Clean up some minor white space issues in trans-decl.c and trans-expr.c
[official-gcc.git] / gcc / dwarf2out.c
blobf742900037bfb0ababde15727c46ac17cd5346bc
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992-2016 Free Software Foundation, Inc.
3 Contributed by Gary Funck (gary@intrepid.com).
4 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
5 Extensively modified by Jason Merrill (jason@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* TODO: Emit .debug_line header even when there are no functions, since
24 the file numbers are used by .debug_info. Alternately, leave
25 out locations for types and decls.
26 Avoid talking about ctors and op= for PODs.
27 Factor out common prologue sequences into multiple CIEs. */
29 /* The first part of this file deals with the DWARF 2 frame unwind
30 information, which is also used by the GCC efficient exception handling
31 mechanism. The second part, controlled only by an #ifdef
32 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
33 information. */
35 /* DWARF2 Abbreviation Glossary:
37 CFA = Canonical Frame Address
38 a fixed address on the stack which identifies a call frame.
39 We define it to be the value of SP just before the call insn.
40 The CFA register and offset, which may change during the course
41 of the function, are used to calculate its value at runtime.
43 CFI = Call Frame Instruction
44 an instruction for the DWARF2 abstract machine
46 CIE = Common Information Entry
47 information describing information common to one or more FDEs
49 DIE = Debugging Information Entry
51 FDE = Frame Description Entry
52 information describing the stack call frame, in particular,
53 how to restore registers
55 DW_CFA_... = DWARF2 CFA call frame instruction
56 DW_TAG_... = DWARF2 DIE tag */
58 #include "config.h"
59 #include "system.h"
60 #include "coretypes.h"
61 #include "target.h"
62 #include "function.h"
63 #include "rtl.h"
64 #include "tree.h"
65 #include "tm_p.h"
66 #include "stringpool.h"
67 #include "insn-config.h"
68 #include "ira.h"
69 #include "cgraph.h"
70 #include "diagnostic.h"
71 #include "fold-const.h"
72 #include "stor-layout.h"
73 #include "varasm.h"
74 #include "version.h"
75 #include "flags.h"
76 #include "rtlhash.h"
77 #include "reload.h"
78 #include "output.h"
79 #include "expr.h"
80 #include "dwarf2out.h"
81 #include "dwarf2asm.h"
82 #include "toplev.h"
83 #include "md5.h"
84 #include "tree-pretty-print.h"
85 #include "debug.h"
86 #include "common/common-target.h"
87 #include "langhooks.h"
88 #include "lra.h"
89 #include "dumpfile.h"
90 #include "opts.h"
91 #include "tree-dfa.h"
92 #include "gdb/gdb-index.h"
93 #include "rtl-iter.h"
95 static void dwarf2out_source_line (unsigned int, const char *, int, bool);
96 static rtx_insn *last_var_location_insn;
97 static rtx_insn *cached_next_real_insn;
98 static void dwarf2out_decl (tree);
100 #ifndef XCOFF_DEBUGGING_INFO
101 #define XCOFF_DEBUGGING_INFO 0
102 #endif
104 #ifndef HAVE_XCOFF_DWARF_EXTRAS
105 #define HAVE_XCOFF_DWARF_EXTRAS 0
106 #endif
108 #ifdef VMS_DEBUGGING_INFO
109 int vms_file_stats_name (const char *, long long *, long *, char *, int *);
111 /* Define this macro to be a nonzero value if the directory specifications
112 which are output in the debug info should end with a separator. */
113 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 1
114 /* Define this macro to evaluate to a nonzero value if GCC should refrain
115 from generating indirect strings in DWARF2 debug information, for instance
116 if your target is stuck with an old version of GDB that is unable to
117 process them properly or uses VMS Debug. */
118 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 1
119 #else
120 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 0
121 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 0
122 #endif
124 /* ??? Poison these here until it can be done generically. They've been
125 totally replaced in this file; make sure it stays that way. */
126 #undef DWARF2_UNWIND_INFO
127 #undef DWARF2_FRAME_INFO
128 #if (GCC_VERSION >= 3000)
129 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
130 #endif
132 /* The size of the target's pointer type. */
133 #ifndef PTR_SIZE
134 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
135 #endif
137 /* Array of RTXes referenced by the debugging information, which therefore
138 must be kept around forever. */
139 static GTY(()) vec<rtx, va_gc> *used_rtx_array;
141 /* A pointer to the base of a list of incomplete types which might be
142 completed at some later time. incomplete_types_list needs to be a
143 vec<tree, va_gc> *because we want to tell the garbage collector about
144 it. */
145 static GTY(()) vec<tree, va_gc> *incomplete_types;
147 /* A pointer to the base of a table of references to declaration
148 scopes. This table is a display which tracks the nesting
149 of declaration scopes at the current scope and containing
150 scopes. This table is used to find the proper place to
151 define type declaration DIE's. */
152 static GTY(()) vec<tree, va_gc> *decl_scope_table;
154 /* Pointers to various DWARF2 sections. */
155 static GTY(()) section *debug_info_section;
156 static GTY(()) section *debug_skeleton_info_section;
157 static GTY(()) section *debug_abbrev_section;
158 static GTY(()) section *debug_skeleton_abbrev_section;
159 static GTY(()) section *debug_aranges_section;
160 static GTY(()) section *debug_addr_section;
161 static GTY(()) section *debug_macinfo_section;
162 static GTY(()) section *debug_line_section;
163 static GTY(()) section *debug_skeleton_line_section;
164 static GTY(()) section *debug_loc_section;
165 static GTY(()) section *debug_pubnames_section;
166 static GTY(()) section *debug_pubtypes_section;
167 static GTY(()) section *debug_str_section;
168 static GTY(()) section *debug_str_dwo_section;
169 static GTY(()) section *debug_str_offsets_section;
170 static GTY(()) section *debug_ranges_section;
171 static GTY(()) section *debug_frame_section;
173 /* Maximum size (in bytes) of an artificially generated label. */
174 #define MAX_ARTIFICIAL_LABEL_BYTES 30
176 /* According to the (draft) DWARF 3 specification, the initial length
177 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
178 bytes are 0xffffffff, followed by the length stored in the next 8
179 bytes.
181 However, the SGI/MIPS ABI uses an initial length which is equal to
182 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
184 #ifndef DWARF_INITIAL_LENGTH_SIZE
185 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
186 #endif
188 /* Round SIZE up to the nearest BOUNDARY. */
189 #define DWARF_ROUND(SIZE,BOUNDARY) \
190 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
192 /* CIE identifier. */
193 #if HOST_BITS_PER_WIDE_INT >= 64
194 #define DWARF_CIE_ID \
195 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
196 #else
197 #define DWARF_CIE_ID DW_CIE_ID
198 #endif
201 /* A vector for a table that contains frame description
202 information for each routine. */
203 #define NOT_INDEXED (-1U)
204 #define NO_INDEX_ASSIGNED (-2U)
206 static GTY(()) vec<dw_fde_ref, va_gc> *fde_vec;
208 struct GTY((for_user)) indirect_string_node {
209 const char *str;
210 unsigned int refcount;
211 enum dwarf_form form;
212 char *label;
213 unsigned int index;
216 struct indirect_string_hasher : ggc_ptr_hash<indirect_string_node>
218 typedef const char *compare_type;
220 static hashval_t hash (indirect_string_node *);
221 static bool equal (indirect_string_node *, const char *);
224 static GTY (()) hash_table<indirect_string_hasher> *debug_str_hash;
226 /* With split_debug_info, both the comp_dir and dwo_name go in the
227 main object file, rather than the dwo, similar to the force_direct
228 parameter elsewhere but with additional complications:
230 1) The string is needed in both the main object file and the dwo.
231 That is, the comp_dir and dwo_name will appear in both places.
233 2) Strings can use three forms: DW_FORM_string, DW_FORM_strp or
234 DW_FORM_GNU_str_index.
236 3) GCC chooses the form to use late, depending on the size and
237 reference count.
239 Rather than forcing the all debug string handling functions and
240 callers to deal with these complications, simply use a separate,
241 special-cased string table for any attribute that should go in the
242 main object file. This limits the complexity to just the places
243 that need it. */
245 static GTY (()) hash_table<indirect_string_hasher> *skeleton_debug_str_hash;
247 static GTY(()) int dw2_string_counter;
249 /* True if the compilation unit places functions in more than one section. */
250 static GTY(()) bool have_multiple_function_sections = false;
252 /* Whether the default text and cold text sections have been used at all. */
254 static GTY(()) bool text_section_used = false;
255 static GTY(()) bool cold_text_section_used = false;
257 /* The default cold text section. */
258 static GTY(()) section *cold_text_section;
260 /* The DIE for C++14 'auto' in a function return type. */
261 static GTY(()) dw_die_ref auto_die;
263 /* The DIE for C++14 'decltype(auto)' in a function return type. */
264 static GTY(()) dw_die_ref decltype_auto_die;
266 /* Forward declarations for functions defined in this file. */
268 static char *stripattributes (const char *);
269 static void output_call_frame_info (int);
270 static void dwarf2out_note_section_used (void);
272 /* Personality decl of current unit. Used only when assembler does not support
273 personality CFI. */
274 static GTY(()) rtx current_unit_personality;
276 /* Data and reference forms for relocatable data. */
277 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
278 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
280 #ifndef DEBUG_FRAME_SECTION
281 #define DEBUG_FRAME_SECTION ".debug_frame"
282 #endif
284 #ifndef FUNC_BEGIN_LABEL
285 #define FUNC_BEGIN_LABEL "LFB"
286 #endif
288 #ifndef FUNC_END_LABEL
289 #define FUNC_END_LABEL "LFE"
290 #endif
292 #ifndef PROLOGUE_END_LABEL
293 #define PROLOGUE_END_LABEL "LPE"
294 #endif
296 #ifndef EPILOGUE_BEGIN_LABEL
297 #define EPILOGUE_BEGIN_LABEL "LEB"
298 #endif
300 #ifndef FRAME_BEGIN_LABEL
301 #define FRAME_BEGIN_LABEL "Lframe"
302 #endif
303 #define CIE_AFTER_SIZE_LABEL "LSCIE"
304 #define CIE_END_LABEL "LECIE"
305 #define FDE_LABEL "LSFDE"
306 #define FDE_AFTER_SIZE_LABEL "LASFDE"
307 #define FDE_END_LABEL "LEFDE"
308 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
309 #define LINE_NUMBER_END_LABEL "LELT"
310 #define LN_PROLOG_AS_LABEL "LASLTP"
311 #define LN_PROLOG_END_LABEL "LELTP"
312 #define DIE_LABEL_PREFIX "DW"
314 /* Match the base name of a file to the base name of a compilation unit. */
316 static int
317 matches_main_base (const char *path)
319 /* Cache the last query. */
320 static const char *last_path = NULL;
321 static int last_match = 0;
322 if (path != last_path)
324 const char *base;
325 int length = base_of_path (path, &base);
326 last_path = path;
327 last_match = (length == main_input_baselength
328 && memcmp (base, main_input_basename, length) == 0);
330 return last_match;
333 #ifdef DEBUG_DEBUG_STRUCT
335 static int
336 dump_struct_debug (tree type, enum debug_info_usage usage,
337 enum debug_struct_file criterion, int generic,
338 int matches, int result)
340 /* Find the type name. */
341 tree type_decl = TYPE_STUB_DECL (type);
342 tree t = type_decl;
343 const char *name = 0;
344 if (TREE_CODE (t) == TYPE_DECL)
345 t = DECL_NAME (t);
346 if (t)
347 name = IDENTIFIER_POINTER (t);
349 fprintf (stderr, " struct %d %s %s %s %s %d %p %s\n",
350 criterion,
351 DECL_IN_SYSTEM_HEADER (type_decl) ? "sys" : "usr",
352 matches ? "bas" : "hdr",
353 generic ? "gen" : "ord",
354 usage == DINFO_USAGE_DFN ? ";" :
355 usage == DINFO_USAGE_DIR_USE ? "." : "*",
356 result,
357 (void*) type_decl, name);
358 return result;
360 #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
361 dump_struct_debug (type, usage, criterion, generic, matches, result)
363 #else
365 #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
366 (result)
368 #endif
370 /* Get the number of HOST_WIDE_INTs needed to represent the precision
371 of the number. Some constants have a large uniform precision, so
372 we get the precision needed for the actual value of the number. */
374 static unsigned int
375 get_full_len (const wide_int &op)
377 int prec = wi::min_precision (op, UNSIGNED);
378 return ((prec + HOST_BITS_PER_WIDE_INT - 1)
379 / HOST_BITS_PER_WIDE_INT);
382 static bool
383 should_emit_struct_debug (tree type, enum debug_info_usage usage)
385 enum debug_struct_file criterion;
386 tree type_decl;
387 bool generic = lang_hooks.types.generic_p (type);
389 if (generic)
390 criterion = debug_struct_generic[usage];
391 else
392 criterion = debug_struct_ordinary[usage];
394 if (criterion == DINFO_STRUCT_FILE_NONE)
395 return DUMP_GSTRUCT (type, usage, criterion, generic, false, false);
396 if (criterion == DINFO_STRUCT_FILE_ANY)
397 return DUMP_GSTRUCT (type, usage, criterion, generic, false, true);
399 type_decl = TYPE_STUB_DECL (TYPE_MAIN_VARIANT (type));
401 if (type_decl != NULL)
403 if (criterion == DINFO_STRUCT_FILE_SYS && DECL_IN_SYSTEM_HEADER (type_decl))
404 return DUMP_GSTRUCT (type, usage, criterion, generic, false, true);
406 if (matches_main_base (DECL_SOURCE_FILE (type_decl)))
407 return DUMP_GSTRUCT (type, usage, criterion, generic, true, true);
410 return DUMP_GSTRUCT (type, usage, criterion, generic, false, false);
413 /* Return a pointer to a copy of the section string name S with all
414 attributes stripped off, and an asterisk prepended (for assemble_name). */
416 static inline char *
417 stripattributes (const char *s)
419 char *stripped = XNEWVEC (char, strlen (s) + 2);
420 char *p = stripped;
422 *p++ = '*';
424 while (*s && *s != ',')
425 *p++ = *s++;
427 *p = '\0';
428 return stripped;
431 /* Switch [BACK] to eh_frame_section. If we don't have an eh_frame_section,
432 switch to the data section instead, and write out a synthetic start label
433 for collect2 the first time around. */
435 static void
436 switch_to_eh_frame_section (bool back ATTRIBUTE_UNUSED)
438 if (eh_frame_section == 0)
440 int flags;
442 if (EH_TABLES_CAN_BE_READ_ONLY)
444 int fde_encoding;
445 int per_encoding;
446 int lsda_encoding;
448 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
449 /*global=*/0);
450 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
451 /*global=*/1);
452 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
453 /*global=*/0);
454 flags = ((! flag_pic
455 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
456 && (fde_encoding & 0x70) != DW_EH_PE_aligned
457 && (per_encoding & 0x70) != DW_EH_PE_absptr
458 && (per_encoding & 0x70) != DW_EH_PE_aligned
459 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
460 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
461 ? 0 : SECTION_WRITE);
463 else
464 flags = SECTION_WRITE;
466 #ifdef EH_FRAME_SECTION_NAME
467 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
468 #else
469 eh_frame_section = ((flags == SECTION_WRITE)
470 ? data_section : readonly_data_section);
471 #endif /* EH_FRAME_SECTION_NAME */
474 switch_to_section (eh_frame_section);
476 #ifdef EH_FRAME_THROUGH_COLLECT2
477 /* We have no special eh_frame section. Emit special labels to guide
478 collect2. */
479 if (!back)
481 tree label = get_file_function_name ("F");
482 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
483 targetm.asm_out.globalize_label (asm_out_file,
484 IDENTIFIER_POINTER (label));
485 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
487 #endif
490 /* Switch [BACK] to the eh or debug frame table section, depending on
491 FOR_EH. */
493 static void
494 switch_to_frame_table_section (int for_eh, bool back)
496 if (for_eh)
497 switch_to_eh_frame_section (back);
498 else
500 if (!debug_frame_section)
501 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
502 SECTION_DEBUG, NULL);
503 switch_to_section (debug_frame_section);
507 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
509 enum dw_cfi_oprnd_type
510 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
512 switch (cfi)
514 case DW_CFA_nop:
515 case DW_CFA_GNU_window_save:
516 case DW_CFA_remember_state:
517 case DW_CFA_restore_state:
518 return dw_cfi_oprnd_unused;
520 case DW_CFA_set_loc:
521 case DW_CFA_advance_loc1:
522 case DW_CFA_advance_loc2:
523 case DW_CFA_advance_loc4:
524 case DW_CFA_MIPS_advance_loc8:
525 return dw_cfi_oprnd_addr;
527 case DW_CFA_offset:
528 case DW_CFA_offset_extended:
529 case DW_CFA_def_cfa:
530 case DW_CFA_offset_extended_sf:
531 case DW_CFA_def_cfa_sf:
532 case DW_CFA_restore:
533 case DW_CFA_restore_extended:
534 case DW_CFA_undefined:
535 case DW_CFA_same_value:
536 case DW_CFA_def_cfa_register:
537 case DW_CFA_register:
538 case DW_CFA_expression:
539 return dw_cfi_oprnd_reg_num;
541 case DW_CFA_def_cfa_offset:
542 case DW_CFA_GNU_args_size:
543 case DW_CFA_def_cfa_offset_sf:
544 return dw_cfi_oprnd_offset;
546 case DW_CFA_def_cfa_expression:
547 return dw_cfi_oprnd_loc;
549 default:
550 gcc_unreachable ();
554 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
556 enum dw_cfi_oprnd_type
557 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
559 switch (cfi)
561 case DW_CFA_def_cfa:
562 case DW_CFA_def_cfa_sf:
563 case DW_CFA_offset:
564 case DW_CFA_offset_extended_sf:
565 case DW_CFA_offset_extended:
566 return dw_cfi_oprnd_offset;
568 case DW_CFA_register:
569 return dw_cfi_oprnd_reg_num;
571 case DW_CFA_expression:
572 return dw_cfi_oprnd_loc;
574 default:
575 return dw_cfi_oprnd_unused;
579 /* Output one FDE. */
581 static void
582 output_fde (dw_fde_ref fde, bool for_eh, bool second,
583 char *section_start_label, int fde_encoding, char *augmentation,
584 bool any_lsda_needed, int lsda_encoding)
586 const char *begin, *end;
587 static unsigned int j;
588 char l1[20], l2[20];
590 targetm.asm_out.emit_unwind_label (asm_out_file, fde->decl, for_eh,
591 /* empty */ 0);
592 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL,
593 for_eh + j);
594 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + j);
595 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + j);
596 if (!XCOFF_DEBUGGING_INFO || for_eh)
598 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
599 dw2_asm_output_data (4, 0xffffffff, "Initial length escape value"
600 " indicating 64-bit DWARF extension");
601 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
602 "FDE Length");
604 ASM_OUTPUT_LABEL (asm_out_file, l1);
606 if (for_eh)
607 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
608 else
609 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
610 debug_frame_section, "FDE CIE offset");
612 begin = second ? fde->dw_fde_second_begin : fde->dw_fde_begin;
613 end = second ? fde->dw_fde_second_end : fde->dw_fde_end;
615 if (for_eh)
617 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, begin);
618 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
619 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref, false,
620 "FDE initial location");
621 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
622 end, begin, "FDE address range");
624 else
626 dw2_asm_output_addr (DWARF2_ADDR_SIZE, begin, "FDE initial location");
627 dw2_asm_output_delta (DWARF2_ADDR_SIZE, end, begin, "FDE address range");
630 if (augmentation[0])
632 if (any_lsda_needed)
634 int size = size_of_encoded_value (lsda_encoding);
636 if (lsda_encoding == DW_EH_PE_aligned)
638 int offset = ( 4 /* Length */
639 + 4 /* CIE offset */
640 + 2 * size_of_encoded_value (fde_encoding)
641 + 1 /* Augmentation size */ );
642 int pad = -offset & (PTR_SIZE - 1);
644 size += pad;
645 gcc_assert (size_of_uleb128 (size) == 1);
648 dw2_asm_output_data_uleb128 (size, "Augmentation size");
650 if (fde->uses_eh_lsda)
652 ASM_GENERATE_INTERNAL_LABEL (l1, second ? "LLSDAC" : "LLSDA",
653 fde->funcdef_number);
654 dw2_asm_output_encoded_addr_rtx (lsda_encoding,
655 gen_rtx_SYMBOL_REF (Pmode, l1),
656 false,
657 "Language Specific Data Area");
659 else
661 if (lsda_encoding == DW_EH_PE_aligned)
662 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
663 dw2_asm_output_data (size_of_encoded_value (lsda_encoding), 0,
664 "Language Specific Data Area (none)");
667 else
668 dw2_asm_output_data_uleb128 (0, "Augmentation size");
671 /* Loop through the Call Frame Instructions associated with this FDE. */
672 fde->dw_fde_current_label = begin;
674 size_t from, until, i;
676 from = 0;
677 until = vec_safe_length (fde->dw_fde_cfi);
679 if (fde->dw_fde_second_begin == NULL)
681 else if (!second)
682 until = fde->dw_fde_switch_cfi_index;
683 else
684 from = fde->dw_fde_switch_cfi_index;
686 for (i = from; i < until; i++)
687 output_cfi ((*fde->dw_fde_cfi)[i], fde, for_eh);
690 /* If we are to emit a ref/link from function bodies to their frame tables,
691 do it now. This is typically performed to make sure that tables
692 associated with functions are dragged with them and not discarded in
693 garbage collecting links. We need to do this on a per function basis to
694 cope with -ffunction-sections. */
696 #ifdef ASM_OUTPUT_DWARF_TABLE_REF
697 /* Switch to the function section, emit the ref to the tables, and
698 switch *back* into the table section. */
699 switch_to_section (function_section (fde->decl));
700 ASM_OUTPUT_DWARF_TABLE_REF (section_start_label);
701 switch_to_frame_table_section (for_eh, true);
702 #endif
704 /* Pad the FDE out to an address sized boundary. */
705 ASM_OUTPUT_ALIGN (asm_out_file,
706 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
707 ASM_OUTPUT_LABEL (asm_out_file, l2);
709 j += 2;
712 /* Return true if frame description entry FDE is needed for EH. */
714 static bool
715 fde_needed_for_eh_p (dw_fde_ref fde)
717 if (flag_asynchronous_unwind_tables)
718 return true;
720 if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde->decl))
721 return true;
723 if (fde->uses_eh_lsda)
724 return true;
726 /* If exceptions are enabled, we have collected nothrow info. */
727 if (flag_exceptions && (fde->all_throwers_are_sibcalls || fde->nothrow))
728 return false;
730 return true;
733 /* Output the call frame information used to record information
734 that relates to calculating the frame pointer, and records the
735 location of saved registers. */
737 static void
738 output_call_frame_info (int for_eh)
740 unsigned int i;
741 dw_fde_ref fde;
742 dw_cfi_ref cfi;
743 char l1[20], l2[20], section_start_label[20];
744 bool any_lsda_needed = false;
745 char augmentation[6];
746 int augmentation_size;
747 int fde_encoding = DW_EH_PE_absptr;
748 int per_encoding = DW_EH_PE_absptr;
749 int lsda_encoding = DW_EH_PE_absptr;
750 int return_reg;
751 rtx personality = NULL;
752 int dw_cie_version;
754 /* Don't emit a CIE if there won't be any FDEs. */
755 if (!fde_vec)
756 return;
758 /* Nothing to do if the assembler's doing it all. */
759 if (dwarf2out_do_cfi_asm ())
760 return;
762 /* If we don't have any functions we'll want to unwind out of, don't emit
763 any EH unwind information. If we make FDEs linkonce, we may have to
764 emit an empty label for an FDE that wouldn't otherwise be emitted. We
765 want to avoid having an FDE kept around when the function it refers to
766 is discarded. Example where this matters: a primary function template
767 in C++ requires EH information, an explicit specialization doesn't. */
768 if (for_eh)
770 bool any_eh_needed = false;
772 FOR_EACH_VEC_ELT (*fde_vec, i, fde)
774 if (fde->uses_eh_lsda)
775 any_eh_needed = any_lsda_needed = true;
776 else if (fde_needed_for_eh_p (fde))
777 any_eh_needed = true;
778 else if (TARGET_USES_WEAK_UNWIND_INFO)
779 targetm.asm_out.emit_unwind_label (asm_out_file, fde->decl, 1, 1);
782 if (!any_eh_needed)
783 return;
786 /* We're going to be generating comments, so turn on app. */
787 if (flag_debug_asm)
788 app_enable ();
790 /* Switch to the proper frame section, first time. */
791 switch_to_frame_table_section (for_eh, false);
793 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
794 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
796 /* Output the CIE. */
797 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
798 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
799 if (!XCOFF_DEBUGGING_INFO || for_eh)
801 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
802 dw2_asm_output_data (4, 0xffffffff,
803 "Initial length escape value indicating 64-bit DWARF extension");
804 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
805 "Length of Common Information Entry");
807 ASM_OUTPUT_LABEL (asm_out_file, l1);
809 /* Now that the CIE pointer is PC-relative for EH,
810 use 0 to identify the CIE. */
811 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
812 (for_eh ? 0 : DWARF_CIE_ID),
813 "CIE Identifier Tag");
815 /* Use the CIE version 3 for DWARF3; allow DWARF2 to continue to
816 use CIE version 1, unless that would produce incorrect results
817 due to overflowing the return register column. */
818 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
819 dw_cie_version = 1;
820 if (return_reg >= 256 || dwarf_version > 2)
821 dw_cie_version = 3;
822 dw2_asm_output_data (1, dw_cie_version, "CIE Version");
824 augmentation[0] = 0;
825 augmentation_size = 0;
827 personality = current_unit_personality;
828 if (for_eh)
830 char *p;
832 /* Augmentation:
833 z Indicates that a uleb128 is present to size the
834 augmentation section.
835 L Indicates the encoding (and thus presence) of
836 an LSDA pointer in the FDE augmentation.
837 R Indicates a non-default pointer encoding for
838 FDE code pointers.
839 P Indicates the presence of an encoding + language
840 personality routine in the CIE augmentation. */
842 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
843 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
844 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
846 p = augmentation + 1;
847 if (personality)
849 *p++ = 'P';
850 augmentation_size += 1 + size_of_encoded_value (per_encoding);
851 assemble_external_libcall (personality);
853 if (any_lsda_needed)
855 *p++ = 'L';
856 augmentation_size += 1;
858 if (fde_encoding != DW_EH_PE_absptr)
860 *p++ = 'R';
861 augmentation_size += 1;
863 if (p > augmentation + 1)
865 augmentation[0] = 'z';
866 *p = '\0';
869 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
870 if (personality && per_encoding == DW_EH_PE_aligned)
872 int offset = ( 4 /* Length */
873 + 4 /* CIE Id */
874 + 1 /* CIE version */
875 + strlen (augmentation) + 1 /* Augmentation */
876 + size_of_uleb128 (1) /* Code alignment */
877 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
878 + 1 /* RA column */
879 + 1 /* Augmentation size */
880 + 1 /* Personality encoding */ );
881 int pad = -offset & (PTR_SIZE - 1);
883 augmentation_size += pad;
885 /* Augmentations should be small, so there's scarce need to
886 iterate for a solution. Die if we exceed one uleb128 byte. */
887 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
891 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
892 if (dw_cie_version >= 4)
894 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "CIE Address Size");
895 dw2_asm_output_data (1, 0, "CIE Segment Size");
897 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
898 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
899 "CIE Data Alignment Factor");
901 if (dw_cie_version == 1)
902 dw2_asm_output_data (1, return_reg, "CIE RA Column");
903 else
904 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
906 if (augmentation[0])
908 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
909 if (personality)
911 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
912 eh_data_format_name (per_encoding));
913 dw2_asm_output_encoded_addr_rtx (per_encoding,
914 personality,
915 true, NULL);
918 if (any_lsda_needed)
919 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
920 eh_data_format_name (lsda_encoding));
922 if (fde_encoding != DW_EH_PE_absptr)
923 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
924 eh_data_format_name (fde_encoding));
927 FOR_EACH_VEC_ELT (*cie_cfi_vec, i, cfi)
928 output_cfi (cfi, NULL, for_eh);
930 /* Pad the CIE out to an address sized boundary. */
931 ASM_OUTPUT_ALIGN (asm_out_file,
932 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
933 ASM_OUTPUT_LABEL (asm_out_file, l2);
935 /* Loop through all of the FDE's. */
936 FOR_EACH_VEC_ELT (*fde_vec, i, fde)
938 unsigned int k;
940 /* Don't emit EH unwind info for leaf functions that don't need it. */
941 if (for_eh && !fde_needed_for_eh_p (fde))
942 continue;
944 for (k = 0; k < (fde->dw_fde_second_begin ? 2 : 1); k++)
945 output_fde (fde, for_eh, k, section_start_label, fde_encoding,
946 augmentation, any_lsda_needed, lsda_encoding);
949 if (for_eh && targetm.terminate_dw2_eh_frame_info)
950 dw2_asm_output_data (4, 0, "End of Table");
952 /* Turn off app to make assembly quicker. */
953 if (flag_debug_asm)
954 app_disable ();
957 /* Emit .cfi_startproc and .cfi_personality/.cfi_lsda if needed. */
959 static void
960 dwarf2out_do_cfi_startproc (bool second)
962 int enc;
963 rtx ref;
964 rtx personality = get_personality_function (current_function_decl);
966 fprintf (asm_out_file, "\t.cfi_startproc\n");
968 if (personality)
970 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
971 ref = personality;
973 /* ??? The GAS support isn't entirely consistent. We have to
974 handle indirect support ourselves, but PC-relative is done
975 in the assembler. Further, the assembler can't handle any
976 of the weirder relocation types. */
977 if (enc & DW_EH_PE_indirect)
978 ref = dw2_force_const_mem (ref, true);
980 fprintf (asm_out_file, "\t.cfi_personality %#x,", enc);
981 output_addr_const (asm_out_file, ref);
982 fputc ('\n', asm_out_file);
985 if (crtl->uses_eh_lsda)
987 char lab[20];
989 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
990 ASM_GENERATE_INTERNAL_LABEL (lab, second ? "LLSDAC" : "LLSDA",
991 current_function_funcdef_no);
992 ref = gen_rtx_SYMBOL_REF (Pmode, lab);
993 SYMBOL_REF_FLAGS (ref) = SYMBOL_FLAG_LOCAL;
995 if (enc & DW_EH_PE_indirect)
996 ref = dw2_force_const_mem (ref, true);
998 fprintf (asm_out_file, "\t.cfi_lsda %#x,", enc);
999 output_addr_const (asm_out_file, ref);
1000 fputc ('\n', asm_out_file);
1004 /* Allocate CURRENT_FDE. Immediately initialize all we can, noting that
1005 this allocation may be done before pass_final. */
1007 dw_fde_ref
1008 dwarf2out_alloc_current_fde (void)
1010 dw_fde_ref fde;
1012 fde = ggc_cleared_alloc<dw_fde_node> ();
1013 fde->decl = current_function_decl;
1014 fde->funcdef_number = current_function_funcdef_no;
1015 fde->fde_index = vec_safe_length (fde_vec);
1016 fde->all_throwers_are_sibcalls = crtl->all_throwers_are_sibcalls;
1017 fde->uses_eh_lsda = crtl->uses_eh_lsda;
1018 fde->nothrow = crtl->nothrow;
1019 fde->drap_reg = INVALID_REGNUM;
1020 fde->vdrap_reg = INVALID_REGNUM;
1022 /* Record the FDE associated with this function. */
1023 cfun->fde = fde;
1024 vec_safe_push (fde_vec, fde);
1026 return fde;
1029 /* Output a marker (i.e. a label) for the beginning of a function, before
1030 the prologue. */
1032 void
1033 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
1034 const char *file ATTRIBUTE_UNUSED)
1036 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1037 char * dup_label;
1038 dw_fde_ref fde;
1039 section *fnsec;
1040 bool do_frame;
1042 current_function_func_begin_label = NULL;
1044 do_frame = dwarf2out_do_frame ();
1046 /* ??? current_function_func_begin_label is also used by except.c for
1047 call-site information. We must emit this label if it might be used. */
1048 if (!do_frame
1049 && (!flag_exceptions
1050 || targetm_common.except_unwind_info (&global_options) == UI_SJLJ))
1051 return;
1053 fnsec = function_section (current_function_decl);
1054 switch_to_section (fnsec);
1055 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
1056 current_function_funcdef_no);
1057 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
1058 current_function_funcdef_no);
1059 dup_label = xstrdup (label);
1060 current_function_func_begin_label = dup_label;
1062 /* We can elide the fde allocation if we're not emitting debug info. */
1063 if (!do_frame)
1064 return;
1066 /* Cater to the various TARGET_ASM_OUTPUT_MI_THUNK implementations that
1067 emit insns as rtx but bypass the bulk of rest_of_compilation, which
1068 would include pass_dwarf2_frame. If we've not created the FDE yet,
1069 do so now. */
1070 fde = cfun->fde;
1071 if (fde == NULL)
1072 fde = dwarf2out_alloc_current_fde ();
1074 /* Initialize the bits of CURRENT_FDE that were not available earlier. */
1075 fde->dw_fde_begin = dup_label;
1076 fde->dw_fde_current_label = dup_label;
1077 fde->in_std_section = (fnsec == text_section
1078 || (cold_text_section && fnsec == cold_text_section));
1080 /* We only want to output line number information for the genuine dwarf2
1081 prologue case, not the eh frame case. */
1082 #ifdef DWARF2_DEBUGGING_INFO
1083 if (file)
1084 dwarf2out_source_line (line, file, 0, true);
1085 #endif
1087 if (dwarf2out_do_cfi_asm ())
1088 dwarf2out_do_cfi_startproc (false);
1089 else
1091 rtx personality = get_personality_function (current_function_decl);
1092 if (!current_unit_personality)
1093 current_unit_personality = personality;
1095 /* We cannot keep a current personality per function as without CFI
1096 asm, at the point where we emit the CFI data, there is no current
1097 function anymore. */
1098 if (personality && current_unit_personality != personality)
1099 sorry ("multiple EH personalities are supported only with assemblers "
1100 "supporting .cfi_personality directive");
1104 /* Output a marker (i.e. a label) for the end of the generated code
1105 for a function prologue. This gets called *after* the prologue code has
1106 been generated. */
1108 void
1109 dwarf2out_vms_end_prologue (unsigned int line ATTRIBUTE_UNUSED,
1110 const char *file ATTRIBUTE_UNUSED)
1112 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1114 /* Output a label to mark the endpoint of the code generated for this
1115 function. */
1116 ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
1117 current_function_funcdef_no);
1118 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, PROLOGUE_END_LABEL,
1119 current_function_funcdef_no);
1120 cfun->fde->dw_fde_vms_end_prologue = xstrdup (label);
1123 /* Output a marker (i.e. a label) for the beginning of the generated code
1124 for a function epilogue. This gets called *before* the prologue code has
1125 been generated. */
1127 void
1128 dwarf2out_vms_begin_epilogue (unsigned int line ATTRIBUTE_UNUSED,
1129 const char *file ATTRIBUTE_UNUSED)
1131 dw_fde_ref fde = cfun->fde;
1132 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1134 if (fde->dw_fde_vms_begin_epilogue)
1135 return;
1137 /* Output a label to mark the endpoint of the code generated for this
1138 function. */
1139 ASM_GENERATE_INTERNAL_LABEL (label, EPILOGUE_BEGIN_LABEL,
1140 current_function_funcdef_no);
1141 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, EPILOGUE_BEGIN_LABEL,
1142 current_function_funcdef_no);
1143 fde->dw_fde_vms_begin_epilogue = xstrdup (label);
1146 /* Output a marker (i.e. a label) for the absolute end of the generated code
1147 for a function definition. This gets called *after* the epilogue code has
1148 been generated. */
1150 void
1151 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
1152 const char *file ATTRIBUTE_UNUSED)
1154 dw_fde_ref fde;
1155 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1157 last_var_location_insn = NULL;
1158 cached_next_real_insn = NULL;
1160 if (dwarf2out_do_cfi_asm ())
1161 fprintf (asm_out_file, "\t.cfi_endproc\n");
1163 /* Output a label to mark the endpoint of the code generated for this
1164 function. */
1165 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
1166 current_function_funcdef_no);
1167 ASM_OUTPUT_LABEL (asm_out_file, label);
1168 fde = cfun->fde;
1169 gcc_assert (fde != NULL);
1170 if (fde->dw_fde_second_begin == NULL)
1171 fde->dw_fde_end = xstrdup (label);
1174 void
1175 dwarf2out_frame_finish (void)
1177 /* Output call frame information. */
1178 if (targetm.debug_unwind_info () == UI_DWARF2)
1179 output_call_frame_info (0);
1181 /* Output another copy for the unwinder. */
1182 if ((flag_unwind_tables || flag_exceptions)
1183 && targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
1184 output_call_frame_info (1);
1187 /* Note that the current function section is being used for code. */
1189 static void
1190 dwarf2out_note_section_used (void)
1192 section *sec = current_function_section ();
1193 if (sec == text_section)
1194 text_section_used = true;
1195 else if (sec == cold_text_section)
1196 cold_text_section_used = true;
1199 static void var_location_switch_text_section (void);
1200 static void set_cur_line_info_table (section *);
1202 void
1203 dwarf2out_switch_text_section (void)
1205 section *sect;
1206 dw_fde_ref fde = cfun->fde;
1208 gcc_assert (cfun && fde && fde->dw_fde_second_begin == NULL);
1210 if (!in_cold_section_p)
1212 fde->dw_fde_end = crtl->subsections.cold_section_end_label;
1213 fde->dw_fde_second_begin = crtl->subsections.hot_section_label;
1214 fde->dw_fde_second_end = crtl->subsections.hot_section_end_label;
1216 else
1218 fde->dw_fde_end = crtl->subsections.hot_section_end_label;
1219 fde->dw_fde_second_begin = crtl->subsections.cold_section_label;
1220 fde->dw_fde_second_end = crtl->subsections.cold_section_end_label;
1222 have_multiple_function_sections = true;
1224 /* There is no need to mark used sections when not debugging. */
1225 if (cold_text_section != NULL)
1226 dwarf2out_note_section_used ();
1228 if (dwarf2out_do_cfi_asm ())
1229 fprintf (asm_out_file, "\t.cfi_endproc\n");
1231 /* Now do the real section switch. */
1232 sect = current_function_section ();
1233 switch_to_section (sect);
1235 fde->second_in_std_section
1236 = (sect == text_section
1237 || (cold_text_section && sect == cold_text_section));
1239 if (dwarf2out_do_cfi_asm ())
1240 dwarf2out_do_cfi_startproc (true);
1242 var_location_switch_text_section ();
1244 if (cold_text_section != NULL)
1245 set_cur_line_info_table (sect);
1248 /* And now, the subset of the debugging information support code necessary
1249 for emitting location expressions. */
1251 /* Data about a single source file. */
1252 struct GTY((for_user)) dwarf_file_data {
1253 const char * filename;
1254 int emitted_number;
1257 /* Describe an entry into the .debug_addr section. */
1259 enum ate_kind {
1260 ate_kind_rtx,
1261 ate_kind_rtx_dtprel,
1262 ate_kind_label
1265 struct GTY((for_user)) addr_table_entry {
1266 enum ate_kind kind;
1267 unsigned int refcount;
1268 unsigned int index;
1269 union addr_table_entry_struct_union
1271 rtx GTY ((tag ("0"))) rtl;
1272 char * GTY ((tag ("1"))) label;
1274 GTY ((desc ("%1.kind"))) addr;
1277 /* Location lists are ranges + location descriptions for that range,
1278 so you can track variables that are in different places over
1279 their entire life. */
1280 typedef struct GTY(()) dw_loc_list_struct {
1281 dw_loc_list_ref dw_loc_next;
1282 const char *begin; /* Label and addr_entry for start of range */
1283 addr_table_entry *begin_entry;
1284 const char *end; /* Label for end of range */
1285 char *ll_symbol; /* Label for beginning of location list.
1286 Only on head of list */
1287 const char *section; /* Section this loclist is relative to */
1288 dw_loc_descr_ref expr;
1289 hashval_t hash;
1290 /* True if all addresses in this and subsequent lists are known to be
1291 resolved. */
1292 bool resolved_addr;
1293 /* True if this list has been replaced by dw_loc_next. */
1294 bool replaced;
1295 bool emitted;
1296 /* True if the range should be emitted even if begin and end
1297 are the same. */
1298 bool force;
1299 } dw_loc_list_node;
1301 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
1302 static dw_loc_descr_ref uint_loc_descriptor (unsigned HOST_WIDE_INT);
1304 /* Convert a DWARF stack opcode into its string name. */
1306 static const char *
1307 dwarf_stack_op_name (unsigned int op)
1309 const char *name = get_DW_OP_name (op);
1311 if (name != NULL)
1312 return name;
1314 return "OP_<unknown>";
1317 /* Return a pointer to a newly allocated location description. Location
1318 descriptions are simple expression terms that can be strung
1319 together to form more complicated location (address) descriptions. */
1321 static inline dw_loc_descr_ref
1322 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
1323 unsigned HOST_WIDE_INT oprnd2)
1325 dw_loc_descr_ref descr = ggc_cleared_alloc<dw_loc_descr_node> ();
1327 descr->dw_loc_opc = op;
1328 #if ENABLE_CHECKING
1329 descr->dw_loc_frame_offset = -1;
1330 #endif
1331 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
1332 descr->dw_loc_oprnd1.val_entry = NULL;
1333 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
1334 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
1335 descr->dw_loc_oprnd2.val_entry = NULL;
1336 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
1338 return descr;
1341 /* Return a pointer to a newly allocated location description for
1342 REG and OFFSET. */
1344 static inline dw_loc_descr_ref
1345 new_reg_loc_descr (unsigned int reg, unsigned HOST_WIDE_INT offset)
1347 if (reg <= 31)
1348 return new_loc_descr ((enum dwarf_location_atom) (DW_OP_breg0 + reg),
1349 offset, 0);
1350 else
1351 return new_loc_descr (DW_OP_bregx, reg, offset);
1354 /* Add a location description term to a location description expression. */
1356 static inline void
1357 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
1359 dw_loc_descr_ref *d;
1361 /* Find the end of the chain. */
1362 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
1365 *d = descr;
1368 /* Compare two location operands for exact equality. */
1370 static bool
1371 dw_val_equal_p (dw_val_node *a, dw_val_node *b)
1373 if (a->val_class != b->val_class)
1374 return false;
1375 switch (a->val_class)
1377 case dw_val_class_none:
1378 return true;
1379 case dw_val_class_addr:
1380 return rtx_equal_p (a->v.val_addr, b->v.val_addr);
1382 case dw_val_class_offset:
1383 case dw_val_class_unsigned_const:
1384 case dw_val_class_const:
1385 case dw_val_class_range_list:
1386 case dw_val_class_lineptr:
1387 case dw_val_class_macptr:
1388 /* These are all HOST_WIDE_INT, signed or unsigned. */
1389 return a->v.val_unsigned == b->v.val_unsigned;
1391 case dw_val_class_loc:
1392 return a->v.val_loc == b->v.val_loc;
1393 case dw_val_class_loc_list:
1394 return a->v.val_loc_list == b->v.val_loc_list;
1395 case dw_val_class_die_ref:
1396 return a->v.val_die_ref.die == b->v.val_die_ref.die;
1397 case dw_val_class_fde_ref:
1398 return a->v.val_fde_index == b->v.val_fde_index;
1399 case dw_val_class_lbl_id:
1400 case dw_val_class_high_pc:
1401 return strcmp (a->v.val_lbl_id, b->v.val_lbl_id) == 0;
1402 case dw_val_class_str:
1403 return a->v.val_str == b->v.val_str;
1404 case dw_val_class_flag:
1405 return a->v.val_flag == b->v.val_flag;
1406 case dw_val_class_file:
1407 return a->v.val_file == b->v.val_file;
1408 case dw_val_class_decl_ref:
1409 return a->v.val_decl_ref == b->v.val_decl_ref;
1411 case dw_val_class_const_double:
1412 return (a->v.val_double.high == b->v.val_double.high
1413 && a->v.val_double.low == b->v.val_double.low);
1415 case dw_val_class_wide_int:
1416 return *a->v.val_wide == *b->v.val_wide;
1418 case dw_val_class_vec:
1420 size_t a_len = a->v.val_vec.elt_size * a->v.val_vec.length;
1421 size_t b_len = b->v.val_vec.elt_size * b->v.val_vec.length;
1423 return (a_len == b_len
1424 && !memcmp (a->v.val_vec.array, b->v.val_vec.array, a_len));
1427 case dw_val_class_data8:
1428 return memcmp (a->v.val_data8, b->v.val_data8, 8) == 0;
1430 case dw_val_class_vms_delta:
1431 return (!strcmp (a->v.val_vms_delta.lbl1, b->v.val_vms_delta.lbl1)
1432 && !strcmp (a->v.val_vms_delta.lbl1, b->v.val_vms_delta.lbl1));
1434 case dw_val_class_discr_value:
1435 return (a->v.val_discr_value.pos == b->v.val_discr_value.pos
1436 && a->v.val_discr_value.v.uval == b->v.val_discr_value.v.uval);
1437 case dw_val_class_discr_list:
1438 /* It makes no sense comparing two discriminant value lists. */
1439 return false;
1441 gcc_unreachable ();
1444 /* Compare two location atoms for exact equality. */
1446 static bool
1447 loc_descr_equal_p_1 (dw_loc_descr_ref a, dw_loc_descr_ref b)
1449 if (a->dw_loc_opc != b->dw_loc_opc)
1450 return false;
1452 /* ??? This is only ever set for DW_OP_constNu, for N equal to the
1453 address size, but since we always allocate cleared storage it
1454 should be zero for other types of locations. */
1455 if (a->dtprel != b->dtprel)
1456 return false;
1458 return (dw_val_equal_p (&a->dw_loc_oprnd1, &b->dw_loc_oprnd1)
1459 && dw_val_equal_p (&a->dw_loc_oprnd2, &b->dw_loc_oprnd2));
1462 /* Compare two complete location expressions for exact equality. */
1464 bool
1465 loc_descr_equal_p (dw_loc_descr_ref a, dw_loc_descr_ref b)
1467 while (1)
1469 if (a == b)
1470 return true;
1471 if (a == NULL || b == NULL)
1472 return false;
1473 if (!loc_descr_equal_p_1 (a, b))
1474 return false;
1476 a = a->dw_loc_next;
1477 b = b->dw_loc_next;
1482 /* Add a constant OFFSET to a location expression. */
1484 static void
1485 loc_descr_plus_const (dw_loc_descr_ref *list_head, HOST_WIDE_INT offset)
1487 dw_loc_descr_ref loc;
1488 HOST_WIDE_INT *p;
1490 gcc_assert (*list_head != NULL);
1492 if (!offset)
1493 return;
1495 /* Find the end of the chain. */
1496 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
1499 p = NULL;
1500 if (loc->dw_loc_opc == DW_OP_fbreg
1501 || (loc->dw_loc_opc >= DW_OP_breg0 && loc->dw_loc_opc <= DW_OP_breg31))
1502 p = &loc->dw_loc_oprnd1.v.val_int;
1503 else if (loc->dw_loc_opc == DW_OP_bregx)
1504 p = &loc->dw_loc_oprnd2.v.val_int;
1506 /* If the last operation is fbreg, breg{0..31,x}, optimize by adjusting its
1507 offset. Don't optimize if an signed integer overflow would happen. */
1508 if (p != NULL
1509 && ((offset > 0 && *p <= INTTYPE_MAXIMUM (HOST_WIDE_INT) - offset)
1510 || (offset < 0 && *p >= INTTYPE_MINIMUM (HOST_WIDE_INT) - offset)))
1511 *p += offset;
1513 else if (offset > 0)
1514 loc->dw_loc_next = new_loc_descr (DW_OP_plus_uconst, offset, 0);
1516 else
1518 loc->dw_loc_next = int_loc_descriptor (-offset);
1519 add_loc_descr (&loc->dw_loc_next, new_loc_descr (DW_OP_minus, 0, 0));
1523 /* Add a constant OFFSET to a location list. */
1525 static void
1526 loc_list_plus_const (dw_loc_list_ref list_head, HOST_WIDE_INT offset)
1528 dw_loc_list_ref d;
1529 for (d = list_head; d != NULL; d = d->dw_loc_next)
1530 loc_descr_plus_const (&d->expr, offset);
1533 #define DWARF_REF_SIZE \
1534 (dwarf_version == 2 ? DWARF2_ADDR_SIZE : DWARF_OFFSET_SIZE)
1536 static unsigned long int get_base_type_offset (dw_die_ref);
1538 /* Return the size of a location descriptor. */
1540 static unsigned long
1541 size_of_loc_descr (dw_loc_descr_ref loc)
1543 unsigned long size = 1;
1545 switch (loc->dw_loc_opc)
1547 case DW_OP_addr:
1548 size += DWARF2_ADDR_SIZE;
1549 break;
1550 case DW_OP_GNU_addr_index:
1551 case DW_OP_GNU_const_index:
1552 gcc_assert (loc->dw_loc_oprnd1.val_entry->index != NO_INDEX_ASSIGNED);
1553 size += size_of_uleb128 (loc->dw_loc_oprnd1.val_entry->index);
1554 break;
1555 case DW_OP_const1u:
1556 case DW_OP_const1s:
1557 size += 1;
1558 break;
1559 case DW_OP_const2u:
1560 case DW_OP_const2s:
1561 size += 2;
1562 break;
1563 case DW_OP_const4u:
1564 case DW_OP_const4s:
1565 size += 4;
1566 break;
1567 case DW_OP_const8u:
1568 case DW_OP_const8s:
1569 size += 8;
1570 break;
1571 case DW_OP_constu:
1572 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1573 break;
1574 case DW_OP_consts:
1575 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1576 break;
1577 case DW_OP_pick:
1578 size += 1;
1579 break;
1580 case DW_OP_plus_uconst:
1581 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1582 break;
1583 case DW_OP_skip:
1584 case DW_OP_bra:
1585 size += 2;
1586 break;
1587 case DW_OP_breg0:
1588 case DW_OP_breg1:
1589 case DW_OP_breg2:
1590 case DW_OP_breg3:
1591 case DW_OP_breg4:
1592 case DW_OP_breg5:
1593 case DW_OP_breg6:
1594 case DW_OP_breg7:
1595 case DW_OP_breg8:
1596 case DW_OP_breg9:
1597 case DW_OP_breg10:
1598 case DW_OP_breg11:
1599 case DW_OP_breg12:
1600 case DW_OP_breg13:
1601 case DW_OP_breg14:
1602 case DW_OP_breg15:
1603 case DW_OP_breg16:
1604 case DW_OP_breg17:
1605 case DW_OP_breg18:
1606 case DW_OP_breg19:
1607 case DW_OP_breg20:
1608 case DW_OP_breg21:
1609 case DW_OP_breg22:
1610 case DW_OP_breg23:
1611 case DW_OP_breg24:
1612 case DW_OP_breg25:
1613 case DW_OP_breg26:
1614 case DW_OP_breg27:
1615 case DW_OP_breg28:
1616 case DW_OP_breg29:
1617 case DW_OP_breg30:
1618 case DW_OP_breg31:
1619 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1620 break;
1621 case DW_OP_regx:
1622 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1623 break;
1624 case DW_OP_fbreg:
1625 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1626 break;
1627 case DW_OP_bregx:
1628 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1629 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
1630 break;
1631 case DW_OP_piece:
1632 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1633 break;
1634 case DW_OP_bit_piece:
1635 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1636 size += size_of_uleb128 (loc->dw_loc_oprnd2.v.val_unsigned);
1637 break;
1638 case DW_OP_deref_size:
1639 case DW_OP_xderef_size:
1640 size += 1;
1641 break;
1642 case DW_OP_call2:
1643 size += 2;
1644 break;
1645 case DW_OP_call4:
1646 size += 4;
1647 break;
1648 case DW_OP_call_ref:
1649 size += DWARF_REF_SIZE;
1650 break;
1651 case DW_OP_implicit_value:
1652 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned)
1653 + loc->dw_loc_oprnd1.v.val_unsigned;
1654 break;
1655 case DW_OP_GNU_implicit_pointer:
1656 size += DWARF_REF_SIZE + size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
1657 break;
1658 case DW_OP_GNU_entry_value:
1660 unsigned long op_size = size_of_locs (loc->dw_loc_oprnd1.v.val_loc);
1661 size += size_of_uleb128 (op_size) + op_size;
1662 break;
1664 case DW_OP_GNU_const_type:
1666 unsigned long o
1667 = get_base_type_offset (loc->dw_loc_oprnd1.v.val_die_ref.die);
1668 size += size_of_uleb128 (o) + 1;
1669 switch (loc->dw_loc_oprnd2.val_class)
1671 case dw_val_class_vec:
1672 size += loc->dw_loc_oprnd2.v.val_vec.length
1673 * loc->dw_loc_oprnd2.v.val_vec.elt_size;
1674 break;
1675 case dw_val_class_const:
1676 size += HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT;
1677 break;
1678 case dw_val_class_const_double:
1679 size += HOST_BITS_PER_DOUBLE_INT / BITS_PER_UNIT;
1680 break;
1681 case dw_val_class_wide_int:
1682 size += (get_full_len (*loc->dw_loc_oprnd2.v.val_wide)
1683 * HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
1684 break;
1685 default:
1686 gcc_unreachable ();
1688 break;
1690 case DW_OP_GNU_regval_type:
1692 unsigned long o
1693 = get_base_type_offset (loc->dw_loc_oprnd2.v.val_die_ref.die);
1694 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned)
1695 + size_of_uleb128 (o);
1697 break;
1698 case DW_OP_GNU_deref_type:
1700 unsigned long o
1701 = get_base_type_offset (loc->dw_loc_oprnd2.v.val_die_ref.die);
1702 size += 1 + size_of_uleb128 (o);
1704 break;
1705 case DW_OP_GNU_convert:
1706 case DW_OP_GNU_reinterpret:
1707 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
1708 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1709 else
1711 unsigned long o
1712 = get_base_type_offset (loc->dw_loc_oprnd1.v.val_die_ref.die);
1713 size += size_of_uleb128 (o);
1715 break;
1716 case DW_OP_GNU_parameter_ref:
1717 size += 4;
1718 break;
1719 default:
1720 break;
1723 return size;
1726 /* Return the size of a series of location descriptors. */
1728 unsigned long
1729 size_of_locs (dw_loc_descr_ref loc)
1731 dw_loc_descr_ref l;
1732 unsigned long size;
1734 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
1735 field, to avoid writing to a PCH file. */
1736 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
1738 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
1739 break;
1740 size += size_of_loc_descr (l);
1742 if (! l)
1743 return size;
1745 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
1747 l->dw_loc_addr = size;
1748 size += size_of_loc_descr (l);
1751 return size;
1754 /* Return the size of the value in a DW_AT_discr_value attribute. */
1756 static int
1757 size_of_discr_value (dw_discr_value *discr_value)
1759 if (discr_value->pos)
1760 return size_of_uleb128 (discr_value->v.uval);
1761 else
1762 return size_of_sleb128 (discr_value->v.sval);
1765 /* Return the size of the value in a DW_discr_list attribute. */
1767 static int
1768 size_of_discr_list (dw_discr_list_ref discr_list)
1770 int size = 0;
1772 for (dw_discr_list_ref list = discr_list;
1773 list != NULL;
1774 list = list->dw_discr_next)
1776 /* One byte for the discriminant value descriptor, and then one or two
1777 LEB128 numbers, depending on whether it's a single case label or a
1778 range label. */
1779 size += 1;
1780 size += size_of_discr_value (&list->dw_discr_lower_bound);
1781 if (list->dw_discr_range != 0)
1782 size += size_of_discr_value (&list->dw_discr_upper_bound);
1784 return size;
1787 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
1788 static void get_ref_die_offset_label (char *, dw_die_ref);
1789 static unsigned long int get_ref_die_offset (dw_die_ref);
1791 /* Output location description stack opcode's operands (if any).
1792 The for_eh_or_skip parameter controls whether register numbers are
1793 converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
1794 hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
1795 info). This should be suppressed for the cases that have not been converted
1796 (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */
1798 static void
1799 output_loc_operands (dw_loc_descr_ref loc, int for_eh_or_skip)
1801 dw_val_ref val1 = &loc->dw_loc_oprnd1;
1802 dw_val_ref val2 = &loc->dw_loc_oprnd2;
1804 switch (loc->dw_loc_opc)
1806 #ifdef DWARF2_DEBUGGING_INFO
1807 case DW_OP_const2u:
1808 case DW_OP_const2s:
1809 dw2_asm_output_data (2, val1->v.val_int, NULL);
1810 break;
1811 case DW_OP_const4u:
1812 if (loc->dtprel)
1814 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
1815 targetm.asm_out.output_dwarf_dtprel (asm_out_file, 4,
1816 val1->v.val_addr);
1817 fputc ('\n', asm_out_file);
1818 break;
1820 /* FALLTHRU */
1821 case DW_OP_const4s:
1822 dw2_asm_output_data (4, val1->v.val_int, NULL);
1823 break;
1824 case DW_OP_const8u:
1825 if (loc->dtprel)
1827 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
1828 targetm.asm_out.output_dwarf_dtprel (asm_out_file, 8,
1829 val1->v.val_addr);
1830 fputc ('\n', asm_out_file);
1831 break;
1833 /* FALLTHRU */
1834 case DW_OP_const8s:
1835 gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
1836 dw2_asm_output_data (8, val1->v.val_int, NULL);
1837 break;
1838 case DW_OP_skip:
1839 case DW_OP_bra:
1841 int offset;
1843 gcc_assert (val1->val_class == dw_val_class_loc);
1844 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
1846 dw2_asm_output_data (2, offset, NULL);
1848 break;
1849 case DW_OP_implicit_value:
1850 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
1851 switch (val2->val_class)
1853 case dw_val_class_const:
1854 dw2_asm_output_data (val1->v.val_unsigned, val2->v.val_int, NULL);
1855 break;
1856 case dw_val_class_vec:
1858 unsigned int elt_size = val2->v.val_vec.elt_size;
1859 unsigned int len = val2->v.val_vec.length;
1860 unsigned int i;
1861 unsigned char *p;
1863 if (elt_size > sizeof (HOST_WIDE_INT))
1865 elt_size /= 2;
1866 len *= 2;
1868 for (i = 0, p = val2->v.val_vec.array;
1869 i < len;
1870 i++, p += elt_size)
1871 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
1872 "fp or vector constant word %u", i);
1874 break;
1875 case dw_val_class_const_double:
1877 unsigned HOST_WIDE_INT first, second;
1879 if (WORDS_BIG_ENDIAN)
1881 first = val2->v.val_double.high;
1882 second = val2->v.val_double.low;
1884 else
1886 first = val2->v.val_double.low;
1887 second = val2->v.val_double.high;
1889 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
1890 first, NULL);
1891 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
1892 second, NULL);
1894 break;
1895 case dw_val_class_wide_int:
1897 int i;
1898 int len = get_full_len (*val2->v.val_wide);
1899 if (WORDS_BIG_ENDIAN)
1900 for (i = len - 1; i >= 0; --i)
1901 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
1902 val2->v.val_wide->elt (i), NULL);
1903 else
1904 for (i = 0; i < len; ++i)
1905 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
1906 val2->v.val_wide->elt (i), NULL);
1908 break;
1909 case dw_val_class_addr:
1910 gcc_assert (val1->v.val_unsigned == DWARF2_ADDR_SIZE);
1911 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val2->v.val_addr, NULL);
1912 break;
1913 default:
1914 gcc_unreachable ();
1916 break;
1917 #else
1918 case DW_OP_const2u:
1919 case DW_OP_const2s:
1920 case DW_OP_const4u:
1921 case DW_OP_const4s:
1922 case DW_OP_const8u:
1923 case DW_OP_const8s:
1924 case DW_OP_skip:
1925 case DW_OP_bra:
1926 case DW_OP_implicit_value:
1927 /* We currently don't make any attempt to make sure these are
1928 aligned properly like we do for the main unwind info, so
1929 don't support emitting things larger than a byte if we're
1930 only doing unwinding. */
1931 gcc_unreachable ();
1932 #endif
1933 case DW_OP_const1u:
1934 case DW_OP_const1s:
1935 dw2_asm_output_data (1, val1->v.val_int, NULL);
1936 break;
1937 case DW_OP_constu:
1938 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
1939 break;
1940 case DW_OP_consts:
1941 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
1942 break;
1943 case DW_OP_pick:
1944 dw2_asm_output_data (1, val1->v.val_int, NULL);
1945 break;
1946 case DW_OP_plus_uconst:
1947 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
1948 break;
1949 case DW_OP_breg0:
1950 case DW_OP_breg1:
1951 case DW_OP_breg2:
1952 case DW_OP_breg3:
1953 case DW_OP_breg4:
1954 case DW_OP_breg5:
1955 case DW_OP_breg6:
1956 case DW_OP_breg7:
1957 case DW_OP_breg8:
1958 case DW_OP_breg9:
1959 case DW_OP_breg10:
1960 case DW_OP_breg11:
1961 case DW_OP_breg12:
1962 case DW_OP_breg13:
1963 case DW_OP_breg14:
1964 case DW_OP_breg15:
1965 case DW_OP_breg16:
1966 case DW_OP_breg17:
1967 case DW_OP_breg18:
1968 case DW_OP_breg19:
1969 case DW_OP_breg20:
1970 case DW_OP_breg21:
1971 case DW_OP_breg22:
1972 case DW_OP_breg23:
1973 case DW_OP_breg24:
1974 case DW_OP_breg25:
1975 case DW_OP_breg26:
1976 case DW_OP_breg27:
1977 case DW_OP_breg28:
1978 case DW_OP_breg29:
1979 case DW_OP_breg30:
1980 case DW_OP_breg31:
1981 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
1982 break;
1983 case DW_OP_regx:
1985 unsigned r = val1->v.val_unsigned;
1986 if (for_eh_or_skip >= 0)
1987 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
1988 gcc_assert (size_of_uleb128 (r)
1989 == size_of_uleb128 (val1->v.val_unsigned));
1990 dw2_asm_output_data_uleb128 (r, NULL);
1992 break;
1993 case DW_OP_fbreg:
1994 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
1995 break;
1996 case DW_OP_bregx:
1998 unsigned r = val1->v.val_unsigned;
1999 if (for_eh_or_skip >= 0)
2000 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2001 gcc_assert (size_of_uleb128 (r)
2002 == size_of_uleb128 (val1->v.val_unsigned));
2003 dw2_asm_output_data_uleb128 (r, NULL);
2004 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
2006 break;
2007 case DW_OP_piece:
2008 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2009 break;
2010 case DW_OP_bit_piece:
2011 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2012 dw2_asm_output_data_uleb128 (val2->v.val_unsigned, NULL);
2013 break;
2014 case DW_OP_deref_size:
2015 case DW_OP_xderef_size:
2016 dw2_asm_output_data (1, val1->v.val_int, NULL);
2017 break;
2019 case DW_OP_addr:
2020 if (loc->dtprel)
2022 if (targetm.asm_out.output_dwarf_dtprel)
2024 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
2025 DWARF2_ADDR_SIZE,
2026 val1->v.val_addr);
2027 fputc ('\n', asm_out_file);
2029 else
2030 gcc_unreachable ();
2032 else
2034 #ifdef DWARF2_DEBUGGING_INFO
2035 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2036 #else
2037 gcc_unreachable ();
2038 #endif
2040 break;
2042 case DW_OP_GNU_addr_index:
2043 case DW_OP_GNU_const_index:
2044 gcc_assert (loc->dw_loc_oprnd1.val_entry->index != NO_INDEX_ASSIGNED);
2045 dw2_asm_output_data_uleb128 (loc->dw_loc_oprnd1.val_entry->index,
2046 "(index into .debug_addr)");
2047 break;
2049 case DW_OP_call2:
2050 case DW_OP_call4:
2052 unsigned long die_offset
2053 = get_ref_die_offset (val1->v.val_die_ref.die);
2054 /* Make sure the offset has been computed and that we can encode it as
2055 an operand. */
2056 gcc_assert (die_offset > 0
2057 && die_offset <= (loc->dw_loc_opc == DW_OP_call2)
2058 ? 0xffff
2059 : 0xffffffff);
2060 dw2_asm_output_data ((loc->dw_loc_opc == DW_OP_call2) ? 2 : 4,
2061 die_offset, NULL);
2063 break;
2065 case DW_OP_GNU_implicit_pointer:
2067 char label[MAX_ARTIFICIAL_LABEL_BYTES
2068 + HOST_BITS_PER_WIDE_INT / 2 + 2];
2069 gcc_assert (val1->val_class == dw_val_class_die_ref);
2070 get_ref_die_offset_label (label, val1->v.val_die_ref.die);
2071 dw2_asm_output_offset (DWARF_REF_SIZE, label, debug_info_section, NULL);
2072 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
2074 break;
2076 case DW_OP_GNU_entry_value:
2077 dw2_asm_output_data_uleb128 (size_of_locs (val1->v.val_loc), NULL);
2078 output_loc_sequence (val1->v.val_loc, for_eh_or_skip);
2079 break;
2081 case DW_OP_GNU_const_type:
2083 unsigned long o = get_base_type_offset (val1->v.val_die_ref.die), l;
2084 gcc_assert (o);
2085 dw2_asm_output_data_uleb128 (o, NULL);
2086 switch (val2->val_class)
2088 case dw_val_class_const:
2089 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2090 dw2_asm_output_data (1, l, NULL);
2091 dw2_asm_output_data (l, val2->v.val_int, NULL);
2092 break;
2093 case dw_val_class_vec:
2095 unsigned int elt_size = val2->v.val_vec.elt_size;
2096 unsigned int len = val2->v.val_vec.length;
2097 unsigned int i;
2098 unsigned char *p;
2100 l = len * elt_size;
2101 dw2_asm_output_data (1, l, NULL);
2102 if (elt_size > sizeof (HOST_WIDE_INT))
2104 elt_size /= 2;
2105 len *= 2;
2107 for (i = 0, p = val2->v.val_vec.array;
2108 i < len;
2109 i++, p += elt_size)
2110 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
2111 "fp or vector constant word %u", i);
2113 break;
2114 case dw_val_class_const_double:
2116 unsigned HOST_WIDE_INT first, second;
2117 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2119 dw2_asm_output_data (1, 2 * l, NULL);
2120 if (WORDS_BIG_ENDIAN)
2122 first = val2->v.val_double.high;
2123 second = val2->v.val_double.low;
2125 else
2127 first = val2->v.val_double.low;
2128 second = val2->v.val_double.high;
2130 dw2_asm_output_data (l, first, NULL);
2131 dw2_asm_output_data (l, second, NULL);
2133 break;
2134 case dw_val_class_wide_int:
2136 int i;
2137 int len = get_full_len (*val2->v.val_wide);
2138 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2140 dw2_asm_output_data (1, len * l, NULL);
2141 if (WORDS_BIG_ENDIAN)
2142 for (i = len - 1; i >= 0; --i)
2143 dw2_asm_output_data (l, val2->v.val_wide->elt (i), NULL);
2144 else
2145 for (i = 0; i < len; ++i)
2146 dw2_asm_output_data (l, val2->v.val_wide->elt (i), NULL);
2148 break;
2149 default:
2150 gcc_unreachable ();
2153 break;
2154 case DW_OP_GNU_regval_type:
2156 unsigned r = val1->v.val_unsigned;
2157 unsigned long o = get_base_type_offset (val2->v.val_die_ref.die);
2158 gcc_assert (o);
2159 if (for_eh_or_skip >= 0)
2161 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2162 gcc_assert (size_of_uleb128 (r)
2163 == size_of_uleb128 (val1->v.val_unsigned));
2165 dw2_asm_output_data_uleb128 (r, NULL);
2166 dw2_asm_output_data_uleb128 (o, NULL);
2168 break;
2169 case DW_OP_GNU_deref_type:
2171 unsigned long o = get_base_type_offset (val2->v.val_die_ref.die);
2172 gcc_assert (o);
2173 dw2_asm_output_data (1, val1->v.val_int, NULL);
2174 dw2_asm_output_data_uleb128 (o, NULL);
2176 break;
2177 case DW_OP_GNU_convert:
2178 case DW_OP_GNU_reinterpret:
2179 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
2180 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2181 else
2183 unsigned long o = get_base_type_offset (val1->v.val_die_ref.die);
2184 gcc_assert (o);
2185 dw2_asm_output_data_uleb128 (o, NULL);
2187 break;
2189 case DW_OP_GNU_parameter_ref:
2191 unsigned long o;
2192 gcc_assert (val1->val_class == dw_val_class_die_ref);
2193 o = get_ref_die_offset (val1->v.val_die_ref.die);
2194 dw2_asm_output_data (4, o, NULL);
2196 break;
2198 default:
2199 /* Other codes have no operands. */
2200 break;
2204 /* Output a sequence of location operations.
2205 The for_eh_or_skip parameter controls whether register numbers are
2206 converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
2207 hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
2208 info). This should be suppressed for the cases that have not been converted
2209 (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */
2211 void
2212 output_loc_sequence (dw_loc_descr_ref loc, int for_eh_or_skip)
2214 for (; loc != NULL; loc = loc->dw_loc_next)
2216 enum dwarf_location_atom opc = loc->dw_loc_opc;
2217 /* Output the opcode. */
2218 if (for_eh_or_skip >= 0
2219 && opc >= DW_OP_breg0 && opc <= DW_OP_breg31)
2221 unsigned r = (opc - DW_OP_breg0);
2222 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2223 gcc_assert (r <= 31);
2224 opc = (enum dwarf_location_atom) (DW_OP_breg0 + r);
2226 else if (for_eh_or_skip >= 0
2227 && opc >= DW_OP_reg0 && opc <= DW_OP_reg31)
2229 unsigned r = (opc - DW_OP_reg0);
2230 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2231 gcc_assert (r <= 31);
2232 opc = (enum dwarf_location_atom) (DW_OP_reg0 + r);
2235 dw2_asm_output_data (1, opc,
2236 "%s", dwarf_stack_op_name (opc));
2238 /* Output the operand(s) (if any). */
2239 output_loc_operands (loc, for_eh_or_skip);
2243 /* Output location description stack opcode's operands (if any).
2244 The output is single bytes on a line, suitable for .cfi_escape. */
2246 static void
2247 output_loc_operands_raw (dw_loc_descr_ref loc)
2249 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2250 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2252 switch (loc->dw_loc_opc)
2254 case DW_OP_addr:
2255 case DW_OP_GNU_addr_index:
2256 case DW_OP_GNU_const_index:
2257 case DW_OP_implicit_value:
2258 /* We cannot output addresses in .cfi_escape, only bytes. */
2259 gcc_unreachable ();
2261 case DW_OP_const1u:
2262 case DW_OP_const1s:
2263 case DW_OP_pick:
2264 case DW_OP_deref_size:
2265 case DW_OP_xderef_size:
2266 fputc (',', asm_out_file);
2267 dw2_asm_output_data_raw (1, val1->v.val_int);
2268 break;
2270 case DW_OP_const2u:
2271 case DW_OP_const2s:
2272 fputc (',', asm_out_file);
2273 dw2_asm_output_data_raw (2, val1->v.val_int);
2274 break;
2276 case DW_OP_const4u:
2277 case DW_OP_const4s:
2278 fputc (',', asm_out_file);
2279 dw2_asm_output_data_raw (4, val1->v.val_int);
2280 break;
2282 case DW_OP_const8u:
2283 case DW_OP_const8s:
2284 gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
2285 fputc (',', asm_out_file);
2286 dw2_asm_output_data_raw (8, val1->v.val_int);
2287 break;
2289 case DW_OP_skip:
2290 case DW_OP_bra:
2292 int offset;
2294 gcc_assert (val1->val_class == dw_val_class_loc);
2295 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2297 fputc (',', asm_out_file);
2298 dw2_asm_output_data_raw (2, offset);
2300 break;
2302 case DW_OP_regx:
2304 unsigned r = DWARF2_FRAME_REG_OUT (val1->v.val_unsigned, 1);
2305 gcc_assert (size_of_uleb128 (r)
2306 == size_of_uleb128 (val1->v.val_unsigned));
2307 fputc (',', asm_out_file);
2308 dw2_asm_output_data_uleb128_raw (r);
2310 break;
2312 case DW_OP_constu:
2313 case DW_OP_plus_uconst:
2314 case DW_OP_piece:
2315 fputc (',', asm_out_file);
2316 dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
2317 break;
2319 case DW_OP_bit_piece:
2320 fputc (',', asm_out_file);
2321 dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
2322 dw2_asm_output_data_uleb128_raw (val2->v.val_unsigned);
2323 break;
2325 case DW_OP_consts:
2326 case DW_OP_breg0:
2327 case DW_OP_breg1:
2328 case DW_OP_breg2:
2329 case DW_OP_breg3:
2330 case DW_OP_breg4:
2331 case DW_OP_breg5:
2332 case DW_OP_breg6:
2333 case DW_OP_breg7:
2334 case DW_OP_breg8:
2335 case DW_OP_breg9:
2336 case DW_OP_breg10:
2337 case DW_OP_breg11:
2338 case DW_OP_breg12:
2339 case DW_OP_breg13:
2340 case DW_OP_breg14:
2341 case DW_OP_breg15:
2342 case DW_OP_breg16:
2343 case DW_OP_breg17:
2344 case DW_OP_breg18:
2345 case DW_OP_breg19:
2346 case DW_OP_breg20:
2347 case DW_OP_breg21:
2348 case DW_OP_breg22:
2349 case DW_OP_breg23:
2350 case DW_OP_breg24:
2351 case DW_OP_breg25:
2352 case DW_OP_breg26:
2353 case DW_OP_breg27:
2354 case DW_OP_breg28:
2355 case DW_OP_breg29:
2356 case DW_OP_breg30:
2357 case DW_OP_breg31:
2358 case DW_OP_fbreg:
2359 fputc (',', asm_out_file);
2360 dw2_asm_output_data_sleb128_raw (val1->v.val_int);
2361 break;
2363 case DW_OP_bregx:
2365 unsigned r = DWARF2_FRAME_REG_OUT (val1->v.val_unsigned, 1);
2366 gcc_assert (size_of_uleb128 (r)
2367 == size_of_uleb128 (val1->v.val_unsigned));
2368 fputc (',', asm_out_file);
2369 dw2_asm_output_data_uleb128_raw (r);
2370 fputc (',', asm_out_file);
2371 dw2_asm_output_data_sleb128_raw (val2->v.val_int);
2373 break;
2375 case DW_OP_GNU_implicit_pointer:
2376 case DW_OP_GNU_entry_value:
2377 case DW_OP_GNU_const_type:
2378 case DW_OP_GNU_regval_type:
2379 case DW_OP_GNU_deref_type:
2380 case DW_OP_GNU_convert:
2381 case DW_OP_GNU_reinterpret:
2382 case DW_OP_GNU_parameter_ref:
2383 gcc_unreachable ();
2384 break;
2386 default:
2387 /* Other codes have no operands. */
2388 break;
2392 void
2393 output_loc_sequence_raw (dw_loc_descr_ref loc)
2395 while (1)
2397 enum dwarf_location_atom opc = loc->dw_loc_opc;
2398 /* Output the opcode. */
2399 if (opc >= DW_OP_breg0 && opc <= DW_OP_breg31)
2401 unsigned r = (opc - DW_OP_breg0);
2402 r = DWARF2_FRAME_REG_OUT (r, 1);
2403 gcc_assert (r <= 31);
2404 opc = (enum dwarf_location_atom) (DW_OP_breg0 + r);
2406 else if (opc >= DW_OP_reg0 && opc <= DW_OP_reg31)
2408 unsigned r = (opc - DW_OP_reg0);
2409 r = DWARF2_FRAME_REG_OUT (r, 1);
2410 gcc_assert (r <= 31);
2411 opc = (enum dwarf_location_atom) (DW_OP_reg0 + r);
2413 /* Output the opcode. */
2414 fprintf (asm_out_file, "%#x", opc);
2415 output_loc_operands_raw (loc);
2417 if (!loc->dw_loc_next)
2418 break;
2419 loc = loc->dw_loc_next;
2421 fputc (',', asm_out_file);
2425 /* This function builds a dwarf location descriptor sequence from a
2426 dw_cfa_location, adding the given OFFSET to the result of the
2427 expression. */
2429 struct dw_loc_descr_node *
2430 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
2432 struct dw_loc_descr_node *head, *tmp;
2434 offset += cfa->offset;
2436 if (cfa->indirect)
2438 head = new_reg_loc_descr (cfa->reg, cfa->base_offset);
2439 head->dw_loc_oprnd1.val_class = dw_val_class_const;
2440 head->dw_loc_oprnd1.val_entry = NULL;
2441 tmp = new_loc_descr (DW_OP_deref, 0, 0);
2442 add_loc_descr (&head, tmp);
2443 if (offset != 0)
2445 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
2446 add_loc_descr (&head, tmp);
2449 else
2450 head = new_reg_loc_descr (cfa->reg, offset);
2452 return head;
2455 /* This function builds a dwarf location descriptor sequence for
2456 the address at OFFSET from the CFA when stack is aligned to
2457 ALIGNMENT byte. */
2459 struct dw_loc_descr_node *
2460 build_cfa_aligned_loc (dw_cfa_location *cfa,
2461 HOST_WIDE_INT offset, HOST_WIDE_INT alignment)
2463 struct dw_loc_descr_node *head;
2464 unsigned int dwarf_fp
2465 = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
2467 /* When CFA is defined as FP+OFFSET, emulate stack alignment. */
2468 if (cfa->reg == HARD_FRAME_POINTER_REGNUM && cfa->indirect == 0)
2470 head = new_reg_loc_descr (dwarf_fp, 0);
2471 add_loc_descr (&head, int_loc_descriptor (alignment));
2472 add_loc_descr (&head, new_loc_descr (DW_OP_and, 0, 0));
2473 loc_descr_plus_const (&head, offset);
2475 else
2476 head = new_reg_loc_descr (dwarf_fp, offset);
2477 return head;
2480 /* And now, the support for symbolic debugging information. */
2482 /* .debug_str support. */
2484 static void dwarf2out_init (const char *);
2485 static void dwarf2out_finish (const char *);
2486 static void dwarf2out_early_finish (void);
2487 static void dwarf2out_assembly_start (void);
2488 static void dwarf2out_define (unsigned int, const char *);
2489 static void dwarf2out_undef (unsigned int, const char *);
2490 static void dwarf2out_start_source_file (unsigned, const char *);
2491 static void dwarf2out_end_source_file (unsigned);
2492 static void dwarf2out_function_decl (tree);
2493 static void dwarf2out_begin_block (unsigned, unsigned);
2494 static void dwarf2out_end_block (unsigned, unsigned);
2495 static bool dwarf2out_ignore_block (const_tree);
2496 static void dwarf2out_early_global_decl (tree);
2497 static void dwarf2out_late_global_decl (tree);
2498 static void dwarf2out_type_decl (tree, int);
2499 static void dwarf2out_imported_module_or_decl (tree, tree, tree, bool);
2500 static void dwarf2out_imported_module_or_decl_1 (tree, tree, tree,
2501 dw_die_ref);
2502 static void dwarf2out_abstract_function (tree);
2503 static void dwarf2out_var_location (rtx_insn *);
2504 static void dwarf2out_size_function (tree);
2505 static void dwarf2out_begin_function (tree);
2506 static void dwarf2out_end_function (unsigned int);
2507 static void dwarf2out_register_main_translation_unit (tree unit);
2508 static void dwarf2out_set_name (tree, tree);
2510 /* The debug hooks structure. */
2512 const struct gcc_debug_hooks dwarf2_debug_hooks =
2514 dwarf2out_init,
2515 dwarf2out_finish,
2516 dwarf2out_early_finish,
2517 dwarf2out_assembly_start,
2518 dwarf2out_define,
2519 dwarf2out_undef,
2520 dwarf2out_start_source_file,
2521 dwarf2out_end_source_file,
2522 dwarf2out_begin_block,
2523 dwarf2out_end_block,
2524 dwarf2out_ignore_block,
2525 dwarf2out_source_line,
2526 dwarf2out_begin_prologue,
2527 #if VMS_DEBUGGING_INFO
2528 dwarf2out_vms_end_prologue,
2529 dwarf2out_vms_begin_epilogue,
2530 #else
2531 debug_nothing_int_charstar,
2532 debug_nothing_int_charstar,
2533 #endif
2534 dwarf2out_end_epilogue,
2535 dwarf2out_begin_function,
2536 dwarf2out_end_function, /* end_function */
2537 dwarf2out_register_main_translation_unit,
2538 dwarf2out_function_decl, /* function_decl */
2539 dwarf2out_early_global_decl,
2540 dwarf2out_late_global_decl,
2541 dwarf2out_type_decl, /* type_decl */
2542 dwarf2out_imported_module_or_decl,
2543 debug_nothing_tree, /* deferred_inline_function */
2544 /* The DWARF 2 backend tries to reduce debugging bloat by not
2545 emitting the abstract description of inline functions until
2546 something tries to reference them. */
2547 dwarf2out_abstract_function, /* outlining_inline_function */
2548 debug_nothing_rtx_code_label, /* label */
2549 debug_nothing_int, /* handle_pch */
2550 dwarf2out_var_location,
2551 dwarf2out_size_function, /* size_function */
2552 dwarf2out_switch_text_section,
2553 dwarf2out_set_name,
2554 1, /* start_end_main_source_file */
2555 TYPE_SYMTAB_IS_DIE /* tree_type_symtab_field */
2558 const struct gcc_debug_hooks dwarf2_lineno_debug_hooks =
2560 dwarf2out_init,
2561 debug_nothing_charstar,
2562 debug_nothing_void,
2563 debug_nothing_void,
2564 debug_nothing_int_charstar,
2565 debug_nothing_int_charstar,
2566 debug_nothing_int_charstar,
2567 debug_nothing_int,
2568 debug_nothing_int_int, /* begin_block */
2569 debug_nothing_int_int, /* end_block */
2570 debug_true_const_tree, /* ignore_block */
2571 dwarf2out_source_line, /* source_line */
2572 debug_nothing_int_charstar, /* begin_prologue */
2573 debug_nothing_int_charstar, /* end_prologue */
2574 debug_nothing_int_charstar, /* begin_epilogue */
2575 debug_nothing_int_charstar, /* end_epilogue */
2576 debug_nothing_tree, /* begin_function */
2577 debug_nothing_int, /* end_function */
2578 debug_nothing_tree, /* register_main_translation_unit */
2579 debug_nothing_tree, /* function_decl */
2580 debug_nothing_tree, /* early_global_decl */
2581 debug_nothing_tree, /* late_global_decl */
2582 debug_nothing_tree_int, /* type_decl */
2583 debug_nothing_tree_tree_tree_bool, /* imported_module_or_decl */
2584 debug_nothing_tree, /* deferred_inline_function */
2585 debug_nothing_tree, /* outlining_inline_function */
2586 debug_nothing_rtx_code_label, /* label */
2587 debug_nothing_int, /* handle_pch */
2588 debug_nothing_rtx_insn, /* var_location */
2589 debug_nothing_tree, /* size_function */
2590 debug_nothing_void, /* switch_text_section */
2591 debug_nothing_tree_tree, /* set_name */
2592 0, /* start_end_main_source_file */
2593 TYPE_SYMTAB_IS_ADDRESS /* tree_type_symtab_field */
2596 /* NOTE: In the comments in this file, many references are made to
2597 "Debugging Information Entries". This term is abbreviated as `DIE'
2598 throughout the remainder of this file. */
2600 /* An internal representation of the DWARF output is built, and then
2601 walked to generate the DWARF debugging info. The walk of the internal
2602 representation is done after the entire program has been compiled.
2603 The types below are used to describe the internal representation. */
2605 /* Whether to put type DIEs into their own section .debug_types instead
2606 of making them part of the .debug_info section. Only supported for
2607 Dwarf V4 or higher and the user didn't disable them through
2608 -fno-debug-types-section. It is more efficient to put them in a
2609 separate comdat sections since the linker will then be able to
2610 remove duplicates. But not all tools support .debug_types sections
2611 yet. */
2613 #define use_debug_types (dwarf_version >= 4 && flag_debug_types_section)
2615 /* Various DIE's use offsets relative to the beginning of the
2616 .debug_info section to refer to each other. */
2618 typedef long int dw_offset;
2620 struct comdat_type_node;
2622 /* The entries in the line_info table more-or-less mirror the opcodes
2623 that are used in the real dwarf line table. Arrays of these entries
2624 are collected per section when DWARF2_ASM_LINE_DEBUG_INFO is not
2625 supported. */
2627 enum dw_line_info_opcode {
2628 /* Emit DW_LNE_set_address; the operand is the label index. */
2629 LI_set_address,
2631 /* Emit a row to the matrix with the given line. This may be done
2632 via any combination of DW_LNS_copy, DW_LNS_advance_line, and
2633 special opcodes. */
2634 LI_set_line,
2636 /* Emit a DW_LNS_set_file. */
2637 LI_set_file,
2639 /* Emit a DW_LNS_set_column. */
2640 LI_set_column,
2642 /* Emit a DW_LNS_negate_stmt; the operand is ignored. */
2643 LI_negate_stmt,
2645 /* Emit a DW_LNS_set_prologue_end/epilogue_begin; the operand is ignored. */
2646 LI_set_prologue_end,
2647 LI_set_epilogue_begin,
2649 /* Emit a DW_LNE_set_discriminator. */
2650 LI_set_discriminator
2653 typedef struct GTY(()) dw_line_info_struct {
2654 enum dw_line_info_opcode opcode;
2655 unsigned int val;
2656 } dw_line_info_entry;
2659 struct GTY(()) dw_line_info_table {
2660 /* The label that marks the end of this section. */
2661 const char *end_label;
2663 /* The values for the last row of the matrix, as collected in the table.
2664 These are used to minimize the changes to the next row. */
2665 unsigned int file_num;
2666 unsigned int line_num;
2667 unsigned int column_num;
2668 int discrim_num;
2669 bool is_stmt;
2670 bool in_use;
2672 vec<dw_line_info_entry, va_gc> *entries;
2676 /* Each DIE attribute has a field specifying the attribute kind,
2677 a link to the next attribute in the chain, and an attribute value.
2678 Attributes are typically linked below the DIE they modify. */
2680 typedef struct GTY(()) dw_attr_struct {
2681 enum dwarf_attribute dw_attr;
2682 dw_val_node dw_attr_val;
2684 dw_attr_node;
2687 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
2688 The children of each node form a circular list linked by
2689 die_sib. die_child points to the node *before* the "first" child node. */
2691 typedef struct GTY((chain_circular ("%h.die_sib"), for_user)) die_struct {
2692 union die_symbol_or_type_node
2694 const char * GTY ((tag ("0"))) die_symbol;
2695 comdat_type_node *GTY ((tag ("1"))) die_type_node;
2697 GTY ((desc ("%0.comdat_type_p"))) die_id;
2698 vec<dw_attr_node, va_gc> *die_attr;
2699 dw_die_ref die_parent;
2700 dw_die_ref die_child;
2701 dw_die_ref die_sib;
2702 dw_die_ref die_definition; /* ref from a specification to its definition */
2703 dw_offset die_offset;
2704 unsigned long die_abbrev;
2705 int die_mark;
2706 unsigned int decl_id;
2707 enum dwarf_tag die_tag;
2708 /* Die is used and must not be pruned as unused. */
2709 BOOL_BITFIELD die_perennial_p : 1;
2710 BOOL_BITFIELD comdat_type_p : 1; /* DIE has a type signature */
2711 /* Lots of spare bits. */
2713 die_node;
2715 /* Set to TRUE while dwarf2out_early_global_decl is running. */
2716 static bool early_dwarf;
2717 struct set_early_dwarf {
2718 bool saved;
2719 set_early_dwarf () : saved(early_dwarf) { early_dwarf = true; }
2720 ~set_early_dwarf () { early_dwarf = saved; }
2723 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
2724 #define FOR_EACH_CHILD(die, c, expr) do { \
2725 c = die->die_child; \
2726 if (c) do { \
2727 c = c->die_sib; \
2728 expr; \
2729 } while (c != die->die_child); \
2730 } while (0)
2732 /* The pubname structure */
2734 typedef struct GTY(()) pubname_struct {
2735 dw_die_ref die;
2736 const char *name;
2738 pubname_entry;
2741 struct GTY(()) dw_ranges {
2742 /* If this is positive, it's a block number, otherwise it's a
2743 bitwise-negated index into dw_ranges_by_label. */
2744 int num;
2747 /* A structure to hold a macinfo entry. */
2749 typedef struct GTY(()) macinfo_struct {
2750 unsigned char code;
2751 unsigned HOST_WIDE_INT lineno;
2752 const char *info;
2754 macinfo_entry;
2757 struct GTY(()) dw_ranges_by_label {
2758 const char *begin;
2759 const char *end;
2762 /* The comdat type node structure. */
2763 struct GTY(()) comdat_type_node
2765 dw_die_ref root_die;
2766 dw_die_ref type_die;
2767 dw_die_ref skeleton_die;
2768 char signature[DWARF_TYPE_SIGNATURE_SIZE];
2769 comdat_type_node *next;
2772 /* A list of DIEs for which we can't determine ancestry (parent_die
2773 field) just yet. Later in dwarf2out_finish we will fill in the
2774 missing bits. */
2775 typedef struct GTY(()) limbo_die_struct {
2776 dw_die_ref die;
2777 /* The tree for which this DIE was created. We use this to
2778 determine ancestry later. */
2779 tree created_for;
2780 struct limbo_die_struct *next;
2782 limbo_die_node;
2784 typedef struct skeleton_chain_struct
2786 dw_die_ref old_die;
2787 dw_die_ref new_die;
2788 struct skeleton_chain_struct *parent;
2790 skeleton_chain_node;
2792 /* Define a macro which returns nonzero for a TYPE_DECL which was
2793 implicitly generated for a type.
2795 Note that, unlike the C front-end (which generates a NULL named
2796 TYPE_DECL node for each complete tagged type, each array type,
2797 and each function type node created) the C++ front-end generates
2798 a _named_ TYPE_DECL node for each tagged type node created.
2799 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
2800 generate a DW_TAG_typedef DIE for them. Likewise with the Ada
2801 front-end, but for each type, tagged or not. */
2803 #define TYPE_DECL_IS_STUB(decl) \
2804 (DECL_NAME (decl) == NULL_TREE \
2805 || (DECL_ARTIFICIAL (decl) \
2806 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
2807 /* This is necessary for stub decls that \
2808 appear in nested inline functions. */ \
2809 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
2810 && (decl_ultimate_origin (decl) \
2811 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
2813 /* Information concerning the compilation unit's programming
2814 language, and compiler version. */
2816 /* Fixed size portion of the DWARF compilation unit header. */
2817 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
2818 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
2820 /* Fixed size portion of the DWARF comdat type unit header. */
2821 #define DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE \
2822 (DWARF_COMPILE_UNIT_HEADER_SIZE + DWARF_TYPE_SIGNATURE_SIZE \
2823 + DWARF_OFFSET_SIZE)
2825 /* Fixed size portion of public names info. */
2826 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
2828 /* Fixed size portion of the address range info. */
2829 #define DWARF_ARANGES_HEADER_SIZE \
2830 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
2831 DWARF2_ADDR_SIZE * 2) \
2832 - DWARF_INITIAL_LENGTH_SIZE)
2834 /* Size of padding portion in the address range info. It must be
2835 aligned to twice the pointer size. */
2836 #define DWARF_ARANGES_PAD_SIZE \
2837 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
2838 DWARF2_ADDR_SIZE * 2) \
2839 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
2841 /* Use assembler line directives if available. */
2842 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
2843 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
2844 #define DWARF2_ASM_LINE_DEBUG_INFO 1
2845 #else
2846 #define DWARF2_ASM_LINE_DEBUG_INFO 0
2847 #endif
2848 #endif
2850 /* Minimum line offset in a special line info. opcode.
2851 This value was chosen to give a reasonable range of values. */
2852 #define DWARF_LINE_BASE -10
2854 /* First special line opcode - leave room for the standard opcodes. */
2855 #define DWARF_LINE_OPCODE_BASE ((int)DW_LNS_set_isa + 1)
2857 /* Range of line offsets in a special line info. opcode. */
2858 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
2860 /* Flag that indicates the initial value of the is_stmt_start flag.
2861 In the present implementation, we do not mark any lines as
2862 the beginning of a source statement, because that information
2863 is not made available by the GCC front-end. */
2864 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
2866 /* Maximum number of operations per instruction bundle. */
2867 #ifndef DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN
2868 #define DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN 1
2869 #endif
2871 /* This location is used by calc_die_sizes() to keep track
2872 the offset of each DIE within the .debug_info section. */
2873 static unsigned long next_die_offset;
2875 /* Record the root of the DIE's built for the current compilation unit. */
2876 static GTY(()) dw_die_ref single_comp_unit_die;
2878 /* A list of type DIEs that have been separated into comdat sections. */
2879 static GTY(()) comdat_type_node *comdat_type_list;
2881 /* A list of DIEs with a NULL parent waiting to be relocated. */
2882 static GTY(()) limbo_die_node *limbo_die_list;
2884 /* A list of DIEs for which we may have to generate
2885 DW_AT_{,MIPS_}linkage_name once their DECL_ASSEMBLER_NAMEs are set. */
2886 static GTY(()) limbo_die_node *deferred_asm_name;
2888 struct dwarf_file_hasher : ggc_ptr_hash<dwarf_file_data>
2890 typedef const char *compare_type;
2892 static hashval_t hash (dwarf_file_data *);
2893 static bool equal (dwarf_file_data *, const char *);
2896 /* Filenames referenced by this compilation unit. */
2897 static GTY(()) hash_table<dwarf_file_hasher> *file_table;
2899 struct decl_die_hasher : ggc_ptr_hash<die_node>
2901 typedef tree compare_type;
2903 static hashval_t hash (die_node *);
2904 static bool equal (die_node *, tree);
2906 /* A hash table of references to DIE's that describe declarations.
2907 The key is a DECL_UID() which is a unique number identifying each decl. */
2908 static GTY (()) hash_table<decl_die_hasher> *decl_die_table;
2910 struct block_die_hasher : ggc_ptr_hash<die_struct>
2912 static hashval_t hash (die_struct *);
2913 static bool equal (die_struct *, die_struct *);
2916 /* A hash table of references to DIE's that describe COMMON blocks.
2917 The key is DECL_UID() ^ die_parent. */
2918 static GTY (()) hash_table<block_die_hasher> *common_block_die_table;
2920 typedef struct GTY(()) die_arg_entry_struct {
2921 dw_die_ref die;
2922 tree arg;
2923 } die_arg_entry;
2926 /* Node of the variable location list. */
2927 struct GTY ((chain_next ("%h.next"))) var_loc_node {
2928 /* Either NOTE_INSN_VAR_LOCATION, or, for SRA optimized variables,
2929 EXPR_LIST chain. For small bitsizes, bitsize is encoded
2930 in mode of the EXPR_LIST node and first EXPR_LIST operand
2931 is either NOTE_INSN_VAR_LOCATION for a piece with a known
2932 location or NULL for padding. For larger bitsizes,
2933 mode is 0 and first operand is a CONCAT with bitsize
2934 as first CONCAT operand and NOTE_INSN_VAR_LOCATION resp.
2935 NULL as second operand. */
2936 rtx GTY (()) loc;
2937 const char * GTY (()) label;
2938 struct var_loc_node * GTY (()) next;
2941 /* Variable location list. */
2942 struct GTY ((for_user)) var_loc_list_def {
2943 struct var_loc_node * GTY (()) first;
2945 /* Pointer to the last but one or last element of the
2946 chained list. If the list is empty, both first and
2947 last are NULL, if the list contains just one node
2948 or the last node certainly is not redundant, it points
2949 to the last node, otherwise points to the last but one.
