno_map[i];
706 a != NULL;
707 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
709 if (n % 4 == 0)
710 fprintf (f, "\n");
711 n++;
712 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
713 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
714 fprintf (f, "b%-3d", bb->index);
715 else
716 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
717 if (ALLOCNO_HARD_REGNO (a) >= 0)
718 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
719 else
720 fprintf (f, " mem");
722 fprintf (f, "\n");
725 /* Outputs information about allocation of all allocnos into
726 stderr. */
727 void
728 ira_debug_disposition (void)
730 ira_print_disposition (stderr);
735 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
736 register class containing stack registers or NO_REGS if there are
737 no stack registers. To find this class, we iterate through all
738 register pressure classes and choose the first register pressure
739 class containing all the stack registers and having the biggest
740 size. */
741 static void
742 setup_stack_reg_pressure_class (void)
744 ira_stack_reg_pressure_class = NO_REGS;
745 #ifdef STACK_REGS
747 int i, best, size;
748 enum reg_class cl;
749 HARD_REG_SET temp_hard_regset2;
751 CLEAR_HARD_REG_SET (temp_hard_regset);
752 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
753 SET_HARD_REG_BIT (temp_hard_regset, i);
754 best = 0;
755 for (i = 0; i < ira_pressure_classes_num; i++)
757 cl = ira_pressure_classes[i];
758 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
759 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
760 size = hard_reg_set_size (temp_hard_regset2);
761 if (best < size)
763 best = size;
764 ira_stack_reg_pressure_class = cl;
768 #endif
771 /* Find pressure classes which are register classes for which we
772 calculate register pressure in IRA, register pressure sensitive
773 insn scheduling, and register pressure sensitive loop invariant
774 motion.
776 To make register pressure calculation easy, we always use
777 non-intersected register pressure classes. A move of hard
778 registers from one register pressure class is not more expensive
779 than load and store of the hard registers. Most likely an allocno
780 class will be a subset of a register pressure class and in many
781 cases a register pressure class. That makes usage of register
782 pressure classes a good approximation to find a high register
783 pressure. */
784 static void
785 setup_pressure_classes (void)
787 int cost, i, n, curr;
788 int cl, cl2;
789 enum reg_class pressure_classes[N_REG_CLASSES];
790 int m;
791 HARD_REG_SET temp_hard_regset2;
792 bool insert_p;
794 n = 0;
795 for (cl = 0; cl < N_REG_CLASSES; cl++)
797 if (ira_class_hard_regs_num[cl] == 0)
798 continue;
799 if (ira_class_hard_regs_num[cl] != 1
800 /* A register class without subclasses may contain a few
801 hard registers and movement between them is costly
802 (e.g. SPARC FPCC registers). We still should consider it
803 as a candidate for a pressure class. */
804 && alloc_reg_class_subclasses[cl][0] < cl)
806 /* Check that the moves between any hard registers of the
807 current class are not more expensive for a legal mode
808 than load/store of the hard registers of the current
809 class. Such class is a potential candidate to be a
810 register pressure class. */
811 for (m = 0; m < NUM_MACHINE_MODES; m++)
813 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
814 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset,
816 ira_prohibited_class_mode_regs[cl][m]);
817 if (hard_reg_set_empty_p (temp_hard_regset))
818 continue;
819 ira_init_register_move_cost_if_necessary ((machine_mode) m);
820 cost = ira_register_move_cost[m][cl][cl];
821 if (cost <= ira_max_memory_move_cost[m][cl][1]
822 || cost <= ira_max_memory_move_cost[m][cl][0])
823 break;
825 if (m >= NUM_MACHINE_MODES)
826 continue;
828 curr = 0;
829 insert_p = true;
830 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
831 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
832 /* Remove so far added pressure classes which are subset of the
833 current candidate class. Prefer GENERAL_REGS as a pressure
834 register class to another class containing the same
835 allocatable hard registers. We do this because machine
836 dependent cost hooks might give wrong costs for the latter
837 class but always give the right cost for the former class
838 (GENERAL_REGS). */
839 for (i = 0; i < n; i++)
841 cl2 = pressure_classes[i];
842 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
843 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
844 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
845 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
846 || cl2 == (int) GENERAL_REGS))
848 pressure_classes[curr++] = (enum reg_class) cl2;
849 insert_p = false;
850 continue;
852 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
853 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
854 || cl == (int) GENERAL_REGS))
855 continue;
856 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
857 insert_p = false;
858 pressure_classes[curr++] = (enum reg_class) cl2;
860 /* If the current candidate is a subset of a so far added
861 pressure class, don't add it to the list of the pressure
862 classes. */
863 if (insert_p)
864 pressure_classes[curr++] = (enum reg_class) cl;
865 n = curr;
867 #ifdef ENABLE_IRA_CHECKING
869 HARD_REG_SET ignore_hard_regs;
871 /* Check pressure classes correctness: here we check that hard
872 registers from all register pressure classes contains all hard
873 registers available for the allocation. */
874 CLEAR_HARD_REG_SET (temp_hard_regset);
875 CLEAR_HARD_REG_SET (temp_hard_regset2);
876 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
877 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
879 /* For some targets (like MIPS with MD_REGS), there are some
880 classes with hard registers available for allocation but
881 not able to hold value of any mode. */
882 for (m = 0; m < NUM_MACHINE_MODES; m++)
883 if (contains_reg_of_mode[cl][m])
884 break;
885 if (m >= NUM_MACHINE_MODES)
887 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
888 continue;
890 for (i = 0; i < n; i++)
891 if ((int) pressure_classes[i] == cl)
892 break;
893 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
894 if (i < n)
895 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
897 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
898 /* Some targets (like SPARC with ICC reg) have allocatable regs
899 for which no reg class is defined. */
900 if (REGNO_REG_CLASS (i) == NO_REGS)
901 SET_HARD_REG_BIT (ignore_hard_regs, i);
902 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
903 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
904 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
906 #endif
907 ira_pressure_classes_num = 0;
908 for (i = 0; i < n; i++)
910 cl = (int) pressure_classes[i];
911 ira_reg_pressure_class_p[cl] = true;
912 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
914 setup_stack_reg_pressure_class ();
917 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
918 whose register move cost between any registers of the class is the
919 same as for all its subclasses. We use the data to speed up the
920 2nd pass of calculations of allocno costs. */
921 static void
922 setup_uniform_class_p (void)
924 int i, cl, cl2, m;
926 for (cl = 0; cl < N_REG_CLASSES; cl++)
928 ira_uniform_class_p[cl] = false;
929 if (ira_class_hard_regs_num[cl] == 0)
930 continue;
931 /* We can not use alloc_reg_class_subclasses here because move
932 cost hooks does not take into account that some registers are
933 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
934 is element of alloc_reg_class_subclasses for GENERAL_REGS
935 because SSE regs are unavailable. */
936 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
938 if (ira_class_hard_regs_num[cl2] == 0)
939 continue;
940 for (m = 0; m < NUM_MACHINE_MODES; m++)
941 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
943 ira_init_register_move_cost_if_necessary ((machine_mode) m);
944 if (ira_register_move_cost[m][cl][cl]
945 != ira_register_move_cost[m][cl2][cl2])
946 break;
948 if (m < NUM_MACHINE_MODES)
949 break;
951 if (cl2 == LIM_REG_CLASSES)
952 ira_uniform_class_p[cl] = true;
956 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
957 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
959 Target may have many subtargets and not all target hard registers can
960 be used for allocation, e.g. x86 port in 32-bit mode can not use
961 hard registers introduced in x86-64 like r8-r15). Some classes
962 might have the same allocatable hard registers, e.g. INDEX_REGS
963 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
964 calculations efforts we introduce allocno classes which contain
965 unique non-empty sets of allocatable hard-registers.
967 Pseudo class cost calculation in ira-costs.c is very expensive.
968 Therefore we are trying to decrease number of classes involved in
969 such calculation. Register classes used in the cost calculation
970 are called important classes. They are allocno classes and other
971 non-empty classes whose allocatable hard register sets are inside
972 of an allocno class hard register set. From the first sight, it
973 looks like that they are just allocno classes. It is not true. In
974 example of x86-port in 32-bit mode, allocno classes will contain
975 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
976 registers are the same for the both classes). The important
977 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
978 because a machine description insn constraint may refers for
979 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
980 of the insn constraints. */
981 static void
982 setup_allocno_and_important_classes (void)
984 int i, j, n, cl;
985 bool set_p;
986 HARD_REG_SET temp_hard_regset2;
987 static enum reg_class classes[LIM_REG_CLASSES + 1];
989 n = 0;
990 /* Collect classes which contain unique sets of allocatable hard
991 registers. Prefer GENERAL_REGS to other classes containing the
992 same set of hard registers. */
993 for (i = 0; i < LIM_REG_CLASSES; i++)
995 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
996 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
997 for (j = 0; j < n; j++)
999 cl = classes[j];
1000 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1001 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1002 no_unit_alloc_regs);
1003 if (hard_reg_set_equal_p (temp_hard_regset,
1004 temp_hard_regset2))
1005 break;
1007 if (j >= n)
1008 classes[n++] = (enum reg_class) i;
1009 else if (i == GENERAL_REGS)
1010 /* Prefer general regs. For i386 example, it means that
1011 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1012 (all of them consists of the same available hard
1013 registers). */
1014 classes[j] = (enum reg_class) i;
1016 classes[n] = LIM_REG_CLASSES;
1018 /* Set up classes which can be used for allocnos as classes
1019 containing non-empty unique sets of allocatable hard
1020 registers. */
1021 ira_allocno_classes_num = 0;
1022 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1023 if (ira_class_hard_regs_num[cl] > 0)
1024 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1025 ira_important_classes_num = 0;
1026 /* Add non-allocno classes containing to non-empty set of
1027 allocatable hard regs. */
1028 for (cl = 0; cl < N_REG_CLASSES; cl++)
1029 if (ira_class_hard_regs_num[cl] > 0)
1031 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1032 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1033 set_p = false;
1034 for (j = 0; j < ira_allocno_classes_num; j++)
1036 COPY_HARD_REG_SET (temp_hard_regset2,
1037 reg_class_contents[ira_allocno_classes[j]]);
1038 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1039 if ((enum reg_class) cl == ira_allocno_classes[j])
1040 break;
1041 else if (hard_reg_set_subset_p (temp_hard_regset,
1042 temp_hard_regset2))
1043 set_p = true;
1045 if (set_p && j >= ira_allocno_classes_num)
1046 ira_important_classes[ira_important_classes_num++]
1047 = (enum reg_class) cl;
1049 /* Now add allocno classes to the important classes. */
1050 for (j = 0; j < ira_allocno_classes_num; j++)
1051 ira_important_classes[ira_important_classes_num++]
1052 = ira_allocno_classes[j];
1053 for (cl = 0; cl < N_REG_CLASSES; cl++)
1055 ira_reg_allocno_class_p[cl] = false;
1056 ira_reg_pressure_class_p[cl] = false;
1058 for (j = 0; j < ira_allocno_classes_num; j++)
1059 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1060 setup_pressure_classes ();
1061 setup_uniform_class_p ();
1064 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1065 given by array CLASSES of length CLASSES_NUM. The function is used
1066 make translation any reg class to an allocno class or to an
1067 pressure class. This translation is necessary for some
1068 calculations when we can use only allocno or pressure classes and
1069 such translation represents an approximate representation of all
1070 classes.
1072 The translation in case when allocatable hard register set of a
1073 given class is subset of allocatable hard register set of a class
1074 in CLASSES is pretty simple. We use smallest classes from CLASSES
1075 containing a given class. If allocatable hard register set of a
1076 given class is not a subset of any corresponding set of a class
1077 from CLASSES, we use the cheapest (with load/store point of view)
1078 class from CLASSES whose set intersects with given class set. */
1079 static void
1080 setup_class_translate_array (enum reg_class *class_translate,
1081 int classes_num, enum reg_class *classes)
1083 int cl, mode;
1084 enum reg_class aclass, best_class, *cl_ptr;
1085 int i, cost, min_cost, best_cost;
1087 for (cl = 0; cl < N_REG_CLASSES; cl++)
1088 class_translate[cl] = NO_REGS;
1090 for (i = 0; i < classes_num; i++)
1092 aclass = classes[i];
1093 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1094 (cl = *cl_ptr) != LIM_REG_CLASSES;
1095 cl_ptr++)
1096 if (class_translate[cl] == NO_REGS)
1097 class_translate[cl] = aclass;
1098 class_translate[aclass] = aclass;
1100 /* For classes which are not fully covered by one of given classes
1101 (in other words covered by more one given class), use the
1102 cheapest class. */
1103 for (cl = 0; cl < N_REG_CLASSES; cl++)
1105 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1106 continue;
1107 best_class = NO_REGS;
1108 best_cost = INT_MAX;
1109 for (i = 0; i < classes_num; i++)
1111 aclass = classes[i];
1112 COPY_HARD_REG_SET (temp_hard_regset,
1113 reg_class_contents[aclass]);
1114 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1115 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1116 if (! hard_reg_set_empty_p (temp_hard_regset))
1118 min_cost = INT_MAX;
1119 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1121 cost = (ira_memory_move_cost[mode][aclass][0]
1122 + ira_memory_move_cost[mode][aclass][1]);
1123 if (min_cost > cost)
1124 min_cost = cost;
1126 if (best_class == NO_REGS || best_cost > min_cost)
1128 best_class = aclass;
1129 best_cost = min_cost;
1133 class_translate[cl] = best_class;
1137 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1138 IRA_PRESSURE_CLASS_TRANSLATE. */
1139 static void
1140 setup_class_translate (void)
1142 setup_class_translate_array (ira_allocno_class_translate,
1143 ira_allocno_classes_num, ira_allocno_classes);
1144 setup_class_translate_array (ira_pressure_class_translate,
1145 ira_pressure_classes_num, ira_pressure_classes);
1148 /* Order numbers of allocno classes in original target allocno class
1149 array, -1 for non-allocno classes. */
1150 static int allocno_class_order[N_REG_CLASSES];
1152 /* The function used to sort the important classes. */
1153 static int
1154 comp_reg_classes_func (const void *v1p, const void *v2p)
1156 enum reg_class cl1 = *(const enum reg_class *) v1p;
1157 enum reg_class cl2 = *(const enum reg_class *) v2p;
1158 enum reg_class tcl1, tcl2;
1159 int diff;
1161 tcl1 = ira_allocno_class_translate[cl1];
1162 tcl2 = ira_allocno_class_translate[cl2];
1163 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1164 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1165 return diff;
1166 return (int) cl1 - (int) cl2;
1169 /* For correct work of function setup_reg_class_relation we need to
1170 reorder important classes according to the order of their allocno
1171 classes. It places important classes containing the same
1172 allocatable hard register set adjacent to each other and allocno
1173 class with the allocatable hard register set right after the other
1174 important classes with the same set.