2950 Do not mark it for GC because it is marked through the chain. */
2951 struct var_loc_node * GTY ((skip ("%h"))) last;
2953 /* Pointer to the last element before section switch,
2954 if NULL, either sections weren't switched or first
2955 is after section switch. */
2956 struct var_loc_node * GTY ((skip ("%h"))) last_before_switch;
2958 /* DECL_UID of the variable decl. */
2959 unsigned int decl_id;
2961 typedef struct var_loc_list_def var_loc_list;
2963 /* Call argument location list. */
2964 struct GTY ((chain_next ("%h.next"))) call_arg_loc_node {
2965 rtx GTY (()) call_arg_loc_note;
2966 const char * GTY (()) label;
2967 tree GTY (()) block;
2968 bool tail_call_p;
2969 rtx GTY (()) symbol_ref;
2970 struct call_arg_loc_node * GTY (()) next;
2974 struct decl_loc_hasher : ggc_ptr_hash<var_loc_list>
2976 typedef const_tree compare_type;
2978 static hashval_t hash (var_loc_list *);
2979 static bool equal (var_loc_list *, const_tree);
2982 /* Table of decl location linked lists. */
2983 static GTY (()) hash_table<decl_loc_hasher> *decl_loc_table;
2985 /* Head and tail of call_arg_loc chain. */
2986 static GTY (()) struct call_arg_loc_node *call_arg_locations;
2987 static struct call_arg_loc_node *call_arg_loc_last;
2989 /* Number of call sites in the current function. */
2990 static int call_site_count = -1;
2991 /* Number of tail call sites in the current function. */
2992 static int tail_call_site_count = -1;
2994 /* A cached location list. */
2995 struct GTY ((for_user)) cached_dw_loc_list_def {
2996 /* The DECL_UID of the decl that this entry describes. */
2997 unsigned int decl_id;
2999 /* The cached location list. */
3000 dw_loc_list_ref loc_list;
3002 typedef struct cached_dw_loc_list_def cached_dw_loc_list;
3004 struct dw_loc_list_hasher : ggc_ptr_hash<cached_dw_loc_list>
3007 typedef const_tree compare_type;
3009 static hashval_t hash (cached_dw_loc_list *);
3010 static bool equal (cached_dw_loc_list *, const_tree);
3013 /* Table of cached location lists. */
3014 static GTY (()) hash_table<dw_loc_list_hasher> *cached_dw_loc_list_table;
3016 /* A pointer to the base of a list of references to DIE's that
3017 are uniquely identified by their tag, presence/absence of
3018 children DIE's, and list of attribute/value pairs. */
3019 static GTY((length ("abbrev_die_table_allocated")))
3020 dw_die_ref *abbrev_die_table;
3022 /* Number of elements currently allocated for abbrev_die_table. */
3023 static GTY(()) unsigned abbrev_die_table_allocated;
3025 /* Number of elements in abbrev_die_table currently in use. */
3026 static GTY(()) unsigned abbrev_die_table_in_use;
3028 /* A hash map to remember the stack usage for DWARF procedures. The value
3029 stored is the stack size difference between before the DWARF procedure
3030 invokation and after it returned. In other words, for a DWARF procedure
3031 that consumes N stack slots and that pushes M ones, this stores M - N. */
3032 static hash_map<dw_die_ref, int> *dwarf_proc_stack_usage_map;
3034 /* Size (in elements) of increments by which we may expand the
3035 abbrev_die_table. */
3036 #define ABBREV_DIE_TABLE_INCREMENT 256
3038 /* A global counter for generating labels for line number data. */
3039 static unsigned int line_info_label_num;
3041 /* The current table to which we should emit line number information
3042 for the current function. This will be set up at the beginning of
3043 assembly for the function. */
3044 static dw_line_info_table *cur_line_info_table;
3046 /* The two default tables of line number info. */
3047 static GTY(()) dw_line_info_table *text_section_line_info;
3048 static GTY(()) dw_line_info_table *cold_text_section_line_info;
3050 /* The set of all non-default tables of line number info. */
3051 static GTY(()) vec<dw_line_info_table *, va_gc> *separate_line_info;
3053 /* A flag to tell pubnames/types export if there is an info section to
3054 refer to. */
3055 static bool info_section_emitted;
3057 /* A pointer to the base of a table that contains a list of publicly
3058 accessible names. */
3059 static GTY (()) vec<pubname_entry, va_gc> *pubname_table;
3061 /* A pointer to the base of a table that contains a list of publicly
3062 accessible types. */
3063 static GTY (()) vec<pubname_entry, va_gc> *pubtype_table;
3065 /* A pointer to the base of a table that contains a list of macro
3066 defines/undefines (and file start/end markers). */
3067 static GTY (()) vec<macinfo_entry, va_gc> *macinfo_table;
3069 /* True if .debug_macinfo or .debug_macros section is going to be
3070 emitted. */
3071 #define have_macinfo \
3072 ((!XCOFF_DEBUGGING_INFO || HAVE_XCOFF_DWARF_EXTRAS) \
3073 && debug_info_level >= DINFO_LEVEL_VERBOSE \
3074 && !macinfo_table->is_empty ())
3076 /* Array of dies for which we should generate .debug_ranges info. */
3077 static GTY ((length ("ranges_table_allocated"))) dw_ranges *ranges_table;
3079 /* Number of elements currently allocated for ranges_table. */
3080 static GTY(()) unsigned ranges_table_allocated;
3082 /* Number of elements in ranges_table currently in use. */
3083 static GTY(()) unsigned ranges_table_in_use;
3085 /* Array of pairs of labels referenced in ranges_table. */
3086 static GTY ((length ("ranges_by_label_allocated")))
3087 dw_ranges_by_label *ranges_by_label;
3089 /* Number of elements currently allocated for ranges_by_label. */
3090 static GTY(()) unsigned ranges_by_label_allocated;
3092 /* Number of elements in ranges_by_label currently in use. */
3093 static GTY(()) unsigned ranges_by_label_in_use;
3095 /* Size (in elements) of increments by which we may expand the
3096 ranges_table. */
3097 #define RANGES_TABLE_INCREMENT 64
3099 /* Whether we have location lists that need outputting */
3100 static GTY(()) bool have_location_lists;
3102 /* Unique label counter. */
3103 static GTY(()) unsigned int loclabel_num;
3105 /* Unique label counter for point-of-call tables. */
3106 static GTY(()) unsigned int poc_label_num;
3108 /* The last file entry emitted by maybe_emit_file(). */
3109 static GTY(()) struct dwarf_file_data * last_emitted_file;
3111 /* Number of internal labels generated by gen_internal_sym(). */
3112 static GTY(()) int label_num;
3114 static GTY(()) vec<die_arg_entry, va_gc> *tmpl_value_parm_die_table;
3116 /* Instances of generic types for which we need to generate debug
3117 info that describe their generic parameters and arguments. That
3118 generation needs to happen once all types are properly laid out so
3119 we do it at the end of compilation. */
3120 static GTY(()) vec<tree, va_gc> *generic_type_instances;
3122 /* Offset from the "steady-state frame pointer" to the frame base,
3123 within the current function. */
3124 static HOST_WIDE_INT frame_pointer_fb_offset;
3125 static bool frame_pointer_fb_offset_valid;
3127 static vec<dw_die_ref> base_types;
3129 /* Flags to represent a set of attribute classes for attributes that represent
3130 a scalar value (bounds, pointers, ...). */
3131 enum dw_scalar_form
3133 dw_scalar_form_constant = 0x01,
3134 dw_scalar_form_exprloc = 0x02,
3135 dw_scalar_form_reference = 0x04
3138 /* Forward declarations for functions defined in this file. */
3140 static int is_pseudo_reg (const_rtx);
3141 static tree type_main_variant (tree);
3142 static int is_tagged_type (const_tree);
3143 static const char *dwarf_tag_name (unsigned);
3144 static const char *dwarf_attr_name (unsigned);
3145 static const char *dwarf_form_name (unsigned);
3146 static tree decl_ultimate_origin (const_tree);
3147 static tree decl_class_context (tree);
3148 static void add_dwarf_attr (dw_die_ref, dw_attr_node *);
3149 static inline enum dw_val_class AT_class (dw_attr_node *);
3150 static inline unsigned int AT_index (dw_attr_node *);
3151 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3152 static inline unsigned AT_flag (dw_attr_node *);
3153 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3154 static inline HOST_WIDE_INT AT_int (dw_attr_node *);
3155 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3156 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_node *);
3157 static void add_AT_double (dw_die_ref, enum dwarf_attribute,
3158 HOST_WIDE_INT, unsigned HOST_WIDE_INT);
3159 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3160 unsigned int, unsigned char *);
3161 static void add_AT_data8 (dw_die_ref, enum dwarf_attribute, unsigned char *);
3162 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3163 static inline const char *AT_string (dw_attr_node *);
3164 static enum dwarf_form AT_string_form (dw_attr_node *);
3165 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3166 static void add_AT_specification (dw_die_ref, dw_die_ref);
3167 static inline dw_die_ref AT_ref (dw_attr_node *);
3168 static inline int AT_ref_external (dw_attr_node *);
3169 static inline void set_AT_ref_external (dw_attr_node *, int);
3170 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3171 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3172 static inline dw_loc_descr_ref AT_loc (dw_attr_node *);
3173 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3174 dw_loc_list_ref);
3175 static inline dw_loc_list_ref AT_loc_list (dw_attr_node *);
3176 static addr_table_entry *add_addr_table_entry (void *, enum ate_kind);
3177 static void remove_addr_table_entry (addr_table_entry *);
3178 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx, bool);
3179 static inline rtx AT_addr (dw_attr_node *);
3180 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3181 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
3182 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
3183 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3184 unsigned HOST_WIDE_INT);
3185 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3186 unsigned long, bool);
3187 static inline const char *AT_lbl (dw_attr_node *);
3188 static dw_attr_node *get_AT (dw_die_ref, enum dwarf_attribute);
3189 static const char *get_AT_low_pc (dw_die_ref);
3190 static const char *get_AT_hi_pc (dw_die_ref);
3191 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3192 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3193 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3194 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3195 static bool is_cxx (void);
3196 static bool is_fortran (void);
3197 static bool is_ada (void);
3198 static bool remove_AT (dw_die_ref, enum dwarf_attribute);
3199 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3200 static void add_child_die (dw_die_ref, dw_die_ref);
3201 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3202 static dw_die_ref lookup_type_die (tree);
3203 static dw_die_ref strip_naming_typedef (tree, dw_die_ref);
3204 static dw_die_ref lookup_type_die_strip_naming_typedef (tree);
3205 static void equate_type_number_to_die (tree, dw_die_ref);
3206 static dw_die_ref lookup_decl_die (tree);
3207 static var_loc_list *lookup_decl_loc (const_tree);
3208 static void equate_decl_number_to_die (tree, dw_die_ref);
3209 static struct var_loc_node *add_var_loc_to_decl (tree, rtx, const char *);
3210 static void print_spaces (FILE *);
3211 static void print_die (dw_die_ref, FILE *);
3212 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3213 static dw_die_ref pop_compile_unit (dw_die_ref);
3214 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3215 static void attr_checksum (dw_attr_node *, struct md5_ctx *, int *);
3216 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3217 static void checksum_sleb128 (HOST_WIDE_INT, struct md5_ctx *);
3218 static void checksum_uleb128 (unsigned HOST_WIDE_INT, struct md5_ctx *);
3219 static void loc_checksum_ordered (dw_loc_descr_ref, struct md5_ctx *);
3220 static void attr_checksum_ordered (enum dwarf_tag, dw_attr_node *,
3221 struct md5_ctx *, int *);
3222 struct checksum_attributes;
3223 static void collect_checksum_attributes (struct checksum_attributes *, dw_die_ref);
3224 static void die_checksum_ordered (dw_die_ref, struct md5_ctx *, int *);
3225 static void checksum_die_context (dw_die_ref, struct md5_ctx *);
3226 static void generate_type_signature (dw_die_ref, comdat_type_node *);
3227 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3228 static int same_dw_val_p (const dw_val_node *, const dw_val_node *, int *);
3229 static int same_attr_p (dw_attr_node *, dw_attr_node *, int *);
3230 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3231 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3232 static void compute_section_prefix (dw_die_ref);
3233 static int is_type_die (dw_die_ref);
3234 static int is_comdat_die (dw_die_ref);
3235 static int is_symbol_die (dw_die_ref);
3236 static inline bool is_template_instantiation (dw_die_ref);
3237 static void assign_symbol_names (dw_die_ref);
3238 static void break_out_includes (dw_die_ref);
3239 static int is_declaration_die (dw_die_ref);
3240 static int should_move_die_to_comdat (dw_die_ref);
3241 static dw_die_ref clone_as_declaration (dw_die_ref);
3242 static dw_die_ref clone_die (dw_die_ref);
3243 static dw_die_ref clone_tree (dw_die_ref);
3244 static dw_die_ref copy_declaration_context (dw_die_ref, dw_die_ref);
3245 static void generate_skeleton_ancestor_tree (skeleton_chain_node *);
3246 static void generate_skeleton_bottom_up (skeleton_chain_node *);
3247 static dw_die_ref generate_skeleton (dw_die_ref);
3248 static dw_die_ref remove_child_or_replace_with_skeleton (dw_die_ref,
3249 dw_die_ref,
3250 dw_die_ref);
3251 static void break_out_comdat_types (dw_die_ref);
3252 static void copy_decls_for_unworthy_types (dw_die_ref);
3254 static void add_sibling_attributes (dw_die_ref);
3255 static void output_location_lists (dw_die_ref);
3256 static int constant_size (unsigned HOST_WIDE_INT);
3257 static unsigned long size_of_die (dw_die_ref);
3258 static void calc_die_sizes (dw_die_ref);
3259 static void calc_base_type_die_sizes (void);
3260 static void mark_dies (dw_die_ref);
3261 static void unmark_dies (dw_die_ref);
3262 static void unmark_all_dies (dw_die_ref);
3263 static unsigned long size_of_pubnames (vec<pubname_entry, va_gc> *);
3264 static unsigned long size_of_aranges (void);
3265 static enum dwarf_form value_format (dw_attr_node *);
3266 static void output_value_format (dw_attr_node *);
3267 static void output_abbrev_section (void);
3268 static void output_die_abbrevs (unsigned long, dw_die_ref);
3269 static void output_die_symbol (dw_die_ref);
3270 static void output_die (dw_die_ref);
3271 static void output_compilation_unit_header (void);
3272 static void output_comp_unit (dw_die_ref, int);
3273 static void output_comdat_type_unit (comdat_type_node *);
3274 static const char *dwarf2_name (tree, int);
3275 static void add_pubname (tree, dw_die_ref);
3276 static void add_enumerator_pubname (const char *, dw_die_ref);
3277 static void add_pubname_string (const char *, dw_die_ref);
3278 static void add_pubtype (tree, dw_die_ref);
3279 static void output_pubnames (vec<pubname_entry, va_gc> *);
3280 static void output_aranges (void);
3281 static unsigned int add_ranges_num (int);
3282 static unsigned int add_ranges (const_tree);
3283 static void add_ranges_by_labels (dw_die_ref, const char *, const char *,
3284 bool *, bool);
3285 static void output_ranges (void);
3286 static dw_line_info_table *new_line_info_table (void);
3287 static void output_line_info (bool);
3288 static void output_file_names (void);
3289 static dw_die_ref base_type_die (tree);
3290 static int is_base_type (tree);
3291 static dw_die_ref subrange_type_die (tree, tree, tree, tree, dw_die_ref);
3292 static int decl_quals (const_tree);
3293 static dw_die_ref modified_type_die (tree, int, dw_die_ref);
3294 static dw_die_ref generic_parameter_die (tree, tree, bool, dw_die_ref);
3295 static dw_die_ref template_parameter_pack_die (tree, tree, dw_die_ref);
3296 static int type_is_enum (const_tree);
3297 static unsigned int dbx_reg_number (const_rtx);
3298 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
3299 static dw_loc_descr_ref reg_loc_descriptor (rtx, enum var_init_status);
3300 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int,
3301 enum var_init_status);
3302 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx,
3303 enum var_init_status);
3304 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT,
3305 enum var_init_status);
3306 static int is_based_loc (const_rtx);
3307 static bool resolve_one_addr (rtx *);
3308 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx,
3309 enum var_init_status);
3310 static dw_loc_descr_ref loc_descriptor (rtx, machine_mode mode,
3311 enum var_init_status);
3312 struct loc_descr_context;
3313 static void add_loc_descr_to_each (dw_loc_list_ref list, dw_loc_descr_ref ref);
3314 static void add_loc_list (dw_loc_list_ref *ret, dw_loc_list_ref list);
3315 static dw_loc_list_ref loc_list_from_tree (tree, int,
3316 const struct loc_descr_context *);
3317 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int,
3318 const struct loc_descr_context *);
3319 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3320 static tree field_type (const_tree);
3321 static unsigned int simple_type_align_in_bits (const_tree);
3322 static unsigned int simple_decl_align_in_bits (const_tree);
3323 static unsigned HOST_WIDE_INT simple_type_size_in_bits (const_tree);
3324 struct vlr_context;
3325 static dw_loc_descr_ref field_byte_offset (const_tree, struct vlr_context *,
3326 HOST_WIDE_INT *);
3327 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3328 dw_loc_list_ref);
3329 static void add_data_member_location_attribute (dw_die_ref, tree,
3330 struct vlr_context *);
3331 static bool add_const_value_attribute (dw_die_ref, rtx);
3332 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3333 static void insert_wide_int (const wide_int &, unsigned char *, int);
3334 static void insert_float (const_rtx, unsigned char *);
3335 static rtx rtl_for_decl_location (tree);
3336 static bool add_location_or_const_value_attribute (dw_die_ref, tree, bool);
3337 static bool tree_add_const_value_attribute (dw_die_ref, tree);
3338 static bool tree_add_const_value_attribute_for_decl (dw_die_ref, tree);
3339 static void add_name_attribute (dw_die_ref, const char *);
3340 static void add_gnat_descriptive_type_attribute (dw_die_ref, tree, dw_die_ref);
3341 static void add_comp_dir_attribute (dw_die_ref);
3342 static void add_scalar_info (dw_die_ref, enum dwarf_attribute, tree, int,
3343 const struct loc_descr_context *);
3344 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree,
3345 const struct loc_descr_context *);
3346 static void add_subscript_info (dw_die_ref, tree, bool);
3347 static void add_byte_size_attribute (dw_die_ref, tree);
3348 static inline void add_bit_offset_attribute (dw_die_ref, tree,
3349 struct vlr_context *);
3350 static void add_bit_size_attribute (dw_die_ref, tree);
3351 static void add_prototyped_attribute (dw_die_ref, tree);
3352 static dw_die_ref add_abstract_origin_attribute (dw_die_ref, tree);
3353 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3354 static void add_src_coords_attributes (dw_die_ref, tree);
3355 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3356 static void add_discr_value (dw_die_ref, dw_discr_value *);
3357 static void add_discr_list (dw_die_ref, dw_discr_list_ref);
3358 static inline dw_discr_list_ref AT_discr_list (dw_attr_node *);
3359 static void push_decl_scope (tree);
3360 static void pop_decl_scope (void);
3361 static dw_die_ref scope_die_for (tree, dw_die_ref);
3362 static inline int local_scope_p (dw_die_ref);
3363 static inline int class_scope_p (dw_die_ref);
3364 static inline int class_or_namespace_scope_p (dw_die_ref);
3365 static void add_type_attribute (dw_die_ref, tree, int, dw_die_ref);
3366 static void add_calling_convention_attribute (dw_die_ref, tree);
3367 static const char *type_tag (const_tree);
3368 static tree member_declared_type (const_tree);
3369 #if 0
3370 static const char *decl_start_label (tree);
3371 #endif
3372 static void gen_array_type_die (tree, dw_die_ref);
3373 static void gen_descr_array_type_die (tree, struct array_descr_info *, dw_die_ref);
3374 #if 0
3375 static void gen_entry_point_die (tree, dw_die_ref);
3376 #endif
3377 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3378 static dw_die_ref gen_formal_parameter_die (tree, tree, bool, dw_die_ref);
3379 static dw_die_ref gen_formal_parameter_pack_die (tree, tree, dw_die_ref, tree*);
3380 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3381 static void gen_formal_types_die (tree, dw_die_ref);
3382 static void gen_subprogram_die (tree, dw_die_ref);
3383 static void gen_variable_die (tree, tree, dw_die_ref);
3384 static void gen_const_die (tree, dw_die_ref);
3385 static void gen_label_die (tree, dw_die_ref);
3386 static void gen_lexical_block_die (tree, dw_die_ref);
3387 static void gen_inlined_subroutine_die (tree, dw_die_ref);
3388 static void gen_field_die (tree, struct vlr_context *, dw_die_ref);
3389 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3390 static dw_die_ref gen_compile_unit_die (const char *);
3391 static void gen_inheritance_die (tree, tree, tree, dw_die_ref);
3392 static void gen_member_die (tree, dw_die_ref);
3393 static void gen_struct_or_union_type_die (tree, dw_die_ref,
3394 enum debug_info_usage);
3395 static void gen_subroutine_type_die (tree, dw_die_ref);
3396 static void gen_typedef_die (tree, dw_die_ref);
3397 static void gen_type_die (tree, dw_die_ref);
3398 static void gen_block_die (tree, dw_die_ref);
3399 static void decls_for_scope (tree, dw_die_ref);
3400 static bool is_naming_typedef_decl (const_tree);
3401 static inline dw_die_ref get_context_die (tree);
3402 static void gen_namespace_die (tree, dw_die_ref);
3403 static dw_die_ref gen_namelist_decl (tree, dw_die_ref, tree);
3404 static dw_die_ref gen_decl_die (tree, tree, struct vlr_context *, dw_die_ref);
3405 static dw_die_ref force_decl_die (tree);
3406 static dw_die_ref force_type_die (tree);
3407 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3408 static dw_die_ref declare_in_namespace (tree, dw_die_ref);
3409 static struct dwarf_file_data * lookup_filename (const char *);
3410 static void retry_incomplete_types (void);
3411 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3412 static void gen_generic_params_dies (tree);
3413 static void gen_tagged_type_die (tree, dw_die_ref, enum debug_info_usage);
3414 static void gen_type_die_with_usage (tree, dw_die_ref, enum debug_info_usage);
3415 static void splice_child_die (dw_die_ref, dw_die_ref);
3416 static int file_info_cmp (const void *, const void *);
3417 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3418 const char *, const char *);
3419 static void output_loc_list (dw_loc_list_ref);
3420 static char *gen_internal_sym (const char *);
3421 static bool want_pubnames (void);
3423 static void prune_unmark_dies (dw_die_ref);
3424 static void prune_unused_types_mark_generic_parms_dies (dw_die_ref);
3425 static void prune_unused_types_mark (dw_die_ref, int);
3426 static void prune_unused_types_walk (dw_die_ref);
3427 static void prune_unused_types_walk_attribs (dw_die_ref);
3428 static void prune_unused_types_prune (dw_die_ref);
3429 static void prune_unused_types (void);
3430 static int maybe_emit_file (struct dwarf_file_data *fd);
3431 static inline const char *AT_vms_delta1 (dw_attr_node *);
3432 static inline const char *AT_vms_delta2 (dw_attr_node *);
3433 static inline void add_AT_vms_delta (dw_die_ref, enum dwarf_attribute,
3434 const char *, const char *);
3435 static void append_entry_to_tmpl_value_parm_die_table (dw_die_ref, tree);
3436 static void gen_remaining_tmpl_value_param_die_attribute (void);
3437 static bool generic_type_p (tree);
3438 static void schedule_generic_params_dies_gen (tree t);
3439 static void gen_scheduled_generic_parms_dies (void);
3441 static const char *comp_dir_string (void);
3443 static void hash_loc_operands (dw_loc_descr_ref, inchash::hash &);
3445 /* enum for tracking thread-local variables whose address is really an offset
3446 relative to the TLS pointer, which will need link-time relocation, but will
3447 not need relocation by the DWARF consumer. */
3449 enum dtprel_bool
3451 dtprel_false = 0,
3452 dtprel_true = 1
3455 /* Return the operator to use for an address of a variable. For dtprel_true, we
3456 use DW_OP_const*. For regular variables, which need both link-time
3457 relocation and consumer-level relocation (e.g., to account for shared objects
3458 loaded at a random address), we use DW_OP_addr*. */
3460 static inline enum dwarf_location_atom
3461 dw_addr_op (enum dtprel_bool dtprel)
3463 if (dtprel == dtprel_true)
3464 return (dwarf_split_debug_info ? DW_OP_GNU_const_index
3465 : (DWARF2_ADDR_SIZE == 4 ? DW_OP_const4u : DW_OP_const8u));
3466 else
3467 return dwarf_split_debug_info ? DW_OP_GNU_addr_index : DW_OP_addr;
3470 /* Return a pointer to a newly allocated address location description. If
3471 dwarf_split_debug_info is true, then record the address with the appropriate
3472 relocation. */
3473 static inline dw_loc_descr_ref
3474 new_addr_loc_descr (rtx addr, enum dtprel_bool dtprel)
3476 dw_loc_descr_ref ref = new_loc_descr (dw_addr_op (dtprel), 0, 0);
3478 ref->dw_loc_oprnd1.val_class = dw_val_class_addr;
3479 ref->dw_loc_oprnd1.v.val_addr = addr;
3480 ref->dtprel = dtprel;
3481 if (dwarf_split_debug_info)
3482 ref->dw_loc_oprnd1.val_entry
3483 = add_addr_table_entry (addr,
3484 dtprel ? ate_kind_rtx_dtprel : ate_kind_rtx);
3485 else
3486 ref->dw_loc_oprnd1.val_entry = NULL;
3488 return ref;
3491 /* Section names used to hold DWARF debugging information. */
3493 #ifndef DEBUG_INFO_SECTION
3494 #define DEBUG_INFO_SECTION ".debug_info"
3495 #endif
3496 #ifndef DEBUG_DWO_INFO_SECTION
3497 #define DEBUG_DWO_INFO_SECTION ".debug_info.dwo"
3498 #endif
3499 #ifndef DEBUG_ABBREV_SECTION
3500 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3501 #endif
3502 #ifndef DEBUG_DWO_ABBREV_SECTION
3503 #define DEBUG_DWO_ABBREV_SECTION ".debug_abbrev.dwo"
3504 #endif
3505 #ifndef DEBUG_ARANGES_SECTION
3506 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3507 #endif
3508 #ifndef DEBUG_ADDR_SECTION
3509 #define DEBUG_ADDR_SECTION ".debug_addr"
3510 #endif
3511 #ifndef DEBUG_NORM_MACINFO_SECTION
3512 #define DEBUG_NORM_MACINFO_SECTION ".debug_macinfo"
3513 #endif
3514 #ifndef DEBUG_DWO_MACINFO_SECTION
3515 #define DEBUG_DWO_MACINFO_SECTION ".debug_macinfo.dwo"
3516 #endif
3517 #ifndef DEBUG_MACINFO_SECTION
3518 #define DEBUG_MACINFO_SECTION \
3519 (!dwarf_split_debug_info \
3520 ? (DEBUG_NORM_MACINFO_SECTION) : (DEBUG_DWO_MACINFO_SECTION))
3521 #endif
3522 #ifndef DEBUG_NORM_MACRO_SECTION
3523 #define DEBUG_NORM_MACRO_SECTION ".debug_macro"
3524 #endif
3525 #ifndef DEBUG_DWO_MACRO_SECTION
3526 #define DEBUG_DWO_MACRO_SECTION ".debug_macro.dwo"
3527 #endif
3528 #ifndef DEBUG_MACRO_SECTION
3529 #define DEBUG_MACRO_SECTION \
3530 (!dwarf_split_debug_info \
3531 ? (DEBUG_NORM_MACRO_SECTION) : (DEBUG_DWO_MACRO_SECTION))
3532 #endif
3533 #ifndef DEBUG_LINE_SECTION
3534 #define DEBUG_LINE_SECTION ".debug_line"
3535 #endif
3536 #ifndef DEBUG_DWO_LINE_SECTION
3537 #define DEBUG_DWO_LINE_SECTION ".debug_line.dwo"
3538 #endif
3539 #ifndef DEBUG_LOC_SECTION
3540 #define DEBUG_LOC_SECTION ".debug_loc"
3541 #endif
3542 #ifndef DEBUG_DWO_LOC_SECTION
3543 #define DEBUG_DWO_LOC_SECTION ".debug_loc.dwo"
3544 #endif
3545 #ifndef DEBUG_PUBNAMES_SECTION
3546 #define DEBUG_PUBNAMES_SECTION \
3547 ((debug_generate_pub_sections == 2) \
3548 ? ".debug_gnu_pubnames" : ".debug_pubnames")
3549 #endif
3550 #ifndef DEBUG_PUBTYPES_SECTION
3551 #define DEBUG_PUBTYPES_SECTION \
3552 ((debug_generate_pub_sections == 2) \
3553 ? ".debug_gnu_pubtypes" : ".debug_pubtypes")
3554 #endif
3555 #define DEBUG_NORM_STR_OFFSETS_SECTION ".debug_str_offsets"
3556 #define DEBUG_DWO_STR_OFFSETS_SECTION ".debug_str_offsets.dwo"
3557 #ifndef DEBUG_STR_OFFSETS_SECTION
3558 #define DEBUG_STR_OFFSETS_SECTION \
3559 (!dwarf_split_debug_info \
3560 ? (DEBUG_NORM_STR_OFFSETS_SECTION) : (DEBUG_DWO_STR_OFFSETS_SECTION))
3561 #endif
3562 #ifndef DEBUG_STR_DWO_SECTION
3563 #define DEBUG_STR_DWO_SECTION ".debug_str.dwo"
3564 #endif
3565 #ifndef DEBUG_STR_SECTION
3566 #define DEBUG_STR_SECTION ".debug_str"
3567 #endif
3568 #ifndef DEBUG_RANGES_SECTION
3569 #define DEBUG_RANGES_SECTION ".debug_ranges"
3570 #endif
3572 /* Standard ELF section names for compiled code and data. */
3573 #ifndef TEXT_SECTION_NAME
3574 #define TEXT_SECTION_NAME ".text"
3575 #endif
3577 /* Section flags for .debug_macinfo/.debug_macro section. */
3578 #define DEBUG_MACRO_SECTION_FLAGS \
3579 (dwarf_split_debug_info ? SECTION_DEBUG | SECTION_EXCLUDE : SECTION_DEBUG)
3581 /* Section flags for .debug_str section. */
3582 #define DEBUG_STR_SECTION_FLAGS \
3583 (HAVE_GAS_SHF_MERGE && flag_merge_debug_strings \
3584 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3585 : SECTION_DEBUG)
3587 /* Section flags for .debug_str.dwo section. */
3588 #define DEBUG_STR_DWO_SECTION_FLAGS (SECTION_DEBUG | SECTION_EXCLUDE)
3590 /* Labels we insert at beginning sections we can reference instead of
3591 the section names themselves. */
3593 #ifndef TEXT_SECTION_LABEL
3594 #define TEXT_SECTION_LABEL "Ltext"
3595 #endif
3596 #ifndef COLD_TEXT_SECTION_LABEL
3597 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
3598 #endif
3599 #ifndef DEBUG_LINE_SECTION_LABEL
3600 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3601 #endif
3602 #ifndef DEBUG_SKELETON_LINE_SECTION_LABEL
3603 #define DEBUG_SKELETON_LINE_SECTION_LABEL "Lskeleton_debug_line"
3604 #endif
3605 #ifndef DEBUG_INFO_SECTION_LABEL
3606 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3607 #endif
3608 #ifndef DEBUG_SKELETON_INFO_SECTION_LABEL
3609 #define DEBUG_SKELETON_INFO_SECTION_LABEL "Lskeleton_debug_info"
3610 #endif
3611 #ifndef DEBUG_ABBREV_SECTION_LABEL
3612 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3613 #endif
3614 #ifndef DEBUG_SKELETON_ABBREV_SECTION_LABEL
3615 #define DEBUG_SKELETON_ABBREV_SECTION_LABEL "Lskeleton_debug_abbrev"
3616 #endif
3617 #ifndef DEBUG_ADDR_SECTION_LABEL
3618 #define DEBUG_ADDR_SECTION_LABEL "Ldebug_addr"
3619 #endif
3620 #ifndef DEBUG_LOC_SECTION_LABEL
3621 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3622 #endif
3623 #ifndef DEBUG_RANGES_SECTION_LABEL
3624 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3625 #endif
3626 #ifndef DEBUG_MACINFO_SECTION_LABEL
3627 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3628 #endif
3629 #ifndef DEBUG_MACRO_SECTION_LABEL
3630 #define DEBUG_MACRO_SECTION_LABEL "Ldebug_macro"
3631 #endif
3632 #define SKELETON_COMP_DIE_ABBREV 1
3633 #define SKELETON_TYPE_DIE_ABBREV 2
3635 /* Definitions of defaults for formats and names of various special
3636 (artificial) labels which may be generated within this file (when the -g
3637 options is used and DWARF2_DEBUGGING_INFO is in effect.
3638 If necessary, these may be overridden from within the tm.h file, but
3639 typically, overriding these defaults is unnecessary. */
3641 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3642 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3643 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3644 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3645 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3646 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3647 static char debug_skeleton_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3648 static char debug_skeleton_abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3649 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3650 static char debug_addr_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3651 static char debug_skeleton_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3652 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3653 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3654 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3656 #ifndef TEXT_END_LABEL
3657 #define TEXT_END_LABEL "Letext"
3658 #endif
3659 #ifndef COLD_END_LABEL
3660 #define COLD_END_LABEL "Letext_cold"
3661 #endif
3662 #ifndef BLOCK_BEGIN_LABEL
3663 #define BLOCK_BEGIN_LABEL "LBB"
3664 #endif
3665 #ifndef BLOCK_END_LABEL
3666 #define BLOCK_END_LABEL "LBE"
3667 #endif
3668 #ifndef LINE_CODE_LABEL
3669 #define LINE_CODE_LABEL "LM"
3670 #endif
3673 /* Return the root of the DIE's built for the current compilation unit. */
3674 static dw_die_ref
3675 comp_unit_die (void)
3677 if (!single_comp_unit_die)
3678 single_comp_unit_die = gen_compile_unit_die (NULL);
3679 return single_comp_unit_die;
3682 /* We allow a language front-end to designate a function that is to be
3683 called to "demangle" any name before it is put into a DIE. */
3685 static const char *(*demangle_name_func) (const char *);
3687 void
3688 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3690 demangle_name_func = func;
3693 /* Test if rtl node points to a pseudo register. */
3695 static inline int
3696 is_pseudo_reg (const_rtx rtl)
3698 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3699 || (GET_CODE (rtl) == SUBREG
3700 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3703 /* Return a reference to a type, with its const and volatile qualifiers
3704 removed. */
3706 static inline tree
3707 type_main_variant (tree type)
3709 type = TYPE_MAIN_VARIANT (type);
3711 /* ??? There really should be only one main variant among any group of
3712 variants of a given type (and all of the MAIN_VARIANT values for all
3713 members of the group should point to that one type) but sometimes the C
3714 front-end messes this up for array types, so we work around that bug
3715 here. */
3716 if (TREE_CODE (type) == ARRAY_TYPE)
3717 while (type != TYPE_MAIN_VARIANT (type))
3718 type = TYPE_MAIN_VARIANT (type);
3720 return type;
3723 /* Return nonzero if the given type node represents a tagged type. */
3725 static inline int
3726 is_tagged_type (const_tree type)
3728 enum tree_code code = TREE_CODE (type);
3730 return (code == RECORD_TYPE || code == UNION_TYPE
3731 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3734 /* Set label to debug_info_section_label + die_offset of a DIE reference. */
3736 static void
3737 get_ref_die_offset_label (char *label, dw_die_ref ref)
3739 sprintf (label, "%s+%ld", debug_info_section_label, ref->die_offset);
3742 /* Return die_offset of a DIE reference to a base type. */
3744 static unsigned long int
3745 get_base_type_offset (dw_die_ref ref)
3747 if (ref->die_offset)
3748 return ref->die_offset;
3749 if (comp_unit_die ()->die_abbrev)
3751 calc_base_type_die_sizes ();
3752 gcc_assert (ref->die_offset);
3754 return ref->die_offset;
3757 /* Return die_offset of a DIE reference other than base type. */
3759 static unsigned long int
3760 get_ref_die_offset (dw_die_ref ref)
3762 gcc_assert (ref->die_offset);
3763 return ref->die_offset;
3766 /* Convert a DIE tag into its string name. */
3768 static const char *
3769 dwarf_tag_name (unsigned int tag)
3771 const char *name = get_DW_TAG_name (tag);
3773 if (name != NULL)
3774 return name;
3776 return "DW_TAG_<unknown>";
3779 /* Convert a DWARF attribute code into its string name. */
3781 static const char *
3782 dwarf_attr_name (unsigned int attr)
3784 const char *name;
3786 switch (attr)
3788 #if VMS_DEBUGGING_INFO
3789 case DW_AT_HP_prologue:
3790 return "DW_AT_HP_prologue";
3791 #else
3792 case DW_AT_MIPS_loop_unroll_factor:
3793 return "DW_AT_MIPS_loop_unroll_factor";
3794 #endif
3796 #if VMS_DEBUGGING_INFO
3797 case DW_AT_HP_epilogue:
3798 return "DW_AT_HP_epilogue";
3799 #else
3800 case DW_AT_MIPS_stride:
3801 return "DW_AT_MIPS_stride";
3802 #endif
3805 name = get_DW_AT_name (attr);
3807 if (name != NULL)
3808 return name;
3810 return "DW_AT_<unknown>";
3813 /* Convert a DWARF value form code into its string name. */
3815 static const char *
3816 dwarf_form_name (unsigned int form)
3818 const char *name = get_DW_FORM_name (form);
3820 if (name != NULL)
3821 return name;
3823 return "DW_FORM_<unknown>";
3826 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
3827 instance of an inlined instance of a decl which is local to an inline
3828 function, so we have to trace all of the way back through the origin chain
3829 to find out what sort of node actually served as the original seed for the
3830 given block. */
3832 static tree
3833 decl_ultimate_origin (const_tree decl)
3835 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
3836 return NULL_TREE;
3838 /* DECL_ABSTRACT_ORIGIN can point to itself; ignore that if
3839 we're trying to output the abstract instance of this function. */
3840 if (DECL_ABSTRACT_P (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
3841 return NULL_TREE;
3843 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
3844 most distant ancestor, this should never happen. */
3845 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
3847 return DECL_ABSTRACT_ORIGIN (decl);
3850 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
3851 of a virtual function may refer to a base class, so we check the 'this'
3852 parameter. */
3854 static tree
3855 decl_class_context (tree decl)
3857 tree context = NULL_TREE;
3859 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
3860 context = DECL_CONTEXT (decl);
3861 else
3862 context = TYPE_MAIN_VARIANT
3863 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
3865 if (context && !TYPE_P (context))
3866 context = NULL_TREE;
3868 return context;
3871 /* Add an attribute/value pair to a DIE. */
3873 static inline void
3874 add_dwarf_attr (dw_die_ref die, dw_attr_node *attr)
3876 /* Maybe this should be an assert? */
3877 if (die == NULL)
3878 return;
3880 vec_safe_reserve (die->die_attr, 1);
3881 vec_safe_push (die->die_attr, *attr);
3884 static inline enum dw_val_class
3885 AT_class (dw_attr_node *a)
3887 return a->dw_attr_val.val_class;
3890 /* Return the index for any attribute that will be referenced with a
3891 DW_FORM_GNU_addr_index or DW_FORM_GNU_str_index. String indices
3892 are stored in dw_attr_val.v.val_str for reference counting
3893 pruning. */
3895 static inline unsigned int
3896 AT_index (dw_attr_node *a)
3898 if (AT_class (a) == dw_val_class_str)
3899 return a->dw_attr_val.v.val_str->index;
3900 else if (a->dw_attr_val.val_entry != NULL)
3901 return a->dw_attr_val.val_entry->index;
3902 return NOT_INDEXED;
3905 /* Add a flag value attribute to a DIE. */
3907 static inline void
3908 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
3910 dw_attr_node attr;
3912 attr.dw_attr = attr_kind;
3913 attr.dw_attr_val.val_class = dw_val_class_flag;
3914 attr.dw_attr_val.val_entry = NULL;
3915 attr.dw_attr_val.v.val_flag = flag;
3916 add_dwarf_attr (die, &attr);
3919 static inline unsigned
3920 AT_flag (dw_attr_node *a)
3922 gcc_assert (a && AT_class (a) == dw_val_class_flag);
3923 return a->dw_attr_val.v.val_flag;
3926 /* Add a signed integer attribute value to a DIE. */
3928 static inline void
3929 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
3931 dw_attr_node attr;
3933 attr.dw_attr = attr_kind;
3934 attr.dw_attr_val.val_class = dw_val_class_const;
3935 attr.dw_attr_val.val_entry = NULL;
3936 attr.dw_attr_val.v.val_int = int_val;
3937 add_dwarf_attr (die, &attr);
3940 static inline HOST_WIDE_INT
3941 AT_int (dw_attr_node *a)
3943 gcc_assert (a && AT_class (a) == dw_val_class_const);
3944 return a->dw_attr_val.v.val_int;
3947 /* Add an unsigned integer attribute value to a DIE. */
3949 static inline void
3950 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
3951 unsigned HOST_WIDE_INT unsigned_val)
3953 dw_attr_node attr;
3955 attr.dw_attr = attr_kind;
3956 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
3957 attr.dw_attr_val.val_entry = NULL;
3958 attr.dw_attr_val.v.val_unsigned = unsigned_val;
3959 add_dwarf_attr (die, &attr);
3962 static inline unsigned HOST_WIDE_INT
3963 AT_unsigned (dw_attr_node *a)
3965 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
3966 return a->dw_attr_val.v.val_unsigned;
3969 /* Add an unsigned wide integer attribute value to a DIE. */
3971 static inline void
3972 add_AT_wide (dw_die_ref die, enum dwarf_attribute attr_kind,
3973 const wide_int& w)
3975 dw_attr_node attr;
3977 attr.dw_attr = attr_kind;
3978 attr.dw_attr_val.val_class = dw_val_class_wide_int;
3979 attr.dw_attr_val.val_entry = NULL;
3980 attr.dw_attr_val.v.val_wide = ggc_alloc<wide_int> ();
3981 *attr.dw_attr_val.v.val_wide = w;
3982 add_dwarf_attr (die, &attr);
3985 /* Add an unsigned double integer attribute value to a DIE. */
3987 static inline void
3988 add_AT_double (dw_die_ref die, enum dwarf_attribute attr_kind,
3989 HOST_WIDE_INT high, unsigned HOST_WIDE_INT low)
3991 dw_attr_node attr;
3993 attr.dw_attr = attr_kind;
3994 attr.dw_attr_val.val_class = dw_val_class_const_double;
3995 attr.dw_attr_val.val_entry = NULL;
3996 attr.dw_attr_val.v.val_double.high = high;
3997 attr.dw_attr_val.v.val_double.low = low;
3998 add_dwarf_attr (die, &attr);
4001 /* Add a floating point attribute value to a DIE and return it. */
4003 static inline void
4004 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4005 unsigned int length, unsigned int elt_size, unsigned char *array)
4007 dw_attr_node attr;
4009 attr.dw_attr = attr_kind;
4010 attr.dw_attr_val.val_class = dw_val_class_vec;
4011 attr.dw_attr_val.val_entry = NULL;
4012 attr.dw_attr_val.v.val_vec.length = length;
4013 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
4014 attr.dw_attr_val.v.val_vec.array = array;
4015 add_dwarf_attr (die, &attr);
4018 /* Add an 8-byte data attribute value to a DIE. */
4020 static inline void
4021 add_AT_data8 (dw_die_ref die, enum dwarf_attribute attr_kind,
4022 unsigned char data8[8])
4024 dw_attr_node attr;
4026 attr.dw_attr = attr_kind;
4027 attr.dw_attr_val.val_class = dw_val_class_data8;
4028 attr.dw_attr_val.val_entry = NULL;
4029 memcpy (attr.dw_attr_val.v.val_data8, data8, 8);
4030 add_dwarf_attr (die, &attr);
4033 /* Add DW_AT_low_pc and DW_AT_high_pc to a DIE. When using
4034 dwarf_split_debug_info, address attributes in dies destined for the
4035 final executable have force_direct set to avoid using indexed
4036 references. */
4038 static inline void
4039 add_AT_low_high_pc (dw_die_ref die, const char *lbl_low, const char *lbl_high,
4040 bool force_direct)
4042 dw_attr_node attr;
4043 char * lbl_id;
4045 lbl_id = xstrdup (lbl_low);
4046 attr.dw_attr = DW_AT_low_pc;
4047 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
4048 attr.dw_attr_val.v.val_lbl_id = lbl_id;
4049 if (dwarf_split_debug_info && !force_direct)
4050 attr.dw_attr_val.val_entry
4051 = add_addr_table_entry (lbl_id, ate_kind_label);
4052 else
4053 attr.dw_attr_val.val_entry = NULL;
4054 add_dwarf_attr (die, &attr);
4056 attr.dw_attr = DW_AT_high_pc;
4057 if (dwarf_version < 4)
4058 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
4059 else
4060 attr.dw_attr_val.val_class = dw_val_class_high_pc;
4061 lbl_id = xstrdup (lbl_high);
4062 attr.dw_attr_val.v.val_lbl_id = lbl_id;
4063 if (attr.dw_attr_val.val_class == dw_val_class_lbl_id
4064 && dwarf_split_debug_info && !force_direct)
4065 attr.dw_attr_val.val_entry
4066 = add_addr_table_entry (lbl_id, ate_kind_label);
4067 else
4068 attr.dw_attr_val.val_entry = NULL;
4069 add_dwarf_attr (die, &attr);
4072 /* Hash and equality functions for debug_str_hash. */
4074 hashval_t
4075 indirect_string_hasher::hash (indirect_string_node *x)
4077 return htab_hash_string (x->str);
4080 bool
4081 indirect_string_hasher::equal (indirect_string_node *x1, const char *x2)
4083 return strcmp (x1->str, x2) == 0;
4086 /* Add STR to the given string hash table. */
4088 static struct indirect_string_node *
4089 find_AT_string_in_table (const char *str,
4090 hash_table<indirect_string_hasher> *table)
4092 struct indirect_string_node *node;
4094 indirect_string_node **slot
4095 = table->find_slot_with_hash (str, htab_hash_string (str), INSERT);
4096 if (*slot == NULL)
4098 node = ggc_cleared_alloc<indirect_string_node> ();
4099 node->str = ggc_strdup (str);
4100 *slot = node;
4102 else
4103 node = *slot;
4105 node->refcount++;
4106 return node;
4109 /* Add STR to the indirect string hash table. */
4111 static struct indirect_string_node *
4112 find_AT_string (const char *str)
4114 if (! debug_str_hash)
4115 debug_str_hash = hash_table<indirect_string_hasher>::create_ggc (10);
4117 return find_AT_string_in_table (str, debug_str_hash);
4120 /* Add a string attribute value to a DIE. */
4122 static inline void
4123 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4125 dw_attr_node attr;
4126 struct indirect_string_node *node;
4128 node = find_AT_string (str);
4130 attr.dw_attr = attr_kind;
4131 attr.dw_attr_val.val_class = dw_val_class_str;
4132 attr.dw_attr_val.val_entry = NULL;
4133 attr.dw_attr_val.v.val_str = node;
4134 add_dwarf_attr (die, &attr);
4137 static inline const char *
4138 AT_string (dw_attr_node *a)
4140 gcc_assert (a && AT_class (a) == dw_val_class_str);
4141 return a->dw_attr_val.v.val_str->str;
4144 /* Call this function directly to bypass AT_string_form's logic to put
4145 the string inline in the die. */
4147 static void
4148 set_indirect_string (struct indirect_string_node *node)
4150 char label[32];
4151 /* Already indirect is a no op. */
4152 if (node->form == DW_FORM_strp || node->form == DW_FORM_GNU_str_index)
4154 gcc_assert (node->label);
4155 return;
4157 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4158 ++dw2_string_counter;
4159 node->label = xstrdup (label);
4161 if (!dwarf_split_debug_info)
4163 node->form = DW_FORM_strp;
4164 node->index = NOT_INDEXED;
4166 else
4168 node->form = DW_FORM_GNU_str_index;
4169 node->index = NO_INDEX_ASSIGNED;
4173 /* Find out whether a string should be output inline in DIE
4174 or out-of-line in .debug_str section. */
4176 static enum dwarf_form
4177 find_string_form (struct indirect_string_node *node)
4179 unsigned int len;
4181 if (node->form)
4182 return node->form;
4184 len = strlen (node->str) + 1;
4186 /* If the string is shorter or equal to the size of the reference, it is
4187 always better to put it inline. */
4188 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4189 return node->form = DW_FORM_string;
4191 /* If we cannot expect the linker to merge strings in .debug_str
4192 section, only put it into .debug_str if it is worth even in this
4193 single module. */
4194 if (DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
4195 || ((debug_str_section->common.flags & SECTION_MERGE) == 0
4196 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len))
4197 return node->form = DW_FORM_string;
4199 set_indirect_string (node);
4201 return node->form;
4204 /* Find out whether the string referenced from the attribute should be
4205 output inline in DIE or out-of-line in .debug_str section. */
4207 static enum dwarf_form
4208 AT_string_form (dw_attr_node *a)
4210 gcc_assert (a && AT_class (a) == dw_val_class_str);
4211 return find_string_form (a->dw_attr_val.v.val_str);
4214 /* Add a DIE reference attribute value to a DIE. */
4216 static inline void
4217 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4219 dw_attr_node attr;
4220 gcc_checking_assert (targ_die != NULL);
4222 /* With LTO we can end up trying to reference something we didn't create
4223 a DIE for. Avoid crashing later on a NULL referenced DIE. */
4224 if (targ_die == NULL)
4225 return;
4227 attr.dw_attr = attr_kind;
4228 attr.dw_attr_val.val_class = dw_val_class_die_ref;
4229 attr.dw_attr_val.val_entry = NULL;
4230 attr.dw_attr_val.v.val_die_ref.die = targ_die;
4231 attr.dw_attr_val.v.val_die_ref.external = 0;
4232 add_dwarf_attr (die, &attr);
4235 /* Change DIE reference REF to point to NEW_DIE instead. */
4237 static inline void
4238 change_AT_die_ref (dw_attr_node *ref, dw_die_ref new_die)
4240 gcc_assert (ref->dw_attr_val.val_class == dw_val_class_die_ref);
4241 ref->dw_attr_val.v.val_die_ref.die = new_die;
4242 ref->dw_attr_val.v.val_die_ref.external = 0;
4245 /* Add an AT_specification attribute to a DIE, and also make the back
4246 pointer from the specification to the definition. */
4248 static inline void
4249 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4251 add_AT_die_ref (die, DW_AT_specification, targ_die);
4252 gcc_assert (!targ_die->die_definition);
4253 targ_die->die_definition = die;
4256 static inline dw_die_ref
4257 AT_ref (dw_attr_node *a)
4259 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4260 return a->dw_attr_val.v.val_die_ref.die;
4263 static inline int
4264 AT_ref_external (dw_attr_node *a)
4266 if (a && AT_class (a) == dw_val_class_die_ref)
4267 return a->dw_attr_val.v.val_die_ref.external;
4269 return 0;
4272 static inline void
4273 set_AT_ref_external (dw_attr_node *a, int i)
4275 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4276 a->dw_attr_val.v.val_die_ref.external = i;
4279 /* Add an FDE reference attribute value to a DIE. */
4281 static inline void
4282 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4284 dw_attr_node attr;
4286 attr.dw_attr = attr_kind;
4287 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
4288 attr.dw_attr_val.val_entry = NULL;
4289 attr.dw_attr_val.v.val_fde_index = targ_fde;
4290 add_dwarf_attr (die, &attr);
4293 /* Add a location description attribute value to a DIE. */
4295 static inline void
4296 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4298 dw_attr_node attr;
4300 attr.dw_attr = attr_kind;
4301 attr.dw_attr_val.val_class = dw_val_class_loc;
4302 attr.dw_attr_val.val_entry = NULL;
4303 attr.dw_attr_val.v.val_loc = loc;
4304 add_dwarf_attr (die, &attr);
4307 static inline dw_loc_descr_ref
4308 AT_loc (dw_attr_node *a)
4310 gcc_assert (a && AT_class (a) == dw_val_class_loc);
4311 return a->dw_attr_val.v.val_loc;
4314 static inline void
4315 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4317 dw_attr_node attr;
4319 if (XCOFF_DEBUGGING_INFO && !HAVE_XCOFF_DWARF_EXTRAS)
4320 return;
4322 attr.dw_attr = attr_kind;
4323 attr.dw_attr_val.val_class = dw_val_class_loc_list;
4324 attr.dw_attr_val.val_entry = NULL;
4325 attr.dw_attr_val.v.val_loc_list = loc_list;
4326 add_dwarf_attr (die, &attr);
4327 have_location_lists = true;
4330 static inline dw_loc_list_ref
4331 AT_loc_list (dw_attr_node *a)
4333 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
4334 return a->dw_attr_val.v.val_loc_list;
4337 static inline dw_loc_list_ref *
4338 AT_loc_list_ptr (dw_attr_node *a)
4340 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
4341 return &a->dw_attr_val.v.val_loc_list;
4344 struct addr_hasher : ggc_ptr_hash<addr_table_entry>
4346 static hashval_t hash (addr_table_entry *);
4347 static bool equal (addr_table_entry *, addr_table_entry *);
4350 /* Table of entries into the .debug_addr section. */
4352 static GTY (()) hash_table<addr_hasher> *addr_index_table;
4354 /* Hash an address_table_entry. */
4356 hashval_t
4357 addr_hasher::hash (addr_table_entry *a)
4359 inchash::hash hstate;
4360 switch (a->kind)
4362 case ate_kind_rtx:
4363 hstate.add_int (0);
4364 break;
4365 case ate_kind_rtx_dtprel:
4366 hstate.add_int (1);
4367 break;
4368 case ate_kind_label:
4369 return htab_hash_string (a->addr.label);
4370 default:
4371 gcc_unreachable ();
4373 inchash::add_rtx (a->addr.rtl, hstate);
4374 return hstate.end ();
4377 /* Determine equality for two address_table_entries. */
4379 bool
4380 addr_hasher::equal (addr_table_entry *a1, addr_table_entry *a2)
4382 if (a1->kind != a2->kind)
4383 return 0;
4384 switch (a1->kind)
4386 case ate_kind_rtx:
4387 case ate_kind_rtx_dtprel:
4388 return rtx_equal_p (a1->addr.rtl, a2->addr.rtl);
4389 case ate_kind_label:
4390 return strcmp (a1->addr.label, a2->addr.label) == 0;
4391 default:
4392 gcc_unreachable ();
4396 /* Initialize an addr_table_entry. */
4398 void
4399 init_addr_table_entry (addr_table_entry *e, enum ate_kind kind, void *addr)
4401 e->kind = kind;
4402 switch (kind)
4404 case ate_kind_rtx:
4405 case ate_kind_rtx_dtprel:
4406 e->addr.rtl = (rtx) addr;
4407 break;
4408 case ate_kind_label:
4409 e->addr.label = (char *) addr;
4410 break;
4412 e->refcount = 0;
4413 e->index = NO_INDEX_ASSIGNED;
4416 /* Add attr to the address table entry to the table. Defer setting an
4417 index until output time. */
4419 static addr_table_entry *
4420 add_addr_table_entry (void *addr, enum ate_kind kind)
4422 addr_table_entry *node;
4423 addr_table_entry finder;
4425 gcc_assert (dwarf_split_debug_info);
4426 if (! addr_index_table)
4427 addr_index_table = hash_table<addr_hasher>::create_ggc (10);
4428 init_addr_table_entry (&finder, kind, addr);
4429 addr_table_entry **slot = addr_index_table->find_slot (&finder, INSERT);
4431 if (*slot == HTAB_EMPTY_ENTRY)
4433 node = ggc_cleared_alloc<addr_table_entry> ();
4434 init_addr_table_entry (node, kind, addr);
4435 *slot = node;
4437 else
4438 node = *slot;
4440 node->refcount++;
4441 return node;
4444 /* Remove an entry from the addr table by decrementing its refcount.
4445 Strictly, decrementing the refcount would be enough, but the
4446 assertion that the entry is actually in the table has found
4447 bugs. */
4449 static void
4450 remove_addr_table_entry (addr_table_entry *entry)
4452 gcc_assert (dwarf_split_debug_info && addr_index_table);
4453 /* After an index is assigned, the table is frozen. */
4454 gcc_assert (entry->refcount > 0 && entry->index == NO_INDEX_ASSIGNED);
4455 entry->refcount--;
4458 /* Given a location list, remove all addresses it refers to from the
4459 address_table. */
4461 static void
4462 remove_loc_list_addr_table_entries (dw_loc_descr_ref descr)
4464 for (; descr; descr = descr->dw_loc_next)
4465 if (descr->dw_loc_oprnd1.val_entry != NULL)
4467 gcc_assert (descr->dw_loc_oprnd1.val_entry->index == NO_INDEX_ASSIGNED);
4468 remove_addr_table_entry (descr->dw_loc_oprnd1.val_entry);
4472 /* A helper function for dwarf2out_finish called through
4473 htab_traverse. Assign an addr_table_entry its index. All entries
4474 must be collected into the table when this function is called,
4475 because the indexing code relies on htab_traverse to traverse nodes
4476 in the same order for each run. */
4479 index_addr_table_entry (addr_table_entry **h, unsigned int *index)
4481 addr_table_entry *node = *h;
4483 /* Don't index unreferenced nodes. */
4484 if (node->refcount == 0)
4485 return 1;
4487 gcc_assert (node->index == NO_INDEX_ASSIGNED);
4488 node->index = *index;
4489 *index += 1;
4491 return 1;
4494 /* Add an address constant attribute value to a DIE. When using
4495 dwarf_split_debug_info, address attributes in dies destined for the
4496 final executable should be direct references--setting the parameter
4497 force_direct ensures this behavior. */
4499 static inline void
4500 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr,
4501 bool force_direct)
4503 dw_attr_node attr;
4505 attr.dw_attr = attr_kind;
4506 attr.dw_attr_val.val_class = dw_val_class_addr;
4507 attr.dw_attr_val.v.val_addr = addr;
4508 if (dwarf_split_debug_info && !force_direct)
4509 attr.dw_attr_val.val_entry = add_addr_table_entry (addr, ate_kind_rtx);
4510 else
4511 attr.dw_attr_val.val_entry = NULL;
4512 add_dwarf_attr (die, &attr);
4515 /* Get the RTX from to an address DIE attribute. */
4517 static inline rtx
4518 AT_addr (dw_attr_node *a)
4520 gcc_assert (a && AT_class (a) == dw_val_class_addr);
4521 return a->dw_attr_val.v.val_addr;
4524 /* Add a file attribute value to a DIE. */
4526 static inline void
4527 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
4528 struct dwarf_file_data *fd)
4530 dw_attr_node attr;
4532 attr.dw_attr = attr_kind;
4533 attr.dw_attr_val.val_class = dw_val_class_file;
4534 attr.dw_attr_val.val_entry = NULL;
4535 attr.dw_attr_val.v.val_file = fd;
4536 add_dwarf_attr (die, &attr);
4539 /* Get the dwarf_file_data from a file DIE attribute. */
4541 static inline struct dwarf_file_data *
4542 AT_file (dw_attr_node *a)
4544 gcc_assert (a && AT_class (a) == dw_val_class_file);
4545 return a->dw_attr_val.v.val_file;
4548 /* Add a vms delta attribute value to a DIE. */
4550 static inline void
4551 add_AT_vms_delta (dw_die_ref die, enum dwarf_attribute attr_kind,
4552 const char *lbl1, const char *lbl2)
4554 dw_attr_node attr;
4556 attr.dw_attr = attr_kind;
4557 attr.dw_attr_val.val_class = dw_val_class_vms_delta;
4558 attr.dw_attr_val.val_entry = NULL;
4559 attr.dw_attr_val.v.val_vms_delta.lbl1 = xstrdup (lbl1);
4560 attr.dw_attr_val.v.val_vms_delta.lbl2 = xstrdup (lbl2);
4561 add_dwarf_attr (die, &attr);
4564 /* Add a label identifier attribute value to a DIE. */
4566 static inline void
4567 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind,
4568 const char *lbl_id)
4570 dw_attr_node attr;
4572 attr.dw_attr = attr_kind;
4573 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
4574 attr.dw_attr_val.val_entry = NULL;
4575 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4576 if (dwarf_split_debug_info)
4577 attr.dw_attr_val.val_entry
4578 = add_addr_table_entry (attr.dw_attr_val.v.val_lbl_id,
4579 ate_kind_label);
4580 add_dwarf_attr (die, &attr);
4583 /* Add a section offset attribute value to a DIE, an offset into the
4584 debug_line section. */
4586 static inline void
4587 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
4588 const char *label)
4590 dw_attr_node attr;
4592 attr.dw_attr = attr_kind;
4593 attr.dw_attr_val.val_class = dw_val_class_lineptr;
4594 attr.dw_attr_val.val_entry = NULL;
4595 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
4596 add_dwarf_attr (die, &attr);
4599 /* Add a section offset attribute value to a DIE, an offset into the
4600 debug_macinfo section. */
4602 static inline void
4603 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
4604 const char *label)
4606 dw_attr_node attr;
4608 attr.dw_attr = attr_kind;
4609 attr.dw_attr_val.val_class = dw_val_class_macptr;
4610 attr.dw_attr_val.val_entry = NULL;
4611 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
4612 add_dwarf_attr (die, &attr);
4615 /* Add an offset attribute value to a DIE. */
4617 static inline void
4618 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4619 unsigned HOST_WIDE_INT offset)
4621 dw_attr_node attr;
4623 attr.dw_attr = attr_kind;
4624 attr.dw_attr_val.val_class = dw_val_class_offset;
4625 attr.dw_attr_val.val_entry = NULL;
4626 attr.dw_attr_val.v.val_offset = offset;
4627 add_dwarf_attr (die, &attr);
4630 /* Add a range_list attribute value to a DIE. When using
4631 dwarf_split_debug_info, address attributes in dies destined for the
4632 final executable should be direct references--setting the parameter
4633 force_direct ensures this behavior. */
4635 #define UNRELOCATED_OFFSET ((addr_table_entry *) 1)
4636 #define RELOCATED_OFFSET (NULL)
4638 static void
4639 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4640 long unsigned int offset, bool force_direct)
4642 dw_attr_node attr;
4644 attr.dw_attr = attr_kind;
4645 attr.dw_attr_val.val_class = dw_val_class_range_list;
4646 /* For the range_list attribute, use val_entry to store whether the
4647 offset should follow split-debug-info or normal semantics. This
4648 value is read in output_range_list_offset. */
4649 if (dwarf_split_debug_info && !force_direct)
4650 attr.dw_attr_val.val_entry = UNRELOCATED_OFFSET;
4651 else
4652 attr.dw_attr_val.val_entry = RELOCATED_OFFSET;
4653 attr.dw_attr_val.v.val_offset = offset;
4654 add_dwarf_attr (die, &attr);
4657 /* Return the start label of a delta attribute. */
4659 static inline const char *
4660 AT_vms_delta1 (dw_attr_node *a)
4662 gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta));
4663 return a->dw_attr_val.v.val_vms_delta.lbl1;
4666 /* Return the end label of a delta attribute. */
4668 static inline const char *
4669 AT_vms_delta2 (dw_attr_node *a)
4671 gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta));
4672 return a->dw_attr_val.v.val_vms_delta.lbl2;
4675 static inline const char *
4676 AT_lbl (dw_attr_node *a)
4678 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
4679 || AT_class (a) == dw_val_class_lineptr
4680 || AT_class (a) == dw_val_class_macptr
4681 || AT_class (a) == dw_val_class_high_pc));
4682 return a->dw_attr_val.v.val_lbl_id;
4685 /* Get the attribute of type attr_kind. */
4687 static dw_attr_node *
4688 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4690 dw_attr_node *a;
4691 unsigned ix;
4692 dw_die_ref spec = NULL;
4694 if (! die)
4695 return NULL;
4697 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
4698 if (a->dw_attr == attr_kind)
4699 return a;
4700 else if (a->dw_attr == DW_AT_specification
4701 || a->dw_attr == DW_AT_abstract_origin)
4702 spec = AT_ref (a);
4704 if (spec)
4705 return get_AT (spec, attr_kind);
4707 return NULL;
4710 /* Returns the parent of the declaration of DIE. */
4712 static dw_die_ref
4713 get_die_parent (dw_die_ref die)
4715 dw_die_ref t;
4717 if (!die)
4718 return NULL;
4720 if ((t = get_AT_ref (die, DW_AT_abstract_origin))
4721 || (t = get_AT_ref (die, DW_AT_specification)))
4722 die = t;
4724 return die->die_parent;
4727 /* Return the "low pc" attribute value, typically associated with a subprogram
4728 DIE. Return null if the "low pc" attribute is either not present, or if it
4729 cannot be represented as an assembler label identifier. */
4731 static inline const char *
4732 get_AT_low_pc (dw_die_ref die)
4734 dw_attr_node *a = get_AT (die, DW_AT_low_pc);
4736 return a ? AT_lbl (a) : NULL;
4739 /* Return the "high pc" attribute value, typically associated with a subprogram
4740 DIE. Return null if the "high pc" attribute is either not present, or if it
4741 cannot be represented as an assembler label identifier. */
4743 static inline const char *
4744 get_AT_hi_pc (dw_die_ref die)
4746 dw_attr_node *a = get_AT (die, DW_AT_high_pc);
4748 return a ? AT_lbl (a) : NULL;
4751 /* Return the value of the string attribute designated by ATTR_KIND, or
4752 NULL if it is not present. */
4754 static inline const char *
4755 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
4757 dw_attr_node *a = get_AT (die, attr_kind);
4759 return a ? AT_string (a) : NULL;
4762 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4763 if it is not present. */
4765 static inline int
4766 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
4768 dw_attr_node *a = get_AT (die, attr_kind);
4770 return a ? AT_flag (a) : 0;
4773 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4774 if it is not present. */
4776 static inline unsigned
4777 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
4779 dw_attr_node *a = get_AT (die, attr_kind);
4781 return a ? AT_unsigned (a) : 0;
4784 static inline dw_die_ref
4785 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
4787 dw_attr_node *a = get_AT (die, attr_kind);
4789 return a ? AT_ref (a) : NULL;
4792 static inline struct dwarf_file_data *
4793 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
4795 dw_attr_node *a = get_AT (die, attr_kind);
4797 return a ? AT_file (a) : NULL;
4800 /* Return TRUE if the language is C++. */
4802 static inline bool
4803 is_cxx (void)
4805 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
4807 return (lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus
4808 || lang == DW_LANG_C_plus_plus_11 || lang == DW_LANG_C_plus_plus_14);
4811 /* Return TRUE if the language is Java. */
4813 static inline bool
4814 is_java (void)
4816 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
4818 return lang == DW_LANG_Java;
4821 /* Return TRUE if the language is Fortran. */
4823 static inline bool
4824 is_fortran (void)
4826 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
4828 return (lang == DW_LANG_Fortran77
4829 || lang == DW_LANG_Fortran90
4830 || lang == DW_LANG_Fortran95
4831 || lang == DW_LANG_Fortran03
4832 || lang == DW_LANG_Fortran08);
4835 /* Return TRUE if the language is Ada. */
4837 static inline bool
4838 is_ada (void)
4840 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
4842 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
4845 /* Remove the specified attribute if present. Return TRUE if removal
4846 was successful. */
4848 static bool
4849 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4851 dw_attr_node *a;
4852 unsigned ix;
4854 if (! die)
4855 return false;
4857 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
4858 if (a->dw_attr == attr_kind)
4860 if (AT_class (a) == dw_val_class_str)
4861 if (a->dw_attr_val.v.val_str->refcount)
4862 a->dw_attr_val.v.val_str->refcount--;
4864 /* vec::ordered_remove should help reduce the number of abbrevs
4865 that are needed. */
4866 die->die_attr->ordered_remove (ix);
4867 return true;
4869 return false;
4872 /* Remove CHILD from its parent. PREV must have the property that
4873 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
4875 static void
4876 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
4878 gcc_assert (child->die_parent == prev->die_parent);
4879 gcc_assert (prev->die_sib == child);
4880 if (prev == child)
4882 gcc_assert (child->die_parent->die_child == child);
4883 prev = NULL;
4885 else
4886 prev->die_sib = child->die_sib;
4887 if (child->die_parent->die_child == child)
4888 child->die_parent->die_child = prev;
4891 /* Replace OLD_CHILD with NEW_CHILD. PREV must have the property that
4892 PREV->DIE_SIB == OLD_CHILD. Does not alter OLD_CHILD. */
4894 static void
4895 replace_child (dw_die_ref old_child, dw_die_ref new_child, dw_die_ref prev)
4897 dw_die_ref parent = old_child->die_parent;
4899 gcc_assert (parent == prev->die_parent);
4900 gcc_assert (prev->die_sib == old_child);
4902 new_child->die_parent = parent;
4903 if (prev == old_child)
4905 gcc_assert (parent->die_child == old_child);
4906 new_child->die_sib = new_child;
4908 else
4910 prev->die_sib = new_child;
4911 new_child->die_sib = old_child->die_sib;
4913 if (old_child->die_parent->die_child == old_child)
4914 old_child->die_parent->die_child = new_child;
4917 /* Move all children from OLD_PARENT to NEW_PARENT. */
4919 static void
4920 move_all_children (dw_die_ref old_parent, dw_die_ref new_parent)
4922 dw_die_ref c;
4923 new_parent->die_child = old_parent->die_child;
4924 old_parent->die_child = NULL;
4925 FOR_EACH_CHILD (new_parent, c, c->die_parent = new_parent);
4928 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
4929 matches TAG. */
4931 static void
4932 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
4934 dw_die_ref c;
4936 c = die->die_child;
4937 if (c) do {
4938 dw_die_ref prev = c;
4939 c = c->die_sib;
4940 while (c->die_tag == tag)
4942 remove_child_with_prev (c, prev);
4943 c->die_parent = NULL;
4944 /* Might have removed every child. */
4945 if (c == c->die_sib)
4946 return;
4947 c = c->die_sib;
4949 } while (c != die->die_child);
4952 /* Add a CHILD_DIE as the last child of DIE. */
4954 static void
4955 add_child_die (dw_die_ref die, dw_die_ref child_die)
4957 /* FIXME this should probably be an assert. */
4958 if (! die || ! child_die)
4959 return;
4960 gcc_assert (die != child_die);
4962 child_die->die_parent = die;
4963 if (die->die_child)
4965 child_die->die_sib = die->die_child->die_sib;
4966 die->die_child->die_sib = child_die;
4968 else
4969 child_die->die_sib = child_die;
4970 die->die_child = child_die;
4973 /* Unassociate CHILD from its parent, and make its parent be
4974 NEW_PARENT. */
4976 static void
4977 reparent_child (dw_die_ref child, dw_die_ref new_parent)
4979 for (dw_die_ref p = child->die_parent->die_child; ; p = p->die_sib)
4980 if (p->die_sib == child)
4982 remove_child_with_prev (child, p);
4983 break;
4985 add_child_die (new_parent, child);
4988 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
4989 is the specification, to the end of PARENT's list of children.
4990 This is done by removing and re-adding it. */
4992 static void
4993 splice_child_die (dw_die_ref parent, dw_die_ref child)
4995 /* We want the declaration DIE from inside the class, not the
4996 specification DIE at toplevel. */
4997 if (child->die_parent != parent)
4999 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5001 if (tmp)
5002 child = tmp;
5005 gcc_assert (child->die_parent == parent
5006 || (child->die_parent
5007 == get_AT_ref (parent, DW_AT_specification)));
5009 reparent_child (child, parent);
5012 /* Create and return a new die with a parent of PARENT_DIE. If
5013 PARENT_DIE is NULL, the new DIE is placed in limbo and an
5014 associated tree T must be supplied to determine parenthood
5015 later. */
5017 static inline dw_die_ref
5018 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5020 dw_die_ref die = ggc_cleared_alloc<die_node> ();
5022 die->die_tag = tag_value;
5024 if (parent_die != NULL)
5025 add_child_die (parent_die, die);
5026 else
5028 limbo_die_node *limbo_node;
5030 /* No DIEs created after early dwarf should end up in limbo,
5031 because the limbo list should not persist past LTO
5032 streaming. */
5033 if (tag_value != DW_TAG_compile_unit
5034 /* These are allowed because they're generated while
5035 breaking out COMDAT units late. */
5036 && tag_value != DW_TAG_type_unit
5037 && !early_dwarf
5038 /* Allow nested functions to live in limbo because they will
5039 only temporarily live there, as decls_for_scope will fix
5040 them up. */
5041 && (TREE_CODE (t) != FUNCTION_DECL
5042 || !decl_function_context (t))
5043 /* Same as nested functions above but for types. Types that
5044 are local to a function will be fixed in
5045 decls_for_scope. */
5046 && (!RECORD_OR_UNION_TYPE_P (t)
5047 || !TYPE_CONTEXT (t)
5048 || TREE_CODE (TYPE_CONTEXT (t)) != FUNCTION_DECL)
5049 /* FIXME debug-early: Allow late limbo DIE creation for LTO,
5050 especially in the ltrans stage, but once we implement LTO
5051 dwarf streaming, we should remove this exception. */
5052 && !in_lto_p)
5054 fprintf (stderr, "symbol ended up in limbo too late:");
5055 debug_generic_stmt (t);
5056 gcc_unreachable ();
5059 limbo_node = ggc_cleared_alloc<limbo_die_node> ();
5060 limbo_node->die = die;
5061 limbo_node->created_for = t;
5062 limbo_node->next = limbo_die_list;
5063 limbo_die_list = limbo_node;
5066 return die;
5069 /* Return the DIE associated with the given type specifier. */
5071 static inline dw_die_ref
5072 lookup_type_die (tree type)
5074 return TYPE_SYMTAB_DIE (type);
5077 /* Given a TYPE_DIE representing the type TYPE, if TYPE is an
5078 anonymous type named by the typedef TYPE_DIE, return the DIE of the
5079 anonymous type instead the one of the naming typedef. */
5081 static inline dw_die_ref
5082 strip_naming_typedef (tree type, dw_die_ref type_die)
5084 if (type
5085 && TREE_CODE (type) == RECORD_TYPE
5086 && type_die
5087 && type_die->die_tag == DW_TAG_typedef
5088 && is_naming_typedef_decl (TYPE_NAME (type)))
5089 type_die = get_AT_ref (type_die, DW_AT_type);
5090 return type_die;
5093 /* Like lookup_type_die, but if type is an anonymous type named by a
5094 typedef[1], return the DIE of the anonymous type instead the one of
5095 the naming typedef. This is because in gen_typedef_die, we did
5096 equate the anonymous struct named by the typedef with the DIE of
5097 the naming typedef. So by default, lookup_type_die on an anonymous
5098 struct yields the DIE of the naming typedef.
5100 [1]: Read the comment of is_naming_typedef_decl to learn about what
5101 a naming typedef is. */
5103 static inline dw_die_ref
5104 lookup_type_die_strip_naming_typedef (tree type)
5106 dw_die_ref die = lookup_type_die (type);
5107 return strip_naming_typedef (type, die);
5110 /* Equate a DIE to a given type specifier. */
5112 static inline void
5113 equate_type_number_to_die (tree type, dw_die_ref type_die)
5115 TYPE_SYMTAB_DIE (type) = type_die;
5118 /* Returns a hash value for X (which really is a die_struct). */
5120 inline hashval_t
5121 decl_die_hasher::hash (die_node *x)
5123 return (hashval_t) x->decl_id;
5126 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5128 inline bool
5129 decl_die_hasher::equal (die_node *x, tree y)
5131 return (x->decl_id == DECL_UID (y));
5134 /* Return the DIE associated with a given declaration. */
5136 static inline dw_die_ref
5137 lookup_decl_die (tree decl)
5139 return decl_die_table->find_with_hash (decl, DECL_UID (decl));
5142 /* Returns a hash value for X (which really is a var_loc_list). */
5144 inline hashval_t
5145 decl_loc_hasher::hash (var_loc_list *x)
5147 return (hashval_t) x->decl_id;
5150 /* Return nonzero if decl_id of var_loc_list X is the same as
5151 UID of decl *Y. */
5153 inline bool
5154 decl_loc_hasher::equal (var_loc_list *x, const_tree y)
5156 return (x->decl_id == DECL_UID (y));
5159 /* Return the var_loc list associated with a given declaration. */
5161 static inline var_loc_list *
5162 lookup_decl_loc (const_tree decl)
5164 if (!decl_loc_table)
5165 return NULL;
5166 return decl_loc_table->find_with_hash (decl, DECL_UID (decl));
5169 /* Returns a hash value for X (which really is a cached_dw_loc_list_list). */
5171 inline hashval_t
5172 dw_loc_list_hasher::hash (cached_dw_loc_list *x)
5174 return (hashval_t) x->decl_id;
5177 /* Return nonzero if decl_id of cached_dw_loc_list X is the same as
5178 UID of decl *Y. */
5180 inline bool
5181 dw_loc_list_hasher::equal (cached_dw_loc_list *x, const_tree y)
5183 return (x->decl_id == DECL_UID (y));
5186 /* Equate a DIE to a particular declaration. */
5188 static void
5189 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5191 unsigned int decl_id = DECL_UID (decl);
5193 *decl_die_table->find_slot_with_hash (decl, decl_id, INSERT) = decl_die;
5194 decl_die->decl_id = decl_id;
5197 /* Return how many bits covers PIECE EXPR_LIST. */
5199 static HOST_WIDE_INT
5200 decl_piece_bitsize (rtx piece)
5202 int ret = (int) GET_MODE (piece);
5203 if (ret)
5204 return ret;
5205 gcc_assert (GET_CODE (XEXP (piece, 0)) == CONCAT
5206 && CONST_INT_P (XEXP (XEXP (piece, 0), 0)));
5207 return INTVAL (XEXP (XEXP (piece, 0), 0));
5210 /* Return pointer to the location of location note in PIECE EXPR_LIST. */
5212 static rtx *
5213 decl_piece_varloc_ptr (rtx piece)
5215 if ((int) GET_MODE (piece))
5216 return &XEXP (piece, 0);
5217 else
5218 return &XEXP (XEXP (piece, 0), 1);
5221 /* Create an EXPR_LIST for location note LOC_NOTE covering BITSIZE bits.
5222 Next is the chain of following piece nodes. */
5224 static rtx_expr_list *
5225 decl_piece_node (rtx loc_note, HOST_WIDE_INT bitsize, rtx next)
5227 if (bitsize > 0 && bitsize <= (int) MAX_MACHINE_MODE)
5228 return alloc_EXPR_LIST (bitsize, loc_note, next);
5229 else
5230 return alloc_EXPR_LIST (0, gen_rtx_CONCAT (VOIDmode,
5231 GEN_INT (bitsize),
5232 loc_note), next);
5235 /* Return rtx that should be stored into loc field for
5236 LOC_NOTE and BITPOS/BITSIZE. */
5238 static rtx
5239 construct_piece_list (rtx loc_note, HOST_WIDE_INT bitpos,
5240 HOST_WIDE_INT bitsize)
5242 if (bitsize != -1)
5244 loc_note = decl_piece_node (loc_note, bitsize, NULL_RTX);
5245 if (bitpos != 0)
5246 loc_note = decl_piece_node (NULL_RTX, bitpos, loc_note);
5248 return loc_note;
5251 /* This function either modifies location piece list *DEST in
5252 place (if SRC and INNER is NULL), or copies location piece list
5253 *SRC to *DEST while modifying it. Location BITPOS is modified
5254 to contain LOC_NOTE, any pieces overlapping it are removed resp.
5255 not copied and if needed some padding around it is added.
5256 When modifying in place, DEST should point to EXPR_LIST where
5257 earlier pieces cover PIECE_BITPOS bits, when copying SRC points
5258 to the start of the whole list and INNER points to the EXPR_LIST
5259 where earlier pieces cover PIECE_BITPOS bits. */
5261 static void
5262 adjust_piece_list (rtx *dest, rtx *src, rtx *inner,
5263 HOST_WIDE_INT bitpos, HOST_WIDE_INT piece_bitpos,
5264 HOST_WIDE_INT bitsize, rtx loc_note)
5266 HOST_WIDE_INT diff;
5267 bool copy = inner != NULL;
5269 if (copy)
5271 /* First copy all nodes preceding the current bitpos. */
5272 while (src != inner)
5274 *dest = decl_piece_node (*decl_piece_varloc_ptr (*src),
5275 decl_piece_bitsize (*src), NULL_RTX);
5276 dest = &XEXP (*dest, 1);
5277 src = &XEXP (*src, 1);
5280 /* Add padding if needed. */
5281 if (bitpos != piece_bitpos)
5283 *dest = decl_piece_node (NULL_RTX, bitpos - piece_bitpos,
5284 copy ? NULL_RTX : *dest);
5285 dest = &XEXP (*dest, 1);
5287 else if (*dest && decl_piece_bitsize (*dest) == bitsize)
5289 gcc_assert (!copy);
5290 /* A piece with correct bitpos and bitsize already exist,
5291 just update the location for it and return. */
5292 *decl_piece_varloc_ptr (*dest) = loc_note;
5293 return;
5295 /* Add the piece that changed. */
5296 *dest = decl_piece_node (loc_note, bitsize, copy ? NULL_RTX : *dest);
5297 dest = &XEXP (*dest, 1);
5298 /* Skip over pieces that overlap it. */
5299 diff = bitpos - piece_bitpos + bitsize;
5300 if (!copy)
5301 src = dest;
5302 while (diff > 0 && *src)
5304 rtx piece = *src;
5305 diff -= decl_piece_bitsize (piece);
5306 if (copy)
5307 src = &XEXP (piece, 1);
5308 else
5310 *src = XEXP (piece, 1);
5311 free_EXPR_LIST_node (piece);
5314 /* Add padding if needed. */
5315 if (diff < 0 && *src)
5317 if (!copy)
5318 dest = src;
5319 *dest = decl_piece_node (NULL_RTX, -diff, copy ? NULL_RTX : *dest);
5320 dest = &XEXP (*dest, 1);
5322 if (!copy)
5323 return;
5324 /* Finally copy all nodes following it. */
5325 while (*src)
5327 *dest = decl_piece_node (*decl_piece_varloc_ptr (*src),
5328 decl_piece_bitsize (*src), NULL_RTX);
5329 dest = &XEXP (*dest, 1);
5330 src = &XEXP (*src, 1);
5334 /* Add a variable location node to the linked list for DECL. */
5336 static struct var_loc_node *
5337 add_var_loc_to_decl (tree decl, rtx loc_note, const char *label)
5339 unsigned int decl_id;
5340 var_loc_list *temp;
5341 struct var_loc_node *loc = NULL;
5342 HOST_WIDE_INT bitsize = -1, bitpos = -1;
5344 if (TREE_CODE (decl) == VAR_DECL
5345 && DECL_HAS_DEBUG_EXPR_P (decl))
5347 tree realdecl = DECL_DEBUG_EXPR (decl);
5348 if (handled_component_p (realdecl)
5349 || (TREE_CODE (realdecl) == MEM_REF
5350 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5352 HOST_WIDE_INT maxsize;
5353 bool reverse;
5354 tree innerdecl
5355 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize, &maxsize,
5356 &reverse);
5357 if (!DECL_P (innerdecl)
5358 || DECL_IGNORED_P (innerdecl)
5359 || TREE_STATIC (innerdecl)
5360 || bitsize <= 0
5361 || bitpos + bitsize > 256
5362 || bitsize != maxsize)
5363 return NULL;
5364 decl = innerdecl;
5368 decl_id = DECL_UID (decl);
5369 var_loc_list **slot
5370 = decl_loc_table->find_slot_with_hash (decl, decl_id, INSERT);
5371 if (*slot == NULL)
5373 temp = ggc_cleared_alloc<var_loc_list> ();
5374 temp->decl_id = decl_id;
5375 *slot = temp;
5377 else
5378 temp = *slot;
5380 /* For PARM_DECLs try to keep around the original incoming value,
5381 even if that means we'll emit a zero-range .debug_loc entry. */
5382 if (temp->last
5383 && temp->first == temp->last
5384 && TREE_CODE (decl) == PARM_DECL
5385 && NOTE_P (temp->first->loc)
5386 && NOTE_VAR_LOCATION_DECL (temp->first->loc) == decl
5387 && DECL_INCOMING_RTL (decl)
5388 && NOTE_VAR_LOCATION_LOC (temp->first->loc)
5389 && GET_CODE (NOTE_VAR_LOCATION_LOC (temp->first->loc))
5390 == GET_CODE (DECL_INCOMING_RTL (decl))
5391 && prev_real_insn (temp->first->loc) == NULL_RTX
5392 && (bitsize != -1
5393 || !rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->first->loc),
5394 NOTE_VAR_LOCATION_LOC (loc_note))
5395 || (NOTE_VAR_LOCATION_STATUS (temp->first->loc)
5396 != NOTE_VAR_LOCATION_STATUS (loc_note))))
5398 loc = ggc_cleared_alloc<var_loc_node> ();
5399 temp->first->next = loc;
5400 temp->last = loc;
5401 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
5403 else if (temp->last)
5405 struct var_loc_node *last = temp->last, *unused = NULL;
5406 rtx *piece_loc = NULL, last_loc_note;
5407 HOST_WIDE_INT piece_bitpos = 0;
5408 if (last->next)
5410 last = last->next;
5411 gcc_assert (last->next == NULL);
5413 if (bitsize != -1 && GET_CODE (last->loc) == EXPR_LIST)
5415 piece_loc = &last->loc;
5418 HOST_WIDE_INT cur_bitsize = decl_piece_bitsize (*piece_loc);
5419 if (piece_bitpos + cur_bitsize > bitpos)
5420 break;
5421 piece_bitpos += cur_bitsize;
5422 piece_loc = &XEXP (*piece_loc, 1);
5424 while (*piece_loc);
5426 /* TEMP->LAST here is either pointer to the last but one or
5427 last element in the chained list, LAST is pointer to the
5428 last element. */
5429 if (label && strcmp (last->label, label) == 0)
5431 /* For SRA optimized variables if there weren't any real
5432 insns since last note, just modify the last node. */
5433 if (piece_loc != NULL)
5435 adjust_piece_list (piece_loc, NULL, NULL,
5436 bitpos, piece_bitpos, bitsize, loc_note);
5437 return NULL;
5439 /* If the last note doesn't cover any instructions, remove it. */
5440 if (temp->last != last)
5442 temp->last->next = NULL;
5443 unused = last;
5444 last = temp->last;
5445 gcc_assert (strcmp (last->label, label) != 0);
5447 else
5449 gcc_assert (temp->first == temp->last
5450 || (temp->first->next == temp->last
5451 && TREE_CODE (decl) == PARM_DECL));
5452 memset (temp->last, '\0', sizeof (*temp->last));
5453 temp->last->loc = construct_piece_list (loc_note, bitpos, bitsize);
5454 return temp->last;
5457 if (bitsize == -1 && NOTE_P (last->loc))
5458 last_loc_note = last->loc;
5459 else if (piece_loc != NULL
5460 && *piece_loc != NULL_RTX
5461 && piece_bitpos == bitpos
5462 && decl_piece_bitsize (*piece_loc) == bitsize)
5463 last_loc_note = *decl_piece_varloc_ptr (*piece_loc);
5464 else
5465 last_loc_note = NULL_RTX;
5466 /* If the current location is the same as the end of the list,
5467 and either both or neither of the locations is uninitialized,
5468 we have nothing to do. */
5469 if (last_loc_note == NULL_RTX
5470 || (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (last_loc_note),
5471 NOTE_VAR_LOCATION_LOC (loc_note)))
5472 || ((NOTE_VAR_LOCATION_STATUS (last_loc_note)
5473 != NOTE_VAR_LOCATION_STATUS (loc_note))
5474 && ((NOTE_VAR_LOCATION_STATUS (last_loc_note)
5475 == VAR_INIT_STATUS_UNINITIALIZED)
5476 || (NOTE_VAR_LOCATION_STATUS (loc_note)
5477 == VAR_INIT_STATUS_UNINITIALIZED))))
5479 /* Add LOC to the end of list and update LAST. If the last
5480 element of the list has been removed above, reuse its
5481 memory for the new node, otherwise allocate a new one. */
5482 if (unused)
5484 loc = unused;
5485 memset (loc, '\0', sizeof (*loc));
5487 else
5488 loc = ggc_cleared_alloc<var_loc_node> ();
5489 if (bitsize == -1 || piece_loc == NULL)
5490 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
5491 else
5492 adjust_piece_list (&loc->loc, &last->loc, piece_loc,
5493 bitpos, piece_bitpos, bitsize, loc_note);
5494 last->next = loc;
5495 /* Ensure TEMP->LAST will point either to the new last but one
5496 element of the chain, or to the last element in it. */
5497 if (last != temp->last)
5498 temp->last = last;
5500 else if (unused)
5501 ggc_free (unused);
5503 else
5505 loc = ggc_cleared_alloc<var_loc_node> ();
5506 temp->first = loc;
5507 temp->last = loc;
5508 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
5510 return loc;
5513 /* Keep track of the number of spaces used to indent the
5514 output of the debugging routines that print the structure of
5515 the DIE internal representation. */
5516 static int print_indent;
5518 /* Indent the line the number of spaces given by print_indent. */
5520 static inline void
5521 print_spaces (FILE *outfile)
5523 fprintf (outfile, "%*s", print_indent, "");
5526 /* Print a type signature in hex. */
5528 static inline void
5529 print_signature (FILE *outfile, char *sig)
5531 int i;
5533 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
5534 fprintf (outfile, "%02x", sig[i] & 0xff);
5537 static inline void
5538 print_discr_value (FILE *outfile, dw_discr_value *discr_value)
5540 if (discr_value->pos)
5541 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, discr_value->v.sval);
5542 else
5543 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, discr_value->v.uval);
5546 static void print_loc_descr (dw_loc_descr_ref, FILE *);
5548 /* Print the value associated to the VAL DWARF value node to OUTFILE. If
5549 RECURSE, output location descriptor operations. */
5551 static void
5552 print_dw_val (dw_val_node *val, bool recurse, FILE *outfile)
5554 switch (val->val_class)
5556 case dw_val_class_addr:
5557 fprintf (outfile, "address");
5558 break;
5559 case dw_val_class_offset:
5560 fprintf (outfile, "offset");
5561 break;
5562 case dw_val_class_loc:
5563 fprintf (outfile, "location descriptor");
5564 if (val->v.val_loc == NULL)
5565 fprintf (outfile, " -> <null>\n");
5566 else if (recurse)
5568 fprintf (outfile, ":\n");
5569 print_indent += 4;
5570 print_loc_descr (val->v.val_loc, outfile);
5571 print_indent -= 4;
5573 else
5574 fprintf (outfile, " (%p)\n", (void *) val->v.val_loc);
5575 break;
5576 case dw_val_class_loc_list:
5577 fprintf (outfile, "location list -> label:%s",
5578 val->v.val_loc_list->ll_symbol);
5579 break;
5580 case dw_val_class_range_list:
5581 fprintf (outfile, "range list");
5582 break;
5583 case dw_val_class_const:
5584 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, val->v.val_int);
5585 break;
5586 case dw_val_class_unsigned_const:
5587 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, val->v.val_unsigned);
5588 break;
5589 case dw_val_class_const_double:
5590 fprintf (outfile, "constant (" HOST_WIDE_INT_PRINT_DEC","\
5591 HOST_WIDE_INT_PRINT_UNSIGNED")",
5592 val->v.val_double.high,
5593 val->v.val_double.low);
5594 break;
5595 case dw_val_class_wide_int:
5597 int i = val->v.val_wide->get_len ();
5598 fprintf (outfile, "constant (");
5599 gcc_assert (i > 0);
5600 if (val->v.val_wide->elt (i - 1) == 0)
5601 fprintf (outfile, "0x");
5602 fprintf (outfile, HOST_WIDE_INT_PRINT_HEX,
5603 val->v.val_wide->elt (--i));
5604 while (--i >= 0)
5605 fprintf (outfile, HOST_WIDE_INT_PRINT_PADDED_HEX,
5606 val->v.val_wide->elt (i));
5607 fprintf (outfile, ")");
5608 break;
5610 case dw_val_class_vec:
5611 fprintf (outfile, "floating-point or vector constant");
5612 break;
5613 case dw_val_class_flag:
5614 fprintf (outfile, "%u", val->v.val_flag);
5615 break;
5616 case dw_val_class_die_ref:
5617 if (val->v.val_die_ref.die != NULL)
5619 dw_die_ref die = val->v.val_die_ref.die;
5621 if (die->comdat_type_p)
5623 fprintf (outfile, "die -> signature: ");
5624 print_signature (outfile,
5625 die->die_id.die_type_node->signature);
5627 else if (die->die_id.die_symbol)
5628 fprintf (outfile, "die -> label: %s", die->die_id.die_symbol);
5629 else
5630 fprintf (outfile, "die -> %ld", die->die_offset);
5631 fprintf (outfile, " (%p)", (void *) die);
5633 else
5634 fprintf (outfile, "die -> <null>");
5635 break;
5636 case dw_val_class_vms_delta:
5637 fprintf (outfile, "delta: @slotcount(%s-%s)",
5638 val->v.val_vms_delta.lbl2, val->v.val_vms_delta.lbl1);
5639 break;
5640 case dw_val_class_lbl_id:
5641 case dw_val_class_lineptr:
5642 case dw_val_class_macptr:
5643 case dw_val_class_high_pc:
5644 fprintf (outfile, "label: %s", val->v.val_lbl_id);
5645 break;
5646 case dw_val_class_str:
5647 if (val->v.val_str->str != NULL)
5648 fprintf (outfile, "\"%s\"", val->v.val_str->str);
5649 else
5650 fprintf (outfile, "<null>");
5651 break;
5652 case dw_val_class_file:
5653 fprintf (outfile, "\"%s\" (%d)", val->v.val_file->filename,
5654 val->v.val_file->emitted_number);
5655 break;
5656 case dw_val_class_data8:
5658 int i;
5660 for (i = 0; i < 8; i++)
5661 fprintf (outfile, "%02x", val->v.val_data8[i]);
5662 break;
5664 case dw_val_class_discr_value:
5665 print_discr_value (outfile, &val->v.val_discr_value);
5666 break;
5667 case dw_val_class_discr_list:
5668 for (dw_discr_list_ref node = val->v.val_discr_list;
5669 node != NULL;
5670 node = node->dw_discr_next)
5672 if (node->dw_discr_range)
5674 fprintf (outfile, " .. ");
5675 print_discr_value (outfile, &node->dw_discr_lower_bound);
5676 print_discr_value (outfile, &node->dw_discr_upper_bound);
5678 else
5679 print_discr_value (outfile, &node->dw_discr_lower_bound);
5681 if (node->dw_discr_next != NULL)
5682 fprintf (outfile, " | ");
5684 default:
5685 break;
5689 /* Likewise, for a DIE attribute. */
5691 static void
5692 print_attribute (dw_attr_node *a, bool recurse, FILE *outfile)
5694 print_dw_val (&a->dw_attr_val, recurse, outfile);
5698 /* Print the list of operands in the LOC location description to OUTFILE. This
5699 routine is a debugging aid only. */
5701 static void
5702 print_loc_descr (dw_loc_descr_ref loc, FILE *outfile)
5704 dw_loc_descr_ref l = loc;
5706 if (loc == NULL)
5708 print_spaces (outfile);
5709 fprintf (outfile, "<null>\n");
5710 return;
5713 for (l = loc; l != NULL; l = l->dw_loc_next)
5715 print_spaces (outfile);
5716 fprintf (outfile, "(%p) %s",
5717 (void *) l,
5718 dwarf_stack_op_name (l->dw_loc_opc));
5719 if (l->dw_loc_oprnd1.val_class != dw_val_class_none)
5721 fprintf (outfile, " ");
5722 print_dw_val (&l->dw_loc_oprnd1, false, outfile);
5724 if (l->dw_loc_oprnd2.val_class != dw_val_class_none)
5726 fprintf (outfile, ", ");
5727 print_dw_val (&l->dw_loc_oprnd2, false, outfile);
5729 fprintf (outfile, "\n");
5733 /* Print the information associated with a given DIE, and its children.
5734 This routine is a debugging aid only. */
5736 static void
5737 print_die (dw_die_ref die, FILE *outfile)
5739 dw_attr_node *a;
5740 dw_die_ref c;
5741 unsigned ix;
5743 print_spaces (outfile);
5744 fprintf (outfile, "DIE %4ld: %s (%p)\n",
5745 die->die_offset, dwarf_tag_name (die->die_tag),
5746 (void*) die);
5747 print_spaces (outfile);
5748 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5749 fprintf (outfile, " offset: %ld", die->die_offset);
5750 fprintf (outfile, " mark: %d\n", die->die_mark);
5752 if (die->comdat_type_p)
5754 print_spaces (outfile);
5755 fprintf (outfile, " signature: ");
5756 print_signature (outfile, die->die_id.die_type_node->signature);
5757 fprintf (outfile, "\n");
5760 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
5762 print_spaces (outfile);
5763 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5765 print_attribute (a, true, outfile);
5766 fprintf (outfile, "\n");
5769 if (die->die_child != NULL)
5771 print_indent += 4;
5772 FOR_EACH_CHILD (die, c, print_die (c, outfile));
5773 print_indent -= 4;
5775 if (print_indent == 0)
5776 fprintf (outfile, "\n");
5779 /* Print the list of operations in the LOC location description. */
5781 DEBUG_FUNCTION void
5782 debug_dwarf_loc_descr (dw_loc_descr_ref loc)
5784 print_loc_descr (loc, stderr);
5787 /* Print the information collected for a given DIE. */
5789 DEBUG_FUNCTION void
5790 debug_dwarf_die (dw_die_ref die)
5792 print_die (die, stderr);
5795 DEBUG_FUNCTION void
5796 debug (die_struct &ref)
5798 print_die (&ref, stderr);
5801 DEBUG_FUNCTION void
5802 debug (die_struct *ptr)
5804 if (ptr)
5805 debug (*ptr);
5806 else
5807 fprintf (stderr, "<nil>\n");
5811 /* Print all DWARF information collected for the compilation unit.
5812 This routine is a debugging aid only. */
5814 DEBUG_FUNCTION void
5815 debug_dwarf (void)
5817 print_indent = 0;
5818 print_die (comp_unit_die (), stderr);
5821 /* Sanity checks on DIEs. */
5823 static void
5824 check_die (dw_die_ref die)
5826 unsigned ix;
5827 dw_attr_node *a;
5828 bool inline_found = false;
5829 int n_location = 0, n_low_pc = 0, n_high_pc = 0, n_artificial = 0;
5830 int n_decl_line = 0, n_decl_file = 0;
5831 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
5833 switch (a->dw_attr)
5835 case DW_AT_inline:
5836 if (a->dw_attr_val.v.val_unsigned)
5837 inline_found = true;
5838 break;
5839 case DW_AT_location:
5840 ++n_location;
5841 break;
5842 case DW_AT_low_pc:
5843 ++n_low_pc;
5844 break;
5845 case DW_AT_high_pc:
5846 ++n_high_pc;
5847 break;
5848 case DW_AT_artificial:
5849 ++n_artificial;
5850 break;
5851 case DW_AT_decl_line:
5852 ++n_decl_line;
5853 break;
5854 case DW_AT_decl_file:
5855 ++n_decl_file;
5856 break;
5857 default:
5858 break;
5861 if (n_location > 1 || n_low_pc > 1 || n_high_pc > 1 || n_artificial > 1
5862 || n_decl_line > 1 || n_decl_file > 1)
5864 fprintf (stderr, "Duplicate attributes in DIE:\n");
5865 debug_dwarf_die (die);
5866 gcc_unreachable ();
5868 if (inline_found)
5870 /* A debugging information entry that is a member of an abstract
5871 instance tree [that has DW_AT_inline] should not contain any
5872 attributes which describe aspects of the subroutine which vary
5873 between distinct inlined expansions or distinct out-of-line
5874 expansions. */
5875 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
5876 gcc_assert (a->dw_attr != DW_AT_low_pc
5877 && a->dw_attr != DW_AT_high_pc
5878 && a->dw_attr != DW_AT_location
5879 && a->dw_attr != DW_AT_frame_base
5880 && a->dw_attr != DW_AT_GNU_all_call_sites);
5884 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5885 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5886 DIE that marks the start of the DIEs for this include file. */
5888 static dw_die_ref
5889 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5891 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5892 dw_die_ref new_unit = gen_compile_unit_die (filename);
5894 new_unit->die_sib = old_unit;
5895 return new_unit;
5898 /* Close an include-file CU and reopen the enclosing one. */
5900 static dw_die_ref
5901 pop_compile_unit (dw_die_ref old_unit)
5903 dw_die_ref new_unit = old_unit->die_sib;
5905 old_unit->die_sib = NULL;
5906 return new_unit;
5909 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5910 #define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx)
5911 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5913 /* Calculate the checksum of a location expression. */
5915 static inline void
5916 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5918 int tem;
5919 inchash::hash hstate;
5920 hashval_t hash;
5922 tem = (loc->dtprel << 8) | ((unsigned int) loc->dw_loc_opc);
5923 CHECKSUM (tem);
5924 hash_loc_operands (loc, hstate);
5925 hash = hstate.end();
5926 CHECKSUM (hash);
5929 /* Calculate the checksum of an attribute. */
5931 static void
5932 attr_checksum (dw_attr_node *at, struct md5_ctx *ctx, int *mark)
5934 dw_loc_descr_ref loc;
5935 rtx r;
5937 CHECKSUM (at->dw_attr);
5939 /* We don't care that this was compiled with a different compiler
5940 snapshot; if the output is the same, that's what matters. */
5941 if (at->dw_attr == DW_AT_producer)
5942 return;
5944 switch (AT_class (at))
5946 case dw_val_class_const:
5947 CHECKSUM (at->dw_attr_val.v.val_int);
5948 break;
5949 case dw_val_class_unsigned_const:
5950 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5951 break;
5952 case dw_val_class_const_double:
5953 CHECKSUM (at->dw_attr_val.v.val_double);
5954 break;
5955 case dw_val_class_wide_int:
5956 CHECKSUM_BLOCK (at->dw_attr_val.v.val_wide->get_val (),
5957 get_full_len (*at->dw_attr_val.v.val_wide)
5958 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
5959 break;
5960 case dw_val_class_vec:
5961 CHECKSUM_BLOCK (at->dw_attr_val.v.val_vec.array,
5962 (at->dw_attr_val.v.val_vec.length
5963 * at->dw_attr_val.v.val_vec.elt_size));
5964 break;
5965 case dw_val_class_flag:
5966 CHECKSUM (at->dw_attr_val.v.val_flag);
5967 break;
5968 case dw_val_class_str:
5969 CHECKSUM_STRING (AT_string (at));
5970 break;
5972 case dw_val_class_addr:
5973 r = AT_addr (at);
5974 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5975 CHECKSUM_STRING (XSTR (r, 0));
5976 break;
5978 case dw_val_class_offset:
5979 CHECKSUM (at->dw_attr_val.v.val_offset);
5980 break;
5982 case dw_val_class_loc:
5983 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5984 loc_checksum (loc, ctx);
5985 break;
5987 case dw_val_class_die_ref:
5988 die_checksum (AT_ref (at), ctx, mark);
5989 break;
5991 case dw_val_class_fde_ref:
5992 case dw_val_class_vms_delta:
5993 case dw_val_class_lbl_id:
5994 case dw_val_class_lineptr:
5995 case dw_val_class_macptr:
5996 case dw_val_class_high_pc:
5997 break;
5999 case dw_val_class_file:
6000 CHECKSUM_STRING (AT_file (at)->filename);
6001 break;
6003 case dw_val_class_data8:
6004 CHECKSUM (at->dw_attr_val.v.val_data8);
6005 break;
6007 default:
6008 break;
6012 /* Calculate the checksum of a DIE. */
6014 static void
6015 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
6017 dw_die_ref c;
6018 dw_attr_node *a;
6019 unsigned ix;
6021 /* To avoid infinite recursion. */
6022 if (die->die_mark)
6024 CHECKSUM (die->die_mark);
6025 return;
6027 die->die_mark = ++(*mark);
6029 CHECKSUM (die->die_tag);
6031 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
6032 attr_checksum (a, ctx, mark);
6034 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
6037 #undef CHECKSUM
6038 #undef CHECKSUM_BLOCK
6039 #undef CHECKSUM_STRING
6041 /* For DWARF-4 types, include the trailing NULL when checksumming strings. */
6042 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
6043 #define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx)
6044 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO) + 1, ctx)
6045 #define CHECKSUM_SLEB128(FOO) checksum_sleb128 ((FOO), ctx)
6046 #define CHECKSUM_ULEB128(FOO) checksum_uleb128 ((FOO), ctx)
6047 #define CHECKSUM_ATTR(FOO) \
6048 if (FOO) attr_checksum_ordered (die->die_tag, (FOO), ctx, mark)
6050 /* Calculate the checksum of a number in signed LEB128 format. */
6052 static void
6053 checksum_sleb128 (HOST_WIDE_INT value, struct md5_ctx *ctx)
6055 unsigned char byte;
6056 bool more;
6058 while (1)
6060 byte = (value & 0x7f);
6061 value >>= 7;
6062 more = !((value == 0 && (byte & 0x40) == 0)
6063 || (value == -1 && (byte & 0x40) != 0));
6064 if (more)
6065 byte |= 0x80;
6066 CHECKSUM (byte);
6067 if (!more)
6068 break;
6072 /* Calculate the checksum of a number in unsigned LEB128 format. */
6074 static void
6075 checksum_uleb128 (unsigned HOST_WIDE_INT value, struct md5_ctx *ctx)
6077 while (1)
6079 unsigned char byte = (value & 0x7f);
6080 value >>= 7;
6081 if (value != 0)
6082 /* More bytes to follow. */
6083 byte |= 0x80;
6084 CHECKSUM (byte);
6085 if (value == 0)
6086 break;
6090 /* Checksum the context of the DIE. This adds the names of any
6091 surrounding namespaces or structures to the checksum. */
6093 static void
6094 checksum_die_context (dw_die_ref die, struct md5_ctx *ctx)
6096 const char *name;
6097 dw_die_ref spec;
6098 int tag = die->die_tag;
6100 if (tag != DW_TAG_namespace
6101 && tag != DW_TAG_structure_type
6102 && tag != DW_TAG_class_type)
6103 return;
6105 name = get_AT_string (die, DW_AT_name);
6107 spec = get_AT_ref (die, DW_AT_specification);
6108 if (spec != NULL)
6109 die = spec;
6111 if (die->die_parent != NULL)
6112 checksum_die_context (die->die_parent, ctx);
6114 CHECKSUM_ULEB128 ('C');
6115 CHECKSUM_ULEB128 (tag);
6116 if (name != NULL)
6117 CHECKSUM_STRING (name);
6120 /* Calculate the checksum of a location expression. */
6122 static inline void
6123 loc_checksum_ordered (dw_loc_descr_ref loc, struct md5_ctx *ctx)
6125 /* Special case for lone DW_OP_plus_uconst: checksum as if the location
6126 were emitted as a DW_FORM_sdata instead of a location expression. */
6127 if (loc->dw_loc_opc == DW_OP_plus_uconst && loc->dw_loc_next == NULL)
6129 CHECKSUM_ULEB128 (DW_FORM_sdata);
6130 CHECKSUM_SLEB128 ((HOST_WIDE_INT) loc->dw_loc_oprnd1.v.val_unsigned);
6131 return;
6134 /* Otherwise, just checksum the raw location expression. */
6135 while (loc != NULL)
6137 inchash::hash hstate;
6138 hashval_t hash;
6140 CHECKSUM_ULEB128 (loc->dtprel);
6141 CHECKSUM_ULEB128 (loc->dw_loc_opc);
6142 hash_loc_operands (loc, hstate);
6143 hash = hstate.end ();
6144 CHECKSUM (hash);
6145 loc = loc->dw_loc_next;
6149 /* Calculate the checksum of an attribute. */
6151 static void
6152 attr_checksum_ordered (enum dwarf_tag tag, dw_attr_node *at,
6153 struct md5_ctx *ctx, int *mark)
6155 dw_loc_descr_ref loc;
6156 rtx r;
6158 if (AT_class (at) == dw_val_class_die_ref)
6160 dw_die_ref target_die = AT_ref (at);
6162 /* For pointer and reference types, we checksum only the (qualified)
6163 name of the target type (if there is a name). For friend entries,
6164 we checksum only the (qualified) name of the target type or function.
6165 This allows the checksum to remain the same whether the target type
6166 is complete or not. */
6167 if ((at->dw_attr == DW_AT_type
6168 && (tag == DW_TAG_pointer_type
6169 || tag == DW_TAG_reference_type
6170 || tag == DW_TAG_rvalue_reference_type
6171 || tag == DW_TAG_ptr_to_member_type))
6172 || (at->dw_attr == DW_AT_friend
6173 && tag == DW_TAG_friend))
6175 dw_attr_node *name_attr = get_AT (target_die, DW_AT_name);
6177 if (name_attr != NULL)
6179 dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);
6181 if (decl == NULL)
6182 decl = target_die;
6183 CHECKSUM_ULEB128 ('N');
6184 CHECKSUM_ULEB128 (at->dw_attr);
6185 if (decl->die_parent != NULL)
6186 checksum_die_context (decl->die_parent, ctx);
6187 CHECKSUM_ULEB128 ('E');
6188 CHECKSUM_STRING (AT_string (name_attr));
6189 return;
6193 /* For all other references to another DIE, we check to see if the
6194 target DIE has already been visited. If it has, we emit a
6195 backward reference; if not, we descend recursively. */
6196 if (target_die->die_mark > 0)
6198 CHECKSUM_ULEB128 ('R');
6199 CHECKSUM_ULEB128 (at->dw_attr);
6200 CHECKSUM_ULEB128 (target_die->die_mark);
6202 else
6204 dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);
6206 if (decl == NULL)
6207 decl = target_die;
6208 target_die->die_mark = ++(*mark);
6209 CHECKSUM_ULEB128 ('T');
6210 CHECKSUM_ULEB128 (at->dw_attr);
6211 if (decl->die_parent != NULL)
6212 checksum_die_context (decl->die_parent, ctx);
6213 die_checksum_ordered (target_die, ctx, mark);
6215 return;
6218 CHECKSUM_ULEB128 ('A');
6219 CHECKSUM_ULEB128 (at->dw_attr);
6221 switch (AT_class (at))
6223 case dw_val_class_const:
6224 CHECKSUM_ULEB128 (DW_FORM_sdata);
6225 CHECKSUM_SLEB128 (at->dw_attr_val.v.val_int);
6226 break;
6228 case dw_val_class_unsigned_const:
6229 CHECKSUM_ULEB128 (DW_FORM_sdata);
6230 CHECKSUM_SLEB128 ((int) at->dw_attr_val.v.val_unsigned);
6231 break;
6233 case dw_val_class_const_double:
6234 CHECKSUM_ULEB128 (DW_FORM_block);
6235 CHECKSUM_ULEB128 (sizeof (at->dw_attr_val.v.val_double));
6236 CHECKSUM (at->dw_attr_val.v.val_double);
6237 break;
6239 case dw_val_class_wide_int:
6240 CHECKSUM_ULEB128 (DW_FORM_block);
6241 CHECKSUM_ULEB128 (get_full_len (*at->dw_attr_val.v.val_wide)
6242 * HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
6243 CHECKSUM_BLOCK (at->dw_attr_val.v.val_wide->get_val (),
6244 get_full_len (*at->dw_attr_val.v.val_wide)
6245 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
6246 break;
6248 case dw_val_class_vec:
6249 CHECKSUM_ULEB128 (DW_FORM_block);
6250 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_vec.length
6251 * at->dw_attr_val.v.val_vec.elt_size);
6252 CHECKSUM_BLOCK (at->dw_attr_val.v.val_vec.array,
6253 (at->dw_attr_val.v.val_vec.length
6254 * at->dw_attr_val.v.val_vec.elt_size));
6255 break;
6257 case dw_val_class_flag:
6258 CHECKSUM_ULEB128 (DW_FORM_flag);
6259 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_flag ? 1 : 0);
6260 break;
6262 case dw_val_class_str:
6263 CHECKSUM_ULEB128 (DW_FORM_string);
6264 CHECKSUM_STRING (AT_string (at));
6265 break;
6267 case dw_val_class_addr:
6268 r = AT_addr (at);
6269 gcc_assert (GET_CODE (r) == SYMBOL_REF);
6270 CHECKSUM_ULEB128 (DW_FORM_string);
6271 CHECKSUM_STRING (XSTR (r, 0));
6272 break;
6274 case dw_val_class_offset:
6275 CHECKSUM_ULEB128 (DW_FORM_sdata);
6276 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_offset);
6277 break;
6279 case dw_val_class_loc:
6280 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
6281 loc_checksum_ordered (loc, ctx);
6282 break;
6284 case dw_val_class_fde_ref:
6285 case dw_val_class_lbl_id:
6286 case dw_val_class_lineptr:
6287 case dw_val_class_macptr:
6288 case dw_val_class_high_pc:
6289 break;
6291 case dw_val_class_file:
6292 CHECKSUM_ULEB128 (DW_FORM_string);
6293 CHECKSUM_STRING (AT_file (at)->filename);
6294 break;
6296 case dw_val_class_data8:
6297 CHECKSUM (at->dw_attr_val.v.val_data8);
6298 break;
6300 default:
6301 break;
6305 struct checksum_attributes
6307 dw_attr_node *at_name;
6308 dw_attr_node *at_type;
6309 dw_attr_node *at_friend;
6310 dw_attr_node *at_accessibility;
6311 dw_attr_node *at_address_class;
6312 dw_attr_node *at_allocated;
6313 dw_attr_node *at_artificial;
6314 dw_attr_node *at_associated;
6315 dw_attr_node *at_binary_scale;
6316 dw_attr_node *at_bit_offset;
6317 dw_attr_node *at_bit_size;
6318 dw_attr_node *at_bit_stride;
6319 dw_attr_node *at_byte_size;
6320 dw_attr_node *at_byte_stride;
6321 dw_attr_node *at_const_value;
6322 dw_attr_node *at_containing_type;
6323 dw_attr_node *at_count;
6324 dw_attr_node *at_data_location;
6325 dw_attr_node *at_data_member_location;
6326 dw_attr_node *at_decimal_scale;
6327 dw_attr_node *at_decimal_sign;
6328 dw_attr_node *at_default_value;
6329 dw_attr_node *at_digit_count;
6330 dw_attr_node *at_discr;
6331 dw_attr_node *at_discr_list;
6332 dw_attr_node *at_discr_value;
6333 dw_attr_node *at_encoding;
6334 dw_attr_node *at_endianity;
6335 dw_attr_node *at_explicit;
6336 dw_attr_node *at_is_optional;
6337 dw_attr_node *at_location;
6338 dw_attr_node *at_lower_bound;
6339 dw_attr_node *at_mutable;
6340 dw_attr_node *at_ordering;
6341 dw_attr_node *at_picture_string;
6342 dw_attr_node *at_prototyped;
6343 dw_attr_node *at_small;
6344 dw_attr_node *at_segment;
6345 dw_attr_node *at_string_length;
6346 dw_attr_node *at_threads_scaled;
6347 dw_attr_node *at_upper_bound;
6348 dw_attr_node *at_use_location;
6349 dw_attr_node *at_use_UTF8;
6350 dw_attr_node *at_variable_parameter;
6351 dw_attr_node *at_virtuality;
6352 dw_attr_node *at_visibility;
6353 dw_attr_node *at_vtable_elem_location;
6356 /* Collect the attributes that we will want to use for the checksum. */
6358 static void
6359 collect_checksum_attributes (struct checksum_attributes *attrs, dw_die_ref die)
6361 dw_attr_node *a;
6362 unsigned ix;
6364 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
6366 switch (a->dw_attr)
6368 case DW_AT_name:
6369 attrs->at_name = a;
6370 break;
6371 case DW_AT_type:
6372 attrs->at_type = a;
6373 break;
6374 case DW_AT_friend:
6375 attrs->at_friend = a;
6376 break;
6377 case DW_AT_accessibility:
6378 attrs->at_accessibility = a;
6379 break;
6380 case DW_AT_address_class:
6381 attrs->at_address_class = a;
6382 break;
6383 case DW_AT_allocated:
6384 attrs->at_allocated = a;
6385 break;
6386 case DW_AT_artificial:
6387 attrs->at_artificial = a;
6388 break;
6389 case DW_AT_associated:
6390 attrs->at_associated = a;
6391 break;
6392 case DW_AT_binary_scale:
6393 attrs->at_binary_scale = a;
6394 break;
6395 case DW_AT_bit_offset:
6396 attrs->at_bit_offset = a;
6397 break;
6398 case DW_AT_bit_size:
6399 attrs->at_bit_size = a;
6400 break;
6401 case DW_AT_bit_stride:
6402 attrs->at_bit_stride = a;
6403 break;
6404 case DW_AT_byte_size:
6405 attrs->at_byte_size = a;
6406 break;
6407 case DW_AT_byte_stride:
6408 attrs->at_byte_stride = a;
6409 break;
6410 case DW_AT_const_value:
6411 attrs->at_const_value = a;
6412 break;
6413 case DW_AT_containing_type:
6414 attrs->at_containing_type = a;
6415 break;
6416 case DW_AT_count:
6417 attrs->at_count = a;
6418 break;
6419 case DW_AT_data_location:
6420 attrs->at_data_location = a;
6421 break;
6422 case DW_AT_data_member_location:
6423 attrs->at_data_member_location = a;
6424 break;
6425 case DW_AT_decimal_scale:
6426 attrs->at_decimal_scale = a;
6427 break;
6428 case DW_AT_decimal_sign:
6429 attrs->at_decimal_sign = a;
6430 break;
6431 case DW_AT_default_value:
6432 attrs->at_default_value = a;
6433 break;
6434 case DW_AT_digit_count:
6435 attrs->at_digit_count = a;
6436 break;
6437 case DW_AT_discr:
6438 attrs->at_discr = a;
6439 break;
6440 case DW_AT_discr_list:
6441 attrs->at_discr_list = a;
6442 break;
6443 case DW_AT_discr_value:
6444 attrs->at_discr_value = a;
6445 break;
6446 case DW_AT_encoding:
6447 attrs->at_encoding = a;
6448 break;
6449 case DW_AT_endianity:
6450 attrs->at_endianity = a;
6451 break;
6452 case DW_AT_explicit:
6453 attrs->at_explicit = a;
6454 break;
6455 case DW_AT_is_optional:
6456 attrs->at_is_optional = a;
6457 break;
6458 case DW_AT_location:
6459 attrs->at_location = a;
6460 break;
6461 case DW_AT_lower_bound:
6462 attrs->at_lower_bound = a;
6463 break;
6464 case DW_AT_mutable:
6465 attrs->at_mutable = a;
6466 break;
6467 case DW_AT_ordering:
6468 attrs->at_ordering = a;
6469 break;
6470 case DW_AT_picture_string:
6471 attrs->at_picture_string = a;
6472 break;
6473 case DW_AT_prototyped:
6474 attrs->at_prototyped = a;
6475 break;
6476 case DW_AT_small:
6477 attrs->at_small = a;
6478 break;
6479 case DW_AT_segment:
6480 attrs->at_segment = a;
6481 break;
6482 case DW_AT_string_length:
6483 attrs->at_string_length = a;
6484 break;
6485 case DW_AT_threads_scaled:
6486 attrs->at_threads_scaled = a;
6487 break;
6488 case DW_AT_upper_bound:
6489 attrs->at_upper_bound = a;
6490 break;
6491 case DW_AT_use_location:
6492 attrs->at_use_location = a;
6493 break;
6494 case DW_AT_use_UTF8:
6495 attrs->at_use_UTF8 = a;
6496 break;
6497 case DW_AT_variable_parameter:
6498 attrs->at_variable_parameter = a;
6499 break;
6500 case DW_AT_virtuality:
6501 attrs->at_virtuality = a;
6502 break;
6503 case DW_AT_visibility:
6504 attrs->at_visibility = a;
6505 break;
6506 case DW_AT_vtable_elem_location:
6507 attrs->at_vtable_elem_location = a;
6508 break;
6509 default:
6510 break;
6515 /* Calculate the checksum of a DIE, using an ordered subset of attributes. */
6517 static void
6518 die_checksum_ordered (dw_die_ref die, struct md5_ctx *ctx, int *mark)
6520 dw_die_ref c;
6521 dw_die_ref decl;
6522 struct checksum_attributes attrs;
6524 CHECKSUM_ULEB128 ('D');
6525 CHECKSUM_ULEB128 (die->die_tag);
6527 memset (&attrs, 0, sizeof (attrs));
6529 decl = get_AT_ref (die, DW_AT_specification);
6530 if (decl != NULL)
6531 collect_checksum_attributes (&attrs, decl);
6532 collect_checksum_attributes (&attrs, die);
6534 CHECKSUM_ATTR (attrs.at_name);
6535 CHECKSUM_ATTR (attrs.at_accessibility);
6536 CHECKSUM_ATTR (attrs.at_address_class);
6537 CHECKSUM_ATTR (attrs.at_allocated);
6538 CHECKSUM_ATTR (attrs.at_artificial);
6539 CHECKSUM_ATTR (attrs.at_associated);
6540 CHECKSUM_ATTR (attrs.at_binary_scale);
6541 CHECKSUM_ATTR (attrs.at_bit_offset);
6542 CHECKSUM_ATTR (attrs.at_bit_size);
6543 CHECKSUM_ATTR (attrs.at_bit_stride);
6544 CHECKSUM_ATTR (attrs.at_byte_size);
6545 CHECKSUM_ATTR (attrs.at_byte_stride);
6546 CHECKSUM_ATTR (attrs.at_const_value);
6547 CHECKSUM_ATTR (attrs.at_containing_type);
6548 CHECKSUM_ATTR (attrs.at_count);
6549 CHECKSUM_ATTR (attrs.at_data_location);
6550 CHECKSUM_ATTR (attrs.at_data_member_location);
6551 CHECKSUM_ATTR (attrs.at_decimal_scale);
6552 CHECKSUM_ATTR (attrs.at_decimal_sign);
6553 CHECKSUM_ATTR (attrs.at_default_value);
6554 CHECKSUM_ATTR (attrs.at_digit_count);
6555 CHECKSUM_ATTR (attrs.at_discr);
6556 CHECKSUM_ATTR (attrs.at_discr_list);
6557 CHECKSUM_ATTR (attrs.at_discr_value);
6558 CHECKSUM_ATTR (attrs.at_encoding);
6559 CHECKSUM_ATTR (attrs.at_endianity);
6560 CHECKSUM_ATTR (attrs.at_explicit);
6561 CHECKSUM_ATTR (attrs.at_is_optional);
6562 CHECKSUM_ATTR (attrs.at_location);
6563 CHECKSUM_ATTR (attrs.at_lower_bound);
6564 CHECKSUM_ATTR (attrs.at_mutable);
6565 CHECKSUM_ATTR (attrs.at_ordering);
6566 CHECKSUM_ATTR (attrs.at_picture_string);
6567 CHECKSUM_ATTR (attrs.at_prototyped);
6568 CHECKSUM_ATTR (attrs.at_small);
6569 CHECKSUM_ATTR (attrs.at_segment);
6570 CHECKSUM_ATTR (attrs.at_string_length);
6571 CHECKSUM_ATTR (attrs.at_threads_scaled);
6572 CHECKSUM_ATTR (attrs.at_upper_bound);
6573 CHECKSUM_ATTR (attrs.at_use_location);
6574 CHECKSUM_ATTR (attrs.at_use_UTF8);
6575 CHECKSUM_ATTR (attrs.at_variable_parameter);
6576 CHECKSUM_ATTR (attrs.at_virtuality);
6577 CHECKSUM_ATTR (attrs.at_visibility);
6578 CHECKSUM_ATTR (attrs.at_vtable_elem_location);
6579 CHECKSUM_ATTR (attrs.at_type);
6580 CHECKSUM_ATTR (attrs.at_friend);
6582 /* Checksum the child DIEs. */
6583 c = die->die_child;
6584 if (c) do {
6585 dw_attr_node *name_attr;
6587 c = c->die_sib;
6588 name_attr = get_AT (c, DW_AT_name);
6589 if (is_template_instantiation (c))
6591 /* Ignore instantiations of member type and function templates. */
6593 else if (name_attr != NULL
6594 && (is_type_die (c) || c->die_tag == DW_TAG_subprogram))
6596 /* Use a shallow checksum for named nested types and member
6597 functions. */
6598 CHECKSUM_ULEB128 ('S');
6599 CHECKSUM_ULEB128 (c->die_tag);
6600 CHECKSUM_STRING (AT_string (name_attr));
6602 else
6604 /* Use a deep checksum for other children. */
6605 /* Mark this DIE so it gets processed when unmarking. */
6606 if (c->die_mark == 0)
6607 c->die_mark = -1;
6608 die_checksum_ordered (c, ctx, mark);
6610 } while (c != die->die_child);
6612 CHECKSUM_ULEB128 (0);
6615 /* Add a type name and tag to a hash. */
6616 static void
6617 die_odr_checksum (int tag, const char *name, md5_ctx *ctx)
6619 CHECKSUM_ULEB128 (tag);
6620 CHECKSUM_STRING (name);
6623 #undef CHECKSUM
6624 #undef CHECKSUM_STRING
6625 #undef CHECKSUM_ATTR
6626 #undef CHECKSUM_LEB128
6627 #undef CHECKSUM_ULEB128
6629 /* Generate the type signature for DIE. This is computed by generating an
6630 MD5 checksum over the DIE's tag, its relevant attributes, and its
6631 children. Attributes that are references to other DIEs are processed
6632 by recursion, using the MARK field to prevent infinite recursion.