1176 In example from comments of function
1177 setup_allocno_and_important_classes, it places LEGACY_REGS and
1178 GENERAL_REGS close to each other and GENERAL_REGS is after
1179 LEGACY_REGS. */
1180 static void
1181 reorder_important_classes (void)
1183 int i;
1185 for (i = 0; i < N_REG_CLASSES; i++)
1186 allocno_class_order[i] = -1;
1187 for (i = 0; i < ira_allocno_classes_num; i++)
1188 allocno_class_order[ira_allocno_classes[i]] = i;
1189 qsort (ira_important_classes, ira_important_classes_num,
1190 sizeof (enum reg_class), comp_reg_classes_func);
1191 for (i = 0; i < ira_important_classes_num; i++)
1192 ira_important_class_nums[ira_important_classes[i]] = i;
1195 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1196 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1197 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1198 please see corresponding comments in ira-int.h. */
1199 static void
1200 setup_reg_class_relations (void)
1202 int i, cl1, cl2, cl3;
1203 HARD_REG_SET intersection_set, union_set, temp_set2;
1204 bool important_class_p[N_REG_CLASSES];
1206 memset (important_class_p, 0, sizeof (important_class_p));
1207 for (i = 0; i < ira_important_classes_num; i++)
1208 important_class_p[ira_important_classes[i]] = true;
1209 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1211 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1212 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1214 ira_reg_classes_intersect_p[cl1][cl2] = false;
1215 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1216 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1217 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1218 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1219 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1220 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1221 if (hard_reg_set_empty_p (temp_hard_regset)
1222 && hard_reg_set_empty_p (temp_set2))
1224 /* The both classes have no allocatable hard registers
1225 -- take all class hard registers into account and use
1226 reg_class_subunion and reg_class_superunion. */
1227 for (i = 0;; i++)
1229 cl3 = reg_class_subclasses[cl1][i];
1230 if (cl3 == LIM_REG_CLASSES)
1231 break;
1232 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1233 (enum reg_class) cl3))
1234 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1236 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1237 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1238 continue;
1240 ira_reg_classes_intersect_p[cl1][cl2]
1241 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1242 if (important_class_p[cl1] && important_class_p[cl2]
1243 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1245 /* CL1 and CL2 are important classes and CL1 allocatable
1246 hard register set is inside of CL2 allocatable hard
1247 registers -- make CL1 a superset of CL2. */
1248 enum reg_class *p;
1250 p = &ira_reg_class_super_classes[cl1][0];
1251 while (*p != LIM_REG_CLASSES)
1252 p++;
1253 *p++ = (enum reg_class) cl2;
1254 *p = LIM_REG_CLASSES;
1256 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1257 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1258 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1259 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1260 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1261 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1262 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1263 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1264 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1266 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1267 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1268 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1270 /* CL3 allocatable hard register set is inside of
1271 intersection of allocatable hard register sets
1272 of CL1 and CL2. */
1273 if (important_class_p[cl3])
1275 COPY_HARD_REG_SET
1276 (temp_set2,
1277 reg_class_contents
1278 [(int) ira_reg_class_intersect[cl1][cl2]]);
1279 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1280 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1281 /* If the allocatable hard register sets are
1282 the same, prefer GENERAL_REGS or the
1283 smallest class for debugging
1284 purposes. */
1285 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1286 && (cl3 == GENERAL_REGS
1287 || ((ira_reg_class_intersect[cl1][cl2]
1288 != GENERAL_REGS)
1289 && hard_reg_set_subset_p
1290 (reg_class_contents[cl3],
1291 reg_class_contents
1292 [(int)
1293 ira_reg_class_intersect[cl1][cl2]])))))
1294 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1296 COPY_HARD_REG_SET
1297 (temp_set2,
1298 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1299 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1300 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1301 /* Ignore unavailable hard registers and prefer
1302 smallest class for debugging purposes. */
1303 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1304 && hard_reg_set_subset_p
1305 (reg_class_contents[cl3],
1306 reg_class_contents
1307 [(int) ira_reg_class_subset[cl1][cl2]])))
1308 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1310 if (important_class_p[cl3]
1311 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1313 /* CL3 allocatable hard register set is inside of
1314 union of allocatable hard register sets of CL1
1315 and CL2. */
1316 COPY_HARD_REG_SET
1317 (temp_set2,
1318 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1319 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1320 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1321 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1323 && (! hard_reg_set_equal_p (temp_set2,
1324 temp_hard_regset)
1325 || cl3 == GENERAL_REGS
1326 /* If the allocatable hard register sets are the
1327 same, prefer GENERAL_REGS or the smallest
1328 class for debugging purposes. */
1329 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1330 && hard_reg_set_subset_p
1331 (reg_class_contents[cl3],
1332 reg_class_contents
1333 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1334 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1336 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1338 /* CL3 allocatable hard register set contains union
1339 of allocatable hard register sets of CL1 and
1340 CL2. */
1341 COPY_HARD_REG_SET
1342 (temp_set2,
1343 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1344 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1345 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1346 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1348 && (! hard_reg_set_equal_p (temp_set2,
1349 temp_hard_regset)
1350 || cl3 == GENERAL_REGS
1351 /* If the allocatable hard register sets are the
1352 same, prefer GENERAL_REGS or the smallest
1353 class for debugging purposes. */
1354 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1355 && hard_reg_set_subset_p
1356 (reg_class_contents[cl3],
1357 reg_class_contents
1358 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1359 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1366 /* Output all uniform and important classes into file F. */
1367 static void
1368 print_uniform_and_important_classes (FILE *f)
1370 int i, cl;
1372 fprintf (f, "Uniform classes:\n");
1373 for (cl = 0; cl < N_REG_CLASSES; cl++)
1374 if (ira_uniform_class_p[cl])
1375 fprintf (f, " %s", reg_class_names[cl]);
1376 fprintf (f, "\nImportant classes:\n");
1377 for (i = 0; i < ira_important_classes_num; i++)
1378 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1379 fprintf (f, "\n");
1382 /* Output all possible allocno or pressure classes and their
1383 translation map into file F. */
1384 static void
1385 print_translated_classes (FILE *f, bool pressure_p)
1387 int classes_num = (pressure_p
1388 ? ira_pressure_classes_num : ira_allocno_classes_num);
1389 enum reg_class *classes = (pressure_p
1390 ? ira_pressure_classes : ira_allocno_classes);
1391 enum reg_class *class_translate = (pressure_p
1392 ? ira_pressure_class_translate
1393 : ira_allocno_class_translate);
1394 int i;
1396 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1397 for (i = 0; i < classes_num; i++)
1398 fprintf (f, " %s", reg_class_names[classes[i]]);
1399 fprintf (f, "\nClass translation:\n");
1400 for (i = 0; i < N_REG_CLASSES; i++)
1401 fprintf (f, " %s -> %s\n", reg_class_names[i],
1402 reg_class_names[class_translate[i]]);
1405 /* Output all possible allocno and translation classes and the
1406 translation maps into stderr. */
1407 void
1408 ira_debug_allocno_classes (void)
1410 print_uniform_and_important_classes (stderr);
1411 print_translated_classes (stderr, false);
1412 print_translated_classes (stderr, true);
1415 /* Set up different arrays concerning class subsets, allocno and
1416 important classes. */
1417 static void
1418 find_reg_classes (void)
1420 setup_allocno_and_important_classes ();
1421 setup_class_translate ();
1422 reorder_important_classes ();
1423 setup_reg_class_relations ();
1428 /* Set up the array above. */
1429 static void
1430 setup_hard_regno_aclass (void)
1432 int i;
1434 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1436 #if 1
1437 ira_hard_regno_allocno_class[i]
1438 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1439 ? NO_REGS
1440 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1441 #else
1442 int j;
1443 enum reg_class cl;
1444 ira_hard_regno_allocno_class[i] = NO_REGS;
1445 for (j = 0; j < ira_allocno_classes_num; j++)
1447 cl = ira_allocno_classes[j];
1448 if (ira_class_hard_reg_index[cl][i] >= 0)
1450 ira_hard_regno_allocno_class[i] = cl;
1451 break;
1454 #endif
1460 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1461 static void
1462 setup_reg_class_nregs (void)
1464 int i, cl, cl2, m;
1466 for (m = 0; m < MAX_MACHINE_MODE; m++)
1468 for (cl = 0; cl < N_REG_CLASSES; cl++)
1469 ira_reg_class_max_nregs[cl][m]
1470 = ira_reg_class_min_nregs[cl][m]
1471 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1472 for (cl = 0; cl < N_REG_CLASSES; cl++)
1473 for (i = 0;
1474 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1475 i++)
1476 if (ira_reg_class_min_nregs[cl2][m]
1477 < ira_reg_class_min_nregs[cl][m])
1478 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1484 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1485 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1486 static void
1487 setup_prohibited_class_mode_regs (void)
1489 int j, k, hard_regno, cl, last_hard_regno, count;
1491 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1493 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1494 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1495 for (j = 0; j < NUM_MACHINE_MODES; j++)
1497 count = 0;
1498 last_hard_regno = -1;
1499 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1500 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1502 hard_regno = ira_class_hard_regs[cl][k];
1503 if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1504 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1505 hard_regno);
1506 else if (in_hard_reg_set_p (temp_hard_regset,
1507 (machine_mode) j, hard_regno))
1509 last_hard_regno = hard_regno;
1510 count++;
1513 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1518 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1519 spanning from one register pressure class to another one. It is
1520 called after defining the pressure classes. */
1521 static void
1522 clarify_prohibited_class_mode_regs (void)
1524 int j, k, hard_regno, cl, pclass, nregs;
1526 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1527 for (j = 0; j < NUM_MACHINE_MODES; j++)
1529 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1530 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1532 hard_regno = ira_class_hard_regs[cl][k];
1533 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1534 continue;
1535 nregs = hard_regno_nregs[hard_regno][j];
1536 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1538 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1539 hard_regno);
1540 continue;
1542 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1543 for (nregs-- ;nregs >= 0; nregs--)
1544 if (((enum reg_class) pclass
1545 != ira_pressure_class_translate[REGNO_REG_CLASS
1546 (hard_regno + nregs)]))
1548 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1549 hard_regno);
1550 break;
1552 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1553 hard_regno))
1554 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1555 (machine_mode) j, hard_regno);
1560 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1561 and IRA_MAY_MOVE_OUT_COST for MODE. */
1562 void
1563 ira_init_register_move_cost (machine_mode mode)
1565 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1566 bool all_match = true;
1567 unsigned int cl1, cl2;
1569 ira_assert (ira_register_move_cost[mode] == NULL
1570 && ira_may_move_in_cost[mode] == NULL
1571 && ira_may_move_out_cost[mode] == NULL);
1572 ira_assert (have_regs_of_mode[mode]);
1573 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1574 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1576 int cost;
1577 if (!contains_reg_of_mode[cl1][mode]
1578 || !contains_reg_of_mode[cl2][mode])
1580 if ((ira_reg_class_max_nregs[cl1][mode]
1581 > ira_class_hard_regs_num[cl1])
1582 || (ira_reg_class_max_nregs[cl2][mode]
1583 > ira_class_hard_regs_num[cl2]))
1584 cost = 65535;
1585 else
1586 cost = (ira_memory_move_cost[mode][cl1][0]
1587 + ira_memory_move_cost[mode][cl2][1]) * 2;
1589 else
1591 cost = register_move_cost (mode, (enum reg_class) cl1,
1592 (enum reg_class) cl2);
1593 ira_assert (cost < 65535);
1595 all_match &= (last_move_cost[cl1][cl2] == cost);
1596 last_move_cost[cl1][cl2] = cost;
1598 if (all_match && last_mode_for_init_move_cost != -1)
1600 ira_register_move_cost[mode]
1601 = ira_register_move_cost[last_mode_for_init_move_cost];
1602 ira_may_move_in_cost[mode]
1603 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1604 ira_may_move_out_cost[mode]
1605 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1606 return;
1608 last_mode_for_init_move_cost = mode;
1609 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1610 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1611 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1612 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1613 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1615 int cost;
1616 enum reg_class *p1, *p2;
1618 if (last_move_cost[cl1][cl2] == 65535)
1620 ira_register_move_cost[mode][cl1][cl2] = 65535;
1621 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1622 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1624 else
1626 cost = last_move_cost[cl1][cl2];
1628 for (p2 = &reg_class_subclasses[cl2][0];
1629 *p2 != LIM_REG_CLASSES; p2++)
1630 if (ira_class_hard_regs_num[*p2] > 0
1631 && (ira_reg_class_max_nregs[*p2][mode]
1632 <= ira_class_hard_regs_num[*p2]))
1633 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1635 for (p1 = &reg_class_subclasses[cl1][0];
1636 *p1 != LIM_REG_CLASSES; p1++)
1637 if (ira_class_hard_regs_num[*p1] > 0
1638 && (ira_reg_class_max_nregs[*p1][mode]
1639 <= ira_class_hard_regs_num[*p1]))
1640 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1642 ira_assert (cost <= 65535);
1643 ira_register_move_cost[mode][cl1][cl2] = cost;
1645 if (ira_class_subset_p[cl1][cl2])
1646 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1647 else
1648 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1650 if (ira_class_subset_p[cl2][cl1])
1651 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1652 else
1653 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1660 /* This is called once during compiler work. It sets up
1661 different arrays whose values don't depend on the compiled
1662 function. */
1663 void
1664 ira_init_once (void)
1666 ira_init_costs_once ();
1667 lra_init_once ();
1670 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1671 ira_may_move_out_cost for each mode. */
1672 void
1673 target_ira_int::free_register_move_costs (void)
1675 int mode, i;
1677 /* Reset move_cost and friends, making sure we only free shared
1678 table entries once. */
1679 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1680 if (x_ira_register_move_cost[mode])
1682 for (i = 0;
1683 i < mode && (x_ira_register_move_cost[i]
1684 != x_ira_register_move_cost[mode]);
1685 i++)
1687 if (i == mode)
1689 free (x_ira_register_move_cost[mode]);
1690 free (x_ira_may_move_in_cost[mode]);
1691 free (x_ira_may_move_out_cost[mode]);
1694 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1695 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1696 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1697 last_mode_for_init_move_cost = -1;
1700 target_ira_int::~target_ira_int ()
1702 free_ira_costs ();
1703 free_register_move_costs ();
1706 /* This is called every time when register related information is
1707 changed. */
1708 void
1709 ira_init (void)
1711 this_target_ira_int->free_register_move_costs ();
1712 setup_reg_mode_hard_regset ();
1713 setup_alloc_regs (flag_omit_frame_pointer != 0);
1714 setup_class_subset_and_memory_move_costs ();
1715 setup_reg_class_nregs ();
1716 setup_prohibited_class_mode_regs ();
1717 find_reg_classes ();
1718 clarify_prohibited_class_mode_regs ();
1719 setup_hard_regno_aclass ();
1720 ira_init_costs ();
1724 #define ira_prohibited_mode_move_regs_initialized_p \
1725 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1727 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1728 static void
1729 setup_prohibited_mode_move_regs (void)
1731 int i, j;
1732 rtx test_reg1, test_reg2, move_pat;
1733 rtx_insn *move_insn;
1735 if (ira_prohibited_mode_move_regs_initialized_p)
1736 return;
1737 ira_prohibited_mode_move_regs_initialized_p = true;
1738 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1739 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1740 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1741 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1742 for (i = 0; i < NUM_MACHINE_MODES; i++)
1744 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1745 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1747 if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
1748 continue;
1749 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1750 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1751 INSN_CODE (move_insn) = -1;
1752 recog_memoized (move_insn);
1753 if (INSN_CODE (move_insn) < 0)
1754 continue;
1755 extract_insn (move_insn);
1756 /* We don't know whether the move will be in code that is optimized
1757 for size or speed, so consider all enabled alternatives. */
1758 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1759 continue;
1760 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1767 /* Setup possible alternatives in ALTS for INSN. */
1768 void
1769 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1771 /* MAP nalt * nop -> start of constraints for given operand and
1772 alternative. */
1773 static vec<const char *> insn_constraints;
1774 int nop, nalt;
1775 bool curr_swapped;
1776 const char *p;
1777 int commutative = -1;
1779 extract_insn (insn);
1780 alternative_mask preferred = get_preferred_alternatives (insn);
1781 CLEAR_HARD_REG_SET (alts);
1782 insn_constraints.release ();
1783 insn_constraints.safe_grow_cleared (recog_data.n_operands
1784 * recog_data.n_alternatives + 1);
1785 /* Check that the hard reg set is enough for holding all
1786 alternatives. It is hard to imagine the situation when the
1787 assertion is wrong. */
1788 ira_assert (recog_data.n_alternatives
1789 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1790 FIRST_PSEUDO_REGISTER));
1791 for (curr_swapped = false;; curr_swapped = true)
1793 /* Calculate some data common for all alternatives to speed up the
1794 function. */
1795 for (nop = 0; nop < recog_data.n_operands; nop++)
1797 for (nalt = 0, p = recog_data.constraints[nop];
1798 nalt < recog_data.n_alternatives;
1799 nalt++)
1801 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1802 while (*p && *p != ',')
1804 /* We only support one commutative marker, the first
1805 one. We already set commutative above. */
1806 if (*p == '%' && commutative < 0)
1807 commutative = nop;
1808 p++;
1810 if (*p)
1811 p++;
1814 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1816 if (!TEST_BIT (preferred, nalt)
1817 || TEST_HARD_REG_BIT (alts, nalt))
1818 continue;
1820 for (nop = 0; nop < recog_data.n_operands; nop++)
1822 int c, len;
1824 rtx op = recog_data.operand[nop];
1825 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1826 if (*p == 0 || *p == ',')
1827 continue;
1830 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1832 case '#':
1833 case ',':
1834 c = '\0';
1835 case '\0':
1836 len = 0;
1837 break;
1839 case '%':
1840 /* The commutative modifier is handled above. */
1841 break;
1843 case '0': case '1': case '2': case '3': case '4':
1844 case '5': case '6': case '7': case '8': case '9':
1845 goto op_success;
1846 break;
1848 case 'g':
1849 goto op_success;
1850 break;
1852 default:
1854 enum constraint_num cn = lookup_constraint (p);
1855 switch (get_constraint_type (cn))
1857 case CT_REGISTER:
1858 if (reg_class_for_constraint (cn) != NO_REGS)
1859 goto op_success;
1860 break;
1862 case CT_CONST_INT:
1863 if (CONST_INT_P (op)
1864 && (insn_const_int_ok_for_constraint
1865 (INTVAL (op), cn)))
1866 goto op_success;
1867 break;
1869 case CT_ADDRESS:
1870 case CT_MEMORY:
1871 goto op_success;
1873 case CT_FIXED_FORM:
1874 if (constraint_satisfied_p (op, cn))
1875 goto op_success;
1876 break;
1878 break;
1881 while (p += len, c);
1882 break;
1883 op_success:
1886 if (nop >= recog_data.n_operands)
1887 SET_HARD_REG_BIT (alts, nalt);
1889 if (commutative < 0)
1890 break;
1891 if (curr_swapped)
1892 break;
1893 std::swap (recog_data.operand[commutative],
1894 recog_data.operand[commutative + 1]);
1898 /* Return the number of the output non-early clobber operand which
1899 should be the same in any case as operand with number OP_NUM (or
1900 negative value if there is no such operand). The function takes
1901 only really possible alternatives into consideration. */
1903 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1905 int curr_alt, c, original, dup;
1906 bool ignore_p, use_commut_op_p;
1907 const char *str;
1909 if (op_num < 0 || recog_data.n_alternatives == 0)
1910 return -1;
1911 /* We should find duplications only for input operands. */
1912 if (recog_data.operand_type[op_num] != OP_IN)
1913 return -1;
1914 str = recog_data.constraints[op_num];
1915 use_commut_op_p = false;
1916 for (;;)
1918 rtx op = recog_data.operand[op_num];
1920 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1921 original = -1;;)
1923 c = *str;
1924 if (c == '\0')
1925 break;
1926 if (c == '#')
1927 ignore_p = true;
1928 else if (c == ',')
1930 curr_alt++;
1931 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1933 else if (! ignore_p)
1934 switch (c)
1936 case 'g':
1937 goto fail;
1938 default:
1940 enum constraint_num cn = lookup_constraint (str);
1941 enum reg_class cl = reg_class_for_constraint (cn);
1942 if (cl != NO_REGS
1943 && !targetm.class_likely_spilled_p (cl))
1944 goto fail;
1945 if (constraint_satisfied_p (op, cn))
1946 goto fail;
1947 break;
1950 case '0': case '1': case '2': case '3': case '4':
1951 case '5': case '6': case '7': case '8': case '9':
1952 if (original != -1 && original != c)
1953 goto fail;
1954 original = c;
1955 break;
1957 str += CONSTRAINT_LEN (c, str);
1959 if (original == -1)
1960 goto fail;
1961 dup = -1;
1962 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1963 *str != 0;
1964 str++)
1965 if (ignore_p)
1967 if (*str == ',')
1968 ignore_p = false;
1970 else if (*str == '#')
1971 ignore_p = true;
1972 else if (! ignore_p)
1974 if (*str == '=')
1975 dup = original - '0';
1976 /* It is better ignore an alternative with early clobber. */
1977 else if (*str == '&')
1978 goto fail;
1980 if (dup >= 0)
1981 return dup;
1982 fail:
1983 if (use_commut_op_p)
1984 break;
1985 use_commut_op_p = true;
1986 if (recog_data.constraints[op_num][0] == '%')
1987 str = recog_data.constraints[op_num + 1];
1988 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
1989 str = recog_data.constraints[op_num - 1];
1990 else
1991 break;
1993 return -1;
1998 /* Search forward to see if the source register of a copy insn dies
1999 before either it or the destination register is modified, but don't
2000 scan past the end of the basic block. If so, we can replace the
2001 source with the destination and let the source die in the copy
2002 insn.
2004 This will reduce the number of registers live in that range and may
2005 enable the destination and the source coalescing, thus often saving
2006 one register in addition to a register-register copy. */
2008 static void
2009 decrease_live_ranges_number (void)
2011 basic_block bb;
2012 rtx_insn *insn;
2013 rtx set, src, dest, dest_death, note;
2014 rtx_insn *p, *q;
2015 int sregno, dregno;
2017 if (! flag_expensive_optimizations)
2018 return;
2020 if (ira_dump_file)
2021 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2023 FOR_EACH_BB_FN (bb, cfun)
2024 FOR_BB_INSNS (bb, insn)
2026 set = single_set (insn);
2027 if (! set)
2028 continue;
2029 src = SET_SRC (set);
2030 dest = SET_DEST (set);
2031 if (! REG_P (src) || ! REG_P (dest)
2032 || find_reg_note (insn, REG_DEAD, src))
2033 continue;
2034 sregno = REGNO (src);
2035 dregno = REGNO (dest);
2037 /* We don't want to mess with hard regs if register classes
2038 are small. */
2039 if (sregno == dregno
2040 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2041 && (sregno < FIRST_PSEUDO_REGISTER
2042 || dregno < FIRST_PSEUDO_REGISTER))
2043 /* We don't see all updates to SP if they are in an
2044 auto-inc memory reference, so we must disallow this
2045 optimization on them. */
2046 || sregno == STACK_POINTER_REGNUM
2047 || dregno == STACK_POINTER_REGNUM)
2048 continue;
2050 dest_death = NULL_RTX;
2052 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2054 if (! INSN_P (p))
2055 continue;
2056 if (BLOCK_FOR_INSN (p) != bb)
2057 break;
2059 if (reg_set_p (src, p) || reg_set_p (dest, p)
2060 /* If SRC is an asm-declared register, it must not be
2061 replaced in any asm. Unfortunately, the REG_EXPR
2062 tree for the asm variable may be absent in the SRC
2063 rtx, so we can't check the actual register
2064 declaration easily (the asm operand will have it,
2065 though). To avoid complicating the test for a rare
2066 case, we just don't perform register replacement
2067 for a hard reg mentioned in an asm. */
2068 || (sregno < FIRST_PSEUDO_REGISTER
2069 && asm_noperands (PATTERN (p)) >= 0
2070 && reg_overlap_mentioned_p (src, PATTERN (p)))
2071 /* Don't change hard registers used by a call. */
2072 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2073 && find_reg_fusage (p, USE, src))
2074 /* Don't change a USE of a register. */
2075 || (GET_CODE (PATTERN (p)) == USE
2076 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2077 break;
2079 /* See if all of SRC dies in P. This test is slightly
2080 more conservative than it needs to be. */
2081 if ((note = find_regno_note (p, REG_DEAD, sregno))
2082 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2084 int failed = 0;
2086 /* We can do the optimization. Scan forward from INSN
2087 again, replacing regs as we go. Set FAILED if a
2088 replacement can't be done. In that case, we can't
2089 move the death note for SRC. This should be
2090 rare. */
2092 /* Set to stop at next insn. */
2093 for (q = next_real_insn (insn);
2094 q != next_real_insn (p);
2095 q = next_real_insn (q))
2097 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2099 /* If SRC is a hard register, we might miss
2100 some overlapping registers with
2101 validate_replace_rtx, so we would have to
2102 undo it. We can't if DEST is present in
2103 the insn, so fail in that combination of
2104 cases. */
2105 if (sregno < FIRST_PSEUDO_REGISTER
2106 && reg_mentioned_p (dest, PATTERN (q)))
2107 failed = 1;
2109 /* Attempt to replace all uses. */
2110 else if (!validate_replace_rtx (src, dest, q))
2111 failed = 1;
2113 /* If this succeeded, but some part of the
2114 register is still present, undo the
2115 replacement. */
2116 else if (sregno < FIRST_PSEUDO_REGISTER
2117 && reg_overlap_mentioned_p (src, PATTERN (q)))
2119 validate_replace_rtx (dest, src, q);
2120 failed = 1;
2124 /* If DEST dies here, remove the death note and
2125 save it for later. Make sure ALL of DEST dies
2126 here; again, this is overly conservative. */
2127 if (! dest_death
2128 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2130 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2131 remove_note (q, dest_death);
2132 else
2134 failed = 1;
2135 dest_death = 0;
2140 if (! failed)
2142 /* Move death note of SRC from P to INSN. */
2143 remove_note (p, note);
2144 XEXP (note, 1) = REG_NOTES (insn);
2145 REG_NOTES (insn) = note;
2148 /* DEST is also dead if INSN has a REG_UNUSED note for
2149 DEST. */
2150 if (! dest_death
2151 && (dest_death
2152 = find_regno_note (insn, REG_UNUSED, dregno)))
2154 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2155 remove_note (insn, dest_death);
2158 /* Put death note of DEST on P if we saw it die. */
2159 if (dest_death)
2161 XEXP (dest_death, 1) = REG_NOTES (p);
2162 REG_NOTES (p) = dest_death;
2164 break;
2167 /* If SRC is a hard register which is set or killed in
2168 some other way, we can't do this optimization. */
2169 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2170 break;
2177 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2178 static bool
2179 ira_bad_reload_regno_1 (int regno, rtx x)
2181 int x_regno, n, i;
2182 ira_allocno_t a;
2183 enum reg_class pref;
2185 /* We only deal with pseudo regs. */
2186 if (! x || GET_CODE (x) != REG)
2187 return false;
2189 x_regno = REGNO (x);
2190 if (x_regno < FIRST_PSEUDO_REGISTER)
2191 return false;
2193 /* If the pseudo prefers REGNO explicitly, then do not consider
2194 REGNO a bad spill choice. */
2195 pref = reg_preferred_class (x_regno);
2196 if (reg_class_size[pref] == 1)
2197 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2199 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2200 poor choice for a reload regno. */
2201 a = ira_regno_allocno_map[x_regno];
2202 n = ALLOCNO_NUM_OBJECTS (a);
2203 for (i = 0; i < n; i++)
2205 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2206 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2207 return true;
2209 return false;
2212 /* Return nonzero if REGNO is a particularly bad choice for reloading
2213 IN or OUT. */
2214 bool
2215 ira_bad_reload_regno (int regno, rtx in, rtx out)
2217 return (ira_bad_reload_regno_1 (regno, in)
2218 || ira_bad_reload_regno_1 (regno, out));
2221 /* Add register clobbers from asm statements. */
2222 static void
2223 compute_regs_asm_clobbered (void)
2225 basic_block bb;
2227 FOR_EACH_BB_FN (bb, cfun)
2229 rtx_insn *insn;
2230 FOR_BB_INSNS_REVERSE (bb, insn)
2232 df_ref def;
2234 if (NONDEBUG_INSN_P (insn) && extract_asm_operands (PATTERN (insn)))
2235 FOR_EACH_INSN_DEF (def, insn)
2237 unsigned int dregno = DF_REF_REGNO (def);
2238 if (HARD_REGISTER_NUM_P (dregno))
2239 add_to_hard_reg_set (&crtl->asm_clobbers,
2240 GET_MODE (DF_REF_REAL_REG (def)),
2241 dregno);
2248 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2249 REGS_EVER_LIVE. */
2250 void
2251 ira_setup_eliminable_regset (void)
2253 #ifdef ELIMINABLE_REGS
2254 int i;
2255 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2256 #endif
2257 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2258 sp for alloca. So we can't eliminate the frame pointer in that
2259 case. At some point, we should improve this by emitting the
2260 sp-adjusting insns for this case. */
2261 frame_pointer_needed
2262 = (! flag_omit_frame_pointer
2263 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2264 /* We need the frame pointer to catch stack overflow exceptions if
2265 the stack pointer is moving (as for the alloca case just above). */
2266 || (STACK_CHECK_MOVING_SP
2267 && flag_stack_check
2268 && flag_exceptions
2269 && cfun->can_throw_non_call_exceptions)
2270 || crtl->accesses_prior_frames
2271 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2272 /* We need a frame pointer for all Cilk Plus functions that use
2273 Cilk keywords. */
2274 || (flag_cilkplus && cfun->is_cilk_function)
2275 || targetm.frame_pointer_required ());
2277 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2278 RTL is very small. So if we use frame pointer for RA and RTL
2279 actually prevents this, we will spill pseudos assigned to the
2280 frame pointer in LRA. */
2282 if (frame_pointer_needed)
2283 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2285 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2286 CLEAR_HARD_REG_SET (eliminable_regset);
2288 compute_regs_asm_clobbered ();
2290 /* Build the regset of all eliminable registers and show we can't
2291 use those that we already know won't be eliminated. */
2292 #ifdef ELIMINABLE_REGS
2293 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2295 bool cannot_elim
2296 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2297 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2299 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2301 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2303 if (cannot_elim)
2304 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2306 else if (cannot_elim)
2307 error ("%s cannot be used in asm here",
2308 reg_names[eliminables[i].from]);
2309 else
2310 df_set_regs_ever_live (eliminables[i].from, true);
2312 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2314 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2316 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2317 if (frame_pointer_needed)
2318 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2320 else if (frame_pointer_needed)
2321 error ("%s cannot be used in asm here",
2322 reg_names[HARD_FRAME_POINTER_REGNUM]);
2323 else
2324 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2327 #else
2328 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2330 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
2331 if (frame_pointer_needed)
2332 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2334 else if (frame_pointer_needed)
2335 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2336 else
2337 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2338 #endif
2343 /* Vector of substitutions of register numbers,
2344 used to map pseudo regs into hardware regs.
2345 This is set up as a result of register allocation.
2346 Element N is the hard reg assigned to pseudo reg N,
2347 or is -1 if no hard reg was assigned.