6633 If the DIE is nested inside a namespace or another type, we also
6634 need to include that context in the signature. The lower 64 bits
6635 of the resulting MD5 checksum comprise the signature. */
6637 static void
6638 generate_type_signature (dw_die_ref die, comdat_type_node *type_node)
6640 int mark;
6641 const char *name;
6642 unsigned char checksum[16];
6643 struct md5_ctx ctx;
6644 dw_die_ref decl;
6645 dw_die_ref parent;
6647 name = get_AT_string (die, DW_AT_name);
6648 decl = get_AT_ref (die, DW_AT_specification);
6649 parent = get_die_parent (die);
6651 /* First, compute a signature for just the type name (and its surrounding
6652 context, if any. This is stored in the type unit DIE for link-time
6653 ODR (one-definition rule) checking. */
6655 if (is_cxx () && name != NULL)
6657 md5_init_ctx (&ctx);
6659 /* Checksum the names of surrounding namespaces and structures. */
6660 if (parent != NULL)
6661 checksum_die_context (parent, &ctx);
6663 /* Checksum the current DIE. */
6664 die_odr_checksum (die->die_tag, name, &ctx);
6665 md5_finish_ctx (&ctx, checksum);
6667 add_AT_data8 (type_node->root_die, DW_AT_GNU_odr_signature, &checksum[8]);
6670 /* Next, compute the complete type signature. */
6672 md5_init_ctx (&ctx);
6673 mark = 1;
6674 die->die_mark = mark;
6676 /* Checksum the names of surrounding namespaces and structures. */
6677 if (parent != NULL)
6678 checksum_die_context (parent, &ctx);
6680 /* Checksum the DIE and its children. */
6681 die_checksum_ordered (die, &ctx, &mark);
6682 unmark_all_dies (die);
6683 md5_finish_ctx (&ctx, checksum);
6685 /* Store the signature in the type node and link the type DIE and the
6686 type node together. */
6687 memcpy (type_node->signature, &checksum[16 - DWARF_TYPE_SIGNATURE_SIZE],
6688 DWARF_TYPE_SIGNATURE_SIZE);
6689 die->comdat_type_p = true;
6690 die->die_id.die_type_node = type_node;
6691 type_node->type_die = die;
6693 /* If the DIE is a specification, link its declaration to the type node
6694 as well. */
6695 if (decl != NULL)
6697 decl->comdat_type_p = true;
6698 decl->die_id.die_type_node = type_node;
6702 /* Do the location expressions look same? */
6703 static inline int
6704 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6706 return loc1->dw_loc_opc == loc2->dw_loc_opc
6707 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6708 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6711 /* Do the values look the same? */
6712 static int
6713 same_dw_val_p (const dw_val_node *v1, const dw_val_node *v2, int *mark)
6715 dw_loc_descr_ref loc1, loc2;
6716 rtx r1, r2;
6718 if (v1->val_class != v2->val_class)
6719 return 0;
6721 switch (v1->val_class)
6723 case dw_val_class_const:
6724 return v1->v.val_int == v2->v.val_int;
6725 case dw_val_class_unsigned_const:
6726 return v1->v.val_unsigned == v2->v.val_unsigned;
6727 case dw_val_class_const_double:
6728 return v1->v.val_double.high == v2->v.val_double.high
6729 && v1->v.val_double.low == v2->v.val_double.low;
6730 case dw_val_class_wide_int:
6731 return *v1->v.val_wide == *v2->v.val_wide;
6732 case dw_val_class_vec:
6733 if (v1->v.val_vec.length != v2->v.val_vec.length
6734 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6735 return 0;
6736 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6737 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6738 return 0;
6739 return 1;
6740 case dw_val_class_flag:
6741 return v1->v.val_flag == v2->v.val_flag;
6742 case dw_val_class_str:
6743 return !strcmp (v1->v.val_str->str, v2->v.val_str->str);
6745 case dw_val_class_addr:
6746 r1 = v1->v.val_addr;
6747 r2 = v2->v.val_addr;
6748 if (GET_CODE (r1) != GET_CODE (r2))
6749 return 0;
6750 return !rtx_equal_p (r1, r2);
6752 case dw_val_class_offset:
6753 return v1->v.val_offset == v2->v.val_offset;
6755 case dw_val_class_loc:
6756 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6757 loc1 && loc2;
6758 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6759 if (!same_loc_p (loc1, loc2, mark))
6760 return 0;
6761 return !loc1 && !loc2;
6763 case dw_val_class_die_ref:
6764 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6766 case dw_val_class_fde_ref:
6767 case dw_val_class_vms_delta:
6768 case dw_val_class_lbl_id:
6769 case dw_val_class_lineptr:
6770 case dw_val_class_macptr:
6771 case dw_val_class_high_pc:
6772 return 1;
6774 case dw_val_class_file:
6775 return v1->v.val_file == v2->v.val_file;
6777 case dw_val_class_data8:
6778 return !memcmp (v1->v.val_data8, v2->v.val_data8, 8);
6780 default:
6781 return 1;
6785 /* Do the attributes look the same? */
6787 static int
6788 same_attr_p (dw_attr_node *at1, dw_attr_node *at2, int *mark)
6790 if (at1->dw_attr != at2->dw_attr)
6791 return 0;
6793 /* We don't care that this was compiled with a different compiler
6794 snapshot; if the output is the same, that's what matters. */
6795 if (at1->dw_attr == DW_AT_producer)
6796 return 1;
6798 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6801 /* Do the dies look the same? */
6803 static int
6804 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6806 dw_die_ref c1, c2;
6807 dw_attr_node *a1;
6808 unsigned ix;
6810 /* To avoid infinite recursion. */
6811 if (die1->die_mark)
6812 return die1->die_mark == die2->die_mark;
6813 die1->die_mark = die2->die_mark = ++(*mark);
6815 if (die1->die_tag != die2->die_tag)
6816 return 0;
6818 if (vec_safe_length (die1->die_attr) != vec_safe_length (die2->die_attr))
6819 return 0;
6821 FOR_EACH_VEC_SAFE_ELT (die1->die_attr, ix, a1)
6822 if (!same_attr_p (a1, &(*die2->die_attr)[ix], mark))
6823 return 0;
6825 c1 = die1->die_child;
6826 c2 = die2->die_child;
6827 if (! c1)
6829 if (c2)
6830 return 0;
6832 else
6833 for (;;)
6835 if (!same_die_p (c1, c2, mark))
6836 return 0;
6837 c1 = c1->die_sib;
6838 c2 = c2->die_sib;
6839 if (c1 == die1->die_child)
6841 if (c2 == die2->die_child)
6842 break;
6843 else
6844 return 0;
6848 return 1;
6851 /* Do the dies look the same? Wrapper around same_die_p. */
6853 static int
6854 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6856 int mark = 0;
6857 int ret = same_die_p (die1, die2, &mark);
6859 unmark_all_dies (die1);
6860 unmark_all_dies (die2);
6862 return ret;
6865 /* The prefix to attach to symbols on DIEs in the current comdat debug
6866 info section. */
6867 static const char *comdat_symbol_id;
6869 /* The index of the current symbol within the current comdat CU. */
6870 static unsigned int comdat_symbol_number;
6872 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6873 children, and set comdat_symbol_id accordingly. */
6875 static void
6876 compute_section_prefix (dw_die_ref unit_die)
6878 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6879 const char *base = die_name ? lbasename (die_name) : "anonymous";
6880 char *name = XALLOCAVEC (char, strlen (base) + 64);
6881 char *p;
6882 int i, mark;
6883 unsigned char checksum[16];
6884 struct md5_ctx ctx;
6886 /* Compute the checksum of the DIE, then append part of it as hex digits to
6887 the name filename of the unit. */
6889 md5_init_ctx (&ctx);
6890 mark = 0;
6891 die_checksum (unit_die, &ctx, &mark);
6892 unmark_all_dies (unit_die);
6893 md5_finish_ctx (&ctx, checksum);
6895 sprintf (name, "%s.", base);
6896 clean_symbol_name (name);
6898 p = name + strlen (name);
6899 for (i = 0; i < 4; i++)
6901 sprintf (p, "%.2x", checksum[i]);
6902 p += 2;
6905 comdat_symbol_id = unit_die->die_id.die_symbol = xstrdup (name);
6906 comdat_symbol_number = 0;
6909 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6911 static int
6912 is_type_die (dw_die_ref die)
6914 switch (die->die_tag)
6916 case DW_TAG_array_type:
6917 case DW_TAG_class_type:
6918 case DW_TAG_interface_type:
6919 case DW_TAG_enumeration_type:
6920 case DW_TAG_pointer_type:
6921 case DW_TAG_reference_type:
6922 case DW_TAG_rvalue_reference_type:
6923 case DW_TAG_string_type:
6924 case DW_TAG_structure_type:
6925 case DW_TAG_subroutine_type:
6926 case DW_TAG_union_type:
6927 case DW_TAG_ptr_to_member_type:
6928 case DW_TAG_set_type:
6929 case DW_TAG_subrange_type:
6930 case DW_TAG_base_type:
6931 case DW_TAG_const_type:
6932 case DW_TAG_file_type:
6933 case DW_TAG_packed_type:
6934 case DW_TAG_volatile_type:
6935 case DW_TAG_typedef:
6936 return 1;
6937 default:
6938 return 0;
6942 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6943 Basically, we want to choose the bits that are likely to be shared between
6944 compilations (types) and leave out the bits that are specific to individual
6945 compilations (functions). */
6947 static int
6948 is_comdat_die (dw_die_ref c)
6950 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6951 we do for stabs. The advantage is a greater likelihood of sharing between
6952 objects that don't include headers in the same order (and therefore would
6953 put the base types in a different comdat). jason 8/28/00 */
6955 if (c->die_tag == DW_TAG_base_type)
6956 return 0;
6958 if (c->die_tag == DW_TAG_pointer_type
6959 || c->die_tag == DW_TAG_reference_type
6960 || c->die_tag == DW_TAG_rvalue_reference_type
6961 || c->die_tag == DW_TAG_const_type
6962 || c->die_tag == DW_TAG_volatile_type)
6964 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6966 return t ? is_comdat_die (t) : 0;
6969 return is_type_die (c);
6972 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6973 compilation unit. */
6975 static int
6976 is_symbol_die (dw_die_ref c)
6978 return (is_type_die (c)
6979 || is_declaration_die (c)
6980 || c->die_tag == DW_TAG_namespace
6981 || c->die_tag == DW_TAG_module);
6984 /* Returns true iff C is a compile-unit DIE. */
6986 static inline bool
6987 is_cu_die (dw_die_ref c)
6989 return c && c->die_tag == DW_TAG_compile_unit;
6992 /* Returns true iff C is a unit DIE of some sort. */
6994 static inline bool
6995 is_unit_die (dw_die_ref c)
6997 return c && (c->die_tag == DW_TAG_compile_unit
6998 || c->die_tag == DW_TAG_partial_unit
6999 || c->die_tag == DW_TAG_type_unit);
7002 /* Returns true iff C is a namespace DIE. */
7004 static inline bool
7005 is_namespace_die (dw_die_ref c)
7007 return c && c->die_tag == DW_TAG_namespace;
7010 /* Returns true iff C is a class or structure DIE. */
7012 static inline bool
7013 is_class_die (dw_die_ref c)
7015 return c && (c->die_tag == DW_TAG_class_type
7016 || c->die_tag == DW_TAG_structure_type);
7019 /* Return non-zero if this DIE is a template parameter. */
7021 static inline bool
7022 is_template_parameter (dw_die_ref die)
7024 switch (die->die_tag)
7026 case DW_TAG_template_type_param:
7027 case DW_TAG_template_value_param:
7028 case DW_TAG_GNU_template_template_param:
7029 case DW_TAG_GNU_template_parameter_pack:
7030 return true;
7031 default:
7032 return false;
7036 /* Return non-zero if this DIE represents a template instantiation. */
7038 static inline bool
7039 is_template_instantiation (dw_die_ref die)
7041 dw_die_ref c;
7043 if (!is_type_die (die) && die->die_tag != DW_TAG_subprogram)
7044 return false;
7045 FOR_EACH_CHILD (die, c, if (is_template_parameter (c)) return true);
7046 return false;
7049 static char *
7050 gen_internal_sym (const char *prefix)
7052 char buf[256];
7054 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
7055 return xstrdup (buf);
7058 /* Assign symbols to all worthy DIEs under DIE. */
7060 static void
7061 assign_symbol_names (dw_die_ref die)
7063 dw_die_ref c;
7065 if (is_symbol_die (die) && !die->comdat_type_p)
7067 if (comdat_symbol_id)
7069 char *p = XALLOCAVEC (char, strlen (comdat_symbol_id) + 64);
7071 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
7072 comdat_symbol_id, comdat_symbol_number++);
7073 die->die_id.die_symbol = xstrdup (p);
7075 else
7076 die->die_id.die_symbol = gen_internal_sym ("LDIE");
7079 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
7082 struct cu_hash_table_entry
7084 dw_die_ref cu;
7085 unsigned min_comdat_num, max_comdat_num;
7086 struct cu_hash_table_entry *next;
7089 /* Helpers to manipulate hash table of CUs. */
7091 struct cu_hash_table_entry_hasher : pointer_hash <cu_hash_table_entry>
7093 typedef die_struct *compare_type;
7094 static inline hashval_t hash (const cu_hash_table_entry *);
7095 static inline bool equal (const cu_hash_table_entry *, const die_struct *);
7096 static inline void remove (cu_hash_table_entry *);
7099 inline hashval_t
7100 cu_hash_table_entry_hasher::hash (const cu_hash_table_entry *entry)
7102 return htab_hash_string (entry->cu->die_id.die_symbol);
7105 inline bool
7106 cu_hash_table_entry_hasher::equal (const cu_hash_table_entry *entry1,
7107 const die_struct *entry2)
7109 return !strcmp (entry1->cu->die_id.die_symbol, entry2->die_id.die_symbol);
7112 inline void
7113 cu_hash_table_entry_hasher::remove (cu_hash_table_entry *entry)
7115 struct cu_hash_table_entry *next;
7117 while (entry)
7119 next = entry->next;
7120 free (entry);
7121 entry = next;
7125 typedef hash_table<cu_hash_table_entry_hasher> cu_hash_type;
7127 /* Check whether we have already seen this CU and set up SYM_NUM
7128 accordingly. */
7129 static int
7130 check_duplicate_cu (dw_die_ref cu, cu_hash_type *htable, unsigned int *sym_num)
7132 struct cu_hash_table_entry dummy;
7133 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
7135 dummy.max_comdat_num = 0;
7137 slot = htable->find_slot_with_hash (cu,
7138 htab_hash_string (cu->die_id.die_symbol),
7139 INSERT);
7140 entry = *slot;
7142 for (; entry; last = entry, entry = entry->next)
7144 if (same_die_p_wrap (cu, entry->cu))
7145 break;
7148 if (entry)
7150 *sym_num = entry->min_comdat_num;
7151 return 1;
7154 entry = XCNEW (struct cu_hash_table_entry);
7155 entry->cu = cu;
7156 entry->min_comdat_num = *sym_num = last->max_comdat_num;
7157 entry->next = *slot;
7158 *slot = entry;
7160 return 0;
7163 /* Record SYM_NUM to record of CU in HTABLE. */
7164 static void
7165 record_comdat_symbol_number (dw_die_ref cu, cu_hash_type *htable,
7166 unsigned int sym_num)
7168 struct cu_hash_table_entry **slot, *entry;
7170 slot = htable->find_slot_with_hash (cu,
7171 htab_hash_string (cu->die_id.die_symbol),
7172 NO_INSERT);
7173 entry = *slot;
7175 entry->max_comdat_num = sym_num;
7178 /* Traverse the DIE (which is always comp_unit_die), and set up
7179 additional compilation units for each of the include files we see
7180 bracketed by BINCL/EINCL. */
7182 static void
7183 break_out_includes (dw_die_ref die)
7185 dw_die_ref c;
7186 dw_die_ref unit = NULL;
7187 limbo_die_node *node, **pnode;
7189 c = die->die_child;
7190 if (c) do {
7191 dw_die_ref prev = c;
7192 c = c->die_sib;
7193 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
7194 || (unit && is_comdat_die (c)))
7196 dw_die_ref next = c->die_sib;
7198 /* This DIE is for a secondary CU; remove it from the main one. */
7199 remove_child_with_prev (c, prev);
7201 if (c->die_tag == DW_TAG_GNU_BINCL)
7202 unit = push_new_compile_unit (unit, c);
7203 else if (c->die_tag == DW_TAG_GNU_EINCL)
7204 unit = pop_compile_unit (unit);
7205 else
7206 add_child_die (unit, c);
7207 c = next;
7208 if (c == die->die_child)
7209 break;
7211 } while (c != die->die_child);
7213 #if 0
7214 /* We can only use this in debugging, since the frontend doesn't check
7215 to make sure that we leave every include file we enter. */
7216 gcc_assert (!unit);
7217 #endif
7219 assign_symbol_names (die);
7220 cu_hash_type cu_hash_table (10);
7221 for (node = limbo_die_list, pnode = &limbo_die_list;
7222 node;
7223 node = node->next)
7225 int is_dupl;
7227 compute_section_prefix (node->die);
7228 is_dupl = check_duplicate_cu (node->die, &cu_hash_table,
7229 &comdat_symbol_number);
7230 assign_symbol_names (node->die);
7231 if (is_dupl)
7232 *pnode = node->next;
7233 else
7235 pnode = &node->next;
7236 record_comdat_symbol_number (node->die, &cu_hash_table,
7237 comdat_symbol_number);
7242 /* Return non-zero if this DIE is a declaration. */
7244 static int
7245 is_declaration_die (dw_die_ref die)
7247 dw_attr_node *a;
7248 unsigned ix;
7250 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7251 if (a->dw_attr == DW_AT_declaration)
7252 return 1;
7254 return 0;
7257 /* Return non-zero if this DIE is nested inside a subprogram. */
7259 static int
7260 is_nested_in_subprogram (dw_die_ref die)
7262 dw_die_ref decl = get_AT_ref (die, DW_AT_specification);
7264 if (decl == NULL)
7265 decl = die;
7266 return local_scope_p (decl);
7269 /* Return non-zero if this DIE contains a defining declaration of a
7270 subprogram. */
7272 static int
7273 contains_subprogram_definition (dw_die_ref die)
7275 dw_die_ref c;
7277 if (die->die_tag == DW_TAG_subprogram && ! is_declaration_die (die))
7278 return 1;
7279 FOR_EACH_CHILD (die, c, if (contains_subprogram_definition (c)) return 1);
7280 return 0;
7283 /* Return non-zero if this is a type DIE that should be moved to a
7284 COMDAT .debug_types section. */
7286 static int
7287 should_move_die_to_comdat (dw_die_ref die)
7289 switch (die->die_tag)
7291 case DW_TAG_class_type:
7292 case DW_TAG_structure_type:
7293 case DW_TAG_enumeration_type:
7294 case DW_TAG_union_type:
7295 /* Don't move declarations, inlined instances, types nested in a
7296 subprogram, or types that contain subprogram definitions. */
7297 if (is_declaration_die (die)
7298 || get_AT (die, DW_AT_abstract_origin)
7299 || is_nested_in_subprogram (die)
7300 || contains_subprogram_definition (die))
7301 return 0;
7302 return 1;
7303 case DW_TAG_array_type:
7304 case DW_TAG_interface_type:
7305 case DW_TAG_pointer_type:
7306 case DW_TAG_reference_type:
7307 case DW_TAG_rvalue_reference_type:
7308 case DW_TAG_string_type:
7309 case DW_TAG_subroutine_type:
7310 case DW_TAG_ptr_to_member_type:
7311 case DW_TAG_set_type:
7312 case DW_TAG_subrange_type:
7313 case DW_TAG_base_type:
7314 case DW_TAG_const_type:
7315 case DW_TAG_file_type:
7316 case DW_TAG_packed_type:
7317 case DW_TAG_volatile_type:
7318 case DW_TAG_typedef:
7319 default:
7320 return 0;
7324 /* Make a clone of DIE. */
7326 static dw_die_ref
7327 clone_die (dw_die_ref die)
7329 dw_die_ref clone;
7330 dw_attr_node *a;
7331 unsigned ix;
7333 clone = ggc_cleared_alloc<die_node> ();
7334 clone->die_tag = die->die_tag;
7336 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7337 add_dwarf_attr (clone, a);
7339 return clone;
7342 /* Make a clone of the tree rooted at DIE. */
7344 static dw_die_ref
7345 clone_tree (dw_die_ref die)
7347 dw_die_ref c;
7348 dw_die_ref clone = clone_die (die);
7350 FOR_EACH_CHILD (die, c, add_child_die (clone, clone_tree (c)));
7352 return clone;
7355 /* Make a clone of DIE as a declaration. */
7357 static dw_die_ref
7358 clone_as_declaration (dw_die_ref die)
7360 dw_die_ref clone;
7361 dw_die_ref decl;
7362 dw_attr_node *a;
7363 unsigned ix;
7365 /* If the DIE is already a declaration, just clone it. */
7366 if (is_declaration_die (die))
7367 return clone_die (die);
7369 /* If the DIE is a specification, just clone its declaration DIE. */
7370 decl = get_AT_ref (die, DW_AT_specification);
7371 if (decl != NULL)
7373 clone = clone_die (decl);
7374 if (die->comdat_type_p)
7375 add_AT_die_ref (clone, DW_AT_signature, die);
7376 return clone;
7379 clone = ggc_cleared_alloc<die_node> ();
7380 clone->die_tag = die->die_tag;
7382 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7384 /* We don't want to copy over all attributes.
7385 For example we don't want DW_AT_byte_size because otherwise we will no
7386 longer have a declaration and GDB will treat it as a definition. */
7388 switch (a->dw_attr)
7390 case DW_AT_abstract_origin:
7391 case DW_AT_artificial:
7392 case DW_AT_containing_type:
7393 case DW_AT_external:
7394 case DW_AT_name:
7395 case DW_AT_type:
7396 case DW_AT_virtuality:
7397 case DW_AT_linkage_name:
7398 case DW_AT_MIPS_linkage_name:
7399 add_dwarf_attr (clone, a);
7400 break;
7401 case DW_AT_byte_size:
7402 default:
7403 break;
7407 if (die->comdat_type_p)
7408 add_AT_die_ref (clone, DW_AT_signature, die);
7410 add_AT_flag (clone, DW_AT_declaration, 1);
7411 return clone;
7415 /* Structure to map a DIE in one CU to its copy in a comdat type unit. */
7417 struct decl_table_entry
7419 dw_die_ref orig;
7420 dw_die_ref copy;
7423 /* Helpers to manipulate hash table of copied declarations. */
7425 /* Hashtable helpers. */
7427 struct decl_table_entry_hasher : free_ptr_hash <decl_table_entry>
7429 typedef die_struct *compare_type;
7430 static inline hashval_t hash (const decl_table_entry *);
7431 static inline bool equal (const decl_table_entry *, const die_struct *);
7434 inline hashval_t
7435 decl_table_entry_hasher::hash (const decl_table_entry *entry)
7437 return htab_hash_pointer (entry->orig);
7440 inline bool
7441 decl_table_entry_hasher::equal (const decl_table_entry *entry1,
7442 const die_struct *entry2)
7444 return entry1->orig == entry2;
7447 typedef hash_table<decl_table_entry_hasher> decl_hash_type;
7449 /* Copy DIE and its ancestors, up to, but not including, the compile unit
7450 or type unit entry, to a new tree. Adds the new tree to UNIT and returns
7451 a pointer to the copy of DIE. If DECL_TABLE is provided, it is used
7452 to check if the ancestor has already been copied into UNIT. */
7454 static dw_die_ref
7455 copy_ancestor_tree (dw_die_ref unit, dw_die_ref die,
7456 decl_hash_type *decl_table)
7458 dw_die_ref parent = die->die_parent;
7459 dw_die_ref new_parent = unit;
7460 dw_die_ref copy;
7461 decl_table_entry **slot = NULL;
7462 struct decl_table_entry *entry = NULL;
7464 if (decl_table)
7466 /* Check if the entry has already been copied to UNIT. */
7467 slot = decl_table->find_slot_with_hash (die, htab_hash_pointer (die),
7468 INSERT);
7469 if (*slot != HTAB_EMPTY_ENTRY)
7471 entry = *slot;
7472 return entry->copy;
7475 /* Record in DECL_TABLE that DIE has been copied to UNIT. */
7476 entry = XCNEW (struct decl_table_entry);
7477 entry->orig = die;
7478 entry->copy = NULL;
7479 *slot = entry;
7482 if (parent != NULL)
7484 dw_die_ref spec = get_AT_ref (parent, DW_AT_specification);
7485 if (spec != NULL)
7486 parent = spec;
7487 if (!is_unit_die (parent))
7488 new_parent = copy_ancestor_tree (unit, parent, decl_table);
7491 copy = clone_as_declaration (die);
7492 add_child_die (new_parent, copy);
7494 if (decl_table)
7496 /* Record the pointer to the copy. */
7497 entry->copy = copy;
7500 return copy;
7502 /* Copy the declaration context to the new type unit DIE. This includes
7503 any surrounding namespace or type declarations. If the DIE has an
7504 AT_specification attribute, it also includes attributes and children
7505 attached to the specification, and returns a pointer to the original
7506 parent of the declaration DIE. Returns NULL otherwise. */
7508 static dw_die_ref
7509 copy_declaration_context (dw_die_ref unit, dw_die_ref die)
7511 dw_die_ref decl;
7512 dw_die_ref new_decl;
7513 dw_die_ref orig_parent = NULL;
7515 decl = get_AT_ref (die, DW_AT_specification);
7516 if (decl == NULL)
7517 decl = die;
7518 else
7520 unsigned ix;
7521 dw_die_ref c;
7522 dw_attr_node *a;
7524 /* The original DIE will be changed to a declaration, and must
7525 be moved to be a child of the original declaration DIE. */
7526 orig_parent = decl->die_parent;
7528 /* Copy the type node pointer from the new DIE to the original
7529 declaration DIE so we can forward references later. */
7530 decl->comdat_type_p = true;
7531 decl->die_id.die_type_node = die->die_id.die_type_node;
7533 remove_AT (die, DW_AT_specification);
7535 FOR_EACH_VEC_SAFE_ELT (decl->die_attr, ix, a)
7537 if (a->dw_attr != DW_AT_name
7538 && a->dw_attr != DW_AT_declaration
7539 && a->dw_attr != DW_AT_external)
7540 add_dwarf_attr (die, a);
7543 FOR_EACH_CHILD (decl, c, add_child_die (die, clone_tree (c)));
7546 if (decl->die_parent != NULL
7547 && !is_unit_die (decl->die_parent))
7549 new_decl = copy_ancestor_tree (unit, decl, NULL);
7550 if (new_decl != NULL)
7552 remove_AT (new_decl, DW_AT_signature);
7553 add_AT_specification (die, new_decl);
7557 return orig_parent;
7560 /* Generate the skeleton ancestor tree for the given NODE, then clone
7561 the DIE and add the clone into the tree. */
7563 static void
7564 generate_skeleton_ancestor_tree (skeleton_chain_node *node)
7566 if (node->new_die != NULL)
7567 return;
7569 node->new_die = clone_as_declaration (node->old_die);
7571 if (node->parent != NULL)
7573 generate_skeleton_ancestor_tree (node->parent);
7574 add_child_die (node->parent->new_die, node->new_die);
7578 /* Generate a skeleton tree of DIEs containing any declarations that are
7579 found in the original tree. We traverse the tree looking for declaration
7580 DIEs, and construct the skeleton from the bottom up whenever we find one. */
7582 static void
7583 generate_skeleton_bottom_up (skeleton_chain_node *parent)
7585 skeleton_chain_node node;
7586 dw_die_ref c;
7587 dw_die_ref first;
7588 dw_die_ref prev = NULL;
7589 dw_die_ref next = NULL;
7591 node.parent = parent;
7593 first = c = parent->old_die->die_child;
7594 if (c)
7595 next = c->die_sib;
7596 if (c) do {
7597 if (prev == NULL || prev->die_sib == c)
7598 prev = c;
7599 c = next;
7600 next = (c == first ? NULL : c->die_sib);
7601 node.old_die = c;
7602 node.new_die = NULL;
7603 if (is_declaration_die (c))
7605 if (is_template_instantiation (c))
7607 /* Instantiated templates do not need to be cloned into the
7608 type unit. Just move the DIE and its children back to
7609 the skeleton tree (in the main CU). */
7610 remove_child_with_prev (c, prev);
7611 add_child_die (parent->new_die, c);
7612 c = prev;
7614 else
7616 /* Clone the existing DIE, move the original to the skeleton
7617 tree (which is in the main CU), and put the clone, with
7618 all the original's children, where the original came from
7619 (which is about to be moved to the type unit). */
7620 dw_die_ref clone = clone_die (c);
7621 move_all_children (c, clone);
7623 /* If the original has a DW_AT_object_pointer attribute,
7624 it would now point to a child DIE just moved to the
7625 cloned tree, so we need to remove that attribute from
7626 the original. */
7627 remove_AT (c, DW_AT_object_pointer);
7629 replace_child (c, clone, prev);
7630 generate_skeleton_ancestor_tree (parent);
7631 add_child_die (parent->new_die, c);
7632 node.new_die = c;
7633 c = clone;
7636 generate_skeleton_bottom_up (&node);
7637 } while (next != NULL);
7640 /* Wrapper function for generate_skeleton_bottom_up. */
7642 static dw_die_ref
7643 generate_skeleton (dw_die_ref die)
7645 skeleton_chain_node node;
7647 node.old_die = die;
7648 node.new_die = NULL;
7649 node.parent = NULL;
7651 /* If this type definition is nested inside another type,
7652 and is not an instantiation of a template, always leave
7653 at least a declaration in its place. */
7654 if (die->die_parent != NULL
7655 && is_type_die (die->die_parent)
7656 && !is_template_instantiation (die))
7657 node.new_die = clone_as_declaration (die);
7659 generate_skeleton_bottom_up (&node);
7660 return node.new_die;
7663 /* Remove the CHILD DIE from its parent, possibly replacing it with a cloned
7664 declaration. The original DIE is moved to a new compile unit so that
7665 existing references to it follow it to the new location. If any of the
7666 original DIE's descendants is a declaration, we need to replace the
7667 original DIE with a skeleton tree and move the declarations back into the
7668 skeleton tree. */
7670 static dw_die_ref
7671 remove_child_or_replace_with_skeleton (dw_die_ref unit, dw_die_ref child,
7672 dw_die_ref prev)
7674 dw_die_ref skeleton, orig_parent;
7676 /* Copy the declaration context to the type unit DIE. If the returned
7677 ORIG_PARENT is not NULL, the skeleton needs to be added as a child of
7678 that DIE. */
7679 orig_parent = copy_declaration_context (unit, child);
7681 skeleton = generate_skeleton (child);
7682 if (skeleton == NULL)
7683 remove_child_with_prev (child, prev);
7684 else
7686 skeleton->comdat_type_p = true;
7687 skeleton->die_id.die_type_node = child->die_id.die_type_node;
7689 /* If the original DIE was a specification, we need to put
7690 the skeleton under the parent DIE of the declaration.
7691 This leaves the original declaration in the tree, but
7692 it will be pruned later since there are no longer any
7693 references to it. */
7694 if (orig_parent != NULL)
7696 remove_child_with_prev (child, prev);
7697 add_child_die (orig_parent, skeleton);
7699 else
7700 replace_child (child, skeleton, prev);
7703 return skeleton;
7706 static void
7707 copy_dwarf_procs_ref_in_attrs (dw_die_ref die,
7708 comdat_type_node *type_node,
7709 hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs);
7711 /* Helper for copy_dwarf_procs_ref_in_dies. Make a copy of the DIE DWARF
7712 procedure, put it under TYPE_NODE and return the copy. Continue looking for
7713 DWARF procedure references in the DW_AT_location attribute. */
7715 static dw_die_ref
7716 copy_dwarf_procedure (dw_die_ref die,
7717 comdat_type_node *type_node,
7718 hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs)
7720 /* We do this for COMDAT section, which is DWARFv4 specific, so
7721 DWARF procedure are always DW_TAG_dwarf_procedure DIEs (unlike
7722 DW_TAG_variable in DWARFv3). */
7723 gcc_assert (die->die_tag == DW_TAG_dwarf_procedure);
7725 /* DWARF procedures are not supposed to have children... */
7726 gcc_assert (die->die_child == NULL);
7728 /* ... and they are supposed to have only one attribute: DW_AT_location. */
7729 gcc_assert (vec_safe_length (die->die_attr) == 1
7730 && ((*die->die_attr)[0].dw_attr == DW_AT_location));
7732 /* Do not copy more than once DWARF procedures. */
7733 bool existed;
7734 dw_die_ref &die_copy = copied_dwarf_procs.get_or_insert (die, &existed);
7735 if (existed)
7736 return die_copy;
7738 die_copy = clone_die (die);
7739 add_child_die (type_node->root_die, die_copy);
7740 copy_dwarf_procs_ref_in_attrs (die_copy, type_node, copied_dwarf_procs);
7741 return die_copy;
7744 /* Helper for copy_dwarf_procs_ref_in_dies. Look for references to DWARF
7745 procedures in DIE's attributes. */
7747 static void
7748 copy_dwarf_procs_ref_in_attrs (dw_die_ref die,
7749 comdat_type_node *type_node,
7750 hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs)
7752 dw_attr_node *a;
7753 unsigned i;
7755 FOR_EACH_VEC_SAFE_ELT (die->die_attr, i, a)
7757 dw_loc_descr_ref loc;
7759 if (a->dw_attr_val.val_class != dw_val_class_loc)
7760 continue;
7762 for (loc = a->dw_attr_val.v.val_loc; loc != NULL; loc = loc->dw_loc_next)
7764 switch (loc->dw_loc_opc)
7766 case DW_OP_call2:
7767 case DW_OP_call4:
7768 case DW_OP_call_ref:
7769 gcc_assert (loc->dw_loc_oprnd1.val_class
7770 == dw_val_class_die_ref);
7771 loc->dw_loc_oprnd1.v.val_die_ref.die
7772 = copy_dwarf_procedure (loc->dw_loc_oprnd1.v.val_die_ref.die,
7773 type_node,
7774 copied_dwarf_procs);
7776 default:
7777 break;
7783 /* Copy DWARF procedures that are referenced by the DIE tree to TREE_NODE and
7784 rewrite references to point to the copies.
7786 References are looked for in DIE's attributes and recursively in all its
7787 children attributes that are location descriptions. COPIED_DWARF_PROCS is a
7788 mapping from old DWARF procedures to their copy. It is used not to copy
7789 twice the same DWARF procedure under TYPE_NODE. */
7791 static void
7792 copy_dwarf_procs_ref_in_dies (dw_die_ref die,
7793 comdat_type_node *type_node,
7794 hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs)
7796 dw_die_ref c;
7798 copy_dwarf_procs_ref_in_attrs (die, type_node, copied_dwarf_procs);
7799 FOR_EACH_CHILD (die, c, copy_dwarf_procs_ref_in_dies (c,
7800 type_node,
7801 copied_dwarf_procs));
7804 /* Traverse the DIE and set up additional .debug_types sections for each
7805 type worthy of being placed in a COMDAT section. */
7807 static void
7808 break_out_comdat_types (dw_die_ref die)
7810 dw_die_ref c;
7811 dw_die_ref first;
7812 dw_die_ref prev = NULL;
7813 dw_die_ref next = NULL;
7814 dw_die_ref unit = NULL;
7816 first = c = die->die_child;
7817 if (c)
7818 next = c->die_sib;
7819 if (c) do {
7820 if (prev == NULL || prev->die_sib == c)
7821 prev = c;
7822 c = next;
7823 next = (c == first ? NULL : c->die_sib);
7824 if (should_move_die_to_comdat (c))
7826 dw_die_ref replacement;
7827 comdat_type_node *type_node;
7829 /* Break out nested types into their own type units. */
7830 break_out_comdat_types (c);
7832 /* Create a new type unit DIE as the root for the new tree, and
7833 add it to the list of comdat types. */
7834 unit = new_die (DW_TAG_type_unit, NULL, NULL);
7835 add_AT_unsigned (unit, DW_AT_language,
7836 get_AT_unsigned (comp_unit_die (), DW_AT_language));
7837 type_node = ggc_cleared_alloc<comdat_type_node> ();
7838 type_node->root_die = unit;
7839 type_node->next = comdat_type_list;
7840 comdat_type_list = type_node;
7842 /* Generate the type signature. */
7843 generate_type_signature (c, type_node);
7845 /* Copy the declaration context, attributes, and children of the
7846 declaration into the new type unit DIE, then remove this DIE
7847 from the main CU (or replace it with a skeleton if necessary). */
7848 replacement = remove_child_or_replace_with_skeleton (unit, c, prev);
7849 type_node->skeleton_die = replacement;
7851 /* Add the DIE to the new compunit. */
7852 add_child_die (unit, c);
7854 /* Types can reference DWARF procedures for type size or data location
7855 expressions. Calls in DWARF expressions cannot target procedures
7856 that are not in the same section. So we must copy DWARF procedures
7857 along with this type and then rewrite references to them. */
7858 hash_map<dw_die_ref, dw_die_ref> copied_dwarf_procs;
7859 copy_dwarf_procs_ref_in_dies (c, type_node, copied_dwarf_procs);
7861 if (replacement != NULL)
7862 c = replacement;
7864 else if (c->die_tag == DW_TAG_namespace
7865 || c->die_tag == DW_TAG_class_type
7866 || c->die_tag == DW_TAG_structure_type
7867 || c->die_tag == DW_TAG_union_type)
7869 /* Look for nested types that can be broken out. */
7870 break_out_comdat_types (c);
7872 } while (next != NULL);
7875 /* Like clone_tree, but copy DW_TAG_subprogram DIEs as declarations.
7876 Enter all the cloned children into the hash table decl_table. */
7878 static dw_die_ref
7879 clone_tree_partial (dw_die_ref die, decl_hash_type *decl_table)
7881 dw_die_ref c;
7882 dw_die_ref clone;
7883 struct decl_table_entry *entry;
7884 decl_table_entry **slot;
7886 if (die->die_tag == DW_TAG_subprogram)
7887 clone = clone_as_declaration (die);
7888 else
7889 clone = clone_die (die);
7891 slot = decl_table->find_slot_with_hash (die,
7892 htab_hash_pointer (die), INSERT);
7894 /* Assert that DIE isn't in the hash table yet. If it would be there
7895 before, the ancestors would be necessarily there as well, therefore
7896 clone_tree_partial wouldn't be called. */
7897 gcc_assert (*slot == HTAB_EMPTY_ENTRY);
7899 entry = XCNEW (struct decl_table_entry);
7900 entry->orig = die;
7901 entry->copy = clone;
7902 *slot = entry;
7904 if (die->die_tag != DW_TAG_subprogram)
7905 FOR_EACH_CHILD (die, c,
7906 add_child_die (clone, clone_tree_partial (c, decl_table)));
7908 return clone;
7911 /* Walk the DIE and its children, looking for references to incomplete
7912 or trivial types that are unmarked (i.e., that are not in the current
7913 type_unit). */
7915 static void
7916 copy_decls_walk (dw_die_ref unit, dw_die_ref die, decl_hash_type *decl_table)
7918 dw_die_ref c;
7919 dw_attr_node *a;
7920 unsigned ix;
7922 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7924 if (AT_class (a) == dw_val_class_die_ref)
7926 dw_die_ref targ = AT_ref (a);
7927 decl_table_entry **slot;
7928 struct decl_table_entry *entry;
7930 if (targ->die_mark != 0 || targ->comdat_type_p)
7931 continue;
7933 slot = decl_table->find_slot_with_hash (targ,
7934 htab_hash_pointer (targ),
7935 INSERT);
7937 if (*slot != HTAB_EMPTY_ENTRY)
7939 /* TARG has already been copied, so we just need to
7940 modify the reference to point to the copy. */
7941 entry = *slot;
7942 a->dw_attr_val.v.val_die_ref.die = entry->copy;
7944 else
7946 dw_die_ref parent = unit;
7947 dw_die_ref copy = clone_die (targ);
7949 /* Record in DECL_TABLE that TARG has been copied.
7950 Need to do this now, before the recursive call,
7951 because DECL_TABLE may be expanded and SLOT
7952 would no longer be a valid pointer. */
7953 entry = XCNEW (struct decl_table_entry);
7954 entry->orig = targ;
7955 entry->copy = copy;
7956 *slot = entry;
7958 /* If TARG is not a declaration DIE, we need to copy its
7959 children. */
7960 if (!is_declaration_die (targ))
7962 FOR_EACH_CHILD (
7963 targ, c,
7964 add_child_die (copy,
7965 clone_tree_partial (c, decl_table)));
7968 /* Make sure the cloned tree is marked as part of the
7969 type unit. */
7970 mark_dies (copy);
7972 /* If TARG has surrounding context, copy its ancestor tree
7973 into the new type unit. */
7974 if (targ->die_parent != NULL
7975 && !is_unit_die (targ->die_parent))
7976 parent = copy_ancestor_tree (unit, targ->die_parent,
7977 decl_table);
7979 add_child_die (parent, copy);
7980 a->dw_attr_val.v.val_die_ref.die = copy;
7982 /* Make sure the newly-copied DIE is walked. If it was
7983 installed in a previously-added context, it won't
7984 get visited otherwise. */
7985 if (parent != unit)
7987 /* Find the highest point of the newly-added tree,
7988 mark each node along the way, and walk from there. */
7989 parent->die_mark = 1;
7990 while (parent->die_parent
7991 && parent->die_parent->die_mark == 0)
7993 parent = parent->die_parent;
7994 parent->die_mark = 1;
7996 copy_decls_walk (unit, parent, decl_table);
8002 FOR_EACH_CHILD (die, c, copy_decls_walk (unit, c, decl_table));
8005 /* Copy declarations for "unworthy" types into the new comdat section.
8006 Incomplete types, modified types, and certain other types aren't broken
8007 out into comdat sections of their own, so they don't have a signature,
8008 and we need to copy the declaration into the same section so that we
8009 don't have an external reference. */
8011 static void
8012 copy_decls_for_unworthy_types (dw_die_ref unit)
8014 mark_dies (unit);
8015 decl_hash_type decl_table (10);
8016 copy_decls_walk (unit, unit, &decl_table);
8017 unmark_dies (unit);
8020 /* Traverse the DIE and add a sibling attribute if it may have the
8021 effect of speeding up access to siblings. To save some space,
8022 avoid generating sibling attributes for DIE's without children. */
8024 static void
8025 add_sibling_attributes (dw_die_ref die)
8027 dw_die_ref c;
8029 if (! die->die_child)
8030 return;
8032 if (die->die_parent && die != die->die_parent->die_child)
8033 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
8035 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
8038 /* Output all location lists for the DIE and its children. */
8040 static void
8041 output_location_lists (dw_die_ref die)
8043 dw_die_ref c;
8044 dw_attr_node *a;
8045 unsigned ix;
8047 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8048 if (AT_class (a) == dw_val_class_loc_list)
8049 output_loc_list (AT_loc_list (a));
8051 FOR_EACH_CHILD (die, c, output_location_lists (c));
8054 /* We want to limit the number of external references, because they are
8055 larger than local references: a relocation takes multiple words, and
8056 even a sig8 reference is always eight bytes, whereas a local reference
8057 can be as small as one byte (though DW_FORM_ref is usually 4 in GCC).
8058 So if we encounter multiple external references to the same type DIE, we
8059 make a local typedef stub for it and redirect all references there.
8061 This is the element of the hash table for keeping track of these
8062 references. */
8064 struct external_ref
8066 dw_die_ref type;
8067 dw_die_ref stub;
8068 unsigned n_refs;
8071 /* Hashtable helpers. */
8073 struct external_ref_hasher : free_ptr_hash <external_ref>
8075 static inline hashval_t hash (const external_ref *);
8076 static inline bool equal (const external_ref *, const external_ref *);
8079 inline hashval_t
8080 external_ref_hasher::hash (const external_ref *r)
8082 dw_die_ref die = r->type;
8083 hashval_t h = 0;
8085 /* We can't use the address of the DIE for hashing, because
8086 that will make the order of the stub DIEs non-deterministic. */
8087 if (! die->comdat_type_p)
8088 /* We have a symbol; use it to compute a hash. */
8089 h = htab_hash_string (die->die_id.die_symbol);
8090 else
8092 /* We have a type signature; use a subset of the bits as the hash.
8093 The 8-byte signature is at least as large as hashval_t. */
8094 comdat_type_node *type_node = die->die_id.die_type_node;
8095 memcpy (&h, type_node->signature, sizeof (h));
8097 return h;
8100 inline bool
8101 external_ref_hasher::equal (const external_ref *r1, const external_ref *r2)
8103 return r1->type == r2->type;
8106 typedef hash_table<external_ref_hasher> external_ref_hash_type;
8108 /* Return a pointer to the external_ref for references to DIE. */
8110 static struct external_ref *
8111 lookup_external_ref (external_ref_hash_type *map, dw_die_ref die)
8113 struct external_ref ref, *ref_p;
8114 external_ref **slot;
8116 ref.type = die;
8117 slot = map->find_slot (&ref, INSERT);
8118 if (*slot != HTAB_EMPTY_ENTRY)
8119 return *slot;
8121 ref_p = XCNEW (struct external_ref);
8122 ref_p->type = die;
8123 *slot = ref_p;
8124 return ref_p;
8127 /* Subroutine of optimize_external_refs, below.
8129 If we see a type skeleton, record it as our stub. If we see external
8130 references, remember how many we've seen. */
8132 static void
8133 optimize_external_refs_1 (dw_die_ref die, external_ref_hash_type *map)
8135 dw_die_ref c;
8136 dw_attr_node *a;
8137 unsigned ix;
8138 struct external_ref *ref_p;
8140 if (is_type_die (die)
8141 && (c = get_AT_ref (die, DW_AT_signature)))
8143 /* This is a local skeleton; use it for local references. */
8144 ref_p = lookup_external_ref (map, c);
8145 ref_p->stub = die;
8148 /* Scan the DIE references, and remember any that refer to DIEs from
8149 other CUs (i.e. those which are not marked). */
8150 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8151 if (AT_class (a) == dw_val_class_die_ref
8152 && (c = AT_ref (a))->die_mark == 0
8153 && is_type_die (c))
8155 ref_p = lookup_external_ref (map, c);
8156 ref_p->n_refs++;
8159 FOR_EACH_CHILD (die, c, optimize_external_refs_1 (c, map));
8162 /* htab_traverse callback function for optimize_external_refs, below. SLOT
8163 points to an external_ref, DATA is the CU we're processing. If we don't
8164 already have a local stub, and we have multiple refs, build a stub. */
8167 dwarf2_build_local_stub (external_ref **slot, dw_die_ref data)
8169 struct external_ref *ref_p = *slot;
8171 if (ref_p->stub == NULL && ref_p->n_refs > 1 && !dwarf_strict)
8173 /* We have multiple references to this type, so build a small stub.
8174 Both of these forms are a bit dodgy from the perspective of the
8175 DWARF standard, since technically they should have names. */
8176 dw_die_ref cu = data;
8177 dw_die_ref type = ref_p->type;
8178 dw_die_ref stub = NULL;
8180 if (type->comdat_type_p)
8182 /* If we refer to this type via sig8, use AT_signature. */
8183 stub = new_die (type->die_tag, cu, NULL_TREE);
8184 add_AT_die_ref (stub, DW_AT_signature, type);
8186 else
8188 /* Otherwise, use a typedef with no name. */
8189 stub = new_die (DW_TAG_typedef, cu, NULL_TREE);
8190 add_AT_die_ref (stub, DW_AT_type, type);
8193 stub->die_mark++;
8194 ref_p->stub = stub;
8196 return 1;
8199 /* DIE is a unit; look through all the DIE references to see if there are
8200 any external references to types, and if so, create local stubs for
8201 them which will be applied in build_abbrev_table. This is useful because
8202 references to local DIEs are smaller. */
8204 static external_ref_hash_type *
8205 optimize_external_refs (dw_die_ref die)
8207 external_ref_hash_type *map = new external_ref_hash_type (10);
8208 optimize_external_refs_1 (die, map);
8209 map->traverse <dw_die_ref, dwarf2_build_local_stub> (die);
8210 return map;
8213 /* The format of each DIE (and its attribute value pairs) is encoded in an
8214 abbreviation table. This routine builds the abbreviation table and assigns
8215 a unique abbreviation id for each abbreviation entry. The children of each
8216 die are visited recursively. */
8218 static void
8219 build_abbrev_table (dw_die_ref die, external_ref_hash_type *extern_map)
8221 unsigned long abbrev_id;
8222 unsigned int n_alloc;
8223 dw_die_ref c;
8224 dw_attr_node *a;
8225 unsigned ix;
8227 /* Scan the DIE references, and replace any that refer to
8228 DIEs from other CUs (i.e. those which are not marked) with
8229 the local stubs we built in optimize_external_refs. */
8230 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8231 if (AT_class (a) == dw_val_class_die_ref
8232 && (c = AT_ref (a))->die_mark == 0)
8234 struct external_ref *ref_p;
8235 gcc_assert (AT_ref (a)->comdat_type_p || AT_ref (a)->die_id.die_symbol);
8237 ref_p = lookup_external_ref (extern_map, c);
8238 if (ref_p->stub && ref_p->stub != die)
8239 change_AT_die_ref (a, ref_p->stub);
8240 else
8241 /* We aren't changing this reference, so mark it external. */
8242 set_AT_ref_external (a, 1);
8245 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
8247 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
8248 dw_attr_node *die_a, *abbrev_a;
8249 unsigned ix;
8250 bool ok = true;
8252 if (abbrev->die_tag != die->die_tag)
8253 continue;
8254 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
8255 continue;
8257 if (vec_safe_length (abbrev->die_attr) != vec_safe_length (die->die_attr))
8258 continue;
8260 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, die_a)
8262 abbrev_a = &(*abbrev->die_attr)[ix];
8263 if ((abbrev_a->dw_attr != die_a->dw_attr)
8264 || (value_format (abbrev_a) != value_format (die_a)))
8266 ok = false;
8267 break;
8270 if (ok)
8271 break;
8274 if (abbrev_id >= abbrev_die_table_in_use)
8276 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
8278 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
8279 abbrev_die_table = GGC_RESIZEVEC (dw_die_ref, abbrev_die_table,
8280 n_alloc);
8282 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
8283 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
8284 abbrev_die_table_allocated = n_alloc;
8287 ++abbrev_die_table_in_use;
8288 abbrev_die_table[abbrev_id] = die;
8291 die->die_abbrev = abbrev_id;
8292 FOR_EACH_CHILD (die, c, build_abbrev_table (c, extern_map));
8295 /* Return the power-of-two number of bytes necessary to represent VALUE. */
8297 static int
8298 constant_size (unsigned HOST_WIDE_INT value)
8300 int log;
8302 if (value == 0)
8303 log = 0;
8304 else
8305 log = floor_log2 (value);
8307 log = log / 8;
8308 log = 1 << (floor_log2 (log) + 1);
8310 return log;
8313 /* Return the size of a DIE as it is represented in the
8314 .debug_info section. */
8316 static unsigned long
8317 size_of_die (dw_die_ref die)
8319 unsigned long size = 0;
8320 dw_attr_node *a;
8321 unsigned ix;
8322 enum dwarf_form form;
8324 size += size_of_uleb128 (die->die_abbrev);
8325 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8327 switch (AT_class (a))
8329 case dw_val_class_addr:
8330 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
8332 gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED);
8333 size += size_of_uleb128 (AT_index (a));
8335 else
8336 size += DWARF2_ADDR_SIZE;
8337 break;
8338 case dw_val_class_offset:
8339 size += DWARF_OFFSET_SIZE;
8340 break;
8341 case dw_val_class_loc:
8343 unsigned long lsize = size_of_locs (AT_loc (a));
8345 /* Block length. */
8346 if (dwarf_version >= 4)
8347 size += size_of_uleb128 (lsize);
8348 else
8349 size += constant_size (lsize);
8350 size += lsize;
8352 break;
8353 case dw_val_class_loc_list:
8354 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
8356 gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED);
8357 size += size_of_uleb128 (AT_index (a));
8359 else
8360 size += DWARF_OFFSET_SIZE;
8361 break;
8362 case dw_val_class_range_list:
8363 size += DWARF_OFFSET_SIZE;
8364 break;
8365 case dw_val_class_const:
8366 size += size_of_sleb128 (AT_int (a));
8367 break;
8368 case dw_val_class_unsigned_const:
8370 int csize = constant_size (AT_unsigned (a));
8371 if (dwarf_version == 3
8372 && a->dw_attr == DW_AT_data_member_location
8373 && csize >= 4)
8374 size += size_of_uleb128 (AT_unsigned (a));
8375 else
8376 size += csize;
8378 break;
8379 case dw_val_class_const_double:
8380 size += HOST_BITS_PER_DOUBLE_INT / HOST_BITS_PER_CHAR;
8381 if (HOST_BITS_PER_WIDE_INT >= 64)
8382 size++; /* block */
8383 break;
8384 case dw_val_class_wide_int:
8385 size += (get_full_len (*a->dw_attr_val.v.val_wide)
8386 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
8387 if (get_full_len (*a->dw_attr_val.v.val_wide) * HOST_BITS_PER_WIDE_INT
8388 > 64)
8389 size++; /* block */
8390 break;
8391 case dw_val_class_vec:
8392 size += constant_size (a->dw_attr_val.v.val_vec.length
8393 * a->dw_attr_val.v.val_vec.elt_size)
8394 + a->dw_attr_val.v.val_vec.length
8395 * a->dw_attr_val.v.val_vec.elt_size; /* block */
8396 break;
8397 case dw_val_class_flag:
8398 if (dwarf_version >= 4)
8399 /* Currently all add_AT_flag calls pass in 1 as last argument,
8400 so DW_FORM_flag_present can be used. If that ever changes,
8401 we'll need to use DW_FORM_flag and have some optimization
8402 in build_abbrev_table that will change those to
8403 DW_FORM_flag_present if it is set to 1 in all DIEs using
8404 the same abbrev entry. */
8405 gcc_assert (a->dw_attr_val.v.val_flag == 1);
8406 else
8407 size += 1;
8408 break;
8409 case dw_val_class_die_ref:
8410 if (AT_ref_external (a))
8412 /* In DWARF4, we use DW_FORM_ref_sig8; for earlier versions
8413 we use DW_FORM_ref_addr. In DWARF2, DW_FORM_ref_addr
8414 is sized by target address length, whereas in DWARF3
8415 it's always sized as an offset. */
8416 if (use_debug_types)
8417 size += DWARF_TYPE_SIGNATURE_SIZE;
8418 else if (dwarf_version == 2)
8419 size += DWARF2_ADDR_SIZE;
8420 else
8421 size += DWARF_OFFSET_SIZE;
8423 else
8424 size += DWARF_OFFSET_SIZE;
8425 break;
8426 case dw_val_class_fde_ref:
8427 size += DWARF_OFFSET_SIZE;
8428 break;
8429 case dw_val_class_lbl_id:
8430 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
8432 gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED);
8433 size += size_of_uleb128 (AT_index (a));
8435 else
8436 size += DWARF2_ADDR_SIZE;
8437 break;
8438 case dw_val_class_lineptr:
8439 case dw_val_class_macptr:
8440 size += DWARF_OFFSET_SIZE;
8441 break;
8442 case dw_val_class_str:
8443 form = AT_string_form (a);
8444 if (form == DW_FORM_strp)
8445 size += DWARF_OFFSET_SIZE;
8446 else if (form == DW_FORM_GNU_str_index)
8447 size += size_of_uleb128 (AT_index (a));
8448 else
8449 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
8450 break;
8451 case dw_val_class_file:
8452 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
8453 break;
8454 case dw_val_class_data8:
8455 size += 8;
8456 break;
8457 case dw_val_class_vms_delta:
8458 size += DWARF_OFFSET_SIZE;
8459 break;
8460 case dw_val_class_high_pc:
8461 size += DWARF2_ADDR_SIZE;
8462 break;
8463 case dw_val_class_discr_value:
8464 size += size_of_discr_value (&a->dw_attr_val.v.val_discr_value);
8465 break;
8466 case dw_val_class_discr_list:
8468 unsigned block_size = size_of_discr_list (AT_discr_list (a));
8470 /* This is a block, so we have the block length and then its
8471 data. */
8472 size += constant_size (block_size) + block_size;
8474 break;
8475 default:
8476 gcc_unreachable ();
8480 return size;
8483 /* Size the debugging information associated with a given DIE. Visits the
8484 DIE's children recursively. Updates the global variable next_die_offset, on
8485 each time through. Uses the current value of next_die_offset to update the
8486 die_offset field in each DIE. */
8488 static void
8489 calc_die_sizes (dw_die_ref die)
8491 dw_die_ref c;
8493 gcc_assert (die->die_offset == 0
8494 || (unsigned long int) die->die_offset == next_die_offset);
8495 die->die_offset = next_die_offset;
8496 next_die_offset += size_of_die (die);
8498 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
8500 if (die->die_child != NULL)
8501 /* Count the null byte used to terminate sibling lists. */
8502 next_die_offset += 1;
8505 /* Size just the base type children at the start of the CU.
8506 This is needed because build_abbrev needs to size locs
8507 and sizing of type based stack ops needs to know die_offset
8508 values for the base types. */
8510 static void
8511 calc_base_type_die_sizes (void)
8513 unsigned long die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
8514 unsigned int i;
8515 dw_die_ref base_type;
8516 #if ENABLE_ASSERT_CHECKING
8517 dw_die_ref prev = comp_unit_die ()->die_child;
8518 #endif
8520 die_offset += size_of_die (comp_unit_die ());
8521 for (i = 0; base_types.iterate (i, &base_type); i++)
8523 #if ENABLE_ASSERT_CHECKING
8524 gcc_assert (base_type->die_offset == 0
8525 && prev->die_sib == base_type
8526 && base_type->die_child == NULL
8527 && base_type->die_abbrev);
8528 prev = base_type;
8529 #endif
8530 base_type->die_offset = die_offset;
8531 die_offset += size_of_die (base_type);
8535 /* Set the marks for a die and its children. We do this so
8536 that we know whether or not a reference needs to use FORM_ref_addr; only
8537 DIEs in the same CU will be marked. We used to clear out the offset
8538 and use that as the flag, but ran into ordering problems. */
8540 static void
8541 mark_dies (dw_die_ref die)
8543 dw_die_ref c;
8545 gcc_assert (!die->die_mark);
8547 die->die_mark = 1;
8548 FOR_EACH_CHILD (die, c, mark_dies (c));
8551 /* Clear the marks for a die and its children. */
8553 static void
8554 unmark_dies (dw_die_ref die)
8556 dw_die_ref c;
8558 if (! use_debug_types)
8559 gcc_assert (die->die_mark);
8561 die->die_mark = 0;
8562 FOR_EACH_CHILD (die, c, unmark_dies (c));
8565 /* Clear the marks for a die, its children and referred dies. */
8567 static void
8568 unmark_all_dies (dw_die_ref die)
8570 dw_die_ref c;
8571 dw_attr_node *a;
8572 unsigned ix;
8574 if (!die->die_mark)
8575 return;
8576 die->die_mark = 0;
8578 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
8580 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8581 if (AT_class (a) == dw_val_class_die_ref)
8582 unmark_all_dies (AT_ref (a));
8585 /* Calculate if the entry should appear in the final output file. It may be
8586 from a pruned a type. */
8588 static bool
8589 include_pubname_in_output (vec<pubname_entry, va_gc> *table, pubname_entry *p)
8591 /* By limiting gnu pubnames to definitions only, gold can generate a
8592 gdb index without entries for declarations, which don't include
8593 enough information to be useful. */
8594 if (debug_generate_pub_sections == 2 && is_declaration_die (p->die))
8595 return false;
8597 if (table == pubname_table)
8599 /* Enumerator names are part of the pubname table, but the
8600 parent DW_TAG_enumeration_type die may have been pruned.
8601 Don't output them if that is the case. */
8602 if (p->die->die_tag == DW_TAG_enumerator &&
8603 (p->die->die_parent == NULL
8604 || !p->die->die_parent->die_perennial_p))
8605 return false;
8607 /* Everything else in the pubname table is included. */
8608 return true;
8611 /* The pubtypes table shouldn't include types that have been
8612 pruned. */
8613 return (p->die->die_offset != 0
8614 || !flag_eliminate_unused_debug_types);
8617 /* Return the size of the .debug_pubnames or .debug_pubtypes table
8618 generated for the compilation unit. */
8620 static unsigned long
8621 size_of_pubnames (vec<pubname_entry, va_gc> *names)
8623 unsigned long size;
8624 unsigned i;
8625 pubname_entry *p;
8626 int space_for_flags = (debug_generate_pub_sections == 2) ? 1 : 0;
8628 size = DWARF_PUBNAMES_HEADER_SIZE;
8629 FOR_EACH_VEC_ELT (*names, i, p)
8630 if (include_pubname_in_output (names, p))
8631 size += strlen (p->name) + DWARF_OFFSET_SIZE + 1 + space_for_flags;
8633 size += DWARF_OFFSET_SIZE;
8634 return size;
8637 /* Return the size of the information in the .debug_aranges section. */
8639 static unsigned long
8640 size_of_aranges (void)
8642 unsigned long size;
8644 size = DWARF_ARANGES_HEADER_SIZE;
8646 /* Count the address/length pair for this compilation unit. */
8647 if (text_section_used)
8648 size += 2 * DWARF2_ADDR_SIZE;
8649 if (cold_text_section_used)
8650 size += 2 * DWARF2_ADDR_SIZE;
8651 if (have_multiple_function_sections)
8653 unsigned fde_idx;
8654 dw_fde_ref fde;
8656 FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
8658 if (DECL_IGNORED_P (fde->decl))
8659 continue;
8660 if (!fde->in_std_section)
8661 size += 2 * DWARF2_ADDR_SIZE;
8662 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
8663 size += 2 * DWARF2_ADDR_SIZE;
8667 /* Count the two zero words used to terminated the address range table. */
8668 size += 2 * DWARF2_ADDR_SIZE;
8669 return size;
8672 /* Select the encoding of an attribute value. */
8674 static enum dwarf_form
8675 value_format (dw_attr_node *a)
8677 switch (AT_class (a))
8679 case dw_val_class_addr:
8680 /* Only very few attributes allow DW_FORM_addr. */
8681 switch (a->dw_attr)
8683 case DW_AT_low_pc:
8684 case DW_AT_high_pc:
8685 case DW_AT_entry_pc:
8686 case DW_AT_trampoline:
8687 return (AT_index (a) == NOT_INDEXED
8688 ? DW_FORM_addr : DW_FORM_GNU_addr_index);
8689 default:
8690 break;
8692 switch (DWARF2_ADDR_SIZE)
8694 case 1:
8695 return DW_FORM_data1;
8696 case 2:
8697 return DW_FORM_data2;
8698 case 4:
8699 return DW_FORM_data4;
8700 case 8:
8701 return DW_FORM_data8;
8702 default:
8703 gcc_unreachable ();
8705 case dw_val_class_range_list:
8706 case dw_val_class_loc_list:
8707 if (dwarf_version >= 4)
8708 return DW_FORM_sec_offset;
8709 /* FALLTHRU */
8710 case dw_val_class_vms_delta:
8711 case dw_val_class_offset:
8712 switch (DWARF_OFFSET_SIZE)
8714 case 4:
8715 return DW_FORM_data4;
8716 case 8:
8717 return DW_FORM_data8;
8718 default:
8719 gcc_unreachable ();
8721 case dw_val_class_loc:
8722 if (dwarf_version >= 4)
8723 return DW_FORM_exprloc;
8724 switch (constant_size (size_of_locs (AT_loc (a))))
8726 case 1:
8727 return DW_FORM_block1;
8728 case 2:
8729 return DW_FORM_block2;
8730 case 4:
8731 return DW_FORM_block4;
8732 default:
8733 gcc_unreachable ();
8735 case dw_val_class_const:
8736 return DW_FORM_sdata;
8737 case dw_val_class_unsigned_const:
8738 switch (constant_size (AT_unsigned (a)))
8740 case 1:
8741 return DW_FORM_data1;
8742 case 2:
8743 return DW_FORM_data2;
8744 case 4:
8745 /* In DWARF3 DW_AT_data_member_location with
8746 DW_FORM_data4 or DW_FORM_data8 is a loclistptr, not
8747 constant, so we need to use DW_FORM_udata if we need
8748 a large constant. */
8749 if (dwarf_version == 3 && a->dw_attr == DW_AT_data_member_location)
8750 return DW_FORM_udata;
8751 return DW_FORM_data4;
8752 case 8:
8753 if (dwarf_version == 3 && a->dw_attr == DW_AT_data_member_location)
8754 return DW_FORM_udata;
8755 return DW_FORM_data8;
8756 default:
8757 gcc_unreachable ();
8759 case dw_val_class_const_double:
8760 switch (HOST_BITS_PER_WIDE_INT)
8762 case 8:
8763 return DW_FORM_data2;
8764 case 16:
8765 return DW_FORM_data4;
8766 case 32:
8767 return DW_FORM_data8;
8768 case 64:
8769 default:
8770 return DW_FORM_block1;
8772 case dw_val_class_wide_int:
8773 switch (get_full_len (*a->dw_attr_val.v.val_wide) * HOST_BITS_PER_WIDE_INT)
8775 case 8:
8776 return DW_FORM_data1;
8777 case 16:
8778 return DW_FORM_data2;
8779 case 32:
8780 return DW_FORM_data4;
8781 case 64:
8782 return DW_FORM_data8;
8783 default:
8784 return DW_FORM_block1;
8786 case dw_val_class_vec:
8787 switch (constant_size (a->dw_attr_val.v.val_vec.length
8788 * a->dw_attr_val.v.val_vec.elt_size))
8790 case 1:
8791 return DW_FORM_block1;
8792 case 2:
8793 return DW_FORM_block2;
8794 case 4:
8795 return DW_FORM_block4;
8796 default:
8797 gcc_unreachable ();
8799 case dw_val_class_flag:
8800 if (dwarf_version >= 4)
8802 /* Currently all add_AT_flag calls pass in 1 as last argument,
8803 so DW_FORM_flag_present can be used. If that ever changes,
8804 we'll need to use DW_FORM_flag and have some optimization
8805 in build_abbrev_table that will change those to
8806 DW_FORM_flag_present if it is set to 1 in all DIEs using
8807 the same abbrev entry. */
8808 gcc_assert (a->dw_attr_val.v.val_flag == 1);
8809 return DW_FORM_flag_present;
8811 return DW_FORM_flag;
8812 case dw_val_class_die_ref:
8813 if (AT_ref_external (a))
8814 return use_debug_types ? DW_FORM_ref_sig8 : DW_FORM_ref_addr;
8815 else
8816 return DW_FORM_ref;
8817 case dw_val_class_fde_ref:
8818 return DW_FORM_data;
8819 case dw_val_class_lbl_id:
8820 return (AT_index (a) == NOT_INDEXED
8821 ? DW_FORM_addr : DW_FORM_GNU_addr_index);
8822 case dw_val_class_lineptr:
8823 case dw_val_class_macptr:
8824 return dwarf_version >= 4 ? DW_FORM_sec_offset : DW_FORM_data;
8825 case dw_val_class_str:
8826 return AT_string_form (a);
8827 case dw_val_class_file:
8828 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
8830 case 1:
8831 return DW_FORM_data1;
8832 case 2:
8833 return DW_FORM_data2;
8834 case 4:
8835 return DW_FORM_data4;
8836 default:
8837 gcc_unreachable ();
8840 case dw_val_class_data8:
8841 return DW_FORM_data8;
8843 case dw_val_class_high_pc:
8844 switch (DWARF2_ADDR_SIZE)
8846 case 1:
8847 return DW_FORM_data1;
8848 case 2:
8849 return DW_FORM_data2;
8850 case 4:
8851 return DW_FORM_data4;
8852 case 8:
8853 return DW_FORM_data8;
8854 default:
8855 gcc_unreachable ();
8858 case dw_val_class_discr_value:
8859 return (a->dw_attr_val.v.val_discr_value.pos
8860 ? DW_FORM_udata
8861 : DW_FORM_sdata);
8862 case dw_val_class_discr_list:
8863 switch (constant_size (size_of_discr_list (AT_discr_list (a))))
8865 case 1:
8866 return DW_FORM_block1;
8867 case 2:
8868 return DW_FORM_block2;
8869 case 4:
8870 return DW_FORM_block4;
8871 default:
8872 gcc_unreachable ();
8875 default:
8876 gcc_unreachable ();
8880 /* Output the encoding of an attribute value. */
8882 static void
8883 output_value_format (dw_attr_node *a)
8885 enum dwarf_form form = value_format (a);
8887 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
8890 /* Given a die and id, produce the appropriate abbreviations. */
8892 static void
8893 output_die_abbrevs (unsigned long abbrev_id, dw_die_ref abbrev)
8895 unsigned ix;
8896 dw_attr_node *a_attr;
8898 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
8899 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
8900 dwarf_tag_name (abbrev->die_tag));
8902 if (abbrev->die_child != NULL)
8903 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
8904 else
8905 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
8907 for (ix = 0; vec_safe_iterate (abbrev->die_attr, ix, &a_attr); ix++)
8909 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
8910 dwarf_attr_name (a_attr->dw_attr));
8911 output_value_format (a_attr);
8914 dw2_asm_output_data (1, 0, NULL);
8915 dw2_asm_output_data (1, 0, NULL);
8919 /* Output the .debug_abbrev section which defines the DIE abbreviation
8920 table. */
8922 static void
8923 output_abbrev_section (void)
8925 unsigned long abbrev_id;
8927 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
8928 output_die_abbrevs (abbrev_id, abbrev_die_table[abbrev_id]);
8930 /* Terminate the table. */
8931 dw2_asm_output_data (1, 0, NULL);
8934 /* Output a symbol we can use to refer to this DIE from another CU. */
8936 static inline void
8937 output_die_symbol (dw_die_ref die)
8939 const char *sym = die->die_id.die_symbol;
8941 gcc_assert (!die->comdat_type_p);
8943 if (sym == 0)
8944 return;
8946 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
8947 /* We make these global, not weak; if the target doesn't support
8948 .linkonce, it doesn't support combining the sections, so debugging
8949 will break. */
8950 targetm.asm_out.globalize_label (asm_out_file, sym);
8952 ASM_OUTPUT_LABEL (asm_out_file, sym);
8955 /* Return a new location list, given the begin and end range, and the
8956 expression. */
8958 static inline dw_loc_list_ref
8959 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
8960 const char *section)
8962 dw_loc_list_ref retlist = ggc_cleared_alloc<dw_loc_list_node> ();
8964 retlist->begin = begin;
8965 retlist->begin_entry = NULL;
8966 retlist->end = end;
8967 retlist->expr = expr;
8968 retlist->section = section;
8970 return retlist;
8973 /* Generate a new internal symbol for this location list node, if it
8974 hasn't got one yet. */
8976 static inline void
8977 gen_llsym (dw_loc_list_ref list)
8979 gcc_assert (!list->ll_symbol);
8980 list->ll_symbol = gen_internal_sym ("LLST");
8983 /* Output the location list given to us. */
8985 static void
8986 output_loc_list (dw_loc_list_ref list_head)
8988 dw_loc_list_ref curr = list_head;
8990 if (list_head->emitted)
8991 return;
8992 list_head->emitted = true;
8994 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
8996 /* Walk the location list, and output each range + expression. */
8997 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
8999 unsigned long size;
9000 /* Don't output an entry that starts and ends at the same address. */
9001 if (strcmp (curr->begin, curr->end) == 0 && !curr->force)
9002 continue;
9003 size = size_of_locs (curr->expr);
9004 /* If the expression is too large, drop it on the floor. We could
9005 perhaps put it into DW_TAG_dwarf_procedure and refer to that
9006 in the expression, but >= 64KB expressions for a single value
9007 in a single range are unlikely very useful. */
9008 if (size > 0xffff)
9009 continue;
9010 if (dwarf_split_debug_info)
9012 dw2_asm_output_data (1, DW_LLE_GNU_start_length_entry,
9013 "Location list start/length entry (%s)",
9014 list_head->ll_symbol);
9015 dw2_asm_output_data_uleb128 (curr->begin_entry->index,
9016 "Location list range start index (%s)",
9017 curr->begin);
9018 /* The length field is 4 bytes. If we ever need to support
9019 an 8-byte length, we can add a new DW_LLE code or fall back
9020 to DW_LLE_GNU_start_end_entry. */
9021 dw2_asm_output_delta (4, curr->end, curr->begin,
9022 "Location list range length (%s)",
9023 list_head->ll_symbol);
9025 else if (!have_multiple_function_sections)
9027 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
9028 "Location list begin address (%s)",
9029 list_head->ll_symbol);
9030 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
9031 "Location list end address (%s)",
9032 list_head->ll_symbol);
9034 else
9036 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
9037 "Location list begin address (%s)",
9038 list_head->ll_symbol);
9039 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
9040 "Location list end address (%s)",
9041 list_head->ll_symbol);
9044 /* Output the block length for this list of location operations. */
9045 gcc_assert (size <= 0xffff);
9046 dw2_asm_output_data (2, size, "%s", "Location expression size");
9048 output_loc_sequence (curr->expr, -1);
9051 if (dwarf_split_debug_info)
9052 dw2_asm_output_data (1, DW_LLE_GNU_end_of_list_entry,
9053 "Location list terminator (%s)",
9054 list_head->ll_symbol);
9055 else
9057 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
9058 "Location list terminator begin (%s)",
9059 list_head->ll_symbol);
9060 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
9061 "Location list terminator end (%s)",
9062 list_head->ll_symbol);
9066 /* Output a range_list offset into the debug_range section. Emit a
9067 relocated reference if val_entry is NULL, otherwise, emit an
9068 indirect reference. */
9070 static void
9071 output_range_list_offset (dw_attr_node *a)
9073 const char *name = dwarf_attr_name (a->dw_attr);
9075 if (a->dw_attr_val.val_entry == RELOCATED_OFFSET)
9077 char *p = strchr (ranges_section_label, '\0');
9078 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX, a->dw_attr_val.v.val_offset);
9079 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
9080 debug_ranges_section, "%s", name);
9081 *p = '\0';
9083 else
9084 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
9085 "%s (offset from %s)", name, ranges_section_label);
9088 /* Output the offset into the debug_loc section. */
9090 static void
9091 output_loc_list_offset (dw_attr_node *a)
9093 char *sym = AT_loc_list (a)->ll_symbol;
9095 gcc_assert (sym);
9096 if (dwarf_split_debug_info)
9097 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym, loc_section_label,
9098 "%s", dwarf_attr_name (a->dw_attr));
9099 else
9100 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
9101 "%s", dwarf_attr_name (a->dw_attr));
9104 /* Output an attribute's index or value appropriately. */
9106 static void
9107 output_attr_index_or_value (dw_attr_node *a)
9109 const char *name = dwarf_attr_name (a->dw_attr);
9111 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
9113 dw2_asm_output_data_uleb128 (AT_index (a), "%s", name);
9114 return;
9116 switch (AT_class (a))
9118 case dw_val_class_addr:
9119 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
9120 break;
9121 case dw_val_class_high_pc:
9122 case dw_val_class_lbl_id:
9123 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
9124 break;
9125 case dw_val_class_loc_list:
9126 output_loc_list_offset (a);
9127 break;
9128 default:
9129 gcc_unreachable ();
9133 /* Output a type signature. */
9135 static inline void
9136 output_signature (const char *sig, const char *name)
9138 int i;
9140 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
9141 dw2_asm_output_data (1, sig[i], i == 0 ? "%s" : NULL, name);
9144 /* Output a discriminant value. */
9146 static inline void
9147 output_discr_value (dw_discr_value *discr_value, const char *name)
9149 if (discr_value->pos)
9150 dw2_asm_output_data_uleb128 (discr_value->v.uval, "%s", name);
9151 else
9152 dw2_asm_output_data_sleb128 (discr_value->v.sval, "%s", name);
9155 /* Output the DIE and its attributes. Called recursively to generate
9156 the definitions of each child DIE. */
9158 static void
9159 output_die (dw_die_ref die)
9161 dw_attr_node *a;
9162 dw_die_ref c;
9163 unsigned long size;
9164 unsigned ix;
9166 /* If someone in another CU might refer to us, set up a symbol for
9167 them to point to. */
9168 if (! die->comdat_type_p && die->die_id.die_symbol)
9169 output_die_symbol (die);
9171 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (%#lx) %s)",
9172 (unsigned long)die->die_offset,
9173 dwarf_tag_name (die->die_tag));
9175 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
9177 const char *name = dwarf_attr_name (a->dw_attr);
9179 switch (AT_class (a))
9181 case dw_val_class_addr:
9182 output_attr_index_or_value (a);
9183 break;
9185 case dw_val_class_offset:
9186 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
9187 "%s", name);
9188 break;
9190 case dw_val_class_range_list:
9191 output_range_list_offset (a);
9192 break;
9194 case dw_val_class_loc:
9195 size = size_of_locs (AT_loc (a));
9197 /* Output the block length for this list of location operations. */
9198 if (dwarf_version >= 4)
9199 dw2_asm_output_data_uleb128 (size, "%s", name);
9200 else
9201 dw2_asm_output_data (constant_size (size), size, "%s", name);
9203 output_loc_sequence (AT_loc (a), -1);
9204 break;
9206 case dw_val_class_const:
9207 /* ??? It would be slightly more efficient to use a scheme like is
9208 used for unsigned constants below, but gdb 4.x does not sign
9209 extend. Gdb 5.x does sign extend. */
9210 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
9211 break;
9213 case dw_val_class_unsigned_const:
9215 int csize = constant_size (AT_unsigned (a));
9216 if (dwarf_version == 3
9217 && a->dw_attr == DW_AT_data_member_location
9218 && csize >= 4)
9219 dw2_asm_output_data_uleb128 (AT_unsigned (a), "%s", name);
9220 else
9221 dw2_asm_output_data (csize, AT_unsigned (a), "%s", name);
9223 break;
9225 case dw_val_class_const_double:
9227 unsigned HOST_WIDE_INT first, second;
9229 if (HOST_BITS_PER_WIDE_INT >= 64)
9230 dw2_asm_output_data (1,
9231 HOST_BITS_PER_DOUBLE_INT
9232 / HOST_BITS_PER_CHAR,
9233 NULL);
9235 if (WORDS_BIG_ENDIAN)
9237 first = a->dw_attr_val.v.val_double.high;
9238 second = a->dw_attr_val.v.val_double.low;
9240 else
9242 first = a->dw_attr_val.v.val_double.low;
9243 second = a->dw_attr_val.v.val_double.high;
9246 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
9247 first, "%s", name);
9248 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
9249 second, NULL);
9251 break;
9253 case dw_val_class_wide_int:
9255 int i;
9256 int len = get_full_len (*a->dw_attr_val.v.val_wide);
9257 int l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
9258 if (len * HOST_BITS_PER_WIDE_INT > 64)
9259 dw2_asm_output_data (1, get_full_len (*a->dw_attr_val.v.val_wide) * l,
9260 NULL);
9262 if (WORDS_BIG_ENDIAN)
9263 for (i = len - 1; i >= 0; --i)
9265 dw2_asm_output_data (l, a->dw_attr_val.v.val_wide->elt (i),
9266 "%s", name);
9267 name = "";
9269 else
9270 for (i = 0; i < len; ++i)
9272 dw2_asm_output_data (l, a->dw_attr_val.v.val_wide->elt (i),
9273 "%s", name);
9274 name = "";
9277 break;
9279 case dw_val_class_vec:
9281 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
9282 unsigned int len = a->dw_attr_val.v.val_vec.length;
9283 unsigned int i;
9284 unsigned char *p;
9286 dw2_asm_output_data (constant_size (len * elt_size),
9287 len * elt_size, "%s", name);
9288 if (elt_size > sizeof (HOST_WIDE_INT))
9290 elt_size /= 2;
9291 len *= 2;
9293 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
9294 i < len;
9295 i++, p += elt_size)
9296 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
9297 "fp or vector constant word %u", i);
9298 break;
9301 case dw_val_class_flag:
9302 if (dwarf_version >= 4)
9304 /* Currently all add_AT_flag calls pass in 1 as last argument,
9305 so DW_FORM_flag_present can be used. If that ever changes,
9306 we'll need to use DW_FORM_flag and have some optimization
9307 in build_abbrev_table that will change those to
9308 DW_FORM_flag_present if it is set to 1 in all DIEs using
9309 the same abbrev entry. */
9310 gcc_assert (AT_flag (a) == 1);
9311 if (flag_debug_asm)
9312 fprintf (asm_out_file, "\t\t\t%s %s\n",
9313 ASM_COMMENT_START, name);
9314 break;
9316 dw2_asm_output_data (1, AT_flag (a), "%s", name);
9317 break;
9319 case dw_val_class_loc_list:
9320 output_attr_index_or_value (a);
9321 break;
9323 case dw_val_class_die_ref:
9324 if (AT_ref_external (a))
9326 if (AT_ref (a)->comdat_type_p)
9328 comdat_type_node *type_node =
9329 AT_ref (a)->die_id.die_type_node;
9331 gcc_assert (type_node);
9332 output_signature (type_node->signature, name);
9334 else
9336 const char *sym = AT_ref (a)->die_id.die_symbol;
9337 int size;
9339 gcc_assert (sym);
9340 /* In DWARF2, DW_FORM_ref_addr is sized by target address
9341 length, whereas in DWARF3 it's always sized as an
9342 offset. */
9343 if (dwarf_version == 2)
9344 size = DWARF2_ADDR_SIZE;
9345 else
9346 size = DWARF_OFFSET_SIZE;
9347 dw2_asm_output_offset (size, sym, debug_info_section, "%s",
9348 name);
9351 else
9353 gcc_assert (AT_ref (a)->die_offset);
9354 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
9355 "%s", name);
9357 break;
9359 case dw_val_class_fde_ref:
9361 char l1[20];
9363 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
9364 a->dw_attr_val.v.val_fde_index * 2);
9365 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
9366 "%s", name);
9368 break;
9370 case dw_val_class_vms_delta:
9371 #ifdef ASM_OUTPUT_DWARF_VMS_DELTA
9372 dw2_asm_output_vms_delta (DWARF_OFFSET_SIZE,
9373 AT_vms_delta2 (a), AT_vms_delta1 (a),
9374 "%s", name);
9375 #else
9376 dw2_asm_output_delta (DWARF_OFFSET_SIZE,
9377 AT_vms_delta2 (a), AT_vms_delta1 (a),
9378 "%s", name);
9379 #endif
9380 break;
9382 case dw_val_class_lbl_id:
9383 output_attr_index_or_value (a);
9384 break;
9386 case dw_val_class_lineptr:
9387 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
9388 debug_line_section, "%s", name);
9389 break;
9391 case dw_val_class_macptr:
9392 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
9393 debug_macinfo_section, "%s", name);
9394 break;
9396 case dw_val_class_str:
9397 if (a->dw_attr_val.v.val_str->form == DW_FORM_strp)
9398 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
9399 a->dw_attr_val.v.val_str->label,
9400 debug_str_section,
9401 "%s: \"%s\"", name, AT_string (a));
9402 else if (a->dw_attr_val.v.val_str->form == DW_FORM_GNU_str_index)
9403 dw2_asm_output_data_uleb128 (AT_index (a),
9404 "%s: \"%s\"", name, AT_string (a));
9405 else
9406 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
9407 break;
9409 case dw_val_class_file:
9411 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
9413 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
9414 a->dw_attr_val.v.val_file->filename);
9415 break;
9418 case dw_val_class_data8:
9420 int i;
9422 for (i = 0; i < 8; i++)
9423 dw2_asm_output_data (1, a->dw_attr_val.v.val_data8[i],
9424 i == 0 ? "%s" : NULL, name);
9425 break;
9428 case dw_val_class_high_pc:
9429 dw2_asm_output_delta (DWARF2_ADDR_SIZE, AT_lbl (a),
9430 get_AT_low_pc (die), "DW_AT_high_pc");
9431 break;
9433 case dw_val_class_discr_value:
9434 output_discr_value (&a->dw_attr_val.v.val_discr_value, name);
9435 break;
9437 case dw_val_class_discr_list:
9439 dw_discr_list_ref list = AT_discr_list (a);
9440 const int size = size_of_discr_list (list);
9442 /* This is a block, so output its length first. */
9443 dw2_asm_output_data (constant_size (size), size,
9444 "%s: block size", name);
9446 for (; list != NULL; list = list->dw_discr_next)
9448 /* One byte for the discriminant value descriptor, and then as
9449 many LEB128 numbers as required. */
9450 if (list->dw_discr_range)
9451 dw2_asm_output_data (1, DW_DSC_range,
9452 "%s: DW_DSC_range", name);
9453 else
9454 dw2_asm_output_data (1, DW_DSC_label,
9455 "%s: DW_DSC_label", name);
9457 output_discr_value (&list->dw_discr_lower_bound, name);
9458 if (list->dw_discr_range)
9459 output_discr_value (&list->dw_discr_upper_bound, name);
9461 break;
9464 default:
9465 gcc_unreachable ();
9469 FOR_EACH_CHILD (die, c, output_die (c));
9471 /* Add null byte to terminate sibling list. */
9472 if (die->die_child != NULL)
9473 dw2_asm_output_data (1, 0, "end of children of DIE %#lx",
9474 (unsigned long) die->die_offset);
9477 /* Output the compilation unit that appears at the beginning of the
9478 .debug_info section, and precedes the DIE descriptions. */
9480 static void
9481 output_compilation_unit_header (void)
9483 /* We don't support actual DWARFv5 units yet, we just use some
9484 DWARFv5 draft DIE tags in DWARFv4 format. */
9485 int ver = dwarf_version < 5 ? dwarf_version : 4;
9487 if (!XCOFF_DEBUGGING_INFO)
9489 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
9490 dw2_asm_output_data (4, 0xffffffff,
9491 "Initial length escape value indicating 64-bit DWARF extension");
9492 dw2_asm_output_data (DWARF_OFFSET_SIZE,
9493 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
9494 "Length of Compilation Unit Info");
9497 dw2_asm_output_data (2, ver, "DWARF version number");
9498 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
9499 debug_abbrev_section,
9500 "Offset Into Abbrev. Section");
9501 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
9504 /* Output the compilation unit DIE and its children. */
9506 static void
9507 output_comp_unit (dw_die_ref die, int output_if_empty)
9509 const char *secname, *oldsym;
9510 char *tmp;
9512 /* Unless we are outputting main CU, we may throw away empty ones. */
9513 if (!output_if_empty && die->die_child == NULL)
9514 return;
9516 /* Even if there are no children of this DIE, we must output the information
9517 about the compilation unit. Otherwise, on an empty translation unit, we
9518 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
9519 will then complain when examining the file. First mark all the DIEs in
9520 this CU so we know which get local refs. */
9521 mark_dies (die);
9523 external_ref_hash_type *extern_map = optimize_external_refs (die);
9525 build_abbrev_table (die, extern_map);
9527 delete extern_map;
9529 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
9530 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
9531 calc_die_sizes (die);
9533 oldsym = die->die_id.die_symbol;
9534 if (oldsym)
9536 tmp = XALLOCAVEC (char, strlen (oldsym) + 24);
9538 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
9539 secname = tmp;
9540 die->die_id.die_symbol = NULL;
9541 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
9543 else
9545 switch_to_section (debug_info_section);
9546 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
9547 info_section_emitted = true;
9550 /* Output debugging information. */
9551 output_compilation_unit_header ();
9552 output_die (die);
9554 /* Leave the marks on the main CU, so we can check them in
9555 output_pubnames. */
9556 if (oldsym)
9558 unmark_dies (die);
9559 die->die_id.die_symbol = oldsym;
9563 /* Whether to generate the DWARF accelerator tables in .debug_pubnames
9564 and .debug_pubtypes. This is configured per-target, but can be
9565 overridden by the -gpubnames or -gno-pubnames options. */
9567 static inline bool
9568 want_pubnames (void)
9570 if (debug_info_level <= DINFO_LEVEL_TERSE)
9571 return false;
9572 if (debug_generate_pub_sections != -1)
9573 return debug_generate_pub_sections;
9574 return targetm.want_debug_pub_sections;
9577 /* Add the DW_AT_GNU_pubnames and DW_AT_GNU_pubtypes attributes. */
9579 static void
9580 add_AT_pubnames (dw_die_ref die)
9582 if (want_pubnames ())
9583 add_AT_flag (die, DW_AT_GNU_pubnames, 1);
9586 /* Add a string attribute value to a skeleton DIE. */
9588 static inline void
9589 add_skeleton_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind,
9590 const char *str)
9592 dw_attr_node attr;
9593 struct indirect_string_node *node;
9595 if (! skeleton_debug_str_hash)
9596 skeleton_debug_str_hash
9597 = hash_table<indirect_string_hasher>::create_ggc (10);
9599 node = find_AT_string_in_table (str, skeleton_debug_str_hash);
9600 find_string_form (node);
9601 if (node->form == DW_FORM_GNU_str_index)
9602 node->form = DW_FORM_strp;
9604 attr.dw_attr = attr_kind;
9605 attr.dw_attr_val.val_class = dw_val_class_str;
9606 attr.dw_attr_val.val_entry = NULL;
9607 attr.dw_attr_val.v.val_str = node;
9608 add_dwarf_attr (die, &attr);
9611 /* Helper function to generate top-level dies for skeleton debug_info and
9612 debug_types. */
9614 static void
9615 add_top_level_skeleton_die_attrs (dw_die_ref die)
9617 const char *dwo_file_name = concat (aux_base_name, ".dwo", NULL);
9618 const char *comp_dir = comp_dir_string ();
9620 add_skeleton_AT_string (die, DW_AT_GNU_dwo_name, dwo_file_name);
9621 if (comp_dir != NULL)
9622 add_skeleton_AT_string (die, DW_AT_comp_dir, comp_dir);
9623 add_AT_pubnames (die);
9624 add_AT_lineptr (die, DW_AT_GNU_addr_base, debug_addr_section_label);
9627 /* Output skeleton debug sections that point to the dwo file. */
9629 static void
9630 output_skeleton_debug_sections (dw_die_ref comp_unit)
9632 /* We don't support actual DWARFv5 units yet, we just use some
9633 DWARFv5 draft DIE tags in DWARFv4 format. */
9634 int ver = dwarf_version < 5 ? dwarf_version : 4;
9636 /* These attributes will be found in the full debug_info section. */
9637 remove_AT (comp_unit, DW_AT_producer);
9638 remove_AT (comp_unit, DW_AT_language);
9640 switch_to_section (debug_skeleton_info_section);
9641 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_info_section_label);
9643 /* Produce the skeleton compilation-unit header. This one differs enough from
9644 a normal CU header that it's better not to call output_compilation_unit
9645 header. */
9646 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
9647 dw2_asm_output_data (4, 0xffffffff,
9648 "Initial length escape value indicating 64-bit DWARF extension");
9650 dw2_asm_output_data (DWARF_OFFSET_SIZE,
9651 DWARF_COMPILE_UNIT_HEADER_SIZE
9652 - DWARF_INITIAL_LENGTH_SIZE
9653 + size_of_die (comp_unit),
9654 "Length of Compilation Unit Info");
9655 dw2_asm_output_data (2, ver, "DWARF version number");
9656 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_skeleton_abbrev_section_label,
9657 debug_abbrev_section,
9658 "Offset Into Abbrev. Section");
9659 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
9661 comp_unit->die_abbrev = SKELETON_COMP_DIE_ABBREV;
9662 output_die (comp_unit);
9664 /* Build the skeleton debug_abbrev section. */
9665 switch_to_section (debug_skeleton_abbrev_section);
9666 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_abbrev_section_label);
9668 output_die_abbrevs (SKELETON_COMP_DIE_ABBREV, comp_unit);
9670 dw2_asm_output_data (1, 0, "end of skeleton .debug_abbrev");
9673 /* Output a comdat type unit DIE and its children. */
9675 static void
9676 output_comdat_type_unit (comdat_type_node *node)
9678 const char *secname;
9679 char *tmp;
9680 int i;
9681 #if defined (OBJECT_FORMAT_ELF)
9682 tree comdat_key;
9683 #endif
9685 /* First mark all the DIEs in this CU so we know which get local refs. */
9686 mark_dies (node->root_die);
9688 external_ref_hash_type *extern_map = optimize_external_refs (node->root_die);
9690 build_abbrev_table (node->root_die, extern_map);
9692 delete extern_map;
9693 extern_map = NULL;
9695 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
9696 next_die_offset = DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE;
9697 calc_die_sizes (node->root_die);
9699 #if defined (OBJECT_FORMAT_ELF)
9700 if (!dwarf_split_debug_info)
9701 secname = ".debug_types";
9702 else
9703 secname = ".debug_types.dwo";
9705 tmp = XALLOCAVEC (char, 4 + DWARF_TYPE_SIGNATURE_SIZE * 2);
9706 sprintf (tmp, "wt.");
9707 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
9708 sprintf (tmp + 3 + i * 2, "%02x", node->signature[i] & 0xff);
9709 comdat_key = get_identifier (tmp);
9710 targetm.asm_out.named_section (secname,
9711 SECTION_DEBUG | SECTION_LINKONCE,
9712 comdat_key);
9713 #else
9714 tmp = XALLOCAVEC (char, 18 + DWARF_TYPE_SIGNATURE_SIZE * 2);
9715 sprintf (tmp, ".gnu.linkonce.wt.");
9716 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
9717 sprintf (tmp + 17 + i * 2, "%02x", node->signature[i] & 0xff);
9718 secname = tmp;
9719 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
9720 #endif
9722 /* Output debugging information. */
9723 output_compilation_unit_header ();
9724 output_signature (node->signature, "Type Signature");
9725 dw2_asm_output_data (DWARF_OFFSET_SIZE, node->type_die->die_offset,
9726 "Offset to Type DIE");
9727 output_die (node->root_die);
9729 unmark_dies (node->root_die);
9732 /* Return the DWARF2/3 pubname associated with a decl. */
9734 static const char *
9735 dwarf2_name (tree decl, int scope)
9737 if (DECL_NAMELESS (decl))
9738 return NULL;
9739 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
9742 /* Add a new entry to .debug_pubnames if appropriate. */
9744 static void
9745 add_pubname_string (const char *str, dw_die_ref die)
9747 pubname_entry e;
9749 e.die = die;
9750 e.name = xstrdup (str);
9751 vec_safe_push (pubname_table, e);
9754 static void
9755 add_pubname (tree decl, dw_die_ref die)
9757 if (!want_pubnames ())
9758 return;
9760 /* Don't add items to the table when we expect that the consumer will have
9761 just read the enclosing die. For example, if the consumer is looking at a
9762 class_member, it will either be inside the class already, or will have just
9763 looked up the class to find the member. Either way, searching the class is
9764 faster than searching the index. */
9765 if ((TREE_PUBLIC (decl) && !class_scope_p (die->die_parent))
9766 || is_cu_die (die->die_parent) || is_namespace_die (die->die_parent))
9768 const char *name = dwarf2_name (decl, 1);
9770 if (name)
9771 add_pubname_string (name, die);
9775 /* Add an enumerator to the pubnames section. */
9777 static void
9778 add_enumerator_pubname (const char *scope_name, dw_die_ref die)
9780 pubname_entry e;
9782 gcc_assert (scope_name);
9783 e.name = concat (scope_name, get_AT_string (die, DW_AT_name), NULL);
9784 e.die = die;
9785 vec_safe_push (pubname_table, e);
9788 /* Add a new entry to .debug_pubtypes if appropriate. */
9790 static void
9791 add_pubtype (tree decl, dw_die_ref die)
9793 pubname_entry e;
9795 if (!want_pubnames ())
9796 return;
9798 if ((TREE_PUBLIC (decl)
9799 || is_cu_die (die->die_parent) || is_namespace_die (die->die_parent))
9800 && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
9802 tree scope = NULL;
9803 const char *scope_name = "";
9804 const char *sep = is_cxx () ? "::" : ".";
9805 const char *name;
9807 scope = TYPE_P (decl) ? TYPE_CONTEXT (decl) : NULL;
9808 if (scope && TREE_CODE (scope) == NAMESPACE_DECL)
9810 scope_name = lang_hooks.dwarf_name (scope, 1);
9811 if (scope_name != NULL && scope_name[0] != '\0')
9812 scope_name = concat (scope_name, sep, NULL);
9813 else
9814 scope_name = "";
9817 if (TYPE_P (decl))
9818 name = type_tag (decl);
9819 else
9820 name = lang_hooks.dwarf_name (decl, 1);
9822 /* If we don't have a name for the type, there's no point in adding
9823 it to the table. */
9824 if (name != NULL && name[0] != '\0')
9826 e.die = die;
9827 e.name = concat (scope_name, name, NULL);
9828 vec_safe_push (pubtype_table, e);
9831 /* Although it might be more consistent to add the pubinfo for the
9832 enumerators as their dies are created, they should only be added if the
9833 enum type meets the criteria above. So rather than re-check the parent
9834 enum type whenever an enumerator die is created, just output them all
9835 here. This isn't protected by the name conditional because anonymous
9836 enums don't have names. */
9837 if (die->die_tag == DW_TAG_enumeration_type)
9839 dw_die_ref c;
9841 FOR_EACH_CHILD (die, c, add_enumerator_pubname (scope_name, c));
9846 /* Output a single entry in the pubnames table. */
9848 static void
9849 output_pubname (dw_offset die_offset, pubname_entry *entry)
9851 dw_die_ref die = entry->die;
9852 int is_static = get_AT_flag (die, DW_AT_external) ? 0 : 1;
9854 dw2_asm_output_data (DWARF_OFFSET_SIZE, die_offset, "DIE offset");
9856 if (debug_generate_pub_sections == 2)
9858 /* This logic follows gdb's method for determining the value of the flag
9859 byte. */
9860 uint32_t flags = GDB_INDEX_SYMBOL_KIND_NONE;
9861 switch (die->die_tag)
9863 case DW_TAG_typedef:
9864 case DW_TAG_base_type:
9865 case DW_TAG_subrange_type:
9866 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
9867 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
9868 break;
9869 case DW_TAG_enumerator:
9870 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
9871 GDB_INDEX_SYMBOL_KIND_VARIABLE);
9872 if (!is_cxx () && !is_java ())
9873 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
9874 break;
9875 case DW_TAG_subprogram:
9876 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
9877 GDB_INDEX_SYMBOL_KIND_FUNCTION);
9878 if (!is_ada ())
9879 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
9880 break;
9881 case DW_TAG_constant:
9882 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
9883 GDB_INDEX_SYMBOL_KIND_VARIABLE);
9884 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
9885 break;
9886 case DW_TAG_variable:
9887 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
9888 GDB_INDEX_SYMBOL_KIND_VARIABLE);
9889 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
9890 break;
9891 case DW_TAG_namespace:
9892 case DW_TAG_imported_declaration:
9893 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
9894 break;
9895 case DW_TAG_class_type:
9896 case DW_TAG_interface_type:
9897 case DW_TAG_structure_type:
9898 case DW_TAG_union_type:
9899 case DW_TAG_enumeration_type:
9900 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
9901 if (!is_cxx () && !is_java ())
9902 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
9903 break;
9904 default:
9905 /* An unusual tag. Leave the flag-byte empty. */
9906 break;
9908 dw2_asm_output_data (1, flags >> GDB_INDEX_CU_BITSIZE,
9909 "GDB-index flags");
9912 dw2_asm_output_nstring (entry->name, -1, "external name");
9916 /* Output the public names table used to speed up access to externally
9917 visible names; or the public types table used to find type definitions. */
9919 static void
9920 output_pubnames (vec<pubname_entry, va_gc> *names)
9922 unsigned i;
9923 unsigned long pubnames_length = size_of_pubnames (names);
9924 pubname_entry *pub;
9926 if (!XCOFF_DEBUGGING_INFO)
9928 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
9929 dw2_asm_output_data (4, 0xffffffff,
9930 "Initial length escape value indicating 64-bit DWARF extension");
9931 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
9932 "Pub Info Length");
9935 /* Version number for pubnames/pubtypes is independent of dwarf version. */
9936 dw2_asm_output_data (2, 2, "DWARF Version");
9938 if (dwarf_split_debug_info)
9939 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_skeleton_info_section_label,
9940 debug_skeleton_info_section,
9941 "Offset of Compilation Unit Info");
9942 else
9943 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
9944 debug_info_section,
9945 "Offset of Compilation Unit Info");
9946 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
9947 "Compilation Unit Length");
9949 FOR_EACH_VEC_ELT (*names, i, pub)
9951 if (include_pubname_in_output (names, pub))
9953 dw_offset die_offset = pub->die->die_offset;
9955 /* We shouldn't see pubnames for DIEs outside of the main CU. */
9956 if (names == pubname_table && pub->die->die_tag != DW_TAG_enumerator)
9957 gcc_assert (pub->die->die_mark);
9959 /* If we're putting types in their own .debug_types sections,
9960 the .debug_pubtypes table will still point to the compile
9961 unit (not the type unit), so we want to use the offset of
9962 the skeleton DIE (if there is one). */
9963 if (pub->die->comdat_type_p && names == pubtype_table)
9965 comdat_type_node *type_node = pub->die->die_id.die_type_node;
9967 if (type_node != NULL)
9968 die_offset = (type_node->skeleton_die != NULL
9969 ? type_node->skeleton_die->die_offset
9970 : comp_unit_die ()->die_offset);
9973 output_pubname (die_offset, pub);
9977 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
9980 /* Output public names and types tables if necessary. */
9982 static void
9983 output_pubtables (void)
9985 if (!want_pubnames () || !info_section_emitted)
9986 return;
9988 switch_to_section (debug_pubnames_section);
9989 output_pubnames (pubname_table);
9990 /* ??? Only defined by DWARF3, but emitted by Darwin for DWARF2.
9991 It shouldn't hurt to emit it always, since pure DWARF2 consumers
9992 simply won't look for the section. */
9993 switch_to_section (debug_pubtypes_section);
9994 output_pubnames (pubtype_table);
9998 /* Output the information that goes into the .debug_aranges table.
9999 Namely, define the beginning and ending address range of the
10000 text section generated for this compilation unit. */
10002 static void
10003 output_aranges (void)
10005 unsigned i;
10006 unsigned long aranges_length = size_of_aranges ();
10008 if (!XCOFF_DEBUGGING_INFO)
10010 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
10011 dw2_asm_output_data (4, 0xffffffff,
10012 "Initial length escape value indicating 64-bit DWARF extension");
10013 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
10014 "Length of Address Ranges Info");
10017 /* Version number for aranges is still 2, even up to DWARF5. */
10018 dw2_asm_output_data (2, 2, "DWARF Version");
10019 if (dwarf_split_debug_info)
10020 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_skeleton_info_section_label,
10021 debug_skeleton_info_section,
10022 "Offset of Compilation Unit Info");
10023 else
10024 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
10025 debug_info_section,
10026 "Offset of Compilation Unit Info");
10027 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
10028 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
10030 /* We need to align to twice the pointer size here. */
10031 if (DWARF_ARANGES_PAD_SIZE)
10033 /* Pad using a 2 byte words so that padding is correct for any
10034 pointer size. */
10035 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
10036 2 * DWARF2_ADDR_SIZE);
10037 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
10038 dw2_asm_output_data (2, 0, NULL);
10041 /* It is necessary not to output these entries if the sections were
10042 not used; if the sections were not used, the length will be 0 and
10043 the address may end up as 0 if the section is discarded by ld
10044 --gc-sections, leaving an invalid (0, 0) entry that can be
10045 confused with the terminator. */
10046 if (text_section_used)
10048 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
10049 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
10050 text_section_label, "Length");
10052 if (cold_text_section_used)
10054 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
10055 "Address");
10056 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
10057 cold_text_section_label, "Length");
10060 if (have_multiple_function_sections)
10062 unsigned fde_idx;
10063 dw_fde_ref fde;
10065 FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
10067 if (DECL_IGNORED_P (fde->decl))
10068 continue;
10069 if (!fde->in_std_section)
10071 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
10072 "Address");
10073 dw2_asm_output_delta (DWARF2_ADDR_SIZE, fde->dw_fde_end,
10074 fde->dw_fde_begin, "Length");
10076 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
10078 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_second_begin,
10079 "Address");
10080 dw2_asm_output_delta (DWARF2_ADDR_SIZE, fde->dw_fde_second_end,
10081 fde->dw_fde_second_begin, "Length");
10086 /* Output the terminator words. */
10087 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
10088 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
10091 /* Add a new entry to .debug_ranges. Return the offset at which it
10092 was placed. */
10094 static unsigned int
10095 add_ranges_num (int num)
10097 unsigned int in_use = ranges_table_in_use;
10099 if (in_use == ranges_table_allocated)
10101 ranges_table_allocated += RANGES_TABLE_INCREMENT;
10102 ranges_table = GGC_RESIZEVEC (dw_ranges, ranges_table,
10103 ranges_table_allocated);
10104 memset (ranges_table + ranges_table_in_use, 0,
10105 RANGES_TABLE_INCREMENT * sizeof (dw_ranges));
10108 ranges_table[in_use].num = num;
10109 ranges_table_in_use = in_use + 1;
10111 return in_use * 2 * DWARF2_ADDR_SIZE;
10114 /* Add a new entry to .debug_ranges corresponding to a block, or a
10115 range terminator if BLOCK is NULL. */
10117 static unsigned int
10118 add_ranges (const_tree block)
10120 return add_ranges_num (block ? BLOCK_NUMBER (block) : 0);
10123 /* Add a new entry to .debug_ranges corresponding to a pair of labels.
10124 When using dwarf_split_debug_info, address attributes in dies destined
10125 for the final executable should be direct references--setting the
10126 parameter force_direct ensures this behavior. */
10128 static void
10129 add_ranges_by_labels (dw_die_ref die, const char *begin, const char *end,
10130 bool *added, bool force_direct)
10132 unsigned int in_use = ranges_by_label_in_use;
10133 unsigned int offset;
10135 if (in_use == ranges_by_label_allocated)
10137 ranges_by_label_allocated += RANGES_TABLE_INCREMENT;
10138 ranges_by_label = GGC_RESIZEVEC (dw_ranges_by_label, ranges_by_label,
10139 ranges_by_label_allocated);
10140 memset (ranges_by_label + ranges_by_label_in_use, 0,
10141 RANGES_TABLE_INCREMENT * sizeof (dw_ranges_by_label));
10144 ranges_by_label[in_use].begin = begin;
10145 ranges_by_label[in_use].end = end;
10146 ranges_by_label_in_use = in_use + 1;
10148 offset = add_ranges_num (-(int)in_use - 1);
10149 if (!*added)
10151 add_AT_range_list (die, DW_AT_ranges, offset, force_direct);
10152 *added = true;
10156 static void
10157 output_ranges (void)
10159 unsigned i;
10160 static const char *const start_fmt = "Offset %#x";
10161 const char *fmt = start_fmt;
10163 for (i = 0; i < ranges_table_in_use; i++)
10165 int block_num = ranges_table[i].num;
10167 if (block_num > 0)
10169 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
10170 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
10172 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
10173 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
10175 /* If all code is in the text section, then the compilation
10176 unit base address defaults to DW_AT_low_pc, which is the
10177 base of the text section. */
10178 if (!have_multiple_function_sections)
10180 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
10181 text_section_label,
10182 fmt, i * 2 * DWARF2_ADDR_SIZE);
10183 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
10184 text_section_label, NULL);
10187 /* Otherwise, the compilation unit base address is zero,
10188 which allows us to use absolute addresses, and not worry
10189 about whether the target supports cross-section
10190 arithmetic. */
10191 else
10193 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
10194 fmt, i * 2 * DWARF2_ADDR_SIZE);
10195 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
10198 fmt = NULL;
10201 /* Negative block_num stands for an index into ranges_by_label. */
10202 else if (block_num < 0)
10204 int lab_idx = - block_num - 1;
10206 if (!have_multiple_function_sections)
10208 gcc_unreachable ();
10209 #if 0
10210 /* If we ever use add_ranges_by_labels () for a single
10211 function section, all we have to do is to take out
10212 the #if 0 above. */
10213 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
10214 ranges_by_label[lab_idx].begin,
10215 text_section_label,
10216 fmt, i * 2 * DWARF2_ADDR_SIZE);
10217 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
10218 ranges_by_label[lab_idx].end,
10219 text_section_label, NULL);
10220 #endif
10222 else
10224 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
10225 ranges_by_label[lab_idx].begin,
10226 fmt, i * 2 * DWARF2_ADDR_SIZE);
10227 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
10228 ranges_by_label[lab_idx].end,
10229 NULL);
10232 else
10234 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
10235 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
10236 fmt = start_fmt;
10241 /* Data structure containing information about input files. */
10242 struct file_info
10244 const char *path; /* Complete file name. */
10245 const char *fname; /* File name part. */
10246 int length; /* Length of entire string. */
10247 struct dwarf_file_data * file_idx; /* Index in input file table. */
10248 int dir_idx; /* Index in directory table. */
10251 /* Data structure containing information about directories with source
10252 files. */
10253 struct dir_info
10255 const char *path; /* Path including directory name. */
10256 int length; /* Path length. */
10257 int prefix; /* Index of directory entry which is a prefix. */
10258 int count; /* Number of files in this directory. */
10259 int dir_idx; /* Index of directory used as base. */
10262 /* Callback function for file_info comparison. We sort by looking at
10263 the directories in the path. */
10265 static int
10266 file_info_cmp (const void *p1, const void *p2)
10268 const struct file_info *const s1 = (const struct file_info *) p1;
10269 const struct file_info *const s2 = (const struct file_info *) p2;
10270 const unsigned char *cp1;
10271 const unsigned char *cp2;
10273 /* Take care of file names without directories. We need to make sure that
10274 we return consistent values to qsort since some will get confused if
10275 we return the same value when identical operands are passed in opposite
10276 orders. So if neither has a directory, return 0 and otherwise return
10277 1 or -1 depending on which one has the directory. */
10278 if ((s1->path == s1->fname || s2->path == s2->fname))
10279 return (s2->path == s2->fname) - (s1->path == s1->fname);
10281 cp1 = (const unsigned char *) s1->path;
10282 cp2 = (const unsigned char *) s2->path;
10284 while (1)
10286 ++cp1;
10287 ++cp2;
10288 /* Reached the end of the first path? If so, handle like above. */
10289 if ((cp1 == (const unsigned char *) s1->fname)
10290 || (cp2 == (const unsigned char *) s2->fname))
10291 return ((cp2 == (const unsigned char *) s2->fname)
10292 - (cp1 == (const unsigned char *) s1->fname));
10294 /* Character of current path component the same? */
10295 else if (*cp1 != *cp2)
10296 return *cp1 - *cp2;
10300 struct file_name_acquire_data
10302 struct file_info *files;
10303 int used_files;
10304 int max_files;
10307 /* Traversal function for the hash table. */
10310 file_name_acquire (dwarf_file_data **slot, file_name_acquire_data *fnad)
10312 struct dwarf_file_data *d = *slot;
10313 struct file_info *fi;
10314 const char *f;
10316 gcc_assert (fnad->max_files >= d->emitted_number);
10318 if (! d->emitted_number)
10319 return 1;
10321 gcc_assert (fnad->max_files != fnad->used_files);
10323 fi = fnad->files + fnad->used_files++;
10325 /* Skip all leading "./". */
10326 f = d->filename;
10327 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
10328 f += 2;
10330 /* Create a new array entry. */
10331 fi->path = f;
10332 fi->length = strlen (f);
10333 fi->file_idx = d;
10335 /* Search for the file name part. */
10336 f = strrchr (f, DIR_SEPARATOR);
10337 #if defined (DIR_SEPARATOR_2)
10339 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
10341 if (g != NULL)
10343 if (f == NULL || f < g)
10344 f = g;
10347 #endif
10349 fi->fname = f == NULL ? fi->path : f + 1;
10350 return 1;
10353 /* Output the directory table and the file name table. We try to minimize
10354 the total amount of memory needed. A heuristic is used to avoid large
10355 slowdowns with many input files. */
10357 static void
10358 output_file_names (void)
10360 struct file_name_acquire_data fnad;
10361 int numfiles;
10362 struct file_info *files;
10363 struct dir_info *dirs;
10364 int *saved;
10365 int *savehere;
10366 int *backmap;
10367 int ndirs;
10368 int idx_offset;
10369 int i;
10371 if (!last_emitted_file)
10373 dw2_asm_output_data (1, 0, "End directory table");
10374 dw2_asm_output_data (1, 0, "End file name table");
10375 return;
10378 numfiles = last_emitted_file->emitted_number;
10380 /* Allocate the various arrays we need. */
10381 files = XALLOCAVEC (struct file_info, numfiles);
10382 dirs = XALLOCAVEC (struct dir_info, numfiles);
10384 fnad.files = files;
10385 fnad.used_files = 0;
10386 fnad.max_files = numfiles;
10387 file_table->traverse<file_name_acquire_data *, file_name_acquire> (&fnad);
10388 gcc_assert (fnad.used_files == fnad.max_files);
10390 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
10392 /* Find all the different directories used. */
10393 dirs[0].path = files[0].path;
10394 dirs[0].length = files[0].fname - files[0].path;
10395 dirs[0].prefix = -1;
10396 dirs[0].count = 1;
10397 dirs[0].dir_idx = 0;
10398 files[0].dir_idx = 0;
10399 ndirs = 1;
10401 for (i = 1; i < numfiles; i++)
10402 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
10403 && memcmp (dirs[ndirs - 1].path, files[i].path,
10404 dirs[ndirs - 1].length) == 0)
10406 /* Same directory as last entry. */
10407 files[i].dir_idx = ndirs - 1;
10408 ++dirs[ndirs - 1].count;
10410 else
10412 int j;
10414 /* This is a new directory. */
10415 dirs[ndirs].path = files[i].path;
10416 dirs[ndirs].length = files[i].fname - files[i].path;
10417 dirs[ndirs].count = 1;
10418 dirs[ndirs].dir_idx = ndirs;
10419 files[i].dir_idx = ndirs;
10421 /* Search for a prefix. */
10422 dirs[ndirs].prefix = -1;
10423 for (j = 0; j < ndirs; j++)
10424 if (dirs[j].length < dirs[ndirs].length
10425 && dirs[j].length > 1
10426 && (dirs[ndirs].prefix == -1
10427 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
10428 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
10429 dirs[ndirs].prefix = j;
10431 ++ndirs;
10434 /* Now to the actual work. We have to find a subset of the directories which
10435 allow expressing the file name using references to the directory table
10436 with the least amount of characters. We do not do an exhaustive search
10437 where we would have to check out every combination of every single
10438 possible prefix. Instead we use a heuristic which provides nearly optimal
10439 results in most cases and never is much off. */
10440 saved = XALLOCAVEC (int, ndirs);
10441 savehere = XALLOCAVEC (int, ndirs);
10443 memset (saved, '\0', ndirs * sizeof (saved[0]));
10444 for (i = 0; i < ndirs; i++)
10446 int j;
10447 int total;
10449 /* We can always save some space for the current directory. But this
10450 does not mean it will be enough to justify adding the directory. */
10451 savehere[i] = dirs[i].length;
10452 total = (savehere[i] - saved[i]) * dirs[i].count;
10454 for (j = i + 1; j < ndirs; j++)
10456 savehere[j] = 0;
10457 if (saved[j] < dirs[i].length)
10459 /* Determine whether the dirs[i] path is a prefix of the
10460 dirs[j] path. */
10461 int k;
10463 k = dirs[j].prefix;
10464 while (k != -1 && k != (int) i)
10465 k = dirs[k].prefix;
10467 if (k == (int) i)
10469 /* Yes it is. We can possibly save some memory by
10470 writing the filenames in dirs[j] relative to
10471 dirs[i]. */
10472 savehere[j] = dirs[i].length;
10473 total += (savehere[j] - saved[j]) * dirs[j].count;
10478 /* Check whether we can save enough to justify adding the dirs[i]
10479 directory. */
10480 if (total > dirs[i].length + 1)
10482 /* It's worthwhile adding. */
10483 for (j = i; j < ndirs; j++)
10484 if (savehere[j] > 0)
10486 /* Remember how much we saved for this directory so far. */
10487 saved[j] = savehere[j];
10489 /* Remember the prefix directory. */
10490 dirs[j].dir_idx = i;
10495 /* Emit the directory name table. */
10496 idx_offset = dirs[0].length > 0 ? 1 : 0;
10497 for (i = 1 - idx_offset; i < ndirs; i++)
10498 dw2_asm_output_nstring (dirs[i].path,
10499 dirs[i].length
10500 - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR,
10501 "Directory Entry: %#x", i + idx_offset);
10503 dw2_asm_output_data (1, 0, "End directory table");
10505 /* We have to emit them in the order of emitted_number since that's
10506 used in the debug info generation. To do this efficiently we
10507 generate a back-mapping of the indices first. */
10508 backmap = XALLOCAVEC (int, numfiles);
10509 for (i = 0; i < numfiles; i++)
10510 backmap[files[i].file_idx->emitted_number - 1] = i;
10512 /* Now write all the file names. */
10513 for (i = 0; i < numfiles; i++)
10515 int file_idx = backmap[i];
10516 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
10518 #ifdef VMS_DEBUGGING_INFO
10519 #define MAX_VMS_VERSION_LEN 6 /* ";32768" */
10521 /* Setting these fields can lead to debugger miscomparisons,
10522 but VMS Debug requires them to be set correctly. */
10524 int ver;
10525 long long cdt;
10526 long siz;
10527 int maxfilelen = strlen (files[file_idx].path)
10528 + dirs[dir_idx].length
10529 + MAX_VMS_VERSION_LEN + 1;
10530 char *filebuf = XALLOCAVEC (char, maxfilelen);
10532 vms_file_stats_name (files[file_idx].path, 0, 0, 0, &ver);
10533 snprintf (filebuf, maxfilelen, "%s;%d",
10534 files[file_idx].path + dirs[dir_idx].length, ver);
10536 dw2_asm_output_nstring
10537 (filebuf, -1, "File Entry: %#x", (unsigned) i + 1);
10539 /* Include directory index. */
10540 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
10542 /* Modification time. */
10543 dw2_asm_output_data_uleb128
10544 ((vms_file_stats_name (files[file_idx].path, &cdt, 0, 0, 0) == 0)
10545 ? cdt : 0,
10546 NULL);
10548 /* File length in bytes. */
10549 dw2_asm_output_data_uleb128
10550 ((vms_file_stats_name (files[file_idx].path, 0, &siz, 0, 0) == 0)
10551 ? siz : 0,
10552 NULL);
10553 #else
10554 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
10555 "File Entry: %#x", (unsigned) i + 1);
10557 /* Include directory index. */
10558 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
10560 /* Modification time. */
10561 dw2_asm_output_data_uleb128 (0, NULL);
10563 /* File length in bytes. */
10564 dw2_asm_output_data_uleb128 (0, NULL);
10565 #endif /* VMS_DEBUGGING_INFO */
10568 dw2_asm_output_data (1, 0, "End file name table");
10572 /* Output one line number table into the .debug_line section. */
10574 static void
10575 output_one_line_info_table (dw_line_info_table *table)
10577 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
10578 unsigned int current_line = 1;
10579 bool current_is_stmt = DWARF_LINE_DEFAULT_IS_STMT_START;
10580 dw_line_info_entry *ent;
10581 size_t i;
10583 FOR_EACH_VEC_SAFE_ELT (table->entries, i, ent)
10585 switch (ent->opcode)
10587 case LI_set_address:
10588 /* ??? Unfortunately, we have little choice here currently, and
10589 must always use the most general form. GCC does not know the
10590 address delta itself, so we can't use DW_LNS_advance_pc. Many
10591 ports do have length attributes which will give an upper bound
10592 on the address range. We could perhaps use length attributes
10593 to determine when it is safe to use DW_LNS_fixed_advance_pc. */
10594 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, ent->val);
10596 /* This can handle any delta. This takes
10597 4+DWARF2_ADDR_SIZE bytes. */
10598 dw2_asm_output_data (1, 0, "set address %s", line_label);
10599 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
10600 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
10601 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
10602 break;
10604 case LI_set_line:
10605 if (ent->val == current_line)
10607 /* We still need to start a new row, so output a copy insn. */
10608 dw2_asm_output_data (1, DW_LNS_copy,
10609 "copy line %u", current_line);
10611 else
10613 int line_offset = ent->val - current_line;
10614 int line_delta = line_offset - DWARF_LINE_BASE;
10616 current_line = ent->val;
10617 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
10619 /* This can handle deltas from -10 to 234, using the current
10620 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE.
10621 This takes 1 byte. */
10622 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
10623 "line %u", current_line);
10625 else
10627 /* This can handle any delta. This takes at least 4 bytes,
10628 depending on the value being encoded. */
10629 dw2_asm_output_data (1, DW_LNS_advance_line,
10630 "advance to line %u", current_line);
10631 dw2_asm_output_data_sleb128 (line_offset, NULL);
10632 dw2_asm_output_data (1, DW_LNS_copy, NULL);
10635 break;
10637 case LI_set_file:
10638 dw2_asm_output_data (1, DW_LNS_set_file, "set file %u", ent->val);
10639 dw2_asm_output_data_uleb128 (ent->val, "%u", ent->val);
10640 break;
10642 case LI_set_column:
10643 dw2_asm_output_data (1, DW_LNS_set_column, "column %u", ent->val);
10644 dw2_asm_output_data_uleb128 (ent->val, "%u", ent->val);
10645 break;
10647 case LI_negate_stmt:
10648 current_is_stmt = !current_is_stmt;
10649 dw2_asm_output_data (1, DW_LNS_negate_stmt,
10650 "is_stmt %d", current_is_stmt);
10651 break;
10653 case LI_set_prologue_end:
10654 dw2_asm_output_data (1, DW_LNS_set_prologue_end,
10655 "set prologue end");
10656 break;
10658 case LI_set_epilogue_begin:
10659 dw2_asm_output_data (1, DW_LNS_set_epilogue_begin,
10660 "set epilogue begin");
10661 break;
10663 case LI_set_discriminator:
10664 dw2_asm_output_data (1, 0, "discriminator %u", ent->val);
10665 dw2_asm_output_data_uleb128 (1 + size_of_uleb128 (ent->val), NULL);
10666 dw2_asm_output_data (1, DW_LNE_set_discriminator, NULL);
10667 dw2_asm_output_data_uleb128 (ent->val, NULL);
10668 break;
10672 /* Emit debug info for the address of the end of the table. */
10673 dw2_asm_output_data (1, 0, "set address %s", table->end_label);
10674 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
10675 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
10676 dw2_asm_output_addr (DWARF2_ADDR_SIZE, table->end_label, NULL);
10678 dw2_asm_output_data (1, 0, "end sequence");
10679 dw2_asm_output_data_uleb128 (1, NULL);
10680 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
10683 /* Output the source line number correspondence information. This
10684 information goes into the .debug_line section. */
10686 static void
10687 output_line_info (bool prologue_only)
10689 char l1[20], l2[20], p1[20], p2[20];
10690 /* We don't support DWARFv5 line tables yet. */
10691 int ver = dwarf_version < 5 ? dwarf_version : 4;
10692 bool saw_one = false;
10693 int opc;
10695 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
10696 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
10697 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
10698 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
10700 if (!XCOFF_DEBUGGING_INFO)
10702 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
10703 dw2_asm_output_data (4, 0xffffffff,
10704 "Initial length escape value indicating 64-bit DWARF extension");
10705 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
10706 "Length of Source Line Info");
10709 ASM_OUTPUT_LABEL (asm_out_file, l1);
10711 dw2_asm_output_data (2, ver, "DWARF Version");
10712 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
10713 ASM_OUTPUT_LABEL (asm_out_file, p1);
10715 /* Define the architecture-dependent minimum instruction length (in bytes).
10716 In this implementation of DWARF, this field is used for information
10717 purposes only. Since GCC generates assembly language, we have no
10718 a priori knowledge of how many instruction bytes are generated for each
10719 source line, and therefore can use only the DW_LNE_set_address and
10720 DW_LNS_fixed_advance_pc line information commands. Accordingly, we fix
10721 this as '1', which is "correct enough" for all architectures,
10722 and don't let the target override. */
10723 dw2_asm_output_data (1, 1, "Minimum Instruction Length");
10725 if (ver >= 4)
10726 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN,
10727 "Maximum Operations Per Instruction");
10728 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
10729 "Default is_stmt_start flag");
10730 dw2_asm_output_data (1, DWARF_LINE_BASE,
10731 "Line Base Value (Special Opcodes)");
10732 dw2_asm_output_data (1, DWARF_LINE_RANGE,
10733 "Line Range Value (Special Opcodes)");
10734 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
10735 "Special Opcode Base");
10737 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
10739 int n_op_args;
10740 switch (opc)
10742 case DW_LNS_advance_pc:
10743 case DW_LNS_advance_line:
10744 case DW_LNS_set_file:
10745 case DW_LNS_set_column:
10746 case DW_LNS_fixed_advance_pc:
10747 case DW_LNS_set_isa:
10748 n_op_args = 1;
10749 break;
10750 default:
10751 n_op_args = 0;
10752 break;
10755 dw2_asm_output_data (1, n_op_args, "opcode: %#x has %d args",
10756 opc, n_op_args);
10759 /* Write out the information about the files we use. */
10760 output_file_names ();
10761 ASM_OUTPUT_LABEL (asm_out_file, p2);
10762 if (prologue_only)
10764 /* Output the marker for the end of the line number info. */
10765 ASM_OUTPUT_LABEL (asm_out_file, l2);
10766 return;
10769 if (separate_line_info)
10771 dw_line_info_table *table;
10772 size_t i;
10774 FOR_EACH_VEC_ELT (*separate_line_info, i, table)
10775 if (table->in_use)
10777 output_one_line_info_table (table);
10778 saw_one = true;
10781 if (cold_text_section_line_info && cold_text_section_line_info->in_use)
10783 output_one_line_info_table (cold_text_section_line_info);
10784 saw_one = true;
10787 /* ??? Some Darwin linkers crash on a .debug_line section with no
10788 sequences. Further, merely a DW_LNE_end_sequence entry is not
10789 sufficient -- the address column must also be initialized.
10790 Make sure to output at least one set_address/end_sequence pair,
10791 choosing .text since that section is always present. */
10792 if (text_section_line_info->in_use || !saw_one)
10793 output_one_line_info_table (text_section_line_info);
10795 /* Output the marker for the end of the line number info. */
10796 ASM_OUTPUT_LABEL (asm_out_file, l2);
10799 /* Given a pointer to a tree node for some base type, return a pointer to
10800 a DIE that describes the given type.
10802 This routine must only be called for GCC type nodes that correspond to
10803 Dwarf base (fundamental) types. */
10805 static dw_die_ref
10806 base_type_die (tree type)
10808 dw_die_ref base_type_result;
10809 enum dwarf_type encoding;
10810 bool fpt_used = false;
10811 struct fixed_point_type_info fpt_info;
10812 tree type_bias = NULL_TREE;
10814 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
10815 return 0;
10817 /* If this is a subtype that should not be emitted as a subrange type,
10818 use the base type. See subrange_type_for_debug_p. */
10819 if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE)
10820 type = TREE_TYPE (type);
10822 switch (TREE_CODE (type))
10824 case INTEGER_TYPE:
10825 if ((dwarf_version >= 4 || !dwarf_strict)
10826 && TYPE_NAME (type)
10827 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10828 && DECL_IS_BUILTIN (TYPE_NAME (type))
10829 && DECL_NAME (TYPE_NAME (type)))
10831 const char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
10832 if (strcmp (name, "char16_t") == 0
10833 || strcmp (name, "char32_t") == 0)
10835 encoding = DW_ATE_UTF;
10836 break;
10839 if ((dwarf_version >= 3 || !dwarf_strict)
10840 && lang_hooks.types.get_fixed_point_type_info)
10842 memset (&fpt_info, 0, sizeof (fpt_info));
10843 if (lang_hooks.types.get_fixed_point_type_info (type, &fpt_info))
10845 fpt_used = true;
10846 encoding = ((TYPE_UNSIGNED (type))
10847 ? DW_ATE_unsigned_fixed
10848 : DW_ATE_signed_fixed);
10849 break;
10852 if (TYPE_STRING_FLAG (type))
10854 if (TYPE_UNSIGNED (type))
10855 encoding = DW_ATE_unsigned_char;
10856 else
10857 encoding = DW_ATE_signed_char;
10859 else if (TYPE_UNSIGNED (type))
10860 encoding = DW_ATE_unsigned;
10861 else
10862 encoding = DW_ATE_signed;
10864 if (!dwarf_strict
10865 && lang_hooks.types.get_type_bias)
10866 type_bias = lang_hooks.types.get_type_bias (type);
10867 break;
10869 case REAL_TYPE:
10870 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
10872 if (dwarf_version >= 3 || !dwarf_strict)
10873 encoding = DW_ATE_decimal_float;
10874 else
10875 encoding = DW_ATE_lo_user;
10877 else
10878 encoding = DW_ATE_float;
10879 break;
10881 case FIXED_POINT_TYPE:
10882 if (!(dwarf_version >= 3 || !dwarf_strict))
10883 encoding = DW_ATE_lo_user;
10884 else if (TYPE_UNSIGNED (type))
10885 encoding = DW_ATE_unsigned_fixed;
10886 else
10887 encoding = DW_ATE_signed_fixed;
10888 break;
10890 /* Dwarf2 doesn't know anything about complex ints, so use
10891 a user defined type for it. */
10892 case COMPLEX_TYPE:
10893 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
10894 encoding = DW_ATE_complex_float;
10895 else
10896 encoding = DW_ATE_lo_user;
10897 break;
10899 case BOOLEAN_TYPE:
10900 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
10901 encoding = DW_ATE_boolean;
10902 break;
10904 default:
10905 /* No other TREE_CODEs are Dwarf fundamental types. */
10906 gcc_unreachable ();
10909 base_type_result = new_die (DW_TAG_base_type, comp_unit_die (), type);
10911 add_AT_unsigned (base_type_result, DW_AT_byte_size,
10912 int_size_in_bytes (type));
10913 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
10915 if (fpt_used)
10917 switch (fpt_info.scale_factor_kind)
10919 case fixed_point_scale_factor_binary:
10920 add_AT_int (base_type_result, DW_AT_binary_scale,
10921 fpt_info.scale_factor.binary);
10922 break;
10924 case fixed_point_scale_factor_decimal:
10925 add_AT_int (base_type_result, DW_AT_decimal_scale,
10926 fpt_info.scale_factor.decimal);
10927 break;
10929 case fixed_point_scale_factor_arbitrary:
10930 /* Arbitrary scale factors cannot be described in standard DWARF,
10931 yet. */
10932 if (!dwarf_strict)
10934 /* Describe the scale factor as a rational constant. */
10935 const dw_die_ref scale_factor
10936 = new_die (DW_TAG_constant, comp_unit_die (), type);
10938 add_AT_unsigned (scale_factor, DW_AT_GNU_numerator,
10939 fpt_info.scale_factor.arbitrary.numerator);
10940 add_AT_int (scale_factor, DW_AT_GNU_denominator,
10941 fpt_info.scale_factor.arbitrary.denominator);
10943 add_AT_die_ref (base_type_result, DW_AT_small, scale_factor);
10945 break;
10947 default:
10948 gcc_unreachable ();
10951 if (type_bias != NULL)
10952 add_scalar_info (base_type_result, DW_AT_GNU_bias, type_bias,
10953 dw_scalar_form_constant
10954 | dw_scalar_form_exprloc
10955 | dw_scalar_form_reference,
10956 NULL);
10957 add_pubtype (type, base_type_result);
10959 return base_type_result;
10962 /* A C++ function with deduced return type can have a TEMPLATE_TYPE_PARM
10963 named 'auto' in its type: return true for it, false otherwise. */
10965 static inline bool
10966 is_cxx_auto (tree type)
10968 if (is_cxx ())
10970 tree name = TYPE_IDENTIFIER (type);
10971 if (name == get_identifier ("auto")
10972 || name == get_identifier ("decltype(auto)"))
10973 return true;
10975 return false;
10978 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
10979 given input type is a Dwarf "fundamental" type. Otherwise return null. */
10981 static inline int
10982 is_base_type (tree type)
10984 switch (TREE_CODE (type))
10986 case ERROR_MARK:
10987 case VOID_TYPE:
10988 case INTEGER_TYPE:
10989 case REAL_TYPE:
10990 case FIXED_POINT_TYPE:
10991 case COMPLEX_TYPE:
10992 case BOOLEAN_TYPE:
10993 case POINTER_BOUNDS_TYPE:
10994 return 1;
10996 case ARRAY_TYPE:
10997 case RECORD_TYPE:
10998 case UNION_TYPE:
10999 case QUAL_UNION_TYPE:
11000 case ENUMERAL_TYPE:
11001 case FUNCTION_TYPE:
11002 case METHOD_TYPE:
11003 case POINTER_TYPE:
11004 case REFERENCE_TYPE:
11005 case NULLPTR_TYPE:
11006 case OFFSET_TYPE:
11007 case LANG_TYPE:
11008 case VECTOR_TYPE:
11009 return 0;
11011 default:
11012 if (is_cxx_auto (type))
11013 return 0;
11014 gcc_unreachable ();
11017 return 0;
11020 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
11021 node, return the size in bits for the type if it is a constant, or else
11022 return the alignment for the type if the type's size is not constant, or
11023 else return BITS_PER_WORD if the type actually turns out to be an
11024 ERROR_MARK node. */
11026 static inline unsigned HOST_WIDE_INT
11027 simple_type_size_in_bits (const_tree type)
11029 if (TREE_CODE (type) == ERROR_MARK)
11030 return BITS_PER_WORD;
11031 else if (TYPE_SIZE (type) == NULL_TREE)
11032 return 0;
11033 else if (tree_fits_uhwi_p (TYPE_SIZE (type)))
11034 return tree_to_uhwi (TYPE_SIZE (type));
11035 else
11036 return TYPE_ALIGN (type);
11039 /* Similarly, but return an offset_int instead of UHWI. */
11041 static inline offset_int
11042 offset_int_type_size_in_bits (const_tree type)
11044 if (TREE_CODE (type) == ERROR_MARK)
11045 return BITS_PER_WORD;
11046 else if (TYPE_SIZE (type) == NULL_TREE)
11047 return 0;
11048 else if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
11049 return wi::to_offset (TYPE_SIZE (type));
11050 else
11051 return TYPE_ALIGN (type);
11054 /* Given a pointer to a tree node for a subrange type, return a pointer
11055 to a DIE that describes the given type. */
11057 static dw_die_ref
11058 subrange_type_die (tree type, tree low, tree high, tree bias,
11059 dw_die_ref context_die)
11061 dw_die_ref subrange_die;
11062 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
11064 if (context_die == NULL)
11065 context_die = comp_unit_die ();
11067 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
11069 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
11071 /* The size of the subrange type and its base type do not match,
11072 so we need to generate a size attribute for the subrange type. */
11073 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
11076 if (low)
11077 add_bound_info (subrange_die, DW_AT_lower_bound, low, NULL);
11078 if (high)
11079 add_bound_info (subrange_die, DW_AT_upper_bound, high, NULL);
11080 if (bias && !dwarf_strict)
11081 add_scalar_info (subrange_die, DW_AT_GNU_bias, bias,
11082 dw_scalar_form_constant
11083 | dw_scalar_form_exprloc
11084 | dw_scalar_form_reference,
11085 NULL);
11087 return subrange_die;
11090 /* Returns the (const and/or volatile) cv_qualifiers associated with
11091 the decl node. This will normally be augmented with the
11092 cv_qualifiers of the underlying type in add_type_attribute. */
11094 static int
11095 decl_quals (const_tree decl)
11097 return ((TREE_READONLY (decl)
11098 ? TYPE_QUAL_CONST : TYPE_UNQUALIFIED)
11099 | (TREE_THIS_VOLATILE (decl)
11100 ? TYPE_QUAL_VOLATILE : TYPE_UNQUALIFIED));
11103 /* Determine the TYPE whose qualifiers match the largest strict subset
11104 of the given TYPE_QUALS, and return its qualifiers. Ignore all
11105 qualifiers outside QUAL_MASK. */
11107 static int
11108 get_nearest_type_subqualifiers (tree type, int type_quals, int qual_mask)
11110 tree t;
11111 int best_rank = 0, best_qual = 0, max_rank;
11113 type_quals &= qual_mask;
11114 max_rank = popcount_hwi (type_quals) - 1;
11116 for (t = TYPE_MAIN_VARIANT (type); t && best_rank < max_rank;
11117 t = TYPE_NEXT_VARIANT (t))
11119 int q = TYPE_QUALS (t) & qual_mask;
11121 if ((q & type_quals) == q && q != type_quals
11122 && check_base_type (t, type))
11124 int rank = popcount_hwi (q);
11126 if (rank > best_rank)
11128 best_rank = rank;
11129 best_qual = q;
11134 return best_qual;
11137 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
11138 entry that chains various modifiers in front of the given type. */
11140 static dw_die_ref
11141 modified_type_die (tree type, int cv_quals, dw_die_ref context_die)
11143 enum tree_code code = TREE_CODE (type);
11144 dw_die_ref mod_type_die;
11145 dw_die_ref sub_die = NULL;
11146 tree item_type = NULL;
11147 tree qualified_type;
11148 tree name, low, high;
11149 dw_die_ref mod_scope;
11150 /* Only these cv-qualifiers are currently handled. */
11151 const int cv_qual_mask = (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE
11152 | TYPE_QUAL_RESTRICT | TYPE_QUAL_ATOMIC);
11154 if (code == ERROR_MARK)
11155 return NULL;
11157 if (lang_hooks.types.get_debug_type)
11159 tree debug_type = lang_hooks.types.get_debug_type (type);
11161 if (debug_type != NULL_TREE && debug_type != type)
11162 return modified_type_die (debug_type, cv_quals, context_die);
11165 cv_quals &= cv_qual_mask;
11167 /* Don't emit DW_TAG_restrict_type for DWARFv2, since it is a type
11168 tag modifier (and not an attribute) old consumers won't be able
11169 to handle it. */
11170 if (dwarf_version < 3)
11171 cv_quals &= ~TYPE_QUAL_RESTRICT;
11173 /* Likewise for DW_TAG_atomic_type for DWARFv5. */
11174 if (dwarf_version < 5)
11175 cv_quals &= ~TYPE_QUAL_ATOMIC;
11177 /* See if we already have the appropriately qualified variant of
11178 this type. */
11179 qualified_type = get_qualified_type (type, cv_quals);
11181 if (qualified_type == sizetype
11182 && TYPE_NAME (qualified_type)
11183 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL)
11185 tree t = TREE_TYPE (TYPE_NAME (qualified_type));
11187 gcc_checking_assert (TREE_CODE (t) == INTEGER_TYPE
11188 && TYPE_PRECISION (t)
11189 == TYPE_PRECISION (qualified_type)
11190 && TYPE_UNSIGNED (t)
11191 == TYPE_UNSIGNED (qualified_type));
11192 qualified_type = t;
11195 /* If we do, then we can just use its DIE, if it exists. */
11196 if (qualified_type)
11198 mod_type_die = lookup_type_die (qualified_type);
11199 if (mod_type_die)
11200 return mod_type_die;
11203 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
11205 /* Handle C typedef types. */
11206 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name)
11207 && !DECL_ARTIFICIAL (name))
11209 tree dtype = TREE_TYPE (name);
11211 if (qualified_type == dtype)
11213 /* For a named type, use the typedef. */
11214 gen_type_die (qualified_type, context_die);
11215 return lookup_type_die (qualified_type);
11217 else
11219 int dquals = TYPE_QUALS_NO_ADDR_SPACE (dtype);
11220 dquals &= cv_qual_mask;
11221 if ((dquals & ~cv_quals) != TYPE_UNQUALIFIED
11222 || (cv_quals == dquals && DECL_ORIGINAL_TYPE (name) != type))
11223 /* cv-unqualified version of named type. Just use
11224 the unnamed type to which it refers. */
11225 return modified_type_die (DECL_ORIGINAL_TYPE (name),
11226 cv_quals, context_die);
11227 /* Else cv-qualified version of named type; fall through. */
11231 mod_scope = scope_die_for (type, context_die);
11233 if (cv_quals)
11235 struct qual_info { int q; enum dwarf_tag t; };
11236 static const struct qual_info qual_info[] =
11238 { TYPE_QUAL_ATOMIC, DW_TAG_atomic_type },
11239 { TYPE_QUAL_RESTRICT, DW_TAG_restrict_type },
11240 { TYPE_QUAL_VOLATILE, DW_TAG_volatile_type },
11241 { TYPE_QUAL_CONST, DW_TAG_const_type },
11243 int sub_quals;
11244 unsigned i;
11246 /* Determine a lesser qualified type that most closely matches
11247 this one. Then generate DW_TAG_* entries for the remaining
11248 qualifiers. */
11249 sub_quals = get_nearest_type_subqualifiers (type, cv_quals,
11250 cv_qual_mask);
11251 mod_type_die = modified_type_die (type, sub_quals, context_die);
11253 for (i = 0; i < sizeof (qual_info) / sizeof (qual_info[0]); i++)
11254 if (qual_info[i].q & cv_quals & ~sub_quals)
11256 dw_die_ref d = new_die (qual_info[i].t, mod_scope, type);
11257 if (mod_type_die)
11258 add_AT_die_ref (d, DW_AT_type, mod_type_die);
11259 mod_type_die = d;
11262 else if (code == POINTER_TYPE || code == REFERENCE_TYPE)
11264 dwarf_tag tag = DW_TAG_pointer_type;
11265 if (code == REFERENCE_TYPE)
11267 if (TYPE_REF_IS_RVALUE (type) && dwarf_version >= 4)
11268 tag = DW_TAG_rvalue_reference_type;
11269 else
11270 tag = DW_TAG_reference_type;
11272 mod_type_die = new_die (tag, mod_scope, type);
11274 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
11275 simple_type_size_in_bits (type) / BITS_PER_UNIT);
11276 item_type = TREE_TYPE (type);
11278 addr_space_t as = TYPE_ADDR_SPACE (item_type);
11279 if (!ADDR_SPACE_GENERIC_P (as))
11281 int action = targetm.addr_space.debug (as);
11282 if (action >= 0)
11284 /* Positive values indicate an address_class. */
11285 add_AT_unsigned (mod_type_die, DW_AT_address_class, action);
11287 else
11289 /* Negative values indicate an (inverted) segment base reg. */
11290 dw_loc_descr_ref d
11291 = one_reg_loc_descriptor (~action, VAR_INIT_STATUS_INITIALIZED);
11292 add_AT_loc (mod_type_die, DW_AT_segment, d);
11296 else if (code == INTEGER_TYPE
11297 && TREE_TYPE (type) != NULL_TREE
11298 && subrange_type_for_debug_p (type, &low, &high))
11300 tree bias = NULL_TREE;
11301 if (lang_hooks.types.get_type_bias)
11302 bias = lang_hooks.types.get_type_bias (type);
11303 mod_type_die = subrange_type_die (type, low, high, bias, context_die);
11304 item_type = TREE_TYPE (type);
11306 else if (is_base_type (type))
11307 mod_type_die = base_type_die (type);
11308 else
11310 gen_type_die (type, context_die);
11312 /* We have to get the type_main_variant here (and pass that to the
11313 `lookup_type_die' routine) because the ..._TYPE node we have
11314 might simply be a *copy* of some original type node (where the
11315 copy was created to help us keep track of typedef names) and
11316 that copy might have a different TYPE_UID from the original
11317 ..._TYPE node. */
11318 if (TREE_CODE (type) != VECTOR_TYPE)
11319 return lookup_type_die (type_main_variant (type));
11320 else
11321 /* Vectors have the debugging information in the type,
11322 not the main variant. */
11323 return lookup_type_die (type);
11326 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
11327 don't output a DW_TAG_typedef, since there isn't one in the
11328 user's program; just attach a DW_AT_name to the type.
11329 Don't attach a DW_AT_name to DW_TAG_const_type or DW_TAG_volatile_type
11330 if the base type already has the same name. */
11331 if (name
11332 && ((TREE_CODE (name) != TYPE_DECL
11333 && (qualified_type == TYPE_MAIN_VARIANT (type)
11334 || (cv_quals == TYPE_UNQUALIFIED)))
11335 || (TREE_CODE (name) == TYPE_DECL
11336 && TREE_TYPE (name) == qualified_type
11337 && DECL_NAME (name))))
11339 if (TREE_CODE (name) == TYPE_DECL)
11340 /* Could just call add_name_and_src_coords_attributes here,
11341 but since this is a builtin type it doesn't have any
11342 useful source coordinates anyway. */
11343 name = DECL_NAME (name);
11344 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
11346 /* This probably indicates a bug. */
11347 else if (mod_type_die && mod_type_die->die_tag == DW_TAG_base_type)
11349 name = TYPE_IDENTIFIER (type);
11350 add_name_attribute (mod_type_die,
11351 name ? IDENTIFIER_POINTER (name) : "__unknown__");
11354 if (qualified_type)
11355 equate_type_number_to_die (qualified_type, mod_type_die);
11357 if (item_type)
11358 /* We must do this after the equate_type_number_to_die call, in case
11359 this is a recursive type. This ensures that the modified_type_die
11360 recursion will terminate even if the type is recursive. Recursive
11361 types are possible in Ada. */
11362 sub_die = modified_type_die (item_type,
11363 TYPE_QUALS_NO_ADDR_SPACE (item_type),
11364 context_die);
11366 if (sub_die != NULL)
11367 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
11369 add_gnat_descriptive_type_attribute (mod_type_die, type, context_die);
11370 if (TYPE_ARTIFICIAL (type))
11371 add_AT_flag (mod_type_die, DW_AT_artificial, 1);
11373 return mod_type_die;
11376 /* Generate DIEs for the generic parameters of T.
11377 T must be either a generic type or a generic function.
11378 See http://gcc.gnu.org/wiki/TemplateParmsDwarf for more. */
11380 static void
11381 gen_generic_params_dies (tree t)
11383 tree parms, args;
11384 int parms_num, i;
11385 dw_die_ref die = NULL;
11386 int non_default;
11388 if (!t || (TYPE_P (t) && !COMPLETE_TYPE_P (t)))
11389 return;
11391 if (TYPE_P (t))
11392 die = lookup_type_die (t);
11393 else if (DECL_P (t))
11394 die = lookup_decl_die (t);
11396 gcc_assert (die);
11398 parms = lang_hooks.get_innermost_generic_parms (t);
11399 if (!parms)
11400 /* T has no generic parameter. It means T is neither a generic type
11401 or function. End of story. */
11402 return;
11404 parms_num = TREE_VEC_LENGTH (parms);
11405 args = lang_hooks.get_innermost_generic_args (t);
11406 if (TREE_CHAIN (args) && TREE_CODE (TREE_CHAIN (args)) == INTEGER_CST)
11407 non_default = int_cst_value (TREE_CHAIN (args));
11408 else
11409 non_default = TREE_VEC_LENGTH (args);
11410 for (i = 0; i < parms_num; i++)
11412 tree parm, arg, arg_pack_elems;
11413 dw_die_ref parm_die;
11415 parm = TREE_VEC_ELT (parms, i);
11416 arg = TREE_VEC_ELT (args, i);
11417 arg_pack_elems = lang_hooks.types.get_argument_pack_elems (arg);
11418 gcc_assert (parm && TREE_VALUE (parm) && arg);
11420 if (parm && TREE_VALUE (parm) && arg)
11422 /* If PARM represents a template parameter pack,
11423 emit a DW_TAG_GNU_template_parameter_pack DIE, followed
11424 by DW_TAG_template_*_parameter DIEs for the argument
11425 pack elements of ARG. Note that ARG would then be
11426 an argument pack. */
11427 if (arg_pack_elems)
11428 parm_die = template_parameter_pack_die (TREE_VALUE (parm),
11429 arg_pack_elems,
11430 die);
11431 else
11432 parm_die = generic_parameter_die (TREE_VALUE (parm), arg,
11433 true /* emit name */, die);
11434 if (i >= non_default)
11435 add_AT_flag (parm_die, DW_AT_default_value, 1);
11440 /* Create and return a DIE for PARM which should be
11441 the representation of a generic type parameter.
11442 For instance, in the C++ front end, PARM would be a template parameter.
11443 ARG is the argument to PARM.
11444 EMIT_NAME_P if tree, the DIE will have DW_AT_name attribute set to the
11445 name of the PARM.
11446 PARENT_DIE is the parent DIE which the new created DIE should be added to,
11447 as a child node. */
11449 static dw_die_ref
11450 generic_parameter_die (tree parm, tree arg,
11451 bool emit_name_p,
11452 dw_die_ref parent_die)
11454 dw_die_ref tmpl_die = NULL;
11455 const char *name = NULL;
11457 if (!parm || !DECL_NAME (parm) || !arg)
11458 return NULL;
11460 /* We support non-type generic parameters and arguments,
11461 type generic parameters and arguments, as well as
11462 generic generic parameters (a.k.a. template template parameters in C++)
11463 and arguments. */
11464 if (TREE_CODE (parm) == PARM_DECL)
11465 /* PARM is a nontype generic parameter */
11466 tmpl_die = new_die (DW_TAG_template_value_param, parent_die, parm);
11467 else if (TREE_CODE (parm) == TYPE_DECL)
11468 /* PARM is a type generic parameter. */
11469 tmpl_die = new_die (DW_TAG_template_type_param, parent_die, parm);
11470 else if (lang_hooks.decls.generic_generic_parameter_decl_p (parm))
11471 /* PARM is a generic generic parameter.
11472 Its DIE is a GNU extension. It shall have a
11473 DW_AT_name attribute to represent the name of the template template
11474 parameter, and a DW_AT_GNU_template_name attribute to represent the
11475 name of the template template argument. */
11476 tmpl_die = new_die (DW_TAG_GNU_template_template_param,
11477 parent_die, parm);
11478 else
11479 gcc_unreachable ();
11481 if (tmpl_die)
11483 tree tmpl_type;
11485 /* If PARM is a generic parameter pack, it means we are
11486 emitting debug info for a template argument pack element.
11487 In other terms, ARG is a template argument pack element.
11488 In that case, we don't emit any DW_AT_name attribute for
11489 the die. */
11490 if (emit_name_p)
11492 name = IDENTIFIER_POINTER (DECL_NAME (parm));
11493 gcc_assert (name);
11494 add_AT_string (tmpl_die, DW_AT_name, name);
11497 if (!lang_hooks.decls.generic_generic_parameter_decl_p (parm))
11499 /* DWARF3, 5.6.8 says if PARM is a non-type generic parameter
11500 TMPL_DIE should have a child DW_AT_type attribute that is set
11501 to the type of the argument to PARM, which is ARG.
11502 If PARM is a type generic parameter, TMPL_DIE should have a
11503 child DW_AT_type that is set to ARG. */
11504 tmpl_type = TYPE_P (arg) ? arg : TREE_TYPE (arg);
11505 add_type_attribute (tmpl_die, tmpl_type,
11506 (TREE_THIS_VOLATILE (tmpl_type)
11507 ? TYPE_QUAL_VOLATILE : TYPE_UNQUALIFIED),
11508 parent_die);
11510 else
11512 /* So TMPL_DIE is a DIE representing a
11513 a generic generic template parameter, a.k.a template template
11514 parameter in C++ and arg is a template. */
11516 /* The DW_AT_GNU_template_name attribute of the DIE must be set
11517 to the name of the argument. */
11518 name = dwarf2_name (TYPE_P (arg) ? TYPE_NAME (arg) : arg, 1);
11519 if (name)
11520 add_AT_string (tmpl_die, DW_AT_GNU_template_name, name);
11523 if (TREE_CODE (parm) == PARM_DECL)
11524 /* So PARM is a non-type generic parameter.
11525 DWARF3 5.6.8 says we must set a DW_AT_const_value child
11526 attribute of TMPL_DIE which value represents the value
11527 of ARG.
11528 We must be careful here:
11529 The value of ARG might reference some function decls.
11530 We might currently be emitting debug info for a generic
11531 type and types are emitted before function decls, we don't
11532 know if the function decls referenced by ARG will actually be
11533 emitted after cgraph computations.
11534 So must defer the generation of the DW_AT_const_value to
11535 after cgraph is ready. */
11536 append_entry_to_tmpl_value_parm_die_table (tmpl_die, arg);
11539 return tmpl_die;
11542 /* Generate and return a DW_TAG_GNU_template_parameter_pack DIE representing.
11543 PARM_PACK must be a template parameter pack. The returned DIE
11544 will be child DIE of PARENT_DIE. */
11546 static dw_die_ref
11547 template_parameter_pack_die (tree parm_pack,
11548 tree parm_pack_args,
11549 dw_die_ref parent_die)
11551 dw_die_ref die;
11552 int j;
11554 gcc_assert (parent_die && parm_pack);
11556 die = new_die (DW_TAG_GNU_template_parameter_pack, parent_die, parm_pack);
11557 add_name_and_src_coords_attributes (die, parm_pack);
11558 for (j = 0; j < TREE_VEC_LENGTH (parm_pack_args); j++)
11559 generic_parameter_die (parm_pack,
11560 TREE_VEC_ELT (parm_pack_args, j),
11561 false /* Don't emit DW_AT_name */,
11562 die);
11563 return die;
11566 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
11567 an enumerated type. */
11569 static inline int
11570 type_is_enum (const_tree type)
11572 return TREE_CODE (type) == ENUMERAL_TYPE;
11575 /* Return the DBX register number described by a given RTL node. */
11577 static unsigned int
11578 dbx_reg_number (const_rtx rtl)
11580 unsigned regno = REGNO (rtl);
11582 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
11584 #ifdef LEAF_REG_REMAP
11585 if (crtl->uses_only_leaf_regs)
11587 int leaf_reg = LEAF_REG_REMAP (regno);
11588 if (leaf_reg != -1)
11589 regno = (unsigned) leaf_reg;
11591 #endif
11593 regno = DBX_REGISTER_NUMBER (regno);
11594 gcc_assert (regno != INVALID_REGNUM);
11595 return regno;
11598 /* Optionally add a DW_OP_piece term to a location description expression.
11599 DW_OP_piece is only added if the location description expression already
11600 doesn't end with DW_OP_piece. */
11602 static void
11603 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
11605 dw_loc_descr_ref loc;
11607 if (*list_head != NULL)
11609 /* Find the end of the chain. */
11610 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
11613 if (loc->dw_loc_opc != DW_OP_piece)
11614 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
11618 /* Return a location descriptor that designates a machine register or
11619 zero if there is none. */
11621 static dw_loc_descr_ref
11622 reg_loc_descriptor (rtx rtl, enum var_init_status initialized)
11624 rtx regs;
11626 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
11627 return 0;
11629 /* We only use "frame base" when we're sure we're talking about the
11630 post-prologue local stack frame. We do this by *not* running
11631 register elimination until this point, and recognizing the special
11632 argument pointer and soft frame pointer rtx's.
11633 Use DW_OP_fbreg offset DW_OP_stack_value in this case. */
11634 if ((rtl == arg_pointer_rtx || rtl == frame_pointer_rtx)
11635 && eliminate_regs (rtl, VOIDmode, NULL_RTX) != rtl)
11637 dw_loc_descr_ref result = NULL;
11639 if (dwarf_version >= 4 || !dwarf_strict)
11641 result = mem_loc_descriptor (rtl, GET_MODE (rtl), VOIDmode,
11642 initialized);
11643 if (result)
11644 add_loc_descr (&result,
11645 new_loc_descr (DW_OP_stack_value, 0, 0));
11647 return result;
11650 regs = targetm.dwarf_register_span (rtl);
11652 if (REG_NREGS (rtl) > 1 || regs)
11653 return multiple_reg_loc_descriptor (rtl, regs, initialized);
11654 else
11656 unsigned int dbx_regnum = dbx_reg_number (rtl);
11657 if (dbx_regnum == IGNORED_DWARF_REGNUM)
11658 return 0;
11659 return one_reg_loc_descriptor (dbx_regnum, initialized);
11663 /* Return a location descriptor that designates a machine register for
11664 a given hard register number. */
11666 static dw_loc_descr_ref
11667 one_reg_loc_descriptor (unsigned int regno, enum var_init_status initialized)
11669 dw_loc_descr_ref reg_loc_descr;
11671 if (regno <= 31)
11672 reg_loc_descr
11673 = new_loc_descr ((enum dwarf_location_atom) (DW_OP_reg0 + regno), 0, 0);
11674 else
11675 reg_loc_descr = new_loc_descr (DW_OP_regx, regno, 0);
11677 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
11678 add_loc_descr (&reg_loc_descr, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
11680 return reg_loc_descr;
11683 /* Given an RTL of a register, return a location descriptor that
11684 designates a value that spans more than one register. */
11686 static dw_loc_descr_ref
11687 multiple_reg_loc_descriptor (rtx rtl, rtx regs,
11688 enum var_init_status initialized)
11690 int size, i;
11691 dw_loc_descr_ref loc_result = NULL;
11693 /* Simple, contiguous registers. */
11694 if (regs == NULL_RTX)
11696 unsigned reg = REGNO (rtl);
11697 int nregs;
11699 #ifdef LEAF_REG_REMAP
11700 if (crtl->uses_only_leaf_regs)
11702 int leaf_reg = LEAF_REG_REMAP (reg);
11703 if (leaf_reg != -1)
11704 reg = (unsigned) leaf_reg;
11706 #endif
11708 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
11709 nregs = REG_NREGS (rtl);
11711 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
11713 loc_result = NULL;
11714 while (nregs--)
11716 dw_loc_descr_ref t;
11718 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg),
11719 VAR_INIT_STATUS_INITIALIZED);
11720 add_loc_descr (&loc_result, t);
11721 add_loc_descr_op_piece (&loc_result, size);
11722 ++reg;
11724 return loc_result;
11727 /* Now onto stupid register sets in non contiguous locations. */
11729 gcc_assert (GET_CODE (regs) == PARALLEL);
11731 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
11732 loc_result = NULL;
11734 for (i = 0; i < XVECLEN (regs, 0); ++i)
11736 dw_loc_descr_ref t;
11738 t = one_reg_loc_descriptor (dbx_reg_number (XVECEXP (regs, 0, i)),
11739 VAR_INIT_STATUS_INITIALIZED);
11740 add_loc_descr (&loc_result, t);
11741 add_loc_descr_op_piece (&loc_result, size);
11744 if (loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
11745 add_loc_descr (&loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
11746 return loc_result;
11749 static unsigned long size_of_int_loc_descriptor (HOST_WIDE_INT);
11751 /* Return a location descriptor that designates a constant i,
11752 as a compound operation from constant (i >> shift), constant shift
11753 and DW_OP_shl. */
11755 static dw_loc_descr_ref
11756 int_shift_loc_descriptor (HOST_WIDE_INT i, int shift)
11758 dw_loc_descr_ref ret = int_loc_descriptor (i >> shift);
11759 add_loc_descr (&ret, int_loc_descriptor (shift));
11760 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
11761 return ret;
11764 /* Return a location descriptor that designates a constant. */
11766 static dw_loc_descr_ref
11767 int_loc_descriptor (HOST_WIDE_INT i)
11769 enum dwarf_location_atom op;
11771 /* Pick the smallest representation of a constant, rather than just
11772 defaulting to the LEB encoding. */
11773 if (i >= 0)
11775 int clz = clz_hwi (i);
11776 int ctz = ctz_hwi (i);
11777 if (i <= 31)
11778 op = (enum dwarf_location_atom) (DW_OP_lit0 + i);
11779 else if (i <= 0xff)
11780 op = DW_OP_const1u;
11781 else if (i <= 0xffff)
11782 op = DW_OP_const2u;
11783 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 5
11784 && clz + 5 + 255 >= HOST_BITS_PER_WIDE_INT)
11785 /* DW_OP_litX DW_OP_litY DW_OP_shl takes just 3 bytes and
11786 DW_OP_litX DW_OP_const1u Y DW_OP_shl takes just 4 bytes,
11787 while DW_OP_const4u is 5 bytes. */
11788 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 5);
11789 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
11790 && clz + 8 + 31 >= HOST_BITS_PER_WIDE_INT)
11791 /* DW_OP_const1u X DW_OP_litY DW_OP_shl takes just 4 bytes,
11792 while DW_OP_const4u is 5 bytes. */
11793 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 8);
11794 else if (HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
11795 op = DW_OP_const4u;
11796 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
11797 && clz + 8 + 255 >= HOST_BITS_PER_WIDE_INT)
11798 /* DW_OP_const1u X DW_OP_const1u Y DW_OP_shl takes just 5 bytes,
11799 while DW_OP_constu of constant >= 0x100000000 takes at least
11800 6 bytes. */
11801 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 8);
11802 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 16
11803 && clz + 16 + (size_of_uleb128 (i) > 5 ? 255 : 31)
11804 >= HOST_BITS_PER_WIDE_INT)
11805 /* DW_OP_const2u X DW_OP_litY DW_OP_shl takes just 5 bytes,
11806 DW_OP_const2u X DW_OP_const1u Y DW_OP_shl takes 6 bytes,
11807 while DW_OP_constu takes in this case at least 6 bytes. */
11808 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 16);
11809 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 32
11810 && clz + 32 + 31 >= HOST_BITS_PER_WIDE_INT
11811 && size_of_uleb128 (i) > 6)
11812 /* DW_OP_const4u X DW_OP_litY DW_OP_shl takes just 7 bytes. */
11813 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 32);
11814 else
11815 op = DW_OP_constu;
11817 else
11819 if (i >= -0x80)
11820 op = DW_OP_const1s;
11821 else if (i >= -0x8000)
11822 op = DW_OP_const2s;
11823 else if (HOST_BITS_PER_WIDE_INT == 32 || i >= -0x80000000)
11825 if (size_of_int_loc_descriptor (i) < 5)
11827 dw_loc_descr_ref ret = int_loc_descriptor (-i);
11828 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
11829 return ret;
11831 op = DW_OP_const4s;
11833 else
11835 if (size_of_int_loc_descriptor (i)
11836 < (unsigned long) 1 + size_of_sleb128 (i))
11838 dw_loc_descr_ref ret = int_loc_descriptor (-i);
11839 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
11840 return ret;
11842 op = DW_OP_consts;
11846 return new_loc_descr (op, i, 0);
11849 /* Likewise, for unsigned constants. */
11851 static dw_loc_descr_ref
11852 uint_loc_descriptor (unsigned HOST_WIDE_INT i)
11854 const unsigned HOST_WIDE_INT max_int = INTTYPE_MAXIMUM (HOST_WIDE_INT);
11855 const unsigned HOST_WIDE_INT max_uint
11856 = INTTYPE_MAXIMUM (unsigned HOST_WIDE_INT);
11858 /* If possible, use the clever signed constants handling. */
11859 if (i <= max_int)
11860 return int_loc_descriptor ((HOST_WIDE_INT) i);
11862 /* Here, we are left with positive numbers that cannot be represented as
11863 HOST_WIDE_INT, i.e.:
11864 max (HOST_WIDE_INT) < i <= max (unsigned HOST_WIDE_INT)
11866 Using DW_OP_const4/8/./u operation to encode them consumes a lot of bytes
11867 whereas may be better to output a negative integer: thanks to integer
11868 wrapping, we know that:
11869 x = x - 2 ** DWARF2_ADDR_SIZE
11870 = x - 2 * (max (HOST_WIDE_INT) + 1)
11871 So numbers close to max (unsigned HOST_WIDE_INT) could be represented as
11872 small negative integers. Let's try that in cases it will clearly improve
11873 the encoding: there is no gain turning DW_OP_const4u into
11874 DW_OP_const4s. */
11875 if (DWARF2_ADDR_SIZE * 8 == HOST_BITS_PER_WIDE_INT
11876 && ((DWARF2_ADDR_SIZE == 4 && i > max_uint - 0x8000)
11877 || (DWARF2_ADDR_SIZE == 8 && i > max_uint - 0x80000000)))
11879 const unsigned HOST_WIDE_INT first_shift = i - max_int - 1;
11881 /* Now, -1 < first_shift <= max (HOST_WIDE_INT)
11882 i.e. 0 <= first_shift <= max (HOST_WIDE_INT). */
11883 const HOST_WIDE_INT second_shift
11884 = (HOST_WIDE_INT) first_shift - (HOST_WIDE_INT) max_int - 1;
11886 /* So we finally have:
11887 -max (HOST_WIDE_INT) - 1 <= second_shift <= -1.
11888 i.e. min (HOST_WIDE_INT) <= second_shift < 0. */
11889 return int_loc_descriptor (second_shift);
11892 /* Last chance: fallback to a simple constant operation. */
11893 return new_loc_descr
11894 ((HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
11895 ? DW_OP_const4u
11896 : DW_OP_const8u,
11897 i, 0);
11900 /* Generate and return a location description that computes the unsigned
11901 comparison of the two stack top entries (a OP b where b is the top-most
11902 entry and a is the second one). The KIND of comparison can be LT_EXPR,
11903 LE_EXPR, GT_EXPR or GE_EXPR. */
11905 static dw_loc_descr_ref
11906 uint_comparison_loc_list (enum tree_code kind)
11908 enum dwarf_location_atom op, flip_op;
11909 dw_loc_descr_ref ret, bra_node, jmp_node, tmp;
11911 switch (kind)
11913 case LT_EXPR:
11914 op = DW_OP_lt;
11915 break;
11916 case LE_EXPR:
11917 op = DW_OP_le;
11918 break;
11919 case GT_EXPR:
11920 op = DW_OP_gt;
11921 break;
11922 case GE_EXPR:
11923 op = DW_OP_ge;
11924 break;
11925 default:
11926 gcc_unreachable ();
11929 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
11930 jmp_node = new_loc_descr (DW_OP_skip, 0, 0);
11932 /* Until DWARFv4, operations all work on signed integers. It is nevertheless
11933 possible to perform unsigned comparisons: we just have to distinguish
11934 three cases:
11936 1. when a and b have the same sign (as signed integers); then we should
11937 return: a OP(signed) b;
11939 2. when a is a negative signed integer while b is a positive one, then a
11940 is a greater unsigned integer than b; likewise when a and b's roles
11941 are flipped.
11943 So first, compare the sign of the two operands. */
11944 ret = new_loc_descr (DW_OP_over, 0, 0);
11945 add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
11946 add_loc_descr (&ret, new_loc_descr (DW_OP_xor, 0, 0));
11947 /* If they have different signs (i.e. they have different sign bits), then
11948 the stack top value has now the sign bit set and thus it's smaller than
11949 zero. */
11950 add_loc_descr (&ret, new_loc_descr (DW_OP_lit0, 0, 0));
11951 add_loc_descr (&ret, new_loc_descr (DW_OP_lt, 0, 0));
11952 add_loc_descr (&ret, bra_node);
11954 /* We are in case 1. At this point, we know both operands have the same
11955 sign, to it's safe to use the built-in signed comparison. */
11956 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
11957 add_loc_descr (&ret, jmp_node);
11959 /* We are in case 2. Here, we know both operands do not have the same sign,
11960 so we have to flip the signed comparison. */
11961 flip_op = (kind == LT_EXPR || kind == LE_EXPR) ? DW_OP_gt : DW_OP_lt;
11962 tmp = new_loc_descr (flip_op, 0, 0);
11963 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
11964 bra_node->dw_loc_oprnd1.v.val_loc = tmp;
11965 add_loc_descr (&ret, tmp);
11967 /* This dummy operation is necessary to make the two branches join. */
11968 tmp = new_loc_descr (DW_OP_nop, 0, 0);
11969 jmp_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
11970 jmp_node->dw_loc_oprnd1.v.val_loc = tmp;
11971 add_loc_descr (&ret, tmp);
11973 return ret;
11976 /* Likewise, but takes the location description lists (might be destructive on
11977 them). Return NULL if either is NULL or if concatenation fails. */
11979 static dw_loc_list_ref
11980 loc_list_from_uint_comparison (dw_loc_list_ref left, dw_loc_list_ref right,
11981 enum tree_code kind)
11983 if (left == NULL || right == NULL)
11984 return NULL;
11986 add_loc_list (&left, right);
11987 if (left == NULL)
11988 return NULL;
11990 add_loc_descr_to_each (left, uint_comparison_loc_list (kind));
11991 return left;
11994 /* Return size_of_locs (int_shift_loc_descriptor (i, shift))
11995 without actually allocating it. */
11997 static unsigned long
11998 size_of_int_shift_loc_descriptor (HOST_WIDE_INT i, int shift)
12000 return size_of_int_loc_descriptor (i >> shift)
12001 + size_of_int_loc_descriptor (shift)
12002 + 1;
12005 /* Return size_of_locs (int_loc_descriptor (i)) without
12006 actually allocating it. */
12008 static unsigned long
12009 size_of_int_loc_descriptor (HOST_WIDE_INT i)
12011 unsigned long s;
12013 if (i >= 0)
12015 int clz, ctz;
12016 if (i <= 31)
12017 return 1;
12018 else if (i <= 0xff)
12019 return 2;
12020 else if (i <= 0xffff)
12021 return 3;
12022 clz = clz_hwi (i);
12023 ctz = ctz_hwi (i);
12024 if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 5
12025 && clz + 5 + 255 >= HOST_BITS_PER_WIDE_INT)
12026 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
12027 - clz - 5);
12028 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
12029 && clz + 8 + 31 >= HOST_BITS_PER_WIDE_INT)
12030 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
12031 - clz - 8);
12032 else if (HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
12033 return 5;
12034 s = size_of_uleb128 ((unsigned HOST_WIDE_INT) i);
12035 if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
12036 && clz + 8 + 255 >= HOST_BITS_PER_WIDE_INT)
12037 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
12038 - clz - 8);
12039 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 16
12040 && clz + 16 + (s > 5 ? 255 : 31) >= HOST_BITS_PER_WIDE_INT)
12041 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
12042 - clz - 16);
12043 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 32
12044 && clz + 32 + 31 >= HOST_BITS_PER_WIDE_INT
12045 && s > 6)
12046 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
12047 - clz - 32);
12048 else
12049 return 1 + s;
12051 else
12053 if (i >= -0x80)
12054 return 2;
12055 else if (i >= -0x8000)
12056 return 3;
12057 else if (HOST_BITS_PER_WIDE_INT == 32 || i >= -0x80000000)
12059 if (-(unsigned HOST_WIDE_INT) i != (unsigned HOST_WIDE_INT) i)
12061 s = size_of_int_loc_descriptor (-i) + 1;
12062 if (s < 5)
12063 return s;
12065 return 5;
12067 else
12069 unsigned long r = 1 + size_of_sleb128 (i);
12070 if (-(unsigned HOST_WIDE_INT) i != (unsigned HOST_WIDE_INT) i)
12072 s = size_of_int_loc_descriptor (-i) + 1;
12073 if (s < r)
12074 return s;
12076 return r;
12081 /* Return loc description representing "address" of integer value.
12082 This can appear only as toplevel expression. */
12084 static dw_loc_descr_ref
12085 address_of_int_loc_descriptor (int size, HOST_WIDE_INT i)
12087 int litsize;
12088 dw_loc_descr_ref loc_result = NULL;
12090 if (!(dwarf_version >= 4 || !dwarf_strict))
12091 return NULL;
12093 litsize = size_of_int_loc_descriptor (i);
12094 /* Determine if DW_OP_stack_value or DW_OP_implicit_value
12095 is more compact. For DW_OP_stack_value we need:
12096 litsize + 1 (DW_OP_stack_value)
12097 and for DW_OP_implicit_value:
12098 1 (DW_OP_implicit_value) + 1 (length) + size. */
12099 if ((int) DWARF2_ADDR_SIZE >= size && litsize + 1 <= 1 + 1 + size)
12101 loc_result = int_loc_descriptor (i);
12102 add_loc_descr (&loc_result,
12103 new_loc_descr (DW_OP_stack_value, 0, 0));
12104 return loc_result;
12107 loc_result = new_loc_descr (DW_OP_implicit_value,
12108 size, 0);
12109 loc_result->dw_loc_oprnd2.val_class = dw_val_class_const;
12110 loc_result->dw_loc_oprnd2.v.val_int = i;
12111 return loc_result;
12114 /* Return a location descriptor that designates a base+offset location. */
12116 static dw_loc_descr_ref
12117 based_loc_descr (rtx reg, HOST_WIDE_INT offset,
12118 enum var_init_status initialized)
12120 unsigned int regno;
12121 dw_loc_descr_ref result;
12122 dw_fde_ref fde = cfun->fde;
12124 /* We only use "frame base" when we're sure we're talking about the
12125 post-prologue local stack frame. We do this by *not* running
12126 register elimination until this point, and recognizing the special
12127 argument pointer and soft frame pointer rtx's. */
12128 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
12130 rtx elim = (ira_use_lra_p
12131 ? lra_eliminate_regs (reg, VOIDmode, NULL_RTX)
12132 : eliminate_regs (reg, VOIDmode, NULL_RTX));
12134 if (elim != reg)
12136 if (GET_CODE (elim) == PLUS)
12138 offset += INTVAL (XEXP (elim, 1));
12139 elim = XEXP (elim, 0);
12141 gcc_assert ((SUPPORTS_STACK_ALIGNMENT
12142 && (elim == hard_frame_pointer_rtx
12143 || elim == stack_pointer_rtx))
12144 || elim == (frame_pointer_needed
12145 ? hard_frame_pointer_rtx
12146 : stack_pointer_rtx));
12148 /* If drap register is used to align stack, use frame
12149 pointer + offset to access stack variables. If stack
12150 is aligned without drap, use stack pointer + offset to
12151 access stack variables. */
12152 if (crtl->stack_realign_tried
12153 && reg == frame_pointer_rtx)
12155 int base_reg
12156 = DWARF_FRAME_REGNUM ((fde && fde->drap_reg != INVALID_REGNUM)
12157 ? HARD_FRAME_POINTER_REGNUM
12158 : REGNO (elim));
12159 return new_reg_loc_descr (base_reg, offset);
12162 gcc_assert (frame_pointer_fb_offset_valid);
12163 offset += frame_pointer_fb_offset;
12164 return new_loc_descr (DW_OP_fbreg, offset, 0);
12168 regno = REGNO (reg);
12169 #ifdef LEAF_REG_REMAP
12170 if (crtl->uses_only_leaf_regs)
12172 int leaf_reg = LEAF_REG_REMAP (regno);
12173 if (leaf_reg != -1)
12174 regno = (unsigned) leaf_reg;
12176 #endif
12177 regno = DWARF_FRAME_REGNUM (regno);
12179 if (!optimize && fde
12180 && (fde->drap_reg == regno || fde->vdrap_reg == regno))
12182 /* Use cfa+offset to represent the location of arguments passed
12183 on the stack when drap is used to align stack.
12184 Only do this when not optimizing, for optimized code var-tracking
12185 is supposed to track where the arguments live and the register
12186 used as vdrap or drap in some spot might be used for something
12187 else in other part of the routine. */
12188 return new_loc_descr (DW_OP_fbreg, offset, 0);
12191 if (regno <= 31)
12192 result = new_loc_descr ((enum dwarf_location_atom) (DW_OP_breg0 + regno),
12193 offset, 0);
12194 else
12195 result = new_loc_descr (DW_OP_bregx, regno, offset);
12197 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
12198 add_loc_descr (&result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
12200 return result;
12203 /* Return true if this RTL expression describes a base+offset calculation. */
12205 static inline int
12206 is_based_loc (const_rtx rtl)
12208 return (GET_CODE (rtl) == PLUS
12209 && ((REG_P (XEXP (rtl, 0))
12210 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
12211 && CONST_INT_P (XEXP (rtl, 1)))));
12214 /* Try to handle TLS MEMs, for which mem_loc_descriptor on XEXP (mem, 0)
12215 failed. */
12217 static dw_loc_descr_ref
12218 tls_mem_loc_descriptor (rtx mem)
12220 tree base;
12221 dw_loc_descr_ref loc_result;
12223 if (MEM_EXPR (mem) == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
12224 return NULL;
12226 base = get_base_address (MEM_EXPR (mem));
12227 if (base == NULL
12228 || TREE_CODE (base) != VAR_DECL
12229 || !DECL_THREAD_LOCAL_P (base))
12230 return NULL;
12232 loc_result = loc_descriptor_from_tree (MEM_EXPR (mem), 1, NULL);
12233 if (loc_result == NULL)
12234 return NULL;
12236 if (MEM_OFFSET (mem))
12237 loc_descr_plus_const (&loc_result, MEM_OFFSET (mem));
12239 return loc_result;
12242 /* Output debug info about reason why we failed to expand expression as dwarf
12243 expression. */
12245 static void
12246 expansion_failed (tree expr, rtx rtl, char const *reason)
12248 if (dump_file && (dump_flags & TDF_DETAILS))
12250 fprintf (dump_file, "Failed to expand as dwarf: ");
12251 if (expr)
12252 print_generic_expr (dump_file, expr, dump_flags);
12253 if (rtl)
12255 fprintf (dump_file, "\n");
12256 print_rtl (dump_file, rtl);
12258 fprintf (dump_file, "\nReason: %s\n", reason);
12262 /* Helper function for const_ok_for_output. */
12264 static bool
12265 const_ok_for_output_1 (rtx rtl)
12267 if (GET_CODE (rtl) == UNSPEC)
12269 /* If delegitimize_address couldn't do anything with the UNSPEC, assume
12270 we can't express it in the debug info. */
12271 /* Don't complain about TLS UNSPECs, those are just too hard to
12272 delegitimize. Note this could be a non-decl SYMBOL_REF such as
12273 one in a constant pool entry, so testing SYMBOL_REF_TLS_MODEL
12274 rather than DECL_THREAD_LOCAL_P is not just an optimization. */
12275 if (flag_checking
12276 && (XVECLEN (rtl, 0) == 0
12277 || GET_CODE (XVECEXP (rtl, 0, 0)) != SYMBOL_REF
12278 || SYMBOL_REF_TLS_MODEL (XVECEXP (rtl, 0, 0)) == TLS_MODEL_NONE))
12279 inform (current_function_decl
12280 ? DECL_SOURCE_LOCATION (current_function_decl)
12281 : UNKNOWN_LOCATION,
12282 #if NUM_UNSPEC_VALUES > 0
12283 "non-delegitimized UNSPEC %s (%d) found in variable location",
12284 ((XINT (rtl, 1) >= 0 && XINT (rtl, 1) < NUM_UNSPEC_VALUES)
12285 ? unspec_strings[XINT (rtl, 1)] : "unknown"),
12286 XINT (rtl, 1));
12287 #else
12288 "non-delegitimized UNSPEC %d found in variable location",
12289 XINT (rtl, 1));
12290 #endif
12291 expansion_failed (NULL_TREE, rtl,
12292 "UNSPEC hasn't been delegitimized.\n");
12293 return false;
12296 if (targetm.const_not_ok_for_debug_p (rtl))
12298 expansion_failed (NULL_TREE, rtl,
12299 "Expression rejected for debug by the backend.\n");
12300 return false;
12303 /* FIXME: Refer to PR60655. It is possible for simplification
12304 of rtl expressions in var tracking to produce such expressions.
12305 We should really identify / validate expressions
12306 enclosed in CONST that can be handled by assemblers on various
12307 targets and only handle legitimate cases here. */
12308 if (GET_CODE (rtl) != SYMBOL_REF)
12310 if (GET_CODE (rtl) == NOT)
12311 return false;
12312 return true;
12315 if (CONSTANT_POOL_ADDRESS_P (rtl))
12317 bool marked;
12318 get_pool_constant_mark (rtl, &marked);
12319 /* If all references to this pool constant were optimized away,
12320 it was not output and thus we can't represent it. */
12321 if (!marked)
12323 expansion_failed (NULL_TREE, rtl,
12324 "Constant was removed from constant pool.\n");
12325 return false;
12329 if (SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
12330 return false;
12332 /* Avoid references to external symbols in debug info, on several targets
12333 the linker might even refuse to link when linking a shared library,
12334 and in many other cases the relocations for .debug_info/.debug_loc are
12335 dropped, so the address becomes zero anyway. Hidden symbols, guaranteed
12336 to be defined within the same shared library or executable are fine. */
12337 if (SYMBOL_REF_EXTERNAL_P (rtl))
12339 tree decl = SYMBOL_REF_DECL (rtl);
12341 if (decl == NULL || !targetm.binds_local_p (decl))
12343 expansion_failed (NULL_TREE, rtl,
12344 "Symbol not defined in current TU.\n");
12345 return false;
12349 return true;
12352 /* Return true if constant RTL can be emitted in DW_OP_addr or
12353 DW_AT_const_value. TLS SYMBOL_REFs, external SYMBOL_REFs or
12354 non-marked constant pool SYMBOL_REFs can't be referenced in it. */
12356 static bool
12357 const_ok_for_output (rtx rtl)
12359 if (GET_CODE (rtl) == SYMBOL_REF)
12360 return const_ok_for_output_1 (rtl);
12362 if (GET_CODE (rtl) == CONST)
12364 subrtx_var_iterator::array_type array;
12365 FOR_EACH_SUBRTX_VAR (iter, array, XEXP (rtl, 0), ALL)
12366 if (!const_ok_for_output_1 (*iter))
12367 return false;
12368 return true;
12371 return true;
12374 /* Return a reference to DW_TAG_base_type corresponding to MODE and UNSIGNEDP
12375 if possible, NULL otherwise. */
12377 static dw_die_ref
12378 base_type_for_mode (machine_mode mode, bool unsignedp)
12380 dw_die_ref type_die;
12381 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
12383 if (type == NULL)
12384 return NULL;
12385 switch (TREE_CODE (type))
12387 case INTEGER_TYPE:
12388 case REAL_TYPE:
12389 break;
12390 default:
12391 return NULL;
12393 type_die = lookup_type_die (type);
12394 if (!type_die)
12395 type_die = modified_type_die (type, TYPE_UNQUALIFIED, comp_unit_die ());
12396 if (type_die == NULL || type_die->die_tag != DW_TAG_base_type)
12397 return NULL;
12398 return type_die;
12401 /* For OP descriptor assumed to be in unsigned MODE, convert it to a unsigned
12402 type matching MODE, or, if MODE is narrower than or as wide as
12403 DWARF2_ADDR_SIZE, untyped. Return NULL if the conversion is not
12404 possible. */
12406 static dw_loc_descr_ref
12407 convert_descriptor_to_mode (machine_mode mode, dw_loc_descr_ref op)
12409 machine_mode outer_mode = mode;
12410 dw_die_ref type_die;
12411 dw_loc_descr_ref cvt;
12413 if (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
12415 add_loc_descr (&op, new_loc_descr (DW_OP_GNU_convert, 0, 0));
12416 return op;
12418 type_die = base_type_for_mode (outer_mode, 1);
12419 if (type_die == NULL)
12420 return NULL;
12421 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12422 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12423 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12424 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12425 add_loc_descr (&op, cvt);
12426 return op;
12429 /* Return location descriptor for comparison OP with operands OP0 and OP1. */
12431 static dw_loc_descr_ref
12432 compare_loc_descriptor (enum dwarf_location_atom op, dw_loc_descr_ref op0,
12433 dw_loc_descr_ref op1)
12435 dw_loc_descr_ref ret = op0;
12436 add_loc_descr (&ret, op1);
12437 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
12438 if (STORE_FLAG_VALUE != 1)
12440 add_loc_descr (&ret, int_loc_descriptor (STORE_FLAG_VALUE));
12441 add_loc_descr (&ret, new_loc_descr (DW_OP_mul, 0, 0));
12443 return ret;
12446 /* Return location descriptor for signed comparison OP RTL. */
12448 static dw_loc_descr_ref
12449 scompare_loc_descriptor (enum dwarf_location_atom op, rtx rtl,
12450 machine_mode mem_mode)
12452 machine_mode op_mode = GET_MODE (XEXP (rtl, 0));
12453 dw_loc_descr_ref op0, op1;
12454 int shift;
12456 if (op_mode == VOIDmode)
12457 op_mode = GET_MODE (XEXP (rtl, 1));
12458 if (op_mode == VOIDmode)
12459 return NULL;
12461 if (dwarf_strict
12462 && (GET_MODE_CLASS (op_mode) != MODE_INT
12463 || GET_MODE_SIZE (op_mode) > DWARF2_ADDR_SIZE))
12464 return NULL;
12466 op0 = mem_loc_descriptor (XEXP (rtl, 0), op_mode, mem_mode,
12467 VAR_INIT_STATUS_INITIALIZED);
12468 op1 = mem_loc_descriptor (XEXP (rtl, 1), op_mode, mem_mode,
12469 VAR_INIT_STATUS_INITIALIZED);
12471 if (op0 == NULL || op1 == NULL)
12472 return NULL;
12474 if (GET_MODE_CLASS (op_mode) != MODE_INT
12475 || GET_MODE_SIZE (op_mode) == DWARF2_ADDR_SIZE)
12476 return compare_loc_descriptor (op, op0, op1);
12478 if (GET_MODE_SIZE (op_mode) > DWARF2_ADDR_SIZE)
12480 dw_die_ref type_die = base_type_for_mode (op_mode, 0);
12481 dw_loc_descr_ref cvt;
12483 if (type_die == NULL)
12484 return NULL;
12485 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12486 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12487 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12488 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12489 add_loc_descr (&op0, cvt);
12490 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12491 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12492 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12493 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12494 add_loc_descr (&op1, cvt);
12495 return compare_loc_descriptor (op, op0, op1);
12498 shift = (DWARF2_ADDR_SIZE - GET_MODE_SIZE (op_mode)) * BITS_PER_UNIT;
12499 /* For eq/ne, if the operands are known to be zero-extended,
12500 there is no need to do the fancy shifting up. */
12501 if (op == DW_OP_eq || op == DW_OP_ne)
12503 dw_loc_descr_ref last0, last1;
12504 for (last0 = op0; last0->dw_loc_next != NULL; last0 = last0->dw_loc_next)
12506 for (last1 = op1; last1->dw_loc_next != NULL; last1 = last1->dw_loc_next)
12508 /* deref_size zero extends, and for constants we can check
12509 whether they are zero extended or not. */
12510 if (((last0->dw_loc_opc == DW_OP_deref_size
12511 && last0->dw_loc_oprnd1.v.val_int <= GET_MODE_SIZE (op_mode))
12512 || (CONST_INT_P (XEXP (rtl, 0))
12513 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (rtl, 0))
12514 == (INTVAL (XEXP (rtl, 0)) & GET_MODE_MASK (op_mode))))
12515 && ((last1->dw_loc_opc == DW_OP_deref_size
12516 && last1->dw_loc_oprnd1.v.val_int <= GET_MODE_SIZE (op_mode))
12517 || (CONST_INT_P (XEXP (rtl, 1))
12518 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (rtl, 1))
12519 == (INTVAL (XEXP (rtl, 1)) & GET_MODE_MASK (op_mode)))))
12520 return compare_loc_descriptor (op, op0, op1);
12522 /* EQ/NE comparison against constant in narrower type than
12523 DWARF2_ADDR_SIZE can be performed either as
12524 DW_OP_const1u <shift> DW_OP_shl DW_OP_const* <cst << shift>
12525 DW_OP_{eq,ne}
12527 DW_OP_const*u <mode_mask> DW_OP_and DW_OP_const* <cst & mode_mask>
12528 DW_OP_{eq,ne}. Pick whatever is shorter. */
12529 if (CONST_INT_P (XEXP (rtl, 1))
12530 && GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
12531 && (size_of_int_loc_descriptor (shift) + 1
12532 + size_of_int_loc_descriptor (INTVAL (XEXP (rtl, 1)) << shift)
12533 >= size_of_int_loc_descriptor (GET_MODE_MASK (op_mode)) + 1
12534 + size_of_int_loc_descriptor (INTVAL (XEXP (rtl, 1))
12535 & GET_MODE_MASK (op_mode))))
12537 add_loc_descr (&op0, int_loc_descriptor (GET_MODE_MASK (op_mode)));
12538 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
12539 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1))
12540 & GET_MODE_MASK (op_mode));
12541 return compare_loc_descriptor (op, op0, op1);
12544 add_loc_descr (&op0, int_loc_descriptor (shift));
12545 add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
12546 if (CONST_INT_P (XEXP (rtl, 1)))
12547 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1)) << shift);
12548 else
12550 add_loc_descr (&op1, int_loc_descriptor (shift));
12551 add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
12553 return compare_loc_descriptor (op, op0, op1);
12556 /* Return location descriptor for unsigned comparison OP RTL. */
12558 static dw_loc_descr_ref
12559 ucompare_loc_descriptor (enum dwarf_location_atom op, rtx rtl,
12560 machine_mode mem_mode)
12562 machine_mode op_mode = GET_MODE (XEXP (rtl, 0));
12563 dw_loc_descr_ref op0, op1;
12565 if (op_mode == VOIDmode)
12566 op_mode = GET_MODE (XEXP (rtl, 1));
12567 if (op_mode == VOIDmode)
12568 return NULL;
12569 if (GET_MODE_CLASS (op_mode) != MODE_INT)
12570 return NULL;
12572 if (dwarf_strict && GET_MODE_SIZE (op_mode) > DWARF2_ADDR_SIZE)
12573 return NULL;
12575 op0 = mem_loc_descriptor (XEXP (rtl, 0), op_mode, mem_mode,
12576 VAR_INIT_STATUS_INITIALIZED);
12577 op1 = mem_loc_descriptor (XEXP (rtl, 1), op_mode, mem_mode,
12578 VAR_INIT_STATUS_INITIALIZED);
12580 if (op0 == NULL || op1 == NULL)
12581 return NULL;
12583 if (GET_MODE_SIZE (op_mode) < DWARF2_ADDR_SIZE)
12585 HOST_WIDE_INT mask = GET_MODE_MASK (op_mode);
12586 dw_loc_descr_ref last0, last1;
12587 for (last0 = op0; last0->dw_loc_next != NULL; last0 = last0->dw_loc_next)
12589 for (last1 = op1; last1->dw_loc_next != NULL; last1 = last1->dw_loc_next)
12591 if (CONST_INT_P (XEXP (rtl, 0)))
12592 op0 = int_loc_descriptor (INTVAL (XEXP (rtl, 0)) & mask);
12593 /* deref_size zero extends, so no need to mask it again. */
12594 else if (last0->dw_loc_opc != DW_OP_deref_size
12595 || last0->dw_loc_oprnd1.v.val_int > GET_MODE_SIZE (op_mode))
12597 add_loc_descr (&op0, int_loc_descriptor (mask));
12598 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
12600 if (CONST_INT_P (XEXP (rtl, 1)))
12601 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1)) & mask);
12602 /* deref_size zero extends, so no need to mask it again. */
12603 else if (last1->dw_loc_opc != DW_OP_deref_size
12604 || last1->dw_loc_oprnd1.v.val_int > GET_MODE_SIZE (op_mode))
12606 add_loc_descr (&op1, int_loc_descriptor (mask));
12607 add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
12610 else if (GET_MODE_SIZE (op_mode) == DWARF2_ADDR_SIZE)
12612 HOST_WIDE_INT bias = 1;
12613 bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
12614 add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
12615 if (CONST_INT_P (XEXP (rtl, 1)))
12616 op1 = int_loc_descriptor ((unsigned HOST_WIDE_INT) bias
12617 + INTVAL (XEXP (rtl, 1)));
12618 else
12619 add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst,
12620 bias, 0));
12622 return compare_loc_descriptor (op, op0, op1);
12625 /* Return location descriptor for {U,S}{MIN,MAX}. */
12627 static dw_loc_descr_ref
12628 minmax_loc_descriptor (rtx rtl, machine_mode mode,
12629 machine_mode mem_mode)
12631 enum dwarf_location_atom op;
12632 dw_loc_descr_ref op0, op1, ret;
12633 dw_loc_descr_ref bra_node, drop_node;
12635 if (dwarf_strict
12636 && (GET_MODE_CLASS (mode) != MODE_INT
12637 || GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE))
12638 return NULL;
12640 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12641 VAR_INIT_STATUS_INITIALIZED);
12642 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
12643 VAR_INIT_STATUS_INITIALIZED);
12645 if (op0 == NULL || op1 == NULL)
12646 return NULL;
12648 add_loc_descr (&op0, new_loc_descr (DW_OP_dup, 0, 0));
12649 add_loc_descr (&op1, new_loc_descr (DW_OP_swap, 0, 0));
12650 add_loc_descr (&op1, new_loc_descr (DW_OP_over, 0, 0));
12651 if (GET_CODE (rtl) == UMIN || GET_CODE (rtl) == UMAX)
12653 if (GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE)
12655 HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12656 add_loc_descr (&op0, int_loc_descriptor (mask));
12657 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
12658 add_loc_descr (&op1, int_loc_descriptor (mask));
12659 add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
12661 else if (GET_MODE_SIZE (mode) == DWARF2_ADDR_SIZE)
12663 HOST_WIDE_INT bias = 1;
12664 bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
12665 add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
12666 add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst, bias, 0));
12669 else if (GET_MODE_CLASS (mode) == MODE_INT
12670 && GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE)
12672 int shift = (DWARF2_ADDR_SIZE - GET_MODE_SIZE (mode)) * BITS_PER_UNIT;
12673 add_loc_descr (&op0, int_loc_descriptor (shift));
12674 add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
12675 add_loc_descr (&op1, int_loc_descriptor (shift));
12676 add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
12678 else if (GET_MODE_CLASS (mode) == MODE_INT
12679 && GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
12681 dw_die_ref type_die = base_type_for_mode (mode, 0);
12682 dw_loc_descr_ref cvt;
12683 if (type_die == NULL)
12684 return NULL;
12685 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12686 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12687 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12688 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12689 add_loc_descr (&op0, cvt);
12690 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12691 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12692 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12693 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12694 add_loc_descr (&op1, cvt);
12697 if (GET_CODE (rtl) == SMIN || GET_CODE (rtl) == UMIN)
12698 op = DW_OP_lt;
12699 else
12700 op = DW_OP_gt;
12701 ret = op0;
12702 add_loc_descr (&ret, op1);
12703 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
12704 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
12705 add_loc_descr (&ret, bra_node);
12706 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12707 drop_node = new_loc_descr (DW_OP_drop, 0, 0);
12708 add_loc_descr (&ret, drop_node);
12709 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
12710 bra_node->dw_loc_oprnd1.v.val_loc = drop_node;
12711 if ((GET_CODE (rtl) == SMIN || GET_CODE (rtl) == SMAX)
12712 && GET_MODE_CLASS (mode) == MODE_INT
12713 && GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
12714 ret = convert_descriptor_to_mode (mode, ret);
12715 return ret;
12718 /* Helper function for mem_loc_descriptor. Perform OP binary op,
12719 but after converting arguments to type_die, afterwards
12720 convert back to unsigned. */
12722 static dw_loc_descr_ref
12723 typed_binop (enum dwarf_location_atom op, rtx rtl, dw_die_ref type_die,
12724 machine_mode mode, machine_mode mem_mode)
12726 dw_loc_descr_ref cvt, op0, op1;
12728 if (type_die == NULL)
12729 return NULL;
12730 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12731 VAR_INIT_STATUS_INITIALIZED);
12732 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
12733 VAR_INIT_STATUS_INITIALIZED);
12734 if (op0 == NULL || op1 == NULL)
12735 return NULL;
12736 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12737 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12738 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12739 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12740 add_loc_descr (&op0, cvt);
12741 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12742 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12743 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12744 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12745 add_loc_descr (&op1, cvt);
12746 add_loc_descr (&op0, op1);
12747 add_loc_descr (&op0, new_loc_descr (op, 0, 0));
12748 return convert_descriptor_to_mode (mode, op0);
12751 /* CLZ (where constV is CLZ_DEFINED_VALUE_AT_ZERO computed value,
12752 const0 is DW_OP_lit0 or corresponding typed constant,
12753 const1 is DW_OP_lit1 or corresponding typed constant
12754 and constMSB is constant with just the MSB bit set
12755 for the mode):
12756 DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
12757 L1: const0 DW_OP_swap
12758 L2: DW_OP_dup constMSB DW_OP_and DW_OP_bra <L3> const1 DW_OP_shl
12759 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
12760 L3: DW_OP_drop
12761 L4: DW_OP_nop
12763 CTZ is similar:
12764 DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
12765 L1: const0 DW_OP_swap
12766 L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
12767 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
12768 L3: DW_OP_drop
12769 L4: DW_OP_nop
12771 FFS is similar:
12772 DW_OP_dup DW_OP_bra <L1> DW_OP_drop const0 DW_OP_skip <L4>
12773 L1: const1 DW_OP_swap
12774 L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
12775 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
12776 L3: DW_OP_drop
12777 L4: DW_OP_nop */
12779 static dw_loc_descr_ref
12780 clz_loc_descriptor (rtx rtl, machine_mode mode,
12781 machine_mode mem_mode)
12783 dw_loc_descr_ref op0, ret, tmp;
12784 HOST_WIDE_INT valv;
12785 dw_loc_descr_ref l1jump, l1label;
12786 dw_loc_descr_ref l2jump, l2label;
12787 dw_loc_descr_ref l3jump, l3label;
12788 dw_loc_descr_ref l4jump, l4label;
12789 rtx msb;
12791 if (GET_MODE_CLASS (mode) != MODE_INT
12792 || GET_MODE (XEXP (rtl, 0)) != mode)
12793 return NULL;
12795 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12796 VAR_INIT_STATUS_INITIALIZED);
12797 if (op0 == NULL)
12798 return NULL;
12799 ret = op0;
12800 if (GET_CODE (rtl) == CLZ)
12802 if (!CLZ_DEFINED_VALUE_AT_ZERO (mode, valv))
12803 valv = GET_MODE_BITSIZE (mode);
12805 else if (GET_CODE (rtl) == FFS)
12806 valv = 0;
12807 else if (!CTZ_DEFINED_VALUE_AT_ZERO (mode, valv))
12808 valv = GET_MODE_BITSIZE (mode);
12809 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
12810 l1jump = new_loc_descr (DW_OP_bra, 0, 0);
12811 add_loc_descr (&ret, l1jump);
12812 add_loc_descr (&ret, new_loc_descr (DW_OP_drop, 0, 0));
12813 tmp = mem_loc_descriptor (GEN_INT (valv), mode, mem_mode,
12814 VAR_INIT_STATUS_INITIALIZED);
12815 if (tmp == NULL)
12816 return NULL;
12817 add_loc_descr (&ret, tmp);
12818 l4jump = new_loc_descr (DW_OP_skip, 0, 0);
12819 add_loc_descr (&ret, l4jump);
12820 l1label = mem_loc_descriptor (GET_CODE (rtl) == FFS
12821 ? const1_rtx : const0_rtx,
12822 mode, mem_mode,
12823 VAR_INIT_STATUS_INITIALIZED);
12824 if (l1label == NULL)
12825 return NULL;
12826 add_loc_descr (&ret, l1label);
12827 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12828 l2label = new_loc_descr (DW_OP_dup, 0, 0);
12829 add_loc_descr (&ret, l2label);
12830 if (GET_CODE (rtl) != CLZ)
12831 msb = const1_rtx;
12832 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
12833 msb = GEN_INT ((unsigned HOST_WIDE_INT) 1
12834 << (GET_MODE_BITSIZE (mode) - 1));
12835 else
12836 msb = immed_wide_int_const
12837 (wi::set_bit_in_zero (GET_MODE_PRECISION (mode) - 1,
12838 GET_MODE_PRECISION (mode)), mode);
12839 if (GET_CODE (msb) == CONST_INT && INTVAL (msb) < 0)
12840 tmp = new_loc_descr (HOST_BITS_PER_WIDE_INT == 32
12841 ? DW_OP_const4u : HOST_BITS_PER_WIDE_INT == 64
12842 ? DW_OP_const8u : DW_OP_constu, INTVAL (msb), 0);
12843 else
12844 tmp = mem_loc_descriptor (msb, mode, mem_mode,
12845 VAR_INIT_STATUS_INITIALIZED);
12846 if (tmp == NULL)
12847 return NULL;
12848 add_loc_descr (&ret, tmp);
12849 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
12850 l3jump = new_loc_descr (DW_OP_bra, 0, 0);
12851 add_loc_descr (&ret, l3jump);
12852 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
12853 VAR_INIT_STATUS_INITIALIZED);
12854 if (tmp == NULL)
12855 return NULL;
12856 add_loc_descr (&ret, tmp);
12857 add_loc_descr (&ret, new_loc_descr (GET_CODE (rtl) == CLZ
12858 ? DW_OP_shl : DW_OP_shr, 0, 0));
12859 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12860 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, 1, 0));
12861 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12862 l2jump = new_loc_descr (DW_OP_skip, 0, 0);
12863 add_loc_descr (&ret, l2jump);
12864 l3label = new_loc_descr (DW_OP_drop, 0, 0);
12865 add_loc_descr (&ret, l3label);
12866 l4label = new_loc_descr (DW_OP_nop, 0, 0);
12867 add_loc_descr (&ret, l4label);
12868 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12869 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
12870 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12871 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
12872 l3jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12873 l3jump->dw_loc_oprnd1.v.val_loc = l3label;
12874 l4jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12875 l4jump->dw_loc_oprnd1.v.val_loc = l4label;
12876 return ret;
12879 /* POPCOUNT (const0 is DW_OP_lit0 or corresponding typed constant,
12880 const1 is DW_OP_lit1 or corresponding typed constant):
12881 const0 DW_OP_swap
12882 L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
12883 DW_OP_plus DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
12884 L2: DW_OP_drop
12886 PARITY is similar:
12887 L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
12888 DW_OP_xor DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
12889 L2: DW_OP_drop */
12891 static dw_loc_descr_ref
12892 popcount_loc_descriptor (rtx rtl, machine_mode mode,
12893 machine_mode mem_mode)
12895 dw_loc_descr_ref op0, ret, tmp;
12896 dw_loc_descr_ref l1jump, l1label;
12897 dw_loc_descr_ref l2jump, l2label;
12899 if (GET_MODE_CLASS (mode) != MODE_INT
12900 || GET_MODE (XEXP (rtl, 0)) != mode)
12901 return NULL;
12903 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12904 VAR_INIT_STATUS_INITIALIZED);
12905 if (op0 == NULL)
12906 return NULL;
12907 ret = op0;
12908 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
12909 VAR_INIT_STATUS_INITIALIZED);
12910 if (tmp == NULL)
12911 return NULL;
12912 add_loc_descr (&ret, tmp);
12913 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12914 l1label = new_loc_descr (DW_OP_dup, 0, 0);
12915 add_loc_descr (&ret, l1label);
12916 l2jump = new_loc_descr (DW_OP_bra, 0, 0);
12917 add_loc_descr (&ret, l2jump);
12918 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
12919 add_loc_descr (&ret, new_loc_descr (DW_OP_rot, 0, 0));
12920 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
12921 VAR_INIT_STATUS_INITIALIZED);
12922 if (tmp == NULL)
12923 return NULL;
12924 add_loc_descr (&ret, tmp);
12925 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
12926 add_loc_descr (&ret, new_loc_descr (GET_CODE (rtl) == POPCOUNT
12927 ? DW_OP_plus : DW_OP_xor, 0, 0));
12928 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12929 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
12930 VAR_INIT_STATUS_INITIALIZED);
12931 add_loc_descr (&ret, tmp);
12932 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
12933 l1jump = new_loc_descr (DW_OP_skip, 0, 0);
12934 add_loc_descr (&ret, l1jump);
12935 l2label = new_loc_descr (DW_OP_drop, 0, 0);
12936 add_loc_descr (&ret, l2label);
12937 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12938 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
12939 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12940 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
12941 return ret;
12944 /* BSWAP (constS is initial shift count, either 56 or 24):
12945 constS const0
12946 L1: DW_OP_pick <2> constS DW_OP_pick <3> DW_OP_minus DW_OP_shr
12947 const255 DW_OP_and DW_OP_pick <2> DW_OP_shl DW_OP_or
12948 DW_OP_swap DW_OP_dup const0 DW_OP_eq DW_OP_bra <L2> const8
12949 DW_OP_minus DW_OP_swap DW_OP_skip <L1>
12950 L2: DW_OP_drop DW_OP_swap DW_OP_drop */
12952 static dw_loc_descr_ref
12953 bswap_loc_descriptor (rtx rtl, machine_mode mode,
12954 machine_mode mem_mode)
12956 dw_loc_descr_ref op0, ret, tmp;
12957 dw_loc_descr_ref l1jump, l1label;
12958 dw_loc_descr_ref l2jump, l2label;
12960 if (GET_MODE_CLASS (mode) != MODE_INT
12961 || BITS_PER_UNIT != 8
12962 || (GET_MODE_BITSIZE (mode) != 32
12963 && GET_MODE_BITSIZE (mode) != 64))
12964 return NULL;
12966 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12967 VAR_INIT_STATUS_INITIALIZED);
12968 if (op0 == NULL)
12969 return NULL;
12971 ret = op0;
12972 tmp = mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode) - 8),
12973 mode, mem_mode,
12974 VAR_INIT_STATUS_INITIALIZED);
12975 if (tmp == NULL)
12976 return NULL;
12977 add_loc_descr (&ret, tmp);
12978 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
12979 VAR_INIT_STATUS_INITIALIZED);
12980 if (tmp == NULL)
12981 return NULL;
12982 add_loc_descr (&ret, tmp);
12983 l1label = new_loc_descr (DW_OP_pick, 2, 0);
12984 add_loc_descr (&ret, l1label);
12985 tmp = mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode) - 8),
12986 mode, mem_mode,
12987 VAR_INIT_STATUS_INITIALIZED);
12988 add_loc_descr (&ret, tmp);
12989 add_loc_descr (&ret, new_loc_descr (DW_OP_pick, 3, 0));
12990 add_loc_descr (&ret, new_loc_descr (DW_OP_minus, 0, 0));
12991 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
12992 tmp = mem_loc_descriptor (GEN_INT (255), mode, mem_mode,
12993 VAR_INIT_STATUS_INITIALIZED);
12994 if (tmp == NULL)
12995 return NULL;
12996 add_loc_descr (&ret, tmp);
12997 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
12998 add_loc_descr (&ret, new_loc_descr (DW_OP_pick, 2, 0));
12999 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
13000 add_loc_descr (&ret, new_loc_descr (DW_OP_or, 0, 0));
13001 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
13002 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
13003 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
13004 VAR_INIT_STATUS_INITIALIZED);
13005 add_loc_descr (&ret, tmp);
13006 add_loc_descr (&ret, new_loc_descr (DW_OP_eq, 0, 0));
13007 l2jump = new_loc_descr (DW_OP_bra, 0, 0);
13008 add_loc_descr (&ret, l2jump);
13009 tmp = mem_loc_descriptor (GEN_INT (8), mode, mem_mode,
13010 VAR_INIT_STATUS_INITIALIZED);
13011 add_loc_descr (&ret, tmp);
13012 add_loc_descr (&ret, new_loc_descr (DW_OP_minus, 0, 0));
13013 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
13014 l1jump = new_loc_descr (DW_OP_skip, 0, 0);
13015 add_loc_descr (&ret, l1jump);
13016 l2label = new_loc_descr (DW_OP_drop, 0, 0);
13017 add_loc_descr (&ret, l2label);
13018 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
13019 add_loc_descr (&ret, new_loc_descr (DW_OP_drop, 0, 0));
13020 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
13021 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
13022 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
13023 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
13024 return ret;
13027 /* ROTATE (constMASK is mode mask, BITSIZE is bitsize of mode):
13028 DW_OP_over DW_OP_over DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
13029 [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_neg
13030 DW_OP_plus_uconst <BITSIZE> DW_OP_shr DW_OP_or
13032 ROTATERT is similar:
13033 DW_OP_over DW_OP_over DW_OP_neg DW_OP_plus_uconst <BITSIZE>
13034 DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
13035 [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_shr DW_OP_or */
13037 static dw_loc_descr_ref
13038 rotate_loc_descriptor (rtx rtl, machine_mode mode,
13039 machine_mode mem_mode)
13041 rtx rtlop1 = XEXP (rtl, 1);
13042 dw_loc_descr_ref op0, op1, ret, mask[2] = { NULL, NULL };
13043 int i;
13045 if (GET_MODE_CLASS (mode) != MODE_INT)
13046 return NULL;
13048 if (GET_MODE (rtlop1) != VOIDmode
13049 && GET_MODE_BITSIZE (GET_MODE (rtlop1)) < GET_MODE_BITSIZE (mode))
13050 rtlop1 = gen_rtx_ZERO_EXTEND (mode, rtlop1);
13051 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13052 VAR_INIT_STATUS_INITIALIZED);
13053 op1 = mem_loc_descriptor (rtlop1, mode, mem_mode,
13054 VAR_INIT_STATUS_INITIALIZED);
13055 if (op0 == NULL || op1 == NULL)
13056 return NULL;
13057 if (GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE)
13058 for (i = 0; i < 2; i++)
13060 if (GET_MODE_BITSIZE (mode) < HOST_BITS_PER_WIDE_INT)
13061 mask[i] = mem_loc_descriptor (GEN_INT (GET_MODE_MASK (mode)),
13062 mode, mem_mode,
13063 VAR_INIT_STATUS_INITIALIZED);
13064 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
13065 mask[i] = new_loc_descr (HOST_BITS_PER_WIDE_INT == 32
13066 ? DW_OP_const4u
13067 : HOST_BITS_PER_WIDE_INT == 64
13068 ? DW_OP_const8u : DW_OP_constu,
13069 GET_MODE_MASK (mode), 0);
13070 else
13071 mask[i] = NULL;
13072 if (mask[i] == NULL)
13073 return NULL;
13074 add_loc_descr (&mask[i], new_loc_descr (DW_OP_and, 0, 0));
13076 ret = op0;
13077 add_loc_descr (&ret, op1);
13078 add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
13079 add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
13080 if (GET_CODE (rtl) == ROTATERT)
13082 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
13083 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst,
13084 GET_MODE_BITSIZE (mode), 0));
13086 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
13087 if (mask[0] != NULL)
13088 add_loc_descr (&ret, mask[0]);
13089 add_loc_descr (&ret, new_loc_descr (DW_OP_rot, 0, 0));
13090 if (mask[1] != NULL)
13092 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
13093 add_loc_descr (&ret, mask[1]);
13094 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
13096 if (GET_CODE (rtl) == ROTATE)
13098 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
13099 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst,
13100 GET_MODE_BITSIZE (mode), 0));
13102 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
13103 add_loc_descr (&ret, new_loc_descr (DW_OP_or, 0, 0));
13104 return ret;
13107 /* Helper function for mem_loc_descriptor. Return DW_OP_GNU_parameter_ref
13108 for DEBUG_PARAMETER_REF RTL. */
13110 static dw_loc_descr_ref
13111 parameter_ref_descriptor (rtx rtl)
13113 dw_loc_descr_ref ret;
13114 dw_die_ref ref;
13116 if (dwarf_strict)
13117 return NULL;
13118 gcc_assert (TREE_CODE (DEBUG_PARAMETER_REF_DECL (rtl)) == PARM_DECL);
13119 ref = lookup_decl_die (DEBUG_PARAMETER_REF_DECL (rtl));
13120 ret = new_loc_descr (DW_OP_GNU_parameter_ref, 0, 0);
13121 if (ref)
13123 ret->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13124 ret->dw_loc_oprnd1.v.val_die_ref.die = ref;
13125 ret->dw_loc_oprnd1.v.val_die_ref.external = 0;
13127 else
13129 ret->dw_loc_oprnd1.val_class = dw_val_class_decl_ref;
13130 ret->dw_loc_oprnd1.v.val_decl_ref = DEBUG_PARAMETER_REF_DECL (rtl);
13132 return ret;
13135 /* The following routine converts the RTL for a variable or parameter
13136 (resident in memory) into an equivalent Dwarf representation of a
13137 mechanism for getting the address of that same variable onto the top of a
13138 hypothetical "address evaluation" stack.
13140 When creating memory location descriptors, we are effectively transforming
13141 the RTL for a memory-resident object into its Dwarf postfix expression
13142 equivalent. This routine recursively descends an RTL tree, turning
13143 it into Dwarf postfix code as it goes.
13145 MODE is the mode that should be assumed for the rtl if it is VOIDmode.
13147 MEM_MODE is the mode of the memory reference, needed to handle some
13148 autoincrement addressing modes.