2348 If N is a hard reg number, element N is N. */
2349 short *reg_renumber;
2351 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2352 the allocation found by IRA. */
2353 static void
2354 setup_reg_renumber (void)
2356 int regno, hard_regno;
2357 ira_allocno_t a;
2358 ira_allocno_iterator ai;
2360 caller_save_needed = 0;
2361 FOR_EACH_ALLOCNO (a, ai)
2363 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2364 continue;
2365 /* There are no caps at this point. */
2366 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2367 if (! ALLOCNO_ASSIGNED_P (a))
2368 /* It can happen if A is not referenced but partially anticipated
2369 somewhere in a region. */
2370 ALLOCNO_ASSIGNED_P (a) = true;
2371 ira_free_allocno_updated_costs (a);
2372 hard_regno = ALLOCNO_HARD_REGNO (a);
2373 regno = ALLOCNO_REGNO (a);
2374 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2375 if (hard_regno >= 0)
2377 int i, nwords;
2378 enum reg_class pclass;
2379 ira_object_t obj;
2381 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2382 nwords = ALLOCNO_NUM_OBJECTS (a);
2383 for (i = 0; i < nwords; i++)
2385 obj = ALLOCNO_OBJECT (a, i);
2386 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2387 reg_class_contents[pclass]);
2389 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2390 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2391 call_used_reg_set))
2393 ira_assert (!optimize || flag_caller_saves
2394 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2395 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2396 || regno >= ira_reg_equiv_len
2397 || ira_equiv_no_lvalue_p (regno));
2398 caller_save_needed = 1;
2404 /* Set up allocno assignment flags for further allocation
2405 improvements. */
2406 static void
2407 setup_allocno_assignment_flags (void)
2409 int hard_regno;
2410 ira_allocno_t a;
2411 ira_allocno_iterator ai;
2413 FOR_EACH_ALLOCNO (a, ai)
2415 if (! ALLOCNO_ASSIGNED_P (a))
2416 /* It can happen if A is not referenced but partially anticipated
2417 somewhere in a region. */
2418 ira_free_allocno_updated_costs (a);
2419 hard_regno = ALLOCNO_HARD_REGNO (a);
2420 /* Don't assign hard registers to allocnos which are destination
2421 of removed store at the end of loop. It has no sense to keep
2422 the same value in different hard registers. It is also
2423 impossible to assign hard registers correctly to such
2424 allocnos because the cost info and info about intersected
2425 calls are incorrect for them. */
2426 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2427 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2428 || (ALLOCNO_MEMORY_COST (a)
2429 - ALLOCNO_CLASS_COST (a)) < 0);
2430 ira_assert
2431 (hard_regno < 0
2432 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2433 reg_class_contents[ALLOCNO_CLASS (a)]));
2437 /* Evaluate overall allocation cost and the costs for using hard
2438 registers and memory for allocnos. */
2439 static void
2440 calculate_allocation_cost (void)
2442 int hard_regno, cost;
2443 ira_allocno_t a;
2444 ira_allocno_iterator ai;
2446 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2447 FOR_EACH_ALLOCNO (a, ai)
2449 hard_regno = ALLOCNO_HARD_REGNO (a);
2450 ira_assert (hard_regno < 0
2451 || (ira_hard_reg_in_set_p
2452 (hard_regno, ALLOCNO_MODE (a),
2453 reg_class_contents[ALLOCNO_CLASS (a)])));
2454 if (hard_regno < 0)
2456 cost = ALLOCNO_MEMORY_COST (a);
2457 ira_mem_cost += cost;
2459 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2461 cost = (ALLOCNO_HARD_REG_COSTS (a)
2462 [ira_class_hard_reg_index
2463 [ALLOCNO_CLASS (a)][hard_regno]]);
2464 ira_reg_cost += cost;
2466 else
2468 cost = ALLOCNO_CLASS_COST (a);
2469 ira_reg_cost += cost;
2471 ira_overall_cost += cost;
2474 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2476 fprintf (ira_dump_file,
2477 "+++Costs: overall %" PRId64
2478 ", reg %" PRId64
2479 ", mem %" PRId64
2480 ", ld %" PRId64
2481 ", st %" PRId64
2482 ", move %" PRId64,
2483 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2484 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2485 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2486 ira_move_loops_num, ira_additional_jumps_num);
2491 #ifdef ENABLE_IRA_CHECKING
2492 /* Check the correctness of the allocation. We do need this because
2493 of complicated code to transform more one region internal
2494 representation into one region representation. */
2495 static void
2496 check_allocation (void)
2498 ira_allocno_t a;
2499 int hard_regno, nregs, conflict_nregs;
2500 ira_allocno_iterator ai;
2502 FOR_EACH_ALLOCNO (a, ai)
2504 int n = ALLOCNO_NUM_OBJECTS (a);
2505 int i;
2507 if (ALLOCNO_CAP_MEMBER (a) != NULL
2508 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2509 continue;
2510 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2511 if (nregs == 1)
2512 /* We allocated a single hard register. */
2513 n = 1;
2514 else if (n > 1)
2515 /* We allocated multiple hard registers, and we will test
2516 conflicts in a granularity of single hard regs. */
2517 nregs = 1;
2519 for (i = 0; i < n; i++)
2521 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2522 ira_object_t conflict_obj;
2523 ira_object_conflict_iterator oci;
2524 int this_regno = hard_regno;
2525 if (n > 1)
2527 if (REG_WORDS_BIG_ENDIAN)
2528 this_regno += n - i - 1;
2529 else
2530 this_regno += i;
2532 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2534 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2535 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2536 if (conflict_hard_regno < 0)
2537 continue;
2539 conflict_nregs
2540 = (hard_regno_nregs
2541 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2543 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2544 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2546 if (REG_WORDS_BIG_ENDIAN)
2547 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2548 - OBJECT_SUBWORD (conflict_obj) - 1);
2549 else
2550 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2551 conflict_nregs = 1;
2554 if ((conflict_hard_regno <= this_regno
2555 && this_regno < conflict_hard_regno + conflict_nregs)
2556 || (this_regno <= conflict_hard_regno
2557 && conflict_hard_regno < this_regno + nregs))
2559 fprintf (stderr, "bad allocation for %d and %d\n",
2560 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2561 gcc_unreachable ();
2567 #endif
2569 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2570 be already calculated. */
2571 static void
2572 setup_reg_equiv_init (void)
2574 int i;
2575 int max_regno = max_reg_num ();
2577 for (i = 0; i < max_regno; i++)
2578 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2581 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2582 are insns which were generated for such movement. It is assumed
2583 that FROM_REGNO and TO_REGNO always have the same value at the
2584 point of any move containing such registers. This function is used
2585 to update equiv info for register shuffles on the region borders
2586 and for caller save/restore insns. */
2587 void
2588 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2590 rtx_insn *insn;
2591 rtx x, note;
2593 if (! ira_reg_equiv[from_regno].defined_p
2594 && (! ira_reg_equiv[to_regno].defined_p
2595 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2596 && ! MEM_READONLY_P (x))))
2597 return;
2598 insn = insns;
2599 if (NEXT_INSN (insn) != NULL_RTX)
2601 if (! ira_reg_equiv[to_regno].defined_p)
2603 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2604 return;
2606 ira_reg_equiv[to_regno].defined_p = false;
2607 ira_reg_equiv[to_regno].memory
2608 = ira_reg_equiv[to_regno].constant
2609 = ira_reg_equiv[to_regno].invariant
2610 = ira_reg_equiv[to_regno].init_insns = NULL;
2611 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2612 fprintf (ira_dump_file,
2613 " Invalidating equiv info for reg %d\n", to_regno);
2614 return;
2616 /* It is possible that FROM_REGNO still has no equivalence because
2617 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2618 insn was not processed yet. */
2619 if (ira_reg_equiv[from_regno].defined_p)
2621 ira_reg_equiv[to_regno].defined_p = true;
2622 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2624 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2625 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2626 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2627 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2628 ira_reg_equiv[to_regno].memory = x;
2629 if (! MEM_READONLY_P (x))
2630 /* We don't add the insn to insn init list because memory
2631 equivalence is just to say what memory is better to use
2632 when the pseudo is spilled. */
2633 return;
2635 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2637 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2638 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2639 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2640 ira_reg_equiv[to_regno].constant = x;
2642 else
2644 x = ira_reg_equiv[from_regno].invariant;
2645 ira_assert (x != NULL_RTX);
2646 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2647 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2648 ira_reg_equiv[to_regno].invariant = x;
2650 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2652 note = set_unique_reg_note (insn, REG_EQUIV, x);
2653 gcc_assert (note != NULL_RTX);
2654 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2656 fprintf (ira_dump_file,
2657 " Adding equiv note to insn %u for reg %d ",
2658 INSN_UID (insn), to_regno);
2659 dump_value_slim (ira_dump_file, x, 1);
2660 fprintf (ira_dump_file, "\n");
2664 ira_reg_equiv[to_regno].init_insns
2665 = gen_rtx_INSN_LIST (VOIDmode, insn,
2666 ira_reg_equiv[to_regno].init_insns);
2667 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2668 fprintf (ira_dump_file,
2669 " Adding equiv init move insn %u to reg %d\n",
2670 INSN_UID (insn), to_regno);
2673 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2674 by IRA. */
2675 static void
2676 fix_reg_equiv_init (void)
2678 int max_regno = max_reg_num ();
2679 int i, new_regno, max;
2680 rtx set;
2681 rtx_insn_list *x, *next, *prev;
2682 rtx_insn *insn;
2684 if (max_regno_before_ira < max_regno)
2686 max = vec_safe_length (reg_equivs);
2687 grow_reg_equivs ();
2688 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2689 for (prev = NULL, x = reg_equiv_init (i);
2690 x != NULL_RTX;
2691 x = next)
2693 next = x->next ();
2694 insn = x->insn ();
2695 set = single_set (insn);
2696 ira_assert (set != NULL_RTX
2697 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2698 if (REG_P (SET_DEST (set))
2699 && ((int) REGNO (SET_DEST (set)) == i
2700 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2701 new_regno = REGNO (SET_DEST (set));
2702 else if (REG_P (SET_SRC (set))
2703 && ((int) REGNO (SET_SRC (set)) == i
2704 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2705 new_regno = REGNO (SET_SRC (set));
2706 else
2707 gcc_unreachable ();
2708 if (new_regno == i)
2709 prev = x;
2710 else
2712 /* Remove the wrong list element. */
2713 if (prev == NULL_RTX)
2714 reg_equiv_init (i) = next;
2715 else
2716 XEXP (prev, 1) = next;
2717 XEXP (x, 1) = reg_equiv_init (new_regno);
2718 reg_equiv_init (new_regno) = x;
2724 #ifdef ENABLE_IRA_CHECKING
2725 /* Print redundant memory-memory copies. */
2726 static void
2727 print_redundant_copies (void)
2729 int hard_regno;
2730 ira_allocno_t a;
2731 ira_copy_t cp, next_cp;
2732 ira_allocno_iterator ai;
2734 FOR_EACH_ALLOCNO (a, ai)
2736 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2737 /* It is a cap. */
2738 continue;
2739 hard_regno = ALLOCNO_HARD_REGNO (a);
2740 if (hard_regno >= 0)
2741 continue;
2742 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2743 if (cp->first == a)
2744 next_cp = cp->next_first_allocno_copy;
2745 else
2747 next_cp = cp->next_second_allocno_copy;
2748 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2749 && cp->insn != NULL_RTX
2750 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2751 fprintf (ira_dump_file,
2752 " Redundant move from %d(freq %d):%d\n",
2753 INSN_UID (cp->insn), cp->freq, hard_regno);
2757 #endif
2759 /* Setup preferred and alternative classes for new pseudo-registers
2760 created by IRA starting with START. */
2761 static void
2762 setup_preferred_alternate_classes_for_new_pseudos (int start)
2764 int i, old_regno;
2765 int max_regno = max_reg_num ();
2767 for (i = start; i < max_regno; i++)
2769 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2770 ira_assert (i != old_regno);
2771 setup_reg_classes (i, reg_preferred_class (old_regno),
2772 reg_alternate_class (old_regno),
2773 reg_allocno_class (old_regno));
2774 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2775 fprintf (ira_dump_file,
2776 " New r%d: setting preferred %s, alternative %s\n",
2777 i, reg_class_names[reg_preferred_class (old_regno)],
2778 reg_class_names[reg_alternate_class (old_regno)]);
2783 /* The number of entries allocated in reg_info. */
2784 static int allocated_reg_info_size;
2786 /* Regional allocation can create new pseudo-registers. This function
2787 expands some arrays for pseudo-registers. */
2788 static void
2789 expand_reg_info (void)
2791 int i;
2792 int size = max_reg_num ();
2794 resize_reg_info ();
2795 for (i = allocated_reg_info_size; i < size; i++)
2796 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2797 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2798 allocated_reg_info_size = size;
2801 /* Return TRUE if there is too high register pressure in the function.
2802 It is used to decide when stack slot sharing is worth to do. */
2803 static bool
2804 too_high_register_pressure_p (void)
2806 int i;
2807 enum reg_class pclass;
2809 for (i = 0; i < ira_pressure_classes_num; i++)
2811 pclass = ira_pressure_classes[i];
2812 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2813 return true;
2815 return false;
2820 /* Indicate that hard register number FROM was eliminated and replaced with
2821 an offset from hard register number TO. The status of hard registers live
2822 at the start of a basic block is updated by replacing a use of FROM with
2823 a use of TO. */
2825 void
2826 mark_elimination (int from, int to)
2828 basic_block bb;
2829 bitmap r;
2831 FOR_EACH_BB_FN (bb, cfun)
2833 r = DF_LR_IN (bb);
2834 if (bitmap_bit_p (r, from))
2836 bitmap_clear_bit (r, from);
2837 bitmap_set_bit (r, to);
2839 if (! df_live)
2840 continue;
2841 r = DF_LIVE_IN (bb);
2842 if (bitmap_bit_p (r, from))
2844 bitmap_clear_bit (r, from);
2845 bitmap_set_bit (r, to);
2852 /* The length of the following array. */
2853 int ira_reg_equiv_len;
2855 /* Info about equiv. info for each register. */
2856 struct ira_reg_equiv_s *ira_reg_equiv;
2858 /* Expand ira_reg_equiv if necessary. */
2859 void
2860 ira_expand_reg_equiv (void)
2862 int old = ira_reg_equiv_len;
2864 if (ira_reg_equiv_len > max_reg_num ())
2865 return;
2866 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2867 ira_reg_equiv
2868 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2869 ira_reg_equiv_len
2870 * sizeof (struct ira_reg_equiv_s));
2871 gcc_assert (old < ira_reg_equiv_len);
2872 memset (ira_reg_equiv + old, 0,
2873 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2876 static void
2877 init_reg_equiv (void)
2879 ira_reg_equiv_len = 0;
2880 ira_reg_equiv = NULL;
2881 ira_expand_reg_equiv ();
2884 static void
2885 finish_reg_equiv (void)
2887 free (ira_reg_equiv);
2892 struct equivalence
2894 /* Set when a REG_EQUIV note is found or created. Use to
2895 keep track of what memory accesses might be created later,
2896 e.g. by reload. */
2897 rtx replacement;
2898 rtx *src_p;
2900 /* The list of each instruction which initializes this register.
2902 NULL indicates we know nothing about this register's equivalence
2903 properties.
2905 An INSN_LIST with a NULL insn indicates this pseudo is already
2906 known to not have a valid equivalence. */
2907 rtx_insn_list *init_insns;
2909 /* Loop depth is used to recognize equivalences which appear
2910 to be present within the same loop (or in an inner loop). */
2911 short loop_depth;
2912 /* Nonzero if this had a preexisting REG_EQUIV note. */
2913 unsigned char is_arg_equivalence : 1;
2914 /* Set when an attempt should be made to replace a register
2915 with the associated src_p entry. */
2916 unsigned char replace : 1;
2917 /* Set if this register has no known equivalence. */
2918 unsigned char no_equiv : 1;
2921 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2922 structure for that register. */
2923 static struct equivalence *reg_equiv;
2925 /* Used for communication between the following two functions: contains
2926 a MEM that we wish to ensure remains unchanged. */
2927 static rtx equiv_mem;
2929 /* Set nonzero if EQUIV_MEM is modified. */
2930 static int equiv_mem_modified;
2932 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2933 Called via note_stores. */
2934 static void
2935 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2936 void *data ATTRIBUTE_UNUSED)
2938 if ((REG_P (dest)
2939 && reg_overlap_mentioned_p (dest, equiv_mem))
2940 || (MEM_P (dest)
2941 && anti_dependence (equiv_mem, dest)))
2942 equiv_mem_modified = 1;
2945 /* Verify that no store between START and the death of REG invalidates
2946 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2947 by storing into an overlapping memory location, or with a non-const
2948 CALL_INSN.
2950 Return 1 if MEMREF remains valid. */
2951 static int
2952 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2954 rtx_insn *insn;
2955 rtx note;
2957 equiv_mem = memref;
2958 equiv_mem_modified = 0;
2960 /* If the memory reference has side effects or is volatile, it isn't a
2961 valid equivalence. */
2962 if (side_effects_p (memref))
2963 return 0;
2965 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2967 if (! INSN_P (insn))
2968 continue;
2970 if (find_reg_note (insn, REG_DEAD, reg))
2971 return 1;
2973 /* This used to ignore readonly memory and const/pure calls. The problem
2974 is the equivalent form may reference a pseudo which gets assigned a
2975 call clobbered hard reg. When we later replace REG with its
2976 equivalent form, the value in the call-clobbered reg has been
2977 changed and all hell breaks loose. */
2978 if (CALL_P (insn))
2979 return 0;
2981 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2983 /* If a register mentioned in MEMREF is modified via an
2984 auto-increment, we lose the equivalence. Do the same if one
2985 dies; although we could extend the life, it doesn't seem worth
2986 the trouble. */
2988 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2989 if ((REG_NOTE_KIND (note) == REG_INC
2990 || REG_NOTE_KIND (note) == REG_DEAD)
2991 && REG_P (XEXP (note, 0))
2992 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2993 return 0;
2996 return 0;
2999 /* Returns zero if X is known to be invariant. */
3000 static int
3001 equiv_init_varies_p (rtx x)
3003 RTX_CODE code = GET_CODE (x);
3004 int i;
3005 const char *fmt;
3007 switch (code)
3009 case MEM:
3010 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3012 case CONST:
3013 CASE_CONST_ANY:
3014 case SYMBOL_REF:
3015 case LABEL_REF:
3016 return 0;
3018 case REG:
3019 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3021 case ASM_OPERANDS:
3022 if (MEM_VOLATILE_P (x))
3023 return 1;
3025 /* Fall through. */
3027 default:
3028 break;
3031 fmt = GET_RTX_FORMAT (code);
3032 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3033 if (fmt[i] == 'e')
3035 if (equiv_init_varies_p (XEXP (x, i)))
3036 return 1;
3038 else if (fmt[i] == 'E')
3040 int j;
3041 for (j = 0; j < XVECLEN (x, i); j++)
3042 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3043 return 1;
3046 return 0;
3049 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3050 X is only movable if the registers it uses have equivalent initializations
3051 which appear to be within the same loop (or in an inner loop) and movable
3052 or if they are not candidates for local_alloc and don't vary. */
3053 static int
3054 equiv_init_movable_p (rtx x, int regno)
3056 int i, j;
3057 const char *fmt;
3058 enum rtx_code code = GET_CODE (x);
3060 switch (code)
3062 case SET:
3063 return equiv_init_movable_p (SET_SRC (x), regno);
3065 case CC0:
3066 case CLOBBER:
3067 return 0;
3069 case PRE_INC:
3070 case PRE_DEC:
3071 case POST_INC:
3072 case POST_DEC:
3073 case PRE_MODIFY:
3074 case POST_MODIFY:
3075 return 0;
3077 case REG:
3078 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3079 && reg_equiv[REGNO (x)].replace)
3080 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3081 && ! rtx_varies_p (x, 0)));
3083 case UNSPEC_VOLATILE:
3084 return 0;
3086 case ASM_OPERANDS:
3087 if (MEM_VOLATILE_P (x))
3088 return 0;
3090 /* Fall through. */
3092 default:
3093 break;
3096 fmt = GET_RTX_FORMAT (code);
3097 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3098 switch (fmt[i])
3100 case 'e':
3101 if (! equiv_init_movable_p (XEXP (x, i), regno))
3102 return 0;
3103 break;
3104 case 'E':
3105 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3106 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3107 return 0;
3108 break;
3111 return 1;
3114 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3115 true. */
3116 static int
3117 contains_replace_regs (rtx x)
3119 int i, j;
3120 const char *fmt;
3121 enum rtx_code code = GET_CODE (x);
3123 switch (code)
3125 case CONST:
3126 case LABEL_REF:
3127 case SYMBOL_REF:
3128 CASE_CONST_ANY:
3129 case PC:
3130 case CC0:
3131 case HIGH:
3132 return 0;
3134 case REG:
3135 return reg_equiv[REGNO (x)].replace;
3137 default:
3138 break;
3141 fmt = GET_RTX_FORMAT (code);
3142 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3143 switch (fmt[i])
3145 case 'e':
3146 if (contains_replace_regs (XEXP (x, i)))
3147 return 1;
3148 break;
3149 case 'E':
3150 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3151 if (contains_replace_regs (XVECEXP (x, i, j)))
3152 return 1;
3153 break;
3156 return 0;
3159 /* TRUE if X references a memory location that would be affected by a store
3160 to MEMREF. */
3161 static int
3162 memref_referenced_p (rtx memref, rtx x)
3164 int i, j;
3165 const char *fmt;
3166 enum rtx_code code = GET_CODE (x);
3168 switch (code)
3170 case CONST:
3171 case LABEL_REF:
3172 case SYMBOL_REF:
3173 CASE_CONST_ANY:
3174 case PC:
3175 case CC0:
3176 case HIGH:
3177 case LO_SUM:
3178 return 0;
3180 case REG:
3181 return (reg_equiv[REGNO (x)].replacement
3182 && memref_referenced_p (memref,
3183 reg_equiv[REGNO (x)].replacement));
3185 case MEM:
3186 if (true_dependence (memref, VOIDmode, x))
3187 return 1;
3188 break;
3190 case SET:
3191 /* If we are setting a MEM, it doesn't count (its address does), but any
3192 other SET_DEST that has a MEM in it is referencing the MEM. */
3193 if (MEM_P (SET_DEST (x)))
3195 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3196 return 1;
3198 else if (memref_referenced_p (memref, SET_DEST (x)))
3199 return 1;
3201 return memref_referenced_p (memref, SET_SRC (x));
3203 default:
3204 break;
3207 fmt = GET_RTX_FORMAT (code);
3208 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3209 switch (fmt[i])
3211 case 'e':
3212 if (memref_referenced_p (memref, XEXP (x, i)))
3213 return 1;
3214 break;
3215 case 'E':
3216 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3217 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3218 return 1;
3219 break;
3222 return 0;
3225 /* TRUE if some insn in the range (START, END] references a memory location
3226 that would be affected by a store to MEMREF. */
3227 static int
3228 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3230 rtx_insn *insn;
3232 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
3233 insn = NEXT_INSN (insn))
3235 if (!NONDEBUG_INSN_P (insn))
3236 continue;
3238 if (memref_referenced_p (memref, PATTERN (insn)))
3239 return 1;
3241 /* Nonconst functions may access memory. */
3242 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3243 return 1;
3246 return 0;
3249 /* Mark REG as having no known equivalence.