13150 Return 0 if we can't represent the location. */
13152 dw_loc_descr_ref
13153 mem_loc_descriptor (rtx rtl, machine_mode mode,
13154 machine_mode mem_mode,
13155 enum var_init_status initialized)
13157 dw_loc_descr_ref mem_loc_result = NULL;
13158 enum dwarf_location_atom op;
13159 dw_loc_descr_ref op0, op1;
13160 rtx inner = NULL_RTX;
13162 if (mode == VOIDmode)
13163 mode = GET_MODE (rtl);
13165 /* Note that for a dynamically sized array, the location we will generate a
13166 description of here will be the lowest numbered location which is
13167 actually within the array. That's *not* necessarily the same as the
13168 zeroth element of the array. */
13170 rtl = targetm.delegitimize_address (rtl);
13172 if (mode != GET_MODE (rtl) && GET_MODE (rtl) != VOIDmode)
13173 return NULL;
13175 switch (GET_CODE (rtl))
13177 case POST_INC:
13178 case POST_DEC:
13179 case POST_MODIFY:
13180 return mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode, initialized);
13182 case SUBREG:
13183 /* The case of a subreg may arise when we have a local (register)
13184 variable or a formal (register) parameter which doesn't quite fill
13185 up an entire register. For now, just assume that it is
13186 legitimate to make the Dwarf info refer to the whole register which
13187 contains the given subreg. */
13188 if (!subreg_lowpart_p (rtl))
13189 break;
13190 inner = SUBREG_REG (rtl);
13191 case TRUNCATE:
13192 if (inner == NULL_RTX)
13193 inner = XEXP (rtl, 0);
13194 if (GET_MODE_CLASS (mode) == MODE_INT
13195 && GET_MODE_CLASS (GET_MODE (inner)) == MODE_INT
13196 && (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
13197 #ifdef POINTERS_EXTEND_UNSIGNED
13198 || (mode == Pmode && mem_mode != VOIDmode)
13199 #endif
13201 && GET_MODE_SIZE (GET_MODE (inner)) <= DWARF2_ADDR_SIZE)
13203 mem_loc_result = mem_loc_descriptor (inner,
13204 GET_MODE (inner),
13205 mem_mode, initialized);
13206 break;
13208 if (dwarf_strict)
13209 break;
13210 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (inner)))
13211 break;
13212 if (GET_MODE_SIZE (mode) != GET_MODE_SIZE (GET_MODE (inner))
13213 && (GET_MODE_CLASS (mode) != MODE_INT
13214 || GET_MODE_CLASS (GET_MODE (inner)) != MODE_INT))
13215 break;
13216 else
13218 dw_die_ref type_die;
13219 dw_loc_descr_ref cvt;
13221 mem_loc_result = mem_loc_descriptor (inner,
13222 GET_MODE (inner),
13223 mem_mode, initialized);
13224 if (mem_loc_result == NULL)
13225 break;
13226 type_die = base_type_for_mode (mode,
13227 GET_MODE_CLASS (mode) == MODE_INT);
13228 if (type_die == NULL)
13230 mem_loc_result = NULL;
13231 break;
13233 if (GET_MODE_SIZE (mode)
13234 != GET_MODE_SIZE (GET_MODE (inner)))
13235 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
13236 else
13237 cvt = new_loc_descr (DW_OP_GNU_reinterpret, 0, 0);
13238 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13239 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13240 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
13241 add_loc_descr (&mem_loc_result, cvt);
13242 if (GET_MODE_CLASS (mode) == MODE_INT
13243 && GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
13245 /* Convert it to untyped afterwards. */
13246 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
13247 add_loc_descr (&mem_loc_result, cvt);
13250 break;
13252 case REG:
13253 if (GET_MODE_CLASS (mode) != MODE_INT
13254 || (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE
13255 && rtl != arg_pointer_rtx
13256 && rtl != frame_pointer_rtx
13257 #ifdef POINTERS_EXTEND_UNSIGNED
13258 && (mode != Pmode || mem_mode == VOIDmode)
13259 #endif
13262 dw_die_ref type_die;
13263 unsigned int dbx_regnum;
13265 if (dwarf_strict)
13266 break;
13267 if (REGNO (rtl) > FIRST_PSEUDO_REGISTER)
13268 break;
13269 type_die = base_type_for_mode (mode,
13270 GET_MODE_CLASS (mode) == MODE_INT);
13271 if (type_die == NULL)
13272 break;
13274 dbx_regnum = dbx_reg_number (rtl);
13275 if (dbx_regnum == IGNORED_DWARF_REGNUM)
13276 break;
13277 mem_loc_result = new_loc_descr (DW_OP_GNU_regval_type,
13278 dbx_regnum, 0);
13279 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_die_ref;
13280 mem_loc_result->dw_loc_oprnd2.v.val_die_ref.die = type_die;
13281 mem_loc_result->dw_loc_oprnd2.v.val_die_ref.external = 0;
13282 break;
13284 /* Whenever a register number forms a part of the description of the
13285 method for calculating the (dynamic) address of a memory resident
13286 object, DWARF rules require the register number be referred to as
13287 a "base register". This distinction is not based in any way upon
13288 what category of register the hardware believes the given register
13289 belongs to. This is strictly DWARF terminology we're dealing with
13290 here. Note that in cases where the location of a memory-resident
13291 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
13292 OP_CONST (0)) the actual DWARF location descriptor that we generate
13293 may just be OP_BASEREG (basereg). This may look deceptively like
13294 the object in question was allocated to a register (rather than in
13295 memory) so DWARF consumers need to be aware of the subtle
13296 distinction between OP_REG and OP_BASEREG. */
13297 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
13298 mem_loc_result = based_loc_descr (rtl, 0, VAR_INIT_STATUS_INITIALIZED);
13299 else if (stack_realign_drap
13300 && crtl->drap_reg
13301 && crtl->args.internal_arg_pointer == rtl
13302 && REGNO (crtl->drap_reg) < FIRST_PSEUDO_REGISTER)
13304 /* If RTL is internal_arg_pointer, which has been optimized
13305 out, use DRAP instead. */
13306 mem_loc_result = based_loc_descr (crtl->drap_reg, 0,
13307 VAR_INIT_STATUS_INITIALIZED);
13309 break;
13311 case SIGN_EXTEND:
13312 case ZERO_EXTEND:
13313 if (GET_MODE_CLASS (mode) != MODE_INT)
13314 break;
13315 op0 = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (XEXP (rtl, 0)),
13316 mem_mode, VAR_INIT_STATUS_INITIALIZED);
13317 if (op0 == 0)
13318 break;
13319 else if (GET_CODE (rtl) == ZERO_EXTEND
13320 && GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
13321 && GET_MODE_BITSIZE (GET_MODE (XEXP (rtl, 0)))
13322 < HOST_BITS_PER_WIDE_INT
13323 /* If DW_OP_const{1,2,4}u won't be used, it is shorter
13324 to expand zero extend as two shifts instead of
13325 masking. */
13326 && GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) <= 4)
13328 machine_mode imode = GET_MODE (XEXP (rtl, 0));
13329 mem_loc_result = op0;
13330 add_loc_descr (&mem_loc_result,
13331 int_loc_descriptor (GET_MODE_MASK (imode)));
13332 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_and, 0, 0));
13334 else if (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
13336 int shift = DWARF2_ADDR_SIZE
13337 - GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0)));
13338 shift *= BITS_PER_UNIT;
13339 if (GET_CODE (rtl) == SIGN_EXTEND)
13340 op = DW_OP_shra;
13341 else
13342 op = DW_OP_shr;
13343 mem_loc_result = op0;
13344 add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
13345 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
13346 add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
13347 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13349 else if (!dwarf_strict)
13351 dw_die_ref type_die1, type_die2;
13352 dw_loc_descr_ref cvt;
13354 type_die1 = base_type_for_mode (GET_MODE (XEXP (rtl, 0)),
13355 GET_CODE (rtl) == ZERO_EXTEND);
13356 if (type_die1 == NULL)
13357 break;
13358 type_die2 = base_type_for_mode (mode, 1);
13359 if (type_die2 == NULL)
13360 break;
13361 mem_loc_result = op0;
13362 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
13363 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13364 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die1;
13365 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
13366 add_loc_descr (&mem_loc_result, cvt);
13367 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
13368 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13369 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die2;
13370 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
13371 add_loc_descr (&mem_loc_result, cvt);
13373 break;
13375 case MEM:
13377 rtx new_rtl = avoid_constant_pool_reference (rtl);
13378 if (new_rtl != rtl)
13380 mem_loc_result = mem_loc_descriptor (new_rtl, mode, mem_mode,
13381 initialized);
13382 if (mem_loc_result != NULL)
13383 return mem_loc_result;
13386 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0),
13387 get_address_mode (rtl), mode,
13388 VAR_INIT_STATUS_INITIALIZED);
13389 if (mem_loc_result == NULL)
13390 mem_loc_result = tls_mem_loc_descriptor (rtl);
13391 if (mem_loc_result != NULL)
13393 if (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE
13394 || GET_MODE_CLASS (mode) != MODE_INT)
13396 dw_die_ref type_die;
13397 dw_loc_descr_ref deref;
13399 if (dwarf_strict)
13400 return NULL;
13401 type_die
13402 = base_type_for_mode (mode, GET_MODE_CLASS (mode) == MODE_INT);
13403 if (type_die == NULL)
13404 return NULL;
13405 deref = new_loc_descr (DW_OP_GNU_deref_type,
13406 GET_MODE_SIZE (mode), 0);
13407 deref->dw_loc_oprnd2.val_class = dw_val_class_die_ref;
13408 deref->dw_loc_oprnd2.v.val_die_ref.die = type_die;
13409 deref->dw_loc_oprnd2.v.val_die_ref.external = 0;
13410 add_loc_descr (&mem_loc_result, deref);
13412 else if (GET_MODE_SIZE (mode) == DWARF2_ADDR_SIZE)
13413 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
13414 else
13415 add_loc_descr (&mem_loc_result,
13416 new_loc_descr (DW_OP_deref_size,
13417 GET_MODE_SIZE (mode), 0));
13419 break;
13421 case LO_SUM:
13422 return mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode, initialized);
13424 case LABEL_REF:
13425 /* Some ports can transform a symbol ref into a label ref, because
13426 the symbol ref is too far away and has to be dumped into a constant
13427 pool. */
13428 case CONST:
13429 case SYMBOL_REF:
13430 if ((GET_MODE_CLASS (mode) != MODE_INT
13431 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
13432 || (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE
13433 #ifdef POINTERS_EXTEND_UNSIGNED
13434 && (mode != Pmode || mem_mode == VOIDmode)
13435 #endif
13437 break;
13438 if (GET_CODE (rtl) == SYMBOL_REF
13439 && SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
13441 dw_loc_descr_ref temp;
13443 /* If this is not defined, we have no way to emit the data. */
13444 if (!targetm.have_tls || !targetm.asm_out.output_dwarf_dtprel)
13445 break;
13447 temp = new_addr_loc_descr (rtl, dtprel_true);
13449 mem_loc_result = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
13450 add_loc_descr (&mem_loc_result, temp);
13452 break;
13455 if (!const_ok_for_output (rtl))
13457 if (GET_CODE (rtl) == CONST)
13458 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13459 initialized);
13460 break;
13463 symref:
13464 mem_loc_result = new_addr_loc_descr (rtl, dtprel_false);
13465 vec_safe_push (used_rtx_array, rtl);
13466 break;
13468 case CONCAT:
13469 case CONCATN:
13470 case VAR_LOCATION:
13471 case DEBUG_IMPLICIT_PTR:
13472 expansion_failed (NULL_TREE, rtl,
13473 "CONCAT/CONCATN/VAR_LOCATION is handled only by loc_descriptor");
13474 return 0;
13476 case ENTRY_VALUE:
13477 if (dwarf_strict)
13478 return NULL;
13479 if (REG_P (ENTRY_VALUE_EXP (rtl)))
13481 if (GET_MODE_CLASS (mode) != MODE_INT
13482 || GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
13483 op0 = mem_loc_descriptor (ENTRY_VALUE_EXP (rtl), mode,
13484 VOIDmode, VAR_INIT_STATUS_INITIALIZED);
13485 else
13487 unsigned int dbx_regnum = dbx_reg_number (ENTRY_VALUE_EXP (rtl));
13488 if (dbx_regnum == IGNORED_DWARF_REGNUM)
13489 return NULL;
13490 op0 = one_reg_loc_descriptor (dbx_regnum,
13491 VAR_INIT_STATUS_INITIALIZED);
13494 else if (MEM_P (ENTRY_VALUE_EXP (rtl))
13495 && REG_P (XEXP (ENTRY_VALUE_EXP (rtl), 0)))
13497 op0 = mem_loc_descriptor (ENTRY_VALUE_EXP (rtl), mode,
13498 VOIDmode, VAR_INIT_STATUS_INITIALIZED);
13499 if (op0 && op0->dw_loc_opc == DW_OP_fbreg)
13500 return NULL;
13502 else
13503 gcc_unreachable ();
13504 if (op0 == NULL)
13505 return NULL;
13506 mem_loc_result = new_loc_descr (DW_OP_GNU_entry_value, 0, 0);
13507 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_loc;
13508 mem_loc_result->dw_loc_oprnd1.v.val_loc = op0;
13509 break;
13511 case DEBUG_PARAMETER_REF:
13512 mem_loc_result = parameter_ref_descriptor (rtl);
13513 break;
13515 case PRE_MODIFY:
13516 /* Extract the PLUS expression nested inside and fall into
13517 PLUS code below. */
13518 rtl = XEXP (rtl, 1);
13519 goto plus;
13521 case PRE_INC:
13522 case PRE_DEC:
13523 /* Turn these into a PLUS expression and fall into the PLUS code
13524 below. */
13525 rtl = gen_rtx_PLUS (mode, XEXP (rtl, 0),
13526 gen_int_mode (GET_CODE (rtl) == PRE_INC
13527 ? GET_MODE_UNIT_SIZE (mem_mode)
13528 : -GET_MODE_UNIT_SIZE (mem_mode),
13529 mode));
13531 /* ... fall through ... */
13533 case PLUS:
13534 plus:
13535 if (is_based_loc (rtl)
13536 && (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
13537 || XEXP (rtl, 0) == arg_pointer_rtx
13538 || XEXP (rtl, 0) == frame_pointer_rtx)
13539 && GET_MODE_CLASS (mode) == MODE_INT)
13540 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
13541 INTVAL (XEXP (rtl, 1)),
13542 VAR_INIT_STATUS_INITIALIZED);
13543 else
13545 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13546 VAR_INIT_STATUS_INITIALIZED);
13547 if (mem_loc_result == 0)
13548 break;
13550 if (CONST_INT_P (XEXP (rtl, 1))
13551 && GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
13552 loc_descr_plus_const (&mem_loc_result, INTVAL (XEXP (rtl, 1)));
13553 else
13555 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
13556 VAR_INIT_STATUS_INITIALIZED);
13557 if (op1 == 0)
13558 return NULL;
13559 add_loc_descr (&mem_loc_result, op1);
13560 add_loc_descr (&mem_loc_result,
13561 new_loc_descr (DW_OP_plus, 0, 0));
13564 break;
13566 /* If a pseudo-reg is optimized away, it is possible for it to
13567 be replaced with a MEM containing a multiply or shift. */
13568 case MINUS:
13569 op = DW_OP_minus;
13570 goto do_binop;
13572 case MULT:
13573 op = DW_OP_mul;
13574 goto do_binop;
13576 case DIV:
13577 if (!dwarf_strict
13578 && GET_MODE_CLASS (mode) == MODE_INT
13579 && GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
13581 mem_loc_result = typed_binop (DW_OP_div, rtl,
13582 base_type_for_mode (mode, 0),
13583 mode, mem_mode);
13584 break;
13586 op = DW_OP_div;
13587 goto do_binop;
13589 case UMOD:
13590 op = DW_OP_mod;
13591 goto do_binop;
13593 case ASHIFT:
13594 op = DW_OP_shl;
13595 goto do_shift;
13597 case ASHIFTRT:
13598 op = DW_OP_shra;
13599 goto do_shift;
13601 case LSHIFTRT:
13602 op = DW_OP_shr;
13603 goto do_shift;
13605 do_shift:
13606 if (GET_MODE_CLASS (mode) != MODE_INT)
13607 break;
13608 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13609 VAR_INIT_STATUS_INITIALIZED);
13611 rtx rtlop1 = XEXP (rtl, 1);
13612 if (GET_MODE (rtlop1) != VOIDmode
13613 && GET_MODE_BITSIZE (GET_MODE (rtlop1))
13614 < GET_MODE_BITSIZE (mode))
13615 rtlop1 = gen_rtx_ZERO_EXTEND (mode, rtlop1);
13616 op1 = mem_loc_descriptor (rtlop1, mode, mem_mode,
13617 VAR_INIT_STATUS_INITIALIZED);
13620 if (op0 == 0 || op1 == 0)
13621 break;
13623 mem_loc_result = op0;
13624 add_loc_descr (&mem_loc_result, op1);
13625 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13626 break;
13628 case AND:
13629 op = DW_OP_and;
13630 goto do_binop;
13632 case IOR:
13633 op = DW_OP_or;
13634 goto do_binop;
13636 case XOR:
13637 op = DW_OP_xor;
13638 goto do_binop;
13640 do_binop:
13641 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13642 VAR_INIT_STATUS_INITIALIZED);
13643 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
13644 VAR_INIT_STATUS_INITIALIZED);
13646 if (op0 == 0 || op1 == 0)
13647 break;
13649 mem_loc_result = op0;
13650 add_loc_descr (&mem_loc_result, op1);
13651 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13652 break;
13654 case MOD:
13655 if (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE && !dwarf_strict)
13657 mem_loc_result = typed_binop (DW_OP_mod, rtl,
13658 base_type_for_mode (mode, 0),
13659 mode, mem_mode);
13660 break;
13663 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13664 VAR_INIT_STATUS_INITIALIZED);
13665 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
13666 VAR_INIT_STATUS_INITIALIZED);
13668 if (op0 == 0 || op1 == 0)
13669 break;
13671 mem_loc_result = op0;
13672 add_loc_descr (&mem_loc_result, op1);
13673 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_over, 0, 0));
13674 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_over, 0, 0));
13675 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_div, 0, 0));
13676 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
13677 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_minus, 0, 0));
13678 break;
13680 case UDIV:
13681 if (!dwarf_strict && GET_MODE_CLASS (mode) == MODE_INT)
13683 if (GET_MODE_CLASS (mode) > DWARF2_ADDR_SIZE)
13685 op = DW_OP_div;
13686 goto do_binop;
13688 mem_loc_result = typed_binop (DW_OP_div, rtl,
13689 base_type_for_mode (mode, 1),
13690 mode, mem_mode);
13692 break;
13694 case NOT:
13695 op = DW_OP_not;
13696 goto do_unop;
13698 case ABS:
13699 op = DW_OP_abs;
13700 goto do_unop;
13702 case NEG:
13703 op = DW_OP_neg;
13704 goto do_unop;
13706 do_unop:
13707 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13708 VAR_INIT_STATUS_INITIALIZED);
13710 if (op0 == 0)
13711 break;
13713 mem_loc_result = op0;
13714 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13715 break;
13717 case CONST_INT:
13718 if (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
13719 #ifdef POINTERS_EXTEND_UNSIGNED
13720 || (mode == Pmode
13721 && mem_mode != VOIDmode
13722 && trunc_int_for_mode (INTVAL (rtl), ptr_mode) == INTVAL (rtl))
13723 #endif
13726 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
13727 break;
13729 if (!dwarf_strict
13730 && (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT
13731 || GET_MODE_BITSIZE (mode) == HOST_BITS_PER_DOUBLE_INT))
13733 dw_die_ref type_die = base_type_for_mode (mode, 1);
13734 machine_mode amode;
13735 if (type_die == NULL)
13736 return NULL;
13737 amode = mode_for_size (DWARF2_ADDR_SIZE * BITS_PER_UNIT,
13738 MODE_INT, 0);
13739 if (INTVAL (rtl) >= 0
13740 && amode != BLKmode
13741 && trunc_int_for_mode (INTVAL (rtl), amode) == INTVAL (rtl)
13742 /* const DW_OP_GNU_convert <XXX> vs.
13743 DW_OP_GNU_const_type <XXX, 1, const>. */
13744 && size_of_int_loc_descriptor (INTVAL (rtl)) + 1 + 1
13745 < (unsigned long) 1 + 1 + 1 + GET_MODE_SIZE (mode))
13747 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
13748 op0 = new_loc_descr (DW_OP_GNU_convert, 0, 0);
13749 op0->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13750 op0->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13751 op0->dw_loc_oprnd1.v.val_die_ref.external = 0;
13752 add_loc_descr (&mem_loc_result, op0);
13753 return mem_loc_result;
13755 mem_loc_result = new_loc_descr (DW_OP_GNU_const_type, 0,
13756 INTVAL (rtl));
13757 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13758 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13759 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
13760 if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
13761 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_const;
13762 else
13764 mem_loc_result->dw_loc_oprnd2.val_class
13765 = dw_val_class_const_double;
13766 mem_loc_result->dw_loc_oprnd2.v.val_double
13767 = double_int::from_shwi (INTVAL (rtl));
13770 break;
13772 case CONST_DOUBLE:
13773 if (!dwarf_strict)
13775 dw_die_ref type_die;
13777 /* Note that if TARGET_SUPPORTS_WIDE_INT == 0, a
13778 CONST_DOUBLE rtx could represent either a large integer
13779 or a floating-point constant. If TARGET_SUPPORTS_WIDE_INT != 0,
13780 the value is always a floating point constant.
13782 When it is an integer, a CONST_DOUBLE is used whenever
13783 the constant requires 2 HWIs to be adequately represented.
13784 We output CONST_DOUBLEs as blocks. */
13785 if (mode == VOIDmode
13786 || (GET_MODE (rtl) == VOIDmode
13787 && GET_MODE_BITSIZE (mode) != HOST_BITS_PER_DOUBLE_INT))
13788 break;
13789 type_die = base_type_for_mode (mode,
13790 GET_MODE_CLASS (mode) == MODE_INT);
13791 if (type_die == NULL)
13792 return NULL;
13793 mem_loc_result = new_loc_descr (DW_OP_GNU_const_type, 0, 0);
13794 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13795 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13796 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
13797 #if TARGET_SUPPORTS_WIDE_INT == 0
13798 if (!SCALAR_FLOAT_MODE_P (mode))
13800 mem_loc_result->dw_loc_oprnd2.val_class
13801 = dw_val_class_const_double;
13802 mem_loc_result->dw_loc_oprnd2.v.val_double
13803 = rtx_to_double_int (rtl);
13805 else
13806 #endif
13808 unsigned int length = GET_MODE_SIZE (mode);
13809 unsigned char *array = ggc_vec_alloc<unsigned char> (length);
13811 insert_float (rtl, array);
13812 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
13813 mem_loc_result->dw_loc_oprnd2.v.val_vec.length = length / 4;
13814 mem_loc_result->dw_loc_oprnd2.v.val_vec.elt_size = 4;
13815 mem_loc_result->dw_loc_oprnd2.v.val_vec.array = array;
13818 break;
13820 case CONST_WIDE_INT:
13821 if (!dwarf_strict)
13823 dw_die_ref type_die;
13825 type_die = base_type_for_mode (mode,
13826 GET_MODE_CLASS (mode) == MODE_INT);
13827 if (type_die == NULL)
13828 return NULL;
13829 mem_loc_result = new_loc_descr (DW_OP_GNU_const_type, 0, 0);
13830 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13831 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13832 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
13833 mem_loc_result->dw_loc_oprnd2.val_class
13834 = dw_val_class_wide_int;
13835 mem_loc_result->dw_loc_oprnd2.v.val_wide = ggc_alloc<wide_int> ();
13836 *mem_loc_result->dw_loc_oprnd2.v.val_wide = std::make_pair (rtl, mode);
13838 break;
13840 case EQ:
13841 mem_loc_result = scompare_loc_descriptor (DW_OP_eq, rtl, mem_mode);
13842 break;
13844 case GE:
13845 mem_loc_result = scompare_loc_descriptor (DW_OP_ge, rtl, mem_mode);
13846 break;
13848 case GT:
13849 mem_loc_result = scompare_loc_descriptor (DW_OP_gt, rtl, mem_mode);
13850 break;
13852 case LE:
13853 mem_loc_result = scompare_loc_descriptor (DW_OP_le, rtl, mem_mode);
13854 break;
13856 case LT:
13857 mem_loc_result = scompare_loc_descriptor (DW_OP_lt, rtl, mem_mode);
13858 break;
13860 case NE:
13861 mem_loc_result = scompare_loc_descriptor (DW_OP_ne, rtl, mem_mode);
13862 break;
13864 case GEU:
13865 mem_loc_result = ucompare_loc_descriptor (DW_OP_ge, rtl, mem_mode);
13866 break;
13868 case GTU:
13869 mem_loc_result = ucompare_loc_descriptor (DW_OP_gt, rtl, mem_mode);
13870 break;
13872 case LEU:
13873 mem_loc_result = ucompare_loc_descriptor (DW_OP_le, rtl, mem_mode);
13874 break;
13876 case LTU:
13877 mem_loc_result = ucompare_loc_descriptor (DW_OP_lt, rtl, mem_mode);
13878 break;
13880 case UMIN:
13881 case UMAX:
13882 if (GET_MODE_CLASS (mode) != MODE_INT)
13883 break;
13884 /* FALLTHRU */
13885 case SMIN:
13886 case SMAX:
13887 mem_loc_result = minmax_loc_descriptor (rtl, mode, mem_mode);
13888 break;
13890 case ZERO_EXTRACT:
13891 case SIGN_EXTRACT:
13892 if (CONST_INT_P (XEXP (rtl, 1))
13893 && CONST_INT_P (XEXP (rtl, 2))
13894 && ((unsigned) INTVAL (XEXP (rtl, 1))
13895 + (unsigned) INTVAL (XEXP (rtl, 2))
13896 <= GET_MODE_BITSIZE (mode))
13897 && GET_MODE_CLASS (mode) == MODE_INT
13898 && GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
13899 && GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) <= DWARF2_ADDR_SIZE)
13901 int shift, size;
13902 op0 = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (XEXP (rtl, 0)),
13903 mem_mode, VAR_INIT_STATUS_INITIALIZED);
13904 if (op0 == 0)
13905 break;
13906 if (GET_CODE (rtl) == SIGN_EXTRACT)
13907 op = DW_OP_shra;
13908 else
13909 op = DW_OP_shr;
13910 mem_loc_result = op0;
13911 size = INTVAL (XEXP (rtl, 1));
13912 shift = INTVAL (XEXP (rtl, 2));
13913 if (BITS_BIG_ENDIAN)
13914 shift = GET_MODE_BITSIZE (GET_MODE (XEXP (rtl, 0)))
13915 - shift - size;
13916 if (shift + size != (int) DWARF2_ADDR_SIZE)
13918 add_loc_descr (&mem_loc_result,
13919 int_loc_descriptor (DWARF2_ADDR_SIZE
13920 - shift - size));
13921 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
13923 if (size != (int) DWARF2_ADDR_SIZE)
13925 add_loc_descr (&mem_loc_result,
13926 int_loc_descriptor (DWARF2_ADDR_SIZE - size));
13927 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13930 break;
13932 case IF_THEN_ELSE:
13934 dw_loc_descr_ref op2, bra_node, drop_node;
13935 op0 = mem_loc_descriptor (XEXP (rtl, 0),
13936 GET_MODE (XEXP (rtl, 0)) == VOIDmode
13937 ? word_mode : GET_MODE (XEXP (rtl, 0)),
13938 mem_mode, VAR_INIT_STATUS_INITIALIZED);
13939 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
13940 VAR_INIT_STATUS_INITIALIZED);
13941 op2 = mem_loc_descriptor (XEXP (rtl, 2), mode, mem_mode,
13942 VAR_INIT_STATUS_INITIALIZED);
13943 if (op0 == NULL || op1 == NULL || op2 == NULL)
13944 break;
13946 mem_loc_result = op1;
13947 add_loc_descr (&mem_loc_result, op2);
13948 add_loc_descr (&mem_loc_result, op0);
13949 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
13950 add_loc_descr (&mem_loc_result, bra_node);
13951 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_swap, 0, 0));
13952 drop_node = new_loc_descr (DW_OP_drop, 0, 0);
13953 add_loc_descr (&mem_loc_result, drop_node);
13954 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
13955 bra_node->dw_loc_oprnd1.v.val_loc = drop_node;
13957 break;
13959 case FLOAT_EXTEND:
13960 case FLOAT_TRUNCATE:
13961 case FLOAT:
13962 case UNSIGNED_FLOAT:
13963 case FIX:
13964 case UNSIGNED_FIX:
13965 if (!dwarf_strict)
13967 dw_die_ref type_die;
13968 dw_loc_descr_ref cvt;
13970 op0 = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (XEXP (rtl, 0)),
13971 mem_mode, VAR_INIT_STATUS_INITIALIZED);
13972 if (op0 == NULL)
13973 break;
13974 if (GET_MODE_CLASS (GET_MODE (XEXP (rtl, 0))) == MODE_INT
13975 && (GET_CODE (rtl) == FLOAT
13976 || GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0)))
13977 <= DWARF2_ADDR_SIZE))
13979 type_die = base_type_for_mode (GET_MODE (XEXP (rtl, 0)),
13980 GET_CODE (rtl) == UNSIGNED_FLOAT);
13981 if (type_die == NULL)
13982 break;
13983 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
13984 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13985 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13986 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
13987 add_loc_descr (&op0, cvt);
13989 type_die = base_type_for_mode (mode, GET_CODE (rtl) == UNSIGNED_FIX);
13990 if (type_die == NULL)
13991 break;
13992 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
13993 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13994 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13995 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
13996 add_loc_descr (&op0, cvt);
13997 if (GET_MODE_CLASS (mode) == MODE_INT
13998 && (GET_CODE (rtl) == FIX
13999 || GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE))
14001 op0 = convert_descriptor_to_mode (mode, op0);
14002 if (op0 == NULL)
14003 break;
14005 mem_loc_result = op0;
14007 break;
14009 case CLZ:
14010 case CTZ:
14011 case FFS:
14012 mem_loc_result = clz_loc_descriptor (rtl, mode, mem_mode);
14013 break;
14015 case POPCOUNT:
14016 case PARITY:
14017 mem_loc_result = popcount_loc_descriptor (rtl, mode, mem_mode);
14018 break;
14020 case BSWAP:
14021 mem_loc_result = bswap_loc_descriptor (rtl, mode, mem_mode);
14022 break;
14024 case ROTATE:
14025 case ROTATERT:
14026 mem_loc_result = rotate_loc_descriptor (rtl, mode, mem_mode);
14027 break;
14029 case COMPARE:
14030 /* In theory, we could implement the above. */
14031 /* DWARF cannot represent the unsigned compare operations
14032 natively. */
14033 case SS_MULT:
14034 case US_MULT:
14035 case SS_DIV:
14036 case US_DIV:
14037 case SS_PLUS:
14038 case US_PLUS:
14039 case SS_MINUS:
14040 case US_MINUS:
14041 case SS_NEG:
14042 case US_NEG:
14043 case SS_ABS:
14044 case SS_ASHIFT:
14045 case US_ASHIFT:
14046 case SS_TRUNCATE:
14047 case US_TRUNCATE:
14048 case UNORDERED:
14049 case ORDERED:
14050 case UNEQ:
14051 case UNGE:
14052 case UNGT:
14053 case UNLE:
14054 case UNLT:
14055 case LTGT:
14056 case FRACT_CONVERT:
14057 case UNSIGNED_FRACT_CONVERT:
14058 case SAT_FRACT:
14059 case UNSIGNED_SAT_FRACT:
14060 case SQRT:
14061 case ASM_OPERANDS:
14062 case VEC_MERGE:
14063 case VEC_SELECT:
14064 case VEC_CONCAT:
14065 case VEC_DUPLICATE:
14066 case UNSPEC:
14067 case HIGH:
14068 case FMA:
14069 case STRICT_LOW_PART:
14070 case CONST_VECTOR:
14071 case CONST_FIXED:
14072 case CLRSB:
14073 case CLOBBER:
14074 /* If delegitimize_address couldn't do anything with the UNSPEC, we
14075 can't express it in the debug info. This can happen e.g. with some
14076 TLS UNSPECs. */
14077 break;
14079 case CONST_STRING:
14080 resolve_one_addr (&rtl);
14081 goto symref;
14083 default:
14084 if (flag_checking)
14086 print_rtl (stderr, rtl);
14087 gcc_unreachable ();
14089 break;
14092 if (mem_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
14093 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
14095 return mem_loc_result;
14098 /* Return a descriptor that describes the concatenation of two locations.
14099 This is typically a complex variable. */
14101 static dw_loc_descr_ref
14102 concat_loc_descriptor (rtx x0, rtx x1, enum var_init_status initialized)
14104 dw_loc_descr_ref cc_loc_result = NULL;
14105 dw_loc_descr_ref x0_ref
14106 = loc_descriptor (x0, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
14107 dw_loc_descr_ref x1_ref
14108 = loc_descriptor (x1, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
14110 if (x0_ref == 0 || x1_ref == 0)
14111 return 0;
14113 cc_loc_result = x0_ref;
14114 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
14116 add_loc_descr (&cc_loc_result, x1_ref);
14117 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
14119 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
14120 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
14122 return cc_loc_result;
14125 /* Return a descriptor that describes the concatenation of N
14126 locations. */
14128 static dw_loc_descr_ref
14129 concatn_loc_descriptor (rtx concatn, enum var_init_status initialized)
14131 unsigned int i;
14132 dw_loc_descr_ref cc_loc_result = NULL;
14133 unsigned int n = XVECLEN (concatn, 0);
14135 for (i = 0; i < n; ++i)
14137 dw_loc_descr_ref ref;
14138 rtx x = XVECEXP (concatn, 0, i);
14140 ref = loc_descriptor (x, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
14141 if (ref == NULL)
14142 return NULL;
14144 add_loc_descr (&cc_loc_result, ref);
14145 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x)));
14148 if (cc_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
14149 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
14151 return cc_loc_result;
14154 /* Helper function for loc_descriptor. Return DW_OP_GNU_implicit_pointer
14155 for DEBUG_IMPLICIT_PTR RTL. */
14157 static dw_loc_descr_ref
14158 implicit_ptr_descriptor (rtx rtl, HOST_WIDE_INT offset)
14160 dw_loc_descr_ref ret;
14161 dw_die_ref ref;
14163 if (dwarf_strict)
14164 return NULL;
14165 gcc_assert (TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == VAR_DECL
14166 || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == PARM_DECL
14167 || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == RESULT_DECL);
14168 ref = lookup_decl_die (DEBUG_IMPLICIT_PTR_DECL (rtl));
14169 ret = new_loc_descr (DW_OP_GNU_implicit_pointer, 0, offset);
14170 ret->dw_loc_oprnd2.val_class = dw_val_class_const;
14171 if (ref)
14173 ret->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14174 ret->dw_loc_oprnd1.v.val_die_ref.die = ref;
14175 ret->dw_loc_oprnd1.v.val_die_ref.external = 0;
14177 else
14179 ret->dw_loc_oprnd1.val_class = dw_val_class_decl_ref;
14180 ret->dw_loc_oprnd1.v.val_decl_ref = DEBUG_IMPLICIT_PTR_DECL (rtl);
14182 return ret;
14185 /* Output a proper Dwarf location descriptor for a variable or parameter
14186 which is either allocated in a register or in a memory location. For a
14187 register, we just generate an OP_REG and the register number. For a
14188 memory location we provide a Dwarf postfix expression describing how to
14189 generate the (dynamic) address of the object onto the address stack.
14191 MODE is mode of the decl if this loc_descriptor is going to be used in
14192 .debug_loc section where DW_OP_stack_value and DW_OP_implicit_value are
14193 allowed, VOIDmode otherwise.
14195 If we don't know how to describe it, return 0. */
14197 static dw_loc_descr_ref
14198 loc_descriptor (rtx rtl, machine_mode mode,
14199 enum var_init_status initialized)
14201 dw_loc_descr_ref loc_result = NULL;
14203 switch (GET_CODE (rtl))
14205 case SUBREG:
14206 /* The case of a subreg may arise when we have a local (register)
14207 variable or a formal (register) parameter which doesn't quite fill
14208 up an entire register. For now, just assume that it is
14209 legitimate to make the Dwarf info refer to the whole register which
14210 contains the given subreg. */
14211 if (REG_P (SUBREG_REG (rtl)) && subreg_lowpart_p (rtl))
14212 loc_result = loc_descriptor (SUBREG_REG (rtl),
14213 GET_MODE (SUBREG_REG (rtl)), initialized);
14214 else
14215 goto do_default;
14216 break;
14218 case REG:
14219 loc_result = reg_loc_descriptor (rtl, initialized);
14220 break;
14222 case MEM:
14223 loc_result = mem_loc_descriptor (XEXP (rtl, 0), get_address_mode (rtl),
14224 GET_MODE (rtl), initialized);
14225 if (loc_result == NULL)
14226 loc_result = tls_mem_loc_descriptor (rtl);
14227 if (loc_result == NULL)
14229 rtx new_rtl = avoid_constant_pool_reference (rtl);
14230 if (new_rtl != rtl)
14231 loc_result = loc_descriptor (new_rtl, mode, initialized);
14233 break;
14235 case CONCAT:
14236 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1),
14237 initialized);
14238 break;
14240 case CONCATN:
14241 loc_result = concatn_loc_descriptor (rtl, initialized);
14242 break;
14244 case VAR_LOCATION:
14245 /* Single part. */
14246 if (GET_CODE (PAT_VAR_LOCATION_LOC (rtl)) != PARALLEL)
14248 rtx loc = PAT_VAR_LOCATION_LOC (rtl);
14249 if (GET_CODE (loc) == EXPR_LIST)
14250 loc = XEXP (loc, 0);
14251 loc_result = loc_descriptor (loc, mode, initialized);
14252 break;
14255 rtl = XEXP (rtl, 1);
14256 /* FALLTHRU */
14258 case PARALLEL:
14260 rtvec par_elems = XVEC (rtl, 0);
14261 int num_elem = GET_NUM_ELEM (par_elems);
14262 machine_mode mode;
14263 int i;
14265 /* Create the first one, so we have something to add to. */
14266 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
14267 VOIDmode, initialized);
14268 if (loc_result == NULL)
14269 return NULL;
14270 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
14271 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
14272 for (i = 1; i < num_elem; i++)
14274 dw_loc_descr_ref temp;
14276 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
14277 VOIDmode, initialized);
14278 if (temp == NULL)
14279 return NULL;
14280 add_loc_descr (&loc_result, temp);
14281 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
14282 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
14285 break;
14287 case CONST_INT:
14288 if (mode != VOIDmode && mode != BLKmode)
14289 loc_result = address_of_int_loc_descriptor (GET_MODE_SIZE (mode),
14290 INTVAL (rtl));
14291 break;
14293 case CONST_DOUBLE:
14294 if (mode == VOIDmode)
14295 mode = GET_MODE (rtl);
14297 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
14299 gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));
14301 /* Note that a CONST_DOUBLE rtx could represent either an integer
14302 or a floating-point constant. A CONST_DOUBLE is used whenever
14303 the constant requires more than one word in order to be
14304 adequately represented. We output CONST_DOUBLEs as blocks. */
14305 loc_result = new_loc_descr (DW_OP_implicit_value,
14306 GET_MODE_SIZE (mode), 0);
14307 #if TARGET_SUPPORTS_WIDE_INT == 0
14308 if (!SCALAR_FLOAT_MODE_P (mode))
14310 loc_result->dw_loc_oprnd2.val_class = dw_val_class_const_double;
14311 loc_result->dw_loc_oprnd2.v.val_double
14312 = rtx_to_double_int (rtl);
14314 else
14315 #endif
14317 unsigned int length = GET_MODE_SIZE (mode);
14318 unsigned char *array = ggc_vec_alloc<unsigned char> (length);
14320 insert_float (rtl, array);
14321 loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
14322 loc_result->dw_loc_oprnd2.v.val_vec.length = length / 4;
14323 loc_result->dw_loc_oprnd2.v.val_vec.elt_size = 4;
14324 loc_result->dw_loc_oprnd2.v.val_vec.array = array;
14327 break;
14329 case CONST_WIDE_INT:
14330 if (mode == VOIDmode)
14331 mode = GET_MODE (rtl);
14333 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
14335 loc_result = new_loc_descr (DW_OP_implicit_value,
14336 GET_MODE_SIZE (mode), 0);
14337 loc_result->dw_loc_oprnd2.val_class = dw_val_class_wide_int;
14338 loc_result->dw_loc_oprnd2.v.val_wide = ggc_alloc<wide_int> ();
14339 *loc_result->dw_loc_oprnd2.v.val_wide = std::make_pair (rtl, mode);
14341 break;
14343 case CONST_VECTOR:
14344 if (mode == VOIDmode)
14345 mode = GET_MODE (rtl);
14347 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
14349 unsigned int elt_size = GET_MODE_UNIT_SIZE (GET_MODE (rtl));
14350 unsigned int length = CONST_VECTOR_NUNITS (rtl);
14351 unsigned char *array
14352 = ggc_vec_alloc<unsigned char> (length * elt_size);
14353 unsigned int i;
14354 unsigned char *p;
14355 machine_mode imode = GET_MODE_INNER (mode);
14357 gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));
14358 switch (GET_MODE_CLASS (mode))
14360 case MODE_VECTOR_INT:
14361 for (i = 0, p = array; i < length; i++, p += elt_size)
14363 rtx elt = CONST_VECTOR_ELT (rtl, i);
14364 insert_wide_int (std::make_pair (elt, imode), p, elt_size);
14366 break;
14368 case MODE_VECTOR_FLOAT:
14369 for (i = 0, p = array; i < length; i++, p += elt_size)
14371 rtx elt = CONST_VECTOR_ELT (rtl, i);
14372 insert_float (elt, p);
14374 break;
14376 default:
14377 gcc_unreachable ();
14380 loc_result = new_loc_descr (DW_OP_implicit_value,
14381 length * elt_size, 0);
14382 loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
14383 loc_result->dw_loc_oprnd2.v.val_vec.length = length;
14384 loc_result->dw_loc_oprnd2.v.val_vec.elt_size = elt_size;
14385 loc_result->dw_loc_oprnd2.v.val_vec.array = array;
14387 break;
14389 case CONST:
14390 if (mode == VOIDmode
14391 || CONST_SCALAR_INT_P (XEXP (rtl, 0))
14392 || CONST_DOUBLE_AS_FLOAT_P (XEXP (rtl, 0))
14393 || GET_CODE (XEXP (rtl, 0)) == CONST_VECTOR)
14395 loc_result = loc_descriptor (XEXP (rtl, 0), mode, initialized);
14396 break;
14398 /* FALLTHROUGH */
14399 case SYMBOL_REF:
14400 if (!const_ok_for_output (rtl))
14401 break;
14402 case LABEL_REF:
14403 if (mode != VOIDmode && GET_MODE_SIZE (mode) == DWARF2_ADDR_SIZE
14404 && (dwarf_version >= 4 || !dwarf_strict))
14406 loc_result = new_addr_loc_descr (rtl, dtprel_false);
14407 add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
14408 vec_safe_push (used_rtx_array, rtl);
14410 break;
14412 case DEBUG_IMPLICIT_PTR:
14413 loc_result = implicit_ptr_descriptor (rtl, 0);
14414 break;
14416 case PLUS:
14417 if (GET_CODE (XEXP (rtl, 0)) == DEBUG_IMPLICIT_PTR
14418 && CONST_INT_P (XEXP (rtl, 1)))
14420 loc_result
14421 = implicit_ptr_descriptor (XEXP (rtl, 0), INTVAL (XEXP (rtl, 1)));
14422 break;
14424 /* FALLTHRU */
14425 do_default:
14426 default:
14427 if ((GET_MODE_CLASS (mode) == MODE_INT && GET_MODE (rtl) == mode
14428 && GET_MODE_SIZE (GET_MODE (rtl)) <= DWARF2_ADDR_SIZE
14429 && dwarf_version >= 4)
14430 || (!dwarf_strict && mode != VOIDmode && mode != BLKmode))
14432 /* Value expression. */
14433 loc_result = mem_loc_descriptor (rtl, mode, VOIDmode, initialized);
14434 if (loc_result)
14435 add_loc_descr (&loc_result,
14436 new_loc_descr (DW_OP_stack_value, 0, 0));
14438 break;
14441 return loc_result;
14444 /* We need to figure out what section we should use as the base for the
14445 address ranges where a given location is valid.
14446 1. If this particular DECL has a section associated with it, use that.
14447 2. If this function has a section associated with it, use that.
14448 3. Otherwise, use the text section.
14449 XXX: If you split a variable across multiple sections, we won't notice. */
14451 static const char *
14452 secname_for_decl (const_tree decl)
14454 const char *secname;
14456 if (VAR_OR_FUNCTION_DECL_P (decl)
14457 && (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl) || TREE_STATIC (decl))
14458 && DECL_SECTION_NAME (decl))
14459 secname = DECL_SECTION_NAME (decl);
14460 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
14461 secname = DECL_SECTION_NAME (current_function_decl);
14462 else if (cfun && in_cold_section_p)
14463 secname = crtl->subsections.cold_section_label;
14464 else
14465 secname = text_section_label;
14467 return secname;
14470 /* Return true when DECL_BY_REFERENCE is defined and set for DECL. */
14472 static bool
14473 decl_by_reference_p (tree decl)
14475 return ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == RESULT_DECL
14476 || TREE_CODE (decl) == VAR_DECL)
14477 && DECL_BY_REFERENCE (decl));
14480 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
14481 for VARLOC. */
14483 static dw_loc_descr_ref
14484 dw_loc_list_1 (tree loc, rtx varloc, int want_address,
14485 enum var_init_status initialized)
14487 int have_address = 0;
14488 dw_loc_descr_ref descr;
14489 machine_mode mode;
14491 if (want_address != 2)
14493 gcc_assert (GET_CODE (varloc) == VAR_LOCATION);
14494 /* Single part. */
14495 if (GET_CODE (PAT_VAR_LOCATION_LOC (varloc)) != PARALLEL)
14497 varloc = PAT_VAR_LOCATION_LOC (varloc);
14498 if (GET_CODE (varloc) == EXPR_LIST)
14499 varloc = XEXP (varloc, 0);
14500 mode = GET_MODE (varloc);
14501 if (MEM_P (varloc))
14503 rtx addr = XEXP (varloc, 0);
14504 descr = mem_loc_descriptor (addr, get_address_mode (varloc),
14505 mode, initialized);
14506 if (descr)
14507 have_address = 1;
14508 else
14510 rtx x = avoid_constant_pool_reference (varloc);
14511 if (x != varloc)
14512 descr = mem_loc_descriptor (x, mode, VOIDmode,
14513 initialized);
14516 else
14517 descr = mem_loc_descriptor (varloc, mode, VOIDmode, initialized);
14519 else
14520 return 0;
14522 else
14524 if (GET_CODE (varloc) == VAR_LOCATION)
14525 mode = DECL_MODE (PAT_VAR_LOCATION_DECL (varloc));
14526 else
14527 mode = DECL_MODE (loc);
14528 descr = loc_descriptor (varloc, mode, initialized);
14529 have_address = 1;
14532 if (!descr)
14533 return 0;
14535 if (want_address == 2 && !have_address
14536 && (dwarf_version >= 4 || !dwarf_strict))
14538 if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
14540 expansion_failed (loc, NULL_RTX,
14541 "DWARF address size mismatch");
14542 return 0;
14544 add_loc_descr (&descr, new_loc_descr (DW_OP_stack_value, 0, 0));
14545 have_address = 1;
14547 /* Show if we can't fill the request for an address. */
14548 if (want_address && !have_address)
14550 expansion_failed (loc, NULL_RTX,
14551 "Want address and only have value");
14552 return 0;
14555 /* If we've got an address and don't want one, dereference. */
14556 if (!want_address && have_address)
14558 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
14559 enum dwarf_location_atom op;
14561 if (size > DWARF2_ADDR_SIZE || size == -1)
14563 expansion_failed (loc, NULL_RTX,
14564 "DWARF address size mismatch");
14565 return 0;
14567 else if (size == DWARF2_ADDR_SIZE)
14568 op = DW_OP_deref;
14569 else
14570 op = DW_OP_deref_size;
14572 add_loc_descr (&descr, new_loc_descr (op, size, 0));
14575 return descr;
14578 /* Create a DW_OP_piece or DW_OP_bit_piece for bitsize, or return NULL
14579 if it is not possible. */
14581 static dw_loc_descr_ref
14582 new_loc_descr_op_bit_piece (HOST_WIDE_INT bitsize, HOST_WIDE_INT offset)
14584 if ((bitsize % BITS_PER_UNIT) == 0 && offset == 0)
14585 return new_loc_descr (DW_OP_piece, bitsize / BITS_PER_UNIT, 0);
14586 else if (dwarf_version >= 3 || !dwarf_strict)
14587 return new_loc_descr (DW_OP_bit_piece, bitsize, offset);
14588 else
14589 return NULL;
14592 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
14593 for VAR_LOC_NOTE for variable DECL that has been optimized by SRA. */
14595 static dw_loc_descr_ref
14596 dw_sra_loc_expr (tree decl, rtx loc)
14598 rtx p;
14599 unsigned HOST_WIDE_INT padsize = 0;
14600 dw_loc_descr_ref descr, *descr_tail;
14601 unsigned HOST_WIDE_INT decl_size;
14602 rtx varloc;
14603 enum var_init_status initialized;
14605 if (DECL_SIZE (decl) == NULL
14606 || !tree_fits_uhwi_p (DECL_SIZE (decl)))
14607 return NULL;
14609 decl_size = tree_to_uhwi (DECL_SIZE (decl));
14610 descr = NULL;
14611 descr_tail = &descr;
14613 for (p = loc; p; p = XEXP (p, 1))
14615 unsigned HOST_WIDE_INT bitsize = decl_piece_bitsize (p);
14616 rtx loc_note = *decl_piece_varloc_ptr (p);
14617 dw_loc_descr_ref cur_descr;
14618 dw_loc_descr_ref *tail, last = NULL;
14619 unsigned HOST_WIDE_INT opsize = 0;
14621 if (loc_note == NULL_RTX
14622 || NOTE_VAR_LOCATION_LOC (loc_note) == NULL_RTX)
14624 padsize += bitsize;
14625 continue;
14627 initialized = NOTE_VAR_LOCATION_STATUS (loc_note);
14628 varloc = NOTE_VAR_LOCATION (loc_note);
14629 cur_descr = dw_loc_list_1 (decl, varloc, 2, initialized);
14630 if (cur_descr == NULL)
14632 padsize += bitsize;
14633 continue;
14636 /* Check that cur_descr either doesn't use
14637 DW_OP_*piece operations, or their sum is equal
14638 to bitsize. Otherwise we can't embed it. */
14639 for (tail = &cur_descr; *tail != NULL;
14640 tail = &(*tail)->dw_loc_next)
14641 if ((*tail)->dw_loc_opc == DW_OP_piece)
14643 opsize += (*tail)->dw_loc_oprnd1.v.val_unsigned
14644 * BITS_PER_UNIT;
14645 last = *tail;
14647 else if ((*tail)->dw_loc_opc == DW_OP_bit_piece)
14649 opsize += (*tail)->dw_loc_oprnd1.v.val_unsigned;
14650 last = *tail;
14653 if (last != NULL && opsize != bitsize)
14655 padsize += bitsize;
14656 /* Discard the current piece of the descriptor and release any
14657 addr_table entries it uses. */
14658 remove_loc_list_addr_table_entries (cur_descr);
14659 continue;
14662 /* If there is a hole, add DW_OP_*piece after empty DWARF
14663 expression, which means that those bits are optimized out. */
14664 if (padsize)
14666 if (padsize > decl_size)
14668 remove_loc_list_addr_table_entries (cur_descr);
14669 goto discard_descr;
14671 decl_size -= padsize;
14672 *descr_tail = new_loc_descr_op_bit_piece (padsize, 0);
14673 if (*descr_tail == NULL)
14675 remove_loc_list_addr_table_entries (cur_descr);
14676 goto discard_descr;
14678 descr_tail = &(*descr_tail)->dw_loc_next;
14679 padsize = 0;
14681 *descr_tail = cur_descr;
14682 descr_tail = tail;
14683 if (bitsize > decl_size)
14684 goto discard_descr;
14685 decl_size -= bitsize;
14686 if (last == NULL)
14688 HOST_WIDE_INT offset = 0;
14689 if (GET_CODE (varloc) == VAR_LOCATION
14690 && GET_CODE (PAT_VAR_LOCATION_LOC (varloc)) != PARALLEL)
14692 varloc = PAT_VAR_LOCATION_LOC (varloc);
14693 if (GET_CODE (varloc) == EXPR_LIST)
14694 varloc = XEXP (varloc, 0);
14698 if (GET_CODE (varloc) == CONST
14699 || GET_CODE (varloc) == SIGN_EXTEND
14700 || GET_CODE (varloc) == ZERO_EXTEND)
14701 varloc = XEXP (varloc, 0);
14702 else if (GET_CODE (varloc) == SUBREG)
14703 varloc = SUBREG_REG (varloc);
14704 else
14705 break;
14707 while (1);
14708 /* DW_OP_bit_size offset should be zero for register
14709 or implicit location descriptions and empty location
14710 descriptions, but for memory addresses needs big endian
14711 adjustment. */
14712 if (MEM_P (varloc))
14714 unsigned HOST_WIDE_INT memsize
14715 = MEM_SIZE (varloc) * BITS_PER_UNIT;
14716 if (memsize != bitsize)
14718 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
14719 && (memsize > BITS_PER_WORD || bitsize > BITS_PER_WORD))
14720 goto discard_descr;
14721 if (memsize < bitsize)
14722 goto discard_descr;
14723 if (BITS_BIG_ENDIAN)
14724 offset = memsize - bitsize;
14728 *descr_tail = new_loc_descr_op_bit_piece (bitsize, offset);
14729 if (*descr_tail == NULL)
14730 goto discard_descr;
14731 descr_tail = &(*descr_tail)->dw_loc_next;
14735 /* If there were any non-empty expressions, add padding till the end of
14736 the decl. */
14737 if (descr != NULL && decl_size != 0)
14739 *descr_tail = new_loc_descr_op_bit_piece (decl_size, 0);
14740 if (*descr_tail == NULL)
14741 goto discard_descr;
14743 return descr;
14745 discard_descr:
14746 /* Discard the descriptor and release any addr_table entries it uses. */
14747 remove_loc_list_addr_table_entries (descr);
14748 return NULL;
14751 /* Return the dwarf representation of the location list LOC_LIST of
14752 DECL. WANT_ADDRESS has the same meaning as in loc_list_from_tree
14753 function. */
14755 static dw_loc_list_ref
14756 dw_loc_list (var_loc_list *loc_list, tree decl, int want_address)
14758 const char *endname, *secname;
14759 rtx varloc;
14760 enum var_init_status initialized;
14761 struct var_loc_node *node;
14762 dw_loc_descr_ref descr;
14763 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
14764 dw_loc_list_ref list = NULL;
14765 dw_loc_list_ref *listp = &list;
14767 /* Now that we know what section we are using for a base,
14768 actually construct the list of locations.
14769 The first location information is what is passed to the
14770 function that creates the location list, and the remaining
14771 locations just get added on to that list.
14772 Note that we only know the start address for a location
14773 (IE location changes), so to build the range, we use
14774 the range [current location start, next location start].
14775 This means we have to special case the last node, and generate
14776 a range of [last location start, end of function label]. */
14778 secname = secname_for_decl (decl);
14780 for (node = loc_list->first; node; node = node->next)
14781 if (GET_CODE (node->loc) == EXPR_LIST
14782 || NOTE_VAR_LOCATION_LOC (node->loc) != NULL_RTX)
14784 if (GET_CODE (node->loc) == EXPR_LIST)
14786 /* This requires DW_OP_{,bit_}piece, which is not usable
14787 inside DWARF expressions. */
14788 if (want_address != 2)
14789 continue;
14790 descr = dw_sra_loc_expr (decl, node->loc);
14791 if (descr == NULL)
14792 continue;
14794 else
14796 initialized = NOTE_VAR_LOCATION_STATUS (node->loc);
14797 varloc = NOTE_VAR_LOCATION (node->loc);
14798 descr = dw_loc_list_1 (decl, varloc, want_address, initialized);
14800 if (descr)
14802 bool range_across_switch = false;
14803 /* If section switch happens in between node->label
14804 and node->next->label (or end of function) and
14805 we can't emit it as a single entry list,
14806 emit two ranges, first one ending at the end
14807 of first partition and second one starting at the
14808 beginning of second partition. */
14809 if (node == loc_list->last_before_switch
14810 && (node != loc_list->first || loc_list->first->next)
14811 && current_function_decl)
14813 endname = cfun->fde->dw_fde_end;
14814 range_across_switch = true;
14816 /* The variable has a location between NODE->LABEL and
14817 NODE->NEXT->LABEL. */
14818 else if (node->next)
14819 endname = node->next->label;
14820 /* If the variable has a location at the last label
14821 it keeps its location until the end of function. */
14822 else if (!current_function_decl)
14823 endname = text_end_label;
14824 else
14826 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
14827 current_function_funcdef_no);
14828 endname = ggc_strdup (label_id);
14831 *listp = new_loc_list (descr, node->label, endname, secname);
14832 if (TREE_CODE (decl) == PARM_DECL
14833 && node == loc_list->first
14834 && NOTE_P (node->loc)
14835 && strcmp (node->label, endname) == 0)
14836 (*listp)->force = true;
14837 listp = &(*listp)->dw_loc_next;
14839 if (range_across_switch)
14841 if (GET_CODE (node->loc) == EXPR_LIST)
14842 descr = dw_sra_loc_expr (decl, node->loc);
14843 else
14845 initialized = NOTE_VAR_LOCATION_STATUS (node->loc);
14846 varloc = NOTE_VAR_LOCATION (node->loc);
14847 descr = dw_loc_list_1 (decl, varloc, want_address,
14848 initialized);
14850 gcc_assert (descr);
14851 /* The variable has a location between NODE->LABEL and
14852 NODE->NEXT->LABEL. */
14853 if (node->next)
14854 endname = node->next->label;
14855 else
14856 endname = cfun->fde->dw_fde_second_end;
14857 *listp = new_loc_list (descr,
14858 cfun->fde->dw_fde_second_begin,
14859 endname, secname);
14860 listp = &(*listp)->dw_loc_next;
14865 /* Try to avoid the overhead of a location list emitting a location
14866 expression instead, but only if we didn't have more than one
14867 location entry in the first place. If some entries were not
14868 representable, we don't want to pretend a single entry that was
14869 applies to the entire scope in which the variable is
14870 available. */
14871 if (list && loc_list->first->next)
14872 gen_llsym (list);
14874 return list;
14877 /* Return if the loc_list has only single element and thus can be represented
14878 as location description. */
14880 static bool
14881 single_element_loc_list_p (dw_loc_list_ref list)
14883 gcc_assert (!list->dw_loc_next || list->ll_symbol);
14884 return !list->ll_symbol;
14887 /* To each location in list LIST add loc descr REF. */
14889 static void
14890 add_loc_descr_to_each (dw_loc_list_ref list, dw_loc_descr_ref ref)
14892 dw_loc_descr_ref copy;
14893 add_loc_descr (&list->expr, ref);
14894 list = list->dw_loc_next;
14895 while (list)
14897 copy = ggc_alloc<dw_loc_descr_node> ();
14898 memcpy (copy, ref, sizeof (dw_loc_descr_node));
14899 add_loc_descr (&list->expr, copy);
14900 while (copy->dw_loc_next)
14902 dw_loc_descr_ref new_copy = ggc_alloc<dw_loc_descr_node> ();
14903 memcpy (new_copy, copy->dw_loc_next, sizeof (dw_loc_descr_node));
14904 copy->dw_loc_next = new_copy;
14905 copy = new_copy;
14907 list = list->dw_loc_next;
14911 /* Given two lists RET and LIST
14912 produce location list that is result of adding expression in LIST
14913 to expression in RET on each position in program.
14914 Might be destructive on both RET and LIST.
14916 TODO: We handle only simple cases of RET or LIST having at most one
14917 element. General case would inolve sorting the lists in program order
14918 and merging them that will need some additional work.
14919 Adding that will improve quality of debug info especially for SRA-ed
14920 structures. */
14922 static void
14923 add_loc_list (dw_loc_list_ref *ret, dw_loc_list_ref list)
14925 if (!list)
14926 return;
14927 if (!*ret)
14929 *ret = list;
14930 return;
14932 if (!list->dw_loc_next)
14934 add_loc_descr_to_each (*ret, list->expr);
14935 return;
14937 if (!(*ret)->dw_loc_next)
14939 add_loc_descr_to_each (list, (*ret)->expr);
14940 *ret = list;
14941 return;
14943 expansion_failed (NULL_TREE, NULL_RTX,
14944 "Don't know how to merge two non-trivial"
14945 " location lists.\n");
14946 *ret = NULL;
14947 return;
14950 /* LOC is constant expression. Try a luck, look it up in constant
14951 pool and return its loc_descr of its address. */
14953 static dw_loc_descr_ref
14954 cst_pool_loc_descr (tree loc)
14956 /* Get an RTL for this, if something has been emitted. */
14957 rtx rtl = lookup_constant_def (loc);
14959 if (!rtl || !MEM_P (rtl))
14961 gcc_assert (!rtl);
14962 return 0;
14964 gcc_assert (GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF);
14966 /* TODO: We might get more coverage if we was actually delaying expansion
14967 of all expressions till end of compilation when constant pools are fully
14968 populated. */
14969 if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (XEXP (rtl, 0))))
14971 expansion_failed (loc, NULL_RTX,
14972 "CST value in contant pool but not marked.");
14973 return 0;
14975 return mem_loc_descriptor (XEXP (rtl, 0), get_address_mode (rtl),
14976 GET_MODE (rtl), VAR_INIT_STATUS_INITIALIZED);
14979 /* Return dw_loc_list representing address of addr_expr LOC
14980 by looking for inner INDIRECT_REF expression and turning
14981 it into simple arithmetics.
14983 See loc_list_from_tree for the meaning of CONTEXT. */
14985 static dw_loc_list_ref
14986 loc_list_for_address_of_addr_expr_of_indirect_ref (tree loc, bool toplev,
14987 const loc_descr_context *context)
14989 tree obj, offset;
14990 HOST_WIDE_INT bitsize, bitpos, bytepos;
14991 machine_mode mode;
14992 int unsignedp, reversep, volatilep = 0;
14993 dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;
14995 obj = get_inner_reference (TREE_OPERAND (loc, 0),
14996 &bitsize, &bitpos, &offset, &mode,
14997 &unsignedp, &reversep, &volatilep, false);
14998 STRIP_NOPS (obj);
14999 if (bitpos % BITS_PER_UNIT)
15001 expansion_failed (loc, NULL_RTX, "bitfield access");
15002 return 0;
15004 if (!INDIRECT_REF_P (obj))
15006 expansion_failed (obj,
15007 NULL_RTX, "no indirect ref in inner refrence");
15008 return 0;
15010 if (!offset && !bitpos)
15011 list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), toplev ? 2 : 1,
15012 context);
15013 else if (toplev
15014 && int_size_in_bytes (TREE_TYPE (loc)) <= DWARF2_ADDR_SIZE
15015 && (dwarf_version >= 4 || !dwarf_strict))
15017 list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), 0, context);
15018 if (!list_ret)
15019 return 0;
15020 if (offset)
15022 /* Variable offset. */
15023 list_ret1 = loc_list_from_tree (offset, 0, context);
15024 if (list_ret1 == 0)
15025 return 0;
15026 add_loc_list (&list_ret, list_ret1);
15027 if (!list_ret)
15028 return 0;
15029 add_loc_descr_to_each (list_ret,
15030 new_loc_descr (DW_OP_plus, 0, 0));
15032 bytepos = bitpos / BITS_PER_UNIT;
15033 if (bytepos > 0)
15034 add_loc_descr_to_each (list_ret,
15035 new_loc_descr (DW_OP_plus_uconst,
15036 bytepos, 0));
15037 else if (bytepos < 0)
15038 loc_list_plus_const (list_ret, bytepos);
15039 add_loc_descr_to_each (list_ret,
15040 new_loc_descr (DW_OP_stack_value, 0, 0));
15042 return list_ret;
15045 /* Set LOC to the next operation that is not a DW_OP_nop operation. In the case
15046 all operations from LOC are nops, move to the last one. Insert in NOPS all
15047 operations that are skipped. */
15049 static void
15050 loc_descr_to_next_no_nop (dw_loc_descr_ref &loc,
15051 hash_set<dw_loc_descr_ref> &nops)
15053 while (loc->dw_loc_next != NULL && loc->dw_loc_opc == DW_OP_nop)
15055 nops.add (loc);
15056 loc = loc->dw_loc_next;
15060 /* Helper for loc_descr_without_nops: free the location description operation
15061 P. */
15063 bool
15064 free_loc_descr (const dw_loc_descr_ref &loc, void *data ATTRIBUTE_UNUSED)
15066 ggc_free (loc);
15067 return true;
15070 /* Remove all DW_OP_nop operations from LOC except, if it exists, the one that
15071 finishes LOC. */
15073 static void
15074 loc_descr_without_nops (dw_loc_descr_ref &loc)
15076 if (loc->dw_loc_opc == DW_OP_nop && loc->dw_loc_next == NULL)
15077 return;
15079 /* Set of all DW_OP_nop operations we remove. */
15080 hash_set<dw_loc_descr_ref> nops;
15082 /* First, strip all prefix NOP operations in order to keep the head of the
15083 operations list. */
15084 loc_descr_to_next_no_nop (loc, nops);
15086 for (dw_loc_descr_ref cur = loc; cur != NULL;)
15088 /* For control flow operations: strip "prefix" nops in destination
15089 labels. */
15090 if (cur->dw_loc_oprnd1.val_class == dw_val_class_loc)
15091 loc_descr_to_next_no_nop (cur->dw_loc_oprnd1.v.val_loc, nops);
15092 if (cur->dw_loc_oprnd2.val_class == dw_val_class_loc)
15093 loc_descr_to_next_no_nop (cur->dw_loc_oprnd2.v.val_loc, nops);
15095 /* Do the same for the operations that follow, then move to the next
15096 iteration. */
15097 if (cur->dw_loc_next != NULL)
15098 loc_descr_to_next_no_nop (cur->dw_loc_next, nops);
15099 cur = cur->dw_loc_next;
15102 nops.traverse<void *, free_loc_descr> (NULL);
15106 struct dwarf_procedure_info;
15108 /* Helper structure for location descriptions generation. */
15109 struct loc_descr_context
15111 /* The type that is implicitly referenced by DW_OP_push_object_address, or
15112 NULL_TREE if DW_OP_push_object_address in invalid for this location
15113 description. This is used when processing PLACEHOLDER_EXPR nodes. */
15114 tree context_type;
15115 /* The ..._DECL node that should be translated as a
15116 DW_OP_push_object_address operation. */
15117 tree base_decl;
15118 /* Information about the DWARF procedure we are currently generating. NULL if
15119 we are not generating a DWARF procedure. */
15120 struct dwarf_procedure_info *dpi;
15123 /* DWARF procedures generation
15125 DWARF expressions (aka. location descriptions) are used to encode variable
15126 things such as sizes or offsets. Such computations can have redundant parts
15127 that can be factorized in order to reduce the size of the output debug
15128 information. This is the whole point of DWARF procedures.
15130 Thanks to stor-layout.c, size and offset expressions in GENERIC trees are
15131 already factorized into functions ("size functions") in order to handle very
15132 big and complex types. Such functions are quite simple: they have integral
15133 arguments, they return an integral result and their body contains only a
15134 return statement with arithmetic expressions. This is the only kind of
15135 function we are interested in translating into DWARF procedures, here.
15137 DWARF expressions and DWARF procedure are executed using a stack, so we have
15138 to define some calling convention for them to interact. Let's say that:
15140 - Before calling a DWARF procedure, DWARF expressions must push on the stack
15141 all arguments in reverse order (right-to-left) so that when the DWARF
15142 procedure execution starts, the first argument is the top of the stack.
15144 - Then, when returning, the DWARF procedure must have consumed all arguments
15145 on the stack, must have pushed the result and touched nothing else.
15147 - Each integral argument and the result are integral types can be hold in a
15148 single stack slot.
15150 - We call "frame offset" the number of stack slots that are "under DWARF
15151 procedure control": it includes the arguments slots, the temporaries and
15152 the result slot. Thus, it is equal to the number of arguments when the
15153 procedure execution starts and must be equal to one (the result) when it
15154 returns. */
15156 /* Helper structure used when generating operations for a DWARF procedure. */
15157 struct dwarf_procedure_info
15159 /* The FUNCTION_DECL node corresponding to the DWARF procedure that is
15160 currently translated. */
15161 tree fndecl;
15162 /* The number of arguments FNDECL takes. */
15163 unsigned args_count;
15166 /* Return a pointer to a newly created DIE node for a DWARF procedure. Add
15167 LOCATION as its DW_AT_location attribute. If FNDECL is not NULL_TREE,
15168 equate it to this DIE. */
15170 static dw_die_ref
15171 new_dwarf_proc_die (dw_loc_descr_ref location, tree fndecl,
15172 dw_die_ref parent_die)
15174 const bool dwarf_proc_supported = dwarf_version >= 4;
15175 dw_die_ref dwarf_proc_die;
15177 if ((dwarf_version < 3 && dwarf_strict)
15178 || location == NULL)
15179 return NULL;
15181 dwarf_proc_die = new_die (dwarf_proc_supported
15182 ? DW_TAG_dwarf_procedure
15183 : DW_TAG_variable,
15184 parent_die,
15185 fndecl);
15186 if (fndecl)
15187 equate_decl_number_to_die (fndecl, dwarf_proc_die);
15188 if (!dwarf_proc_supported)
15189 add_AT_flag (dwarf_proc_die, DW_AT_artificial, 1);
15190 add_AT_loc (dwarf_proc_die, DW_AT_location, location);
15191 return dwarf_proc_die;
15194 /* Return whether TYPE is a supported type as a DWARF procedure argument
15195 type or return type (we handle only scalar types and pointer types that
15196 aren't wider than the DWARF expression evaluation stack. */
15198 static bool
15199 is_handled_procedure_type (tree type)
15201 return ((INTEGRAL_TYPE_P (type)
15202 || TREE_CODE (type) == OFFSET_TYPE
15203 || TREE_CODE (type) == POINTER_TYPE)
15204 && int_size_in_bytes (type) <= DWARF2_ADDR_SIZE);
15207 /* Helper for resolve_args_picking. Stop when coming across VISITED nodes. */
15209 static bool
15210 resolve_args_picking_1 (dw_loc_descr_ref loc, unsigned initial_frame_offset,
15211 struct dwarf_procedure_info *dpi,
15212 hash_set<dw_loc_descr_ref> &visited)
15214 /* The "frame_offset" identifier is already used to name a macro... */
15215 unsigned frame_offset_ = initial_frame_offset;
15216 dw_loc_descr_ref l;
15218 for (l = loc; l != NULL;)
15220 /* If we already met this node, there is nothing to compute anymore. */
15221 if (visited.add (l))
15223 #if ENABLE_CHECKING
15224 /* Make sure that the stack size is consistent wherever the execution
15225 flow comes from. */
15226 gcc_assert ((unsigned) l->dw_loc_frame_offset == frame_offset_);
15227 #endif
15228 break;
15230 #if ENABLE_CHECKING
15231 l->dw_loc_frame_offset = frame_offset_;
15232 #endif
15234 /* If needed, relocate the picking offset with respect to the frame
15235 offset. */
15236 if (l->dw_loc_opc == DW_OP_pick && l->frame_offset_rel)
15238 /* frame_offset_ is the size of the current stack frame, including
15239 incoming arguments. Besides, the arguments are pushed
15240 right-to-left. Thus, in order to access the Nth argument from
15241 this operation node, the picking has to skip temporaries *plus*
15242 one stack slot per argument (0 for the first one, 1 for the second
15243 one, etc.).
15245 The targetted argument number (N) is already set as the operand,
15246 and the number of temporaries can be computed with:
15247 frame_offsets_ - dpi->args_count */
15248 l->dw_loc_oprnd1.v.val_unsigned += frame_offset_ - dpi->args_count;
15250 /* DW_OP_pick handles only offsets from 0 to 255 (inclusive)... */
15251 if (l->dw_loc_oprnd1.v.val_unsigned > 255)
15252 return false;
15255 /* Update frame_offset according to the effect the current operation has
15256 on the stack. */
15257 switch (l->dw_loc_opc)
15259 case DW_OP_deref:
15260 case DW_OP_swap:
15261 case DW_OP_rot:
15262 case DW_OP_abs:
15263 case DW_OP_not:
15264 case DW_OP_plus_uconst:
15265 case DW_OP_skip:
15266 case DW_OP_reg0:
15267 case DW_OP_reg1:
15268 case DW_OP_reg2:
15269 case DW_OP_reg3:
15270 case DW_OP_reg4:
15271 case DW_OP_reg5:
15272 case DW_OP_reg6:
15273 case DW_OP_reg7:
15274 case DW_OP_reg8:
15275 case DW_OP_reg9:
15276 case DW_OP_reg10:
15277 case DW_OP_reg11:
15278 case DW_OP_reg12:
15279 case DW_OP_reg13:
15280 case DW_OP_reg14:
15281 case DW_OP_reg15:
15282 case DW_OP_reg16:
15283 case DW_OP_reg17:
15284 case DW_OP_reg18:
15285 case DW_OP_reg19:
15286 case DW_OP_reg20:
15287 case DW_OP_reg21:
15288 case DW_OP_reg22:
15289 case DW_OP_reg23:
15290 case DW_OP_reg24:
15291 case DW_OP_reg25:
15292 case DW_OP_reg26:
15293 case DW_OP_reg27:
15294 case DW_OP_reg28:
15295 case DW_OP_reg29:
15296 case DW_OP_reg30:
15297 case DW_OP_reg31:
15298 case DW_OP_bregx:
15299 case DW_OP_piece:
15300 case DW_OP_deref_size:
15301 case DW_OP_nop:
15302 case DW_OP_form_tls_address:
15303 case DW_OP_bit_piece:
15304 case DW_OP_implicit_value:
15305 case DW_OP_stack_value:
15306 break;
15308 case DW_OP_addr:
15309 case DW_OP_const1u:
15310 case DW_OP_const1s:
15311 case DW_OP_const2u:
15312 case DW_OP_const2s:
15313 case DW_OP_const4u:
15314 case DW_OP_const4s:
15315 case DW_OP_const8u:
15316 case DW_OP_const8s:
15317 case DW_OP_constu:
15318 case DW_OP_consts:
15319 case DW_OP_dup:
15320 case DW_OP_over:
15321 case DW_OP_pick:
15322 case DW_OP_lit0:
15323 case DW_OP_lit1:
15324 case DW_OP_lit2:
15325 case DW_OP_lit3:
15326 case DW_OP_lit4:
15327 case DW_OP_lit5:
15328 case DW_OP_lit6:
15329 case DW_OP_lit7:
15330 case DW_OP_lit8:
15331 case DW_OP_lit9:
15332 case DW_OP_lit10:
15333 case DW_OP_lit11:
15334 case DW_OP_lit12:
15335 case DW_OP_lit13:
15336 case DW_OP_lit14:
15337 case DW_OP_lit15:
15338 case DW_OP_lit16:
15339 case DW_OP_lit17:
15340 case DW_OP_lit18:
15341 case DW_OP_lit19:
15342 case DW_OP_lit20:
15343 case DW_OP_lit21:
15344 case DW_OP_lit22:
15345 case DW_OP_lit23:
15346 case DW_OP_lit24:
15347 case DW_OP_lit25:
15348 case DW_OP_lit26:
15349 case DW_OP_lit27:
15350 case DW_OP_lit28:
15351 case DW_OP_lit29:
15352 case DW_OP_lit30:
15353 case DW_OP_lit31:
15354 case DW_OP_breg0:
15355 case DW_OP_breg1:
15356 case DW_OP_breg2:
15357 case DW_OP_breg3:
15358 case DW_OP_breg4:
15359 case DW_OP_breg5:
15360 case DW_OP_breg6:
15361 case DW_OP_breg7:
15362 case DW_OP_breg8:
15363 case DW_OP_breg9:
15364 case DW_OP_breg10:
15365 case DW_OP_breg11:
15366 case DW_OP_breg12:
15367 case DW_OP_breg13:
15368 case DW_OP_breg14:
15369 case DW_OP_breg15:
15370 case DW_OP_breg16:
15371 case DW_OP_breg17:
15372 case DW_OP_breg18:
15373 case DW_OP_breg19:
15374 case DW_OP_breg20:
15375 case DW_OP_breg21:
15376 case DW_OP_breg22:
15377 case DW_OP_breg23:
15378 case DW_OP_breg24:
15379 case DW_OP_breg25:
15380 case DW_OP_breg26:
15381 case DW_OP_breg27:
15382 case DW_OP_breg28:
15383 case DW_OP_breg29:
15384 case DW_OP_breg30:
15385 case DW_OP_breg31:
15386 case DW_OP_fbreg:
15387 case DW_OP_push_object_address:
15388 case DW_OP_call_frame_cfa:
15389 ++frame_offset_;
15390 break;
15392 case DW_OP_drop:
15393 case DW_OP_xderef:
15394 case DW_OP_and:
15395 case DW_OP_div:
15396 case DW_OP_minus:
15397 case DW_OP_mod:
15398 case DW_OP_mul:
15399 case DW_OP_neg:
15400 case DW_OP_or:
15401 case DW_OP_plus:
15402 case DW_OP_shl:
15403 case DW_OP_shr:
15404 case DW_OP_shra:
15405 case DW_OP_xor:
15406 case DW_OP_bra:
15407 case DW_OP_eq:
15408 case DW_OP_ge:
15409 case DW_OP_gt:
15410 case DW_OP_le:
15411 case DW_OP_lt:
15412 case DW_OP_ne:
15413 case DW_OP_regx:
15414 case DW_OP_xderef_size:
15415 --frame_offset_;
15416 break;
15418 case DW_OP_call2:
15419 case DW_OP_call4:
15420 case DW_OP_call_ref:
15422 dw_die_ref dwarf_proc = l->dw_loc_oprnd1.v.val_die_ref.die;
15423 int *stack_usage = dwarf_proc_stack_usage_map->get (dwarf_proc);
15425 if (stack_usage == NULL)
15426 return false;
15427 frame_offset += *stack_usage;
15428 break;
15431 case DW_OP_GNU_push_tls_address:
15432 case DW_OP_GNU_uninit:
15433 case DW_OP_GNU_encoded_addr:
15434 case DW_OP_GNU_implicit_pointer:
15435 case DW_OP_GNU_entry_value:
15436 case DW_OP_GNU_const_type:
15437 case DW_OP_GNU_regval_type:
15438 case DW_OP_GNU_deref_type:
15439 case DW_OP_GNU_convert:
15440 case DW_OP_GNU_reinterpret:
15441 case DW_OP_GNU_parameter_ref:
15442 /* loc_list_from_tree will probably not output these operations for
15443 size functions, so assume they will not appear here. */
15444 /* Fall through... */
15446 default:
15447 gcc_unreachable ();
15450 /* Now, follow the control flow (except subroutine calls). */
15451 switch (l->dw_loc_opc)
15453 case DW_OP_bra:
15454 if (!resolve_args_picking_1 (l->dw_loc_next, frame_offset_, dpi,
15455 visited))
15456 return false;
15457 /* Fall through... */
15459 case DW_OP_skip:
15460 l = l->dw_loc_oprnd1.v.val_loc;
15461 break;
15463 case DW_OP_stack_value:
15464 return true;
15466 default:
15467 l = l->dw_loc_next;
15468 break;
15472 return true;
15475 /* Make a DFS over operations reachable through LOC (i.e. follow branch
15476 operations) in order to resolve the operand of DW_OP_pick operations that
15477 target DWARF procedure arguments (DPI). Stop at already visited nodes.
15478 INITIAL_FRAME_OFFSET is the frame offset *before* LOC is executed. Return
15479 if all relocations were successful. */
15481 static bool
15482 resolve_args_picking (dw_loc_descr_ref loc, unsigned initial_frame_offset,
15483 struct dwarf_procedure_info *dpi)
15485 hash_set<dw_loc_descr_ref> visited;
15487 return resolve_args_picking_1 (loc, initial_frame_offset, dpi, visited);
15490 /* Try to generate a DWARF procedure that computes the same result as FNDECL.
15491 Return NULL if it is not possible. */
15493 static dw_die_ref
15494 function_to_dwarf_procedure (tree fndecl)
15496 struct loc_descr_context ctx;
15497 struct dwarf_procedure_info dpi;
15498 dw_die_ref dwarf_proc_die;
15499 tree tree_body = DECL_SAVED_TREE (fndecl);
15500 dw_loc_descr_ref loc_body, epilogue;
15502 tree cursor;
15503 unsigned i;
15505 /* Do not generate multiple DWARF procedures for the same function
15506 declaration. */
15507 dwarf_proc_die = lookup_decl_die (fndecl);
15508 if (dwarf_proc_die != NULL)
15509 return dwarf_proc_die;
15511 /* DWARF procedures are available starting with the DWARFv3 standard, but
15512 it's the DWARFv4 standard that introduces the DW_TAG_dwarf_procedure
15513 DIE. */
15514 if (dwarf_version < 3 && dwarf_strict)
15515 return NULL;
15517 /* We handle only functions for which we still have a body, that return a
15518 supported type and that takes arguments with supported types. Note that
15519 there is no point translating functions that return nothing. */
15520 if (tree_body == NULL_TREE
15521 || DECL_RESULT (fndecl) == NULL_TREE
15522 || !is_handled_procedure_type (TREE_TYPE (DECL_RESULT (fndecl))))
15523 return NULL;
15525 for (cursor = DECL_ARGUMENTS (fndecl);
15526 cursor != NULL_TREE;
15527 cursor = TREE_CHAIN (cursor))
15528 if (!is_handled_procedure_type (TREE_TYPE (cursor)))
15529 return NULL;
15531 /* Match only "expr" in: RETURN_EXPR (MODIFY_EXPR (RESULT_DECL, expr)). */
15532 if (TREE_CODE (tree_body) != RETURN_EXPR)
15533 return NULL;
15534 tree_body = TREE_OPERAND (tree_body, 0);
15535 if (TREE_CODE (tree_body) != MODIFY_EXPR
15536 || TREE_OPERAND (tree_body, 0) != DECL_RESULT (fndecl))
15537 return NULL;
15538 tree_body = TREE_OPERAND (tree_body, 1);
15540 /* Try to translate the body expression itself. Note that this will probably
15541 cause an infinite recursion if its call graph has a cycle. This is very
15542 unlikely for size functions, however, so don't bother with such things at
15543 the moment. */
15544 ctx.context_type = NULL_TREE;
15545 ctx.base_decl = NULL_TREE;
15546 ctx.dpi = &dpi;
15547 dpi.fndecl = fndecl;
15548 dpi.args_count = list_length (DECL_ARGUMENTS (fndecl));
15549 loc_body = loc_descriptor_from_tree (tree_body, 0, &ctx);
15550 if (!loc_body)
15551 return NULL;
15553 /* After evaluating all operands in "loc_body", we should still have on the
15554 stack all arguments plus the desired function result (top of the stack).
15555 Generate code in order to keep only the result in our stack frame. */
15556 epilogue = NULL;
15557 for (i = 0; i < dpi.args_count; ++i)
15559 dw_loc_descr_ref op_couple = new_loc_descr (DW_OP_swap, 0, 0);
15560 op_couple->dw_loc_next = new_loc_descr (DW_OP_drop, 0, 0);
15561 op_couple->dw_loc_next->dw_loc_next = epilogue;
15562 epilogue = op_couple;
15564 add_loc_descr (&loc_body, epilogue);
15565 if (!resolve_args_picking (loc_body, dpi.args_count, &dpi))
15566 return NULL;
15568 /* Trailing nops from loc_descriptor_from_tree (if any) cannot be removed
15569 because they are considered useful. Now there is an epilogue, they are
15570 not anymore, so give it another try. */
15571 loc_descr_without_nops (loc_body);
15573 /* fndecl may be used both as a regular DW_TAG_subprogram DIE and as
15574 a DW_TAG_dwarf_procedure, so we may have a conflict, here. It's unlikely,
15575 though, given that size functions do not come from source, so they should
15576 not have a dedicated DW_TAG_subprogram DIE. */
15577 dwarf_proc_die
15578 = new_dwarf_proc_die (loc_body, fndecl,
15579 get_context_die (DECL_CONTEXT (fndecl)));
15581 /* The called DWARF procedure consumes one stack slot per argument and
15582 returns one stack slot. */
15583 dwarf_proc_stack_usage_map->put (dwarf_proc_die, 1 - dpi.args_count);
15585 return dwarf_proc_die;
15589 /* Generate Dwarf location list representing LOC.
15590 If WANT_ADDRESS is false, expression computing LOC will be computed
15591 If WANT_ADDRESS is 1, expression computing address of LOC will be returned
15592 if WANT_ADDRESS is 2, expression computing address useable in location
15593 will be returned (i.e. DW_OP_reg can be used
15594 to refer to register values).
15596 CONTEXT provides information to customize the location descriptions
15597 generation. Its context_type field specifies what type is implicitly
15598 referenced by DW_OP_push_object_address. If it is NULL_TREE, this operation
15599 will not be generated.
15601 Its DPI field determines whether we are generating a DWARF expression for a
15602 DWARF procedure, so PARM_DECL references are processed specifically.
15604 If CONTEXT is NULL, the behavior is the same as if context_type, base_decl
15605 and dpi fields were null. */
15607 static dw_loc_list_ref
15608 loc_list_from_tree_1 (tree loc, int want_address,
15609 const struct loc_descr_context *context)
15611 dw_loc_descr_ref ret = NULL, ret1 = NULL;
15612 dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;
15613 int have_address = 0;
15614 enum dwarf_location_atom op;
15616 /* ??? Most of the time we do not take proper care for sign/zero
15617 extending the values properly. Hopefully this won't be a real
15618 problem... */
15620 if (context != NULL
15621 && context->base_decl == loc
15622 && want_address == 0)
15624 if (dwarf_version >= 3 || !dwarf_strict)
15625 return new_loc_list (new_loc_descr (DW_OP_push_object_address, 0, 0),
15626 NULL, NULL, NULL);
15627 else
15628 return NULL;
15631 switch (TREE_CODE (loc))
15633 case ERROR_MARK:
15634 expansion_failed (loc, NULL_RTX, "ERROR_MARK");
15635 return 0;
15637 case PLACEHOLDER_EXPR:
15638 /* This case involves extracting fields from an object to determine the
15639 position of other fields. It is supposed to appear only as the first
15640 operand of COMPONENT_REF nodes and to reference precisely the type
15641 that the context allows. */
15642 if (context != NULL
15643 && TREE_TYPE (loc) == context->context_type
15644 && want_address >= 1)
15646 if (dwarf_version >= 3 || !dwarf_strict)
15648 ret = new_loc_descr (DW_OP_push_object_address, 0, 0);
15649 have_address = 1;
15650 break;
15652 else
15653 return NULL;
15655 else
15656 expansion_failed (loc, NULL_RTX,
15657 "PLACEHOLDER_EXPR for an unexpected type");
15658 break;
15660 case CALL_EXPR:
15662 const int nargs = call_expr_nargs (loc);
15663 tree callee = get_callee_fndecl (loc);
15664 int i;
15665 dw_die_ref dwarf_proc;
15667 if (callee == NULL_TREE)
15668 goto call_expansion_failed;
15670 /* We handle only functions that return an integer. */
15671 if (!is_handled_procedure_type (TREE_TYPE (TREE_TYPE (callee))))
15672 goto call_expansion_failed;
15674 dwarf_proc = function_to_dwarf_procedure (callee);
15675 if (dwarf_proc == NULL)
15676 goto call_expansion_failed;
15678 /* Evaluate arguments right-to-left so that the first argument will
15679 be the top-most one on the stack. */
15680 for (i = nargs - 1; i >= 0; --i)
15682 dw_loc_descr_ref loc_descr
15683 = loc_descriptor_from_tree (CALL_EXPR_ARG (loc, i), 0,
15684 context);
15686 if (loc_descr == NULL)
15687 goto call_expansion_failed;
15689 add_loc_descr (&ret, loc_descr);
15692 ret1 = new_loc_descr (DW_OP_call4, 0, 0);
15693 ret1->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
15694 ret1->dw_loc_oprnd1.v.val_die_ref.die = dwarf_proc;
15695 ret1->dw_loc_oprnd1.v.val_die_ref.external = 0;
15696 add_loc_descr (&ret, ret1);
15697 break;
15699 call_expansion_failed:
15700 expansion_failed (loc, NULL_RTX, "CALL_EXPR");
15701 /* There are no opcodes for these operations. */
15702 return 0;
15705 case PREINCREMENT_EXPR:
15706 case PREDECREMENT_EXPR:
15707 case POSTINCREMENT_EXPR:
15708 case POSTDECREMENT_EXPR:
15709 expansion_failed (loc, NULL_RTX, "PRE/POST INDCREMENT/DECREMENT");
15710 /* There are no opcodes for these operations. */
15711 return 0;
15713 case ADDR_EXPR:
15714 /* If we already want an address, see if there is INDIRECT_REF inside
15715 e.g. for &this->field. */
15716 if (want_address)
15718 list_ret = loc_list_for_address_of_addr_expr_of_indirect_ref
15719 (loc, want_address == 2, context);
15720 if (list_ret)
15721 have_address = 1;
15722 else if (decl_address_ip_invariant_p (TREE_OPERAND (loc, 0))
15723 && (ret = cst_pool_loc_descr (loc)))
15724 have_address = 1;
15726 /* Otherwise, process the argument and look for the address. */
15727 if (!list_ret && !ret)
15728 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 1, context);
15729 else
15731 if (want_address)
15732 expansion_failed (loc, NULL_RTX, "need address of ADDR_EXPR");
15733 return NULL;
15735 break;
15737 case VAR_DECL:
15738 if (DECL_THREAD_LOCAL_P (loc))
15740 rtx rtl;
15741 enum dwarf_location_atom tls_op;
15742 enum dtprel_bool dtprel = dtprel_false;
15744 if (targetm.have_tls)
15746 /* If this is not defined, we have no way to emit the
15747 data. */
15748 if (!targetm.asm_out.output_dwarf_dtprel)
15749 return 0;
15751 /* The way DW_OP_GNU_push_tls_address is specified, we
15752 can only look up addresses of objects in the current
15753 module. We used DW_OP_addr as first op, but that's
15754 wrong, because DW_OP_addr is relocated by the debug
15755 info consumer, while DW_OP_GNU_push_tls_address
15756 operand shouldn't be. */
15757 if (DECL_EXTERNAL (loc) && !targetm.binds_local_p (loc))
15758 return 0;
15759 dtprel = dtprel_true;
15760 tls_op = DW_OP_GNU_push_tls_address;
15762 else
15764 if (!targetm.emutls.debug_form_tls_address
15765 || !(dwarf_version >= 3 || !dwarf_strict))
15766 return 0;
15767 /* We stuffed the control variable into the DECL_VALUE_EXPR
15768 to signal (via DECL_HAS_VALUE_EXPR_P) that the decl should
15769 no longer appear in gimple code. We used the control
15770 variable in specific so that we could pick it up here. */
15771 loc = DECL_VALUE_EXPR (loc);
15772 tls_op = DW_OP_form_tls_address;
15775 rtl = rtl_for_decl_location (loc);
15776 if (rtl == NULL_RTX)
15777 return 0;
15779 if (!MEM_P (rtl))
15780 return 0;
15781 rtl = XEXP (rtl, 0);
15782 if (! CONSTANT_P (rtl))
15783 return 0;
15785 ret = new_addr_loc_descr (rtl, dtprel);
15786 ret1 = new_loc_descr (tls_op, 0, 0);
15787 add_loc_descr (&ret, ret1);
15789 have_address = 1;
15790 break;
15792 /* FALLTHRU */
15794 case PARM_DECL:
15795 if (context != NULL && context->dpi != NULL
15796 && DECL_CONTEXT (loc) == context->dpi->fndecl)
15798 /* We are generating code for a DWARF procedure and we want to access
15799 one of its arguments: find the appropriate argument offset and let
15800 the resolve_args_picking pass compute the offset that complies
15801 with the stack frame size. */
15802 unsigned i = 0;
15803 tree cursor;
15805 for (cursor = DECL_ARGUMENTS (context->dpi->fndecl);
15806 cursor != NULL_TREE && cursor != loc;
15807 cursor = TREE_CHAIN (cursor), ++i)
15809 /* If we are translating a DWARF procedure, all referenced parameters
15810 must belong to the current function. */
15811 gcc_assert (cursor != NULL_TREE);
15813 ret = new_loc_descr (DW_OP_pick, i, 0);
15814 ret->frame_offset_rel = 1;
15815 break;
15817 /* FALLTHRU */
15819 case RESULT_DECL:
15820 if (DECL_HAS_VALUE_EXPR_P (loc))
15821 return loc_list_from_tree_1 (DECL_VALUE_EXPR (loc),
15822 want_address, context);
15823 /* FALLTHRU */
15825 case FUNCTION_DECL:
15827 rtx rtl;
15828 var_loc_list *loc_list = lookup_decl_loc (loc);
15830 if (loc_list && loc_list->first)
15832 list_ret = dw_loc_list (loc_list, loc, want_address);
15833 have_address = want_address != 0;
15834 break;
15836 rtl = rtl_for_decl_location (loc);
15837 if (rtl == NULL_RTX)
15839 expansion_failed (loc, NULL_RTX, "DECL has no RTL");
15840 return 0;
15842 else if (CONST_INT_P (rtl))
15844 HOST_WIDE_INT val = INTVAL (rtl);
15845 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
15846 val &= GET_MODE_MASK (DECL_MODE (loc));
15847 ret = int_loc_descriptor (val);
15849 else if (GET_CODE (rtl) == CONST_STRING)
15851 expansion_failed (loc, NULL_RTX, "CONST_STRING");
15852 return 0;
15854 else if (CONSTANT_P (rtl) && const_ok_for_output (rtl))
15855 ret = new_addr_loc_descr (rtl, dtprel_false);
15856 else
15858 machine_mode mode, mem_mode;
15860 /* Certain constructs can only be represented at top-level. */
15861 if (want_address == 2)
15863 ret = loc_descriptor (rtl, VOIDmode,
15864 VAR_INIT_STATUS_INITIALIZED);
15865 have_address = 1;
15867 else
15869 mode = GET_MODE (rtl);
15870 mem_mode = VOIDmode;
15871 if (MEM_P (rtl))
15873 mem_mode = mode;
15874 mode = get_address_mode (rtl);
15875 rtl = XEXP (rtl, 0);
15876 have_address = 1;
15878 ret = mem_loc_descriptor (rtl, mode, mem_mode,
15879 VAR_INIT_STATUS_INITIALIZED);
15881 if (!ret)
15882 expansion_failed (loc, rtl,
15883 "failed to produce loc descriptor for rtl");
15886 break;
15888 case MEM_REF:
15889 if (!integer_zerop (TREE_OPERAND (loc, 1)))
15891 have_address = 1;
15892 goto do_plus;
15894 /* Fallthru. */
15895 case INDIRECT_REF:
15896 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
15897 have_address = 1;
15898 break;
15900 case TARGET_MEM_REF:
15901 case SSA_NAME:
15902 case DEBUG_EXPR_DECL:
15903 return NULL;
15905 case COMPOUND_EXPR:
15906 return loc_list_from_tree_1 (TREE_OPERAND (loc, 1), want_address,
15907 context);
15909 CASE_CONVERT:
15910 case VIEW_CONVERT_EXPR:
15911 case SAVE_EXPR:
15912 case MODIFY_EXPR:
15913 case NON_LVALUE_EXPR:
15914 return loc_list_from_tree_1 (TREE_OPERAND (loc, 0), want_address,
15915 context);
15917 case COMPONENT_REF:
15918 case BIT_FIELD_REF:
15919 case ARRAY_REF:
15920 case ARRAY_RANGE_REF:
15921 case REALPART_EXPR:
15922 case IMAGPART_EXPR:
15924 tree obj, offset;
15925 HOST_WIDE_INT bitsize, bitpos, bytepos;
15926 machine_mode mode;
15927 int unsignedp, reversep, volatilep = 0;
15929 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
15930 &unsignedp, &reversep, &volatilep, false);
15932 gcc_assert (obj != loc);
15934 list_ret = loc_list_from_tree_1 (obj,
15935 want_address == 2
15936 && !bitpos && !offset ? 2 : 1,
15937 context);
15938 /* TODO: We can extract value of the small expression via shifting even
15939 for nonzero bitpos. */
15940 if (list_ret == 0)
15941 return 0;
15942 if (bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
15944 expansion_failed (loc, NULL_RTX,
15945 "bitfield access");
15946 return 0;
15949 if (offset != NULL_TREE)
15951 /* Variable offset. */
15952 list_ret1 = loc_list_from_tree_1 (offset, 0, context);
15953 if (list_ret1 == 0)
15954 return 0;
15955 add_loc_list (&list_ret, list_ret1);
15956 if (!list_ret)
15957 return 0;
15958 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus, 0, 0));
15961 bytepos = bitpos / BITS_PER_UNIT;
15962 if (bytepos > 0)
15963 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
15964 else if (bytepos < 0)
15965 loc_list_plus_const (list_ret, bytepos);
15967 have_address = 1;
15968 break;
15971 case INTEGER_CST:
15972 if ((want_address || !tree_fits_shwi_p (loc))
15973 && (ret = cst_pool_loc_descr (loc)))
15974 have_address = 1;
15975 else if (want_address == 2
15976 && tree_fits_shwi_p (loc)
15977 && (ret = address_of_int_loc_descriptor
15978 (int_size_in_bytes (TREE_TYPE (loc)),
15979 tree_to_shwi (loc))))
15980 have_address = 1;
15981 else if (tree_fits_shwi_p (loc))
15982 ret = int_loc_descriptor (tree_to_shwi (loc));
15983 else if (tree_fits_uhwi_p (loc))
15984 ret = uint_loc_descriptor (tree_to_uhwi (loc));
15985 else
15987 expansion_failed (loc, NULL_RTX,
15988 "Integer operand is not host integer");
15989 return 0;
15991 break;
15993 case CONSTRUCTOR:
15994 case REAL_CST:
15995 case STRING_CST:
15996 case COMPLEX_CST:
15997 if ((ret = cst_pool_loc_descr (loc)))
15998 have_address = 1;
15999 else
16000 /* We can construct small constants here using int_loc_descriptor. */
16001 expansion_failed (loc, NULL_RTX,
16002 "constructor or constant not in constant pool");
16003 break;
16005 case TRUTH_AND_EXPR:
16006 case TRUTH_ANDIF_EXPR:
16007 case BIT_AND_EXPR:
16008 op = DW_OP_and;
16009 goto do_binop;
16011 case TRUTH_XOR_EXPR:
16012 case BIT_XOR_EXPR:
16013 op = DW_OP_xor;
16014 goto do_binop;
16016 case TRUTH_OR_EXPR:
16017 case TRUTH_ORIF_EXPR:
16018 case BIT_IOR_EXPR:
16019 op = DW_OP_or;
16020 goto do_binop;
16022 case FLOOR_DIV_EXPR:
16023 case CEIL_DIV_EXPR:
16024 case ROUND_DIV_EXPR:
16025 case TRUNC_DIV_EXPR:
16026 case EXACT_DIV_EXPR:
16027 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
16028 return 0;
16029 op = DW_OP_div;
16030 goto do_binop;
16032 case MINUS_EXPR:
16033 op = DW_OP_minus;
16034 goto do_binop;
16036 case FLOOR_MOD_EXPR:
16037 case CEIL_MOD_EXPR:
16038 case ROUND_MOD_EXPR:
16039 case TRUNC_MOD_EXPR:
16040 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
16042 op = DW_OP_mod;
16043 goto do_binop;
16045 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
16046 list_ret1 = loc_list_from_tree_1 (TREE_OPERAND (loc, 1), 0, context);
16047 if (list_ret == 0 || list_ret1 == 0)
16048 return 0;
16050 add_loc_list (&list_ret, list_ret1);
16051 if (list_ret == 0)
16052 return 0;
16053 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_over, 0, 0));
16054 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_over, 0, 0));
16055 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_div, 0, 0));
16056 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_mul, 0, 0));
16057 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_minus, 0, 0));
16058 break;
16060 case MULT_EXPR:
16061 op = DW_OP_mul;
16062 goto do_binop;
16064 case LSHIFT_EXPR:
16065 op = DW_OP_shl;
16066 goto do_binop;
16068 case RSHIFT_EXPR:
16069 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
16070 goto do_binop;
16072 case POINTER_PLUS_EXPR:
16073 case PLUS_EXPR:
16074 do_plus:
16075 if (tree_fits_shwi_p (TREE_OPERAND (loc, 1)))
16077 /* Big unsigned numbers can fit in HOST_WIDE_INT but it may be
16078 smarter to encode their opposite. The DW_OP_plus_uconst operation
16079 takes 1 + X bytes, X being the size of the ULEB128 addend. On the
16080 other hand, a "<push literal>; DW_OP_minus" pattern takes 1 + Y
16081 bytes, Y being the size of the operation that pushes the opposite
16082 of the addend. So let's choose the smallest representation. */
16083 const tree tree_addend = TREE_OPERAND (loc, 1);
16084 offset_int wi_addend;
16085 HOST_WIDE_INT shwi_addend;
16086 dw_loc_descr_ref loc_naddend;
16088 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
16089 if (list_ret == 0)
16090 return 0;
16092 /* Try to get the literal to push. It is the opposite of the addend,
16093 so as we rely on wrapping during DWARF evaluation, first decode
16094 the literal as a "DWARF-sized" signed number. */
16095 wi_addend = wi::to_offset (tree_addend);
16096 wi_addend = wi::sext (wi_addend, DWARF2_ADDR_SIZE * 8);
16097 shwi_addend = wi_addend.to_shwi ();
16098 loc_naddend = (shwi_addend != INTTYPE_MINIMUM (HOST_WIDE_INT))
16099 ? int_loc_descriptor (-shwi_addend)
16100 : NULL;
16102 if (loc_naddend != NULL
16103 && ((unsigned) size_of_uleb128 (shwi_addend)
16104 > size_of_loc_descr (loc_naddend)))
16106 add_loc_descr_to_each (list_ret, loc_naddend);
16107 add_loc_descr_to_each (list_ret,
16108 new_loc_descr (DW_OP_minus, 0, 0));
16110 else
16112 for (dw_loc_descr_ref loc_cur = loc_naddend; loc_cur != NULL; )
16114 loc_naddend = loc_cur;
16115 loc_cur = loc_cur->dw_loc_next;
16116 ggc_free (loc_naddend);
16118 loc_list_plus_const (list_ret, wi_addend.to_shwi ());
16120 break;
16123 op = DW_OP_plus;
16124 goto do_binop;
16126 case LE_EXPR:
16127 op = DW_OP_le;
16128 goto do_comp_binop;
16130 case GE_EXPR:
16131 op = DW_OP_ge;
16132 goto do_comp_binop;
16134 case LT_EXPR:
16135 op = DW_OP_lt;
16136 goto do_comp_binop;
16138 case GT_EXPR:
16139 op = DW_OP_gt;
16140 goto do_comp_binop;
16142 do_comp_binop:
16143 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
16145 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0, context);
16146 list_ret1 = loc_list_from_tree (TREE_OPERAND (loc, 1), 0, context);
16147 list_ret = loc_list_from_uint_comparison (list_ret, list_ret1,
16148 TREE_CODE (loc));
16149 break;
16151 else
16152 goto do_binop;
16154 case EQ_EXPR:
16155 op = DW_OP_eq;
16156 goto do_binop;
16158 case NE_EXPR:
16159 op = DW_OP_ne;
16160 goto do_binop;
16162 do_binop:
16163 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
16164 list_ret1 = loc_list_from_tree_1 (TREE_OPERAND (loc, 1), 0, context);
16165 if (list_ret == 0 || list_ret1 == 0)
16166 return 0;
16168 add_loc_list (&list_ret, list_ret1);
16169 if (list_ret == 0)
16170 return 0;
16171 add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
16172 break;
16174 case TRUTH_NOT_EXPR:
16175 case BIT_NOT_EXPR:
16176 op = DW_OP_not;
16177 goto do_unop;
16179 case ABS_EXPR:
16180 op = DW_OP_abs;
16181 goto do_unop;
16183 case NEGATE_EXPR:
16184 op = DW_OP_neg;
16185 goto do_unop;
16187 do_unop:
16188 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
16189 if (list_ret == 0)
16190 return 0;
16192 add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
16193 break;
16195 case MIN_EXPR:
16196 case MAX_EXPR:
16198 const enum tree_code code =
16199 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
16201 loc = build3 (COND_EXPR, TREE_TYPE (loc),
16202 build2 (code, integer_type_node,
16203 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
16204 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
16207 /* ... fall through ... */
16209 case COND_EXPR:
16211 dw_loc_descr_ref lhs
16212 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0, context);
16213 dw_loc_list_ref rhs
16214 = loc_list_from_tree_1 (TREE_OPERAND (loc, 2), 0, context);
16215 dw_loc_descr_ref bra_node, jump_node, tmp;
16217 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
16218 if (list_ret == 0 || lhs == 0 || rhs == 0)
16219 return 0;
16221 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
16222 add_loc_descr_to_each (list_ret, bra_node);
16224 add_loc_list (&list_ret, rhs);
16225 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
16226 add_loc_descr_to_each (list_ret, jump_node);
16228 add_loc_descr_to_each (list_ret, lhs);
16229 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
16230 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
16232 /* ??? Need a node to point the skip at. Use a nop. */
16233 tmp = new_loc_descr (DW_OP_nop, 0, 0);
16234 add_loc_descr_to_each (list_ret, tmp);
16235 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
16236 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
16238 break;
16240 case FIX_TRUNC_EXPR:
16241 return 0;
16243 default:
16244 /* Leave front-end specific codes as simply unknown. This comes
16245 up, for instance, with the C STMT_EXPR. */
16246 if ((unsigned int) TREE_CODE (loc)
16247 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
16249 expansion_failed (loc, NULL_RTX,
16250 "language specific tree node");
16251 return 0;
16254 /* Otherwise this is a generic code; we should just lists all of
16255 these explicitly. We forgot one. */
16256 if (flag_checking)
16257 gcc_unreachable ();
16259 /* In a release build, we want to degrade gracefully: better to
16260 generate incomplete debugging information than to crash. */
16261 return NULL;
16264 if (!ret && !list_ret)
16265 return 0;
16267 if (want_address == 2 && !have_address
16268 && (dwarf_version >= 4 || !dwarf_strict))
16270 if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
16272 expansion_failed (loc, NULL_RTX,
16273 "DWARF address size mismatch");
16274 return 0;
16276 if (ret)
16277 add_loc_descr (&ret, new_loc_descr (DW_OP_stack_value, 0, 0));
16278 else
16279 add_loc_descr_to_each (list_ret,
16280 new_loc_descr (DW_OP_stack_value, 0, 0));
16281 have_address = 1;
16283 /* Show if we can't fill the request for an address. */
16284 if (want_address && !have_address)
16286 expansion_failed (loc, NULL_RTX,
16287 "Want address and only have value");
16288 return 0;
16291 gcc_assert (!ret || !list_ret);
16293 /* If we've got an address and don't want one, dereference. */
16294 if (!want_address && have_address)
16296 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
16298 if (size > DWARF2_ADDR_SIZE || size == -1)
16300 expansion_failed (loc, NULL_RTX,
16301 "DWARF address size mismatch");
16302 return 0;
16304 else if (size == DWARF2_ADDR_SIZE)
16305 op = DW_OP_deref;
16306 else
16307 op = DW_OP_deref_size;
16309 if (ret)
16310 add_loc_descr (&ret, new_loc_descr (op, size, 0));
16311 else
16312 add_loc_descr_to_each (list_ret, new_loc_descr (op, size, 0));
16314 if (ret)
16315 list_ret = new_loc_list (ret, NULL, NULL, NULL);
16317 return list_ret;
16320 /* Likewise, but strip useless DW_OP_nop operations in the resulting
16321 expressions. */
16323 static dw_loc_list_ref
16324 loc_list_from_tree (tree loc, int want_address,
16325 const struct loc_descr_context *context)
16327 dw_loc_list_ref result = loc_list_from_tree_1 (loc, want_address, context);
16329 for (dw_loc_list_ref loc_cur = result;
16330 loc_cur != NULL; loc_cur =
16331 loc_cur->dw_loc_next)
16332 loc_descr_without_nops (loc_cur->expr);
16333 return result;
16336 /* Same as above but return only single location expression. */
16337 static dw_loc_descr_ref
16338 loc_descriptor_from_tree (tree loc, int want_address,
16339 const struct loc_descr_context *context)
16341 dw_loc_list_ref ret = loc_list_from_tree (loc, want_address, context);
16342 if (!ret)
16343 return NULL;
16344 if (ret->dw_loc_next)
16346 expansion_failed (loc, NULL_RTX,
16347 "Location list where only loc descriptor needed");
16348 return NULL;
16350 return ret->expr;
16353 /* Given a value, round it up to the lowest multiple of `boundary'
16354 which is not less than the value itself. */
16356 static inline HOST_WIDE_INT
16357 ceiling (HOST_WIDE_INT value, unsigned int boundary)
16359 return (((value + boundary - 1) / boundary) * boundary);
16362 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
16363 pointer to the declared type for the relevant field variable, or return
16364 `integer_type_node' if the given node turns out to be an
16365 ERROR_MARK node. */
16367 static inline tree
16368 field_type (const_tree decl)
16370 tree type;
16372 if (TREE_CODE (decl) == ERROR_MARK)
16373 return integer_type_node;
16375 type = DECL_BIT_FIELD_TYPE (decl);
16376 if (type == NULL_TREE)
16377 type = TREE_TYPE (decl);
16379 return type;
16382 /* Given a pointer to a tree node, return the alignment in bits for
16383 it, or else return BITS_PER_WORD if the node actually turns out to
16384 be an ERROR_MARK node. */
16386 static inline unsigned
16387 simple_type_align_in_bits (const_tree type)
16389 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
16392 static inline unsigned
16393 simple_decl_align_in_bits (const_tree decl)
16395 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
16398 /* Return the result of rounding T up to ALIGN. */
16400 static inline offset_int
16401 round_up_to_align (const offset_int &t, unsigned int align)
16403 return wi::udiv_trunc (t + align - 1, align) * align;
16406 /* Compute the size of TYPE in bytes. If possible, return NULL and store the
16407 size as an integer constant in CST_SIZE. Otherwise, if possible, return a
16408 DWARF expression that computes the size. Return NULL and set CST_SIZE to -1
16409 if we fail to return the size in one of these two forms. */
16411 static dw_loc_descr_ref
16412 type_byte_size (const_tree type, HOST_WIDE_INT *cst_size)
16414 tree tree_size;
16415 struct loc_descr_context ctx;
16417 /* Return a constant integer in priority, if possible. */
16418 *cst_size = int_size_in_bytes (type);
16419 if (*cst_size != -1)
16420 return NULL;
16422 ctx.context_type = const_cast<tree> (type);
16423 ctx.base_decl = NULL_TREE;
16424 ctx.dpi = NULL;
16426 type = TYPE_MAIN_VARIANT (type);
16427 tree_size = TYPE_SIZE_UNIT (type);
16428 return ((tree_size != NULL_TREE)
16429 ? loc_descriptor_from_tree (tree_size, 0, &ctx)
16430 : NULL);
16433 /* Helper structure for RECORD_TYPE processing. */
16434 struct vlr_context
16436 /* Root RECORD_TYPE. It is needed to generate data member location
16437 descriptions in variable-length records (VLR), but also to cope with
16438 variants, which are composed of nested structures multiplexed with
16439 QUAL_UNION_TYPE nodes. Each time such a structure is passed to a
16440 function processing a FIELD_DECL, it is required to be non null. */
16441 tree struct_type;
16442 /* When generating a variant part in a RECORD_TYPE (i.e. a nested
16443 QUAL_UNION_TYPE), this holds an expression that computes the offset for
16444 this variant part as part of the root record (in storage units). For
16445 regular records, it must be NULL_TREE. */
16446 tree variant_part_offset;
16449 /* Given a pointer to a FIELD_DECL, compute the byte offset of the lowest
16450 addressed byte of the "containing object" for the given FIELD_DECL. If
16451 possible, return a native constant through CST_OFFSET (in which case NULL is
16452 returned); otherwise return a DWARF expression that computes the offset.
16454 Set *CST_OFFSET to 0 and return NULL if we are unable to determine what
16455 that offset is, either because the argument turns out to be a pointer to an
16456 ERROR_MARK node, or because the offset expression is too complex for us.
16458 CTX is required: see the comment for VLR_CONTEXT. */
16460 static dw_loc_descr_ref
16461 field_byte_offset (const_tree decl, struct vlr_context *ctx,
16462 HOST_WIDE_INT *cst_offset)
16464 offset_int object_offset_in_bits;
16465 offset_int object_offset_in_bytes;
16466 offset_int bitpos_int;
16467 bool is_byte_offset_cst, is_bit_offset_cst;
16468 tree tree_result;
16469 dw_loc_list_ref loc_result;
16471 *cst_offset = 0;
16473 if (TREE_CODE (decl) == ERROR_MARK)
16474 return NULL;
16475 else
16476 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
16478 is_bit_offset_cst = TREE_CODE (DECL_FIELD_BIT_OFFSET (decl)) != INTEGER_CST;
16479 is_byte_offset_cst = TREE_CODE (DECL_FIELD_OFFSET (decl)) != INTEGER_CST;
16481 /* We cannot handle variable bit offsets at the moment, so abort if it's the
16482 case. */
16483 if (is_bit_offset_cst)
16484 return NULL;
16486 #ifdef PCC_BITFIELD_TYPE_MATTERS
16487 /* We used to handle only constant offsets in all cases. Now, we handle
16488 properly dynamic byte offsets only when PCC bitfield type doesn't
16489 matter. */
16490 if (PCC_BITFIELD_TYPE_MATTERS && is_byte_offset_cst && is_bit_offset_cst)
16492 tree type;
16493 tree field_size_tree;
16494 offset_int deepest_bitpos;
16495 offset_int field_size_in_bits;
16496 unsigned int type_align_in_bits;
16497 unsigned int decl_align_in_bits;
16498 offset_int type_size_in_bits;
16500 bitpos_int = wi::to_offset (bit_position (decl));
16501 type = field_type (decl);
16502 type_size_in_bits = offset_int_type_size_in_bits (type);
16503 type_align_in_bits = simple_type_align_in_bits (type);
16505 field_size_tree = DECL_SIZE (decl);
16507 /* The size could be unspecified if there was an error, or for
16508 a flexible array member. */
16509 if (!field_size_tree)
16510 field_size_tree = bitsize_zero_node;
16512 /* If the size of the field is not constant, use the type size. */
16513 if (TREE_CODE (field_size_tree) == INTEGER_CST)
16514 field_size_in_bits = wi::to_offset (field_size_tree);
16515 else
16516 field_size_in_bits = type_size_in_bits;
16518 decl_align_in_bits = simple_decl_align_in_bits (decl);
16520 /* The GCC front-end doesn't make any attempt to keep track of the
16521 starting bit offset (relative to the start of the containing
16522 structure type) of the hypothetical "containing object" for a
16523 bit-field. Thus, when computing the byte offset value for the
16524 start of the "containing object" of a bit-field, we must deduce
16525 this information on our own. This can be rather tricky to do in
16526 some cases. For example, handling the following structure type
16527 definition when compiling for an i386/i486 target (which only
16528 aligns long long's to 32-bit boundaries) can be very tricky:
16530 struct S { int field1; long long field2:31; };
16532 Fortunately, there is a simple rule-of-thumb which can be used
16533 in such cases. When compiling for an i386/i486, GCC will
16534 allocate 8 bytes for the structure shown above. It decides to
16535 do this based upon one simple rule for bit-field allocation.