3250 Some instructions might have been processed before and furnished
3251 with REG_EQUIV notes for this register; these notes will have to be
3252 removed.
3253 STORE is the piece of RTL that does the non-constant / conflicting
3254 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3255 but needs to be there because this function is called from note_stores. */
3256 static void
3257 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3258 void *data ATTRIBUTE_UNUSED)
3260 int regno;
3261 rtx_insn_list *list;
3263 if (!REG_P (reg))
3264 return;
3265 regno = REGNO (reg);
3266 reg_equiv[regno].no_equiv = 1;
3267 list = reg_equiv[regno].init_insns;
3268 if (list && list->insn () == NULL)
3269 return;
3270 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3271 reg_equiv[regno].replacement = NULL_RTX;
3272 /* This doesn't matter for equivalences made for argument registers, we
3273 should keep their initialization insns. */
3274 if (reg_equiv[regno].is_arg_equivalence)
3275 return;
3276 ira_reg_equiv[regno].defined_p = false;
3277 ira_reg_equiv[regno].init_insns = NULL;
3278 for (; list; list = list->next ())
3280 rtx_insn *insn = list->insn ();
3281 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3285 /* Check whether the SUBREG is a paradoxical subreg and set the result
3286 in PDX_SUBREGS. */
3288 static void
3289 set_paradoxical_subreg (rtx_insn *insn, bool *pdx_subregs)
3291 subrtx_iterator::array_type array;
3292 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3294 const_rtx subreg = *iter;
3295 if (GET_CODE (subreg) == SUBREG)
3297 const_rtx reg = SUBREG_REG (subreg);
3298 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3299 pdx_subregs[REGNO (reg)] = true;
3304 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3305 equivalent replacement. */
3307 static rtx
3308 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3310 if (REG_P (loc))
3312 bitmap cleared_regs = (bitmap) data;
3313 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3314 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3315 NULL_RTX, adjust_cleared_regs, data);
3317 return NULL_RTX;
3320 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
3321 static int recorded_label_ref;
3323 /* Find registers that are equivalent to a single value throughout the
3324 compilation (either because they can be referenced in memory or are
3325 set once from a single constant). Lower their priority for a
3326 register.
3328 If such a register is only referenced once, try substituting its
3329 value into the using insn. If it succeeds, we can eliminate the
3330 register completely.
3332 Initialize init_insns in ira_reg_equiv array.
3334 Return non-zero if jump label rebuilding should be done. */
3335 static int
3336 update_equiv_regs (void)
3338 rtx_insn *insn;
3339 basic_block bb;
3340 int loop_depth;
3341 bitmap cleared_regs;
3342 bool *pdx_subregs;
3344 /* We need to keep track of whether or not we recorded a LABEL_REF so
3345 that we know if the jump optimizer needs to be rerun. */
3346 recorded_label_ref = 0;
3348 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3349 subreg. */
3350 pdx_subregs = XCNEWVEC (bool, max_regno);
3352 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
3353 grow_reg_equivs ();
3355 init_alias_analysis ();
3357 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3358 paradoxical subreg. Don't set such reg equivalent to a mem,
3359 because lra will not substitute such equiv memory in order to
3360 prevent access beyond allocated memory for paradoxical memory subreg. */
3361 FOR_EACH_BB_FN (bb, cfun)
3362 FOR_BB_INSNS (bb, insn)
3363 if (NONDEBUG_INSN_P (insn))
3364 set_paradoxical_subreg (insn, pdx_subregs);
3366 /* Scan the insns and find which registers have equivalences. Do this
3367 in a separate scan of the insns because (due to -fcse-follow-jumps)
3368 a register can be set below its use. */
3369 FOR_EACH_BB_FN (bb, cfun)
3371 loop_depth = bb_loop_depth (bb);
3373 for (insn = BB_HEAD (bb);
3374 insn != NEXT_INSN (BB_END (bb));
3375 insn = NEXT_INSN (insn))
3377 rtx note;
3378 rtx set;
3379 rtx dest, src;
3380 int regno;
3382 if (! INSN_P (insn))
3383 continue;
3385 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3386 if (REG_NOTE_KIND (note) == REG_INC)
3387 no_equiv (XEXP (note, 0), note, NULL);
3389 set = single_set (insn);
3391 /* If this insn contains more (or less) than a single SET,
3392 only mark all destinations as having no known equivalence. */
3393 if (set == NULL_RTX)
3395 note_stores (PATTERN (insn), no_equiv, NULL);
3396 continue;
3398 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3400 int i;
3402 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3404 rtx part = XVECEXP (PATTERN (insn), 0, i);
3405 if (part != set)
3406 note_stores (part, no_equiv, NULL);
3410 dest = SET_DEST (set);
3411 src = SET_SRC (set);
3413 /* See if this is setting up the equivalence between an argument
3414 register and its stack slot. */
3415 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3416 if (note)
3418 gcc_assert (REG_P (dest));
3419 regno = REGNO (dest);
3421 /* Note that we don't want to clear init_insns in
3422 ira_reg_equiv even if there are multiple sets of this
3423 register. */
3424 reg_equiv[regno].is_arg_equivalence = 1;
3426 /* The insn result can have equivalence memory although
3427 the equivalence is not set up by the insn. We add
3428 this insn to init insns as it is a flag for now that
3429 regno has an equivalence. We will remove the insn
3430 from init insn list later. */
3431 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3432 ira_reg_equiv[regno].init_insns
3433 = gen_rtx_INSN_LIST (VOIDmode, insn,
3434 ira_reg_equiv[regno].init_insns);
3436 /* Continue normally in case this is a candidate for
3437 replacements. */
3440 if (!optimize)
3441 continue;
3443 /* We only handle the case of a pseudo register being set
3444 once, or always to the same value. */
3445 /* ??? The mn10200 port breaks if we add equivalences for
3446 values that need an ADDRESS_REGS register and set them equivalent
3447 to a MEM of a pseudo. The actual problem is in the over-conservative
3448 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3449 calculate_needs, but we traditionally work around this problem
3450 here by rejecting equivalences when the destination is in a register
3451 that's likely spilled. This is fragile, of course, since the
3452 preferred class of a pseudo depends on all instructions that set
3453 or use it. */
3455 if (!REG_P (dest)
3456 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3457 || (reg_equiv[regno].init_insns
3458 && reg_equiv[regno].init_insns->insn () == NULL)
3459 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3460 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3462 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3463 also set somewhere else to a constant. */
3464 note_stores (set, no_equiv, NULL);
3465 continue;
3468 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3469 if (MEM_P (src) && pdx_subregs[regno])
3471 note_stores (set, no_equiv, NULL);
3472 continue;
3475 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3477 /* cse sometimes generates function invariants, but doesn't put a
3478 REG_EQUAL note on the insn. Since this note would be redundant,
3479 there's no point creating it earlier than here. */
3480 if (! note && ! rtx_varies_p (src, 0))
3481 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3483 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3484 since it represents a function call. */
3485 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3486 note = NULL_RTX;
3488 if (DF_REG_DEF_COUNT (regno) != 1)
3490 bool equal_p = true;
3491 rtx_insn_list *list;
3493 /* If we have already processed this pseudo and determined it
3494 can not have an equivalence, then honor that decision. */
3495 if (reg_equiv[regno].no_equiv)
3496 continue;
3498 if (! note
3499 || rtx_varies_p (XEXP (note, 0), 0)
3500 || (reg_equiv[regno].replacement
3501 && ! rtx_equal_p (XEXP (note, 0),
3502 reg_equiv[regno].replacement)))
3504 no_equiv (dest, set, NULL);
3505 continue;
3508 list = reg_equiv[regno].init_insns;
3509 for (; list; list = list->next ())
3511 rtx note_tmp;
3512 rtx_insn *insn_tmp;
3514 insn_tmp = list->insn ();
3515 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3516 gcc_assert (note_tmp);
3517 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3519 equal_p = false;
3520 break;
3524 if (! equal_p)
3526 no_equiv (dest, set, NULL);
3527 continue;
3531 /* Record this insn as initializing this register. */
3532 reg_equiv[regno].init_insns
3533 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3535 /* If this register is known to be equal to a constant, record that
3536 it is always equivalent to the constant. */
3537 if (DF_REG_DEF_COUNT (regno) == 1
3538 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3540 rtx note_value = XEXP (note, 0);
3541 remove_note (insn, note);
3542 set_unique_reg_note (insn, REG_EQUIV, note_value);
3545 /* If this insn introduces a "constant" register, decrease the priority
3546 of that register. Record this insn if the register is only used once
3547 more and the equivalence value is the same as our source.
3549 The latter condition is checked for two reasons: First, it is an
3550 indication that it may be more efficient to actually emit the insn
3551 as written (if no registers are available, reload will substitute
3552 the equivalence). Secondly, it avoids problems with any registers
3553 dying in this insn whose death notes would be missed.
3555 If we don't have a REG_EQUIV note, see if this insn is loading
3556 a register used only in one basic block from a MEM. If so, and the
3557 MEM remains unchanged for the life of the register, add a REG_EQUIV
3558 note. */
3559 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3561 if (note == NULL_RTX && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3562 && MEM_P (SET_SRC (set))
3563 && validate_equiv_mem (insn, dest, SET_SRC (set)))
3564 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3566 if (note)
3568 int regno = REGNO (dest);
3569 rtx x = XEXP (note, 0);
3571 /* If we haven't done so, record for reload that this is an
3572 equivalencing insn. */
3573 if (!reg_equiv[regno].is_arg_equivalence)
3574 ira_reg_equiv[regno].init_insns
3575 = gen_rtx_INSN_LIST (VOIDmode, insn,
3576 ira_reg_equiv[regno].init_insns);
3578 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3579 We might end up substituting the LABEL_REF for uses of the
3580 pseudo here or later. That kind of transformation may turn an
3581 indirect jump into a direct jump, in which case we must rerun the
3582 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3583 if (GET_CODE (x) == LABEL_REF
3584 || (GET_CODE (x) == CONST
3585 && GET_CODE (XEXP (x, 0)) == PLUS
3586 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
3587 recorded_label_ref = 1;
3589 reg_equiv[regno].replacement = x;
3590 reg_equiv[regno].src_p = &SET_SRC (set);
3591 reg_equiv[regno].loop_depth = (short) loop_depth;
3593 /* Don't mess with things live during setjmp. */
3594 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3596 /* Note that the statement below does not affect the priority
3597 in local-alloc! */
3598 REG_LIVE_LENGTH (regno) *= 2;
3600 /* If the register is referenced exactly twice, meaning it is
3601 set once and used once, indicate that the reference may be
3602 replaced by the equivalence we computed above. Do this
3603 even if the register is only used in one block so that
3604 dependencies can be handled where the last register is
3605 used in a different block (i.e. HIGH / LO_SUM sequences)
3606 and to reduce the number of registers alive across
3607 calls. */
3609 if (REG_N_REFS (regno) == 2
3610 && (rtx_equal_p (x, src)
3611 || ! equiv_init_varies_p (src))
3612 && NONJUMP_INSN_P (insn)
3613 && equiv_init_movable_p (PATTERN (insn), regno))
3614 reg_equiv[regno].replace = 1;
3620 if (!optimize)
3621 goto out;
3623 /* A second pass, to gather additional equivalences with memory. This needs
3624 to be done after we know which registers we are going to replace. */
3626 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3628 rtx set, src, dest;
3629 unsigned regno;
3631 if (! INSN_P (insn))
3632 continue;
3634 set = single_set (insn);
3635 if (! set)
3636 continue;
3638 dest = SET_DEST (set);
3639 src = SET_SRC (set);
3641 /* If this sets a MEM to the contents of a REG that is only used
3642 in a single basic block, see if the register is always equivalent
3643 to that memory location and if moving the store from INSN to the
3644 insn that set REG is safe. If so, put a REG_EQUIV note on the
3645 initializing insn.