16536 GCC allocates each "containing object" for each bit-field at
16537 the first (i.e. lowest addressed) legitimate alignment boundary
16538 (based upon the required minimum alignment for the declared
16539 type of the field) which it can possibly use, subject to the
16540 condition that there is still enough available space remaining
16541 in the containing object (when allocated at the selected point)
16542 to fully accommodate all of the bits of the bit-field itself.
16544 This simple rule makes it obvious why GCC allocates 8 bytes for
16545 each object of the structure type shown above. When looking
16546 for a place to allocate the "containing object" for `field2',
16547 the compiler simply tries to allocate a 64-bit "containing
16548 object" at each successive 32-bit boundary (starting at zero)
16549 until it finds a place to allocate that 64- bit field such that
16550 at least 31 contiguous (and previously unallocated) bits remain
16551 within that selected 64 bit field. (As it turns out, for the
16552 example above, the compiler finds it is OK to allocate the
16553 "containing object" 64-bit field at bit-offset zero within the
16554 structure type.)
16556 Here we attempt to work backwards from the limited set of facts
16557 we're given, and we try to deduce from those facts, where GCC
16558 must have believed that the containing object started (within
16559 the structure type). The value we deduce is then used (by the
16560 callers of this routine) to generate DW_AT_location and
16561 DW_AT_bit_offset attributes for fields (both bit-fields and, in
16562 the case of DW_AT_location, regular fields as well). */
16564 /* Figure out the bit-distance from the start of the structure to
16565 the "deepest" bit of the bit-field. */
16566 deepest_bitpos = bitpos_int + field_size_in_bits;
16568 /* This is the tricky part. Use some fancy footwork to deduce
16569 where the lowest addressed bit of the containing object must
16570 be. */
16571 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
16573 /* Round up to type_align by default. This works best for
16574 bitfields. */
16575 object_offset_in_bits
16576 = round_up_to_align (object_offset_in_bits, type_align_in_bits);
16578 if (wi::gtu_p (object_offset_in_bits, bitpos_int))
16580 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
16582 /* Round up to decl_align instead. */
16583 object_offset_in_bits
16584 = round_up_to_align (object_offset_in_bits, decl_align_in_bits);
16587 #endif /* PCC_BITFIELD_TYPE_MATTERS */
16589 tree_result = byte_position (decl);
16590 if (ctx->variant_part_offset != NULL_TREE)
16591 tree_result = fold (build2 (PLUS_EXPR, TREE_TYPE (tree_result),
16592 ctx->variant_part_offset, tree_result));
16594 /* If the byte offset is a constant, it's simplier to handle a native
16595 constant rather than a DWARF expression. */
16596 if (TREE_CODE (tree_result) == INTEGER_CST)
16598 *cst_offset = wi::to_offset (tree_result).to_shwi ();
16599 return NULL;
16601 struct loc_descr_context loc_ctx = {
16602 ctx->struct_type, /* context_type */
16603 NULL_TREE, /* base_decl */
16604 NULL /* dpi */
16606 loc_result = loc_list_from_tree (tree_result, 0, &loc_ctx);
16608 /* We want a DWARF expression: abort if we only have a location list with
16609 multiple elements. */
16610 if (!loc_result || !single_element_loc_list_p (loc_result))
16611 return NULL;
16612 else
16613 return loc_result->expr;
16616 /* The following routines define various Dwarf attributes and any data
16617 associated with them. */
16619 /* Add a location description attribute value to a DIE.
16621 This emits location attributes suitable for whole variables and
16622 whole parameters. Note that the location attributes for struct fields are
16623 generated by the routine `data_member_location_attribute' below. */
16625 static inline void
16626 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
16627 dw_loc_list_ref descr)
16629 if (descr == 0)
16630 return;
16631 if (single_element_loc_list_p (descr))
16632 add_AT_loc (die, attr_kind, descr->expr);
16633 else
16634 add_AT_loc_list (die, attr_kind, descr);
16637 /* Add DW_AT_accessibility attribute to DIE if needed. */
16639 static void
16640 add_accessibility_attribute (dw_die_ref die, tree decl)
16642 /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
16643 children, otherwise the default is DW_ACCESS_public. In DWARF2
16644 the default has always been DW_ACCESS_public. */
16645 if (TREE_PROTECTED (decl))
16646 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
16647 else if (TREE_PRIVATE (decl))
16649 if (dwarf_version == 2
16650 || die->die_parent == NULL
16651 || die->die_parent->die_tag != DW_TAG_class_type)
16652 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_private);
16654 else if (dwarf_version > 2
16655 && die->die_parent
16656 && die->die_parent->die_tag == DW_TAG_class_type)
16657 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
16660 /* Attach the specialized form of location attribute used for data members of
16661 struct and union types. In the special case of a FIELD_DECL node which
16662 represents a bit-field, the "offset" part of this special location
16663 descriptor must indicate the distance in bytes from the lowest-addressed
16664 byte of the containing struct or union type to the lowest-addressed byte of
16665 the "containing object" for the bit-field. (See the `field_byte_offset'
16666 function above).
16668 For any given bit-field, the "containing object" is a hypothetical object
16669 (of some integral or enum type) within which the given bit-field lives. The
16670 type of this hypothetical "containing object" is always the same as the
16671 declared type of the individual bit-field itself (for GCC anyway... the
16672 DWARF spec doesn't actually mandate this). Note that it is the size (in
16673 bytes) of the hypothetical "containing object" which will be given in the
16674 DW_AT_byte_size attribute for this bit-field. (See the
16675 `byte_size_attribute' function below.) It is also used when calculating the
16676 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
16677 function below.)
16679 CTX is required: see the comment for VLR_CONTEXT. */
16681 static void
16682 add_data_member_location_attribute (dw_die_ref die,
16683 tree decl,
16684 struct vlr_context *ctx)
16686 HOST_WIDE_INT offset;
16687 dw_loc_descr_ref loc_descr = 0;
16689 if (TREE_CODE (decl) == TREE_BINFO)
16691 /* We're working on the TAG_inheritance for a base class. */
16692 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
16694 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
16695 aren't at a fixed offset from all (sub)objects of the same
16696 type. We need to extract the appropriate offset from our
16697 vtable. The following dwarf expression means
16699 BaseAddr = ObAddr + *((*ObAddr) - Offset)
16701 This is specific to the V3 ABI, of course. */
16703 dw_loc_descr_ref tmp;
16705 /* Make a copy of the object address. */
16706 tmp = new_loc_descr (DW_OP_dup, 0, 0);
16707 add_loc_descr (&loc_descr, tmp);
16709 /* Extract the vtable address. */
16710 tmp = new_loc_descr (DW_OP_deref, 0, 0);
16711 add_loc_descr (&loc_descr, tmp);
16713 /* Calculate the address of the offset. */
16714 offset = tree_to_shwi (BINFO_VPTR_FIELD (decl));
16715 gcc_assert (offset < 0);
16717 tmp = int_loc_descriptor (-offset);
16718 add_loc_descr (&loc_descr, tmp);
16719 tmp = new_loc_descr (DW_OP_minus, 0, 0);
16720 add_loc_descr (&loc_descr, tmp);
16722 /* Extract the offset. */
16723 tmp = new_loc_descr (DW_OP_deref, 0, 0);
16724 add_loc_descr (&loc_descr, tmp);
16726 /* Add it to the object address. */
16727 tmp = new_loc_descr (DW_OP_plus, 0, 0);
16728 add_loc_descr (&loc_descr, tmp);
16730 else
16731 offset = tree_to_shwi (BINFO_OFFSET (decl));
16733 else
16735 loc_descr = field_byte_offset (decl, ctx, &offset);
16737 /* If loc_descr is available then we know the field offset is dynamic.
16738 However, GDB does not handle dynamic field offsets very well at the
16739 moment. */
16740 if (loc_descr != NULL && gnat_encodings != DWARF_GNAT_ENCODINGS_MINIMAL)
16742 loc_descr = NULL;
16743 offset = 0;
16746 /* Data member location evalutation starts with the base address on the
16747 stack. Compute the field offset and add it to this base address. */
16748 else if (loc_descr != NULL)
16749 add_loc_descr (&loc_descr, new_loc_descr (DW_OP_plus, 0, 0));
16752 if (! loc_descr)
16754 if (dwarf_version > 2)
16756 /* Don't need to output a location expression, just the constant. */
16757 if (offset < 0)
16758 add_AT_int (die, DW_AT_data_member_location, offset);
16759 else
16760 add_AT_unsigned (die, DW_AT_data_member_location, offset);
16761 return;
16763 else
16765 enum dwarf_location_atom op;
16767 /* The DWARF2 standard says that we should assume that the structure
16768 address is already on the stack, so we can specify a structure
16769 field address by using DW_OP_plus_uconst. */
16770 op = DW_OP_plus_uconst;
16771 loc_descr = new_loc_descr (op, offset, 0);
16775 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
16778 /* Writes integer values to dw_vec_const array. */
16780 static void
16781 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
16783 while (size != 0)
16785 *dest++ = val & 0xff;
16786 val >>= 8;
16787 --size;
16791 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
16793 static HOST_WIDE_INT
16794 extract_int (const unsigned char *src, unsigned int size)
16796 HOST_WIDE_INT val = 0;
16798 src += size;
16799 while (size != 0)
16801 val <<= 8;
16802 val |= *--src & 0xff;
16803 --size;
16805 return val;
16808 /* Writes wide_int values to dw_vec_const array. */
16810 static void
16811 insert_wide_int (const wide_int &val, unsigned char *dest, int elt_size)
16813 int i;
16815 if (elt_size <= HOST_BITS_PER_WIDE_INT/BITS_PER_UNIT)
16817 insert_int ((HOST_WIDE_INT) val.elt (0), elt_size, dest);
16818 return;
16821 /* We'd have to extend this code to support odd sizes. */
16822 gcc_assert (elt_size % (HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT) == 0);
16824 int n = elt_size / (HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
16826 if (WORDS_BIG_ENDIAN)
16827 for (i = n - 1; i >= 0; i--)
16829 insert_int ((HOST_WIDE_INT) val.elt (i), sizeof (HOST_WIDE_INT), dest);
16830 dest += sizeof (HOST_WIDE_INT);
16832 else
16833 for (i = 0; i < n; i++)
16835 insert_int ((HOST_WIDE_INT) val.elt (i), sizeof (HOST_WIDE_INT), dest);
16836 dest += sizeof (HOST_WIDE_INT);
16840 /* Writes floating point values to dw_vec_const array. */
16842 static void
16843 insert_float (const_rtx rtl, unsigned char *array)
16845 long val[4];
16846 int i;
16848 real_to_target (val, CONST_DOUBLE_REAL_VALUE (rtl), GET_MODE (rtl));
16850 /* real_to_target puts 32-bit pieces in each long. Pack them. */
16851 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
16853 insert_int (val[i], 4, array);
16854 array += 4;
16858 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
16859 does not have a "location" either in memory or in a register. These
16860 things can arise in GNU C when a constant is passed as an actual parameter
16861 to an inlined function. They can also arise in C++ where declared
16862 constants do not necessarily get memory "homes". */
16864 static bool
16865 add_const_value_attribute (dw_die_ref die, rtx rtl)
16867 switch (GET_CODE (rtl))
16869 case CONST_INT:
16871 HOST_WIDE_INT val = INTVAL (rtl);
16873 if (val < 0)
16874 add_AT_int (die, DW_AT_const_value, val);
16875 else
16876 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
16878 return true;
16880 case CONST_WIDE_INT:
16882 wide_int w1 = std::make_pair (rtl, MAX_MODE_INT);
16883 unsigned int prec = MIN (wi::min_precision (w1, UNSIGNED),
16884 (unsigned int)CONST_WIDE_INT_NUNITS (rtl) * HOST_BITS_PER_WIDE_INT);
16885 wide_int w = wi::zext (w1, prec);
16886 add_AT_wide (die, DW_AT_const_value, w);
16888 return true;
16890 case CONST_DOUBLE:
16891 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
16892 floating-point constant. A CONST_DOUBLE is used whenever the
16893 constant requires more than one word in order to be adequately
16894 represented. */
16896 machine_mode mode = GET_MODE (rtl);
16898 if (TARGET_SUPPORTS_WIDE_INT == 0 && !SCALAR_FLOAT_MODE_P (mode))
16899 add_AT_double (die, DW_AT_const_value,
16900 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
16901 else
16903 unsigned int length = GET_MODE_SIZE (mode);
16904 unsigned char *array = ggc_vec_alloc<unsigned char> (length);
16906 insert_float (rtl, array);
16907 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
16910 return true;
16912 case CONST_VECTOR:
16914 machine_mode mode = GET_MODE (rtl);
16915 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
16916 unsigned int length = CONST_VECTOR_NUNITS (rtl);
16917 unsigned char *array
16918 = ggc_vec_alloc<unsigned char> (length * elt_size);
16919 unsigned int i;
16920 unsigned char *p;
16921 machine_mode imode = GET_MODE_INNER (mode);
16923 switch (GET_MODE_CLASS (mode))
16925 case MODE_VECTOR_INT:
16926 for (i = 0, p = array; i < length; i++, p += elt_size)
16928 rtx elt = CONST_VECTOR_ELT (rtl, i);
16929 insert_wide_int (std::make_pair (elt, imode), p, elt_size);
16931 break;
16933 case MODE_VECTOR_FLOAT:
16934 for (i = 0, p = array; i < length; i++, p += elt_size)
16936 rtx elt = CONST_VECTOR_ELT (rtl, i);
16937 insert_float (elt, p);
16939 break;
16941 default:
16942 gcc_unreachable ();
16945 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
16947 return true;
16949 case CONST_STRING:
16950 if (dwarf_version >= 4 || !dwarf_strict)
16952 dw_loc_descr_ref loc_result;
16953 resolve_one_addr (&rtl);
16954 rtl_addr:
16955 loc_result = new_addr_loc_descr (rtl, dtprel_false);
16956 add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
16957 add_AT_loc (die, DW_AT_location, loc_result);
16958 vec_safe_push (used_rtx_array, rtl);
16959 return true;
16961 return false;
16963 case CONST:
16964 if (CONSTANT_P (XEXP (rtl, 0)))
16965 return add_const_value_attribute (die, XEXP (rtl, 0));
16966 /* FALLTHROUGH */
16967 case SYMBOL_REF:
16968 if (!const_ok_for_output (rtl))
16969 return false;
16970 case LABEL_REF:
16971 if (dwarf_version >= 4 || !dwarf_strict)
16972 goto rtl_addr;
16973 return false;
16975 case PLUS:
16976 /* In cases where an inlined instance of an inline function is passed
16977 the address of an `auto' variable (which is local to the caller) we
16978 can get a situation where the DECL_RTL of the artificial local
16979 variable (for the inlining) which acts as a stand-in for the
16980 corresponding formal parameter (of the inline function) will look
16981 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
16982 exactly a compile-time constant expression, but it isn't the address
16983 of the (artificial) local variable either. Rather, it represents the
16984 *value* which the artificial local variable always has during its
16985 lifetime. We currently have no way to represent such quasi-constant
16986 values in Dwarf, so for now we just punt and generate nothing. */
16987 return false;
16989 case HIGH:
16990 case CONST_FIXED:
16991 return false;
16993 case MEM:
16994 if (GET_CODE (XEXP (rtl, 0)) == CONST_STRING
16995 && MEM_READONLY_P (rtl)
16996 && GET_MODE (rtl) == BLKmode)
16998 add_AT_string (die, DW_AT_const_value, XSTR (XEXP (rtl, 0), 0));
16999 return true;
17001 return false;
17003 default:
17004 /* No other kinds of rtx should be possible here. */
17005 gcc_unreachable ();
17007 return false;
17010 /* Determine whether the evaluation of EXPR references any variables
17011 or functions which aren't otherwise used (and therefore may not be
17012 output). */
17013 static tree
17014 reference_to_unused (tree * tp, int * walk_subtrees,
17015 void * data ATTRIBUTE_UNUSED)
17017 if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
17018 *walk_subtrees = 0;
17020 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
17021 && ! TREE_ASM_WRITTEN (*tp))
17022 return *tp;
17023 /* ??? The C++ FE emits debug information for using decls, so
17024 putting gcc_unreachable here falls over. See PR31899. For now
17025 be conservative. */
17026 else if (!symtab->global_info_ready
17027 && (TREE_CODE (*tp) == VAR_DECL || TREE_CODE (*tp) == FUNCTION_DECL))
17028 return *tp;
17029 else if (TREE_CODE (*tp) == VAR_DECL)
17031 varpool_node *node = varpool_node::get (*tp);
17032 if (!node || !node->definition)
17033 return *tp;
17035 else if (TREE_CODE (*tp) == FUNCTION_DECL
17036 && (!DECL_EXTERNAL (*tp) || DECL_DECLARED_INLINE_P (*tp)))
17038 /* The call graph machinery must have finished analyzing,
17039 optimizing and gimplifying the CU by now.
17040 So if *TP has no call graph node associated
17041 to it, it means *TP will not be emitted. */
17042 if (!cgraph_node::get (*tp))
17043 return *tp;
17045 else if (TREE_CODE (*tp) == STRING_CST && !TREE_ASM_WRITTEN (*tp))
17046 return *tp;
17048 return NULL_TREE;
17051 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
17052 for use in a later add_const_value_attribute call. */
17054 static rtx
17055 rtl_for_decl_init (tree init, tree type)
17057 rtx rtl = NULL_RTX;
17059 STRIP_NOPS (init);
17061 /* If a variable is initialized with a string constant without embedded
17062 zeros, build CONST_STRING. */
17063 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
17065 tree enttype = TREE_TYPE (type);
17066 tree domain = TYPE_DOMAIN (type);
17067 machine_mode mode = TYPE_MODE (enttype);
17069 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
17070 && domain
17071 && integer_zerop (TYPE_MIN_VALUE (domain))
17072 && compare_tree_int (TYPE_MAX_VALUE (domain),
17073 TREE_STRING_LENGTH (init) - 1) == 0
17074 && ((size_t) TREE_STRING_LENGTH (init)
17075 == strlen (TREE_STRING_POINTER (init)) + 1))
17077 rtl = gen_rtx_CONST_STRING (VOIDmode,
17078 ggc_strdup (TREE_STRING_POINTER (init)));
17079 rtl = gen_rtx_MEM (BLKmode, rtl);
17080 MEM_READONLY_P (rtl) = 1;
17083 /* Other aggregates, and complex values, could be represented using
17084 CONCAT: FIXME! */
17085 else if (AGGREGATE_TYPE_P (type)
17086 || (TREE_CODE (init) == VIEW_CONVERT_EXPR
17087 && AGGREGATE_TYPE_P (TREE_TYPE (TREE_OPERAND (init, 0))))
17088 || TREE_CODE (type) == COMPLEX_TYPE)
17090 /* Vectors only work if their mode is supported by the target.
17091 FIXME: generic vectors ought to work too. */
17092 else if (TREE_CODE (type) == VECTOR_TYPE
17093 && !VECTOR_MODE_P (TYPE_MODE (type)))
17095 /* If the initializer is something that we know will expand into an
17096 immediate RTL constant, expand it now. We must be careful not to
17097 reference variables which won't be output. */
17098 else if (initializer_constant_valid_p (init, type)
17099 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
17101 /* Convert vector CONSTRUCTOR initializers to VECTOR_CST if
17102 possible. */
17103 if (TREE_CODE (type) == VECTOR_TYPE)
17104 switch (TREE_CODE (init))
17106 case VECTOR_CST:
17107 break;
17108 case CONSTRUCTOR:
17109 if (TREE_CONSTANT (init))
17111 vec<constructor_elt, va_gc> *elts = CONSTRUCTOR_ELTS (init);
17112 bool constant_p = true;
17113 tree value;
17114 unsigned HOST_WIDE_INT ix;
17116 /* Even when ctor is constant, it might contain non-*_CST
17117 elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
17118 belong into VECTOR_CST nodes. */
17119 FOR_EACH_CONSTRUCTOR_VALUE (elts, ix, value)
17120 if (!CONSTANT_CLASS_P (value))
17122 constant_p = false;
17123 break;
17126 if (constant_p)
17128 init = build_vector_from_ctor (type, elts);
17129 break;
17132 /* FALLTHRU */
17134 default:
17135 return NULL;
17138 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
17140 /* If expand_expr returns a MEM, it wasn't immediate. */
17141 gcc_assert (!rtl || !MEM_P (rtl));
17144 return rtl;
17147 /* Generate RTL for the variable DECL to represent its location. */
17149 static rtx
17150 rtl_for_decl_location (tree decl)
17152 rtx rtl;
17154 /* Here we have to decide where we are going to say the parameter "lives"
17155 (as far as the debugger is concerned). We only have a couple of
17156 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
17158 DECL_RTL normally indicates where the parameter lives during most of the
17159 activation of the function. If optimization is enabled however, this
17160 could be either NULL or else a pseudo-reg. Both of those cases indicate
17161 that the parameter doesn't really live anywhere (as far as the code
17162 generation parts of GCC are concerned) during most of the function's
17163 activation. That will happen (for example) if the parameter is never
17164 referenced within the function.
17166 We could just generate a location descriptor here for all non-NULL
17167 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
17168 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
17169 where DECL_RTL is NULL or is a pseudo-reg.
17171 Note however that we can only get away with using DECL_INCOMING_RTL as
17172 a backup substitute for DECL_RTL in certain limited cases. In cases
17173 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
17174 we can be sure that the parameter was passed using the same type as it is
17175 declared to have within the function, and that its DECL_INCOMING_RTL
17176 points us to a place where a value of that type is passed.
17178 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
17179 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
17180 because in these cases DECL_INCOMING_RTL points us to a value of some
17181 type which is *different* from the type of the parameter itself. Thus,
17182 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
17183 such cases, the debugger would end up (for example) trying to fetch a
17184 `float' from a place which actually contains the first part of a
17185 `double'. That would lead to really incorrect and confusing
17186 output at debug-time.
17188 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
17189 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
17190 are a couple of exceptions however. On little-endian machines we can
17191 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
17192 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
17193 an integral type that is smaller than TREE_TYPE (decl). These cases arise
17194 when (on a little-endian machine) a non-prototyped function has a
17195 parameter declared to be of type `short' or `char'. In such cases,
17196 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
17197 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
17198 passed `int' value. If the debugger then uses that address to fetch
17199 a `short' or a `char' (on a little-endian machine) the result will be
17200 the correct data, so we allow for such exceptional cases below.
17202 Note that our goal here is to describe the place where the given formal
17203 parameter lives during most of the function's activation (i.e. between the
17204 end of the prologue and the start of the epilogue). We'll do that as best
17205 as we can. Note however that if the given formal parameter is modified
17206 sometime during the execution of the function, then a stack backtrace (at
17207 debug-time) will show the function as having been called with the *new*
17208 value rather than the value which was originally passed in. This happens
17209 rarely enough that it is not a major problem, but it *is* a problem, and
17210 I'd like to fix it.
17212 A future version of dwarf2out.c may generate two additional attributes for
17213 any given DW_TAG_formal_parameter DIE which will describe the "passed
17214 type" and the "passed location" for the given formal parameter in addition
17215 to the attributes we now generate to indicate the "declared type" and the
17216 "active location" for each parameter. This additional set of attributes
17217 could be used by debuggers for stack backtraces. Separately, note that
17218 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
17219 This happens (for example) for inlined-instances of inline function formal
17220 parameters which are never referenced. This really shouldn't be
17221 happening. All PARM_DECL nodes should get valid non-NULL
17222 DECL_INCOMING_RTL values. FIXME. */
17224 /* Use DECL_RTL as the "location" unless we find something better. */
17225 rtl = DECL_RTL_IF_SET (decl);
17227 /* When generating abstract instances, ignore everything except
17228 constants, symbols living in memory, and symbols living in
17229 fixed registers. */
17230 if (! reload_completed)
17232 if (rtl
17233 && (CONSTANT_P (rtl)
17234 || (MEM_P (rtl)
17235 && CONSTANT_P (XEXP (rtl, 0)))
17236 || (REG_P (rtl)
17237 && TREE_CODE (decl) == VAR_DECL
17238 && TREE_STATIC (decl))))
17240 rtl = targetm.delegitimize_address (rtl);
17241 return rtl;
17243 rtl = NULL_RTX;
17245 else if (TREE_CODE (decl) == PARM_DECL)
17247 if (rtl == NULL_RTX
17248 || is_pseudo_reg (rtl)
17249 || (MEM_P (rtl)
17250 && is_pseudo_reg (XEXP (rtl, 0))
17251 && DECL_INCOMING_RTL (decl)
17252 && MEM_P (DECL_INCOMING_RTL (decl))
17253 && GET_MODE (rtl) == GET_MODE (DECL_INCOMING_RTL (decl))))
17255 tree declared_type = TREE_TYPE (decl);
17256 tree passed_type = DECL_ARG_TYPE (decl);
17257 machine_mode dmode = TYPE_MODE (declared_type);
17258 machine_mode pmode = TYPE_MODE (passed_type);
17260 /* This decl represents a formal parameter which was optimized out.
17261 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
17262 all cases where (rtl == NULL_RTX) just below. */
17263 if (dmode == pmode)
17264 rtl = DECL_INCOMING_RTL (decl);
17265 else if ((rtl == NULL_RTX || is_pseudo_reg (rtl))
17266 && SCALAR_INT_MODE_P (dmode)
17267 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
17268 && DECL_INCOMING_RTL (decl))
17270 rtx inc = DECL_INCOMING_RTL (decl);
17271 if (REG_P (inc))
17272 rtl = inc;
17273 else if (MEM_P (inc))
17275 if (BYTES_BIG_ENDIAN)
17276 rtl = adjust_address_nv (inc, dmode,
17277 GET_MODE_SIZE (pmode)
17278 - GET_MODE_SIZE (dmode));
17279 else
17280 rtl = inc;
17285 /* If the parm was passed in registers, but lives on the stack, then
17286 make a big endian correction if the mode of the type of the
17287 parameter is not the same as the mode of the rtl. */
17288 /* ??? This is the same series of checks that are made in dbxout.c before
17289 we reach the big endian correction code there. It isn't clear if all
17290 of these checks are necessary here, but keeping them all is the safe
17291 thing to do. */
17292 else if (MEM_P (rtl)
17293 && XEXP (rtl, 0) != const0_rtx
17294 && ! CONSTANT_P (XEXP (rtl, 0))
17295 /* Not passed in memory. */
17296 && !MEM_P (DECL_INCOMING_RTL (decl))
17297 /* Not passed by invisible reference. */
17298 && (!REG_P (XEXP (rtl, 0))
17299 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
17300 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
17301 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
17302 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
17303 #endif
17305 /* Big endian correction check. */
17306 && BYTES_BIG_ENDIAN
17307 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
17308 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
17309 < UNITS_PER_WORD))
17311 machine_mode addr_mode = get_address_mode (rtl);
17312 int offset = (UNITS_PER_WORD
17313 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
17315 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
17316 plus_constant (addr_mode, XEXP (rtl, 0), offset));
17319 else if (TREE_CODE (decl) == VAR_DECL
17320 && rtl
17321 && MEM_P (rtl)
17322 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
17323 && BYTES_BIG_ENDIAN)
17325 machine_mode addr_mode = get_address_mode (rtl);
17326 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
17327 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
17329 /* If a variable is declared "register" yet is smaller than
17330 a register, then if we store the variable to memory, it
17331 looks like we're storing a register-sized value, when in
17332 fact we are not. We need to adjust the offset of the
17333 storage location to reflect the actual value's bytes,
17334 else gdb will not be able to display it. */
17335 if (rsize > dsize)
17336 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
17337 plus_constant (addr_mode, XEXP (rtl, 0),
17338 rsize - dsize));
17341 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
17342 and will have been substituted directly into all expressions that use it.
17343 C does not have such a concept, but C++ and other languages do. */
17344 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
17345 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
17347 if (rtl)
17348 rtl = targetm.delegitimize_address (rtl);
17350 /* If we don't look past the constant pool, we risk emitting a
17351 reference to a constant pool entry that isn't referenced from
17352 code, and thus is not emitted. */
17353 if (rtl)
17354 rtl = avoid_constant_pool_reference (rtl);
17356 /* Try harder to get a rtl. If this symbol ends up not being emitted
17357 in the current CU, resolve_addr will remove the expression referencing
17358 it. */
17359 if (rtl == NULL_RTX
17360 && TREE_CODE (decl) == VAR_DECL
17361 && !DECL_EXTERNAL (decl)
17362 && TREE_STATIC (decl)
17363 && DECL_NAME (decl)
17364 && !DECL_HARD_REGISTER (decl)
17365 && DECL_MODE (decl) != VOIDmode)
17367 rtl = make_decl_rtl_for_debug (decl);
17368 if (!MEM_P (rtl)
17369 || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF
17370 || SYMBOL_REF_DECL (XEXP (rtl, 0)) != decl)
17371 rtl = NULL_RTX;
17374 return rtl;
17377 /* Check whether decl is a Fortran COMMON symbol. If not, NULL_TREE is
17378 returned. If so, the decl for the COMMON block is returned, and the
17379 value is the offset into the common block for the symbol. */
17381 static tree
17382 fortran_common (tree decl, HOST_WIDE_INT *value)
17384 tree val_expr, cvar;
17385 machine_mode mode;
17386 HOST_WIDE_INT bitsize, bitpos;
17387 tree offset;
17388 int unsignedp, reversep, volatilep = 0;
17390 /* If the decl isn't a VAR_DECL, or if it isn't static, or if
17391 it does not have a value (the offset into the common area), or if it
17392 is thread local (as opposed to global) then it isn't common, and shouldn't
17393 be handled as such. */
17394 if (TREE_CODE (decl) != VAR_DECL
17395 || !TREE_STATIC (decl)
17396 || !DECL_HAS_VALUE_EXPR_P (decl)
17397 || !is_fortran ())
17398 return NULL_TREE;
17400 val_expr = DECL_VALUE_EXPR (decl);
17401 if (TREE_CODE (val_expr) != COMPONENT_REF)
17402 return NULL_TREE;
17404 cvar = get_inner_reference (val_expr, &bitsize, &bitpos, &offset, &mode,
17405 &unsignedp, &reversep, &volatilep, true);
17407 if (cvar == NULL_TREE
17408 || TREE_CODE (cvar) != VAR_DECL
17409 || DECL_ARTIFICIAL (cvar)
17410 || !TREE_PUBLIC (cvar))
17411 return NULL_TREE;
17413 *value = 0;
17414 if (offset != NULL)
17416 if (!tree_fits_shwi_p (offset))
17417 return NULL_TREE;
17418 *value = tree_to_shwi (offset);
17420 if (bitpos != 0)
17421 *value += bitpos / BITS_PER_UNIT;
17423 return cvar;
17426 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
17427 data attribute for a variable or a parameter. We generate the
17428 DW_AT_const_value attribute only in those cases where the given variable
17429 or parameter does not have a true "location" either in memory or in a
17430 register. This can happen (for example) when a constant is passed as an
17431 actual argument in a call to an inline function. (It's possible that
17432 these things can crop up in other ways also.) Note that one type of
17433 constant value which can be passed into an inlined function is a constant
17434 pointer. This can happen for example if an actual argument in an inlined
17435 function call evaluates to a compile-time constant address.
17437 CACHE_P is true if it is worth caching the location list for DECL,
17438 so that future calls can reuse it rather than regenerate it from scratch.
17439 This is true for BLOCK_NONLOCALIZED_VARS in inlined subroutines,
17440 since we will need to refer to them each time the function is inlined. */
17442 static bool
17443 add_location_or_const_value_attribute (dw_die_ref die, tree decl, bool cache_p)
17445 rtx rtl;
17446 dw_loc_list_ref list;
17447 var_loc_list *loc_list;
17448 cached_dw_loc_list *cache;
17450 if (early_dwarf)
17451 return false;
17453 if (TREE_CODE (decl) == ERROR_MARK)
17454 return false;
17456 if (get_AT (die, DW_AT_location)
17457 || get_AT (die, DW_AT_const_value))
17458 return true;
17460 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
17461 || TREE_CODE (decl) == RESULT_DECL);
17463 /* Try to get some constant RTL for this decl, and use that as the value of
17464 the location. */
17466 rtl = rtl_for_decl_location (decl);
17467 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
17468 && add_const_value_attribute (die, rtl))
17469 return true;
17471 /* See if we have single element location list that is equivalent to
17472 a constant value. That way we are better to use add_const_value_attribute
17473 rather than expanding constant value equivalent. */
17474 loc_list = lookup_decl_loc (decl);
17475 if (loc_list
17476 && loc_list->first
17477 && loc_list->first->next == NULL
17478 && NOTE_P (loc_list->first->loc)
17479 && NOTE_VAR_LOCATION (loc_list->first->loc)
17480 && NOTE_VAR_LOCATION_LOC (loc_list->first->loc))
17482 struct var_loc_node *node;
17484 node = loc_list->first;
17485 rtl = NOTE_VAR_LOCATION_LOC (node->loc);
17486 if (GET_CODE (rtl) == EXPR_LIST)
17487 rtl = XEXP (rtl, 0);
17488 if ((CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
17489 && add_const_value_attribute (die, rtl))
17490 return true;
17492 /* If this decl is from BLOCK_NONLOCALIZED_VARS, we might need its
17493 list several times. See if we've already cached the contents. */
17494 list = NULL;
17495 if (loc_list == NULL || cached_dw_loc_list_table == NULL)
17496 cache_p = false;
17497 if (cache_p)
17499 cache = cached_dw_loc_list_table->find_with_hash (decl, DECL_UID (decl));
17500 if (cache)
17501 list = cache->loc_list;
17503 if (list == NULL)
17505 list = loc_list_from_tree (decl, decl_by_reference_p (decl) ? 0 : 2,
17506 NULL);
17507 /* It is usually worth caching this result if the decl is from
17508 BLOCK_NONLOCALIZED_VARS and if the list has at least two elements. */
17509 if (cache_p && list && list->dw_loc_next)
17511 cached_dw_loc_list **slot
17512 = cached_dw_loc_list_table->find_slot_with_hash (decl,
17513 DECL_UID (decl),
17514 INSERT);
17515 cache = ggc_cleared_alloc<cached_dw_loc_list> ();
17516 cache->decl_id = DECL_UID (decl);
17517 cache->loc_list = list;
17518 *slot = cache;
17521 if (list)
17523 add_AT_location_description (die, DW_AT_location, list);
17524 return true;
17526 /* None of that worked, so it must not really have a location;
17527 try adding a constant value attribute from the DECL_INITIAL. */
17528 return tree_add_const_value_attribute_for_decl (die, decl);
17531 /* Helper function for tree_add_const_value_attribute. Natively encode
17532 initializer INIT into an array. Return true if successful. */
17534 static bool
17535 native_encode_initializer (tree init, unsigned char *array, int size)
17537 tree type;
17539 if (init == NULL_TREE)
17540 return false;
17542 STRIP_NOPS (init);
17543 switch (TREE_CODE (init))
17545 case STRING_CST:
17546 type = TREE_TYPE (init);
17547 if (TREE_CODE (type) == ARRAY_TYPE)
17549 tree enttype = TREE_TYPE (type);
17550 machine_mode mode = TYPE_MODE (enttype);
17552 if (GET_MODE_CLASS (mode) != MODE_INT || GET_MODE_SIZE (mode) != 1)
17553 return false;
17554 if (int_size_in_bytes (type) != size)
17555 return false;
17556 if (size > TREE_STRING_LENGTH (init))
17558 memcpy (array, TREE_STRING_POINTER (init),
17559 TREE_STRING_LENGTH (init));
17560 memset (array + TREE_STRING_LENGTH (init),
17561 '\0', size - TREE_STRING_LENGTH (init));
17563 else
17564 memcpy (array, TREE_STRING_POINTER (init), size);
17565 return true;
17567 return false;
17568 case CONSTRUCTOR:
17569 type = TREE_TYPE (init);
17570 if (int_size_in_bytes (type) != size)
17571 return false;
17572 if (TREE_CODE (type) == ARRAY_TYPE)
17574 HOST_WIDE_INT min_index;
17575 unsigned HOST_WIDE_INT cnt;
17576 int curpos = 0, fieldsize;
17577 constructor_elt *ce;
17579 if (TYPE_DOMAIN (type) == NULL_TREE
17580 || !tree_fits_shwi_p (TYPE_MIN_VALUE (TYPE_DOMAIN (type))))
17581 return false;
17583 fieldsize = int_size_in_bytes (TREE_TYPE (type));
17584 if (fieldsize <= 0)
17585 return false;
17587 min_index = tree_to_shwi (TYPE_MIN_VALUE (TYPE_DOMAIN (type)));
17588 memset (array, '\0', size);
17589 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (init), cnt, ce)
17591 tree val = ce->value;
17592 tree index = ce->index;
17593 int pos = curpos;
17594 if (index && TREE_CODE (index) == RANGE_EXPR)
17595 pos = (tree_to_shwi (TREE_OPERAND (index, 0)) - min_index)
17596 * fieldsize;
17597 else if (index)
17598 pos = (tree_to_shwi (index) - min_index) * fieldsize;
17600 if (val)
17602 STRIP_NOPS (val);
17603 if (!native_encode_initializer (val, array + pos, fieldsize))
17604 return false;
17606 curpos = pos + fieldsize;
17607 if (index && TREE_CODE (index) == RANGE_EXPR)
17609 int count = tree_to_shwi (TREE_OPERAND (index, 1))
17610 - tree_to_shwi (TREE_OPERAND (index, 0));
17611 while (count-- > 0)
17613 if (val)
17614 memcpy (array + curpos, array + pos, fieldsize);
17615 curpos += fieldsize;
17618 gcc_assert (curpos <= size);
17620 return true;
17622 else if (TREE_CODE (type) == RECORD_TYPE
17623 || TREE_CODE (type) == UNION_TYPE)
17625 tree field = NULL_TREE;
17626 unsigned HOST_WIDE_INT cnt;
17627 constructor_elt *ce;
17629 if (int_size_in_bytes (type) != size)
17630 return false;
17632 if (TREE_CODE (type) == RECORD_TYPE)
17633 field = TYPE_FIELDS (type);
17635 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (init), cnt, ce)
17637 tree val = ce->value;
17638 int pos, fieldsize;
17640 if (ce->index != 0)
17641 field = ce->index;
17643 if (val)
17644 STRIP_NOPS (val);
17646 if (field == NULL_TREE || DECL_BIT_FIELD (field))
17647 return false;
17649 if (TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE
17650 && TYPE_DOMAIN (TREE_TYPE (field))
17651 && ! TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (field))))
17652 return false;
17653 else if (DECL_SIZE_UNIT (field) == NULL_TREE
17654 || !tree_fits_shwi_p (DECL_SIZE_UNIT (field)))
17655 return false;
17656 fieldsize = tree_to_shwi (DECL_SIZE_UNIT (field));
17657 pos = int_byte_position (field);
17658 gcc_assert (pos + fieldsize <= size);
17659 if (val
17660 && !native_encode_initializer (val, array + pos, fieldsize))
17661 return false;
17663 return true;
17665 return false;
17666 case VIEW_CONVERT_EXPR:
17667 case NON_LVALUE_EXPR:
17668 return native_encode_initializer (TREE_OPERAND (init, 0), array, size);
17669 default:
17670 return native_encode_expr (init, array, size) == size;
17674 /* Attach a DW_AT_const_value attribute to DIE. The value of the
17675 attribute is the const value T. */
17677 static bool
17678 tree_add_const_value_attribute (dw_die_ref die, tree t)
17680 tree init;
17681 tree type = TREE_TYPE (t);
17682 rtx rtl;
17684 if (!t || !TREE_TYPE (t) || TREE_TYPE (t) == error_mark_node)
17685 return false;
17687 init = t;
17688 gcc_assert (!DECL_P (init));
17690 rtl = rtl_for_decl_init (init, type);
17691 if (rtl)
17692 return add_const_value_attribute (die, rtl);
17693 /* If the host and target are sane, try harder. */
17694 else if (CHAR_BIT == 8 && BITS_PER_UNIT == 8
17695 && initializer_constant_valid_p (init, type))
17697 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (init));
17698 if (size > 0 && (int) size == size)
17700 unsigned char *array = ggc_cleared_vec_alloc<unsigned char> (size);
17702 if (native_encode_initializer (init, array, size))
17704 add_AT_vec (die, DW_AT_const_value, size, 1, array);
17705 return true;
17707 ggc_free (array);
17710 return false;
17713 /* Attach a DW_AT_const_value attribute to VAR_DIE. The value of the
17714 attribute is the const value of T, where T is an integral constant
17715 variable with static storage duration
17716 (so it can't be a PARM_DECL or a RESULT_DECL). */
17718 static bool
17719 tree_add_const_value_attribute_for_decl (dw_die_ref var_die, tree decl)
17722 if (!decl
17723 || (TREE_CODE (decl) != VAR_DECL
17724 && TREE_CODE (decl) != CONST_DECL)
17725 || (TREE_CODE (decl) == VAR_DECL
17726 && !TREE_STATIC (decl)))
17727 return false;
17729 if (TREE_READONLY (decl)
17730 && ! TREE_THIS_VOLATILE (decl)
17731 && DECL_INITIAL (decl))
17732 /* OK */;
17733 else
17734 return false;
17736 /* Don't add DW_AT_const_value if abstract origin already has one. */
17737 if (get_AT (var_die, DW_AT_const_value))
17738 return false;
17740 return tree_add_const_value_attribute (var_die, DECL_INITIAL (decl));
17743 /* Convert the CFI instructions for the current function into a
17744 location list. This is used for DW_AT_frame_base when we targeting
17745 a dwarf2 consumer that does not support the dwarf3
17746 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
17747 expressions. */
17749 static dw_loc_list_ref
17750 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
17752 int ix;
17753 dw_fde_ref fde;
17754 dw_loc_list_ref list, *list_tail;
17755 dw_cfi_ref cfi;
17756 dw_cfa_location last_cfa, next_cfa;
17757 const char *start_label, *last_label, *section;
17758 dw_cfa_location remember;
17760 fde = cfun->fde;
17761 gcc_assert (fde != NULL);
17763 section = secname_for_decl (current_function_decl);
17764 list_tail = &list;
17765 list = NULL;
17767 memset (&next_cfa, 0, sizeof (next_cfa));
17768 next_cfa.reg = INVALID_REGNUM;
17769 remember = next_cfa;
17771 start_label = fde->dw_fde_begin;
17773 /* ??? Bald assumption that the CIE opcode list does not contain
17774 advance opcodes. */
17775 FOR_EACH_VEC_ELT (*cie_cfi_vec, ix, cfi)
17776 lookup_cfa_1 (cfi, &next_cfa, &remember);
17778 last_cfa = next_cfa;
17779 last_label = start_label;
17781 if (fde->dw_fde_second_begin && fde->dw_fde_switch_cfi_index == 0)
17783 /* If the first partition contained no CFI adjustments, the
17784 CIE opcodes apply to the whole first partition. */
17785 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
17786 fde->dw_fde_begin, fde->dw_fde_end, section);
17787 list_tail =&(*list_tail)->dw_loc_next;
17788 start_label = last_label = fde->dw_fde_second_begin;
17791 FOR_EACH_VEC_SAFE_ELT (fde->dw_fde_cfi, ix, cfi)
17793 switch (cfi->dw_cfi_opc)
17795 case DW_CFA_set_loc:
17796 case DW_CFA_advance_loc1:
17797 case DW_CFA_advance_loc2:
17798 case DW_CFA_advance_loc4:
17799 if (!cfa_equal_p (&last_cfa, &next_cfa))
17801 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
17802 start_label, last_label, section);
17804 list_tail = &(*list_tail)->dw_loc_next;
17805 last_cfa = next_cfa;
17806 start_label = last_label;
17808 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
17809 break;
17811 case DW_CFA_advance_loc:
17812 /* The encoding is complex enough that we should never emit this. */
17813 gcc_unreachable ();
17815 default:
17816 lookup_cfa_1 (cfi, &next_cfa, &remember);
17817 break;
17819 if (ix + 1 == fde->dw_fde_switch_cfi_index)
17821 if (!cfa_equal_p (&last_cfa, &next_cfa))
17823 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
17824 start_label, last_label, section);
17826 list_tail = &(*list_tail)->dw_loc_next;
17827 last_cfa = next_cfa;
17828 start_label = last_label;
17830 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
17831 start_label, fde->dw_fde_end, section);
17832 list_tail = &(*list_tail)->dw_loc_next;
17833 start_label = last_label = fde->dw_fde_second_begin;
17837 if (!cfa_equal_p (&last_cfa, &next_cfa))
17839 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
17840 start_label, last_label, section);
17841 list_tail = &(*list_tail)->dw_loc_next;
17842 start_label = last_label;
17845 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
17846 start_label,
17847 fde->dw_fde_second_begin
17848 ? fde->dw_fde_second_end : fde->dw_fde_end,
17849 section);
17851 if (list && list->dw_loc_next)
17852 gen_llsym (list);
17854 return list;
17857 /* Compute a displacement from the "steady-state frame pointer" to the
17858 frame base (often the same as the CFA), and store it in
17859 frame_pointer_fb_offset. OFFSET is added to the displacement
17860 before the latter is negated. */
17862 static void
17863 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
17865 rtx reg, elim;
17867 #ifdef FRAME_POINTER_CFA_OFFSET
17868 reg = frame_pointer_rtx;
17869 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
17870 #else
17871 reg = arg_pointer_rtx;
17872 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
17873 #endif
17875 elim = (ira_use_lra_p
17876 ? lra_eliminate_regs (reg, VOIDmode, NULL_RTX)
17877 : eliminate_regs (reg, VOIDmode, NULL_RTX));
17878 if (GET_CODE (elim) == PLUS)
17880 offset += INTVAL (XEXP (elim, 1));
17881 elim = XEXP (elim, 0);
17884 frame_pointer_fb_offset = -offset;
17886 /* ??? AVR doesn't set up valid eliminations when there is no stack frame
17887 in which to eliminate. This is because it's stack pointer isn't
17888 directly accessible as a register within the ISA. To work around
17889 this, assume that while we cannot provide a proper value for
17890 frame_pointer_fb_offset, we won't need one either. */
17891 frame_pointer_fb_offset_valid
17892 = ((SUPPORTS_STACK_ALIGNMENT
17893 && (elim == hard_frame_pointer_rtx
17894 || elim == stack_pointer_rtx))
17895 || elim == (frame_pointer_needed
17896 ? hard_frame_pointer_rtx
17897 : stack_pointer_rtx));
17900 /* Generate a DW_AT_name attribute given some string value to be included as
17901 the value of the attribute. */
17903 static void
17904 add_name_attribute (dw_die_ref die, const char *name_string)
17906 if (name_string != NULL && *name_string != 0)
17908 if (demangle_name_func)
17909 name_string = (*demangle_name_func) (name_string);
17911 add_AT_string (die, DW_AT_name, name_string);
17915 /* Retrieve the descriptive type of TYPE, if any, make sure it has a
17916 DIE and attach a DW_AT_GNAT_descriptive_type attribute to the DIE
17917 of TYPE accordingly.
17919 ??? This is a temporary measure until after we're able to generate
17920 regular DWARF for the complex Ada type system. */
17922 static void
17923 add_gnat_descriptive_type_attribute (dw_die_ref die, tree type,
17924 dw_die_ref context_die)
17926 tree dtype;
17927 dw_die_ref dtype_die;
17929 if (!lang_hooks.types.descriptive_type)
17930 return;
17932 dtype = lang_hooks.types.descriptive_type (type);
17933 if (!dtype)
17934 return;
17936 dtype_die = lookup_type_die (dtype);
17937 if (!dtype_die)
17939 gen_type_die (dtype, context_die);
17940 dtype_die = lookup_type_die (dtype);
17941 gcc_assert (dtype_die);
17944 add_AT_die_ref (die, DW_AT_GNAT_descriptive_type, dtype_die);
17947 /* Retrieve the comp_dir string suitable for use with DW_AT_comp_dir. */
17949 static const char *
17950 comp_dir_string (void)
17952 const char *wd;
17953 char *wd1;
17954 static const char *cached_wd = NULL;
17956 if (cached_wd != NULL)
17957 return cached_wd;
17959 wd = get_src_pwd ();
17960 if (wd == NULL)
17961 return NULL;
17963 if (DWARF2_DIR_SHOULD_END_WITH_SEPARATOR)
17965 int wdlen;
17967 wdlen = strlen (wd);
17968 wd1 = ggc_vec_alloc<char> (wdlen + 2);
17969 strcpy (wd1, wd);
17970 wd1 [wdlen] = DIR_SEPARATOR;
17971 wd1 [wdlen + 1] = 0;
17972 wd = wd1;
17975 cached_wd = remap_debug_filename (wd);
17976 return cached_wd;
17979 /* Generate a DW_AT_comp_dir attribute for DIE. */
17981 static void
17982 add_comp_dir_attribute (dw_die_ref die)
17984 const char * wd = comp_dir_string ();
17985 if (wd != NULL)
17986 add_AT_string (die, DW_AT_comp_dir, wd);
17989 /* Given a tree node VALUE describing a scalar attribute ATTR (i.e. a bound, a
17990 pointer computation, ...), output a representation for that bound according
17991 to the accepted FORMS (see enum dw_scalar_form) and add it to DIE. See
17992 loc_list_from_tree for the meaning of CONTEXT. */
17994 static void
17995 add_scalar_info (dw_die_ref die, enum dwarf_attribute attr, tree value,
17996 int forms, const struct loc_descr_context *context)
17998 dw_die_ref ctx, decl_die;
17999 dw_loc_list_ref list;
18001 bool strip_conversions = true;
18003 while (strip_conversions)
18004 switch (TREE_CODE (value))
18006 case ERROR_MARK:
18007 case SAVE_EXPR:
18008 return;
18010 CASE_CONVERT:
18011 case VIEW_CONVERT_EXPR:
18012 value = TREE_OPERAND (value, 0);
18013 break;
18015 default:
18016 strip_conversions = false;
18017 break;
18020 /* If possible and permitted, output the attribute as a constant. */
18021 if ((forms & dw_scalar_form_constant) != 0
18022 && TREE_CODE (value) == INTEGER_CST)
18024 unsigned int prec = simple_type_size_in_bits (TREE_TYPE (value));
18026 /* If HOST_WIDE_INT is big enough then represent the bound as
18027 a constant value. We need to choose a form based on
18028 whether the type is signed or unsigned. We cannot just
18029 call add_AT_unsigned if the value itself is positive
18030 (add_AT_unsigned might add the unsigned value encoded as
18031 DW_FORM_data[1248]). Some DWARF consumers will lookup the
18032 bounds type and then sign extend any unsigned values found
18033 for signed types. This is needed only for
18034 DW_AT_{lower,upper}_bound, since for most other attributes,
18035 consumers will treat DW_FORM_data[1248] as unsigned values,
18036 regardless of the underlying type. */
18037 if (prec <= HOST_BITS_PER_WIDE_INT
18038 || tree_fits_uhwi_p (value))
18040 if (TYPE_UNSIGNED (TREE_TYPE (value)))
18041 add_AT_unsigned (die, attr, TREE_INT_CST_LOW (value));
18042 else
18043 add_AT_int (die, attr, TREE_INT_CST_LOW (value));
18045 else
18046 /* Otherwise represent the bound as an unsigned value with
18047 the precision of its type. The precision and signedness
18048 of the type will be necessary to re-interpret it
18049 unambiguously. */
18050 add_AT_wide (die, attr, value);
18051 return;
18054 /* Otherwise, if it's possible and permitted too, output a reference to
18055 another DIE. */
18056 if ((forms & dw_scalar_form_reference) != 0)
18058 tree decl = NULL_TREE;
18060 /* Some type attributes reference an outer type. For instance, the upper
18061 bound of an array may reference an embedding record (this happens in
18062 Ada). */
18063 if (TREE_CODE (value) == COMPONENT_REF
18064 && TREE_CODE (TREE_OPERAND (value, 0)) == PLACEHOLDER_EXPR
18065 && TREE_CODE (TREE_OPERAND (value, 1)) == FIELD_DECL)
18066 decl = TREE_OPERAND (value, 1);
18068 else if (TREE_CODE (value) == VAR_DECL
18069 || TREE_CODE (value) == PARM_DECL
18070 || TREE_CODE (value) == RESULT_DECL)
18071 decl = value;
18073 if (decl != NULL_TREE)
18075 dw_die_ref decl_die = lookup_decl_die (decl);
18077 /* ??? Can this happen, or should the variable have been bound
18078 first? Probably it can, since I imagine that we try to create
18079 the types of parameters in the order in which they exist in
18080 the list, and won't have created a forward reference to a
18081 later parameter. */
18082 if (decl_die != NULL)
18084 add_AT_die_ref (die, attr, decl_die);
18085 return;
18090 /* Last chance: try to create a stack operation procedure to evaluate the
18091 value. Do nothing if even that is not possible or permitted. */
18092 if ((forms & dw_scalar_form_exprloc) == 0)
18093 return;
18095 list = loc_list_from_tree (value, 2, context);
18096 if (list == NULL || single_element_loc_list_p (list))
18098 /* If this attribute is not a reference nor constant, it is
18099 a DWARF expression rather than location description. For that
18100 loc_list_from_tree (value, 0, &context) is needed. */
18101 dw_loc_list_ref list2 = loc_list_from_tree (value, 0, context);
18102 if (list2 && single_element_loc_list_p (list2))
18104 add_AT_loc (die, attr, list2->expr);
18105 return;
18109 /* If that failed to give a single element location list, fall back to
18110 outputting this as a reference... still if permitted. */
18111 if (list == NULL || (forms & dw_scalar_form_reference) == 0)
18112 return;
18114 if (current_function_decl == 0)
18115 ctx = comp_unit_die ();
18116 else
18117 ctx = lookup_decl_die (current_function_decl);
18119 decl_die = new_die (DW_TAG_variable, ctx, value);
18120 add_AT_flag (decl_die, DW_AT_artificial, 1);
18121 add_type_attribute (decl_die, TREE_TYPE (value), TYPE_QUAL_CONST, ctx);
18122 add_AT_location_description (decl_die, DW_AT_location, list);
18123 add_AT_die_ref (die, attr, decl_die);
18126 /* Return the default for DW_AT_lower_bound, or -1 if there is not any
18127 default. */
18129 static int
18130 lower_bound_default (void)
18132 switch (get_AT_unsigned (comp_unit_die (), DW_AT_language))
18134 case DW_LANG_C:
18135 case DW_LANG_C89:
18136 case DW_LANG_C99:
18137 case DW_LANG_C11:
18138 case DW_LANG_C_plus_plus:
18139 case DW_LANG_C_plus_plus_11:
18140 case DW_LANG_C_plus_plus_14:
18141 case DW_LANG_ObjC:
18142 case DW_LANG_ObjC_plus_plus:
18143 case DW_LANG_Java:
18144 return 0;
18145 case DW_LANG_Fortran77:
18146 case DW_LANG_Fortran90:
18147 case DW_LANG_Fortran95:
18148 case DW_LANG_Fortran03:
18149 case DW_LANG_Fortran08:
18150 return 1;
18151 case DW_LANG_UPC:
18152 case DW_LANG_D:
18153 case DW_LANG_Python:
18154 return dwarf_version >= 4 ? 0 : -1;
18155 case DW_LANG_Ada95:
18156 case DW_LANG_Ada83:
18157 case DW_LANG_Cobol74:
18158 case DW_LANG_Cobol85:
18159 case DW_LANG_Pascal83:
18160 case DW_LANG_Modula2:
18161 case DW_LANG_PLI:
18162 return dwarf_version >= 4 ? 1 : -1;
18163 default:
18164 return -1;
18168 /* Given a tree node describing an array bound (either lower or upper) output
18169 a representation for that bound. */
18171 static void
18172 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr,
18173 tree bound, const struct loc_descr_context *context)
18175 int dflt;
18177 while (1)
18178 switch (TREE_CODE (bound))
18180 /* Strip all conversions. */
18181 CASE_CONVERT:
18182 case VIEW_CONVERT_EXPR:
18183 bound = TREE_OPERAND (bound, 0);
18184 break;
18186 /* All fixed-bounds are represented by INTEGER_CST nodes. Lower bounds
18187 are even omitted when they are the default. */
18188 case INTEGER_CST:
18189 /* If the value for this bound is the default one, we can even omit the
18190 attribute. */
18191 if (bound_attr == DW_AT_lower_bound
18192 && tree_fits_shwi_p (bound)
18193 && (dflt = lower_bound_default ()) != -1
18194 && tree_to_shwi (bound) == dflt)
18195 return;
18197 /* FALLTHRU */
18199 default:
18200 /* Because of the complex interaction there can be with other GNAT
18201 encodings, GDB isn't ready yet to handle proper DWARF description
18202 for self-referencial subrange bounds: let GNAT encodings do the
18203 magic in such a case. */
18204 if (gnat_encodings != DWARF_GNAT_ENCODINGS_MINIMAL
18205 && contains_placeholder_p (bound))
18206 return;
18208 add_scalar_info (subrange_die, bound_attr, bound,
18209 dw_scalar_form_constant
18210 | dw_scalar_form_exprloc
18211 | dw_scalar_form_reference,
18212 context);
18213 return;
18217 /* Add subscript info to TYPE_DIE, describing an array TYPE, collapsing
18218 possibly nested array subscripts in a flat sequence if COLLAPSE_P is true.
18219 Note that the block of subscript information for an array type also
18220 includes information about the element type of the given array type.
18222 This function reuses previously set type and bound information if
18223 available. */
18225 static void
18226 add_subscript_info (dw_die_ref type_die, tree type, bool collapse_p)
18228 unsigned dimension_number;
18229 tree lower, upper;
18230 dw_die_ref child = type_die->die_child;
18232 for (dimension_number = 0;
18233 TREE_CODE (type) == ARRAY_TYPE && (dimension_number == 0 || collapse_p);
18234 type = TREE_TYPE (type), dimension_number++)
18236 tree domain = TYPE_DOMAIN (type);
18238 if (TYPE_STRING_FLAG (type) && is_fortran () && dimension_number > 0)
18239 break;
18241 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
18242 and (in GNU C only) variable bounds. Handle all three forms
18243 here. */
18245 /* Find and reuse a previously generated DW_TAG_subrange_type if
18246 available.
18248 For multi-dimensional arrays, as we iterate through the
18249 various dimensions in the enclosing for loop above, we also
18250 iterate through the DIE children and pick at each
18251 DW_TAG_subrange_type previously generated (if available).
18252 Each child DW_TAG_subrange_type DIE describes the range of
18253 the current dimension. At this point we should have as many
18254 DW_TAG_subrange_type's as we have dimensions in the
18255 array. */
18256 dw_die_ref subrange_die = NULL;
18257 if (child)
18258 while (1)
18260 child = child->die_sib;
18261 if (child->die_tag == DW_TAG_subrange_type)
18262 subrange_die = child;
18263 if (child == type_die->die_child)
18265 /* If we wrapped around, stop looking next time. */
18266 child = NULL;
18267 break;
18269 if (child->die_tag == DW_TAG_subrange_type)
18270 break;
18272 if (!subrange_die)
18273 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
18275 if (domain)
18277 /* We have an array type with specified bounds. */
18278 lower = TYPE_MIN_VALUE (domain);
18279 upper = TYPE_MAX_VALUE (domain);
18281 /* Define the index type. */
18282 if (TREE_TYPE (domain)
18283 && !get_AT (subrange_die, DW_AT_type))
18285 /* ??? This is probably an Ada unnamed subrange type. Ignore the
18286 TREE_TYPE field. We can't emit debug info for this
18287 because it is an unnamed integral type. */
18288 if (TREE_CODE (domain) == INTEGER_TYPE
18289 && TYPE_NAME (domain) == NULL_TREE
18290 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
18291 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
18293 else
18294 add_type_attribute (subrange_die, TREE_TYPE (domain),
18295 TYPE_UNQUALIFIED, type_die);
18298 /* ??? If upper is NULL, the array has unspecified length,
18299 but it does have a lower bound. This happens with Fortran
18300 dimension arr(N:*)
18301 Since the debugger is definitely going to need to know N
18302 to produce useful results, go ahead and output the lower
18303 bound solo, and hope the debugger can cope. */
18305 if (!get_AT (subrange_die, DW_AT_lower_bound))
18306 add_bound_info (subrange_die, DW_AT_lower_bound, lower, NULL);
18307 if (upper && !get_AT (subrange_die, DW_AT_upper_bound))
18308 add_bound_info (subrange_die, DW_AT_upper_bound, upper, NULL);
18311 /* Otherwise we have an array type with an unspecified length. The
18312 DWARF-2 spec does not say how to handle this; let's just leave out the
18313 bounds. */
18317 /* Add a DW_AT_byte_size attribute to DIE with TREE_NODE's size. */
18319 static void
18320 add_byte_size_attribute (dw_die_ref die, tree tree_node)
18322 dw_die_ref decl_die;
18323 HOST_WIDE_INT size;
18324 dw_loc_descr_ref size_expr = NULL;
18326 switch (TREE_CODE (tree_node))
18328 case ERROR_MARK:
18329 size = 0;
18330 break;
18331 case ENUMERAL_TYPE:
18332 case RECORD_TYPE:
18333 case UNION_TYPE:
18334 case QUAL_UNION_TYPE:
18335 if (TREE_CODE (TYPE_SIZE_UNIT (tree_node)) == VAR_DECL
18336 && (decl_die = lookup_decl_die (TYPE_SIZE_UNIT (tree_node))))
18338 add_AT_die_ref (die, DW_AT_byte_size, decl_die);
18339 return;
18341 size_expr = type_byte_size (tree_node, &size);
18342 break;
18343 case FIELD_DECL:
18344 /* For a data member of a struct or union, the DW_AT_byte_size is
18345 generally given as the number of bytes normally allocated for an
18346 object of the *declared* type of the member itself. This is true
18347 even for bit-fields. */
18348 size = int_size_in_bytes (field_type (tree_node));
18349 break;
18350 default:
18351 gcc_unreachable ();
18354 /* Support for dynamically-sized objects was introduced by DWARFv3.
18355 At the moment, GDB does not handle variable byte sizes very well,
18356 though. */
18357 if ((dwarf_version >= 3 || !dwarf_strict)
18358 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL
18359 && size_expr != NULL)
18360 add_AT_loc (die, DW_AT_byte_size, size_expr);
18362 /* Note that `size' might be -1 when we get to this point. If it is, that
18363 indicates that the byte size of the entity in question is variable and
18364 that we could not generate a DWARF expression that computes it. */
18365 if (size >= 0)
18366 add_AT_unsigned (die, DW_AT_byte_size, size);
18369 /* For a FIELD_DECL node which represents a bit-field, output an attribute
18370 which specifies the distance in bits from the highest order bit of the
18371 "containing object" for the bit-field to the highest order bit of the
18372 bit-field itself.
18374 For any given bit-field, the "containing object" is a hypothetical object
18375 (of some integral or enum type) within which the given bit-field lives. The
18376 type of this hypothetical "containing object" is always the same as the
18377 declared type of the individual bit-field itself. The determination of the
18378 exact location of the "containing object" for a bit-field is rather
18379 complicated. It's handled by the `field_byte_offset' function (above).
18381 CTX is required: see the comment for VLR_CONTEXT.
18383 Note that it is the size (in bytes) of the hypothetical "containing object"
18384 which will be given in the DW_AT_byte_size attribute for this bit-field.
18385 (See `byte_size_attribute' above). */
18387 static inline void
18388 add_bit_offset_attribute (dw_die_ref die, tree decl, struct vlr_context *ctx)
18390 HOST_WIDE_INT object_offset_in_bytes;
18391 tree original_type = DECL_BIT_FIELD_TYPE (decl);
18392 HOST_WIDE_INT bitpos_int;
18393 HOST_WIDE_INT highest_order_object_bit_offset;
18394 HOST_WIDE_INT highest_order_field_bit_offset;
18395 HOST_WIDE_INT bit_offset;
18397 field_byte_offset (decl, ctx, &object_offset_in_bytes);
18399 /* Must be a field and a bit field. */
18400 gcc_assert (original_type && TREE_CODE (decl) == FIELD_DECL);
18402 /* We can't yet handle bit-fields whose offsets are variable, so if we
18403 encounter such things, just return without generating any attribute
18404 whatsoever. Likewise for variable or too large size. */
18405 if (! tree_fits_shwi_p (bit_position (decl))
18406 || ! tree_fits_uhwi_p (DECL_SIZE (decl)))
18407 return;
18409 bitpos_int = int_bit_position (decl);
18411 /* Note that the bit offset is always the distance (in bits) from the
18412 highest-order bit of the "containing object" to the highest-order bit of
18413 the bit-field itself. Since the "high-order end" of any object or field
18414 is different on big-endian and little-endian machines, the computation
18415 below must take account of these differences. */
18416 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
18417 highest_order_field_bit_offset = bitpos_int;
18419 if (! BYTES_BIG_ENDIAN)
18421 highest_order_field_bit_offset += tree_to_shwi (DECL_SIZE (decl));
18422 highest_order_object_bit_offset +=
18423 simple_type_size_in_bits (original_type);
18426 bit_offset
18427 = (! BYTES_BIG_ENDIAN
18428 ? highest_order_object_bit_offset - highest_order_field_bit_offset
18429 : highest_order_field_bit_offset - highest_order_object_bit_offset);
18431 if (bit_offset < 0)
18432 add_AT_int (die, DW_AT_bit_offset, bit_offset);
18433 else
18434 add_AT_unsigned (die, DW_AT_bit_offset, (unsigned HOST_WIDE_INT) bit_offset);
18437 /* For a FIELD_DECL node which represents a bit field, output an attribute
18438 which specifies the length in bits of the given field. */
18440 static inline void
18441 add_bit_size_attribute (dw_die_ref die, tree decl)
18443 /* Must be a field and a bit field. */
18444 gcc_assert (TREE_CODE (decl) == FIELD_DECL
18445 && DECL_BIT_FIELD_TYPE (decl));
18447 if (tree_fits_uhwi_p (DECL_SIZE (decl)))
18448 add_AT_unsigned (die, DW_AT_bit_size, tree_to_uhwi (DECL_SIZE (decl)));
18451 /* If the compiled language is ANSI C, then add a 'prototyped'
18452 attribute, if arg types are given for the parameters of a function. */
18454 static inline void
18455 add_prototyped_attribute (dw_die_ref die, tree func_type)
18457 switch (get_AT_unsigned (comp_unit_die (), DW_AT_language))
18459 case DW_LANG_C:
18460 case DW_LANG_C89:
18461 case DW_LANG_C99:
18462 case DW_LANG_C11:
18463 case DW_LANG_ObjC:
18464 if (prototype_p (func_type))
18465 add_AT_flag (die, DW_AT_prototyped, 1);
18466 break;
18467 default:
18468 break;
18472 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
18473 by looking in either the type declaration or object declaration
18474 equate table. */
18476 static inline dw_die_ref
18477 add_abstract_origin_attribute (dw_die_ref die, tree origin)
18479 dw_die_ref origin_die = NULL;
18481 if (TREE_CODE (origin) != FUNCTION_DECL)
18483 /* We may have gotten separated from the block for the inlined
18484 function, if we're in an exception handler or some such; make
18485 sure that the abstract function has been written out.
18487 Doing this for nested functions is wrong, however; functions are
18488 distinct units, and our context might not even be inline. */
18489 tree fn = origin;
18491 if (TYPE_P (fn))
18492 fn = TYPE_STUB_DECL (fn);
18494 fn = decl_function_context (fn);
18495 if (fn)
18496 dwarf2out_abstract_function (fn);
18499 if (DECL_P (origin))
18500 origin_die = lookup_decl_die (origin);
18501 else if (TYPE_P (origin))
18502 origin_die = lookup_type_die (origin);
18504 /* XXX: Functions that are never lowered don't always have correct block
18505 trees (in the case of java, they simply have no block tree, in some other
18506 languages). For these functions, there is nothing we can really do to
18507 output correct debug info for inlined functions in all cases. Rather
18508 than die, we'll just produce deficient debug info now, in that we will
18509 have variables without a proper abstract origin. In the future, when all
18510 functions are lowered, we should re-add a gcc_assert (origin_die)
18511 here. */
18513 if (origin_die)
18514 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
18515 return origin_die;
18518 /* We do not currently support the pure_virtual attribute. */
18520 static inline void
18521 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
18523 if (DECL_VINDEX (func_decl))
18525 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
18527 if (tree_fits_shwi_p (DECL_VINDEX (func_decl)))
18528 add_AT_loc (die, DW_AT_vtable_elem_location,
18529 new_loc_descr (DW_OP_constu,
18530 tree_to_shwi (DECL_VINDEX (func_decl)),
18531 0));
18533 /* GNU extension: Record what type this method came from originally. */
18534 if (debug_info_level > DINFO_LEVEL_TERSE
18535 && DECL_CONTEXT (func_decl))
18536 add_AT_die_ref (die, DW_AT_containing_type,
18537 lookup_type_die (DECL_CONTEXT (func_decl)));
18541 /* Add a DW_AT_linkage_name or DW_AT_MIPS_linkage_name attribute for the
18542 given decl. This used to be a vendor extension until after DWARF 4
18543 standardized it. */
18545 static void
18546 add_linkage_attr (dw_die_ref die, tree decl)
18548 const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
18550 /* Mimic what assemble_name_raw does with a leading '*'. */
18551 if (name[0] == '*')
18552 name = &name[1];
18554 if (dwarf_version >= 4)
18555 add_AT_string (die, DW_AT_linkage_name, name);
18556 else
18557 add_AT_string (die, DW_AT_MIPS_linkage_name, name);
18560 /* Add source coordinate attributes for the given decl. */
18562 static void
18563 add_src_coords_attributes (dw_die_ref die, tree decl)
18565 expanded_location s;
18567 if (LOCATION_LOCUS (DECL_SOURCE_LOCATION (decl)) == UNKNOWN_LOCATION)
18568 return;
18569 s = expand_location (DECL_SOURCE_LOCATION (decl));
18570 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
18571 add_AT_unsigned (die, DW_AT_decl_line, s.line);
18574 /* Add DW_AT_{,MIPS_}linkage_name attribute for the given decl. */
18576 static void
18577 add_linkage_name_raw (dw_die_ref die, tree decl)
18579 /* Defer until we have an assembler name set. */
18580 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
18582 limbo_die_node *asm_name;
18584 asm_name = ggc_cleared_alloc<limbo_die_node> ();
18585 asm_name->die = die;
18586 asm_name->created_for = decl;
18587 asm_name->next = deferred_asm_name;
18588 deferred_asm_name = asm_name;
18590 else if (DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl))
18591 add_linkage_attr (die, decl);
18594 /* Add DW_AT_{,MIPS_}linkage_name attribute for the given decl if desired. */
18596 static void
18597 add_linkage_name (dw_die_ref die, tree decl)
18599 if (debug_info_level > DINFO_LEVEL_NONE
18600 && (TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
18601 && TREE_PUBLIC (decl)
18602 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl))
18603 && die->die_tag != DW_TAG_member)
18604 add_linkage_name_raw (die, decl);
18607 /* Add a DW_AT_name attribute and source coordinate attribute for the
18608 given decl, but only if it actually has a name. */
18610 static void
18611 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
18613 tree decl_name;
18615 decl_name = DECL_NAME (decl);
18616 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
18618 const char *name = dwarf2_name (decl, 0);
18619 if (name)
18620 add_name_attribute (die, name);
18621 if (! DECL_ARTIFICIAL (decl))
18622 add_src_coords_attributes (die, decl);
18624 add_linkage_name (die, decl);
18627 #ifdef VMS_DEBUGGING_INFO
18628 /* Get the function's name, as described by its RTL. This may be different
18629 from the DECL_NAME name used in the source file. */
18630 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
18632 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
18633 XEXP (DECL_RTL (decl), 0), false);
18634 vec_safe_push (used_rtx_array, XEXP (DECL_RTL (decl), 0));
18636 #endif /* VMS_DEBUGGING_INFO */
18639 /* Add VALUE as a DW_AT_discr_value attribute to DIE. */
18641 static void
18642 add_discr_value (dw_die_ref die, dw_discr_value *value)
18644 dw_attr_node attr;
18646 attr.dw_attr = DW_AT_discr_value;
18647 attr.dw_attr_val.val_class = dw_val_class_discr_value;
18648 attr.dw_attr_val.val_entry = NULL;
18649 attr.dw_attr_val.v.val_discr_value.pos = value->pos;
18650 if (value->pos)
18651 attr.dw_attr_val.v.val_discr_value.v.uval = value->v.uval;
18652 else
18653 attr.dw_attr_val.v.val_discr_value.v.sval = value->v.sval;
18654 add_dwarf_attr (die, &attr);
18657 /* Add DISCR_LIST as a DW_AT_discr_list to DIE. */
18659 static void
18660 add_discr_list (dw_die_ref die, dw_discr_list_ref discr_list)
18662 dw_attr_node attr;
18664 attr.dw_attr = DW_AT_discr_list;
18665 attr.dw_attr_val.val_class = dw_val_class_discr_list;
18666 attr.dw_attr_val.val_entry = NULL;
18667 attr.dw_attr_val.v.val_discr_list = discr_list;
18668 add_dwarf_attr (die, &attr);
18671 static inline dw_discr_list_ref
18672 AT_discr_list (dw_attr_node *attr)
18674 return attr->dw_attr_val.v.val_discr_list;
18677 #ifdef VMS_DEBUGGING_INFO
18678 /* Output the debug main pointer die for VMS */
18680 void
18681 dwarf2out_vms_debug_main_pointer (void)
18683 char label[MAX_ARTIFICIAL_LABEL_BYTES];
18684 dw_die_ref die;
18686 /* Allocate the VMS debug main subprogram die. */
18687 die = ggc_cleared_alloc<die_node> ();
18688 die->die_tag = DW_TAG_subprogram;
18689 add_name_attribute (die, VMS_DEBUG_MAIN_POINTER);
18690 ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
18691 current_function_funcdef_no);
18692 add_AT_lbl_id (die, DW_AT_entry_pc, label);
18694 /* Make it the first child of comp_unit_die (). */
18695 die->die_parent = comp_unit_die ();
18696 if (comp_unit_die ()->die_child)
18698 die->die_sib = comp_unit_die ()->die_child->die_sib;
18699 comp_unit_die ()->die_child->die_sib = die;
18701 else
18703 die->die_sib = die;
18704 comp_unit_die ()->die_child = die;
18707 #endif /* VMS_DEBUGGING_INFO */
18709 /* Push a new declaration scope. */
18711 static void
18712 push_decl_scope (tree scope)
18714 vec_safe_push (decl_scope_table, scope);
18717 /* Pop a declaration scope. */
18719 static inline void
18720 pop_decl_scope (void)
18722 decl_scope_table->pop ();
18725 /* walk_tree helper function for uses_local_type, below. */
18727 static tree
18728 uses_local_type_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
18730 if (!TYPE_P (*tp))
18731 *walk_subtrees = 0;
18732 else
18734 tree name = TYPE_NAME (*tp);
18735 if (name && DECL_P (name) && decl_function_context (name))
18736 return *tp;
18738 return NULL_TREE;
18741 /* If TYPE involves a function-local type (including a local typedef to a
18742 non-local type), returns that type; otherwise returns NULL_TREE. */
18744 static tree
18745 uses_local_type (tree type)
18747 tree used = walk_tree_without_duplicates (&type, uses_local_type_r, NULL);
18748 return used;
18751 /* Return the DIE for the scope that immediately contains this type.
18752 Non-named types that do not involve a function-local type get global
18753 scope. Named types nested in namespaces or other types get their
18754 containing scope. All other types (i.e. function-local named types) get
18755 the current active scope. */
18757 static dw_die_ref
18758 scope_die_for (tree t, dw_die_ref context_die)
18760 dw_die_ref scope_die = NULL;
18761 tree containing_scope;
18763 /* Non-types always go in the current scope. */
18764 gcc_assert (TYPE_P (t));
18766 /* Use the scope of the typedef, rather than the scope of the type
18767 it refers to. */
18768 if (TYPE_NAME (t) && DECL_P (TYPE_NAME (t)))
18769 containing_scope = DECL_CONTEXT (TYPE_NAME (t));
18770 else
18771 containing_scope = TYPE_CONTEXT (t);
18773 /* Use the containing namespace if there is one. */
18774 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
18776 if (context_die == lookup_decl_die (containing_scope))
18777 /* OK */;
18778 else if (debug_info_level > DINFO_LEVEL_TERSE)
18779 context_die = get_context_die (containing_scope);
18780 else
18781 containing_scope = NULL_TREE;
18784 /* Ignore function type "scopes" from the C frontend. They mean that
18785 a tagged type is local to a parmlist of a function declarator, but
18786 that isn't useful to DWARF. */
18787 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
18788 containing_scope = NULL_TREE;
18790 if (SCOPE_FILE_SCOPE_P (containing_scope))
18792 /* If T uses a local type keep it local as well, to avoid references
18793 to function-local DIEs from outside the function. */
18794 if (current_function_decl && uses_local_type (t))
18795 scope_die = context_die;
18796 else
18797 scope_die = comp_unit_die ();
18799 else if (TYPE_P (containing_scope))
18801 /* For types, we can just look up the appropriate DIE. */
18802 if (debug_info_level > DINFO_LEVEL_TERSE)
18803 scope_die = get_context_die (containing_scope);
18804 else
18806 scope_die = lookup_type_die_strip_naming_typedef (containing_scope);
18807 if (scope_die == NULL)
18808 scope_die = comp_unit_die ();
18811 else
18812 scope_die = context_die;
18814 return scope_die;
18817 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
18819 static inline int
18820 local_scope_p (dw_die_ref context_die)
18822 for (; context_die; context_die = context_die->die_parent)
18823 if (context_die->die_tag == DW_TAG_inlined_subroutine
18824 || context_die->die_tag == DW_TAG_subprogram)
18825 return 1;
18827 return 0;
18830 /* Returns nonzero if CONTEXT_DIE is a class. */
18832 static inline int
18833 class_scope_p (dw_die_ref context_die)
18835 return (context_die
18836 && (context_die->die_tag == DW_TAG_structure_type
18837 || context_die->die_tag == DW_TAG_class_type
18838 || context_die->die_tag == DW_TAG_interface_type
18839 || context_die->die_tag == DW_TAG_union_type));
18842 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
18843 whether or not to treat a DIE in this context as a declaration. */
18845 static inline int
18846 class_or_namespace_scope_p (dw_die_ref context_die)
18848 return (class_scope_p (context_die)
18849 || (context_die && context_die->die_tag == DW_TAG_namespace));
18852 /* Many forms of DIEs require a "type description" attribute. This
18853 routine locates the proper "type descriptor" die for the type given
18854 by 'type' plus any additional qualifiers given by 'cv_quals', and
18855 adds a DW_AT_type attribute below the given die. */
18857 static void
18858 add_type_attribute (dw_die_ref object_die, tree type, int cv_quals,
18859 dw_die_ref context_die)
18861 enum tree_code code = TREE_CODE (type);
18862 dw_die_ref type_die = NULL;
18864 /* ??? If this type is an unnamed subrange type of an integral, floating-point
18865 or fixed-point type, use the inner type. This is because we have no
18866 support for unnamed types in base_type_die. This can happen if this is
18867 an Ada subrange type. Correct solution is emit a subrange type die. */
18868 if ((code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE)
18869 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
18870 type = TREE_TYPE (type), code = TREE_CODE (type);
18872 if (code == ERROR_MARK
18873 /* Handle a special case. For functions whose return type is void, we
18874 generate *no* type attribute. (Note that no object may have type
18875 `void', so this only applies to function return types). */
18876 || code == VOID_TYPE)
18877 return;
18879 type_die = modified_type_die (type,
18880 cv_quals | TYPE_QUALS_NO_ADDR_SPACE (type),
18881 context_die);
18883 if (type_die != NULL)
18884 add_AT_die_ref (object_die, DW_AT_type, type_die);
18887 /* Given an object die, add the calling convention attribute for the
18888 function call type. */
18889 static void
18890 add_calling_convention_attribute (dw_die_ref subr_die, tree decl)
18892 enum dwarf_calling_convention value = DW_CC_normal;
18894 value = ((enum dwarf_calling_convention)
18895 targetm.dwarf_calling_convention (TREE_TYPE (decl)));
18897 if (is_fortran ()
18898 && !strcmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)), "MAIN__"))
18900 /* DWARF 2 doesn't provide a way to identify a program's source-level
18901 entry point. DW_AT_calling_convention attributes are only meant
18902 to describe functions' calling conventions. However, lacking a
18903 better way to signal the Fortran main program, we used this for
18904 a long time, following existing custom. Now, DWARF 4 has
18905 DW_AT_main_subprogram, which we add below, but some tools still
18906 rely on the old way, which we thus keep. */
18907 value = DW_CC_program;
18909 if (dwarf_version >= 4 || !dwarf_strict)
18910 add_AT_flag (subr_die, DW_AT_main_subprogram, 1);
18913 /* Only add the attribute if the backend requests it, and
18914 is not DW_CC_normal. */
18915 if (value && (value != DW_CC_normal))
18916 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
18919 /* Given a tree pointer to a struct, class, union, or enum type node, return
18920 a pointer to the (string) tag name for the given type, or zero if the type
18921 was declared without a tag. */
18923 static const char *
18924 type_tag (const_tree type)
18926 const char *name = 0;
18928 if (TYPE_NAME (type) != 0)
18930 tree t = 0;
18932 /* Find the IDENTIFIER_NODE for the type name. */
18933 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE
18934 && !TYPE_NAMELESS (type))
18935 t = TYPE_NAME (type);
18937 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
18938 a TYPE_DECL node, regardless of whether or not a `typedef' was
18939 involved. */
18940 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
18941 && ! DECL_IGNORED_P (TYPE_NAME (type)))
18943 /* We want to be extra verbose. Don't call dwarf_name if
18944 DECL_NAME isn't set. The default hook for decl_printable_name
18945 doesn't like that, and in this context it's correct to return
18946 0, instead of "<anonymous>" or the like. */
18947 if (DECL_NAME (TYPE_NAME (type))
18948 && !DECL_NAMELESS (TYPE_NAME (type)))
18949 name = lang_hooks.dwarf_name (TYPE_NAME (type), 2);
18952 /* Now get the name as a string, or invent one. */
18953 if (!name && t != 0)
18954 name = IDENTIFIER_POINTER (t);
18957 return (name == 0 || *name == '\0') ? 0 : name;
18960 /* Return the type associated with a data member, make a special check
18961 for bit field types. */
18963 static inline tree
18964 member_declared_type (const_tree member)
18966 return (DECL_BIT_FIELD_TYPE (member)
18967 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
18970 /* Get the decl's label, as described by its RTL. This may be different
18971 from the DECL_NAME name used in the source file. */
18973 #if 0
18974 static const char *
18975 decl_start_label (tree decl)
18977 rtx x;
18978 const char *fnname;
18980 x = DECL_RTL (decl);
18981 gcc_assert (MEM_P (x));
18983 x = XEXP (x, 0);
18984 gcc_assert (GET_CODE (x) == SYMBOL_REF);
18986 fnname = XSTR (x, 0);
18987 return fnname;
18989 #endif
18991 /* For variable-length arrays that have been previously generated, but
18992 may be incomplete due to missing subscript info, fill the subscript
18993 info. Return TRUE if this is one of those cases. */
18994 static bool
18995 fill_variable_array_bounds (tree type)
18997 if (TREE_ASM_WRITTEN (type)
18998 && TREE_CODE (type) == ARRAY_TYPE
18999 && variably_modified_type_p (type, NULL))
19001 dw_die_ref array_die = lookup_type_die (type);
19002 if (!array_die)
19003 return false;
19004 add_subscript_info (array_die, type, !is_ada ());
19005 return true;
19007 return false;
19010 /* These routines generate the internal representation of the DIE's for
19011 the compilation unit. Debugging information is collected by walking
19012 the declaration trees passed in from dwarf2out_decl(). */
19014 static void
19015 gen_array_type_die (tree type, dw_die_ref context_die)
19017 dw_die_ref array_die;
19019 /* GNU compilers represent multidimensional array types as sequences of one
19020 dimensional array types whose element types are themselves array types.
19021 We sometimes squish that down to a single array_type DIE with multiple
19022 subscripts in the Dwarf debugging info. The draft Dwarf specification
19023 say that we are allowed to do this kind of compression in C, because
19024 there is no difference between an array of arrays and a multidimensional
19025 array. We don't do this for Ada to remain as close as possible to the
19026 actual representation, which is especially important against the language
19027 flexibilty wrt arrays of variable size. */
19029 bool collapse_nested_arrays = !is_ada ();
19031 if (fill_variable_array_bounds (type))
19032 return;
19034 dw_die_ref scope_die = scope_die_for (type, context_die);
19035 tree element_type;
19037 /* Emit DW_TAG_string_type for Fortran character types (with kind 1 only, as
19038 DW_TAG_string_type doesn't have DW_AT_type attribute). */
19039 if (TYPE_STRING_FLAG (type)
19040 && TREE_CODE (type) == ARRAY_TYPE
19041 && is_fortran ()
19042 && TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (char_type_node))
19044 HOST_WIDE_INT size;
19046 array_die = new_die (DW_TAG_string_type, scope_die, type);
19047 add_name_attribute (array_die, type_tag (type));
19048 equate_type_number_to_die (type, array_die);
19049 size = int_size_in_bytes (type);
19050 if (size >= 0)
19051 add_AT_unsigned (array_die, DW_AT_byte_size, size);
19052 else if (TYPE_DOMAIN (type) != NULL_TREE
19053 && TYPE_MAX_VALUE (TYPE_DOMAIN (type)) != NULL_TREE
19054 && DECL_P (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))
19056 tree szdecl = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
19057 dw_loc_list_ref loc = loc_list_from_tree (szdecl, 2, NULL);
19059 size = int_size_in_bytes (TREE_TYPE (szdecl));
19060 if (loc && size > 0)
19062 add_AT_location_description (array_die, DW_AT_string_length, loc);
19063 if (size != DWARF2_ADDR_SIZE)
19064 add_AT_unsigned (array_die, DW_AT_byte_size, size);
19067 return;
19070 array_die = new_die (DW_TAG_array_type, scope_die, type);
19071 add_name_attribute (array_die, type_tag (type));
19072 equate_type_number_to_die (type, array_die);
19074 if (TREE_CODE (type) == VECTOR_TYPE)
19075 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
19077 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
19078 if (is_fortran ()
19079 && TREE_CODE (type) == ARRAY_TYPE
19080 && TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE
19081 && !TYPE_STRING_FLAG (TREE_TYPE (type)))
19082 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
19084 #if 0
19085 /* We default the array ordering. SDB will probably do
19086 the right things even if DW_AT_ordering is not present. It's not even
19087 an issue until we start to get into multidimensional arrays anyway. If
19088 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
19089 then we'll have to put the DW_AT_ordering attribute back in. (But if
19090 and when we find out that we need to put these in, we will only do so
19091 for multidimensional arrays. */
19092 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
19093 #endif
19095 if (TREE_CODE (type) == VECTOR_TYPE)
19097 /* For VECTOR_TYPEs we use an array die with appropriate bounds. */
19098 dw_die_ref subrange_die = new_die (DW_TAG_subrange_type, array_die, NULL);
19099 add_bound_info (subrange_die, DW_AT_lower_bound, size_zero_node, NULL);
19100 add_bound_info (subrange_die, DW_AT_upper_bound,
19101 size_int (TYPE_VECTOR_SUBPARTS (type) - 1), NULL);
19103 else
19104 add_subscript_info (array_die, type, collapse_nested_arrays);
19106 /* Add representation of the type of the elements of this array type and
19107 emit the corresponding DIE if we haven't done it already. */
19108 element_type = TREE_TYPE (type);
19109 if (collapse_nested_arrays)
19110 while (TREE_CODE (element_type) == ARRAY_TYPE)
19112 if (TYPE_STRING_FLAG (element_type) && is_fortran ())
19113 break;
19114 element_type = TREE_TYPE (element_type);
19117 add_type_attribute (array_die, element_type, TYPE_UNQUALIFIED, context_die);
19119 add_gnat_descriptive_type_attribute (array_die, type, context_die);
19120 if (TYPE_ARTIFICIAL (type))
19121 add_AT_flag (array_die, DW_AT_artificial, 1);
19123 if (get_AT (array_die, DW_AT_name))
19124 add_pubtype (type, array_die);
19127 /* This routine generates DIE for array with hidden descriptor, details
19128 are filled into *info by a langhook. */
19130 static void
19131 gen_descr_array_type_die (tree type, struct array_descr_info *info,
19132 dw_die_ref context_die)
19134 const dw_die_ref scope_die = scope_die_for (type, context_die);
19135 const dw_die_ref array_die = new_die (DW_TAG_array_type, scope_die, type);
19136 const struct loc_descr_context context = { type, info->base_decl, NULL };
19137 int dim;
19139 add_name_attribute (array_die, type_tag (type));
19140 equate_type_number_to_die (type, array_die);
19142 if (info->ndimensions > 1)
19143 switch (info->ordering)
19145 case array_descr_ordering_row_major:
19146 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
19147 break;
19148 case array_descr_ordering_column_major:
19149 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
19150 break;
19151 default:
19152 break;
19155 if (dwarf_version >= 3 || !dwarf_strict)
19157 if (info->data_location)
19158 add_scalar_info (array_die, DW_AT_data_location, info->data_location,
19159 dw_scalar_form_exprloc, &context);
19160 if (info->associated)
19161 add_scalar_info (array_die, DW_AT_associated, info->associated,
19162 dw_scalar_form_constant
19163 | dw_scalar_form_exprloc
19164 | dw_scalar_form_reference, &context);
19165 if (info->allocated)
19166 add_scalar_info (array_die, DW_AT_allocated, info->allocated,
19167 dw_scalar_form_constant
19168 | dw_scalar_form_exprloc
19169 | dw_scalar_form_reference, &context);
19170 if (info->stride)
19172 const enum dwarf_attribute attr
19173 = (info->stride_in_bits) ? DW_AT_bit_stride : DW_AT_byte_stride;
19174 const int forms
19175 = (info->stride_in_bits)
19176 ? dw_scalar_form_constant
19177 : (dw_scalar_form_constant
19178 | dw_scalar_form_exprloc
19179 | dw_scalar_form_reference);
19181 add_scalar_info (array_die, attr, info->stride, forms, &context);
19185 add_gnat_descriptive_type_attribute (array_die, type, context_die);
19187 for (dim = 0; dim < info->ndimensions; dim++)
19189 dw_die_ref subrange_die
19190 = new_die (DW_TAG_subrange_type, array_die, NULL);
19192 if (info->dimen[dim].bounds_type)
19193 add_type_attribute (subrange_die,
19194 info->dimen[dim].bounds_type, 0,
19195 context_die);
19196 if (info->dimen[dim].lower_bound)
19197 add_bound_info (subrange_die, DW_AT_lower_bound,
19198 info->dimen[dim].lower_bound, &context);
19199 if (info->dimen[dim].upper_bound)
19200 add_bound_info (subrange_die, DW_AT_upper_bound,
19201 info->dimen[dim].upper_bound, &context);
19202 if ((dwarf_version >= 3 || !dwarf_strict) && info->dimen[dim].stride)
19203 add_scalar_info (subrange_die, DW_AT_byte_stride,
19204 info->dimen[dim].stride,
19205 dw_scalar_form_constant
19206 | dw_scalar_form_exprloc
19207 | dw_scalar_form_reference,
19208 &context);
19211 gen_type_die (info->element_type, context_die);
19212 add_type_attribute (array_die, info->element_type, TYPE_UNQUALIFIED,
19213 context_die);
19215 if (get_AT (array_die, DW_AT_name))
19216 add_pubtype (type, array_die);
19219 #if 0
19220 static void
19221 gen_entry_point_die (tree decl, dw_die_ref context_die)
19223 tree origin = decl_ultimate_origin (decl);
19224 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
19226 if (origin != NULL)
19227 add_abstract_origin_attribute (decl_die, origin);
19228 else
19230 add_name_and_src_coords_attributes (decl_die, decl);
19231 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
19232 TYPE_UNQUALIFIED, context_die);
19235 if (DECL_ABSTRACT_P (decl))
19236 equate_decl_number_to_die (decl, decl_die);
19237 else
19238 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
19240 #endif
19242 /* Walk through the list of incomplete types again, trying once more to
19243 emit full debugging info for them. */
19245 static void
19246 retry_incomplete_types (void)
19248 int i;
19250 for (i = vec_safe_length (incomplete_types) - 1; i >= 0; i--)
19251 if (should_emit_struct_debug ((*incomplete_types)[i], DINFO_USAGE_DIR_USE))
19252 gen_type_die ((*incomplete_types)[i], comp_unit_die ());
19255 /* Determine what tag to use for a record type. */
19257 static enum dwarf_tag
19258 record_type_tag (tree type)
19260 if (! lang_hooks.types.classify_record)
19261 return DW_TAG_structure_type;
19263 switch (lang_hooks.types.classify_record (type))
19265 case RECORD_IS_STRUCT:
19266 return DW_TAG_structure_type;
19268 case RECORD_IS_CLASS:
19269 return DW_TAG_class_type;
19271 case RECORD_IS_INTERFACE:
19272 if (dwarf_version >= 3 || !dwarf_strict)
19273 return DW_TAG_interface_type;
19274 return DW_TAG_structure_type;
19276 default:
19277 gcc_unreachable ();
19281 /* Generate a DIE to represent an enumeration type. Note that these DIEs
19282 include all of the information about the enumeration values also. Each
19283 enumerated type name/value is listed as a child of the enumerated type
19284 DIE. */
19286 static dw_die_ref
19287 gen_enumeration_type_die (tree type, dw_die_ref context_die)
19289 dw_die_ref type_die = lookup_type_die (type);
19291 if (type_die == NULL)
19293 type_die = new_die (DW_TAG_enumeration_type,
19294 scope_die_for (type, context_die), type);
19295 equate_type_number_to_die (type, type_die);
19296 add_name_attribute (type_die, type_tag (type));
19297 if (dwarf_version >= 4 || !dwarf_strict)
19299 if (ENUM_IS_SCOPED (type))
19300 add_AT_flag (type_die, DW_AT_enum_class, 1);
19301 if (ENUM_IS_OPAQUE (type))
19302 add_AT_flag (type_die, DW_AT_declaration, 1);
19305 else if (! TYPE_SIZE (type))
19306 return type_die;
19307 else
19308 remove_AT (type_die, DW_AT_declaration);
19310 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
19311 given enum type is incomplete, do not generate the DW_AT_byte_size
19312 attribute or the DW_AT_element_list attribute. */
19313 if (TYPE_SIZE (type))
19315 tree link;
19317 TREE_ASM_WRITTEN (type) = 1;
19318 add_byte_size_attribute (type_die, type);
19319 if (dwarf_version >= 3 || !dwarf_strict)
19321 tree underlying = lang_hooks.types.enum_underlying_base_type (type);
19322 add_type_attribute (type_die, underlying, TYPE_UNQUALIFIED,
19323 context_die);
19325 if (TYPE_STUB_DECL (type) != NULL_TREE)
19327 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
19328 add_accessibility_attribute (type_die, TYPE_STUB_DECL (type));
19331 /* If the first reference to this type was as the return type of an
19332 inline function, then it may not have a parent. Fix this now. */
19333 if (type_die->die_parent == NULL)
19334 add_child_die (scope_die_for (type, context_die), type_die);
19336 for (link = TYPE_VALUES (type);
19337 link != NULL; link = TREE_CHAIN (link))
19339 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
19340 tree value = TREE_VALUE (link);
19342 add_name_attribute (enum_die,
19343 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
19345 if (TREE_CODE (value) == CONST_DECL)
19346 value = DECL_INITIAL (value);
19348 if (simple_type_size_in_bits (TREE_TYPE (value))
19349 <= HOST_BITS_PER_WIDE_INT || tree_fits_shwi_p (value))
19351 /* For constant forms created by add_AT_unsigned DWARF
19352 consumers (GDB, elfutils, etc.) always zero extend
19353 the value. Only when the actual value is negative
19354 do we need to use add_AT_int to generate a constant
19355 form that can represent negative values. */
19356 HOST_WIDE_INT val = TREE_INT_CST_LOW (value);
19357 if (TYPE_UNSIGNED (TREE_TYPE (value)) || val >= 0)
19358 add_AT_unsigned (enum_die, DW_AT_const_value,
19359 (unsigned HOST_WIDE_INT) val);
19360 else
19361 add_AT_int (enum_die, DW_AT_const_value, val);
19363 else
19364 /* Enumeration constants may be wider than HOST_WIDE_INT. Handle
19365 that here. TODO: This should be re-worked to use correct
19366 signed/unsigned double tags for all cases. */
19367 add_AT_wide (enum_die, DW_AT_const_value, value);
19370 add_gnat_descriptive_type_attribute (type_die, type, context_die);
19371 if (TYPE_ARTIFICIAL (type))
19372 add_AT_flag (type_die, DW_AT_artificial, 1);
19374 else
19375 add_AT_flag (type_die, DW_AT_declaration, 1);
19377 add_pubtype (type, type_die);
19379 return type_die;
19382 /* Generate a DIE to represent either a real live formal parameter decl or to
19383 represent just the type of some formal parameter position in some function
19384 type.
19386 Note that this routine is a bit unusual because its argument may be a
19387 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
19388 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
19389 node. If it's the former then this function is being called to output a
19390 DIE to represent a formal parameter object (or some inlining thereof). If
19391 it's the latter, then this function is only being called to output a
19392 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
19393 argument type of some subprogram type.
19394 If EMIT_NAME_P is true, name and source coordinate attributes
19395 are emitted. */
19397 static dw_die_ref
19398 gen_formal_parameter_die (tree node, tree origin, bool emit_name_p,
19399 dw_die_ref context_die)
19401 tree node_or_origin = node ? node : origin;
19402 tree ultimate_origin;
19403 dw_die_ref parm_die = NULL;
19405 if (TREE_CODE_CLASS (TREE_CODE (node_or_origin)) == tcc_declaration)
19407 parm_die = lookup_decl_die (node);
19409 /* If the contexts differ, we may not be talking about the same
19410 thing. */
19411 if (parm_die && parm_die->die_parent != context_die)
19413 if (!DECL_ABSTRACT_P (node))
19415 /* This can happen when creating an inlined instance, in
19416 which case we need to create a new DIE that will get
19417 annotated with DW_AT_abstract_origin. */
19418 parm_die = NULL;
19420 else
19422 /* FIXME: Reuse DIE even with a differing context.
19424 This can happen when calling
19425 dwarf2out_abstract_function to build debug info for
19426 the abstract instance of a function for which we have
19427 already generated a DIE in
19428 dwarf2out_early_global_decl.
19430 Once we remove dwarf2out_abstract_function, we should
19431 have a call to gcc_unreachable here. */
19435 if (parm_die && parm_die->die_parent == NULL)
19437 /* Check that parm_die already has the right attributes that
19438 we would have added below. If any attributes are
19439 missing, fall through to add them. */
19440 if (! DECL_ABSTRACT_P (node_or_origin)
19441 && !get_AT (parm_die, DW_AT_location)
19442 && !get_AT (parm_die, DW_AT_const_value))
19443 /* We are missing location info, and are about to add it. */
19445 else
19447 add_child_die (context_die, parm_die);
19448 return parm_die;
19453 /* If we have a previously generated DIE, use it, unless this is an
19454 concrete instance (origin != NULL), in which case we need a new
19455 DIE with a corresponding DW_AT_abstract_origin. */
19456 bool reusing_die;
19457 if (parm_die && origin == NULL)
19458 reusing_die = true;
19459 else
19461 parm_die = new_die (DW_TAG_formal_parameter, context_die, node);
19462 reusing_die = false;
19465 switch (TREE_CODE_CLASS (TREE_CODE (node_or_origin)))
19467 case tcc_declaration:
19468 ultimate_origin = decl_ultimate_origin (node_or_origin);
19469 if (node || ultimate_origin)
19470 origin = ultimate_origin;
19472 if (reusing_die)
19473 goto add_location;
19475 if (origin != NULL)
19476 add_abstract_origin_attribute (parm_die, origin);
19477 else if (emit_name_p)
19478 add_name_and_src_coords_attributes (parm_die, node);
19479 if (origin == NULL
19480 || (! DECL_ABSTRACT_P (node_or_origin)
19481 && variably_modified_type_p (TREE_TYPE (node_or_origin),
19482 decl_function_context
19483 (node_or_origin))))
19485 tree type = TREE_TYPE (node_or_origin);
19486 if (decl_by_reference_p (node_or_origin))
19487 add_type_attribute (parm_die, TREE_TYPE (type),
19488 TYPE_UNQUALIFIED, context_die);
19489 else
19490 add_type_attribute (parm_die, type,
19491 decl_quals (node_or_origin),
19492 context_die);
19494 if (origin == NULL && DECL_ARTIFICIAL (node))
19495 add_AT_flag (parm_die, DW_AT_artificial, 1);
19496 add_location:
19497 if (node && node != origin)
19498 equate_decl_number_to_die (node, parm_die);
19499 if (! DECL_ABSTRACT_P (node_or_origin))
19500 add_location_or_const_value_attribute (parm_die, node_or_origin,
19501 node == NULL);
19503 break;
19505 case tcc_type:
19506 /* We were called with some kind of a ..._TYPE node. */
19507 add_type_attribute (parm_die, node_or_origin, TYPE_UNQUALIFIED,
19508 context_die);
19509 break;
19511 default:
19512 gcc_unreachable ();
19515 return parm_die;
19518 /* Generate and return a DW_TAG_GNU_formal_parameter_pack. Also generate
19519 children DW_TAG_formal_parameter DIEs representing the arguments of the
19520 parameter pack.
19522 PARM_PACK must be a function parameter pack.
19523 PACK_ARG is the first argument of the parameter pack. Its TREE_CHAIN
19524 must point to the subsequent arguments of the function PACK_ARG belongs to.
19525 SUBR_DIE is the DIE of the function PACK_ARG belongs to.
19526 If NEXT_ARG is non NULL, *NEXT_ARG is set to the function argument
19527 following the last one for which a DIE was generated. */
19529 static dw_die_ref
19530 gen_formal_parameter_pack_die (tree parm_pack,
19531 tree pack_arg,
19532 dw_die_ref subr_die,
19533 tree *next_arg)
19535 tree arg;
19536 dw_die_ref parm_pack_die;
19538 gcc_assert (parm_pack
19539 && lang_hooks.function_parameter_pack_p (parm_pack)
19540 && subr_die);
19542 parm_pack_die = new_die (DW_TAG_GNU_formal_parameter_pack, subr_die, parm_pack);
19543 add_src_coords_attributes (parm_pack_die, parm_pack);
19545 for (arg = pack_arg; arg; arg = DECL_CHAIN (arg))
19547 if (! lang_hooks.decls.function_parm_expanded_from_pack_p (arg,
19548 parm_pack))
19549 break;
19550 gen_formal_parameter_die (arg, NULL,
19551 false /* Don't emit name attribute. */,
19552 parm_pack_die);
19554 if (next_arg)
19555 *next_arg = arg;
19556 return parm_pack_die;
19559 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
19560 at the end of an (ANSI prototyped) formal parameters list. */
19562 static void
19563 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
19565 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
19568 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
19569 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
19570 parameters as specified in some function type specification (except for
19571 those which appear as part of a function *definition*). */
19573 static void
19574 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
19576 tree link;
19577 tree formal_type = NULL;
19578 tree first_parm_type;
19579 tree arg;
19581 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
19583 arg = DECL_ARGUMENTS (function_or_method_type);
19584 function_or_method_type = TREE_TYPE (function_or_method_type);
19586 else
19587 arg = NULL_TREE;
19589 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
19591 /* Make our first pass over the list of formal parameter types and output a
19592 DW_TAG_formal_parameter DIE for each one. */
19593 for (link = first_parm_type; link; )
19595 dw_die_ref parm_die;
19597 formal_type = TREE_VALUE (link);
19598 if (formal_type == void_type_node)
19599 break;
19601 /* Output a (nameless) DIE to represent the formal parameter itself. */
19602 if (!POINTER_BOUNDS_TYPE_P (formal_type))
19604 parm_die = gen_formal_parameter_die (formal_type, NULL,
19605 true /* Emit name attribute. */,
19606 context_die);
19607 if (TREE_CODE (function_or_method_type) == METHOD_TYPE
19608 && link == first_parm_type)
19610 add_AT_flag (parm_die, DW_AT_artificial, 1);
19611 if (dwarf_version >= 3 || !dwarf_strict)
19612 add_AT_die_ref (context_die, DW_AT_object_pointer, parm_die);
19614 else if (arg && DECL_ARTIFICIAL (arg))
19615 add_AT_flag (parm_die, DW_AT_artificial, 1);
19618 link = TREE_CHAIN (link);
19619 if (arg)
19620 arg = DECL_CHAIN (arg);
19623 /* If this function type has an ellipsis, add a
19624 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
19625 if (formal_type != void_type_node)
19626 gen_unspecified_parameters_die (function_or_method_type, context_die);
19628 /* Make our second (and final) pass over the list of formal parameter types
19629 and output DIEs to represent those types (as necessary). */
19630 for (link = TYPE_ARG_TYPES (function_or_method_type);
19631 link && TREE_VALUE (link);
19632 link = TREE_CHAIN (link))
19633 gen_type_die (TREE_VALUE (link), context_die);
19636 /* We want to generate the DIE for TYPE so that we can generate the
19637 die for MEMBER, which has been defined; we will need to refer back
19638 to the member declaration nested within TYPE. If we're trying to
19639 generate minimal debug info for TYPE, processing TYPE won't do the
19640 trick; we need to attach the member declaration by hand. */
19642 static void
19643 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
19645 gen_type_die (type, context_die);
19647 /* If we're trying to avoid duplicate debug info, we may not have
19648 emitted the member decl for this function. Emit it now. */
19649 if (TYPE_STUB_DECL (type)
19650 && TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
19651 && ! lookup_decl_die (member))
19653 dw_die_ref type_die;
19654 gcc_assert (!decl_ultimate_origin (member));
19656 push_decl_scope (type);
19657 type_die = lookup_type_die_strip_naming_typedef (type);
19658 if (TREE_CODE (member) == FUNCTION_DECL)
19659 gen_subprogram_die (member, type_die);
19660 else if (TREE_CODE (member) == FIELD_DECL)
19662 /* Ignore the nameless fields that are used to skip bits but handle
19663 C++ anonymous unions and structs. */
19664 if (DECL_NAME (member) != NULL_TREE
19665 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
19666 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
19668 struct vlr_context vlr_ctx = {
19669 DECL_CONTEXT (member), /* struct_type */
19670 NULL_TREE /* variant_part_offset */
19672 gen_type_die (member_declared_type (member), type_die);
19673 gen_field_die (member, &vlr_ctx, type_die);
19676 else
19677 gen_variable_die (member, NULL_TREE, type_die);
19679 pop_decl_scope ();
19683 /* Forward declare these functions, because they are mutually recursive
19684 with their set_block_* pairing functions. */
19685 static void set_decl_origin_self (tree);
19686 static void set_decl_abstract_flags (tree, vec<tree> &);
19688 /* Given a pointer to some BLOCK node, if the BLOCK_ABSTRACT_ORIGIN for the
19689 given BLOCK node is NULL, set the BLOCK_ABSTRACT_ORIGIN for the node so
19690 that it points to the node itself, thus indicating that the node is its
19691 own (abstract) origin. Additionally, if the BLOCK_ABSTRACT_ORIGIN for
19692 the given node is NULL, recursively descend the decl/block tree which
19693 it is the root of, and for each other ..._DECL or BLOCK node contained
19694 therein whose DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also
19695 still NULL, set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN
19696 values to point to themselves. */
19698 static void
19699 set_block_origin_self (tree stmt)
19701 if (BLOCK_ABSTRACT_ORIGIN (stmt) == NULL_TREE)
19703 BLOCK_ABSTRACT_ORIGIN (stmt) = stmt;
19706 tree local_decl;
19708 for (local_decl = BLOCK_VARS (stmt);
19709 local_decl != NULL_TREE;
19710 local_decl = DECL_CHAIN (local_decl))
19711 /* Do not recurse on nested functions since the inlining status
19712 of parent and child can be different as per the DWARF spec. */
19713 if (TREE_CODE (local_decl) != FUNCTION_DECL
19714 && !DECL_EXTERNAL (local_decl))
19715 set_decl_origin_self (local_decl);
19719 tree subblock;
19721 for (subblock = BLOCK_SUBBLOCKS (stmt);
19722 subblock != NULL_TREE;
19723 subblock = BLOCK_CHAIN (subblock))
19724 set_block_origin_self (subblock); /* Recurse. */
19729 /* Given a pointer to some ..._DECL node, if the DECL_ABSTRACT_ORIGIN for
19730 the given ..._DECL node is NULL, set the DECL_ABSTRACT_ORIGIN for the
19731 node to so that it points to the node itself, thus indicating that the
19732 node represents its own (abstract) origin. Additionally, if the
19733 DECL_ABSTRACT_ORIGIN for the given node is NULL, recursively descend
19734 the decl/block tree of which the given node is the root of, and for
19735 each other ..._DECL or BLOCK node contained therein whose
19736 DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also still NULL,
19737 set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN values to
19738 point to themselves. */
19740 static void
19741 set_decl_origin_self (tree decl)
19743 if (DECL_ABSTRACT_ORIGIN (decl) == NULL_TREE)
19745 DECL_ABSTRACT_ORIGIN (decl) = decl;
19746 if (TREE_CODE (decl) == FUNCTION_DECL)
19748 tree arg;
19750 for (arg = DECL_ARGUMENTS (decl); arg; arg = DECL_CHAIN (arg))
19751 DECL_ABSTRACT_ORIGIN (arg) = arg;
19752 if (DECL_INITIAL (decl) != NULL_TREE
19753 && DECL_INITIAL (decl) != error_mark_node)
19754 set_block_origin_self (DECL_INITIAL (decl));
19759 /* Given a pointer to some BLOCK node, set the BLOCK_ABSTRACT flag to 1
19760 and if it wasn't 1 before, push it to abstract_vec vector.