3647 Don't add a REG_EQUIV note if the insn already has one. The existing
3648 REG_EQUIV is likely more useful than the one we are adding.
3650 If one of the regs in the address has reg_equiv[REGNO].replace set,
3651 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3652 optimization may move the set of this register immediately before
3653 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3654 the mention in the REG_EQUIV note would be to an uninitialized
3655 pseudo. */
3657 if (MEM_P (dest) && REG_P (src)
3658 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3659 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3660 && DF_REG_DEF_COUNT (regno) == 1
3661 && reg_equiv[regno].init_insns != NULL
3662 && reg_equiv[regno].init_insns->insn () != NULL
3663 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3664 REG_EQUIV, NULL_RTX)
3665 && ! contains_replace_regs (XEXP (dest, 0))
3666 && ! pdx_subregs[regno])
3668 rtx_insn *init_insn =
3669 as_a <rtx_insn *> (XEXP (reg_equiv[regno].init_insns, 0));
3670 if (validate_equiv_mem (init_insn, src, dest)
3671 && ! memref_used_between_p (dest, init_insn, insn)
3672 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3673 multiple sets. */
3674 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3676 /* This insn makes the equivalence, not the one initializing
3677 the register. */
3678 ira_reg_equiv[regno].init_insns
3679 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3680 df_notes_rescan (init_insn);
3685 cleared_regs = BITMAP_ALLOC (NULL);
3686 /* Now scan all regs killed in an insn to see if any of them are
3687 registers only used that once. If so, see if we can replace the
3688 reference with the equivalent form. If we can, delete the
3689 initializing reference and this register will go away. If we
3690 can't replace the reference, and the initializing reference is
3691 within the same loop (or in an inner loop), then move the register
3692 initialization just before the use, so that they are in the same
3693 basic block. */
3694 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3696 loop_depth = bb_loop_depth (bb);
3697 for (insn = BB_END (bb);
3698 insn != PREV_INSN (BB_HEAD (bb));
3699 insn = PREV_INSN (insn))
3701 rtx link;
3703 if (! INSN_P (insn))
3704 continue;
3706 /* Don't substitute into a non-local goto, this confuses CFG. */
3707 if (JUMP_P (insn)
3708 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3709 continue;
3711 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3713 if (REG_NOTE_KIND (link) == REG_DEAD
3714 /* Make sure this insn still refers to the register. */
3715 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3717 int regno = REGNO (XEXP (link, 0));
3718 rtx equiv_insn;
3720 if (! reg_equiv[regno].replace
3721 || reg_equiv[regno].loop_depth < (short) loop_depth
3722 /* There is no sense to move insns if live range
3723 shrinkage or register pressure-sensitive
3724 scheduling were done because it will not
3725 improve allocation but worsen insn schedule
3726 with a big probability. */
3727 || flag_live_range_shrinkage
3728 || (flag_sched_pressure && flag_schedule_insns))
3729 continue;
3731 /* reg_equiv[REGNO].replace gets set only when
3732 REG_N_REFS[REGNO] is 2, i.e. the register is set
3733 once and used once. (If it were only set, but
3734 not used, flow would have deleted the setting
3735 insns.) Hence there can only be one insn in
3736 reg_equiv[REGNO].init_insns. */
3737 gcc_assert (reg_equiv[regno].init_insns
3738 && !XEXP (reg_equiv[regno].init_insns, 1));
3739 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3741 /* We may not move instructions that can throw, since
3742 that changes basic block boundaries and we are not
3743 prepared to adjust the CFG to match. */
3744 if (can_throw_internal (equiv_insn))
3745 continue;
3747 if (asm_noperands (PATTERN (equiv_insn)) < 0
3748 && validate_replace_rtx (regno_reg_rtx[regno],
3749 *(reg_equiv[regno].src_p), insn))
3751 rtx equiv_link;
3752 rtx last_link;
3753 rtx note;
3755 /* Find the last note. */
3756 for (last_link = link; XEXP (last_link, 1);
3757 last_link = XEXP (last_link, 1))
3760 /* Append the REG_DEAD notes from equiv_insn. */
3761 equiv_link = REG_NOTES (equiv_insn);
3762 while (equiv_link)
3764 note = equiv_link;
3765 equiv_link = XEXP (equiv_link, 1);
3766 if (REG_NOTE_KIND (note) == REG_DEAD)
3768 remove_note (equiv_insn, note);
3769 XEXP (last_link, 1) = note;
3770 XEXP (note, 1) = NULL_RTX;
3771 last_link = note;
3775 remove_death (regno, insn);
3776 SET_REG_N_REFS (regno, 0);
3777 REG_FREQ (regno) = 0;
3778 delete_insn (equiv_insn);
3780 reg_equiv[regno].init_insns
3781 = reg_equiv[regno].init_insns->next ();
3783 ira_reg_equiv[regno].init_insns = NULL;
3784 bitmap_set_bit (cleared_regs, regno);
3786 /* Move the initialization of the register to just before
3787 INSN. Update the flow information. */
3788 else if (prev_nondebug_insn (insn) != equiv_insn)
3790 rtx_insn *new_insn;
3792 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3793 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3794 REG_NOTES (equiv_insn) = 0;
3795 /* Rescan it to process the notes. */
3796 df_insn_rescan (new_insn);
3798 /* Make sure this insn is recognized before
3799 reload begins, otherwise
3800 eliminate_regs_in_insn will die. */
3801 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3803 delete_insn (equiv_insn);
3805 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3807 REG_BASIC_BLOCK (regno) = bb->index;
3808 REG_N_CALLS_CROSSED (regno) = 0;
3809 REG_FREQ_CALLS_CROSSED (regno) = 0;
3810 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3811 REG_LIVE_LENGTH (regno) = 2;
3813 if (insn == BB_HEAD (bb))
3814 BB_HEAD (bb) = PREV_INSN (insn);
3816 ira_reg_equiv[regno].init_insns
3817 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3818 bitmap_set_bit (cleared_regs, regno);
3825 if (!bitmap_empty_p (cleared_regs))
3827 FOR_EACH_BB_FN (bb, cfun)
3829 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3830 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3831 if (! df_live)
3832 continue;
3833 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3834 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3837 /* Last pass - adjust debug insns referencing cleared regs. */
3838 if (MAY_HAVE_DEBUG_INSNS)
3839 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3840 if (DEBUG_INSN_P (insn))
3842 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3843 INSN_VAR_LOCATION_LOC (insn)
3844 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3845 adjust_cleared_regs,
3846 (void *) cleared_regs);
3847 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3848 df_insn_rescan (insn);
3852 BITMAP_FREE (cleared_regs);
3854 out:
3855 /* Clean up. */
3857 end_alias_analysis ();
3858 free (reg_equiv);
3859 free (pdx_subregs);
3860 return recorded_label_ref;
3865 /* Set up fields memory, constant, and invariant from init_insns in
3866 the structures of array ira_reg_equiv. */
3867 static void
3868 setup_reg_equiv (void)
3870 int i;
3871 rtx_insn_list *elem, *prev_elem, *next_elem;
3872 rtx_insn *insn;
3873 rtx set, x;
3875 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3876 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3877 elem;
3878 prev_elem = elem, elem = next_elem)
3880 next_elem = elem->next ();
3881 insn = elem->insn ();
3882 set = single_set (insn);
3884 /* Init insns can set up equivalence when the reg is a destination or
3885 a source (in this case the destination is memory). */
3886 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3888 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3890 x = XEXP (x, 0);
3891 if (REG_P (SET_DEST (set))
3892 && REGNO (SET_DEST (set)) == (unsigned int) i
3893 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3895 /* This insn reporting the equivalence but
3896 actually not setting it. Remove it from the
3897 list. */
3898 if (prev_elem == NULL)
3899 ira_reg_equiv[i].init_insns = next_elem;
3900 else
3901 XEXP (prev_elem, 1) = next_elem;
3902 elem = prev_elem;
3905 else if (REG_P (SET_DEST (set))
3906 && REGNO (SET_DEST (set)) == (unsigned int) i)
3907 x = SET_SRC (set);
3908 else
3910 gcc_assert (REG_P (SET_SRC (set))
3911 && REGNO (SET_SRC (set)) == (unsigned int) i);
3912 x = SET_DEST (set);
3914 if (! function_invariant_p (x)
3915 || ! flag_pic
3916 /* A function invariant is often CONSTANT_P but may
3917 include a register. We promise to only pass
3918 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3919 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3921 /* It can happen that a REG_EQUIV note contains a MEM
3922 that is not a legitimate memory operand. As later
3923 stages of reload assume that all addresses found in
3924 the lra_regno_equiv_* arrays were originally
3925 legitimate, we ignore such REG_EQUIV notes. */
3926 if (memory_operand (x, VOIDmode))
3928 ira_reg_equiv[i].defined_p = true;
3929 ira_reg_equiv[i].memory = x;
3930 continue;
3932 else if (function_invariant_p (x))
3934 machine_mode mode;
3936 mode = GET_MODE (SET_DEST (set));
3937 if (GET_CODE (x) == PLUS
3938 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3939 /* This is PLUS of frame pointer and a constant,
3940 or fp, or argp. */
3941 ira_reg_equiv[i].invariant = x;
3942 else if (targetm.legitimate_constant_p (mode, x))
3943 ira_reg_equiv[i].constant = x;
3944 else
3946 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3947 if (ira_reg_equiv[i].memory == NULL_RTX)
3949 ira_reg_equiv[i].defined_p = false;
3950 ira_reg_equiv[i].init_insns = NULL;
3951 break;
3954 ira_reg_equiv[i].defined_p = true;
3955 continue;
3959 ira_reg_equiv[i].defined_p = false;
3960 ira_reg_equiv[i].init_insns = NULL;
3961 break;
3967 /* Print chain C to FILE. */
3968 static void
3969 print_insn_chain (FILE *file, struct insn_chain *c)
3971 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
3972 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3973 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3977 /* Print all reload_insn_chains to FILE. */
3978 static void
3979 print_insn_chains (FILE *file)
3981 struct insn_chain *c;
3982 for (c = reload_insn_chain; c ; c = c->next)
3983 print_insn_chain (file, c);
3986 /* Return true if pseudo REGNO should be added to set live_throughout
3987 or dead_or_set of the insn chains for reload consideration. */
3988 static bool
3989 pseudo_for_reload_consideration_p (int regno)
3991 /* Consider spilled pseudos too for IRA because they still have a
3992 chance to get hard-registers in the reload when IRA is used. */
3993 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
3996 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3997 REG to the number of nregs, and INIT_VALUE to get the
3998 initialization. ALLOCNUM need not be the regno of REG. */
3999 static void
4000 init_live_subregs (bool init_value, sbitmap *live_subregs,
4001 bitmap live_subregs_used, int allocnum, rtx reg)
4003 unsigned int regno = REGNO (SUBREG_REG (reg));
4004 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4006 gcc_assert (size > 0);
4008 /* Been there, done that. */
4009 if (bitmap_bit_p (live_subregs_used, allocnum))
4010 return;
4012 /* Create a new one. */
4013 if (live_subregs[allocnum] == NULL)
4014 live_subregs[allocnum] = sbitmap_alloc (size);
4016 /* If the entire reg was live before blasting into subregs, we need
4017 to init all of the subregs to ones else init to 0. */
4018 if (init_value)
4019 bitmap_ones (live_subregs[allocnum]);
4020 else
4021 bitmap_clear (live_subregs[allocnum]);
4023 bitmap_set_bit (live_subregs_used, allocnum);
4026 /* Walk the insns of the current function and build reload_insn_chain,
4027 and record register life information. */
4028 static void
4029 build_insn_chain (void)
4031 unsigned int i;
4032 struct insn_chain **p = &reload_insn_chain;
4033 basic_block bb;
4034 struct insn_chain *c = NULL;
4035 struct insn_chain *next = NULL;
4036 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4037 bitmap elim_regset = BITMAP_ALLOC (NULL);
4038 /* live_subregs is a vector used to keep accurate information about
4039 which hardregs are live in multiword pseudos. live_subregs and
4040 live_subregs_used are indexed by pseudo number. The live_subreg
4041 entry for a particular pseudo is only used if the corresponding
4042 element is non zero in live_subregs_used. The sbitmap size of
4043 live_subreg[allocno] is number of bytes that the pseudo can
4044 occupy. */
4045 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4046 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4048 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4049 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4050 bitmap_set_bit (elim_regset, i);
4051 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4053 bitmap_iterator bi;
4054 rtx_insn *insn;
4056 CLEAR_REG_SET (live_relevant_regs);
4057 bitmap_clear (live_subregs_used);
4059 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4061 if (i >= FIRST_PSEUDO_REGISTER)
4062 break;
4063 bitmap_set_bit (live_relevant_regs, i);
4066 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4067 FIRST_PSEUDO_REGISTER, i, bi)
4069 if (pseudo_for_reload_consideration_p (i))
4070 bitmap_set_bit (live_relevant_regs, i);
4073 FOR_BB_INSNS_REVERSE (bb, insn)
4075 if (!NOTE_P (insn) && !BARRIER_P (insn))
4077 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4078 df_ref def, use;
4080 c = new_insn_chain ();
4081 c->next = next;
4082 next = c;
4083 *p = c;
4084 p = &c->prev;
4086 c->insn = insn;
4087 c->block = bb->index;
4089 if (NONDEBUG_INSN_P (insn))
4090 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4092 unsigned int regno = DF_REF_REGNO (def);
4094 /* Ignore may clobbers because these are generated
4095 from calls. However, every other kind of def is
4096 added to dead_or_set. */
4097 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4099 if (regno < FIRST_PSEUDO_REGISTER)
4101 if (!fixed_regs[regno])
4102 bitmap_set_bit (&c->dead_or_set, regno);
4104 else if (pseudo_for_reload_consideration_p (regno))
4105 bitmap_set_bit (&c->dead_or_set, regno);
4108 if ((regno < FIRST_PSEUDO_REGISTER
4109 || reg_renumber[regno] >= 0
4110 || ira_conflicts_p)
4111 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4113 rtx reg = DF_REF_REG (def);
4115 /* We can model subregs, but not if they are
4116 wrapped in ZERO_EXTRACTS. */
4117 if (GET_CODE (reg) == SUBREG
4118 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4120 unsigned int start = SUBREG_BYTE (reg);
4121 unsigned int last = start
4122 + GET_MODE_SIZE (GET_MODE (reg));
4124 init_live_subregs
4125 (bitmap_bit_p (live_relevant_regs, regno),
4126 live_subregs, live_subregs_used, regno, reg);
4128 if (!DF_REF_FLAGS_IS_SET
4129 (def, DF_REF_STRICT_LOW_PART))
4131 /* Expand the range to cover entire words.
4132 Bytes added here are "don't care". */
4133 start
4134 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4135 last = ((last + UNITS_PER_WORD - 1)
4136 / UNITS_PER_WORD * UNITS_PER_WORD);
4139 /* Ignore the paradoxical bits. */
4140 if (last > SBITMAP_SIZE (live_subregs[regno]))
4141 last = SBITMAP_SIZE (live_subregs[regno]);
4143 while (start < last)
4145 bitmap_clear_bit (live_subregs[regno], start);
4146 start++;
4149 if (bitmap_empty_p (live_subregs[regno]))
4151 bitmap_clear_bit (live_subregs_used, regno);
4152 bitmap_clear_bit (live_relevant_regs, regno);
4154 else
4155 /* Set live_relevant_regs here because
4156 that bit has to be true to get us to
4157 look at the live_subregs fields. */
4158 bitmap_set_bit (live_relevant_regs, regno);
4160 else
4162 /* DF_REF_PARTIAL is generated for
4163 subregs, STRICT_LOW_PART, and
4164 ZERO_EXTRACT. We handle the subreg
4165 case above so here we have to keep from
4166 modeling the def as a killing def. */
4167 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4169 bitmap_clear_bit (live_subregs_used, regno);
4170 bitmap_clear_bit (live_relevant_regs, regno);
4176 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4177 bitmap_copy (&c->live_throughout, live_relevant_regs);
4179 if (NONDEBUG_INSN_P (insn))
4180 FOR_EACH_INSN_INFO_USE (use, insn_info)
4182 unsigned int regno = DF_REF_REGNO (use);
4183 rtx reg = DF_REF_REG (use);
4185 /* DF_REF_READ_WRITE on a use means that this use
4186 is fabricated from a def that is a partial set
4187 to a multiword reg. Here, we only model the
4188 subreg case that is not wrapped in ZERO_EXTRACT
4189 precisely so we do not need to look at the
4190 fabricated use. */
4191 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4192 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4193 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4194 continue;
4196 /* Add the last use of each var to dead_or_set. */
4197 if (!bitmap_bit_p (live_relevant_regs, regno))
4199 if (regno < FIRST_PSEUDO_REGISTER)
4201 if (!fixed_regs[regno])
4202 bitmap_set_bit (&c->dead_or_set, regno);
4204 else if (pseudo_for_reload_consideration_p (regno))
4205 bitmap_set_bit (&c->dead_or_set, regno);
4208 if (regno < FIRST_PSEUDO_REGISTER
4209 || pseudo_for_reload_consideration_p (regno))
4211 if (GET_CODE (reg) == SUBREG
4212 && !DF_REF_FLAGS_IS_SET (use,
4213 DF_REF_SIGN_EXTRACT
4214 | DF_REF_ZERO_EXTRACT))
4216 unsigned int start = SUBREG_BYTE (reg);
4217 unsigned int last = start
4218 + GET_MODE_SIZE (GET_MODE (reg));
4220 init_live_subregs
4221 (bitmap_bit_p (live_relevant_regs, regno),
4222 live_subregs, live_subregs_used, regno, reg);
4224 /* Ignore the paradoxical bits. */
4225 if (last > SBITMAP_SIZE (live_subregs[regno]))
4226 last = SBITMAP_SIZE (live_subregs[regno]);
4228 while (start < last)
4230 bitmap_set_bit (live_subregs[regno], start);
4231 start++;
4234 else
4235 /* Resetting the live_subregs_used is
4236 effectively saying do not use the subregs
4237 because we are reading the whole
4238 pseudo. */
4239 bitmap_clear_bit (live_subregs_used, regno);
4240 bitmap_set_bit (live_relevant_regs, regno);
4246 /* FIXME!! The following code is a disaster. Reload needs to see the
4247 labels and jump tables that are just hanging out in between
4248 the basic blocks. See pr33676. */
4249 insn = BB_HEAD (bb);
4251 /* Skip over the barriers and cruft. */
4252 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4253 || BLOCK_FOR_INSN (insn) == bb))
4254 insn = PREV_INSN (insn);
4256 /* While we add anything except barriers and notes, the focus is
4257 to get the labels and jump tables into the
4258 reload_insn_chain. */
4259 while (insn)
4261 if (!NOTE_P (insn) && !BARRIER_P (insn))
4263 if (BLOCK_FOR_INSN (insn))
4264 break;
4266 c = new_insn_chain ();
4267 c->next = next;
4268 next = c;
4269 *p = c;
4270 p = &c->prev;
4272 /* The block makes no sense here, but it is what the old
4273 code did. */
4274 c->block = bb->index;
4275 c->insn = insn;
4276 bitmap_copy (&c->live_throughout, live_relevant_regs);
4278 insn = PREV_INSN (insn);
4282 reload_insn_chain = c;
4283 *p = NULL;
4285 for (i = 0; i < (unsigned int) max_regno; i++)
4286 if (live_subregs[i] != NULL)
4287 sbitmap_free (live_subregs[i]);
4288 free (live_subregs);
4289 BITMAP_FREE (live_subregs_used);
4290 BITMAP_FREE (live_relevant_regs);
4291 BITMAP_FREE (elim_regset);
4293 if (dump_file)
4294 print_insn_chains (dump_file);
4297 /* Examine the rtx found in *LOC, which is read or written to as determined
4298 by TYPE. Return false if we find a reason why an insn containing this
4299 rtx should not be moved (such as accesses to non-constant memory), true
4300 otherwise. */
4301 static bool
4302 rtx_moveable_p (rtx *loc, enum op_type type)
4304 const char *fmt;
4305 rtx x = *loc;
4306 enum rtx_code code = GET_CODE (x);
4307 int i, j;
4309 code = GET_CODE (x);
4310 switch (code)
4312 case CONST:
4313 CASE_CONST_ANY:
4314 case SYMBOL_REF:
4315 case LABEL_REF:
4316 return true;
4318 case PC:
4319 return type == OP_IN;
4321 case CC0:
4322 return false;
4324 case REG:
4325 if (x == frame_pointer_rtx)
4326 return true;
4327 if (HARD_REGISTER_P (x))
4328 return false;
4330 return true;
4332 case MEM:
4333 if (type == OP_IN && MEM_READONLY_P (x))
4334 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4335 return false;
4337 case SET:
4338 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4339 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4341 case STRICT_LOW_PART:
4342 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4344 case ZERO_EXTRACT:
4345 case SIGN_EXTRACT:
4346 return (rtx_moveable_p (&XEXP (x, 0), type)
4347 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4348 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4350 case CLOBBER:
4351 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4353 case UNSPEC_VOLATILE:
4354 /* It is a bad idea to consider insns with such rtl
4355 as moveable ones. The insn scheduler also considers them as barrier
4356 for a reason. */
4357 return false;
4359 default:
4360 break;
4363 fmt = GET_RTX_FORMAT (code);
4364 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4366 if (fmt[i] == 'e')
4368 if (!rtx_moveable_p (&XEXP (x, i), type))
4369 return false;
4371 else if (fmt[i] == 'E')
4372 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4374 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4375 return false;
4378 return true;
4381 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4382 to give dominance relationships between two insns I1 and I2. */
4383 static bool
4384 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4386 basic_block bb1 = BLOCK_FOR_INSN (i1);
4387 basic_block bb2 = BLOCK_FOR_INSN (i2);
4389 if (bb1 == bb2)
4390 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4391 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4394 /* Record the range of register numbers added by find_moveable_pseudos. */
4395 int first_moveable_pseudo, last_moveable_pseudo;
4397 /* These two vectors hold data for every register added by
4398 find_movable_pseudos, with index 0 holding data for the
4399 first_moveable_pseudo. */
4400 /* The original home register. */
4401 static vec<rtx> pseudo_replaced_reg;
4403 /* Look for instances where we have an instruction that is known to increase
4404 register pressure, and whose result is not used immediately. If it is
4405 possible to move the instruction downwards to just before its first use,
4406 split its lifetime into two ranges. We create a new pseudo to compute the
4407 value, and emit a move instruction just before the first use. If, after
4408 register allocation, the new pseudo remains unallocated, the function
4409 move_unallocated_pseudos then deletes the move instruction and places
4410 the computation just before the first use.