19761 For all local decls and all local sub-blocks (recursively) do it
19762 too. */
19764 static void
19765 set_block_abstract_flags (tree stmt, vec<tree> &abstract_vec)
19767 tree local_decl;
19768 tree subblock;
19769 unsigned int i;
19771 if (!BLOCK_ABSTRACT (stmt))
19773 abstract_vec.safe_push (stmt);
19774 BLOCK_ABSTRACT (stmt) = 1;
19777 for (local_decl = BLOCK_VARS (stmt);
19778 local_decl != NULL_TREE;
19779 local_decl = DECL_CHAIN (local_decl))
19780 if (! DECL_EXTERNAL (local_decl))
19781 set_decl_abstract_flags (local_decl, abstract_vec);
19783 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (stmt); i++)
19785 local_decl = BLOCK_NONLOCALIZED_VAR (stmt, i);
19786 if ((TREE_CODE (local_decl) == VAR_DECL && !TREE_STATIC (local_decl))
19787 || TREE_CODE (local_decl) == PARM_DECL)
19788 set_decl_abstract_flags (local_decl, abstract_vec);
19791 for (subblock = BLOCK_SUBBLOCKS (stmt);
19792 subblock != NULL_TREE;
19793 subblock = BLOCK_CHAIN (subblock))
19794 set_block_abstract_flags (subblock, abstract_vec);
19797 /* Given a pointer to some ..._DECL node, set DECL_ABSTRACT_P flag on it
19798 to 1 and if it wasn't 1 before, push to abstract_vec vector.
19799 In the case where the decl is a FUNCTION_DECL also set the abstract
19800 flags for all of the parameters, local vars, local
19801 blocks and sub-blocks (recursively). */
19803 static void
19804 set_decl_abstract_flags (tree decl, vec<tree> &abstract_vec)
19806 if (!DECL_ABSTRACT_P (decl))
19808 abstract_vec.safe_push (decl);
19809 DECL_ABSTRACT_P (decl) = 1;
19812 if (TREE_CODE (decl) == FUNCTION_DECL)
19814 tree arg;
19816 for (arg = DECL_ARGUMENTS (decl); arg; arg = DECL_CHAIN (arg))
19817 if (!DECL_ABSTRACT_P (arg))
19819 abstract_vec.safe_push (arg);
19820 DECL_ABSTRACT_P (arg) = 1;
19822 if (DECL_INITIAL (decl) != NULL_TREE
19823 && DECL_INITIAL (decl) != error_mark_node)
19824 set_block_abstract_flags (DECL_INITIAL (decl), abstract_vec);
19828 /* Generate the DWARF2 info for the "abstract" instance of a function which we
19829 may later generate inlined and/or out-of-line instances of.
19831 FIXME: In the early-dwarf world, this function, and most of the
19832 DECL_ABSTRACT code should be obsoleted. The early DIE _is_
19833 the abstract instance. All we would need to do is annotate
19834 the early DIE with the appropriate DW_AT_inline in late
19835 dwarf (perhaps in gen_inlined_subroutine_die).
19837 However, we can't do this yet, because LTO streaming of DIEs
19838 has not been implemented yet. */
19840 static void
19841 dwarf2out_abstract_function (tree decl)
19843 dw_die_ref old_die;
19844 tree save_fn;
19845 tree context;
19846 hash_table<decl_loc_hasher> *old_decl_loc_table;
19847 hash_table<dw_loc_list_hasher> *old_cached_dw_loc_list_table;
19848 int old_call_site_count, old_tail_call_site_count;
19849 struct call_arg_loc_node *old_call_arg_locations;
19851 /* Make sure we have the actual abstract inline, not a clone. */
19852 decl = DECL_ORIGIN (decl);
19854 old_die = lookup_decl_die (decl);
19855 if (old_die && get_AT (old_die, DW_AT_inline))
19856 /* We've already generated the abstract instance. */
19857 return;
19859 /* We can be called while recursively when seeing block defining inlined subroutine
19860 DIE. Be sure to not clobber the outer location table nor use it or we would
19861 get locations in abstract instantces. */
19862 old_decl_loc_table = decl_loc_table;
19863 decl_loc_table = NULL;
19864 old_cached_dw_loc_list_table = cached_dw_loc_list_table;
19865 cached_dw_loc_list_table = NULL;
19866 old_call_arg_locations = call_arg_locations;
19867 call_arg_locations = NULL;
19868 old_call_site_count = call_site_count;
19869 call_site_count = -1;
19870 old_tail_call_site_count = tail_call_site_count;
19871 tail_call_site_count = -1;
19873 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
19874 we don't get confused by DECL_ABSTRACT_P. */
19875 if (debug_info_level > DINFO_LEVEL_TERSE)
19877 context = decl_class_context (decl);
19878 if (context)
19879 gen_type_die_for_member
19880 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die ());
19883 /* Pretend we've just finished compiling this function. */
19884 save_fn = current_function_decl;
19885 current_function_decl = decl;
19887 auto_vec<tree, 64> abstract_vec;
19888 set_decl_abstract_flags (decl, abstract_vec);
19889 dwarf2out_decl (decl);
19890 unsigned int i;
19891 tree t;
19892 FOR_EACH_VEC_ELT (abstract_vec, i, t)
19893 if (TREE_CODE (t) == BLOCK)
19894 BLOCK_ABSTRACT (t) = 0;
19895 else
19896 DECL_ABSTRACT_P (t) = 0;
19898 current_function_decl = save_fn;
19899 decl_loc_table = old_decl_loc_table;
19900 cached_dw_loc_list_table = old_cached_dw_loc_list_table;
19901 call_arg_locations = old_call_arg_locations;
19902 call_site_count = old_call_site_count;
19903 tail_call_site_count = old_tail_call_site_count;
19906 /* Helper function of premark_used_types() which gets called through
19907 htab_traverse.
19909 Marks the DIE of a given type in *SLOT as perennial, so it never gets
19910 marked as unused by prune_unused_types. */
19912 bool
19913 premark_used_types_helper (tree const &type, void *)
19915 dw_die_ref die;
19917 die = lookup_type_die (type);
19918 if (die != NULL)
19919 die->die_perennial_p = 1;
19920 return true;
19923 /* Helper function of premark_types_used_by_global_vars which gets called
19924 through htab_traverse.
19926 Marks the DIE of a given type in *SLOT as perennial, so it never gets
19927 marked as unused by prune_unused_types. The DIE of the type is marked
19928 only if the global variable using the type will actually be emitted. */
19931 premark_types_used_by_global_vars_helper (types_used_by_vars_entry **slot,
19932 void *)
19934 struct types_used_by_vars_entry *entry;
19935 dw_die_ref die;
19937 entry = (struct types_used_by_vars_entry *) *slot;
19938 gcc_assert (entry->type != NULL
19939 && entry->var_decl != NULL);
19940 die = lookup_type_die (entry->type);
19941 if (die)
19943 /* Ask cgraph if the global variable really is to be emitted.
19944 If yes, then we'll keep the DIE of ENTRY->TYPE. */
19945 varpool_node *node = varpool_node::get (entry->var_decl);
19946 if (node && node->definition)
19948 die->die_perennial_p = 1;
19949 /* Keep the parent DIEs as well. */
19950 while ((die = die->die_parent) && die->die_perennial_p == 0)
19951 die->die_perennial_p = 1;
19954 return 1;
19957 /* Mark all members of used_types_hash as perennial. */
19959 static void
19960 premark_used_types (struct function *fun)
19962 if (fun && fun->used_types_hash)
19963 fun->used_types_hash->traverse<void *, premark_used_types_helper> (NULL);
19966 /* Mark all members of types_used_by_vars_entry as perennial. */
19968 static void
19969 premark_types_used_by_global_vars (void)
19971 if (types_used_by_vars_hash)
19972 types_used_by_vars_hash
19973 ->traverse<void *, premark_types_used_by_global_vars_helper> (NULL);
19976 /* Generate a DW_TAG_GNU_call_site DIE in function DECL under SUBR_DIE
19977 for CA_LOC call arg loc node. */
19979 static dw_die_ref
19980 gen_call_site_die (tree decl, dw_die_ref subr_die,
19981 struct call_arg_loc_node *ca_loc)
19983 dw_die_ref stmt_die = NULL, die;
19984 tree block = ca_loc->block;
19986 while (block
19987 && block != DECL_INITIAL (decl)
19988 && TREE_CODE (block) == BLOCK)
19990 stmt_die = BLOCK_DIE (block);
19991 if (stmt_die)
19992 break;
19993 block = BLOCK_SUPERCONTEXT (block);
19995 if (stmt_die == NULL)
19996 stmt_die = subr_die;
19997 die = new_die (DW_TAG_GNU_call_site, stmt_die, NULL_TREE);
19998 add_AT_lbl_id (die, DW_AT_low_pc, ca_loc->label);
19999 if (ca_loc->tail_call_p)
20000 add_AT_flag (die, DW_AT_GNU_tail_call, 1);
20001 if (ca_loc->symbol_ref)
20003 dw_die_ref tdie = lookup_decl_die (SYMBOL_REF_DECL (ca_loc->symbol_ref));
20004 if (tdie)
20005 add_AT_die_ref (die, DW_AT_abstract_origin, tdie);
20006 else
20007 add_AT_addr (die, DW_AT_abstract_origin, ca_loc->symbol_ref, false);
20009 return die;
20012 /* Generate a DIE to represent a declared function (either file-scope or
20013 block-local). */
20015 static void
20016 gen_subprogram_die (tree decl, dw_die_ref context_die)
20018 tree origin = decl_ultimate_origin (decl);
20019 dw_die_ref subr_die;
20020 dw_die_ref old_die = lookup_decl_die (decl);
20022 /* This function gets called multiple times for different stages of
20023 the debug process. For example, for func() in this code:
20025 namespace S
20027 void func() { ... }
20030 ...we get called 4 times. Twice in early debug and twice in
20031 late debug:
20033 Early debug
20034 -----------
20036 1. Once while generating func() within the namespace. This is
20037 the declaration. The declaration bit below is set, as the
20038 context is the namespace.
20040 A new DIE will be generated with DW_AT_declaration set.
20042 2. Once for func() itself. This is the specification. The
20043 declaration bit below is clear as the context is the CU.
20045 We will use the cached DIE from (1) to create a new DIE with
20046 DW_AT_specification pointing to the declaration in (1).
20048 Late debug via rest_of_handle_final()
20049 -------------------------------------
20051 3. Once generating func() within the namespace. This is also the
20052 declaration, as in (1), but this time we will early exit below
20053 as we have a cached DIE and a declaration needs no additional
20054 annotations (no locations), as the source declaration line
20055 info is enough.
20057 4. Once for func() itself. As in (2), this is the specification,
20058 but this time we will re-use the cached DIE, and just annotate
20059 it with the location information that should now be available.
20061 For something without namespaces, but with abstract instances, we
20062 are also called a multiple times:
20064 class Base
20066 public:
20067 Base (); // constructor declaration (1)
20070 Base::Base () { } // constructor specification (2)
20072 Early debug
20073 -----------
20075 1. Once for the Base() constructor by virtue of it being a
20076 member of the Base class. This is done via
20077 rest_of_type_compilation.
20079 This is a declaration, so a new DIE will be created with
20080 DW_AT_declaration.
20082 2. Once for the Base() constructor definition, but this time
20083 while generating the abstract instance of the base
20084 constructor (__base_ctor) which is being generated via early
20085 debug of reachable functions.
20087 Even though we have a cached version of the declaration (1),
20088 we will create a DW_AT_specification of the declaration DIE
20089 in (1).
20091 3. Once for the __base_ctor itself, but this time, we generate
20092 an DW_AT_abstract_origin version of the DW_AT_specification in
20093 (2).
20095 Late debug via rest_of_handle_final
20096 -----------------------------------
20098 4. One final time for the __base_ctor (which will have a cached
20099 DIE with DW_AT_abstract_origin created in (3). This time,
20100 we will just annotate the location information now
20101 available.
20103 int declaration = (current_function_decl != decl
20104 || class_or_namespace_scope_p (context_die));
20106 premark_used_types (DECL_STRUCT_FUNCTION (decl));
20108 /* Now that the C++ front end lazily declares artificial member fns, we
20109 might need to retrofit the declaration into its class. */
20110 if (!declaration && !origin && !old_die
20111 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
20112 && !class_or_namespace_scope_p (context_die)
20113 && debug_info_level > DINFO_LEVEL_TERSE)
20114 old_die = force_decl_die (decl);
20116 /* An inlined instance, tag a new DIE with DW_AT_abstract_origin. */
20117 if (origin != NULL)
20119 gcc_assert (!declaration || local_scope_p (context_die));
20121 /* Fixup die_parent for the abstract instance of a nested
20122 inline function. */
20123 if (old_die && old_die->die_parent == NULL)
20124 add_child_die (context_die, old_die);
20126 if (old_die && get_AT_ref (old_die, DW_AT_abstract_origin))
20128 /* If we have a DW_AT_abstract_origin we have a working
20129 cached version. */
20130 subr_die = old_die;
20132 else
20134 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
20135 add_abstract_origin_attribute (subr_die, origin);
20136 /* This is where the actual code for a cloned function is.
20137 Let's emit linkage name attribute for it. This helps
20138 debuggers to e.g, set breakpoints into
20139 constructors/destructors when the user asks "break
20140 K::K". */
20141 add_linkage_name (subr_die, decl);
20144 /* A cached copy, possibly from early dwarf generation. Reuse as
20145 much as possible. */
20146 else if (old_die)
20148 /* A declaration that has been previously dumped needs no
20149 additional information. */
20150 if (declaration)
20151 return;
20153 if (!get_AT_flag (old_die, DW_AT_declaration)
20154 /* We can have a normal definition following an inline one in the
20155 case of redefinition of GNU C extern inlines.
20156 It seems reasonable to use AT_specification in this case. */
20157 && !get_AT (old_die, DW_AT_inline))
20159 /* Detect and ignore this case, where we are trying to output
20160 something we have already output. */
20161 if (get_AT (old_die, DW_AT_low_pc)
20162 || get_AT (old_die, DW_AT_ranges))
20163 return;
20165 /* If we have no location information, this must be a
20166 partially generated DIE from early dwarf generation.
20167 Fall through and generate it. */
20170 /* If the definition comes from the same place as the declaration,
20171 maybe use the old DIE. We always want the DIE for this function
20172 that has the *_pc attributes to be under comp_unit_die so the
20173 debugger can find it. We also need to do this for abstract
20174 instances of inlines, since the spec requires the out-of-line copy
20175 to have the same parent. For local class methods, this doesn't
20176 apply; we just use the old DIE. */
20177 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
20178 struct dwarf_file_data * file_index = lookup_filename (s.file);
20179 if ((is_cu_die (old_die->die_parent)
20180 /* This condition fixes the inconsistency/ICE with the
20181 following Fortran test (or some derivative thereof) while
20182 building libgfortran:
20184 module some_m
20185 contains
20186 logical function funky (FLAG)
20187 funky = .true.
20188 end function
20189 end module
20191 || (old_die->die_parent
20192 && old_die->die_parent->die_tag == DW_TAG_module)
20193 || context_die == NULL)
20194 && (DECL_ARTIFICIAL (decl)
20195 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
20196 && (get_AT_unsigned (old_die, DW_AT_decl_line)
20197 == (unsigned) s.line))))
20199 subr_die = old_die;
20201 /* Clear out the declaration attribute, but leave the
20202 parameters so they can be augmented with location
20203 information later. Unless this was a declaration, in
20204 which case, wipe out the nameless parameters and recreate
20205 them further down. */
20206 if (remove_AT (subr_die, DW_AT_declaration))
20209 remove_AT (subr_die, DW_AT_object_pointer);
20210 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
20213 /* Make a specification pointing to the previously built
20214 declaration. */
20215 else
20217 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
20218 add_AT_specification (subr_die, old_die);
20219 add_pubname (decl, subr_die);
20220 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
20221 add_AT_file (subr_die, DW_AT_decl_file, file_index);
20222 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
20223 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
20225 /* If the prototype had an 'auto' or 'decltype(auto)' return type,
20226 emit the real type on the definition die. */
20227 if (is_cxx() && debug_info_level > DINFO_LEVEL_TERSE)
20229 dw_die_ref die = get_AT_ref (old_die, DW_AT_type);
20230 if (die == auto_die || die == decltype_auto_die)
20231 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
20232 TYPE_UNQUALIFIED, context_die);
20236 /* Create a fresh DIE for anything else. */
20237 else
20239 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
20241 if (TREE_PUBLIC (decl))
20242 add_AT_flag (subr_die, DW_AT_external, 1);
20244 add_name_and_src_coords_attributes (subr_die, decl);
20245 add_pubname (decl, subr_die);
20246 if (debug_info_level > DINFO_LEVEL_TERSE)
20248 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
20249 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
20250 TYPE_UNQUALIFIED, context_die);
20253 add_pure_or_virtual_attribute (subr_die, decl);
20254 if (DECL_ARTIFICIAL (decl))
20255 add_AT_flag (subr_die, DW_AT_artificial, 1);
20257 if (TREE_THIS_VOLATILE (decl) && (dwarf_version >= 5 || !dwarf_strict))
20258 add_AT_flag (subr_die, DW_AT_noreturn, 1);
20260 add_accessibility_attribute (subr_die, decl);
20263 /* Unless we have an existing non-declaration DIE, equate the new
20264 DIE. */
20265 if (!old_die || is_declaration_die (old_die))
20266 equate_decl_number_to_die (decl, subr_die);
20268 if (declaration)
20270 if (!old_die || !get_AT (old_die, DW_AT_inline))
20272 add_AT_flag (subr_die, DW_AT_declaration, 1);
20274 /* If this is an explicit function declaration then generate
20275 a DW_AT_explicit attribute. */
20276 if (lang_hooks.decls.function_decl_explicit_p (decl)
20277 && (dwarf_version >= 3 || !dwarf_strict))
20278 add_AT_flag (subr_die, DW_AT_explicit, 1);
20280 /* If this is a C++11 deleted special function member then generate
20281 a DW_AT_GNU_deleted attribute. */
20282 if (lang_hooks.decls.function_decl_deleted_p (decl)
20283 && (! dwarf_strict))
20284 add_AT_flag (subr_die, DW_AT_GNU_deleted, 1);
20287 /* Tag abstract instances with DW_AT_inline. */
20288 else if (DECL_ABSTRACT_P (decl))
20290 if (DECL_DECLARED_INLINE_P (decl))
20292 if (cgraph_function_possibly_inlined_p (decl))
20293 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
20294 else
20295 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
20297 else
20299 if (cgraph_function_possibly_inlined_p (decl))
20300 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
20301 else
20302 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
20305 if (DECL_DECLARED_INLINE_P (decl)
20306 && lookup_attribute ("artificial", DECL_ATTRIBUTES (decl)))
20307 add_AT_flag (subr_die, DW_AT_artificial, 1);
20309 /* For non DECL_EXTERNALs, if range information is available, fill
20310 the DIE with it. */
20311 else if (!DECL_EXTERNAL (decl) && !early_dwarf)
20313 HOST_WIDE_INT cfa_fb_offset;
20315 struct function *fun = DECL_STRUCT_FUNCTION (decl);
20317 if (!flag_reorder_blocks_and_partition)
20319 dw_fde_ref fde = fun->fde;
20320 if (fde->dw_fde_begin)
20322 /* We have already generated the labels. */
20323 add_AT_low_high_pc (subr_die, fde->dw_fde_begin,
20324 fde->dw_fde_end, false);
20326 else
20328 /* Create start/end labels and add the range. */
20329 char label_id_low[MAX_ARTIFICIAL_LABEL_BYTES];
20330 char label_id_high[MAX_ARTIFICIAL_LABEL_BYTES];
20331 ASM_GENERATE_INTERNAL_LABEL (label_id_low, FUNC_BEGIN_LABEL,
20332 current_function_funcdef_no);
20333 ASM_GENERATE_INTERNAL_LABEL (label_id_high, FUNC_END_LABEL,
20334 current_function_funcdef_no);
20335 add_AT_low_high_pc (subr_die, label_id_low, label_id_high,
20336 false);
20339 #if VMS_DEBUGGING_INFO
20340 /* HP OpenVMS Industry Standard 64: DWARF Extensions
20341 Section 2.3 Prologue and Epilogue Attributes:
20342 When a breakpoint is set on entry to a function, it is generally
20343 desirable for execution to be suspended, not on the very first
20344 instruction of the function, but rather at a point after the
20345 function's frame has been set up, after any language defined local
20346 declaration processing has been completed, and before execution of
20347 the first statement of the function begins. Debuggers generally
20348 cannot properly determine where this point is. Similarly for a
20349 breakpoint set on exit from a function. The prologue and epilogue
20350 attributes allow a compiler to communicate the location(s) to use. */
20353 if (fde->dw_fde_vms_end_prologue)
20354 add_AT_vms_delta (subr_die, DW_AT_HP_prologue,
20355 fde->dw_fde_begin, fde->dw_fde_vms_end_prologue);
20357 if (fde->dw_fde_vms_begin_epilogue)
20358 add_AT_vms_delta (subr_die, DW_AT_HP_epilogue,
20359 fde->dw_fde_begin, fde->dw_fde_vms_begin_epilogue);
20361 #endif
20364 else
20366 /* Generate pubnames entries for the split function code ranges. */
20367 dw_fde_ref fde = fun->fde;
20369 if (fde->dw_fde_second_begin)
20371 if (dwarf_version >= 3 || !dwarf_strict)
20373 /* We should use ranges for non-contiguous code section
20374 addresses. Use the actual code range for the initial
20375 section, since the HOT/COLD labels might precede an
20376 alignment offset. */
20377 bool range_list_added = false;
20378 add_ranges_by_labels (subr_die, fde->dw_fde_begin,
20379 fde->dw_fde_end, &range_list_added,
20380 false);
20381 add_ranges_by_labels (subr_die, fde->dw_fde_second_begin,
20382 fde->dw_fde_second_end,
20383 &range_list_added, false);
20384 if (range_list_added)
20385 add_ranges (NULL);
20387 else
20389 /* There is no real support in DW2 for this .. so we make
20390 a work-around. First, emit the pub name for the segment
20391 containing the function label. Then make and emit a
20392 simplified subprogram DIE for the second segment with the
20393 name pre-fixed by __hot/cold_sect_of_. We use the same
20394 linkage name for the second die so that gdb will find both
20395 sections when given "b foo". */
20396 const char *name = NULL;
20397 tree decl_name = DECL_NAME (decl);
20398 dw_die_ref seg_die;
20400 /* Do the 'primary' section. */
20401 add_AT_low_high_pc (subr_die, fde->dw_fde_begin,
20402 fde->dw_fde_end, false);
20404 /* Build a minimal DIE for the secondary section. */
20405 seg_die = new_die (DW_TAG_subprogram,
20406 subr_die->die_parent, decl);
20408 if (TREE_PUBLIC (decl))
20409 add_AT_flag (seg_die, DW_AT_external, 1);
20411 if (decl_name != NULL
20412 && IDENTIFIER_POINTER (decl_name) != NULL)
20414 name = dwarf2_name (decl, 1);
20415 if (! DECL_ARTIFICIAL (decl))
20416 add_src_coords_attributes (seg_die, decl);
20418 add_linkage_name (seg_die, decl);
20420 gcc_assert (name != NULL);
20421 add_pure_or_virtual_attribute (seg_die, decl);
20422 if (DECL_ARTIFICIAL (decl))
20423 add_AT_flag (seg_die, DW_AT_artificial, 1);
20425 name = concat ("__second_sect_of_", name, NULL);
20426 add_AT_low_high_pc (seg_die, fde->dw_fde_second_begin,
20427 fde->dw_fde_second_end, false);
20428 add_name_attribute (seg_die, name);
20429 if (want_pubnames ())
20430 add_pubname_string (name, seg_die);
20433 else
20434 add_AT_low_high_pc (subr_die, fde->dw_fde_begin, fde->dw_fde_end,
20435 false);
20438 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
20440 /* We define the "frame base" as the function's CFA. This is more
20441 convenient for several reasons: (1) It's stable across the prologue
20442 and epilogue, which makes it better than just a frame pointer,
20443 (2) With dwarf3, there exists a one-byte encoding that allows us
20444 to reference the .debug_frame data by proxy, but failing that,
20445 (3) We can at least reuse the code inspection and interpretation
20446 code that determines the CFA position at various points in the
20447 function. */
20448 if (dwarf_version >= 3 && targetm.debug_unwind_info () == UI_DWARF2)
20450 dw_loc_descr_ref op = new_loc_descr (DW_OP_call_frame_cfa, 0, 0);
20451 add_AT_loc (subr_die, DW_AT_frame_base, op);
20453 else
20455 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
20456 if (list->dw_loc_next)
20457 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
20458 else
20459 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
20462 /* Compute a displacement from the "steady-state frame pointer" to
20463 the CFA. The former is what all stack slots and argument slots
20464 will reference in the rtl; the latter is what we've told the
20465 debugger about. We'll need to adjust all frame_base references
20466 by this displacement. */
20467 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
20469 if (fun->static_chain_decl)
20471 /* DWARF requires here a location expression that computes the
20472 address of the enclosing subprogram's frame base. The machinery
20473 in tree-nested.c is supposed to store this specific address in the
20474 last field of the FRAME record. */
20475 const tree frame_type
20476 = TREE_TYPE (TREE_TYPE (fun->static_chain_decl));
20477 const tree fb_decl = tree_last (TYPE_FIELDS (frame_type));
20479 tree fb_expr
20480 = build1 (INDIRECT_REF, frame_type, fun->static_chain_decl);
20481 fb_expr = build3 (COMPONENT_REF, TREE_TYPE (fb_decl),
20482 fb_expr, fb_decl, NULL_TREE);
20484 add_AT_location_description (subr_die, DW_AT_static_link,
20485 loc_list_from_tree (fb_expr, 0, NULL));
20489 /* Generate child dies for template paramaters. */
20490 if (early_dwarf && debug_info_level > DINFO_LEVEL_TERSE)
20491 gen_generic_params_dies (decl);
20493 /* Now output descriptions of the arguments for this function. This gets
20494 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
20495 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
20496 `...' at the end of the formal parameter list. In order to find out if
20497 there was a trailing ellipsis or not, we must instead look at the type
20498 associated with the FUNCTION_DECL. This will be a node of type
20499 FUNCTION_TYPE. If the chain of type nodes hanging off of this
20500 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
20501 an ellipsis at the end. */
20503 /* In the case where we are describing a mere function declaration, all we
20504 need to do here (and all we *can* do here) is to describe the *types* of
20505 its formal parameters. */
20506 if (debug_info_level <= DINFO_LEVEL_TERSE)
20508 else if (declaration)
20509 gen_formal_types_die (decl, subr_die);
20510 else
20512 /* Generate DIEs to represent all known formal parameters. */
20513 tree parm = DECL_ARGUMENTS (decl);
20514 tree generic_decl = early_dwarf
20515 ? lang_hooks.decls.get_generic_function_decl (decl) : NULL;
20516 tree generic_decl_parm = generic_decl
20517 ? DECL_ARGUMENTS (generic_decl)
20518 : NULL;
20520 /* Now we want to walk the list of parameters of the function and
20521 emit their relevant DIEs.
20523 We consider the case of DECL being an instance of a generic function
20524 as well as it being a normal function.
20526 If DECL is an instance of a generic function we walk the
20527 parameters of the generic function declaration _and_ the parameters of
20528 DECL itself. This is useful because we want to emit specific DIEs for
20529 function parameter packs and those are declared as part of the
20530 generic function declaration. In that particular case,
20531 the parameter pack yields a DW_TAG_GNU_formal_parameter_pack DIE.
20532 That DIE has children DIEs representing the set of arguments
20533 of the pack. Note that the set of pack arguments can be empty.
20534 In that case, the DW_TAG_GNU_formal_parameter_pack DIE will not have any
20535 children DIE.
20537 Otherwise, we just consider the parameters of DECL. */
20538 while (generic_decl_parm || parm)
20540 if (generic_decl_parm
20541 && lang_hooks.function_parameter_pack_p (generic_decl_parm))
20542 gen_formal_parameter_pack_die (generic_decl_parm,
20543 parm, subr_die,
20544 &parm);
20545 else if (parm && !POINTER_BOUNDS_P (parm))
20547 dw_die_ref parm_die = gen_decl_die (parm, NULL, NULL, subr_die);
20549 if (parm == DECL_ARGUMENTS (decl)
20550 && TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE
20551 && parm_die
20552 && (dwarf_version >= 3 || !dwarf_strict))
20553 add_AT_die_ref (subr_die, DW_AT_object_pointer, parm_die);
20555 parm = DECL_CHAIN (parm);
20557 else if (parm)
20558 parm = DECL_CHAIN (parm);
20560 if (generic_decl_parm)
20561 generic_decl_parm = DECL_CHAIN (generic_decl_parm);
20564 /* Decide whether we need an unspecified_parameters DIE at the end.
20565 There are 2 more cases to do this for: 1) the ansi ... declaration -
20566 this is detectable when the end of the arg list is not a
20567 void_type_node 2) an unprototyped function declaration (not a
20568 definition). This just means that we have no info about the
20569 parameters at all. */
20570 if (prototype_p (TREE_TYPE (decl)))
20572 /* This is the prototyped case, check for.... */
20573 if (stdarg_p (TREE_TYPE (decl)))
20574 gen_unspecified_parameters_die (decl, subr_die);
20576 else if (DECL_INITIAL (decl) == NULL_TREE)
20577 gen_unspecified_parameters_die (decl, subr_die);
20580 if (subr_die != old_die)
20581 /* Add the calling convention attribute if requested. */
20582 add_calling_convention_attribute (subr_die, decl);
20584 /* Output Dwarf info for all of the stuff within the body of the function
20585 (if it has one - it may be just a declaration).
20587 OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
20588 a function. This BLOCK actually represents the outermost binding contour
20589 for the function, i.e. the contour in which the function's formal
20590 parameters and labels get declared. Curiously, it appears that the front
20591 end doesn't actually put the PARM_DECL nodes for the current function onto
20592 the BLOCK_VARS list for this outer scope, but are strung off of the
20593 DECL_ARGUMENTS list for the function instead.
20595 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
20596 the LABEL_DECL nodes for the function however, and we output DWARF info
20597 for those in decls_for_scope. Just within the `outer_scope' there will be
20598 a BLOCK node representing the function's outermost pair of curly braces,
20599 and any blocks used for the base and member initializers of a C++
20600 constructor function. */
20601 tree outer_scope = DECL_INITIAL (decl);
20602 if (! declaration && outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
20604 int call_site_note_count = 0;
20605 int tail_call_site_note_count = 0;
20607 /* Emit a DW_TAG_variable DIE for a named return value. */
20608 if (DECL_NAME (DECL_RESULT (decl)))
20609 gen_decl_die (DECL_RESULT (decl), NULL, NULL, subr_die);
20611 /* The first time through decls_for_scope we will generate the
20612 DIEs for the locals. The second time, we fill in the
20613 location info. */
20614 decls_for_scope (outer_scope, subr_die);
20616 if (call_arg_locations && !dwarf_strict)
20618 struct call_arg_loc_node *ca_loc;
20619 for (ca_loc = call_arg_locations; ca_loc; ca_loc = ca_loc->next)
20621 dw_die_ref die = NULL;
20622 rtx tloc = NULL_RTX, tlocc = NULL_RTX;
20623 rtx arg, next_arg;
20625 for (arg = (ca_loc->call_arg_loc_note != NULL_RTX
20626 ? NOTE_VAR_LOCATION (ca_loc->call_arg_loc_note)
20627 : NULL_RTX);
20628 arg; arg = next_arg)
20630 dw_loc_descr_ref reg, val;
20631 machine_mode mode = GET_MODE (XEXP (XEXP (arg, 0), 1));
20632 dw_die_ref cdie, tdie = NULL;
20634 next_arg = XEXP (arg, 1);
20635 if (REG_P (XEXP (XEXP (arg, 0), 0))
20636 && next_arg
20637 && MEM_P (XEXP (XEXP (next_arg, 0), 0))
20638 && REG_P (XEXP (XEXP (XEXP (next_arg, 0), 0), 0))
20639 && REGNO (XEXP (XEXP (arg, 0), 0))
20640 == REGNO (XEXP (XEXP (XEXP (next_arg, 0), 0), 0)))
20641 next_arg = XEXP (next_arg, 1);
20642 if (mode == VOIDmode)
20644 mode = GET_MODE (XEXP (XEXP (arg, 0), 0));
20645 if (mode == VOIDmode)
20646 mode = GET_MODE (XEXP (arg, 0));
20648 if (mode == VOIDmode || mode == BLKmode)
20649 continue;
20650 /* Get dynamic information about call target only if we
20651 have no static information: we cannot generate both
20652 DW_AT_abstract_origin and DW_AT_GNU_call_site_target
20653 attributes. */
20654 if (ca_loc->symbol_ref == NULL_RTX)
20656 if (XEXP (XEXP (arg, 0), 0) == pc_rtx)
20658 tloc = XEXP (XEXP (arg, 0), 1);
20659 continue;
20661 else if (GET_CODE (XEXP (XEXP (arg, 0), 0)) == CLOBBER
20662 && XEXP (XEXP (XEXP (arg, 0), 0), 0) == pc_rtx)
20664 tlocc = XEXP (XEXP (arg, 0), 1);
20665 continue;
20668 reg = NULL;
20669 if (REG_P (XEXP (XEXP (arg, 0), 0)))
20670 reg = reg_loc_descriptor (XEXP (XEXP (arg, 0), 0),
20671 VAR_INIT_STATUS_INITIALIZED);
20672 else if (MEM_P (XEXP (XEXP (arg, 0), 0)))
20674 rtx mem = XEXP (XEXP (arg, 0), 0);
20675 reg = mem_loc_descriptor (XEXP (mem, 0),
20676 get_address_mode (mem),
20677 GET_MODE (mem),
20678 VAR_INIT_STATUS_INITIALIZED);
20680 else if (GET_CODE (XEXP (XEXP (arg, 0), 0))
20681 == DEBUG_PARAMETER_REF)
20683 tree tdecl
20684 = DEBUG_PARAMETER_REF_DECL (XEXP (XEXP (arg, 0), 0));
20685 tdie = lookup_decl_die (tdecl);
20686 if (tdie == NULL)
20687 continue;
20689 else
20690 continue;
20691 if (reg == NULL
20692 && GET_CODE (XEXP (XEXP (arg, 0), 0))
20693 != DEBUG_PARAMETER_REF)
20694 continue;
20695 val = mem_loc_descriptor (XEXP (XEXP (arg, 0), 1), mode,
20696 VOIDmode,
20697 VAR_INIT_STATUS_INITIALIZED);
20698 if (val == NULL)
20699 continue;
20700 if (die == NULL)
20701 die = gen_call_site_die (decl, subr_die, ca_loc);
20702 cdie = new_die (DW_TAG_GNU_call_site_parameter, die,
20703 NULL_TREE);
20704 if (reg != NULL)
20705 add_AT_loc (cdie, DW_AT_location, reg);
20706 else if (tdie != NULL)
20707 add_AT_die_ref (cdie, DW_AT_abstract_origin, tdie);
20708 add_AT_loc (cdie, DW_AT_GNU_call_site_value, val);
20709 if (next_arg != XEXP (arg, 1))
20711 mode = GET_MODE (XEXP (XEXP (XEXP (arg, 1), 0), 1));
20712 if (mode == VOIDmode)
20713 mode = GET_MODE (XEXP (XEXP (XEXP (arg, 1), 0), 0));
20714 val = mem_loc_descriptor (XEXP (XEXP (XEXP (arg, 1),
20715 0), 1),
20716 mode, VOIDmode,
20717 VAR_INIT_STATUS_INITIALIZED);
20718 if (val != NULL)
20719 add_AT_loc (cdie, DW_AT_GNU_call_site_data_value, val);
20722 if (die == NULL
20723 && (ca_loc->symbol_ref || tloc))
20724 die = gen_call_site_die (decl, subr_die, ca_loc);
20725 if (die != NULL && (tloc != NULL_RTX || tlocc != NULL_RTX))
20727 dw_loc_descr_ref tval = NULL;
20729 if (tloc != NULL_RTX)
20730 tval = mem_loc_descriptor (tloc,
20731 GET_MODE (tloc) == VOIDmode
20732 ? Pmode : GET_MODE (tloc),
20733 VOIDmode,
20734 VAR_INIT_STATUS_INITIALIZED);
20735 if (tval)
20736 add_AT_loc (die, DW_AT_GNU_call_site_target, tval);
20737 else if (tlocc != NULL_RTX)
20739 tval = mem_loc_descriptor (tlocc,
20740 GET_MODE (tlocc) == VOIDmode
20741 ? Pmode : GET_MODE (tlocc),
20742 VOIDmode,
20743 VAR_INIT_STATUS_INITIALIZED);
20744 if (tval)
20745 add_AT_loc (die, DW_AT_GNU_call_site_target_clobbered,
20746 tval);
20749 if (die != NULL)
20751 call_site_note_count++;
20752 if (ca_loc->tail_call_p)
20753 tail_call_site_note_count++;
20757 call_arg_locations = NULL;
20758 call_arg_loc_last = NULL;
20759 if (tail_call_site_count >= 0
20760 && tail_call_site_count == tail_call_site_note_count
20761 && !dwarf_strict)
20763 if (call_site_count >= 0
20764 && call_site_count == call_site_note_count)
20765 add_AT_flag (subr_die, DW_AT_GNU_all_call_sites, 1);
20766 else
20767 add_AT_flag (subr_die, DW_AT_GNU_all_tail_call_sites, 1);
20769 call_site_count = -1;
20770 tail_call_site_count = -1;
20774 /* Returns a hash value for X (which really is a die_struct). */
20776 hashval_t
20777 block_die_hasher::hash (die_struct *d)
20779 return (hashval_t) d->decl_id ^ htab_hash_pointer (d->die_parent);
20782 /* Return nonzero if decl_id and die_parent of die_struct X is the same
20783 as decl_id and die_parent of die_struct Y. */
20785 bool
20786 block_die_hasher::equal (die_struct *x, die_struct *y)
20788 return x->decl_id == y->decl_id && x->die_parent == y->die_parent;
20791 /* Return TRUE if DECL, which may have been previously generated as
20792 OLD_DIE, is a candidate for a DW_AT_specification. DECLARATION is
20793 true if decl (or its origin) is either an extern declaration or a
20794 class/namespace scoped declaration.
20796 The declare_in_namespace support causes us to get two DIEs for one
20797 variable, both of which are declarations. We want to avoid
20798 considering one to be a specification, so we must test for
20799 DECLARATION and DW_AT_declaration. */
20800 static inline bool
20801 decl_will_get_specification_p (dw_die_ref old_die, tree decl, bool declaration)
20803 return (old_die && TREE_STATIC (decl) && !declaration
20804 && get_AT_flag (old_die, DW_AT_declaration) == 1);
20807 /* Return true if DECL is a local static. */
20809 static inline bool
20810 local_function_static (tree decl)
20812 gcc_assert (TREE_CODE (decl) == VAR_DECL);
20813 return TREE_STATIC (decl)
20814 && DECL_CONTEXT (decl)
20815 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL;
20818 /* Generate a DIE to represent a declared data object.
20819 Either DECL or ORIGIN must be non-null. */
20821 static void
20822 gen_variable_die (tree decl, tree origin, dw_die_ref context_die)
20824 HOST_WIDE_INT off = 0;
20825 tree com_decl;
20826 tree decl_or_origin = decl ? decl : origin;
20827 tree ultimate_origin;
20828 dw_die_ref var_die;
20829 dw_die_ref old_die = decl ? lookup_decl_die (decl) : NULL;
20830 dw_die_ref origin_die = NULL;
20831 bool declaration = (DECL_EXTERNAL (decl_or_origin)
20832 || class_or_namespace_scope_p (context_die));
20833 bool specialization_p = false;
20835 ultimate_origin = decl_ultimate_origin (decl_or_origin);
20836 if (decl || ultimate_origin)
20837 origin = ultimate_origin;
20838 com_decl = fortran_common (decl_or_origin, &off);
20840 /* Symbol in common gets emitted as a child of the common block, in the form
20841 of a data member. */
20842 if (com_decl)
20844 dw_die_ref com_die;
20845 dw_loc_list_ref loc;
20846 die_node com_die_arg;
20848 var_die = lookup_decl_die (decl_or_origin);
20849 if (var_die)
20851 if (get_AT (var_die, DW_AT_location) == NULL)
20853 loc = loc_list_from_tree (com_decl, off ? 1 : 2, NULL);
20854 if (loc)
20856 if (off)
20858 /* Optimize the common case. */
20859 if (single_element_loc_list_p (loc)
20860 && loc->expr->dw_loc_opc == DW_OP_addr
20861 && loc->expr->dw_loc_next == NULL
20862 && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr)
20863 == SYMBOL_REF)
20865 rtx x = loc->expr->dw_loc_oprnd1.v.val_addr;
20866 loc->expr->dw_loc_oprnd1.v.val_addr
20867 = plus_constant (GET_MODE (x), x , off);
20869 else
20870 loc_list_plus_const (loc, off);
20872 add_AT_location_description (var_die, DW_AT_location, loc);
20873 remove_AT (var_die, DW_AT_declaration);
20876 return;
20879 if (common_block_die_table == NULL)
20880 common_block_die_table = hash_table<block_die_hasher>::create_ggc (10);
20882 com_die_arg.decl_id = DECL_UID (com_decl);
20883 com_die_arg.die_parent = context_die;
20884 com_die = common_block_die_table->find (&com_die_arg);
20885 loc = loc_list_from_tree (com_decl, 2, NULL);
20886 if (com_die == NULL)
20888 const char *cnam
20889 = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (com_decl));
20890 die_node **slot;
20892 com_die = new_die (DW_TAG_common_block, context_die, decl);
20893 add_name_and_src_coords_attributes (com_die, com_decl);
20894 if (loc)
20896 add_AT_location_description (com_die, DW_AT_location, loc);
20897 /* Avoid sharing the same loc descriptor between
20898 DW_TAG_common_block and DW_TAG_variable. */
20899 loc = loc_list_from_tree (com_decl, 2, NULL);
20901 else if (DECL_EXTERNAL (decl))
20902 add_AT_flag (com_die, DW_AT_declaration, 1);
20903 if (want_pubnames ())
20904 add_pubname_string (cnam, com_die); /* ??? needed? */
20905 com_die->decl_id = DECL_UID (com_decl);
20906 slot = common_block_die_table->find_slot (com_die, INSERT);
20907 *slot = com_die;
20909 else if (get_AT (com_die, DW_AT_location) == NULL && loc)
20911 add_AT_location_description (com_die, DW_AT_location, loc);
20912 loc = loc_list_from_tree (com_decl, 2, NULL);
20913 remove_AT (com_die, DW_AT_declaration);
20915 var_die = new_die (DW_TAG_variable, com_die, decl);
20916 add_name_and_src_coords_attributes (var_die, decl);
20917 add_type_attribute (var_die, TREE_TYPE (decl), decl_quals (decl),
20918 context_die);
20919 add_AT_flag (var_die, DW_AT_external, 1);
20920 if (loc)
20922 if (off)
20924 /* Optimize the common case. */
20925 if (single_element_loc_list_p (loc)
20926 && loc->expr->dw_loc_opc == DW_OP_addr
20927 && loc->expr->dw_loc_next == NULL
20928 && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr) == SYMBOL_REF)
20930 rtx x = loc->expr->dw_loc_oprnd1.v.val_addr;
20931 loc->expr->dw_loc_oprnd1.v.val_addr
20932 = plus_constant (GET_MODE (x), x, off);
20934 else
20935 loc_list_plus_const (loc, off);
20937 add_AT_location_description (var_die, DW_AT_location, loc);
20939 else if (DECL_EXTERNAL (decl))
20940 add_AT_flag (var_die, DW_AT_declaration, 1);
20941 equate_decl_number_to_die (decl, var_die);
20942 return;
20945 if (old_die)
20947 if (declaration)
20949 /* A declaration that has been previously dumped, needs no
20950 further annotations, since it doesn't need location on
20951 the second pass. */
20952 return;
20954 else if (decl_will_get_specification_p (old_die, decl, declaration)
20955 && !get_AT (old_die, DW_AT_specification))
20957 /* Fall-thru so we can make a new variable die along with a
20958 DW_AT_specification. */
20960 else if (origin && old_die->die_parent != context_die)
20962 /* If we will be creating an inlined instance, we need a
20963 new DIE that will get annotated with
20964 DW_AT_abstract_origin. Clear things so we can get a
20965 new DIE. */
20966 gcc_assert (!DECL_ABSTRACT_P (decl));
20967 old_die = NULL;
20969 else
20971 /* If a DIE was dumped early, it still needs location info.
20972 Skip to where we fill the location bits. */
20973 var_die = old_die;
20974 goto gen_variable_die_location;
20978 /* For static data members, the declaration in the class is supposed
20979 to have DW_TAG_member tag; the specification should still be
20980 DW_TAG_variable referencing the DW_TAG_member DIE. */
20981 if (declaration && class_scope_p (context_die))
20982 var_die = new_die (DW_TAG_member, context_die, decl);
20983 else
20984 var_die = new_die (DW_TAG_variable, context_die, decl);
20986 if (origin != NULL)
20987 origin_die = add_abstract_origin_attribute (var_die, origin);
20989 /* Loop unrolling can create multiple blocks that refer to the same
20990 static variable, so we must test for the DW_AT_declaration flag.
20992 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
20993 copy decls and set the DECL_ABSTRACT_P flag on them instead of
20994 sharing them.
20996 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
20997 else if (decl_will_get_specification_p (old_die, decl, declaration))
20999 /* This is a definition of a C++ class level static. */
21000 add_AT_specification (var_die, old_die);
21001 specialization_p = true;
21002 if (DECL_NAME (decl))
21004 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
21005 struct dwarf_file_data * file_index = lookup_filename (s.file);
21007 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
21008 add_AT_file (var_die, DW_AT_decl_file, file_index);
21010 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
21011 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
21013 if (old_die->die_tag == DW_TAG_member)
21014 add_linkage_name (var_die, decl);
21017 else
21018 add_name_and_src_coords_attributes (var_die, decl);
21020 if ((origin == NULL && !specialization_p)
21021 || (origin != NULL
21022 && !DECL_ABSTRACT_P (decl_or_origin)
21023 && variably_modified_type_p (TREE_TYPE (decl_or_origin),
21024 decl_function_context
21025 (decl_or_origin))))
21027 tree type = TREE_TYPE (decl_or_origin);
21029 if (decl_by_reference_p (decl_or_origin))
21030 add_type_attribute (var_die, TREE_TYPE (type), TYPE_UNQUALIFIED,
21031 context_die);
21032 else
21033 add_type_attribute (var_die, type, decl_quals (decl_or_origin),
21034 context_die);
21037 if (origin == NULL && !specialization_p)
21039 if (TREE_PUBLIC (decl))
21040 add_AT_flag (var_die, DW_AT_external, 1);
21042 if (DECL_ARTIFICIAL (decl))
21043 add_AT_flag (var_die, DW_AT_artificial, 1);
21045 add_accessibility_attribute (var_die, decl);
21048 if (declaration)
21049 add_AT_flag (var_die, DW_AT_declaration, 1);
21051 if (decl && (DECL_ABSTRACT_P (decl)
21052 || !old_die || is_declaration_die (old_die)))
21053 equate_decl_number_to_die (decl, var_die);
21055 gen_variable_die_location:
21056 if (! declaration
21057 && (! DECL_ABSTRACT_P (decl_or_origin)
21058 /* Local static vars are shared between all clones/inlines,
21059 so emit DW_AT_location on the abstract DIE if DECL_RTL is
21060 already set. */
21061 || (TREE_CODE (decl_or_origin) == VAR_DECL
21062 && TREE_STATIC (decl_or_origin)
21063 && DECL_RTL_SET_P (decl_or_origin)))
21064 /* When abstract origin already has DW_AT_location attribute, no need
21065 to add it again. */
21066 && (origin_die == NULL || get_AT (origin_die, DW_AT_location) == NULL))
21068 if (early_dwarf)
21069 add_pubname (decl_or_origin, var_die);
21070 else
21071 add_location_or_const_value_attribute (var_die, decl_or_origin,
21072 decl == NULL);
21074 else
21075 tree_add_const_value_attribute_for_decl (var_die, decl_or_origin);
21078 /* Generate a DIE to represent a named constant. */
21080 static void
21081 gen_const_die (tree decl, dw_die_ref context_die)
21083 dw_die_ref const_die;
21084 tree type = TREE_TYPE (decl);
21086 const_die = lookup_decl_die (decl);
21087 if (const_die)
21088 return;
21090 const_die = new_die (DW_TAG_constant, context_die, decl);
21091 equate_decl_number_to_die (decl, const_die);
21092 add_name_and_src_coords_attributes (const_die, decl);
21093 add_type_attribute (const_die, type, TYPE_QUAL_CONST, context_die);
21094 if (TREE_PUBLIC (decl))
21095 add_AT_flag (const_die, DW_AT_external, 1);
21096 if (DECL_ARTIFICIAL (decl))
21097 add_AT_flag (const_die, DW_AT_artificial, 1);
21098 tree_add_const_value_attribute_for_decl (const_die, decl);
21101 /* Generate a DIE to represent a label identifier. */
21103 static void
21104 gen_label_die (tree decl, dw_die_ref context_die)
21106 tree origin = decl_ultimate_origin (decl);
21107 dw_die_ref lbl_die = lookup_decl_die (decl);
21108 rtx insn;
21109 char label[MAX_ARTIFICIAL_LABEL_BYTES];
21111 if (!lbl_die)
21113 lbl_die = new_die (DW_TAG_label, context_die, decl);
21114 equate_decl_number_to_die (decl, lbl_die);
21116 if (origin != NULL)
21117 add_abstract_origin_attribute (lbl_die, origin);
21118 else
21119 add_name_and_src_coords_attributes (lbl_die, decl);
21122 if (DECL_ABSTRACT_P (decl))
21123 equate_decl_number_to_die (decl, lbl_die);
21124 else
21126 insn = DECL_RTL_IF_SET (decl);
21128 /* Deleted labels are programmer specified labels which have been
21129 eliminated because of various optimizations. We still emit them
21130 here so that it is possible to put breakpoints on them. */
21131 if (insn
21132 && (LABEL_P (insn)
21133 || ((NOTE_P (insn)
21134 && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))))
21136 /* When optimization is enabled (via -O) some parts of the compiler
21137 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
21138 represent source-level labels which were explicitly declared by
21139 the user. This really shouldn't be happening though, so catch
21140 it if it ever does happen. */
21141 gcc_assert (!as_a<rtx_insn *> (insn)->deleted ());
21143 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
21144 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
21146 else if (insn
21147 && NOTE_P (insn)
21148 && NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL
21149 && CODE_LABEL_NUMBER (insn) != -1)
21151 ASM_GENERATE_INTERNAL_LABEL (label, "LDL", CODE_LABEL_NUMBER (insn));
21152 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
21157 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
21158 attributes to the DIE for a block STMT, to describe where the inlined
21159 function was called from. This is similar to add_src_coords_attributes. */
21161 static inline void
21162 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
21164 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
21166 if (dwarf_version >= 3 || !dwarf_strict)
21168 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
21169 add_AT_unsigned (die, DW_AT_call_line, s.line);
21174 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
21175 Add low_pc and high_pc attributes to the DIE for a block STMT. */
21177 static inline void
21178 add_high_low_attributes (tree stmt, dw_die_ref die)
21180 char label[MAX_ARTIFICIAL_LABEL_BYTES];
21182 if (BLOCK_FRAGMENT_CHAIN (stmt)
21183 && (dwarf_version >= 3 || !dwarf_strict))
21185 tree chain, superblock = NULL_TREE;
21186 dw_die_ref pdie;
21187 dw_attr_node *attr = NULL;
21189 if (inlined_function_outer_scope_p (stmt))
21191 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
21192 BLOCK_NUMBER (stmt));
21193 add_AT_lbl_id (die, DW_AT_entry_pc, label);
21196 /* Optimize duplicate .debug_ranges lists or even tails of
21197 lists. If this BLOCK has same ranges as its supercontext,
21198 lookup DW_AT_ranges attribute in the supercontext (and
21199 recursively so), verify that the ranges_table contains the
21200 right values and use it instead of adding a new .debug_range. */
21201 for (chain = stmt, pdie = die;
21202 BLOCK_SAME_RANGE (chain);
21203 chain = BLOCK_SUPERCONTEXT (chain))
21205 dw_attr_node *new_attr;
21207 pdie = pdie->die_parent;
21208 if (pdie == NULL)
21209 break;
21210 if (BLOCK_SUPERCONTEXT (chain) == NULL_TREE)
21211 break;
21212 new_attr = get_AT (pdie, DW_AT_ranges);
21213 if (new_attr == NULL
21214 || new_attr->dw_attr_val.val_class != dw_val_class_range_list)
21215 break;
21216 attr = new_attr;
21217 superblock = BLOCK_SUPERCONTEXT (chain);
21219 if (attr != NULL
21220 && (ranges_table[attr->dw_attr_val.v.val_offset
21221 / 2 / DWARF2_ADDR_SIZE].num
21222 == BLOCK_NUMBER (superblock))
21223 && BLOCK_FRAGMENT_CHAIN (superblock))
21225 unsigned long off = attr->dw_attr_val.v.val_offset
21226 / 2 / DWARF2_ADDR_SIZE;
21227 unsigned long supercnt = 0, thiscnt = 0;
21228 for (chain = BLOCK_FRAGMENT_CHAIN (superblock);
21229 chain; chain = BLOCK_FRAGMENT_CHAIN (chain))
21231 ++supercnt;
21232 gcc_checking_assert (ranges_table[off + supercnt].num
21233 == BLOCK_NUMBER (chain));
21235 gcc_checking_assert (ranges_table[off + supercnt + 1].num == 0);
21236 for (chain = BLOCK_FRAGMENT_CHAIN (stmt);
21237 chain; chain = BLOCK_FRAGMENT_CHAIN (chain))
21238 ++thiscnt;
21239 gcc_assert (supercnt >= thiscnt);
21240 add_AT_range_list (die, DW_AT_ranges,
21241 ((off + supercnt - thiscnt)
21242 * 2 * DWARF2_ADDR_SIZE),
21243 false);
21244 return;
21247 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt), false);
21249 chain = BLOCK_FRAGMENT_CHAIN (stmt);
21252 add_ranges (chain);
21253 chain = BLOCK_FRAGMENT_CHAIN (chain);
21255 while (chain);
21256 add_ranges (NULL);
21258 else
21260 char label_high[MAX_ARTIFICIAL_LABEL_BYTES];
21261 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
21262 BLOCK_NUMBER (stmt));
21263 ASM_GENERATE_INTERNAL_LABEL (label_high, BLOCK_END_LABEL,
21264 BLOCK_NUMBER (stmt));
21265 add_AT_low_high_pc (die, label, label_high, false);
21269 /* Generate a DIE for a lexical block. */
21271 static void
21272 gen_lexical_block_die (tree stmt, dw_die_ref context_die)
21274 dw_die_ref old_die = BLOCK_DIE (stmt);
21275 dw_die_ref stmt_die = NULL;
21276 if (!old_die)
21278 stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
21279 BLOCK_DIE (stmt) = stmt_die;
21282 if (BLOCK_ABSTRACT (stmt))
21284 if (old_die)
21286 /* This must have been generated early and it won't even
21287 need location information since it's a DW_AT_inline
21288 function. */
21289 if (flag_checking)
21290 for (dw_die_ref c = context_die; c; c = c->die_parent)
21291 if (c->die_tag == DW_TAG_inlined_subroutine
21292 || c->die_tag == DW_TAG_subprogram)
21294 gcc_assert (get_AT (c, DW_AT_inline));
21295 break;
21297 return;
21300 else if (BLOCK_ABSTRACT_ORIGIN (stmt))
21302 /* If this is an inlined instance, create a new lexical die for
21303 anything below to attach DW_AT_abstract_origin to. */
21304 if (old_die)
21306 stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
21307 BLOCK_DIE (stmt) = stmt_die;
21308 old_die = NULL;
21312 if (old_die)
21313 stmt_die = old_die;
21315 /* A non abstract block whose blocks have already been reordered
21316 should have the instruction range for this block. If so, set the
21317 high/low attributes. */
21318 if (!early_dwarf && !BLOCK_ABSTRACT (stmt) && TREE_ASM_WRITTEN (stmt))
21320 gcc_assert (stmt_die);
21321 add_high_low_attributes (stmt, stmt_die);
21324 decls_for_scope (stmt, stmt_die);
21327 /* Generate a DIE for an inlined subprogram. */
21329 static void
21330 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die)
21332 tree decl;
21334 /* The instance of function that is effectively being inlined shall not
21335 be abstract. */
21336 gcc_assert (! BLOCK_ABSTRACT (stmt));
21338 decl = block_ultimate_origin (stmt);
21340 /* Make sure any inlined functions are known to be inlineable. */
21341 gcc_checking_assert (DECL_ABSTRACT_P (decl)
21342 || cgraph_function_possibly_inlined_p (decl));
21344 /* Emit info for the abstract instance first, if we haven't yet. We
21345 must emit this even if the block is abstract, otherwise when we
21346 emit the block below (or elsewhere), we may end up trying to emit
21347 a die whose origin die hasn't been emitted, and crashing. */
21348 dwarf2out_abstract_function (decl);
21350 if (! BLOCK_ABSTRACT (stmt))
21352 dw_die_ref subr_die
21353 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
21355 if (call_arg_locations)
21356 BLOCK_DIE (stmt) = subr_die;
21357 add_abstract_origin_attribute (subr_die, decl);
21358 if (TREE_ASM_WRITTEN (stmt))
21359 add_high_low_attributes (stmt, subr_die);
21360 add_call_src_coords_attributes (stmt, subr_die);
21362 decls_for_scope (stmt, subr_die);
21366 /* Generate a DIE for a field in a record, or structure. CTX is required: see
21367 the comment for VLR_CONTEXT. */
21369 static void
21370 gen_field_die (tree decl, struct vlr_context *ctx, dw_die_ref context_die)
21372 dw_die_ref decl_die;
21374 if (TREE_TYPE (decl) == error_mark_node)
21375 return;
21377 decl_die = new_die (DW_TAG_member, context_die, decl);
21378 add_name_and_src_coords_attributes (decl_die, decl);
21379 add_type_attribute (decl_die, member_declared_type (decl),
21380 decl_quals (decl), context_die);
21382 if (DECL_BIT_FIELD_TYPE (decl))
21384 add_byte_size_attribute (decl_die, decl);
21385 add_bit_size_attribute (decl_die, decl);
21386 add_bit_offset_attribute (decl_die, decl, ctx);
21389 /* If we have a variant part offset, then we are supposed to process a member
21390 of a QUAL_UNION_TYPE, which is how we represent variant parts in
21391 trees. */
21392 gcc_assert (ctx->variant_part_offset == NULL_TREE
21393 || TREE_CODE (DECL_FIELD_CONTEXT (decl)) != QUAL_UNION_TYPE);
21394 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
21395 add_data_member_location_attribute (decl_die, decl, ctx);
21397 if (DECL_ARTIFICIAL (decl))
21398 add_AT_flag (decl_die, DW_AT_artificial, 1);
21400 add_accessibility_attribute (decl_die, decl);
21402 /* Equate decl number to die, so that we can look up this decl later on. */
21403 equate_decl_number_to_die (decl, decl_die);
21406 #if 0
21407 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
21408 Use modified_type_die instead.
21409 We keep this code here just in case these types of DIEs may be needed to
21410 represent certain things in other languages (e.g. Pascal) someday. */
21412 static void
21413 gen_pointer_type_die (tree type, dw_die_ref context_die)
21415 dw_die_ref ptr_die
21416 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
21418 equate_type_number_to_die (type, ptr_die);
21419 add_type_attribute (ptr_die, TREE_TYPE (type), TYPE_UNQUALIFIED,
21420 context_die);
21421 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
21424 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
21425 Use modified_type_die instead.
21426 We keep this code here just in case these types of DIEs may be needed to
21427 represent certain things in other languages (e.g. Pascal) someday. */
21429 static void
21430 gen_reference_type_die (tree type, dw_die_ref context_die)
21432 dw_die_ref ref_die, scope_die = scope_die_for (type, context_die);
21434 if (TYPE_REF_IS_RVALUE (type) && dwarf_version >= 4)
21435 ref_die = new_die (DW_TAG_rvalue_reference_type, scope_die, type);
21436 else
21437 ref_die = new_die (DW_TAG_reference_type, scope_die, type);
21439 equate_type_number_to_die (type, ref_die);
21440 add_type_attribute (ref_die, TREE_TYPE (type), TYPE_UNQUALIFIED,
21441 context_die);
21442 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
21444 #endif
21446 /* Generate a DIE for a pointer to a member type. */
21448 static void
21449 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
21451 dw_die_ref ptr_die
21452 = new_die (DW_TAG_ptr_to_member_type,
21453 scope_die_for (type, context_die), type);
21455 equate_type_number_to_die (type, ptr_die);
21456 add_AT_die_ref (ptr_die, DW_AT_containing_type,
21457 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
21458 add_type_attribute (ptr_die, TREE_TYPE (type), TYPE_UNQUALIFIED,
21459 context_die);
21462 static char *producer_string;
21464 /* Return a heap allocated producer string including command line options
21465 if -grecord-gcc-switches. */
21467 static char *
21468 gen_producer_string (void)
21470 size_t j;
21471 auto_vec<const char *> switches;
21472 const char *language_string = lang_hooks.name;
21473 char *producer, *tail;
21474 const char *p;
21475 size_t len = dwarf_record_gcc_switches ? 0 : 3;
21476 size_t plen = strlen (language_string) + 1 + strlen (version_string);
21478 for (j = 1; dwarf_record_gcc_switches && j < save_decoded_options_count; j++)
21479 switch (save_decoded_options[j].opt_index)
21481 case OPT_o:
21482 case OPT_d:
21483 case OPT_dumpbase:
21484 case OPT_dumpdir:
21485 case OPT_auxbase:
21486 case OPT_auxbase_strip:
21487 case OPT_quiet:
21488 case OPT_version:
21489 case OPT_v:
21490 case OPT_w:
21491 case OPT_L:
21492 case OPT_D:
21493 case OPT_I:
21494 case OPT_U:
21495 case OPT_SPECIAL_unknown:
21496 case OPT_SPECIAL_ignore:
21497 case OPT_SPECIAL_program_name:
21498 case OPT_SPECIAL_input_file:
21499 case OPT_grecord_gcc_switches:
21500 case OPT_gno_record_gcc_switches:
21501 case OPT__output_pch_:
21502 case OPT_fdiagnostics_show_location_:
21503 case OPT_fdiagnostics_show_option:
21504 case OPT_fdiagnostics_show_caret:
21505 case OPT_fdiagnostics_color_:
21506 case OPT_fverbose_asm:
21507 case OPT____:
21508 case OPT__sysroot_:
21509 case OPT_nostdinc:
21510 case OPT_nostdinc__:
21511 case OPT_fpreprocessed:
21512 case OPT_fltrans_output_list_:
21513 case OPT_fresolution_:
21514 case OPT_fdebug_prefix_map_:
21515 /* Ignore these. */
21516 continue;
21517 default:
21518 if (cl_options[save_decoded_options[j].opt_index].flags
21519 & CL_NO_DWARF_RECORD)
21520 continue;
21521 gcc_checking_assert (save_decoded_options[j].canonical_option[0][0]
21522 == '-');
21523 switch (save_decoded_options[j].canonical_option[0][1])
21525 case 'M':
21526 case 'i':
21527 case 'W':
21528 continue;
21529 case 'f':
21530 if (strncmp (save_decoded_options[j].canonical_option[0] + 2,
21531 "dump", 4) == 0)
21532 continue;
21533 break;
21534 default:
21535 break;
21537 switches.safe_push (save_decoded_options[j].orig_option_with_args_text);
21538 len += strlen (save_decoded_options[j].orig_option_with_args_text) + 1;
21539 break;
21542 producer = XNEWVEC (char, plen + 1 + len + 1);
21543 tail = producer;
21544 sprintf (tail, "%s %s", language_string, version_string);
21545 tail += plen;
21547 FOR_EACH_VEC_ELT (switches, j, p)
21549 len = strlen (p);
21550 *tail = ' ';
21551 memcpy (tail + 1, p, len);
21552 tail += len + 1;
21555 *tail = '\0';
21556 return producer;
21559 /* Given a C and/or C++ language/version string return the "highest".
21560 C++ is assumed to be "higher" than C in this case. Used for merging
21561 LTO translation unit languages. */
21562 static const char *
21563 highest_c_language (const char *lang1, const char *lang2)
21565 if (strcmp ("GNU C++14", lang1) == 0 || strcmp ("GNU C++14", lang2) == 0)
21566 return "GNU C++14";
21567 if (strcmp ("GNU C++11", lang1) == 0 || strcmp ("GNU C++11", lang2) == 0)
21568 return "GNU C++11";
21569 if (strcmp ("GNU C++98", lang1) == 0 || strcmp ("GNU C++98", lang2) == 0)
21570 return "GNU C++98";
21572 if (strcmp ("GNU C11", lang1) == 0 || strcmp ("GNU C11", lang2) == 0)
21573 return "GNU C11";
21574 if (strcmp ("GNU C99", lang1) == 0 || strcmp ("GNU C99", lang2) == 0)
21575 return "GNU C99";
21576 if (strcmp ("GNU C89", lang1) == 0 || strcmp ("GNU C89", lang2) == 0)
21577 return "GNU C89";
21579 gcc_unreachable ();
21583 /* Generate the DIE for the compilation unit. */
21585 static dw_die_ref
21586 gen_compile_unit_die (const char *filename)
21588 dw_die_ref die;
21589 const char *language_string = lang_hooks.name;
21590 int language;
21592 die = new_die (DW_TAG_compile_unit, NULL, NULL);
21594 if (filename)
21596 add_name_attribute (die, filename);
21597 /* Don't add cwd for <built-in>. */
21598 if (!IS_ABSOLUTE_PATH (filename) && filename[0] != '<')
21599 add_comp_dir_attribute (die);
21602 add_AT_string (die, DW_AT_producer, producer_string ? producer_string : "");
21604 /* If our producer is LTO try to figure out a common language to use
21605 from the global list of translation units. */
21606 if (strcmp (language_string, "GNU GIMPLE") == 0)
21608 unsigned i;
21609 tree t;
21610 const char *common_lang = NULL;
21612 FOR_EACH_VEC_SAFE_ELT (all_translation_units, i, t)
21614 if (!TRANSLATION_UNIT_LANGUAGE (t))
21615 continue;
21616 if (!common_lang)
21617 common_lang = TRANSLATION_UNIT_LANGUAGE (t);
21618 else if (strcmp (common_lang, TRANSLATION_UNIT_LANGUAGE (t)) == 0)
21620 else if (strncmp (common_lang, "GNU C", 5) == 0
21621 && strncmp (TRANSLATION_UNIT_LANGUAGE (t), "GNU C", 5) == 0)
21622 /* Mixing C and C++ is ok, use C++ in that case. */
21623 common_lang = highest_c_language (common_lang,
21624 TRANSLATION_UNIT_LANGUAGE (t));
21625 else
21627 /* Fall back to C. */
21628 common_lang = NULL;
21629 break;
21633 if (common_lang)
21634 language_string = common_lang;
21637 language = DW_LANG_C;
21638 if (strncmp (language_string, "GNU C", 5) == 0
21639 && ISDIGIT (language_string[5]))
21641 language = DW_LANG_C89;
21642 if (dwarf_version >= 3 || !dwarf_strict)
21644 if (strcmp (language_string, "GNU C89") != 0)
21645 language = DW_LANG_C99;
21647 if (dwarf_version >= 5 /* || !dwarf_strict */)
21648 if (strcmp (language_string, "GNU C11") == 0)
21649 language = DW_LANG_C11;
21652 else if (strncmp (language_string, "GNU C++", 7) == 0)
21654 language = DW_LANG_C_plus_plus;
21655 if (dwarf_version >= 5 /* || !dwarf_strict */)
21657 if (strcmp (language_string, "GNU C++11") == 0)
21658 language = DW_LANG_C_plus_plus_11;
21659 else if (strcmp (language_string, "GNU C++14") == 0)
21660 language = DW_LANG_C_plus_plus_14;
21663 else if (strcmp (language_string, "GNU F77") == 0)
21664 language = DW_LANG_Fortran77;
21665 else if (strcmp (language_string, "GNU Pascal") == 0)
21666 language = DW_LANG_Pascal83;
21667 else if (dwarf_version >= 3 || !dwarf_strict)
21669 if (strcmp (language_string, "GNU Ada") == 0)
21670 language = DW_LANG_Ada95;
21671 else if (strncmp (language_string, "GNU Fortran", 11) == 0)
21673 language = DW_LANG_Fortran95;
21674 if (dwarf_version >= 5 /* || !dwarf_strict */)
21676 if (strcmp (language_string, "GNU Fortran2003") == 0)
21677 language = DW_LANG_Fortran03;
21678 else if (strcmp (language_string, "GNU Fortran2008") == 0)
21679 language = DW_LANG_Fortran08;
21682 else if (strcmp (language_string, "GNU Java") == 0)
21683 language = DW_LANG_Java;
21684 else if (strcmp (language_string, "GNU Objective-C") == 0)
21685 language = DW_LANG_ObjC;
21686 else if (strcmp (language_string, "GNU Objective-C++") == 0)
21687 language = DW_LANG_ObjC_plus_plus;
21688 else if (dwarf_version >= 5 || !dwarf_strict)
21690 if (strcmp (language_string, "GNU Go") == 0)
21691 language = DW_LANG_Go;
21694 /* Use a degraded Fortran setting in strict DWARF2 so is_fortran works. */
21695 else if (strncmp (language_string, "GNU Fortran", 11) == 0)
21696 language = DW_LANG_Fortran90;
21698 add_AT_unsigned (die, DW_AT_language, language);
21700 switch (language)
21702 case DW_LANG_Fortran77:
21703 case DW_LANG_Fortran90:
21704 case DW_LANG_Fortran95:
21705 case DW_LANG_Fortran03:
21706 case DW_LANG_Fortran08:
21707 /* Fortran has case insensitive identifiers and the front-end
21708 lowercases everything. */
21709 add_AT_unsigned (die, DW_AT_identifier_case, DW_ID_down_case);
21710 break;
21711 default:
21712 /* The default DW_ID_case_sensitive doesn't need to be specified. */
21713 break;
21715 return die;
21718 /* Generate the DIE for a base class. */
21720 static void
21721 gen_inheritance_die (tree binfo, tree access, tree type,
21722 dw_die_ref context_die)
21724 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
21725 struct vlr_context ctx = { type, NULL };
21727 add_type_attribute (die, BINFO_TYPE (binfo), TYPE_UNQUALIFIED, context_die);
21728 add_data_member_location_attribute (die, binfo, &ctx);
21730 if (BINFO_VIRTUAL_P (binfo))
21731 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
21733 /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
21734 children, otherwise the default is DW_ACCESS_public. In DWARF2
21735 the default has always been DW_ACCESS_private. */
21736 if (access == access_public_node)
21738 if (dwarf_version == 2
21739 || context_die->die_tag == DW_TAG_class_type)
21740 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
21742 else if (access == access_protected_node)
21743 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
21744 else if (dwarf_version > 2
21745 && context_die->die_tag != DW_TAG_class_type)
21746 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_private);
21749 /* Return whether DECL is a FIELD_DECL that represents the variant part of a
21750 structure. */
21751 static bool
21752 is_variant_part (tree decl)
21754 return (TREE_CODE (decl) == FIELD_DECL
21755 && TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE);
21758 /* Check that OPERAND is a reference to a field in STRUCT_TYPE. If it is,
21759 return the FIELD_DECL. Return NULL_TREE otherwise. */
21761 static tree
21762 analyze_discr_in_predicate (tree operand, tree struct_type)
21764 bool continue_stripping = true;
21765 while (continue_stripping)
21766 switch (TREE_CODE (operand))
21768 CASE_CONVERT:
21769 operand = TREE_OPERAND (operand, 0);
21770 break;
21771 default:
21772 continue_stripping = false;
21773 break;
21776 /* Match field access to members of struct_type only. */
21777 if (TREE_CODE (operand) == COMPONENT_REF
21778 && TREE_CODE (TREE_OPERAND (operand, 0)) == PLACEHOLDER_EXPR
21779 && TREE_TYPE (TREE_OPERAND (operand, 0)) == struct_type
21780 && TREE_CODE (TREE_OPERAND (operand, 1)) == FIELD_DECL)
21781 return TREE_OPERAND (operand, 1);
21782 else
21783 return NULL_TREE;
21786 /* Check that SRC is a constant integer that can be represented as a native
21787 integer constant (either signed or unsigned). If so, store it into DEST and
21788 return true. Return false otherwise. */
21790 static bool
21791 get_discr_value (tree src, dw_discr_value *dest)
21793 bool is_unsigned = TYPE_UNSIGNED (TREE_TYPE (src));
21795 if (TREE_CODE (src) != INTEGER_CST
21796 || !(is_unsigned ? tree_fits_uhwi_p (src) : tree_fits_shwi_p (src)))
21797 return false;
21799 dest->pos = is_unsigned;
21800 if (is_unsigned)
21801 dest->v.uval = tree_to_uhwi (src);
21802 else
21803 dest->v.sval = tree_to_shwi (src);
21805 return true;
21808 /* Try to extract synthetic properties out of VARIANT_PART_DECL, which is a
21809 FIELD_DECL in STRUCT_TYPE that represents a variant part. If unsuccessful,
21810 store NULL_TREE in DISCR_DECL. Otherwise:
21812 - store the discriminant field in STRUCT_TYPE that controls the variant
21813 part to *DISCR_DECL
21815 - put in *DISCR_LISTS_P an array where for each variant, the item
21816 represents the corresponding matching list of discriminant values.
21818 - put in *DISCR_LISTS_LENGTH the number of variants, which is the size of
21819 the above array.
21821 Note that when the array is allocated (i.e. when the analysis is
21822 successful), it is up to the caller to free the array. */
21824 static void
21825 analyze_variants_discr (tree variant_part_decl,
21826 tree struct_type,
21827 tree *discr_decl,
21828 dw_discr_list_ref **discr_lists_p,
21829 unsigned *discr_lists_length)
21831 tree variant_part_type = TREE_TYPE (variant_part_decl);
21832 tree variant;
21833 dw_discr_list_ref *discr_lists;
21834 unsigned i;
21836 /* Compute how many variants there are in this variant part. */
21837 *discr_lists_length = 0;
21838 for (variant = TYPE_FIELDS (variant_part_type);
21839 variant != NULL_TREE;
21840 variant = DECL_CHAIN (variant))
21841 ++*discr_lists_length;
21843 *discr_decl = NULL_TREE;
21844 *discr_lists_p
21845 = (dw_discr_list_ref *) xcalloc (*discr_lists_length,
21846 sizeof (**discr_lists_p));
21847 discr_lists = *discr_lists_p;
21849 /* And then analyze all variants to extract discriminant information for all
21850 of them. This analysis is conservative: as soon as we detect something we
21851 do not support, abort everything and pretend we found nothing. */
21852 for (variant = TYPE_FIELDS (variant_part_type), i = 0;
21853 variant != NULL_TREE;
21854 variant = DECL_CHAIN (variant), ++i)
21856 tree match_expr = DECL_QUALIFIER (variant);
21858 /* Now, try to analyze the predicate and deduce a discriminant for
21859 it. */
21860 if (match_expr == boolean_true_node)
21861 /* Typically happens for the default variant: it matches all cases that
21862 previous variants rejected. Don't output any matching value for
21863 this one. */
21864 continue;
21866 /* The following loop tries to iterate over each discriminant
21867 possibility: single values or ranges. */
21868 while (match_expr != NULL_TREE)
21870 tree next_round_match_expr;
21871 tree candidate_discr = NULL_TREE;
21872 dw_discr_list_ref new_node = NULL;
21874 /* Possibilities are matched one after the other by nested
21875 TRUTH_ORIF_EXPR expressions. Process the current possibility and
21876 continue with the rest at next iteration. */
21877 if (TREE_CODE (match_expr) == TRUTH_ORIF_EXPR)
21879 next_round_match_expr = TREE_OPERAND (match_expr, 0);
21880 match_expr = TREE_OPERAND (match_expr, 1);
21882 else
21883 next_round_match_expr = NULL_TREE;
21885 if (match_expr == boolean_false_node)
21886 /* This sub-expression matches nothing: just wait for the next
21887 one. */
21890 else if (TREE_CODE (match_expr) == EQ_EXPR)
21892 /* We are matching: <discr_field> == <integer_cst>
21893 This sub-expression matches a single value. */
21894 tree integer_cst = TREE_OPERAND (match_expr, 1);
21896 candidate_discr
21897 = analyze_discr_in_predicate (TREE_OPERAND (match_expr, 0),
21898 struct_type);
21900 new_node = ggc_cleared_alloc<dw_discr_list_node> ();
21901 if (!get_discr_value (integer_cst,
21902 &new_node->dw_discr_lower_bound))
21903 goto abort;
21904 new_node->dw_discr_range = false;
21907 else if (TREE_CODE (match_expr) == TRUTH_ANDIF_EXPR)
21909 /* We are matching:
21910 <discr_field> > <integer_cst>
21911 && <discr_field> < <integer_cst>.
21912 This sub-expression matches the range of values between the
21913 two matched integer constants. Note that comparisons can be
21914 inclusive or exclusive. */
21915 tree candidate_discr_1, candidate_discr_2;
21916 tree lower_cst, upper_cst;
21917 bool lower_cst_included, upper_cst_included;
21918 tree lower_op = TREE_OPERAND (match_expr, 0);
21919 tree upper_op = TREE_OPERAND (match_expr, 1);
21921 /* When the comparison is exclusive, the integer constant is not
21922 the discriminant range bound we are looking for: we will have
21923 to increment or decrement it. */
21924 if (TREE_CODE (lower_op) == GE_EXPR)
21925 lower_cst_included = true;
21926 else if (TREE_CODE (lower_op) == GT_EXPR)
21927 lower_cst_included = false;
21928 else
21929 goto abort;
21931 if (TREE_CODE (upper_op) == LE_EXPR)
21932 upper_cst_included = true;
21933 else if (TREE_CODE (upper_op) == LT_EXPR)
21934 upper_cst_included = false;
21935 else
21936 goto abort;
21938 /* Extract the discriminant from the first operand and check it
21939 is consistant with the same analysis in the second
21940 operand. */
21941 candidate_discr_1
21942 = analyze_discr_in_predicate (TREE_OPERAND (lower_op, 0),
21943 struct_type);
21944 candidate_discr_2
21945 = analyze_discr_in_predicate (TREE_OPERAND (upper_op, 0),
21946 struct_type);
21947 if (candidate_discr_1 == candidate_discr_2)
21948 candidate_discr = candidate_discr_1;
21949 else
21950 goto abort;
21952 /* Extract bounds from both. */
21953 new_node = ggc_cleared_alloc<dw_discr_list_node> ();
21954 lower_cst = TREE_OPERAND (lower_op, 1);
21955 upper_cst = TREE_OPERAND (upper_op, 1);
21957 if (!lower_cst_included)
21958 lower_cst
21959 = fold (build2 (PLUS_EXPR, TREE_TYPE (lower_cst),
21960 lower_cst,
21961 build_int_cst (TREE_TYPE (lower_cst), 1)));
21962 if (!upper_cst_included)
21963 upper_cst
21964 = fold (build2 (MINUS_EXPR, TREE_TYPE (upper_cst),
21965 upper_cst,
21966 build_int_cst (TREE_TYPE (upper_cst), 1)));
21968 if (!get_discr_value (lower_cst,
21969 &new_node->dw_discr_lower_bound)
21970 || !get_discr_value (upper_cst,
21971 &new_node->dw_discr_upper_bound))
21972 goto abort;
21974 new_node->dw_discr_range = true;
21977 else
21978 /* Unsupported sub-expression: we cannot determine the set of
21979 matching discriminant values. Abort everything. */
21980 goto abort;
21982 /* If the discriminant info is not consistant with what we saw so
21983 far, consider the analysis failed and abort everything. */
21984 if (candidate_discr == NULL_TREE
21985 || (*discr_decl != NULL_TREE && candidate_discr != *discr_decl))
21986 goto abort;
21987 else
21988 *discr_decl = candidate_discr;
21990 if (new_node != NULL)
21992 new_node->dw_discr_next = discr_lists[i];
21993 discr_lists[i] = new_node;
21995 match_expr = next_round_match_expr;
21999 /* If we reach this point, we could match everything we were interested
22000 in. */
22001 return;
22003 abort:
22004 /* Clean all data structure and return no result. */
22005 free (*discr_lists_p);
22006 *discr_lists_p = NULL;
22007 *discr_decl = NULL_TREE;
22010 /* Generate a DIE to represent VARIANT_PART_DECL, a variant part that is part
22011 of STRUCT_TYPE, a record type. This new DIE is emitted as the next child
22012 under CONTEXT_DIE.
22014 Variant parts are supposed to be implemented as a FIELD_DECL whose type is a
22015 QUAL_UNION_TYPE: this is the VARIANT_PART_DECL parameter. The members for
22016 this type, which are record types, represent the available variants and each
22017 has a DECL_QUALIFIER attribute. The discriminant and the discriminant
22018 values are inferred from these attributes.
22020 In trees, the offsets for the fields inside these sub-records are relative
22021 to the variant part itself, whereas the corresponding DIEs should have
22022 offset attributes that are relative to the embedding record base address.
22023 This is why the caller must provide a VARIANT_PART_OFFSET expression: it
22024 must be an expression that computes the offset of the variant part to
22025 describe in DWARF. */
22027 static void
22028 gen_variant_part (tree variant_part_decl, struct vlr_context *vlr_ctx,
22029 dw_die_ref context_die)
22031 const tree variant_part_type = TREE_TYPE (variant_part_decl);
22032 tree variant_part_offset = vlr_ctx->variant_part_offset;
22033 struct loc_descr_context ctx = {
22034 vlr_ctx->struct_type, /* context_type */
22035 NULL_TREE, /* base_decl */
22036 NULL /* dpi */
22039 /* The FIELD_DECL node in STRUCT_TYPE that acts as the discriminant, or
22040 NULL_TREE if there is no such field. */
22041 tree discr_decl = NULL_TREE;
22042 dw_discr_list_ref *discr_lists;
22043 unsigned discr_lists_length = 0;
22044 unsigned i;
22046 dw_die_ref dwarf_proc_die = NULL;
22047 dw_die_ref variant_part_die
22048 = new_die (DW_TAG_variant_part, context_die, variant_part_type);
22050 equate_decl_number_to_die (variant_part_decl, variant_part_die);
22052 analyze_variants_discr (variant_part_decl, vlr_ctx->struct_type,
22053 &discr_decl, &discr_lists, &discr_lists_length);
22055 if (discr_decl != NULL_TREE)
22057 dw_die_ref discr_die = lookup_decl_die (discr_decl);
22059 if (discr_die)
22060 add_AT_die_ref (variant_part_die, DW_AT_discr, discr_die);
22061 else
22062 /* We have no DIE for the discriminant, so just discard all
22063 discrimimant information in the output. */
22064 discr_decl = NULL_TREE;
22067 /* If the offset for this variant part is more complex than a constant,
22068 create a DWARF procedure for it so that we will not have to generate DWARF
22069 expressions for it for each member. */
22070 if (TREE_CODE (variant_part_offset) != INTEGER_CST
22071 && (dwarf_version >= 3 || !dwarf_strict))
22073 const tree dwarf_proc_fndecl
22074 = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
22075 build_function_type (TREE_TYPE (variant_part_offset),
22076 NULL_TREE));
22077 const tree dwarf_proc_call = build_call_expr (dwarf_proc_fndecl, 0);
22078 const dw_loc_descr_ref dwarf_proc_body
22079 = loc_descriptor_from_tree (variant_part_offset, 0, &ctx);
22081 dwarf_proc_die = new_dwarf_proc_die (dwarf_proc_body,
22082 dwarf_proc_fndecl, context_die);
22083 if (dwarf_proc_die != NULL)
22084 variant_part_offset = dwarf_proc_call;
22087 /* Output DIEs for all variants. */
22088 i = 0;
22089 for (tree variant = TYPE_FIELDS (variant_part_type);
22090 variant != NULL_TREE;
22091 variant = DECL_CHAIN (variant), ++i)
22093 tree variant_type = TREE_TYPE (variant);
22094 dw_die_ref variant_die;
22096 /* All variants (i.e. members of a variant part) are supposed to be
22097 encoded as structures. Sub-variant parts are QUAL_UNION_TYPE fields
22098 under these records. */
22099 gcc_assert (TREE_CODE (variant_type) == RECORD_TYPE);
22101 variant_die = new_die (DW_TAG_variant, variant_part_die, variant_type);
22102 equate_decl_number_to_die (variant, variant_die);
22104 /* Output discriminant values this variant matches, if any. */
22105 if (discr_decl == NULL || discr_lists[i] == NULL)
22106 /* In the case we have discriminant information at all, this is
22107 probably the default variant: as the standard says, don't
22108 output any discriminant value/list attribute. */
22110 else if (discr_lists[i]->dw_discr_next == NULL
22111 && !discr_lists[i]->dw_discr_range)
22112 /* If there is only one accepted value, don't bother outputting a
22113 list. */
22114 add_discr_value (variant_die, &discr_lists[i]->dw_discr_lower_bound);
22115 else
22116 add_discr_list (variant_die, discr_lists[i]);
22118 for (tree member = TYPE_FIELDS (variant_type);
22119 member != NULL_TREE;
22120 member = DECL_CHAIN (member))
22122 struct vlr_context vlr_sub_ctx = {
22123 vlr_ctx->struct_type, /* struct_type */
22124 NULL /* variant_part_offset */
22126 if (is_variant_part (member))
22128 /* All offsets for fields inside variant parts are relative to
22129 the top-level embedding RECORD_TYPE's base address. On the
22130 other hand, offsets in GCC's types are relative to the
22131 nested-most variant part. So we have to sum offsets each time
22132 we recurse. */
22134 vlr_sub_ctx.variant_part_offset
22135 = fold (build2 (PLUS_EXPR, TREE_TYPE (variant_part_offset),
22136 variant_part_offset, byte_position (member)));
22137 gen_variant_part (member, &vlr_sub_ctx, variant_die);
22139 else
22141 vlr_sub_ctx.variant_part_offset = variant_part_offset;
22142 gen_decl_die (member, NULL, &vlr_sub_ctx, variant_die);
22147 free (discr_lists);
22150 /* Generate a DIE for a class member. */
22152 static void
22153 gen_member_die (tree type, dw_die_ref context_die)
22155 tree member;
22156 tree binfo = TYPE_BINFO (type);
22157 dw_die_ref child;
22159 /* If this is not an incomplete type, output descriptions of each of its
22160 members. Note that as we output the DIEs necessary to represent the
22161 members of this record or union type, we will also be trying to output
22162 DIEs to represent the *types* of those members. However the `type'
22163 function (above) will specifically avoid generating type DIEs for member
22164 types *within* the list of member DIEs for this (containing) type except
22165 for those types (of members) which are explicitly marked as also being
22166 members of this (containing) type themselves. The g++ front- end can
22167 force any given type to be treated as a member of some other (containing)
22168 type by setting the TYPE_CONTEXT of the given (member) type to point to
22169 the TREE node representing the appropriate (containing) type. */
22171 /* First output info about the base classes. */
22172 if (binfo)
22174 vec<tree, va_gc> *accesses = BINFO_BASE_ACCESSES (binfo);
22175 int i;
22176 tree base;
22178 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
22179 gen_inheritance_die (base,
22180 (accesses ? (*accesses)[i] : access_public_node),
22181 type,
22182 context_die);
22185 /* Now output info about the data members and type members. */
22186 for (member = TYPE_FIELDS (type); member; member = DECL_CHAIN (member))
22188 struct vlr_context vlr_ctx = { type, NULL_TREE };
22190 /* If we thought we were generating minimal debug info for TYPE
22191 and then changed our minds, some of the member declarations
22192 may have already been defined. Don't define them again, but
22193 do put them in the right order. */
22195 child = lookup_decl_die (member);
22196 if (child)
22197 splice_child_die (context_die, child);
22199 /* Do not generate standard DWARF for variant parts if we are generating
22200 the corresponding GNAT encodings: DIEs generated for both would
22201 conflict in our mappings. */
22202 else if (is_variant_part (member)
22203 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
22205 vlr_ctx.variant_part_offset = byte_position (member);
22206 gen_variant_part (member, &vlr_ctx, context_die);
22208 else
22210 vlr_ctx.variant_part_offset = NULL_TREE;
22211 gen_decl_die (member, NULL, &vlr_ctx, context_die);
22215 /* We do not keep type methods in type variants. */
22216 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
22217 /* Now output info about the function members (if any). */
22218 if (TYPE_METHODS (type) != error_mark_node)
22219 for (member = TYPE_METHODS (type); member; member = DECL_CHAIN (member))
22221 /* Don't include clones in the member list. */
22222 if (DECL_ABSTRACT_ORIGIN (member))
22223 continue;
22224 /* Nor constructors for anonymous classes. */
22225 if (DECL_ARTIFICIAL (member)
22226 && dwarf2_name (member, 0) == NULL)
22227 continue;
22229 child = lookup_decl_die (member);
22230 if (child)
22231 splice_child_die (context_die, child);
22232 else
22233 gen_decl_die (member, NULL, NULL, context_die);
22237 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
22238 is set, we pretend that the type was never defined, so we only get the
22239 member DIEs needed by later specification DIEs. */
22241 static void
22242 gen_struct_or_union_type_die (tree type, dw_die_ref context_die,
22243 enum debug_info_usage usage)
22245 if (TREE_ASM_WRITTEN (type))
22247 /* Fill in the bound of variable-length fields in late dwarf if
22248 still incomplete. */
22249 if (!early_dwarf && variably_modified_type_p (type, NULL))
22250 for (tree member = TYPE_FIELDS (type);
22251 member;
22252 member = DECL_CHAIN (member))
22253 fill_variable_array_bounds (TREE_TYPE (member));
22254 return;
22257 dw_die_ref type_die = lookup_type_die (type);
22258 dw_die_ref scope_die = 0;
22259 int nested = 0;
22260 int complete = (TYPE_SIZE (type)
22261 && (! TYPE_STUB_DECL (type)
22262 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
22263 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
22264 complete = complete && should_emit_struct_debug (type, usage);
22266 if (type_die && ! complete)
22267 return;
22269 if (TYPE_CONTEXT (type) != NULL_TREE
22270 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
22271 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
22272 nested = 1;
22274 scope_die = scope_die_for (type, context_die);
22276 /* Generate child dies for template paramaters. */
22277 if (!type_die && debug_info_level > DINFO_LEVEL_TERSE)
22278 schedule_generic_params_dies_gen (type);
22280 if (! type_die || (nested && is_cu_die (scope_die)))
22281 /* First occurrence of type or toplevel definition of nested class. */
22283 dw_die_ref old_die = type_die;
22285 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
22286 ? record_type_tag (type) : DW_TAG_union_type,
22287 scope_die, type);
22288 equate_type_number_to_die (type, type_die);
22289 if (old_die)
22290 add_AT_specification (type_die, old_die);
22291 else
22292 add_name_attribute (type_die, type_tag (type));
22294 else
22295 remove_AT (type_die, DW_AT_declaration);
22297 /* If this type has been completed, then give it a byte_size attribute and
22298 then give a list of members. */
22299 if (complete && !ns_decl)
22301 /* Prevent infinite recursion in cases where the type of some member of
22302 this type is expressed in terms of this type itself. */
22303 TREE_ASM_WRITTEN (type) = 1;
22304 add_byte_size_attribute (type_die, type);
22305 if (TYPE_STUB_DECL (type) != NULL_TREE)
22307 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
22308 add_accessibility_attribute (type_die, TYPE_STUB_DECL (type));
22311 /* If the first reference to this type was as the return type of an
22312 inline function, then it may not have a parent. Fix this now. */
22313 if (type_die->die_parent == NULL)
22314 add_child_die (scope_die, type_die);
22316 push_decl_scope (type);
22317 gen_member_die (type, type_die);
22318 pop_decl_scope ();
22320 add_gnat_descriptive_type_attribute (type_die, type, context_die);
22321 if (TYPE_ARTIFICIAL (type))
22322 add_AT_flag (type_die, DW_AT_artificial, 1);
22324 /* GNU extension: Record what type our vtable lives in. */
22325 if (TYPE_VFIELD (type))
22327 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
22329 gen_type_die (vtype, context_die);
22330 add_AT_die_ref (type_die, DW_AT_containing_type,
22331 lookup_type_die (vtype));
22334 else
22336 add_AT_flag (type_die, DW_AT_declaration, 1);
22338 /* We don't need to do this for function-local types. */
22339 if (TYPE_STUB_DECL (type)
22340 && ! decl_function_context (TYPE_STUB_DECL (type)))
22341 vec_safe_push (incomplete_types, type);
22344 if (get_AT (type_die, DW_AT_name))
22345 add_pubtype (type, type_die);
22348 /* Generate a DIE for a subroutine _type_. */
22350 static void
22351 gen_subroutine_type_die (tree type, dw_die_ref context_die)
22353 tree return_type = TREE_TYPE (type);
22354 dw_die_ref subr_die
22355 = new_die (DW_TAG_subroutine_type,
22356 scope_die_for (type, context_die), type);
22358 equate_type_number_to_die (type, subr_die);
22359 add_prototyped_attribute (subr_die, type);
22360 add_type_attribute (subr_die, return_type, TYPE_UNQUALIFIED, context_die);
22361 gen_formal_types_die (type, subr_die);
22363 if (get_AT (subr_die, DW_AT_name))
22364 add_pubtype (type, subr_die);
22367 /* Generate a DIE for a type definition. */
22369 static void
22370 gen_typedef_die (tree decl, dw_die_ref context_die)
22372 dw_die_ref type_die;
22373 tree origin;
22375 if (TREE_ASM_WRITTEN (decl))
22377 if (DECL_ORIGINAL_TYPE (decl))
22378 fill_variable_array_bounds (DECL_ORIGINAL_TYPE (decl));
22379 return;
22382 TREE_ASM_WRITTEN (decl) = 1;
22383 type_die = new_die (DW_TAG_typedef, context_die, decl);
22384 origin = decl_ultimate_origin (decl);
22385 if (origin != NULL)
22386 add_abstract_origin_attribute (type_die, origin);
22387 else
22389 tree type;
22391 add_name_and_src_coords_attributes (type_die, decl);
22392 if (DECL_ORIGINAL_TYPE (decl))
22394 type = DECL_ORIGINAL_TYPE (decl);
22396 if (type == error_mark_node)
22397 return;
22399 gcc_assert (type != TREE_TYPE (decl));
22400 equate_type_number_to_die (TREE_TYPE (decl), type_die);
22402 else
22404 type = TREE_TYPE (decl);
22406 if (type == error_mark_node)
22407 return;
22409 if (is_naming_typedef_decl (TYPE_NAME (type)))
22411 /* Here, we are in the case of decl being a typedef naming
22412 an anonymous type, e.g:
22413 typedef struct {...} foo;
22414 In that case TREE_TYPE (decl) is not a typedef variant
22415 type and TYPE_NAME of the anonymous type is set to the
22416 TYPE_DECL of the typedef. This construct is emitted by
22417 the C++ FE.
22419 TYPE is the anonymous struct named by the typedef
22420 DECL. As we need the DW_AT_type attribute of the
22421 DW_TAG_typedef to point to the DIE of TYPE, let's
22422 generate that DIE right away. add_type_attribute
22423 called below will then pick (via lookup_type_die) that
22424 anonymous struct DIE. */
22425 if (!TREE_ASM_WRITTEN (type))
22426 gen_tagged_type_die (type, context_die, DINFO_USAGE_DIR_USE);
22428 /* This is a GNU Extension. We are adding a
22429 DW_AT_linkage_name attribute to the DIE of the
22430 anonymous struct TYPE. The value of that attribute
22431 is the name of the typedef decl naming the anonymous
22432 struct. This greatly eases the work of consumers of
22433 this debug info. */
22434 add_linkage_name_raw (lookup_type_die (type), decl);
22438 add_type_attribute (type_die, type, decl_quals (decl), context_die);
22440 if (is_naming_typedef_decl (decl))
22441 /* We want that all subsequent calls to lookup_type_die with
22442 TYPE in argument yield the DW_TAG_typedef we have just
22443 created. */
22444 equate_type_number_to_die (type, type_die);
22446 add_accessibility_attribute (type_die, decl);
22449 if (DECL_ABSTRACT_P (decl))
22450 equate_decl_number_to_die (decl, type_die);
22452 if (get_AT (type_die, DW_AT_name))
22453 add_pubtype (decl, type_die);
22456 /* Generate a DIE for a struct, class, enum or union type. */
22458 static void
22459 gen_tagged_type_die (tree type,
22460 dw_die_ref context_die,
22461 enum debug_info_usage usage)
22463 int need_pop;
22465 if (type == NULL_TREE
22466 || !is_tagged_type (type))
22467 return;
22469 if (TREE_ASM_WRITTEN (type))
22470 need_pop = 0;
22471 /* If this is a nested type whose containing class hasn't been written
22472 out yet, writing it out will cover this one, too. This does not apply
22473 to instantiations of member class templates; they need to be added to
22474 the containing class as they are generated. FIXME: This hurts the
22475 idea of combining type decls from multiple TUs, since we can't predict
22476 what set of template instantiations we'll get. */
22477 else if (TYPE_CONTEXT (type)
22478 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
22479 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
22481 gen_type_die_with_usage (TYPE_CONTEXT (type), context_die, usage);
22483 if (TREE_ASM_WRITTEN (type))
22484 return;
22486 /* If that failed, attach ourselves to the stub. */
22487 push_decl_scope (TYPE_CONTEXT (type));
22488 context_die = lookup_type_die (TYPE_CONTEXT (type));
22489 need_pop = 1;
22491 else if (TYPE_CONTEXT (type) != NULL_TREE
22492 && (TREE_CODE (TYPE_CONTEXT (type)) == FUNCTION_DECL))
22494 /* If this type is local to a function that hasn't been written
22495 out yet, use a NULL context for now; it will be fixed up in
22496 decls_for_scope. */
22497 context_die = lookup_decl_die (TYPE_CONTEXT (type));
22498 /* A declaration DIE doesn't count; nested types need to go in the
22499 specification. */
22500 if (context_die && is_declaration_die (context_die))
22501 context_die = NULL;
22502 need_pop = 0;
22504 else
22506 context_die = declare_in_namespace (type, context_die);
22507 need_pop = 0;
22510 if (TREE_CODE (type) == ENUMERAL_TYPE)
22512 /* This might have been written out by the call to
22513 declare_in_namespace. */
22514 if (!TREE_ASM_WRITTEN (type))
22515 gen_enumeration_type_die (type, context_die);
22517 else
22518 gen_struct_or_union_type_die (type, context_die, usage);
22520 if (need_pop)
22521 pop_decl_scope ();
22523 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
22524 it up if it is ever completed. gen_*_type_die will set it for us
22525 when appropriate. */
22528 /* Generate a type description DIE. */
22530 static void
22531 gen_type_die_with_usage (tree type, dw_die_ref context_die,
22532 enum debug_info_usage usage)
22534 struct array_descr_info info;
22536 if (type == NULL_TREE || type == error_mark_node)
22537 return;
22539 if (flag_checking && type)
22540 verify_type (type);
22542 if (TYPE_NAME (type) != NULL_TREE
22543 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
22544 && is_redundant_typedef (TYPE_NAME (type))
22545 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
22546 /* The DECL of this type is a typedef we don't want to emit debug
22547 info for but we want debug info for its underlying typedef.
22548 This can happen for e.g, the injected-class-name of a C++
22549 type. */
22550 type = DECL_ORIGINAL_TYPE (TYPE_NAME (type));
22552 /* If TYPE is a typedef type variant, let's generate debug info
22553 for the parent typedef which TYPE is a type of. */
22554 if (typedef_variant_p (type))
22556 if (TREE_ASM_WRITTEN (type))
22557 return;
22559 /* Prevent broken recursion; we can't hand off to the same type. */
22560 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
22562 /* Give typedefs the right scope. */
22563 context_die = scope_die_for (type, context_die);
22565 TREE_ASM_WRITTEN (type) = 1;
22567 gen_decl_die (TYPE_NAME (type), NULL, NULL, context_die);
22568 return;
22571 /* If type is an anonymous tagged type named by a typedef, let's
22572 generate debug info for the typedef. */
22573 if (is_naming_typedef_decl (TYPE_NAME (type)))
22575 /* Use the DIE of the containing namespace as the parent DIE of
22576 the type description DIE we want to generate. */
22577 if (DECL_CONTEXT (TYPE_NAME (type))
22578 && TREE_CODE (DECL_CONTEXT (TYPE_NAME (type))) == NAMESPACE_DECL)
22579 context_die = get_context_die (DECL_CONTEXT (TYPE_NAME (type)));
22581 gen_decl_die (TYPE_NAME (type), NULL, NULL, context_die);
22582 return;
22585 /* We are going to output a DIE to represent the unqualified version
22586 of this type (i.e. without any const or volatile qualifiers) so
22587 get the main variant (i.e. the unqualified version) of this type
22588 now. (Vectors and arrays are special because the debugging info is in the
22589 cloned type itself). */
22590 if (TREE_CODE (type) != VECTOR_TYPE
22591 && TREE_CODE (type) != ARRAY_TYPE)
22592 type = type_main_variant (type);
22594 /* If this is an array type with hidden descriptor, handle it first. */
22595 if (!TREE_ASM_WRITTEN (type)
22596 && lang_hooks.types.get_array_descr_info)
22598 memset (&info, 0, sizeof (info));
22599 if (lang_hooks.types.get_array_descr_info (type, &info))
22601 /* Fortran sometimes emits array types with no dimension. */
22602 gcc_assert (info.ndimensions >= 0
22603 && (info.ndimensions
22604 <= DWARF2OUT_ARRAY_DESCR_INFO_MAX_DIMEN));
22605 gen_descr_array_type_die (type, &info, context_die);
22606 TREE_ASM_WRITTEN (type) = 1;
22607 return;
22611 if (TREE_ASM_WRITTEN (type))
22613 /* Variable-length types may be incomplete even if
22614 TREE_ASM_WRITTEN. For such types, fall through to
22615 gen_array_type_die() and possibly fill in
22616 DW_AT_{upper,lower}_bound attributes. */
22617 if ((TREE_CODE (type) != ARRAY_TYPE
22618 && TREE_CODE (type) != RECORD_TYPE
22619 && TREE_CODE (type) != UNION_TYPE
22620 && TREE_CODE (type) != QUAL_UNION_TYPE)
22621 || !variably_modified_type_p (type, NULL))
22622 return;
22625 switch (TREE_CODE (type))
22627 case ERROR_MARK:
22628 break;
22630 case POINTER_TYPE:
22631 case REFERENCE_TYPE:
22632 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
22633 ensures that the gen_type_die recursion will terminate even if the
22634 type is recursive. Recursive types are possible in Ada. */
22635 /* ??? We could perhaps do this for all types before the switch
22636 statement. */
22637 TREE_ASM_WRITTEN (type) = 1;
22639 /* For these types, all that is required is that we output a DIE (or a
22640 set of DIEs) to represent the "basis" type. */
22641 gen_type_die_with_usage (TREE_TYPE (type), context_die,
22642 DINFO_USAGE_IND_USE);
22643 break;
22645 case OFFSET_TYPE:
22646 /* This code is used for C++ pointer-to-data-member types.
22647 Output a description of the relevant class type. */
22648 gen_type_die_with_usage (TYPE_OFFSET_BASETYPE (type), context_die,
22649 DINFO_USAGE_IND_USE);
22651 /* Output a description of the type of the object pointed to. */
22652 gen_type_die_with_usage (TREE_TYPE (type), context_die,
22653 DINFO_USAGE_IND_USE);
22655 /* Now output a DIE to represent this pointer-to-data-member type
22656 itself. */
22657 gen_ptr_to_mbr_type_die (type, context_die);
22658 break;
22660 case FUNCTION_TYPE:
22661 /* Force out return type (in case it wasn't forced out already). */
22662 gen_type_die_with_usage (TREE_TYPE (type), context_die,
22663 DINFO_USAGE_DIR_USE);
22664 gen_subroutine_type_die (type, context_die);
22665 break;
22667 case METHOD_TYPE:
22668 /* Force out return type (in case it wasn't forced out already). */
22669 gen_type_die_with_usage (TREE_TYPE (type), context_die,
22670 DINFO_USAGE_DIR_USE);
22671 gen_subroutine_type_die (type, context_die);
22672 break;
22674 case ARRAY_TYPE:
22675 case VECTOR_TYPE:
22676 gen_array_type_die (type, context_die);
22677 break;
22679 case ENUMERAL_TYPE:
22680 case RECORD_TYPE:
22681 case UNION_TYPE:
22682 case QUAL_UNION_TYPE:
22683 gen_tagged_type_die (type, context_die, usage);
22684 return;
22686 case VOID_TYPE:
22687 case INTEGER_TYPE:
22688 case REAL_TYPE:
22689 case FIXED_POINT_TYPE:
22690 case COMPLEX_TYPE:
22691 case BOOLEAN_TYPE:
22692 case POINTER_BOUNDS_TYPE:
22693 /* No DIEs needed for fundamental types. */
22694 break;
22696 case NULLPTR_TYPE:
22697 case LANG_TYPE:
22698 /* Just use DW_TAG_unspecified_type. */
22700 dw_die_ref type_die = lookup_type_die (type);
22701 if (type_die == NULL)
22703 tree name = TYPE_IDENTIFIER (type);
22704 type_die = new_die (DW_TAG_unspecified_type, comp_unit_die (),
22705 type);
22706 add_name_attribute (type_die, IDENTIFIER_POINTER (name));
22707 equate_type_number_to_die (type, type_die);
22710 break;
22712 default:
22713 if (is_cxx_auto (type))
22715 tree name = TYPE_IDENTIFIER (type);
22716 dw_die_ref *die = (name == get_identifier ("auto")
22717 ? &auto_die : &decltype_auto_die);
22718 if (!*die)
22720 *die = new_die (DW_TAG_unspecified_type,
22721 comp_unit_die (), NULL_TREE);
22722 add_name_attribute (*die, IDENTIFIER_POINTER (name));
22724 equate_type_number_to_die (type, *die);
22725 break;
22727 gcc_unreachable ();
22730 TREE_ASM_WRITTEN (type) = 1;
22733 static void
22734 gen_type_die (tree type, dw_die_ref context_die)
22736 if (type != error_mark_node)
22738 gen_type_die_with_usage (type, context_die, DINFO_USAGE_DIR_USE);
22739 if (flag_checking)
22741 dw_die_ref die = lookup_type_die (type);
22742 if (die)
22743 check_die (die);
22748 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
22749 things which are local to the given block. */
22751 static void
22752 gen_block_die (tree stmt, dw_die_ref context_die)
22754 int must_output_die = 0;
22755 bool inlined_func;
22757 /* Ignore blocks that are NULL. */
22758 if (stmt == NULL_TREE)
22759 return;
22761 inlined_func = inlined_function_outer_scope_p (stmt);
22763 /* If the block is one fragment of a non-contiguous block, do not
22764 process the variables, since they will have been done by the
22765 origin block. Do process subblocks. */
22766 if (BLOCK_FRAGMENT_ORIGIN (stmt))
22768 tree sub;
22770 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
22771 gen_block_die (sub, context_die);
22773 return;
22776 /* Determine if we need to output any Dwarf DIEs at all to represent this
22777 block. */
22778 if (inlined_func)
22779 /* The outer scopes for inlinings *must* always be represented. We
22780 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
22781 must_output_die = 1;
22782 else
22784 /* Determine if this block directly contains any "significant"
22785 local declarations which we will need to output DIEs for. */
22786 if (debug_info_level > DINFO_LEVEL_TERSE)
22787 /* We are not in terse mode so *any* local declaration counts
22788 as being a "significant" one. */
22789 must_output_die = ((BLOCK_VARS (stmt) != NULL
22790 || BLOCK_NUM_NONLOCALIZED_VARS (stmt))
22791 && (TREE_USED (stmt)
22792 || TREE_ASM_WRITTEN (stmt)
22793 || BLOCK_ABSTRACT (stmt)));
22794 else if ((TREE_USED (stmt)
22795 || TREE_ASM_WRITTEN (stmt)
22796 || BLOCK_ABSTRACT (stmt))
22797 && !dwarf2out_ignore_block (stmt))
22798 must_output_die = 1;
22801 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
22802 DIE for any block which contains no significant local declarations at
22803 all. Rather, in such cases we just call `decls_for_scope' so that any
22804 needed Dwarf info for any sub-blocks will get properly generated. Note
22805 that in terse mode, our definition of what constitutes a "significant"
22806 local declaration gets restricted to include only inlined function
22807 instances and local (nested) function definitions. */
22808 if (must_output_die)
22810 if (inlined_func)
22812 /* If STMT block is abstract, that means we have been called
22813 indirectly from dwarf2out_abstract_function.