4412 Such a move is safe and profitable if all the input registers remain live
4413 and unchanged between the original computation and its first use. In such
4414 a situation, the computation is known to increase register pressure, and
4415 moving it is known to at least not worsen it.
4417 We restrict moves to only those cases where a register remains unallocated,
4418 in order to avoid interfering too much with the instruction schedule. As
4419 an exception, we may move insns which only modify their input register
4420 (typically induction variables), as this increases the freedom for our
4421 intended transformation, and does not limit the second instruction
4422 scheduler pass. */
4424 static void
4425 find_moveable_pseudos (void)
4427 unsigned i;
4428 int max_regs = max_reg_num ();
4429 int max_uid = get_max_uid ();
4430 basic_block bb;
4431 int *uid_luid = XNEWVEC (int, max_uid);
4432 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4433 /* A set of registers which are live but not modified throughout a block. */
4434 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4435 last_basic_block_for_fn (cfun));
4436 /* A set of registers which only exist in a given basic block. */
4437 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4438 last_basic_block_for_fn (cfun));
4439 /* A set of registers which are set once, in an instruction that can be
4440 moved freely downwards, but are otherwise transparent to a block. */
4441 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4442 last_basic_block_for_fn (cfun));
4443 bitmap_head live, used, set, interesting, unusable_as_input;
4444 bitmap_iterator bi;
4445 bitmap_initialize (&interesting, 0);
4447 first_moveable_pseudo = max_regs;
4448 pseudo_replaced_reg.release ();
4449 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4451 df_analyze ();
4452 calculate_dominance_info (CDI_DOMINATORS);
4454 i = 0;
4455 bitmap_initialize (&live, 0);
4456 bitmap_initialize (&used, 0);
4457 bitmap_initialize (&set, 0);
4458 bitmap_initialize (&unusable_as_input, 0);
4459 FOR_EACH_BB_FN (bb, cfun)
4461 rtx_insn *insn;
4462 bitmap transp = bb_transp_live + bb->index;
4463 bitmap moveable = bb_moveable_reg_sets + bb->index;
4464 bitmap local = bb_local + bb->index;
4466 bitmap_initialize (local, 0);
4467 bitmap_initialize (transp, 0);
4468 bitmap_initialize (moveable, 0);
4469 bitmap_copy (&live, df_get_live_out (bb));
4470 bitmap_and_into (&live, df_get_live_in (bb));
4471 bitmap_copy (transp, &live);
4472 bitmap_clear (moveable);
4473 bitmap_clear (&live);
4474 bitmap_clear (&used);
4475 bitmap_clear (&set);
4476 FOR_BB_INSNS (bb, insn)
4477 if (NONDEBUG_INSN_P (insn))
4479 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4480 df_ref def, use;
4482 uid_luid[INSN_UID (insn)] = i++;
4484 def = df_single_def (insn_info);
4485 use = df_single_use (insn_info);
4486 if (use
4487 && def
4488 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4489 && !bitmap_bit_p (&set, DF_REF_REGNO (use))
4490 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4492 unsigned regno = DF_REF_REGNO (use);
4493 bitmap_set_bit (moveable, regno);
4494 bitmap_set_bit (&set, regno);
4495 bitmap_set_bit (&used, regno);
4496 bitmap_clear_bit (transp, regno);
4497 continue;
4499 FOR_EACH_INSN_INFO_USE (use, insn_info)
4501 unsigned regno = DF_REF_REGNO (use);
4502 bitmap_set_bit (&used, regno);
4503 if (bitmap_clear_bit (moveable, regno))
4504 bitmap_clear_bit (transp, regno);
4507 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4509 unsigned regno = DF_REF_REGNO (def);
4510 bitmap_set_bit (&set, regno);
4511 bitmap_clear_bit (transp, regno);
4512 bitmap_clear_bit (moveable, regno);
4517 bitmap_clear (&live);
4518 bitmap_clear (&used);
4519 bitmap_clear (&set);
4521 FOR_EACH_BB_FN (bb, cfun)
4523 bitmap local = bb_local + bb->index;
4524 rtx_insn *insn;
4526 FOR_BB_INSNS (bb, insn)
4527 if (NONDEBUG_INSN_P (insn))
4529 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4530 rtx_insn *def_insn;
4531 rtx closest_use, note;
4532 df_ref def, use;
4533 unsigned regno;
4534 bool all_dominated, all_local;
4535 machine_mode mode;
4537 def = df_single_def (insn_info);
4538 /* There must be exactly one def in this insn. */
4539 if (!def || !single_set (insn))
4540 continue;
4541 /* This must be the only definition of the reg. We also limit
4542 which modes we deal with so that we can assume we can generate
4543 move instructions. */
4544 regno = DF_REF_REGNO (def);
4545 mode = GET_MODE (DF_REF_REG (def));
4546 if (DF_REG_DEF_COUNT (regno) != 1
4547 || !DF_REF_INSN_INFO (def)
4548 || HARD_REGISTER_NUM_P (regno)
4549 || DF_REG_EQ_USE_COUNT (regno) > 0
4550 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4551 continue;
4552 def_insn = DF_REF_INSN (def);
4554 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4555 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4556 break;
4558 if (note)
4560 if (dump_file)
4561 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4562 regno);
4563 bitmap_set_bit (&unusable_as_input, regno);
4564 continue;
4567 use = DF_REG_USE_CHAIN (regno);
4568 all_dominated = true;
4569 all_local = true;
4570 closest_use = NULL_RTX;
4571 for (; use; use = DF_REF_NEXT_REG (use))
4573 rtx_insn *insn;
4574 if (!DF_REF_INSN_INFO (use))
4576 all_dominated = false;
4577 all_local = false;
4578 break;
4580 insn = DF_REF_INSN (use);
4581 if (DEBUG_INSN_P (insn))
4582 continue;
4583 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4584 all_local = false;
4585 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4586 all_dominated = false;
4587 if (closest_use != insn && closest_use != const0_rtx)
4589 if (closest_use == NULL_RTX)
4590 closest_use = insn;
4591 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4592 closest_use = insn;
4593 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4594 closest_use = const0_rtx;
4597 if (!all_dominated)
4599 if (dump_file)
4600 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4601 regno);
4602 continue;
4604 if (all_local)
4605 bitmap_set_bit (local, regno);
4606 if (closest_use == const0_rtx || closest_use == NULL
4607 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4609 if (dump_file)
4610 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4611 closest_use == const0_rtx || closest_use == NULL
4612 ? " (no unique first use)" : "");
4613 continue;
4615 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4617 if (dump_file)
4618 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4619 regno);
4620 continue;
4623 bitmap_set_bit (&interesting, regno);
4624 /* If we get here, we know closest_use is a non-NULL insn
4625 (as opposed to const_0_rtx). */
4626 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4628 if (dump_file && (all_local || all_dominated))
4630 fprintf (dump_file, "Reg %u:", regno);
4631 if (all_local)
4632 fprintf (dump_file, " local to bb %d", bb->index);
4633 if (all_dominated)
4634 fprintf (dump_file, " def dominates all uses");
4635 if (closest_use != const0_rtx)
4636 fprintf (dump_file, " has unique first use");
4637 fputs ("\n", dump_file);
4642 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4644 df_ref def = DF_REG_DEF_CHAIN (i);
4645 rtx_insn *def_insn = DF_REF_INSN (def);
4646 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4647 bitmap def_bb_local = bb_local + def_block->index;
4648 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4649 bitmap def_bb_transp = bb_transp_live + def_block->index;
4650 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4651 rtx_insn *use_insn = closest_uses[i];
4652 df_ref use;
4653 bool all_ok = true;
4654 bool all_transp = true;
4656 if (!REG_P (DF_REF_REG (def)))
4657 continue;
4659 if (!local_to_bb_p)
4661 if (dump_file)
4662 fprintf (dump_file, "Reg %u not local to one basic block\n",
4664 continue;
4666 if (reg_equiv_init (i) != NULL_RTX)
4668 if (dump_file)
4669 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4671 continue;
4673 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4675 if (dump_file)
4676 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4677 INSN_UID (def_insn), i);
4678 continue;
4680 if (dump_file)
4681 fprintf (dump_file, "Examining insn %d, def for %d\n",
4682 INSN_UID (def_insn), i);
4683 FOR_EACH_INSN_USE (use, def_insn)
4685 unsigned regno = DF_REF_REGNO (use);
4686 if (bitmap_bit_p (&unusable_as_input, regno))
4688 all_ok = false;
4689 if (dump_file)
4690 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4691 break;
4693 if (!bitmap_bit_p (def_bb_transp, regno))
4695 if (bitmap_bit_p (def_bb_moveable, regno)
4696 && !control_flow_insn_p (use_insn)
4697 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4699 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4701 rtx_insn *x = NEXT_INSN (def_insn);
4702 while (!modified_in_p (DF_REF_REG (use), x))
4704 gcc_assert (x != use_insn);
4705 x = NEXT_INSN (x);
4707 if (dump_file)
4708 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4709 regno, INSN_UID (x));
4710 emit_insn_after (PATTERN (x), use_insn);
4711 set_insn_deleted (x);
4713 else
4715 if (dump_file)
4716 fprintf (dump_file, " input reg %u modified between def and use\n",
4717 regno);
4718 all_transp = false;
4721 else
4722 all_transp = false;
4725 if (!all_ok)
4726 continue;
4727 if (!dbg_cnt (ira_move))
4728 break;
4729 if (dump_file)
4730 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4732 if (all_transp)
4734 rtx def_reg = DF_REF_REG (def);
4735 rtx newreg = ira_create_new_reg (def_reg);
4736 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4738 unsigned nregno = REGNO (newreg);
4739 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4740 nregno -= max_regs;
4741 pseudo_replaced_reg[nregno] = def_reg;
4746 FOR_EACH_BB_FN (bb, cfun)
4748 bitmap_clear (bb_local + bb->index);
4749 bitmap_clear (bb_transp_live + bb->index);
4750 bitmap_clear (bb_moveable_reg_sets + bb->index);
4752 bitmap_clear (&interesting);
4753 bitmap_clear (&unusable_as_input);
4754 free (uid_luid);
4755 free (closest_uses);
4756 free (bb_local);
4757 free (bb_transp_live);
4758 free (bb_moveable_reg_sets);
4760 last_moveable_pseudo = max_reg_num ();
4762 fix_reg_equiv_init ();
4763 expand_reg_info ();
4764 regstat_free_n_sets_and_refs ();
4765 regstat_free_ri ();
4766 regstat_init_n_sets_and_refs ();
4767 regstat_compute_ri ();
4768 free_dominance_info (CDI_DOMINATORS);
4771 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4772 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4773 the destination. Otherwise return NULL. */
4775 static rtx
4776 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4778 rtx src = SET_SRC (set);
4779 rtx dest = SET_DEST (set);
4780 if (!REG_P (src) || !HARD_REGISTER_P (src)
4781 || !REG_P (dest) || HARD_REGISTER_P (dest)
4782 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4783 return NULL;
4784 return dest;
4787 /* If insn is interesting for parameter range-splitting shrink-wrapping
4788 preparation, i.e. it is a single set from a hard register to a pseudo, which
4789 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4790 parallel statement with only one such statement, return the destination.
4791 Otherwise return NULL. */
4793 static rtx
4794 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4796 if (!INSN_P (insn))
4797 return NULL;
4798 rtx pat = PATTERN (insn);
4799 if (GET_CODE (pat) == SET)
4800 return interesting_dest_for_shprep_1 (pat, call_dom);
4802 if (GET_CODE (pat) != PARALLEL)
4803 return NULL;
4804 rtx ret = NULL;
4805 for (int i = 0; i < XVECLEN (pat, 0); i++)
4807 rtx sub = XVECEXP (pat, 0, i);
4808 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4809 continue;
4810 if (GET_CODE (sub) != SET
4811 || side_effects_p (sub))
4812 return NULL;
4813 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4814 if (dest && ret)
4815 return NULL;
4816 if (dest)
4817 ret = dest;
4819 return ret;
4822 /* Split live ranges of pseudos that are loaded from hard registers in the
4823 first BB in a BB that dominates all non-sibling call if such a BB can be
4824 found and is not in a loop. Return true if the function has made any
4825 changes. */
4827 static bool
4828 split_live_ranges_for_shrink_wrap (void)
4830 basic_block bb, call_dom = NULL;
4831 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4832 rtx_insn *insn, *last_interesting_insn = NULL;
4833 bitmap_head need_new, reachable;
4834 vec<basic_block> queue;
4836 if (!SHRINK_WRAPPING_ENABLED)
4837 return false;
4839 bitmap_initialize (&need_new, 0);
4840 bitmap_initialize (&reachable, 0);
4841 queue.create (n_basic_blocks_for_fn (cfun));
4843 FOR_EACH_BB_FN (bb, cfun)
4844 FOR_BB_INSNS (bb, insn)
4845 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4847 if (bb == first)
4849 bitmap_clear (&need_new);
4850 bitmap_clear (&reachable);
4851 queue.release ();
4852 return false;
4855 bitmap_set_bit (&need_new, bb->index);
4856 bitmap_set_bit (&reachable, bb->index);
4857 queue.quick_push (bb);
4858 break;
4861 if (queue.is_empty ())
4863 bitmap_clear (&need_new);
4864 bitmap_clear (&reachable);
4865 queue.release ();
4866 return false;
4869 while (!queue.is_empty ())
4871 edge e;
4872 edge_iterator ei;
4874 bb = queue.pop ();
4875 FOR_EACH_EDGE (e, ei, bb->succs)
4876 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4877 && bitmap_set_bit (&reachable, e->dest->index))
4878 queue.quick_push (e->dest);
4880 queue.release ();
4882 FOR_BB_INSNS (first, insn)
4884 rtx dest = interesting_dest_for_shprep (insn, NULL);
4885 if (!dest)
4886 continue;
4888 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4890 bitmap_clear (&need_new);
4891 bitmap_clear (&reachable);
4892 return false;
4895 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4896 use;
4897 use = DF_REF_NEXT_REG (use))
4899 int ubbi = DF_REF_BB (use)->index;
4900 if (bitmap_bit_p (&reachable, ubbi))
4901 bitmap_set_bit (&need_new, ubbi);
4903 last_interesting_insn = insn;
4906 bitmap_clear (&reachable);
4907 if (!last_interesting_insn)
4909 bitmap_clear (&need_new);
4910 return false;
4913 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4914 bitmap_clear (&need_new);
4915 if (call_dom == first)
4916 return false;
4918 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4919 while (bb_loop_depth (call_dom) > 0)
4920 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4921 loop_optimizer_finalize ();
4923 if (call_dom == first)
4924 return false;
4926 calculate_dominance_info (CDI_POST_DOMINATORS);
4927 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4929 free_dominance_info (CDI_POST_DOMINATORS);
4930 return false;
4932 free_dominance_info (CDI_POST_DOMINATORS);
4934 if (dump_file)
4935 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4936 call_dom->index);
4938 bool ret = false;
4939 FOR_BB_INSNS (first, insn)
4941 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4942 if (!dest || dest == pic_offset_table_rtx)
4943 continue;
4945 rtx newreg = NULL_RTX;
4946 df_ref use, next;
4947 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4949 rtx_insn *uin = DF_REF_INSN (use);
4950 next = DF_REF_NEXT_REG (use);
4952 basic_block ubb = BLOCK_FOR_INSN (uin);
4953 if (ubb == call_dom
4954 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4956 if (!newreg)
4957 newreg = ira_create_new_reg (dest);
4958 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
4962 if (newreg)
4964 rtx_insn *new_move = gen_move_insn (newreg, dest);
4965 emit_insn_after (new_move, bb_note (call_dom));
4966 if (dump_file)
4968 fprintf (dump_file, "Split live-range of register ");
4969 print_rtl_single (dump_file, dest);
4971 ret = true;
4974 if (insn == last_interesting_insn)
4975 break;
4977 apply_change_group ();
4978 return ret;
4981 /* Perform the second half of the transformation started in
4982 find_moveable_pseudos. We look for instances where the newly introduced
4983 pseudo remains unallocated, and remove it by moving the definition to
4984 just before its use, replacing the move instruction generated by
4985 find_moveable_pseudos. */
4986 static void
4987 move_unallocated_pseudos (void)
4989 int i;
4990 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4991 if (reg_renumber[i] < 0)
4993 int idx = i - first_moveable_pseudo;
4994 rtx other_reg = pseudo_replaced_reg[idx];
4995 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
4996 /* The use must follow all definitions of OTHER_REG, so we can
4997 insert the new definition immediately after any of them. */
4998 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
4999 rtx_insn *move_insn = DF_REF_INSN (other_def);
5000 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5001 rtx set;
5002 int success;
5004 if (dump_file)
5005 fprintf (dump_file, "moving def of %d (insn %d now) ",
5006 REGNO (other_reg), INSN_UID (def_insn));
5008 delete_insn (move_insn);
5009 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5010 delete_insn (DF_REF_INSN (other_def));
5011 delete_insn (def_insn);
5013 set = single_set (newinsn);
5014 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5015 gcc_assert (success);
5016 if (dump_file)
5017 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5018 INSN_UID (newinsn), i);
5019 SET_REG_N_REFS (i, 0);
5023 /* If the backend knows where to allocate pseudos for hard
5024 register initial values, register these allocations now. */
5025 static void
5026 allocate_initial_values (void)
5028 if (targetm.allocate_initial_value)
5030 rtx hreg, preg, x;
5031 int i, regno;
5033 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5035 if (! initial_value_entry (i, &hreg, &preg))
5036 break;
5038 x = targetm.allocate_initial_value (hreg);
5039 regno = REGNO (preg);
5040 if (x && REG_N_SETS (regno) <= 1)
5042 if (MEM_P (x))
5043 reg_equiv_memory_loc (regno) = x;
5044 else
5046 basic_block bb;
5047 int new_regno;
5049 gcc_assert (REG_P (x));
5050 new_regno = REGNO (x);
5051 reg_renumber[regno] = new_regno;
5052 /* Poke the regno right into regno_reg_rtx so that even
5053 fixed regs are accepted. */
5054 SET_REGNO (preg, new_regno);
5055 /* Update global register liveness information. */
5056 FOR_EACH_BB_FN (bb, cfun)
5058 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5059 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5060 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5061 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5067 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5068 &hreg, &preg));
5073 /* True when we use LRA instead of reload pass for the current
5074 function. */
5075 bool ira_use_lra_p;
5077 /* True if we have allocno conflicts. It is false for non-optimized
5078 mode or when the conflict table is too big. */
5079 bool ira_conflicts_p;
5081 /* Saved between IRA and reload. */
5082 static int saved_flag_ira_share_spill_slots;
5084 /* This is the main entry of IRA. */
5085 static void
5086 ira (FILE *f)
5088 bool loops_p;
5089 int ira_max_point_before_emit;
5090 int rebuild_p;
5091 bool saved_flag_caller_saves = flag_caller_saves;
5092 enum ira_region saved_flag_ira_region = flag_ira_region;
5094 /* Perform target specific PIC register initialization. */
5095 targetm.init_pic_reg ();
5097 ira_conflicts_p = optimize > 0;
5099 ira_use_lra_p = targetm.lra_p ();
5100 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5101 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5102 use simplified and faster algorithms in LRA. */
5103 lra_simple_p
5104 = (ira_use_lra_p
5105 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5106 if (lra_simple_p)
5108 /* It permits to skip live range splitting in LRA. */
5109 flag_caller_saves = false;
5110 /* There is no sense to do regional allocation when we use
5111 simplified LRA. */
5112 flag_ira_region = IRA_REGION_ONE;
5113 ira_conflicts_p = false;
5116 #ifndef IRA_NO_OBSTACK
5117 gcc_obstack_init (&ira_obstack);
5118 #endif
5119 bitmap_obstack_initialize (&ira_bitmap_obstack);
5121 /* LRA uses its own infrastructure to handle caller save registers. */
5122 if (flag_caller_saves && !ira_use_lra_p)
5123 init_caller_save ();
5125 if (flag_ira_verbose < 10)
5127 internal_flag_ira_verbose = flag_ira_verbose;
5128 ira_dump_file = f;
5130 else
5132 internal_flag_ira_verbose = flag_ira_verbose - 10;
5133 ira_dump_file = stderr;
5136 setup_prohibited_mode_move_regs ();
5137 decrease_live_ranges_number ();
5138 df_note_add_problem ();
5140 /* DF_LIVE can't be used in the register allocator, too many other
5141 parts of the compiler depend on using the "classic" liveness
5142 interpretation of the DF_LR problem. See PR38711.
5143 Remove the problem, so that we don't spend time updating it in
5144 any of the df_analyze() calls during IRA/LRA. */
5145 if (optimize > 1)
5146 df_remove_problem (df_live);
5147 gcc_checking_assert (df_live == NULL);
5149 if (flag_checking)
5150 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5152 df_analyze ();
5154 init_reg_equiv ();
5155 if (ira_conflicts_p)
5157 calculate_dominance_info (CDI_DOMINATORS);
5159 if (split_live_ranges_for_shrink_wrap ())
5160 df_analyze ();
5162 free_dominance_info (CDI_DOMINATORS);
5165 df_clear_flags (DF_NO_INSN_RESCAN);
5167 regstat_init_n_sets_and_refs ();
5168 regstat_compute_ri ();
5170 /* If we are not optimizing, then this is the only place before
5171 register allocation where dataflow is done. And that is needed
5172 to generate these warnings. */
5173 if (warn_clobbered)
5174 generate_setjmp_warnings ();
5176 /* Determine if the current function is a leaf before running IRA
5177 since this can impact optimizations done by the prologue and
5178 epilogue thus changing register elimination offsets. */
5179 crtl->is_leaf = leaf_function_p ();
5181 if (resize_reg_info () && flag_ira_loop_pressure)
5182 ira_set_pseudo_classes (true, ira_dump_file);
5184 rebuild_p = update_equiv_regs ();
5185 setup_reg_equiv ();
5186 setup_reg_equiv_init ();
5188 if (optimize && rebuild_p)
5190 timevar_push (TV_JUMP);
5191 rebuild_jump_labels (get_insns ());
5192 if (purge_all_dead_edges ())
5193 delete_unreachable_blocks ();
5194 timevar_pop (TV_JUMP);
5197 allocated_reg_info_size = max_reg_num ();
5199 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5200 df_analyze ();
5202 /* It is not worth to do such improvement when we use a simple
5203 allocation because of -O0 usage or because the function is too
5204 big. */
5205 if (ira_conflicts_p)
5206 find_moveable_pseudos ();
5208 max_regno_before_ira = max_reg_num ();
5209 ira_setup_eliminable_regset ();
5211 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5212 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5213 ira_move_loops_num = ira_additional_jumps_num = 0;
5215 ira_assert (current_loops == NULL);
5216 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5217 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5219 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5220 fprintf (ira_dump_file, "Building IRA IR\n");
5221 loops_p = ira_build ();
5223 ira_assert (ira_conflicts_p || !loops_p);
5225 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5226 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5227 /* It is just wasting compiler's time to pack spilled pseudos into
5228 stack slots in this case -- prohibit it. We also do this if
5229 there is setjmp call because a variable not modified between
5230 setjmp and longjmp the compiler is required to preserve its
5231 value and sharing slots does not guarantee it. */
5232 flag_ira_share_spill_slots = FALSE;
5234 ira_color ();
5236 ira_max_point_before_emit = ira_max_point;
5238 ira_initiate_emit_data ();
5240 ira_emit (loops_p);
5242 max_regno = max_reg_num ();
5243 if (ira_conflicts_p)
5245 if (! loops_p)
5247 if (! ira_use_lra_p)
5248 ira_initiate_assign ();
5250 else
5252 expand_reg_info ();
5254 if (ira_use_lra_p)
5256 ira_allocno_t a;
5257 ira_allocno_iterator ai;
5259 FOR_EACH_ALLOCNO (a, ai)
5261 int old_regno = ALLOCNO_REGNO (a);
5262 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5264 ALLOCNO_REGNO (a) = new_regno;
5266 if (old_regno != new_regno)
5267 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5268 reg_alternate_class (old_regno),
5269 reg_allocno_class (old_regno));
5273 else
5275 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5276 fprintf (ira_dump_file, "Flattening IR\n");
5277 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5279 /* New insns were generated: add notes and recalculate live
5280 info. */
5281 df_analyze ();
5283 /* ??? Rebuild the loop tree, but why? Does the loop tree
5284 change if new insns were generated? Can that be handled
5285 by updating the loop tree incrementally? */
5286 loop_optimizer_finalize ();
5287 free_dominance_info (CDI_DOMINATORS);
5288 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5289 | LOOPS_HAVE_RECORDED_EXITS);
5291 if (! ira_use_lra_p)
5293 setup_allocno_assignment_flags ();
5294 ira_initiate_assign ();
5295 ira_reassign_conflict_allocnos (max_regno);
5300 ira_finish_emit_data ();
5302 setup_reg_renumber ();
5304 calculate_allocation_cost ();
5306 #ifdef ENABLE_IRA_CHECKING
5307 if (ira_conflicts_p)
5308 check_allocation ();
5309 #endif
5311 if (max_regno != max_regno_before_ira)
5313 regstat_free_n_sets_and_refs ();
5314 regstat_free_ri ();
5315 regstat_init_n_sets_and_refs ();
5316 regstat_compute_ri ();
5319 overall_cost_before = ira_overall_cost;
5320 if (! ira_conflicts_p)
5321 grow_reg_equivs ();
5322 else
5324 fix_reg_equiv_init ();
5326 #ifdef ENABLE_IRA_CHECKING
5327 print_redundant_copies ();
5328 #endif
5329 if (! ira_use_lra_p)
5331 ira_spilled_reg_stack_slots_num = 0;
5332 ira_spilled_reg_stack_slots
5333 = ((struct ira_spilled_reg_stack_slot *)
5334 ira_allocate (max_regno
5335 * sizeof (struct ira_spilled_reg_stack_slot)));
5336 memset (ira_spilled_reg_stack_slots, 0,
5337 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5340 allocate_initial_values ();
5342 /* See comment for find_moveable_pseudos call. */
5343 if (ira_conflicts_p)
5344 move_unallocated_pseudos ();
5346 /* Restore original values. */
5347 if (lra_simple_p)
5349 flag_caller_saves = saved_flag_caller_saves;
5350 flag_ira_region = saved_flag_ira_region;
5354 static void
5355 do_reload (void)
5357 basic_block bb;
5358 bool need_dce;
5359 unsigned pic_offset_table_regno = INVALID_REGNUM;
5361 if (flag_ira_verbose < 10)
5362 ira_dump_file = dump_file;
5364 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5365 after reload to avoid possible wrong usages of hard reg assigned
5366 to it. */
5367 if (pic_offset_table_rtx
5368 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5369 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5371 timevar_push (TV_RELOAD);
5372 if (ira_use_lra_p)
5374 if (current_loops != NULL)
5376 loop_optimizer_finalize ();
5377 free_dominance_info (CDI_DOMINATORS);
5379 FOR_ALL_BB_FN (bb, cfun)
5380 bb->loop_father = NULL;
5381 current_loops = NULL;
5383 ira_destroy ();
5385 lra (ira_dump_file);
5386 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5387 LRA. */
5388 vec_free (reg_equivs);
5389 reg_equivs = NULL;
5390 need_dce = false;
5392 else
5394 df_set_flags (DF_NO_INSN_RESCAN);
5395 build_insn_chain ();
5397 need_dce = reload (get_insns (), ira_conflicts_p);
5401 timevar_pop (TV_RELOAD);
5403 timevar_push (TV_IRA);
5405 if (ira_conflicts_p && ! ira_use_lra_p)
5407 ira_free (ira_spilled_reg_stack_slots);
5408 ira_finish_assign ();
5411 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5412 && overall_cost_before != ira_overall_cost)
5413 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5414 ira_overall_cost);
5416 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5418 if (! ira_use_lra_p)
5420 ira_destroy ();
5421 if (current_loops != NULL)
5423 loop_optimizer_finalize ();
5424 free_dominance_info (CDI_DOMINATORS);
5426 FOR_ALL_BB_FN (bb, cfun)
5427 bb->loop_father = NULL;
5428 current_loops = NULL;
5430 regstat_free_ri ();
5431 regstat_free_n_sets_and_refs ();
5434 if (optimize)
5435 cleanup_cfg (CLEANUP_EXPENSIVE);
5437 finish_reg_equiv ();
5439 bitmap_obstack_release (&ira_bitmap_obstack);
5440 #ifndef IRA_NO_OBSTACK
5441 obstack_free (&ira_obstack, NULL);
5442 #endif
5444 /* The code after the reload has changed so much that at this point
5445 we might as well just rescan everything. Note that
5446 df_rescan_all_insns is not going to help here because it does not
5447 touch the artificial uses and defs. */
5448 df_finish_pass (true);
5449 df_scan_alloc (NULL);
5450 df_scan_blocks ();
5452 if (optimize > 1)
5454 df_live_add_problem ();
5455 df_live_set_all_dirty ();
5458 if (optimize)
5459 df_analyze ();
5461 if (need_dce && optimize)
5462 run_fast_dce ();
5464 /* Diagnose uses of the hard frame pointer when it is used as a global
5465 register. Often we can get away with letting the user appropriate
5466 the frame pointer, but we should let them know when code generation
5467 makes that impossible. */
5468 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5470 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5471 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5472 "frame pointer required, but reserved");
5473 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5476 if (pic_offset_table_regno != INVALID_REGNUM)
5477 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5479 timevar_pop (TV_IRA);
5482 /* Run the integrated register allocator. */
5484 namespace {
5486 const pass_data pass_data_ira =
5488 RTL_PASS, /* type */
5489 "ira", /* name */
5490 OPTGROUP_NONE, /* optinfo_flags */
5491 TV_IRA, /* tv_id */
5492 0, /* properties_required */
5493 0, /* properties_provided */
5494 0, /* properties_destroyed */
5495 0, /* todo_flags_start */
5496 TODO_do_not_ggc_collect, /* todo_flags_finish */
5499 class pass_ira : public rtl_opt_pass
5501 public:
5502 pass_ira (gcc::context *ctxt)
5503 : rtl_opt_pass (pass_data_ira, ctxt)
5506 /* opt_pass methods: */
5507 virtual bool gate (function *)
5509 return !targetm.no_register_allocation;
5511 virtual unsigned int execute (function *)
5513 ira (dump_file);
5514 return 0;
5517 }; // class pass_ira
5519 } // anon namespace
5521 rtl_opt_pass *
5522 make_pass_ira (gcc::context *ctxt)
5524 return new pass_ira (ctxt);
5527 namespace {
5529 const pass_data pass_data_reload =
5531 RTL_PASS, /* type */
5532 "reload", /* name */
5533 OPTGROUP_NONE, /* optinfo_flags */
5534 TV_RELOAD, /* tv_id */
5535 0, /* properties_required */
5536 0, /* properties_provided */
5537 0, /* properties_destroyed */
5538 0, /* todo_flags_start */
5539 0, /* todo_flags_finish */
5542 class pass_reload : public rtl_opt_pass
5544 public:
5545 pass_reload (gcc::context *ctxt)
5546 : rtl_opt_pass (pass_data_reload, ctxt)
5549 /* opt_pass methods: */
5550 virtual bool gate (function *)
5552 return !targetm.no_register_allocation;
5554 virtual unsigned int execute (function *)
5556 do_reload ();
5557 return 0;
5560 }; // class pass_reload
5562 } // anon namespace
5564 rtl_opt_pass *
5565 make_pass_reload (gcc::context *ctxt)
5567 return new pass_reload (ctxt);