22814 That function rightfully marks the descendent blocks (of
22815 the abstract function it is dealing with) as being abstract,
22816 precisely to prevent us from emitting any
22817 DW_TAG_inlined_subroutine DIE as a descendent
22818 of an abstract function instance. So in that case, we should
22819 not call gen_inlined_subroutine_die.
22821 Later though, when cgraph asks dwarf2out to emit info
22822 for the concrete instance of the function decl into which
22823 the concrete instance of STMT got inlined, the later will lead
22824 to the generation of a DW_TAG_inlined_subroutine DIE. */
22825 if (! BLOCK_ABSTRACT (stmt))
22826 gen_inlined_subroutine_die (stmt, context_die);
22828 else
22829 gen_lexical_block_die (stmt, context_die);
22831 else
22832 decls_for_scope (stmt, context_die);
22835 /* Process variable DECL (or variable with origin ORIGIN) within
22836 block STMT and add it to CONTEXT_DIE. */
22837 static void
22838 process_scope_var (tree stmt, tree decl, tree origin, dw_die_ref context_die)
22840 dw_die_ref die;
22841 tree decl_or_origin = decl ? decl : origin;
22843 if (TREE_CODE (decl_or_origin) == FUNCTION_DECL)
22844 die = lookup_decl_die (decl_or_origin);
22845 else if (TREE_CODE (decl_or_origin) == TYPE_DECL
22846 && TYPE_DECL_IS_STUB (decl_or_origin))
22847 die = lookup_type_die (TREE_TYPE (decl_or_origin));
22848 else
22849 die = NULL;
22851 if (die != NULL && die->die_parent == NULL)
22852 add_child_die (context_die, die);
22853 else if (TREE_CODE (decl_or_origin) == IMPORTED_DECL)
22855 if (early_dwarf)
22856 dwarf2out_imported_module_or_decl_1 (decl_or_origin, DECL_NAME (decl_or_origin),
22857 stmt, context_die);
22859 else
22860 gen_decl_die (decl, origin, NULL, context_die);
22863 /* Generate all of the decls declared within a given scope and (recursively)
22864 all of its sub-blocks. */
22866 static void
22867 decls_for_scope (tree stmt, dw_die_ref context_die)
22869 tree decl;
22870 unsigned int i;
22871 tree subblocks;
22873 /* Ignore NULL blocks. */
22874 if (stmt == NULL_TREE)
22875 return;
22877 /* Output the DIEs to represent all of the data objects and typedefs
22878 declared directly within this block but not within any nested
22879 sub-blocks. Also, nested function and tag DIEs have been
22880 generated with a parent of NULL; fix that up now. We don't
22881 have to do this if we're at -g1. */
22882 if (debug_info_level > DINFO_LEVEL_TERSE)
22884 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = DECL_CHAIN (decl))
22885 process_scope_var (stmt, decl, NULL_TREE, context_die);
22886 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (stmt); i++)
22887 process_scope_var (stmt, NULL, BLOCK_NONLOCALIZED_VAR (stmt, i),
22888 context_die);
22891 /* Even if we're at -g1, we need to process the subblocks in order to get
22892 inlined call information. */
22894 /* Output the DIEs to represent all sub-blocks (and the items declared
22895 therein) of this block. */
22896 for (subblocks = BLOCK_SUBBLOCKS (stmt);
22897 subblocks != NULL;
22898 subblocks = BLOCK_CHAIN (subblocks))
22899 gen_block_die (subblocks, context_die);
22902 /* Is this a typedef we can avoid emitting? */
22904 bool
22905 is_redundant_typedef (const_tree decl)
22907 if (TYPE_DECL_IS_STUB (decl))
22908 return true;
22910 if (DECL_ARTIFICIAL (decl)
22911 && DECL_CONTEXT (decl)
22912 && is_tagged_type (DECL_CONTEXT (decl))
22913 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
22914 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
22915 /* Also ignore the artificial member typedef for the class name. */
22916 return true;
22918 return false;
22921 /* Return TRUE if TYPE is a typedef that names a type for linkage
22922 purposes. This kind of typedefs is produced by the C++ FE for
22923 constructs like:
22925 typedef struct {...} foo;
22927 In that case, there is no typedef variant type produced for foo.
22928 Rather, the TREE_TYPE of the TYPE_DECL of foo is the anonymous
22929 struct type. */
22931 static bool
22932 is_naming_typedef_decl (const_tree decl)
22934 if (decl == NULL_TREE
22935 || TREE_CODE (decl) != TYPE_DECL
22936 || !is_tagged_type (TREE_TYPE (decl))
22937 || DECL_IS_BUILTIN (decl)
22938 || is_redundant_typedef (decl)
22939 /* It looks like Ada produces TYPE_DECLs that are very similar
22940 to C++ naming typedefs but that have different
22941 semantics. Let's be specific to c++ for now. */
22942 || !is_cxx ())
22943 return FALSE;
22945 return (DECL_ORIGINAL_TYPE (decl) == NULL_TREE
22946 && TYPE_NAME (TREE_TYPE (decl)) == decl
22947 && (TYPE_STUB_DECL (TREE_TYPE (decl))
22948 != TYPE_NAME (TREE_TYPE (decl))));
22951 /* Looks up the DIE for a context. */
22953 static inline dw_die_ref
22954 lookup_context_die (tree context)
22956 if (context)
22958 /* Find die that represents this context. */
22959 if (TYPE_P (context))
22961 context = TYPE_MAIN_VARIANT (context);
22962 dw_die_ref ctx = lookup_type_die (context);
22963 if (!ctx)
22964 return NULL;
22965 return strip_naming_typedef (context, ctx);
22967 else
22968 return lookup_decl_die (context);
22970 return comp_unit_die ();
22973 /* Returns the DIE for a context. */
22975 static inline dw_die_ref
22976 get_context_die (tree context)
22978 if (context)
22980 /* Find die that represents this context. */
22981 if (TYPE_P (context))
22983 context = TYPE_MAIN_VARIANT (context);
22984 return strip_naming_typedef (context, force_type_die (context));
22986 else
22987 return force_decl_die (context);
22989 return comp_unit_die ();
22992 /* Returns the DIE for decl. A DIE will always be returned. */
22994 static dw_die_ref
22995 force_decl_die (tree decl)
22997 dw_die_ref decl_die;
22998 unsigned saved_external_flag;
22999 tree save_fn = NULL_TREE;
23000 decl_die = lookup_decl_die (decl);
23001 if (!decl_die)
23003 dw_die_ref context_die = get_context_die (DECL_CONTEXT (decl));
23005 decl_die = lookup_decl_die (decl);
23006 if (decl_die)
23007 return decl_die;
23009 switch (TREE_CODE (decl))
23011 case FUNCTION_DECL:
23012 /* Clear current_function_decl, so that gen_subprogram_die thinks
23013 that this is a declaration. At this point, we just want to force
23014 declaration die. */
23015 save_fn = current_function_decl;
23016 current_function_decl = NULL_TREE;
23017 gen_subprogram_die (decl, context_die);
23018 current_function_decl = save_fn;
23019 break;
23021 case VAR_DECL:
23022 /* Set external flag to force declaration die. Restore it after
23023 gen_decl_die() call. */
23024 saved_external_flag = DECL_EXTERNAL (decl);
23025 DECL_EXTERNAL (decl) = 1;
23026 gen_decl_die (decl, NULL, NULL, context_die);
23027 DECL_EXTERNAL (decl) = saved_external_flag;
23028 break;
23030 case NAMESPACE_DECL:
23031 if (dwarf_version >= 3 || !dwarf_strict)
23032 dwarf2out_decl (decl);
23033 else
23034 /* DWARF2 has neither DW_TAG_module, nor DW_TAG_namespace. */
23035 decl_die = comp_unit_die ();
23036 break;
23038 case TRANSLATION_UNIT_DECL:
23039 decl_die = comp_unit_die ();
23040 break;
23042 default:
23043 gcc_unreachable ();
23046 /* We should be able to find the DIE now. */
23047 if (!decl_die)
23048 decl_die = lookup_decl_die (decl);
23049 gcc_assert (decl_die);
23052 return decl_die;
23055 /* Returns the DIE for TYPE, that must not be a base type. A DIE is
23056 always returned. */
23058 static dw_die_ref
23059 force_type_die (tree type)
23061 dw_die_ref type_die;
23063 type_die = lookup_type_die (type);
23064 if (!type_die)
23066 dw_die_ref context_die = get_context_die (TYPE_CONTEXT (type));
23068 type_die = modified_type_die (type, TYPE_QUALS_NO_ADDR_SPACE (type),
23069 context_die);
23070 gcc_assert (type_die);
23072 return type_die;
23075 /* Force out any required namespaces to be able to output DECL,
23076 and return the new context_die for it, if it's changed. */
23078 static dw_die_ref
23079 setup_namespace_context (tree thing, dw_die_ref context_die)
23081 tree context = (DECL_P (thing)
23082 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
23083 if (context && TREE_CODE (context) == NAMESPACE_DECL)
23084 /* Force out the namespace. */
23085 context_die = force_decl_die (context);
23087 return context_die;
23090 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
23091 type) within its namespace, if appropriate.
23093 For compatibility with older debuggers, namespace DIEs only contain
23094 declarations; all definitions are emitted at CU scope, with
23095 DW_AT_specification pointing to the declaration (like with class
23096 members). */
23098 static dw_die_ref
23099 declare_in_namespace (tree thing, dw_die_ref context_die)
23101 dw_die_ref ns_context;
23103 if (debug_info_level <= DINFO_LEVEL_TERSE)
23104 return context_die;
23106 /* External declarations in the local scope only need to be emitted
23107 once, not once in the namespace and once in the scope.
23109 This avoids declaring the `extern' below in the
23110 namespace DIE as well as in the innermost scope:
23112 namespace S
23114 int i=5;
23115 int foo()
23117 int i=8;
23118 extern int i;
23119 return i;
23123 if (DECL_P (thing) && DECL_EXTERNAL (thing) && local_scope_p (context_die))
23124 return context_die;
23126 /* If this decl is from an inlined function, then don't try to emit it in its
23127 namespace, as we will get confused. It would have already been emitted
23128 when the abstract instance of the inline function was emitted anyways. */
23129 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
23130 return context_die;
23132 ns_context = setup_namespace_context (thing, context_die);
23134 if (ns_context != context_die)
23136 if (is_fortran ())
23137 return ns_context;
23138 if (DECL_P (thing))
23139 gen_decl_die (thing, NULL, NULL, ns_context);
23140 else
23141 gen_type_die (thing, ns_context);
23143 return context_die;
23146 /* Generate a DIE for a namespace or namespace alias. */
23148 static void
23149 gen_namespace_die (tree decl, dw_die_ref context_die)
23151 dw_die_ref namespace_die;
23153 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
23154 they are an alias of. */
23155 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
23157 /* Output a real namespace or module. */
23158 context_die = setup_namespace_context (decl, comp_unit_die ());
23159 namespace_die = new_die (is_fortran ()
23160 ? DW_TAG_module : DW_TAG_namespace,
23161 context_die, decl);
23162 /* For Fortran modules defined in different CU don't add src coords. */
23163 if (namespace_die->die_tag == DW_TAG_module && DECL_EXTERNAL (decl))
23165 const char *name = dwarf2_name (decl, 0);
23166 if (name)
23167 add_name_attribute (namespace_die, name);
23169 else
23170 add_name_and_src_coords_attributes (namespace_die, decl);
23171 if (DECL_EXTERNAL (decl))
23172 add_AT_flag (namespace_die, DW_AT_declaration, 1);
23173 equate_decl_number_to_die (decl, namespace_die);
23175 else
23177 /* Output a namespace alias. */
23179 /* Force out the namespace we are an alias of, if necessary. */
23180 dw_die_ref origin_die
23181 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
23183 if (DECL_FILE_SCOPE_P (decl)
23184 || TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
23185 context_die = setup_namespace_context (decl, comp_unit_die ());
23186 /* Now create the namespace alias DIE. */
23187 namespace_die = new_die (DW_TAG_imported_declaration, context_die, decl);
23188 add_name_and_src_coords_attributes (namespace_die, decl);
23189 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
23190 equate_decl_number_to_die (decl, namespace_die);
23192 /* Bypass dwarf2_name's check for DECL_NAMELESS. */
23193 if (want_pubnames ())
23194 add_pubname_string (lang_hooks.dwarf_name (decl, 1), namespace_die);
23197 /* Generate Dwarf debug information for a decl described by DECL.
23198 The return value is currently only meaningful for PARM_DECLs,
23199 for all other decls it returns NULL.
23201 If DECL is a FIELD_DECL, CTX is required: see the comment for VLR_CONTEXT.
23202 It can be NULL otherwise. */
23204 static dw_die_ref
23205 gen_decl_die (tree decl, tree origin, struct vlr_context *ctx,
23206 dw_die_ref context_die)
23208 tree decl_or_origin = decl ? decl : origin;
23209 tree class_origin = NULL, ultimate_origin;
23211 if (DECL_P (decl_or_origin) && DECL_IGNORED_P (decl_or_origin))
23212 return NULL;
23214 /* Ignore pointer bounds decls. */
23215 if (DECL_P (decl_or_origin)
23216 && TREE_TYPE (decl_or_origin)
23217 && POINTER_BOUNDS_P (decl_or_origin))
23218 return NULL;
23220 switch (TREE_CODE (decl_or_origin))
23222 case ERROR_MARK:
23223 break;
23225 case CONST_DECL:
23226 if (!is_fortran () && !is_ada ())
23228 /* The individual enumerators of an enum type get output when we output
23229 the Dwarf representation of the relevant enum type itself. */
23230 break;
23233 /* Emit its type. */
23234 gen_type_die (TREE_TYPE (decl), context_die);
23236 /* And its containing namespace. */
23237 context_die = declare_in_namespace (decl, context_die);
23239 gen_const_die (decl, context_die);
23240 break;
23242 case FUNCTION_DECL:
23243 /* Don't output any DIEs to represent mere function declarations,
23244 unless they are class members or explicit block externs. */
23245 if (DECL_INITIAL (decl_or_origin) == NULL_TREE
23246 && DECL_FILE_SCOPE_P (decl_or_origin)
23247 && (current_function_decl == NULL_TREE
23248 || DECL_ARTIFICIAL (decl_or_origin)))
23249 break;
23251 #if 0
23252 /* FIXME */
23253 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
23254 on local redeclarations of global functions. That seems broken. */
23255 if (current_function_decl != decl)
23256 /* This is only a declaration. */;
23257 #endif
23259 /* If we're emitting a clone, emit info for the abstract instance. */
23260 if (origin || DECL_ORIGIN (decl) != decl)
23261 dwarf2out_abstract_function (origin
23262 ? DECL_ORIGIN (origin)
23263 : DECL_ABSTRACT_ORIGIN (decl));
23265 /* If we're emitting an out-of-line copy of an inline function,
23266 emit info for the abstract instance and set up to refer to it. */
23267 else if (cgraph_function_possibly_inlined_p (decl)
23268 && ! DECL_ABSTRACT_P (decl)
23269 && ! class_or_namespace_scope_p (context_die)
23270 /* dwarf2out_abstract_function won't emit a die if this is just
23271 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
23272 that case, because that works only if we have a die. */
23273 && DECL_INITIAL (decl) != NULL_TREE)
23275 dwarf2out_abstract_function (decl);
23276 set_decl_origin_self (decl);
23279 /* Otherwise we're emitting the primary DIE for this decl. */
23280 else if (debug_info_level > DINFO_LEVEL_TERSE)
23282 /* Before we describe the FUNCTION_DECL itself, make sure that we
23283 have its containing type. */
23284 if (!origin)
23285 origin = decl_class_context (decl);
23286 if (origin != NULL_TREE)
23287 gen_type_die (origin, context_die);
23289 /* And its return type. */
23290 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
23292 /* And its virtual context. */
23293 if (DECL_VINDEX (decl) != NULL_TREE)
23294 gen_type_die (DECL_CONTEXT (decl), context_die);
23296 /* Make sure we have a member DIE for decl. */
23297 if (origin != NULL_TREE)
23298 gen_type_die_for_member (origin, decl, context_die);
23300 /* And its containing namespace. */
23301 context_die = declare_in_namespace (decl, context_die);
23304 /* Now output a DIE to represent the function itself. */
23305 if (decl)
23306 gen_subprogram_die (decl, context_die);
23307 break;
23309 case TYPE_DECL:
23310 /* If we are in terse mode, don't generate any DIEs to represent any
23311 actual typedefs. */
23312 if (debug_info_level <= DINFO_LEVEL_TERSE)
23313 break;
23315 /* In the special case of a TYPE_DECL node representing the declaration
23316 of some type tag, if the given TYPE_DECL is marked as having been
23317 instantiated from some other (original) TYPE_DECL node (e.g. one which
23318 was generated within the original definition of an inline function) we
23319 used to generate a special (abbreviated) DW_TAG_structure_type,
23320 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. But nothing
23321 should be actually referencing those DIEs, as variable DIEs with that
23322 type would be emitted already in the abstract origin, so it was always
23323 removed during unused type prunning. Don't add anything in this
23324 case. */
23325 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
23326 break;
23328 if (is_redundant_typedef (decl))
23329 gen_type_die (TREE_TYPE (decl), context_die);
23330 else
23331 /* Output a DIE to represent the typedef itself. */
23332 gen_typedef_die (decl, context_die);
23333 break;
23335 case LABEL_DECL:
23336 if (debug_info_level >= DINFO_LEVEL_NORMAL)
23337 gen_label_die (decl, context_die);
23338 break;
23340 case VAR_DECL:
23341 case RESULT_DECL:
23342 /* If we are in terse mode, don't generate any DIEs to represent any
23343 variable declarations or definitions. */
23344 if (debug_info_level <= DINFO_LEVEL_TERSE)
23345 break;
23347 /* Output any DIEs that are needed to specify the type of this data
23348 object. */
23349 if (decl_by_reference_p (decl_or_origin))
23350 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
23351 else
23352 gen_type_die (TREE_TYPE (decl_or_origin), context_die);
23354 /* And its containing type. */
23355 class_origin = decl_class_context (decl_or_origin);
23356 if (class_origin != NULL_TREE)
23357 gen_type_die_for_member (class_origin, decl_or_origin, context_die);
23359 /* And its containing namespace. */
23360 context_die = declare_in_namespace (decl_or_origin, context_die);
23362 /* Now output the DIE to represent the data object itself. This gets
23363 complicated because of the possibility that the VAR_DECL really
23364 represents an inlined instance of a formal parameter for an inline
23365 function. */
23366 ultimate_origin = decl_ultimate_origin (decl_or_origin);
23367 if (ultimate_origin != NULL_TREE
23368 && TREE_CODE (ultimate_origin) == PARM_DECL)
23369 gen_formal_parameter_die (decl, origin,
23370 true /* Emit name attribute. */,
23371 context_die);
23372 else
23373 gen_variable_die (decl, origin, context_die);
23374 break;
23376 case FIELD_DECL:
23377 gcc_assert (ctx != NULL && ctx->struct_type != NULL);
23378 /* Ignore the nameless fields that are used to skip bits but handle C++
23379 anonymous unions and structs. */
23380 if (DECL_NAME (decl) != NULL_TREE
23381 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
23382 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
23384 gen_type_die (member_declared_type (decl), context_die);
23385 gen_field_die (decl, ctx, context_die);
23387 break;
23389 case PARM_DECL:
23390 if (DECL_BY_REFERENCE (decl_or_origin))
23391 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
23392 else
23393 gen_type_die (TREE_TYPE (decl_or_origin), context_die);
23394 return gen_formal_parameter_die (decl, origin,
23395 true /* Emit name attribute. */,
23396 context_die);
23398 case NAMESPACE_DECL:
23399 if (dwarf_version >= 3 || !dwarf_strict)
23400 gen_namespace_die (decl, context_die);
23401 break;
23403 case IMPORTED_DECL:
23404 dwarf2out_imported_module_or_decl_1 (decl, DECL_NAME (decl),
23405 DECL_CONTEXT (decl), context_die);
23406 break;
23408 case NAMELIST_DECL:
23409 gen_namelist_decl (DECL_NAME (decl), context_die,
23410 NAMELIST_DECL_ASSOCIATED_DECL (decl));
23411 break;
23413 default:
23414 /* Probably some frontend-internal decl. Assume we don't care. */
23415 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
23416 break;
23419 return NULL;
23422 /* Output initial debug information for global DECL. Called at the
23423 end of the parsing process.
23425 This is the initial debug generation process. As such, the DIEs
23426 generated may be incomplete. A later debug generation pass
23427 (dwarf2out_late_global_decl) will augment the information generated
23428 in this pass (e.g., with complete location info). */
23430 static void
23431 dwarf2out_early_global_decl (tree decl)
23433 set_early_dwarf s;
23435 /* gen_decl_die() will set DECL_ABSTRACT because
23436 cgraph_function_possibly_inlined_p() returns true. This is in
23437 turn will cause DW_AT_inline attributes to be set.
23439 This happens because at early dwarf generation, there is no
23440 cgraph information, causing cgraph_function_possibly_inlined_p()
23441 to return true. Trick cgraph_function_possibly_inlined_p()
23442 while we generate dwarf early. */
23443 bool save = symtab->global_info_ready;
23444 symtab->global_info_ready = true;
23446 /* We don't handle TYPE_DECLs. If required, they'll be reached via
23447 other DECLs and they can point to template types or other things
23448 that dwarf2out can't handle when done via dwarf2out_decl. */
23449 if (TREE_CODE (decl) != TYPE_DECL
23450 && TREE_CODE (decl) != PARM_DECL)
23452 tree save_fndecl = current_function_decl;
23453 if (TREE_CODE (decl) == FUNCTION_DECL)
23455 /* No cfun means the symbol has no body, so there's nothing
23456 to emit. */
23457 if (!DECL_STRUCT_FUNCTION (decl))
23458 goto early_decl_exit;
23460 current_function_decl = decl;
23462 dwarf2out_decl (decl);
23463 if (TREE_CODE (decl) == FUNCTION_DECL)
23464 current_function_decl = save_fndecl;
23466 early_decl_exit:
23467 symtab->global_info_ready = save;
23470 /* Output debug information for global decl DECL. Called from
23471 toplev.c after compilation proper has finished. */
23473 static void
23474 dwarf2out_late_global_decl (tree decl)
23476 /* We have to generate early debug late for LTO. */
23477 if (in_lto_p)
23478 dwarf2out_early_global_decl (decl);
23480 /* Fill-in any location information we were unable to determine
23481 on the first pass. */
23482 if (TREE_CODE (decl) == VAR_DECL
23483 && !POINTER_BOUNDS_P (decl))
23485 dw_die_ref die = lookup_decl_die (decl);
23486 if (die)
23487 add_location_or_const_value_attribute (die, decl, false);
23491 /* Output debug information for type decl DECL. Called from toplev.c
23492 and from language front ends (to record built-in types). */
23493 static void
23494 dwarf2out_type_decl (tree decl, int local)
23496 if (!local)
23498 set_early_dwarf s;
23499 dwarf2out_decl (decl);
23503 /* Output debug information for imported module or decl DECL.
23504 NAME is non-NULL name in the lexical block if the decl has been renamed.
23505 LEXICAL_BLOCK is the lexical block (which TREE_CODE is a BLOCK)
23506 that DECL belongs to.
23507 LEXICAL_BLOCK_DIE is the DIE of LEXICAL_BLOCK. */
23508 static void
23509 dwarf2out_imported_module_or_decl_1 (tree decl,
23510 tree name,
23511 tree lexical_block,
23512 dw_die_ref lexical_block_die)
23514 expanded_location xloc;
23515 dw_die_ref imported_die = NULL;
23516 dw_die_ref at_import_die;
23518 if (TREE_CODE (decl) == IMPORTED_DECL)
23520 xloc = expand_location (DECL_SOURCE_LOCATION (decl));
23521 decl = IMPORTED_DECL_ASSOCIATED_DECL (decl);
23522 gcc_assert (decl);
23524 else
23525 xloc = expand_location (input_location);
23527 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
23529 at_import_die = force_type_die (TREE_TYPE (decl));
23530 /* For namespace N { typedef void T; } using N::T; base_type_die
23531 returns NULL, but DW_TAG_imported_declaration requires
23532 the DW_AT_import tag. Force creation of DW_TAG_typedef. */
23533 if (!at_import_die)
23535 gcc_assert (TREE_CODE (decl) == TYPE_DECL);
23536 gen_typedef_die (decl, get_context_die (DECL_CONTEXT (decl)));
23537 at_import_die = lookup_type_die (TREE_TYPE (decl));
23538 gcc_assert (at_import_die);
23541 else
23543 at_import_die = lookup_decl_die (decl);
23544 if (!at_import_die)
23546 /* If we're trying to avoid duplicate debug info, we may not have
23547 emitted the member decl for this field. Emit it now. */
23548 if (TREE_CODE (decl) == FIELD_DECL)
23550 tree type = DECL_CONTEXT (decl);
23552 if (TYPE_CONTEXT (type)
23553 && TYPE_P (TYPE_CONTEXT (type))
23554 && !should_emit_struct_debug (TYPE_CONTEXT (type),
23555 DINFO_USAGE_DIR_USE))
23556 return;
23557 gen_type_die_for_member (type, decl,
23558 get_context_die (TYPE_CONTEXT (type)));
23560 if (TREE_CODE (decl) == NAMELIST_DECL)
23561 at_import_die = gen_namelist_decl (DECL_NAME (decl),
23562 get_context_die (DECL_CONTEXT (decl)),
23563 NULL_TREE);
23564 else
23565 at_import_die = force_decl_die (decl);
23569 if (TREE_CODE (decl) == NAMESPACE_DECL)
23571 if (dwarf_version >= 3 || !dwarf_strict)
23572 imported_die = new_die (DW_TAG_imported_module,
23573 lexical_block_die,
23574 lexical_block);
23575 else
23576 return;
23578 else
23579 imported_die = new_die (DW_TAG_imported_declaration,
23580 lexical_block_die,
23581 lexical_block);
23583 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
23584 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
23585 if (name)
23586 add_AT_string (imported_die, DW_AT_name,
23587 IDENTIFIER_POINTER (name));
23588 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
23591 /* Output debug information for imported module or decl DECL.
23592 NAME is non-NULL name in context if the decl has been renamed.
23593 CHILD is true if decl is one of the renamed decls as part of
23594 importing whole module. */
23596 static void
23597 dwarf2out_imported_module_or_decl (tree decl, tree name, tree context,
23598 bool child)
23600 /* dw_die_ref at_import_die; */
23601 dw_die_ref scope_die;
23603 if (debug_info_level <= DINFO_LEVEL_TERSE)
23604 return;
23606 gcc_assert (decl);
23608 set_early_dwarf s;
23610 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
23611 We need decl DIE for reference and scope die. First, get DIE for the decl
23612 itself. */
23614 /* Get the scope die for decl context. Use comp_unit_die for global module
23615 or decl. If die is not found for non globals, force new die. */
23616 if (context
23617 && TYPE_P (context)
23618 && !should_emit_struct_debug (context, DINFO_USAGE_DIR_USE))
23619 return;
23621 if (!(dwarf_version >= 3 || !dwarf_strict))
23622 return;
23624 scope_die = get_context_die (context);
23626 if (child)
23628 gcc_assert (scope_die->die_child);
23629 gcc_assert (scope_die->die_child->die_tag == DW_TAG_imported_module);
23630 gcc_assert (TREE_CODE (decl) != NAMESPACE_DECL);
23631 scope_die = scope_die->die_child;
23634 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
23635 dwarf2out_imported_module_or_decl_1 (decl, name, context, scope_die);
23638 /* Output debug information for namelists. */
23640 static dw_die_ref
23641 gen_namelist_decl (tree name, dw_die_ref scope_die, tree item_decls)
23643 dw_die_ref nml_die, nml_item_die, nml_item_ref_die;
23644 tree value;
23645 unsigned i;
23647 if (debug_info_level <= DINFO_LEVEL_TERSE)
23648 return NULL;
23650 gcc_assert (scope_die != NULL);
23651 nml_die = new_die (DW_TAG_namelist, scope_die, NULL);
23652 add_AT_string (nml_die, DW_AT_name, IDENTIFIER_POINTER (name));
23654 /* If there are no item_decls, we have a nondefining namelist, e.g.
23655 with USE association; hence, set DW_AT_declaration. */
23656 if (item_decls == NULL_TREE)
23658 add_AT_flag (nml_die, DW_AT_declaration, 1);
23659 return nml_die;
23662 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (item_decls), i, value)
23664 nml_item_ref_die = lookup_decl_die (value);
23665 if (!nml_item_ref_die)
23666 nml_item_ref_die = force_decl_die (value);
23668 nml_item_die = new_die (DW_TAG_namelist_item, nml_die, NULL);
23669 add_AT_die_ref (nml_item_die, DW_AT_namelist_items, nml_item_ref_die);
23671 return nml_die;
23675 /* Write the debugging output for DECL and return the DIE. */
23677 static void
23678 dwarf2out_decl (tree decl)
23680 dw_die_ref context_die = comp_unit_die ();
23682 switch (TREE_CODE (decl))
23684 case ERROR_MARK:
23685 return;
23687 case FUNCTION_DECL:
23688 /* What we would really like to do here is to filter out all mere
23689 file-scope declarations of file-scope functions which are never
23690 referenced later within this translation unit (and keep all of ones
23691 that *are* referenced later on) but we aren't clairvoyant, so we have
23692 no idea which functions will be referenced in the future (i.e. later
23693 on within the current translation unit). So here we just ignore all
23694 file-scope function declarations which are not also definitions. If
23695 and when the debugger needs to know something about these functions,
23696 it will have to hunt around and find the DWARF information associated
23697 with the definition of the function.
23699 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
23700 nodes represent definitions and which ones represent mere
23701 declarations. We have to check DECL_INITIAL instead. That's because
23702 the C front-end supports some weird semantics for "extern inline"
23703 function definitions. These can get inlined within the current
23704 translation unit (and thus, we need to generate Dwarf info for their
23705 abstract instances so that the Dwarf info for the concrete inlined
23706 instances can have something to refer to) but the compiler never
23707 generates any out-of-lines instances of such things (despite the fact
23708 that they *are* definitions).
23710 The important point is that the C front-end marks these "extern
23711 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
23712 them anyway. Note that the C++ front-end also plays some similar games
23713 for inline function definitions appearing within include files which
23714 also contain `#pragma interface' pragmas.
23716 If we are called from dwarf2out_abstract_function output a DIE
23717 anyway. We can end up here this way with early inlining and LTO
23718 where the inlined function is output in a different LTRANS unit
23719 or not at all. */
23720 if (DECL_INITIAL (decl) == NULL_TREE
23721 && ! DECL_ABSTRACT_P (decl))
23722 return;
23724 /* If we're a nested function, initially use a parent of NULL; if we're
23725 a plain function, this will be fixed up in decls_for_scope. If
23726 we're a method, it will be ignored, since we already have a DIE. */
23727 if (decl_function_context (decl)
23728 /* But if we're in terse mode, we don't care about scope. */
23729 && debug_info_level > DINFO_LEVEL_TERSE)
23730 context_die = NULL;
23731 break;
23733 case VAR_DECL:
23734 /* For local statics lookup proper context die. */
23735 if (local_function_static (decl))
23736 context_die = lookup_decl_die (DECL_CONTEXT (decl));
23738 /* If we are in terse mode, don't generate any DIEs to represent any
23739 variable declarations or definitions. */
23740 if (debug_info_level <= DINFO_LEVEL_TERSE)
23741 return;
23742 break;
23744 case CONST_DECL:
23745 if (debug_info_level <= DINFO_LEVEL_TERSE)
23746 return;
23747 if (!is_fortran () && !is_ada ())
23748 return;
23749 if (TREE_STATIC (decl) && decl_function_context (decl))
23750 context_die = lookup_decl_die (DECL_CONTEXT (decl));
23751 break;
23753 case NAMESPACE_DECL:
23754 case IMPORTED_DECL:
23755 if (debug_info_level <= DINFO_LEVEL_TERSE)
23756 return;
23757 if (lookup_decl_die (decl) != NULL)
23758 return;
23759 break;
23761 case TYPE_DECL:
23762 /* Don't emit stubs for types unless they are needed by other DIEs. */
23763 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
23764 return;
23766 /* Don't bother trying to generate any DIEs to represent any of the
23767 normal built-in types for the language we are compiling. */
23768 if (DECL_IS_BUILTIN (decl))
23769 return;
23771 /* If we are in terse mode, don't generate any DIEs for types. */
23772 if (debug_info_level <= DINFO_LEVEL_TERSE)
23773 return;
23775 /* If we're a function-scope tag, initially use a parent of NULL;
23776 this will be fixed up in decls_for_scope. */
23777 if (decl_function_context (decl))
23778 context_die = NULL;
23780 break;
23782 case NAMELIST_DECL:
23783 break;
23785 default:
23786 return;
23789 gen_decl_die (decl, NULL, NULL, context_die);
23791 if (flag_checking)
23793 dw_die_ref die = lookup_decl_die (decl);
23794 if (die)
23795 check_die (die);
23799 /* Write the debugging output for DECL. */
23801 static void
23802 dwarf2out_function_decl (tree decl)
23804 dwarf2out_decl (decl);
23805 call_arg_locations = NULL;
23806 call_arg_loc_last = NULL;
23807 call_site_count = -1;
23808 tail_call_site_count = -1;
23809 decl_loc_table->empty ();
23810 cached_dw_loc_list_table->empty ();
23813 /* Output a marker (i.e. a label) for the beginning of the generated code for
23814 a lexical block. */
23816 static void
23817 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
23818 unsigned int blocknum)
23820 switch_to_section (current_function_section ());
23821 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
23824 /* Output a marker (i.e. a label) for the end of the generated code for a
23825 lexical block. */
23827 static void
23828 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
23830 switch_to_section (current_function_section ());
23831 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
23834 /* Returns nonzero if it is appropriate not to emit any debugging
23835 information for BLOCK, because it doesn't contain any instructions.
23837 Don't allow this for blocks with nested functions or local classes
23838 as we would end up with orphans, and in the presence of scheduling
23839 we may end up calling them anyway. */
23841 static bool
23842 dwarf2out_ignore_block (const_tree block)
23844 tree decl;
23845 unsigned int i;
23847 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
23848 if (TREE_CODE (decl) == FUNCTION_DECL
23849 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
23850 return 0;
23851 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (block); i++)
23853 decl = BLOCK_NONLOCALIZED_VAR (block, i);
23854 if (TREE_CODE (decl) == FUNCTION_DECL
23855 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
23856 return 0;
23859 return 1;
23862 /* Hash table routines for file_hash. */
23864 bool
23865 dwarf_file_hasher::equal (dwarf_file_data *p1, const char *p2)
23867 return filename_cmp (p1->filename, p2) == 0;
23870 hashval_t
23871 dwarf_file_hasher::hash (dwarf_file_data *p)
23873 return htab_hash_string (p->filename);
23876 /* Lookup FILE_NAME (in the list of filenames that we know about here in
23877 dwarf2out.c) and return its "index". The index of each (known) filename is
23878 just a unique number which is associated with only that one filename. We
23879 need such numbers for the sake of generating labels (in the .debug_sfnames
23880 section) and references to those files numbers (in the .debug_srcinfo
23881 and .debug_macinfo sections). If the filename given as an argument is not
23882 found in our current list, add it to the list and assign it the next
23883 available unique index number. */
23885 static struct dwarf_file_data *
23886 lookup_filename (const char *file_name)
23888 struct dwarf_file_data * created;
23890 if (!file_name)
23891 return NULL;
23893 dwarf_file_data **slot
23894 = file_table->find_slot_with_hash (file_name, htab_hash_string (file_name),
23895 INSERT);
23896 if (*slot)
23897 return *slot;
23899 created = ggc_alloc<dwarf_file_data> ();
23900 created->filename = file_name;
23901 created->emitted_number = 0;
23902 *slot = created;
23903 return created;
23906 /* If the assembler will construct the file table, then translate the compiler
23907 internal file table number into the assembler file table number, and emit
23908 a .file directive if we haven't already emitted one yet. The file table
23909 numbers are different because we prune debug info for unused variables and
23910 types, which may include filenames. */
23912 static int
23913 maybe_emit_file (struct dwarf_file_data * fd)
23915 if (! fd->emitted_number)
23917 if (last_emitted_file)
23918 fd->emitted_number = last_emitted_file->emitted_number + 1;
23919 else
23920 fd->emitted_number = 1;
23921 last_emitted_file = fd;
23923 if (DWARF2_ASM_LINE_DEBUG_INFO)
23925 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
23926 output_quoted_string (asm_out_file,
23927 remap_debug_filename (fd->filename));
23928 fputc ('\n', asm_out_file);
23932 return fd->emitted_number;
23935 /* Schedule generation of a DW_AT_const_value attribute to DIE.
23936 That generation should happen after function debug info has been
23937 generated. The value of the attribute is the constant value of ARG. */
23939 static void
23940 append_entry_to_tmpl_value_parm_die_table (dw_die_ref die, tree arg)
23942 die_arg_entry entry;
23944 if (!die || !arg)
23945 return;
23947 gcc_assert (early_dwarf);
23949 if (!tmpl_value_parm_die_table)
23950 vec_alloc (tmpl_value_parm_die_table, 32);
23952 entry.die = die;
23953 entry.arg = arg;
23954 vec_safe_push (tmpl_value_parm_die_table, entry);
23957 /* Return TRUE if T is an instance of generic type, FALSE
23958 otherwise. */
23960 static bool
23961 generic_type_p (tree t)
23963 if (t == NULL_TREE || !TYPE_P (t))
23964 return false;
23965 return lang_hooks.get_innermost_generic_parms (t) != NULL_TREE;
23968 /* Schedule the generation of the generic parameter dies for the
23969 instance of generic type T. The proper generation itself is later
23970 done by gen_scheduled_generic_parms_dies. */
23972 static void
23973 schedule_generic_params_dies_gen (tree t)
23975 if (!generic_type_p (t))
23976 return;
23978 gcc_assert (early_dwarf);
23980 if (!generic_type_instances)
23981 vec_alloc (generic_type_instances, 256);
23983 vec_safe_push (generic_type_instances, t);
23986 /* Add a DW_AT_const_value attribute to DIEs that were scheduled
23987 by append_entry_to_tmpl_value_parm_die_table. This function must
23988 be called after function DIEs have been generated. */
23990 static void
23991 gen_remaining_tmpl_value_param_die_attribute (void)
23993 if (tmpl_value_parm_die_table)
23995 unsigned i, j;
23996 die_arg_entry *e;
23998 /* We do this in two phases - first get the cases we can
23999 handle during early-finish, preserving those we cannot
24000 (containing symbolic constants where we don't yet know
24001 whether we are going to output the referenced symbols).
24002 For those we try again at late-finish. */
24003 j = 0;
24004 FOR_EACH_VEC_ELT (*tmpl_value_parm_die_table, i, e)
24006 if (!tree_add_const_value_attribute (e->die, e->arg))
24007 (*tmpl_value_parm_die_table)[j++] = *e;
24009 tmpl_value_parm_die_table->truncate (j);
24013 /* Generate generic parameters DIEs for instances of generic types
24014 that have been previously scheduled by
24015 schedule_generic_params_dies_gen. This function must be called
24016 after all the types of the CU have been laid out. */
24018 static void
24019 gen_scheduled_generic_parms_dies (void)
24021 unsigned i;
24022 tree t;
24024 if (!generic_type_instances)
24025 return;
24027 /* We end up "recursing" into schedule_generic_params_dies_gen, so
24028 pretend this generation is part of "early dwarf" as well. */
24029 set_early_dwarf s;
24031 FOR_EACH_VEC_ELT (*generic_type_instances, i, t)
24032 if (COMPLETE_TYPE_P (t))
24033 gen_generic_params_dies (t);
24035 generic_type_instances = NULL;
24039 /* Replace DW_AT_name for the decl with name. */
24041 static void
24042 dwarf2out_set_name (tree decl, tree name)
24044 dw_die_ref die;
24045 dw_attr_node *attr;
24046 const char *dname;
24048 die = TYPE_SYMTAB_DIE (decl);
24049 if (!die)
24050 return;
24052 dname = dwarf2_name (name, 0);
24053 if (!dname)
24054 return;
24056 attr = get_AT (die, DW_AT_name);
24057 if (attr)
24059 struct indirect_string_node *node;
24061 node = find_AT_string (dname);
24062 /* replace the string. */
24063 attr->dw_attr_val.v.val_str = node;
24066 else
24067 add_name_attribute (die, dname);
24070 /* True if before or during processing of the first function being emitted. */
24071 static bool in_first_function_p = true;
24072 /* True if loc_note during dwarf2out_var_location call might still be
24073 before first real instruction at address equal to .Ltext0. */
24074 static bool maybe_at_text_label_p = true;
24075 /* One above highest N where .LVLN label might be equal to .Ltext0 label. */
24076 static unsigned int first_loclabel_num_not_at_text_label;
24078 /* Called by the final INSN scan whenever we see a var location. We
24079 use it to drop labels in the right places, and throw the location in
24080 our lookup table. */
24082 static void
24083 dwarf2out_var_location (rtx_insn *loc_note)
24085 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES + 2];
24086 struct var_loc_node *newloc;
24087 rtx_insn *next_real, *next_note;
24088 rtx_insn *call_insn = NULL;
24089 static const char *last_label;
24090 static const char *last_postcall_label;
24091 static bool last_in_cold_section_p;
24092 static rtx_insn *expected_next_loc_note;
24093 tree decl;
24094 bool var_loc_p;
24096 if (!NOTE_P (loc_note))
24098 if (CALL_P (loc_note))
24100 call_site_count++;
24101 if (SIBLING_CALL_P (loc_note))
24102 tail_call_site_count++;
24103 if (optimize == 0 && !flag_var_tracking)
24105 /* When the var-tracking pass is not running, there is no note
24106 for indirect calls whose target is compile-time known. In this
24107 case, process such calls specifically so that we generate call
24108 sites for them anyway. */
24109 rtx x = PATTERN (loc_note);
24110 if (GET_CODE (x) == PARALLEL)
24111 x = XVECEXP (x, 0, 0);
24112 if (GET_CODE (x) == SET)
24113 x = SET_SRC (x);
24114 if (GET_CODE (x) == CALL)
24115 x = XEXP (x, 0);
24116 if (!MEM_P (x)
24117 || GET_CODE (XEXP (x, 0)) != SYMBOL_REF
24118 || !SYMBOL_REF_DECL (XEXP (x, 0))
24119 || (TREE_CODE (SYMBOL_REF_DECL (XEXP (x, 0)))
24120 != FUNCTION_DECL))
24122 call_insn = loc_note;
24123 loc_note = NULL;
24124 var_loc_p = false;
24126 next_real = next_real_insn (call_insn);
24127 next_note = NULL;
24128 cached_next_real_insn = NULL;
24129 goto create_label;
24133 return;
24136 var_loc_p = NOTE_KIND (loc_note) == NOTE_INSN_VAR_LOCATION;
24137 if (var_loc_p && !DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
24138 return;
24140 /* Optimize processing a large consecutive sequence of location
24141 notes so we don't spend too much time in next_real_insn. If the
24142 next insn is another location note, remember the next_real_insn
24143 calculation for next time. */
24144 next_real = cached_next_real_insn;
24145 if (next_real)
24147 if (expected_next_loc_note != loc_note)
24148 next_real = NULL;
24151 next_note = NEXT_INSN (loc_note);
24152 if (! next_note
24153 || next_note->deleted ()
24154 || ! NOTE_P (next_note)
24155 || (NOTE_KIND (next_note) != NOTE_INSN_VAR_LOCATION
24156 && NOTE_KIND (next_note) != NOTE_INSN_CALL_ARG_LOCATION))
24157 next_note = NULL;
24159 if (! next_real)
24160 next_real = next_real_insn (loc_note);
24162 if (next_note)
24164 expected_next_loc_note = next_note;
24165 cached_next_real_insn = next_real;
24167 else
24168 cached_next_real_insn = NULL;
24170 /* If there are no instructions which would be affected by this note,
24171 don't do anything. */
24172 if (var_loc_p
24173 && next_real == NULL_RTX
24174 && !NOTE_DURING_CALL_P (loc_note))
24175 return;
24177 create_label:
24179 if (next_real == NULL_RTX)
24180 next_real = get_last_insn ();
24182 /* If there were any real insns between note we processed last time
24183 and this note (or if it is the first note), clear
24184 last_{,postcall_}label so that they are not reused this time. */
24185 if (last_var_location_insn == NULL_RTX
24186 || last_var_location_insn != next_real
24187 || last_in_cold_section_p != in_cold_section_p)
24189 last_label = NULL;
24190 last_postcall_label = NULL;
24193 if (var_loc_p)
24195 decl = NOTE_VAR_LOCATION_DECL (loc_note);
24196 newloc = add_var_loc_to_decl (decl, loc_note,
24197 NOTE_DURING_CALL_P (loc_note)
24198 ? last_postcall_label : last_label);
24199 if (newloc == NULL)
24200 return;
24202 else
24204 decl = NULL_TREE;
24205 newloc = NULL;
24208 /* If there were no real insns between note we processed last time
24209 and this note, use the label we emitted last time. Otherwise
24210 create a new label and emit it. */
24211 if (last_label == NULL)
24213 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
24214 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
24215 loclabel_num++;
24216 last_label = ggc_strdup (loclabel);
24217 /* See if loclabel might be equal to .Ltext0. If yes,
24218 bump first_loclabel_num_not_at_text_label. */
24219 if (!have_multiple_function_sections
24220 && in_first_function_p
24221 && maybe_at_text_label_p)
24223 static rtx_insn *last_start;
24224 rtx_insn *insn;
24225 for (insn = loc_note; insn; insn = previous_insn (insn))
24226 if (insn == last_start)
24227 break;
24228 else if (!NONDEBUG_INSN_P (insn))
24229 continue;
24230 else
24232 rtx body = PATTERN (insn);
24233 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
24234 continue;
24235 /* Inline asm could occupy zero bytes. */
24236 else if (GET_CODE (body) == ASM_INPUT
24237 || asm_noperands (body) >= 0)
24238 continue;
24239 #ifdef HAVE_attr_length
24240 else if (get_attr_min_length (insn) == 0)
24241 continue;
24242 #endif
24243 else
24245 /* Assume insn has non-zero length. */
24246 maybe_at_text_label_p = false;
24247 break;
24250 if (maybe_at_text_label_p)
24252 last_start = loc_note;
24253 first_loclabel_num_not_at_text_label = loclabel_num;
24258 gcc_assert ((loc_note == NULL_RTX && call_insn != NULL_RTX)
24259 || (loc_note != NULL_RTX && call_insn == NULL_RTX));
24261 if (!var_loc_p)
24263 struct call_arg_loc_node *ca_loc
24264 = ggc_cleared_alloc<call_arg_loc_node> ();
24265 rtx_insn *prev
24266 = loc_note != NULL_RTX ? prev_real_insn (loc_note) : call_insn;
24268 ca_loc->call_arg_loc_note = loc_note;
24269 ca_loc->next = NULL;
24270 ca_loc->label = last_label;
24271 gcc_assert (prev
24272 && (CALL_P (prev)
24273 || (NONJUMP_INSN_P (prev)
24274 && GET_CODE (PATTERN (prev)) == SEQUENCE
24275 && CALL_P (XVECEXP (PATTERN (prev), 0, 0)))));
24276 if (!CALL_P (prev))
24277 prev = as_a <rtx_sequence *> (PATTERN (prev))->insn (0);
24278 ca_loc->tail_call_p = SIBLING_CALL_P (prev);
24280 /* Look for a SYMBOL_REF in the "prev" instruction. */
24281 rtx x = get_call_rtx_from (PATTERN (prev));
24282 if (x)
24284 /* Try to get the call symbol, if any. */
24285 if (MEM_P (XEXP (x, 0)))
24286 x = XEXP (x, 0);
24287 /* First, look for a memory access to a symbol_ref. */
24288 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
24289 && SYMBOL_REF_DECL (XEXP (x, 0))
24290 && TREE_CODE (SYMBOL_REF_DECL (XEXP (x, 0))) == FUNCTION_DECL)
24291 ca_loc->symbol_ref = XEXP (x, 0);
24292 /* Otherwise, look at a compile-time known user-level function
24293 declaration. */
24294 else if (MEM_P (x)
24295 && MEM_EXPR (x)
24296 && TREE_CODE (MEM_EXPR (x)) == FUNCTION_DECL)
24297 ca_loc->symbol_ref = XEXP (DECL_RTL (MEM_EXPR (x)), 0);
24300 ca_loc->block = insn_scope (prev);
24301 if (call_arg_locations)
24302 call_arg_loc_last->next = ca_loc;
24303 else
24304 call_arg_locations = ca_loc;
24305 call_arg_loc_last = ca_loc;
24307 else if (loc_note != NULL_RTX && !NOTE_DURING_CALL_P (loc_note))
24308 newloc->label = last_label;
24309 else
24311 if (!last_postcall_label)
24313 sprintf (loclabel, "%s-1", last_label);
24314 last_postcall_label = ggc_strdup (loclabel);
24316 newloc->label = last_postcall_label;
24319 last_var_location_insn = next_real;
24320 last_in_cold_section_p = in_cold_section_p;
24323 /* Called from finalize_size_functions for size functions so that their body
24324 can be encoded in the debug info to describe the layout of variable-length
24325 structures. */
24327 static void
24328 dwarf2out_size_function (tree decl)
24330 function_to_dwarf_procedure (decl);
24333 /* Note in one location list that text section has changed. */
24336 var_location_switch_text_section_1 (var_loc_list **slot, void *)
24338 var_loc_list *list = *slot;
24339 if (list->first)
24340 list->last_before_switch
24341 = list->last->next ? list->last->next : list->last;
24342 return 1;
24345 /* Note in all location lists that text section has changed. */
24347 static void
24348 var_location_switch_text_section (void)
24350 if (decl_loc_table == NULL)
24351 return;
24353 decl_loc_table->traverse<void *, var_location_switch_text_section_1> (NULL);
24356 /* Create a new line number table. */
24358 static dw_line_info_table *
24359 new_line_info_table (void)
24361 dw_line_info_table *table;
24363 table = ggc_cleared_alloc<dw_line_info_table> ();
24364 table->file_num = 1;
24365 table->line_num = 1;
24366 table->is_stmt = DWARF_LINE_DEFAULT_IS_STMT_START;
24368 return table;
24371 /* Lookup the "current" table into which we emit line info, so
24372 that we don't have to do it for every source line. */
24374 static void
24375 set_cur_line_info_table (section *sec)
24377 dw_line_info_table *table;
24379 if (sec == text_section)
24380 table = text_section_line_info;
24381 else if (sec == cold_text_section)
24383 table = cold_text_section_line_info;
24384 if (!table)
24386 cold_text_section_line_info = table = new_line_info_table ();
24387 table->end_label = cold_end_label;
24390 else
24392 const char *end_label;
24394 if (flag_reorder_blocks_and_partition)
24396 if (in_cold_section_p)
24397 end_label = crtl->subsections.cold_section_end_label;
24398 else
24399 end_label = crtl->subsections.hot_section_end_label;
24401 else
24403 char label[MAX_ARTIFICIAL_LABEL_BYTES];
24404 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
24405 current_function_funcdef_no);
24406 end_label = ggc_strdup (label);
24409 table = new_line_info_table ();
24410 table->end_label = end_label;
24412 vec_safe_push (separate_line_info, table);
24415 if (DWARF2_ASM_LINE_DEBUG_INFO)
24416 table->is_stmt = (cur_line_info_table
24417 ? cur_line_info_table->is_stmt
24418 : DWARF_LINE_DEFAULT_IS_STMT_START);
24419 cur_line_info_table = table;
24423 /* We need to reset the locations at the beginning of each
24424 function. We can't do this in the end_function hook, because the
24425 declarations that use the locations won't have been output when
24426 that hook is called. Also compute have_multiple_function_sections here. */
24428 static void
24429 dwarf2out_begin_function (tree fun)
24431 section *sec = function_section (fun);
24433 if (sec != text_section)
24434 have_multiple_function_sections = true;
24436 if (flag_reorder_blocks_and_partition && !cold_text_section)
24438 gcc_assert (current_function_decl == fun);
24439 cold_text_section = unlikely_text_section ();
24440 switch_to_section (cold_text_section);
24441 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
24442 switch_to_section (sec);
24445 dwarf2out_note_section_used ();
24446 call_site_count = 0;
24447 tail_call_site_count = 0;
24449 set_cur_line_info_table (sec);
24452 /* Helper function of dwarf2out_end_function, called only after emitting
24453 the very first function into assembly. Check if some .debug_loc range
24454 might end with a .LVL* label that could be equal to .Ltext0.
24455 In that case we must force using absolute addresses in .debug_loc ranges,
24456 because this range could be .LVLN-.Ltext0 .. .LVLM-.Ltext0 for
24457 .LVLN == .LVLM == .Ltext0, thus 0 .. 0, which is a .debug_loc
24458 list terminator.
24459 Set have_multiple_function_sections to true in that case and
24460 terminate htab traversal. */
24463 find_empty_loc_ranges_at_text_label (var_loc_list **slot, int)
24465 var_loc_list *entry = *slot;
24466 struct var_loc_node *node;
24468 node = entry->first;
24469 if (node && node->next && node->next->label)
24471 unsigned int i;
24472 const char *label = node->next->label;
24473 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
24475 for (i = 0; i < first_loclabel_num_not_at_text_label; i++)
24477 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", i);
24478 if (strcmp (label, loclabel) == 0)
24480 have_multiple_function_sections = true;
24481 return 0;
24485 return 1;
24488 /* Hook called after emitting a function into assembly.
24489 This does something only for the very first function emitted. */
24491 static void
24492 dwarf2out_end_function (unsigned int)
24494 if (in_first_function_p
24495 && !have_multiple_function_sections
24496 && first_loclabel_num_not_at_text_label
24497 && decl_loc_table)
24498 decl_loc_table->traverse<int, find_empty_loc_ranges_at_text_label> (0);
24499 in_first_function_p = false;
24500 maybe_at_text_label_p = false;
24503 /* Temporary holder for dwarf2out_register_main_translation_unit. Used to let
24504 front-ends register a translation unit even before dwarf2out_init is
24505 called. */
24506 static tree main_translation_unit = NULL_TREE;
24508 /* Hook called by front-ends after they built their main translation unit.
24509 Associate comp_unit_die to UNIT. */
24511 static void
24512 dwarf2out_register_main_translation_unit (tree unit)
24514 gcc_assert (TREE_CODE (unit) == TRANSLATION_UNIT_DECL
24515 && main_translation_unit == NULL_TREE);
24516 main_translation_unit = unit;
24517 /* If dwarf2out_init has not been called yet, it will perform the association
24518 itself looking at main_translation_unit. */
24519 if (decl_die_table != NULL)
24520 equate_decl_number_to_die (unit, comp_unit_die ());
24523 /* Add OPCODE+VAL as an entry at the end of the opcode array in TABLE. */
24525 static void
24526 push_dw_line_info_entry (dw_line_info_table *table,
24527 enum dw_line_info_opcode opcode, unsigned int val)
24529 dw_line_info_entry e;
24530 e.opcode = opcode;
24531 e.val = val;
24532 vec_safe_push (table->entries, e);
24535 /* Output a label to mark the beginning of a source code line entry
24536 and record information relating to this source line, in
24537 'line_info_table' for later output of the .debug_line section. */
24538 /* ??? The discriminator parameter ought to be unsigned. */
24540 static void
24541 dwarf2out_source_line (unsigned int line, const char *filename,
24542 int discriminator, bool is_stmt)
24544 unsigned int file_num;
24545 dw_line_info_table *table;
24547 if (debug_info_level < DINFO_LEVEL_TERSE || line == 0)
24548 return;
24550 /* The discriminator column was added in dwarf4. Simplify the below
24551 by simply removing it if we're not supposed to output it. */
24552 if (dwarf_version < 4 && dwarf_strict)
24553 discriminator = 0;
24555 table = cur_line_info_table;
24556 file_num = maybe_emit_file (lookup_filename (filename));
24558 /* ??? TODO: Elide duplicate line number entries. Traditionally,
24559 the debugger has used the second (possibly duplicate) line number
24560 at the beginning of the function to mark the end of the prologue.
24561 We could eliminate any other duplicates within the function. For
24562 Dwarf3, we ought to include the DW_LNS_set_prologue_end mark in
24563 that second line number entry. */
24564 /* Recall that this end-of-prologue indication is *not* the same thing
24565 as the end_prologue debug hook. The NOTE_INSN_PROLOGUE_END note,
24566 to which the hook corresponds, follows the last insn that was
24567 emitted by gen_prologue. What we need is to precede the first insn
24568 that had been emitted after NOTE_INSN_FUNCTION_BEG, i.e. the first
24569 insn that corresponds to something the user wrote. These may be
24570 very different locations once scheduling is enabled. */
24572 if (0 && file_num == table->file_num
24573 && line == table->line_num
24574 && discriminator == table->discrim_num
24575 && is_stmt == table->is_stmt)
24576 return;
24578 switch_to_section (current_function_section ());
24580 /* If requested, emit something human-readable. */
24581 if (flag_debug_asm)
24582 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START, filename, line);
24584 if (DWARF2_ASM_LINE_DEBUG_INFO)
24586 /* Emit the .loc directive understood by GNU as. */
24587 /* "\t.loc %u %u 0 is_stmt %u discriminator %u",
24588 file_num, line, is_stmt, discriminator */
24589 fputs ("\t.loc ", asm_out_file);
24590 fprint_ul (asm_out_file, file_num);
24591 putc (' ', asm_out_file);
24592 fprint_ul (asm_out_file, line);
24593 putc (' ', asm_out_file);
24594 putc ('0', asm_out_file);
24596 if (is_stmt != table->is_stmt)
24598 fputs (" is_stmt ", asm_out_file);
24599 putc (is_stmt ? '1' : '0', asm_out_file);
24601 if (SUPPORTS_DISCRIMINATOR && discriminator != 0)
24603 gcc_assert (discriminator > 0);
24604 fputs (" discriminator ", asm_out_file);
24605 fprint_ul (asm_out_file, (unsigned long) discriminator);
24607 putc ('\n', asm_out_file);
24609 else
24611 unsigned int label_num = ++line_info_label_num;
24613 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL, label_num);
24615 push_dw_line_info_entry (table, LI_set_address, label_num);
24616 if (file_num != table->file_num)
24617 push_dw_line_info_entry (table, LI_set_file, file_num);
24618 if (discriminator != table->discrim_num)
24619 push_dw_line_info_entry (table, LI_set_discriminator, discriminator);
24620 if (is_stmt != table->is_stmt)
24621 push_dw_line_info_entry (table, LI_negate_stmt, 0);
24622 push_dw_line_info_entry (table, LI_set_line, line);
24625 table->file_num = file_num;
24626 table->line_num = line;
24627 table->discrim_num = discriminator;
24628 table->is_stmt = is_stmt;
24629 table->in_use = true;
24632 /* Record the beginning of a new source file. */
24634 static void
24635 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
24637 if (flag_eliminate_dwarf2_dups)
24639 /* Record the beginning of the file for break_out_includes. */
24640 dw_die_ref bincl_die;
24642 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die (), NULL);
24643 add_AT_string (bincl_die, DW_AT_name, remap_debug_filename (filename));
24646 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
24648 macinfo_entry e;
24649 e.code = DW_MACINFO_start_file;
24650 e.lineno = lineno;
24651 e.info = ggc_strdup (filename);
24652 vec_safe_push (macinfo_table, e);
24656 /* Record the end of a source file. */
24658 static void
24659 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
24661 if (flag_eliminate_dwarf2_dups)
24662 /* Record the end of the file for break_out_includes. */
24663 new_die (DW_TAG_GNU_EINCL, comp_unit_die (), NULL);
24665 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
24667 macinfo_entry e;
24668 e.code = DW_MACINFO_end_file;
24669 e.lineno = lineno;
24670 e.info = NULL;
24671 vec_safe_push (macinfo_table, e);
24675 /* Called from debug_define in toplev.c. The `buffer' parameter contains
24676 the tail part of the directive line, i.e. the part which is past the
24677 initial whitespace, #, whitespace, directive-name, whitespace part. */
24679 static void
24680 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
24681 const char *buffer ATTRIBUTE_UNUSED)
24683 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
24685 macinfo_entry e;
24686 /* Insert a dummy first entry to be able to optimize the whole
24687 predefined macro block using DW_MACRO_GNU_transparent_include. */
24688 if (macinfo_table->is_empty () && lineno <= 1)
24690 e.code = 0;
24691 e.lineno = 0;
24692 e.info = NULL;
24693 vec_safe_push (macinfo_table, e);
24695 e.code = DW_MACINFO_define;
24696 e.lineno = lineno;
24697 e.info = ggc_strdup (buffer);
24698 vec_safe_push (macinfo_table, e);
24702 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
24703 the tail part of the directive line, i.e. the part which is past the
24704 initial whitespace, #, whitespace, directive-name, whitespace part. */
24706 static void
24707 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
24708 const char *buffer ATTRIBUTE_UNUSED)
24710 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
24712 macinfo_entry e;
24713 /* Insert a dummy first entry to be able to optimize the whole
24714 predefined macro block using DW_MACRO_GNU_transparent_include. */
24715 if (macinfo_table->is_empty () && lineno <= 1)
24717 e.code = 0;
24718 e.lineno = 0;
24719 e.info = NULL;
24720 vec_safe_push (macinfo_table, e);
24722 e.code = DW_MACINFO_undef;
24723 e.lineno = lineno;
24724 e.info = ggc_strdup (buffer);
24725 vec_safe_push (macinfo_table, e);
24729 /* Helpers to manipulate hash table of CUs. */
24731 struct macinfo_entry_hasher : nofree_ptr_hash <macinfo_entry>
24733 static inline hashval_t hash (const macinfo_entry *);
24734 static inline bool equal (const macinfo_entry *, const macinfo_entry *);
24737 inline hashval_t
24738 macinfo_entry_hasher::hash (const macinfo_entry *entry)
24740 return htab_hash_string (entry->info);
24743 inline bool
24744 macinfo_entry_hasher::equal (const macinfo_entry *entry1,
24745 const macinfo_entry *entry2)
24747 return !strcmp (entry1->info, entry2->info);
24750 typedef hash_table<macinfo_entry_hasher> macinfo_hash_type;
24752 /* Output a single .debug_macinfo entry. */
24754 static void
24755 output_macinfo_op (macinfo_entry *ref)
24757 int file_num;
24758 size_t len;
24759 struct indirect_string_node *node;
24760 char label[MAX_ARTIFICIAL_LABEL_BYTES];
24761 struct dwarf_file_data *fd;
24763 switch (ref->code)
24765 case DW_MACINFO_start_file:
24766 fd = lookup_filename (ref->info);
24767 file_num = maybe_emit_file (fd);
24768 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
24769 dw2_asm_output_data_uleb128 (ref->lineno,
24770 "Included from line number %lu",
24771 (unsigned long) ref->lineno);
24772 dw2_asm_output_data_uleb128 (file_num, "file %s", ref->info);
24773 break;
24774 case DW_MACINFO_end_file:
24775 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
24776 break;
24777 case DW_MACINFO_define:
24778 case DW_MACINFO_undef:
24779 len = strlen (ref->info) + 1;
24780 if (!dwarf_strict
24781 && len > DWARF_OFFSET_SIZE
24782 && !DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
24783 && (debug_str_section->common.flags & SECTION_MERGE) != 0)
24785 ref->code = ref->code == DW_MACINFO_define
24786 ? DW_MACRO_GNU_define_indirect
24787 : DW_MACRO_GNU_undef_indirect;
24788 output_macinfo_op (ref);
24789 return;
24791 dw2_asm_output_data (1, ref->code,
24792 ref->code == DW_MACINFO_define
24793 ? "Define macro" : "Undefine macro");
24794 dw2_asm_output_data_uleb128 (ref->lineno, "At line number %lu",
24795 (unsigned long) ref->lineno);
24796 dw2_asm_output_nstring (ref->info, -1, "The macro");
24797 break;
24798 case DW_MACRO_GNU_define_indirect:
24799 case DW_MACRO_GNU_undef_indirect:
24800 node = find_AT_string (ref->info);
24801 gcc_assert (node
24802 && ((node->form == DW_FORM_strp)
24803 || (node->form == DW_FORM_GNU_str_index)));
24804 dw2_asm_output_data (1, ref->code,
24805 ref->code == DW_MACRO_GNU_define_indirect
24806 ? "Define macro indirect"
24807 : "Undefine macro indirect");
24808 dw2_asm_output_data_uleb128 (ref->lineno, "At line number %lu",
24809 (unsigned long) ref->lineno);
24810 if (node->form == DW_FORM_strp)
24811 dw2_asm_output_offset (DWARF_OFFSET_SIZE, node->label,
24812 debug_str_section, "The macro: \"%s\"",
24813 ref->info);
24814 else
24815 dw2_asm_output_data_uleb128 (node->index, "The macro: \"%s\"",
24816 ref->info);
24817 break;
24818 case DW_MACRO_GNU_transparent_include:
24819 dw2_asm_output_data (1, ref->code, "Transparent include");
24820 ASM_GENERATE_INTERNAL_LABEL (label,
24821 DEBUG_MACRO_SECTION_LABEL, ref->lineno);
24822 dw2_asm_output_offset (DWARF_OFFSET_SIZE, label, NULL, NULL);
24823 break;
24824 default:
24825 fprintf (asm_out_file, "%s unrecognized macinfo code %lu\n",
24826 ASM_COMMENT_START, (unsigned long) ref->code);
24827 break;
24831 /* Attempt to make a sequence of define/undef macinfo ops shareable with
24832 other compilation unit .debug_macinfo sections. IDX is the first
24833 index of a define/undef, return the number of ops that should be
24834 emitted in a comdat .debug_macinfo section and emit
24835 a DW_MACRO_GNU_transparent_include entry referencing it.
24836 If the define/undef entry should be emitted normally, return 0. */
24838 static unsigned
24839 optimize_macinfo_range (unsigned int idx, vec<macinfo_entry, va_gc> *files,
24840 macinfo_hash_type **macinfo_htab)
24842 macinfo_entry *first, *second, *cur, *inc;
24843 char linebuf[sizeof (HOST_WIDE_INT) * 3 + 1];
24844 unsigned char checksum[16];
24845 struct md5_ctx ctx;
24846 char *grp_name, *tail;
24847 const char *base;
24848 unsigned int i, count, encoded_filename_len, linebuf_len;
24849 macinfo_entry **slot;
24851 first = &(*macinfo_table)[idx];
24852 second = &(*macinfo_table)[idx + 1];
24854 /* Optimize only if there are at least two consecutive define/undef ops,
24855 and either all of them are before first DW_MACINFO_start_file
24856 with lineno {0,1} (i.e. predefined macro block), or all of them are
24857 in some included header file. */
24858 if (second->code != DW_MACINFO_define && second->code != DW_MACINFO_undef)
24859 return 0;
24860 if (vec_safe_is_empty (files))
24862 if (first->lineno > 1 || second->lineno > 1)
24863 return 0;
24865 else if (first->lineno == 0)
24866 return 0;
24868 /* Find the last define/undef entry that can be grouped together
24869 with first and at the same time compute md5 checksum of their
24870 codes, linenumbers and strings. */
24871 md5_init_ctx (&ctx);
24872 for (i = idx; macinfo_table->iterate (i, &cur); i++)
24873 if (cur->code != DW_MACINFO_define && cur->code != DW_MACINFO_undef)
24874 break;
24875 else if (vec_safe_is_empty (files) && cur->lineno > 1)
24876 break;
24877 else
24879 unsigned char code = cur->code;
24880 md5_process_bytes (&code, 1, &ctx);
24881 checksum_uleb128 (cur->lineno, &ctx);
24882 md5_process_bytes (cur->info, strlen (cur->info) + 1, &ctx);
24884 md5_finish_ctx (&ctx, checksum);
24885 count = i - idx;
24887 /* From the containing include filename (if any) pick up just
24888 usable characters from its basename. */
24889 if (vec_safe_is_empty (files))
24890 base = "";
24891 else
24892 base = lbasename (files->last ().info);
24893 for (encoded_filename_len = 0, i = 0; base[i]; i++)
24894 if (ISIDNUM (base[i]) || base[i] == '.')
24895 encoded_filename_len++;
24896 /* Count . at the end. */
24897 if (encoded_filename_len)
24898 encoded_filename_len++;
24900 sprintf (linebuf, HOST_WIDE_INT_PRINT_UNSIGNED, first->lineno);
24901 linebuf_len = strlen (linebuf);
24903 /* The group name format is: wmN.[<encoded filename>.]<lineno>.<md5sum> */
24904 grp_name = XALLOCAVEC (char, 4 + encoded_filename_len + linebuf_len + 1
24905 + 16 * 2 + 1);
24906 memcpy (grp_name, DWARF_OFFSET_SIZE == 4 ? "wm4." : "wm8.", 4);
24907 tail = grp_name + 4;
24908 if (encoded_filename_len)
24910 for (i = 0; base[i]; i++)
24911 if (ISIDNUM (base[i]) || base[i] == '.')
24912 *tail++ = base[i];
24913 *tail++ = '.';
24915 memcpy (tail, linebuf, linebuf_len);
24916 tail += linebuf_len;
24917 *tail++ = '.';
24918 for (i = 0; i < 16; i++)
24919 sprintf (tail + i * 2, "%02x", checksum[i] & 0xff);
24921 /* Construct a macinfo_entry for DW_MACRO_GNU_transparent_include
24922 in the empty vector entry before the first define/undef. */
24923 inc = &(*macinfo_table)[idx - 1];
24924 inc->code = DW_MACRO_GNU_transparent_include;
24925 inc->lineno = 0;
24926 inc->info = ggc_strdup (grp_name);
24927 if (!*macinfo_htab)
24928 *macinfo_htab = new macinfo_hash_type (10);
24929 /* Avoid emitting duplicates. */
24930 slot = (*macinfo_htab)->find_slot (inc, INSERT);
24931 if (*slot != NULL)
24933 inc->code = 0;
24934 inc->info = NULL;
24935 /* If such an entry has been used before, just emit
24936 a DW_MACRO_GNU_transparent_include op. */
24937 inc = *slot;
24938 output_macinfo_op (inc);
24939 /* And clear all macinfo_entry in the range to avoid emitting them
24940 in the second pass. */
24941 for (i = idx; macinfo_table->iterate (i, &cur) && i < idx + count; i++)
24943 cur->code = 0;
24944 cur->info = NULL;
24947 else
24949 *slot = inc;
24950 inc->lineno = (*macinfo_htab)->elements ();
24951 output_macinfo_op (inc);
24953 return count;
24956 /* Save any strings needed by the macinfo table in the debug str
24957 table. All strings must be collected into the table by the time
24958 index_string is called. */
24960 static void
24961 save_macinfo_strings (void)
24963 unsigned len;
24964 unsigned i;
24965 macinfo_entry *ref;
24967 for (i = 0; macinfo_table && macinfo_table->iterate (i, &ref); i++)
24969 switch (ref->code)
24971 /* Match the logic in output_macinfo_op to decide on
24972 indirect strings. */
24973 case DW_MACINFO_define:
24974 case DW_MACINFO_undef:
24975 len = strlen (ref->info) + 1;
24976 if (!dwarf_strict
24977 && len > DWARF_OFFSET_SIZE
24978 && !DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
24979 && (debug_str_section->common.flags & SECTION_MERGE) != 0)
24980 set_indirect_string (find_AT_string (ref->info));
24981 break;
24982 case DW_MACRO_GNU_define_indirect:
24983 case DW_MACRO_GNU_undef_indirect:
24984 set_indirect_string (find_AT_string (ref->info));
24985 break;
24986 default:
24987 break;
24992 /* Output macinfo section(s). */
24994 static void
24995 output_macinfo (void)
24997 unsigned i;
24998 unsigned long length = vec_safe_length (macinfo_table);
24999 macinfo_entry *ref;
25000 vec<macinfo_entry, va_gc> *files = NULL;
25001 macinfo_hash_type *macinfo_htab = NULL;
25003 if (! length)
25004 return;
25006 /* output_macinfo* uses these interchangeably. */
25007 gcc_assert ((int) DW_MACINFO_define == (int) DW_MACRO_GNU_define
25008 && (int) DW_MACINFO_undef == (int) DW_MACRO_GNU_undef
25009 && (int) DW_MACINFO_start_file == (int) DW_MACRO_GNU_start_file
25010 && (int) DW_MACINFO_end_file == (int) DW_MACRO_GNU_end_file);
25012 /* For .debug_macro emit the section header. */
25013 if (!dwarf_strict)
25015 dw2_asm_output_data (2, 4, "DWARF macro version number");
25016 if (DWARF_OFFSET_SIZE == 8)
25017 dw2_asm_output_data (1, 3, "Flags: 64-bit, lineptr present");
25018 else
25019 dw2_asm_output_data (1, 2, "Flags: 32-bit, lineptr present");
25020 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
25021 (!dwarf_split_debug_info ? debug_line_section_label
25022 : debug_skeleton_line_section_label),
25023 debug_line_section, NULL);
25026 /* In the first loop, it emits the primary .debug_macinfo section
25027 and after each emitted op the macinfo_entry is cleared.
25028 If a longer range of define/undef ops can be optimized using
25029 DW_MACRO_GNU_transparent_include, the
25030 DW_MACRO_GNU_transparent_include op is emitted and kept in
25031 the vector before the first define/undef in the range and the
25032 whole range of define/undef ops is not emitted and kept. */
25033 for (i = 0; macinfo_table->iterate (i, &ref); i++)
25035 switch (ref->code)
25037 case DW_MACINFO_start_file:
25038 vec_safe_push (files, *ref);
25039 break;
25040 case DW_MACINFO_end_file:
25041 if (!vec_safe_is_empty (files))
25042 files->pop ();
25043 break;
25044 case DW_MACINFO_define:
25045 case DW_MACINFO_undef:
25046 if (!dwarf_strict
25047 && HAVE_COMDAT_GROUP
25048 && vec_safe_length (files) != 1
25049 && i > 0
25050 && i + 1 < length
25051 && (*macinfo_table)[i - 1].code == 0)
25053 unsigned count = optimize_macinfo_range (i, files, &macinfo_htab);
25054 if (count)
25056 i += count - 1;
25057 continue;
25060 break;
25061 case 0:
25062 /* A dummy entry may be inserted at the beginning to be able
25063 to optimize the whole block of predefined macros. */
25064 if (i == 0)
25065 continue;
25066 default:
25067 break;
25069 output_macinfo_op (ref);
25070 ref->info = NULL;
25071 ref->code = 0;
25074 if (!macinfo_htab)
25075 return;
25077 delete macinfo_htab;
25078 macinfo_htab = NULL;
25080 /* If any DW_MACRO_GNU_transparent_include were used, on those
25081 DW_MACRO_GNU_transparent_include entries terminate the
25082 current chain and switch to a new comdat .debug_macinfo
25083 section and emit the define/undef entries within it. */
25084 for (i = 0; macinfo_table->iterate (i, &ref); i++)
25085 switch (ref->code)
25087 case 0:
25088 continue;
25089 case DW_MACRO_GNU_transparent_include:
25091 char label[MAX_ARTIFICIAL_LABEL_BYTES];
25092 tree comdat_key = get_identifier (ref->info);
25093 /* Terminate the previous .debug_macinfo section. */
25094 dw2_asm_output_data (1, 0, "End compilation unit");
25095 targetm.asm_out.named_section (DEBUG_MACRO_SECTION,
25096 SECTION_DEBUG
25097 | SECTION_LINKONCE,
25098 comdat_key);
25099 ASM_GENERATE_INTERNAL_LABEL (label,
25100 DEBUG_MACRO_SECTION_LABEL,
25101 ref->lineno);
25102 ASM_OUTPUT_LABEL (asm_out_file, label);
25103 ref->code = 0;
25104 ref->info = NULL;
25105 dw2_asm_output_data (2, 4, "DWARF macro version number");
25106 if (DWARF_OFFSET_SIZE == 8)
25107 dw2_asm_output_data (1, 1, "Flags: 64-bit");
25108 else
25109 dw2_asm_output_data (1, 0, "Flags: 32-bit");
25111 break;
25112 case DW_MACINFO_define:
25113 case DW_MACINFO_undef:
25114 output_macinfo_op (ref);
25115 ref->code = 0;
25116 ref->info = NULL;
25117 break;
25118 default:
25119 gcc_unreachable ();
25123 /* Set up for Dwarf output at the start of compilation. */
25125 static void
25126 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
25128 /* This option is currently broken, see (PR53118 and PR46102). */
25129 if (flag_eliminate_dwarf2_dups
25130 && strstr (lang_hooks.name, "C++"))
25132 warning (0, "-feliminate-dwarf2-dups is broken for C++, ignoring");
25133 flag_eliminate_dwarf2_dups = 0;
25136 /* Allocate the file_table. */
25137 file_table = hash_table<dwarf_file_hasher>::create_ggc (50);
25139 #ifndef DWARF2_LINENO_DEBUGGING_INFO
25140 /* Allocate the decl_die_table. */
25141 decl_die_table = hash_table<decl_die_hasher>::create_ggc (10);
25143 /* Allocate the decl_loc_table. */
25144 decl_loc_table = hash_table<decl_loc_hasher>::create_ggc (10);
25146 /* Allocate the cached_dw_loc_list_table. */
25147 cached_dw_loc_list_table = hash_table<dw_loc_list_hasher>::create_ggc (10);
25149 /* Allocate the initial hunk of the decl_scope_table. */
25150 vec_alloc (decl_scope_table, 256);
25152 /* Allocate the initial hunk of the abbrev_die_table. */
25153 abbrev_die_table = ggc_cleared_vec_alloc<dw_die_ref>
25154 (ABBREV_DIE_TABLE_INCREMENT);
25155 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
25156 /* Zero-th entry is allocated, but unused. */
25157 abbrev_die_table_in_use = 1;
25159 /* Allocate the dwarf_proc_stack_usage_map. */
25160 dwarf_proc_stack_usage_map = new hash_map<dw_die_ref, int>;
25162 /* Allocate the pubtypes and pubnames vectors. */
25163 vec_alloc (pubname_table, 32);
25164 vec_alloc (pubtype_table, 32);
25166 vec_alloc (incomplete_types, 64);
25168 vec_alloc (used_rtx_array, 32);
25170 if (!dwarf_split_debug_info)
25172 debug_info_section = get_section (DEBUG_INFO_SECTION,
25173 SECTION_DEBUG, NULL);
25174 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
25175 SECTION_DEBUG, NULL);
25176 debug_loc_section = get_section (DEBUG_LOC_SECTION,
25177 SECTION_DEBUG, NULL);
25179 else
25181 debug_info_section = get_section (DEBUG_DWO_INFO_SECTION,
25182 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
25183 debug_abbrev_section = get_section (DEBUG_DWO_ABBREV_SECTION,
25184 SECTION_DEBUG | SECTION_EXCLUDE,
25185 NULL);
25186 debug_addr_section = get_section (DEBUG_ADDR_SECTION,
25187 SECTION_DEBUG, NULL);
25188 debug_skeleton_info_section = get_section (DEBUG_INFO_SECTION,
25189 SECTION_DEBUG, NULL);
25190 debug_skeleton_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
25191 SECTION_DEBUG, NULL);
25192 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_abbrev_section_label,
25193 DEBUG_SKELETON_ABBREV_SECTION_LABEL, 0);
25195 /* Somewhat confusing detail: The skeleton_[abbrev|info] sections stay in
25196 the main .o, but the skeleton_line goes into the split off dwo. */
25197 debug_skeleton_line_section
25198 = get_section (DEBUG_DWO_LINE_SECTION,
25199 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
25200 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_line_section_label,
25201 DEBUG_SKELETON_LINE_SECTION_LABEL, 0);
25202 debug_str_offsets_section = get_section (DEBUG_STR_OFFSETS_SECTION,
25203 SECTION_DEBUG | SECTION_EXCLUDE,
25204 NULL);
25205 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_info_section_label,
25206 DEBUG_SKELETON_INFO_SECTION_LABEL, 0);
25207 debug_loc_section = get_section (DEBUG_DWO_LOC_SECTION,
25208 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
25209 debug_str_dwo_section = get_section (DEBUG_STR_DWO_SECTION,
25210 DEBUG_STR_DWO_SECTION_FLAGS, NULL);
25212 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
25213 SECTION_DEBUG, NULL);
25214 debug_macinfo_section = get_section (dwarf_strict
25215 ? DEBUG_MACINFO_SECTION
25216 : DEBUG_MACRO_SECTION,
25217 DEBUG_MACRO_SECTION_FLAGS, NULL);
25218 debug_line_section = get_section (DEBUG_LINE_SECTION,
25219 SECTION_DEBUG, NULL);
25220 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
25221 SECTION_DEBUG, NULL);
25222 debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
25223 SECTION_DEBUG, NULL);
25224 debug_str_section = get_section (DEBUG_STR_SECTION,
25225 DEBUG_STR_SECTION_FLAGS, NULL);
25226 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
25227 SECTION_DEBUG, NULL);
25228 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
25229 SECTION_DEBUG, NULL);
25231 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
25232 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
25233 DEBUG_ABBREV_SECTION_LABEL, 0);
25234 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
25235 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
25236 COLD_TEXT_SECTION_LABEL, 0);
25237 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
25239 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
25240 DEBUG_INFO_SECTION_LABEL, 0);
25241 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
25242 DEBUG_LINE_SECTION_LABEL, 0);
25243 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
25244 DEBUG_RANGES_SECTION_LABEL, 0);
25245 ASM_GENERATE_INTERNAL_LABEL (debug_addr_section_label,
25246 DEBUG_ADDR_SECTION_LABEL, 0);
25247 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
25248 dwarf_strict
25249 ? DEBUG_MACINFO_SECTION_LABEL
25250 : DEBUG_MACRO_SECTION_LABEL, 0);
25251 ASM_GENERATE_INTERNAL_LABEL (loc_section_label, DEBUG_LOC_SECTION_LABEL, 0);
25253 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
25254 vec_alloc (macinfo_table, 64);
25256 switch_to_section (text_section);
25257 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
25258 #endif
25260 /* Make sure the line number table for .text always exists. */
25261 text_section_line_info = new_line_info_table ();
25262 text_section_line_info->end_label = text_end_label;
25264 #ifdef DWARF2_LINENO_DEBUGGING_INFO
25265 cur_line_info_table = text_section_line_info;
25266 #endif
25268 /* If front-ends already registered a main translation unit but we were not
25269 ready to perform the association, do this now. */
25270 if (main_translation_unit != NULL_TREE)
25271 equate_decl_number_to_die (main_translation_unit, comp_unit_die ());
25274 /* Called before compile () starts outputtting functions, variables
25275 and toplevel asms into assembly. */
25277 static void
25278 dwarf2out_assembly_start (void)
25280 if (HAVE_GAS_CFI_SECTIONS_DIRECTIVE
25281 && dwarf2out_do_cfi_asm ()
25282 && (!(flag_unwind_tables || flag_exceptions)
25283 || targetm_common.except_unwind_info (&global_options) != UI_DWARF2))
25284 fprintf (asm_out_file, "\t.cfi_sections\t.debug_frame\n");
25287 /* A helper function for dwarf2out_finish called through
25288 htab_traverse. Assign a string its index. All strings must be
25289 collected into the table by the time index_string is called,
25290 because the indexing code relies on htab_traverse to traverse nodes
25291 in the same order for each run. */
25294 index_string (indirect_string_node **h, unsigned int *index)
25296 indirect_string_node *node = *h;
25298 find_string_form (node);
25299 if (node->form == DW_FORM_GNU_str_index && node->refcount > 0)
25301 gcc_assert (node->index == NO_INDEX_ASSIGNED);
25302 node->index = *index;
25303 *index += 1;
25305 return 1;
25308 /* A helper function for output_indirect_strings called through
25309 htab_traverse. Output the offset to a string and update the
25310 current offset. */
25313 output_index_string_offset (indirect_string_node **h, unsigned int *offset)
25315 indirect_string_node *node = *h;
25317 if (node->form == DW_FORM_GNU_str_index && node->refcount > 0)
25319 /* Assert that this node has been assigned an index. */
25320 gcc_assert (node->index != NO_INDEX_ASSIGNED
25321 && node->index != NOT_INDEXED);
25322 dw2_asm_output_data (DWARF_OFFSET_SIZE, *offset,
25323 "indexed string 0x%x: %s", node->index, node->str);
25324 *offset += strlen (node->str) + 1;
25326 return 1;
25329 /* A helper function for dwarf2out_finish called through
25330 htab_traverse. Output the indexed string. */
25333 output_index_string (indirect_string_node **h, unsigned int *cur_idx)
25335 struct indirect_string_node *node = *h;
25337 if (node->form == DW_FORM_GNU_str_index && node->refcount > 0)
25339 /* Assert that the strings are output in the same order as their
25340 indexes were assigned. */
25341 gcc_assert (*cur_idx == node->index);
25342 assemble_string (node->str, strlen (node->str) + 1);
25343 *cur_idx += 1;
25345 return 1;
25348 /* A helper function for dwarf2out_finish called through
25349 htab_traverse. Emit one queued .debug_str string. */
25352 output_indirect_string (indirect_string_node **h, void *)
25354 struct indirect_string_node *node = *h;
25356 node->form = find_string_form (node);
25357 if (node->form == DW_FORM_strp && node->refcount > 0)
25359 ASM_OUTPUT_LABEL (asm_out_file, node->label);
25360 assemble_string (node->str, strlen (node->str) + 1);
25363 return 1;
25366 /* Output the indexed string table. */
25368 static void
25369 output_indirect_strings (void)
25371 switch_to_section (debug_str_section);
25372 if (!dwarf_split_debug_info)
25373 debug_str_hash->traverse<void *, output_indirect_string> (NULL);
25374 else
25376 unsigned int offset = 0;
25377 unsigned int cur_idx = 0;
25379 skeleton_debug_str_hash->traverse<void *, output_indirect_string> (NULL);
25381 switch_to_section (debug_str_offsets_section);
25382 debug_str_hash->traverse_noresize
25383 <unsigned int *, output_index_string_offset> (&offset);
25384 switch_to_section (debug_str_dwo_section);
25385 debug_str_hash->traverse_noresize<unsigned int *, output_index_string>
25386 (&cur_idx);
25390 /* Callback for htab_traverse to assign an index to an entry in the
25391 table, and to write that entry to the .debug_addr section. */
25394 output_addr_table_entry (addr_table_entry **slot, unsigned int *cur_index)
25396 addr_table_entry *entry = *slot;
25398 if (entry->refcount == 0)
25400 gcc_assert (entry->index == NO_INDEX_ASSIGNED
25401 || entry->index == NOT_INDEXED);
25402 return 1;
25405 gcc_assert (entry->index == *cur_index);
25406 (*cur_index)++;
25408 switch (entry->kind)
25410 case ate_kind_rtx:
25411 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, entry->addr.rtl,
25412 "0x%x", entry->index);
25413 break;
25414 case ate_kind_rtx_dtprel:
25415 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
25416 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
25417 DWARF2_ADDR_SIZE,
25418 entry->addr.rtl);
25419 fputc ('\n', asm_out_file);
25420 break;
25421 case ate_kind_label:
25422 dw2_asm_output_addr (DWARF2_ADDR_SIZE, entry->addr.label,
25423 "0x%x", entry->index);
25424 break;
25425 default:
25426 gcc_unreachable ();
25428 return 1;
25431 /* Produce the .debug_addr section. */
25433 static void
25434 output_addr_table (void)
25436 unsigned int index = 0;
25437 if (addr_index_table == NULL || addr_index_table->size () == 0)
25438 return;
25440 switch_to_section (debug_addr_section);
25441 addr_index_table
25442 ->traverse_noresize<unsigned int *, output_addr_table_entry> (&index);
25445 #if ENABLE_ASSERT_CHECKING
25446 /* Verify that all marks are clear. */
25448 static void
25449 verify_marks_clear (dw_die_ref die)
25451 dw_die_ref c;
25453 gcc_assert (! die->die_mark);
25454 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
25456 #endif /* ENABLE_ASSERT_CHECKING */
25458 /* Clear the marks for a die and its children.
25459 Be cool if the mark isn't set. */
25461 static void
25462 prune_unmark_dies (dw_die_ref die)
25464 dw_die_ref c;
25466 if (die->die_mark)
25467 die->die_mark = 0;
25468 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
25471 /* Given LOC that is referenced by a DIE we're marking as used, find all
25472 referenced DWARF procedures it references and mark them as used. */
25474 static void
25475 prune_unused_types_walk_loc_descr (dw_loc_descr_ref loc)
25477 for (; loc != NULL; loc = loc->dw_loc_next)
25478 switch (loc->dw_loc_opc)
25480 case DW_OP_call2:
25481 case DW_OP_call4:
25482 case DW_OP_call_ref:
25483 prune_unused_types_mark (loc->dw_loc_oprnd1.v.val_die_ref.die, 1);
25484 break;
25485 default:
25486 break;
25490 /* Given DIE that we're marking as used, find any other dies
25491 it references as attributes and mark them as used. */
25493 static void
25494 prune_unused_types_walk_attribs (dw_die_ref die)
25496 dw_attr_node *a;
25497 unsigned ix;
25499 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
25501 switch (AT_class (a))
25503 /* Make sure DWARF procedures referenced by location descriptions will
25504 get emitted. */
25505 case dw_val_class_loc:
25506 prune_unused_types_walk_loc_descr (AT_loc (a));
25507 break;
25508 case dw_val_class_loc_list:
25509 for (dw_loc_list_ref list = AT_loc_list (a);
25510 list != NULL;
25511 list = list->dw_loc_next)
25512 prune_unused_types_walk_loc_descr (list->expr);
25513 break;
25515 case dw_val_class_die_ref:
25516 /* A reference to another DIE.
25517 Make sure that it will get emitted.
25518 If it was broken out into a comdat group, don't follow it. */
25519 if (! AT_ref (a)->comdat_type_p
25520 || a->dw_attr == DW_AT_specification)
25521 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
25522 break;
25524 case dw_val_class_str:
25525 /* Set the string's refcount to 0 so that prune_unused_types_mark
25526 accounts properly for it. */
25527 a->dw_attr_val.v.val_str->refcount = 0;
25528 break;
25530 default:
25531 break;
25536 /* Mark the generic parameters and arguments children DIEs of DIE. */
25538 static void
25539 prune_unused_types_mark_generic_parms_dies (dw_die_ref die)
25541 dw_die_ref c;
25543 if (die == NULL || die->die_child == NULL)
25544 return;
25545 c = die->die_child;
25548 if (is_template_parameter (c))
25549 prune_unused_types_mark (c, 1);
25550 c = c->die_sib;
25551 } while (c && c != die->die_child);
25554 /* Mark DIE as being used. If DOKIDS is true, then walk down
25555 to DIE's children. */
25557 static void
25558 prune_unused_types_mark (dw_die_ref die, int dokids)
25560 dw_die_ref c;
25562 if (die->die_mark == 0)
25564 /* We haven't done this node yet. Mark it as used. */
25565 die->die_mark = 1;
25566 /* If this is the DIE of a generic type instantiation,
25567 mark the children DIEs that describe its generic parms and
25568 args. */
25569 prune_unused_types_mark_generic_parms_dies (die);
25571 /* We also have to mark its parents as used.
25572 (But we don't want to mark our parent's kids due to this,
25573 unless it is a class.) */
25574 if (die->die_parent)
25575 prune_unused_types_mark (die->die_parent,
25576 class_scope_p (die->die_parent));
25578 /* Mark any referenced nodes. */
25579 prune_unused_types_walk_attribs (die);
25581 /* If this node is a specification,
25582 also mark the definition, if it exists. */
25583 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
25584 prune_unused_types_mark (die->die_definition, 1);
25587 if (dokids && die->die_mark != 2)
25589 /* We need to walk the children, but haven't done so yet.
25590 Remember that we've walked the kids. */
25591 die->die_mark = 2;
25593 /* If this is an array type, we need to make sure our
25594 kids get marked, even if they're types. If we're
25595 breaking out types into comdat sections, do this
25596 for all type definitions. */
25597 if (die->die_tag == DW_TAG_array_type
25598 || (use_debug_types
25599 && is_type_die (die) && ! is_declaration_die (die)))
25600 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
25601 else
25602 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
25606 /* For local classes, look if any static member functions were emitted
25607 and if so, mark them. */
25609 static void
25610 prune_unused_types_walk_local_classes (dw_die_ref die)
25612 dw_die_ref c;
25614 if (die->die_mark == 2)
25615 return;
25617 switch (die->die_tag)
25619 case DW_TAG_structure_type:
25620 case DW_TAG_union_type:
25621 case DW_TAG_class_type:
25622 break;
25624 case DW_TAG_subprogram:
25625 if (!get_AT_flag (die, DW_AT_declaration)
25626 || die->die_definition != NULL)
25627 prune_unused_types_mark (die, 1);
25628 return;
25630 default:
25631 return;
25634 /* Mark children. */
25635 FOR_EACH_CHILD (die, c, prune_unused_types_walk_local_classes (c));
25638 /* Walk the tree DIE and mark types that we actually use. */
25640 static void
25641 prune_unused_types_walk (dw_die_ref die)
25643 dw_die_ref c;
25645 /* Don't do anything if this node is already marked and
25646 children have been marked as well. */
25647 if (die->die_mark == 2)
25648 return;
25650 switch (die->die_tag)
25652 case DW_TAG_structure_type:
25653 case DW_TAG_union_type:
25654 case DW_TAG_class_type:
25655 if (die->die_perennial_p)
25656 break;
25658 for (c = die->die_parent; c; c = c->die_parent)
25659 if (c->die_tag == DW_TAG_subprogram)
25660 break;
25662 /* Finding used static member functions inside of classes
25663 is needed just for local classes, because for other classes
25664 static member function DIEs with DW_AT_specification
25665 are emitted outside of the DW_TAG_*_type. If we ever change
25666 it, we'd need to call this even for non-local classes. */
25667 if (c)
25668 prune_unused_types_walk_local_classes (die);
25670 /* It's a type node --- don't mark it. */
25671 return;
25673 case DW_TAG_const_type:
25674 case DW_TAG_packed_type:
25675 case DW_TAG_pointer_type:
25676 case DW_TAG_reference_type:
25677 case DW_TAG_rvalue_reference_type:
25678 case DW_TAG_volatile_type:
25679 case DW_TAG_typedef:
25680 case DW_TAG_array_type:
25681 case DW_TAG_interface_type:
25682 case DW_TAG_friend:
25683 case DW_TAG_enumeration_type:
25684 case DW_TAG_subroutine_type:
25685 case DW_TAG_string_type:
25686 case DW_TAG_set_type:
25687 case DW_TAG_subrange_type:
25688 case DW_TAG_ptr_to_member_type:
25689 case DW_TAG_file_type:
25690 /* Type nodes are useful only when other DIEs reference them --- don't
25691 mark them. */
25692 /* FALLTHROUGH */
25694 case DW_TAG_dwarf_procedure:
25695 /* Likewise for DWARF procedures. */
25697 if (die->die_perennial_p)
25698 break;
25700 return;
25702 default:
25703 /* Mark everything else. */
25704 break;
25707 if (die->die_mark == 0)
25709 die->die_mark = 1;
25711 /* Now, mark any dies referenced from here. */
25712 prune_unused_types_walk_attribs (die);
25715 die->die_mark = 2;
25717 /* Mark children. */
25718 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
25721 /* Increment the string counts on strings referred to from DIE's
25722 attributes. */
25724 static void
25725 prune_unused_types_update_strings (dw_die_ref die)
25727 dw_attr_node *a;
25728 unsigned ix;
25730 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
25731 if (AT_class (a) == dw_val_class_str)
25733 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
25734 s->refcount++;
25735 /* Avoid unnecessarily putting strings that are used less than
25736 twice in the hash table. */
25737 if (s->refcount
25738 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
25740 indirect_string_node **slot
25741 = debug_str_hash->find_slot_with_hash (s->str,
25742 htab_hash_string (s->str),
25743 INSERT);
25744 gcc_assert (*slot == NULL);
25745 *slot = s;
25750 /* Remove from the tree DIE any dies that aren't marked. */
25752 static void
25753 prune_unused_types_prune (dw_die_ref die)
25755 dw_die_ref c;
25757 gcc_assert (die->die_mark);
25758 prune_unused_types_update_strings (die);
25760 if (! die->die_child)
25761 return;
25763 c = die->die_child;
25764 do {
25765 dw_die_ref prev = c;
25766 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
25767 if (c == die->die_child)
25769 /* No marked children between 'prev' and the end of the list. */
25770 if (prev == c)
25771 /* No marked children at all. */
25772 die->die_child = NULL;
25773 else
25775 prev->die_sib = c->die_sib;
25776 die->die_child = prev;
25778 return;
25781 if (c != prev->die_sib)
25782 prev->die_sib = c;
25783 prune_unused_types_prune (c);
25784 } while (c != die->die_child);
25787 /* Remove dies representing declarations that we never use. */
25789 static void
25790 prune_unused_types (void)
25792 unsigned int i;
25793 limbo_die_node *node;
25794 comdat_type_node *ctnode;
25795 pubname_entry *pub;
25796 dw_die_ref base_type;
25798 #if ENABLE_ASSERT_CHECKING
25799 /* All the marks should already be clear. */
25800 verify_marks_clear (comp_unit_die ());
25801 for (node = limbo_die_list; node; node = node->next)
25802 verify_marks_clear (node->die);
25803 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
25804 verify_marks_clear (ctnode->root_die);
25805 #endif /* ENABLE_ASSERT_CHECKING */
25807 /* Mark types that are used in global variables. */
25808 premark_types_used_by_global_vars ();
25810 /* Set the mark on nodes that are actually used. */
25811 prune_unused_types_walk (comp_unit_die ());
25812 for (node = limbo_die_list; node; node = node->next)
25813 prune_unused_types_walk (node->die);
25814 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
25816 prune_unused_types_walk (ctnode->root_die);
25817 prune_unused_types_mark (ctnode->type_die, 1);
25820 /* Also set the mark on nodes referenced from the pubname_table. Enumerators
25821 are unusual in that they are pubnames that are the children of pubtypes.
25822 They should only be marked via their parent DW_TAG_enumeration_type die,
25823 not as roots in themselves. */
25824 FOR_EACH_VEC_ELT (*pubname_table, i, pub)
25825 if (pub->die->die_tag != DW_TAG_enumerator)
25826 prune_unused_types_mark (pub->die, 1);
25827 for (i = 0; base_types.iterate (i, &base_type); i++)
25828 prune_unused_types_mark (base_type, 1);
25830 if (debug_str_hash)
25831 debug_str_hash->empty ();
25832 if (skeleton_debug_str_hash)
25833 skeleton_debug_str_hash->empty ();
25834 prune_unused_types_prune (comp_unit_die ());
25835 for (limbo_die_node **pnode = &limbo_die_list; *pnode; )
25837 node = *pnode;
25838 if (!node->die->die_mark)
25839 *pnode = node->next;
25840 else
25842 prune_unused_types_prune (node->die);
25843 pnode = &node->next;
25846 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
25847 prune_unused_types_prune (ctnode->root_die);
25849 /* Leave the marks clear. */
25850 prune_unmark_dies (comp_unit_die ());
25851 for (node = limbo_die_list; node; node = node->next)
25852 prune_unmark_dies (node->die);
25853 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
25854 prune_unmark_dies (ctnode->root_die);
25857 /* Set the parameter to true if there are any relative pathnames in
25858 the file table. */
25860 file_table_relative_p (dwarf_file_data **slot, bool *p)
25862 struct dwarf_file_data *d = *slot;
25863 if (!IS_ABSOLUTE_PATH (d->filename))
25865 *p = true;
25866 return 0;
25868 return 1;
25871 /* Helpers to manipulate hash table of comdat type units. */
25873 struct comdat_type_hasher : nofree_ptr_hash <comdat_type_node>
25875 static inline hashval_t hash (const comdat_type_node *);
25876 static inline bool equal (const comdat_type_node *, const comdat_type_node *);
25879 inline hashval_t
25880 comdat_type_hasher::hash (const comdat_type_node *type_node)
25882 hashval_t h;
25883 memcpy (&h, type_node->signature, sizeof (h));
25884 return h;
25887 inline bool
25888 comdat_type_hasher::equal (const comdat_type_node *type_node_1,
25889 const comdat_type_node *type_node_2)
25891 return (! memcmp (type_node_1->signature, type_node_2->signature,
25892 DWARF_TYPE_SIGNATURE_SIZE));
25895 /* Move a DW_AT_{,MIPS_}linkage_name attribute just added to dw_die_ref
25896 to the location it would have been added, should we know its
25897 DECL_ASSEMBLER_NAME when we added other attributes. This will
25898 probably improve compactness of debug info, removing equivalent
25899 abbrevs, and hide any differences caused by deferring the
25900 computation of the assembler name, triggered by e.g. PCH. */
25902 static inline void
25903 move_linkage_attr (dw_die_ref die)
25905 unsigned ix = vec_safe_length (die->die_attr);
25906 dw_attr_node linkage = (*die->die_attr)[ix - 1];
25908 gcc_assert (linkage.dw_attr == DW_AT_linkage_name
25909 || linkage.dw_attr == DW_AT_MIPS_linkage_name);
25911 while (--ix > 0)
25913 dw_attr_node *prev = &(*die->die_attr)[ix - 1];
25915 if (prev->dw_attr == DW_AT_decl_line || prev->dw_attr == DW_AT_name)
25916 break;
25919 if (ix != vec_safe_length (die->die_attr) - 1)
25921 die->die_attr->pop ();
25922 die->die_attr->quick_insert (ix, linkage);
25926 /* Helper function for resolve_addr, mark DW_TAG_base_type nodes
25927 referenced from typed stack ops and count how often they are used. */
25929 static void
25930 mark_base_types (dw_loc_descr_ref loc)
25932 dw_die_ref base_type = NULL;
25934 for (; loc; loc = loc->dw_loc_next)
25936 switch (loc->dw_loc_opc)
25938 case DW_OP_GNU_regval_type:
25939 case DW_OP_GNU_deref_type:
25940 base_type = loc->dw_loc_oprnd2.v.val_die_ref.die;
25941 break;
25942 case DW_OP_GNU_convert:
25943 case DW_OP_GNU_reinterpret:
25944 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
25945 continue;
25946 /* FALLTHRU */
25947 case DW_OP_GNU_const_type:
25948 base_type = loc->dw_loc_oprnd1.v.val_die_ref.die;
25949 break;
25950 case DW_OP_GNU_entry_value:
25951 mark_base_types (loc->dw_loc_oprnd1.v.val_loc);
25952 continue;
25953 default:
25954 continue;
25956 gcc_assert (base_type->die_parent == comp_unit_die ());
25957 if (base_type->die_mark)
25958 base_type->die_mark++;
25959 else
25961 base_types.safe_push (base_type);
25962 base_type->die_mark = 1;
25967 /* Comparison function for sorting marked base types. */
25969 static int
25970 base_type_cmp (const void *x, const void *y)
25972 dw_die_ref dx = *(const dw_die_ref *) x;
25973 dw_die_ref dy = *(const dw_die_ref *) y;
25974 unsigned int byte_size1, byte_size2;
25975 unsigned int encoding1, encoding2;
25976 if (dx->die_mark > dy->die_mark)
25977 return -1;
25978 if (dx->die_mark < dy->die_mark)
25979 return 1;
25980 byte_size1 = get_AT_unsigned (dx, DW_AT_byte_size);
25981 byte_size2 = get_AT_unsigned (dy, DW_AT_byte_size);
25982 if (byte_size1 < byte_size2)
25983 return 1;
25984 if (byte_size1 > byte_size2)
25985 return -1;
25986 encoding1 = get_AT_unsigned (dx, DW_AT_encoding);
25987 encoding2 = get_AT_unsigned (dy, DW_AT_encoding);
25988 if (encoding1 < encoding2)
25989 return 1;
25990 if (encoding1 > encoding2)
25991 return -1;
25992 return 0;
25995 /* Move base types marked by mark_base_types as early as possible
25996 in the CU, sorted by decreasing usage count both to make the
25997 uleb128 references as small as possible and to make sure they
25998 will have die_offset already computed by calc_die_sizes when
25999 sizes of typed stack loc ops is computed. */
26001 static void
26002 move_marked_base_types (void)
26004 unsigned int i;
26005 dw_die_ref base_type, die, c;
26007 if (base_types.is_empty ())
26008 return;
26010 /* Sort by decreasing usage count, they will be added again in that
26011 order later on. */
26012 base_types.qsort (base_type_cmp);
26013 die = comp_unit_die ();
26014 c = die->die_child;
26017 dw_die_ref prev = c;
26018 c = c->die_sib;
26019 while (c->die_mark)
26021 remove_child_with_prev (c, prev);
26022 /* As base types got marked, there must be at least
26023 one node other than DW_TAG_base_type. */
26024 gcc_assert (c != c->die_sib);
26025 c = c->die_sib;
26028 while (c != die->die_child);
26029 gcc_assert (die->die_child);
26030 c = die->die_child;
26031 for (i = 0; base_types.iterate (i, &base_type); i++)
26033 base_type->die_mark = 0;
26034 base_type->die_sib = c->die_sib;
26035 c->die_sib = base_type;
26036 c = base_type;
26040 /* Helper function for resolve_addr, attempt to resolve
26041 one CONST_STRING, return true if successful. Similarly verify that
26042 SYMBOL_REFs refer to variables emitted in the current CU. */
26044 static bool
26045 resolve_one_addr (rtx *addr)
26047 rtx rtl = *addr;
26049 if (GET_CODE (rtl) == CONST_STRING)
26051 size_t len = strlen (XSTR (rtl, 0)) + 1;
26052 tree t = build_string (len, XSTR (rtl, 0));
26053 tree tlen = size_int (len - 1);
26054 TREE_TYPE (t)
26055 = build_array_type (char_type_node, build_index_type (tlen));
26056 rtl = lookup_constant_def (t);
26057 if (!rtl || !MEM_P (rtl))
26058 return false;
26059 rtl = XEXP (rtl, 0);
26060 if (GET_CODE (rtl) == SYMBOL_REF
26061 && SYMBOL_REF_DECL (rtl)
26062 && !TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl)))
26063 return false;
26064 vec_safe_push (used_rtx_array, rtl);
26065 *addr = rtl;
26066 return true;
26069 if (GET_CODE (rtl) == SYMBOL_REF
26070 && SYMBOL_REF_DECL (rtl))
26072 if (TREE_CONSTANT_POOL_ADDRESS_P (rtl))
26074 if (!TREE_ASM_WRITTEN (DECL_INITIAL (SYMBOL_REF_DECL (rtl))))
26075 return false;
26077 else if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl)))
26078 return false;
26081 if (GET_CODE (rtl) == CONST)
26083 subrtx_ptr_iterator::array_type array;
26084 FOR_EACH_SUBRTX_PTR (iter, array, &XEXP (rtl, 0), ALL)
26085 if (!resolve_one_addr (*iter))
26086 return false;
26089 return true;
26092 /* For STRING_CST, return SYMBOL_REF of its constant pool entry,
26093 if possible, and create DW_TAG_dwarf_procedure that can be referenced
26094 from DW_OP_GNU_implicit_pointer if the string hasn't been seen yet. */
26096 static rtx
26097 string_cst_pool_decl (tree t)
26099 rtx rtl = output_constant_def (t, 1);
26100 unsigned char *array;
26101 dw_loc_descr_ref l;
26102 tree decl;
26103 size_t len;
26104 dw_die_ref ref;
26106 if (!rtl || !MEM_P (rtl))
26107 return NULL_RTX;
26108 rtl = XEXP (rtl, 0);
26109 if (GET_CODE (rtl) != SYMBOL_REF
26110 || SYMBOL_REF_DECL (rtl) == NULL_TREE)
26111 return NULL_RTX;
26113 decl = SYMBOL_REF_DECL (rtl);
26114 if (!lookup_decl_die (decl))
26116 len = TREE_STRING_LENGTH (t);
26117 vec_safe_push (used_rtx_array, rtl);
26118 ref = new_die (DW_TAG_dwarf_procedure, comp_unit_die (), decl);
26119 array = ggc_vec_alloc<unsigned char> (len);
26120 memcpy (array, TREE_STRING_POINTER (t), len);
26121 l = new_loc_descr (DW_OP_implicit_value, len, 0);
26122 l->dw_loc_oprnd2.val_class = dw_val_class_vec;
26123 l->dw_loc_oprnd2.v.val_vec.length = len;
26124 l->dw_loc_oprnd2.v.val_vec.elt_size = 1;
26125 l->dw_loc_oprnd2.v.val_vec.array = array;
26126 add_AT_loc (ref, DW_AT_location, l);
26127 equate_decl_number_to_die (decl, ref);
26129 return rtl;
26132 /* Helper function of resolve_addr_in_expr. LOC is
26133 a DW_OP_addr followed by DW_OP_stack_value, either at the start
26134 of exprloc or after DW_OP_{,bit_}piece, and val_addr can't be
26135 resolved. Replace it (both DW_OP_addr and DW_OP_stack_value)
26136 with DW_OP_GNU_implicit_pointer if possible
26137 and return true, if unsuccessful, return false. */
26139 static bool
26140 optimize_one_addr_into_implicit_ptr (dw_loc_descr_ref loc)
26142 rtx rtl = loc->dw_loc_oprnd1.v.val_addr;
26143 HOST_WIDE_INT offset = 0;
26144 dw_die_ref ref = NULL;
26145 tree decl;
26147 if (GET_CODE (rtl) == CONST
26148 && GET_CODE (XEXP (rtl, 0)) == PLUS
26149 && CONST_INT_P (XEXP (XEXP (rtl, 0), 1)))
26151 offset = INTVAL (XEXP (XEXP (rtl, 0), 1));
26152 rtl = XEXP (XEXP (rtl, 0), 0);
26154 if (GET_CODE (rtl) == CONST_STRING)
26156 size_t len = strlen (XSTR (rtl, 0)) + 1;
26157 tree t = build_string (len, XSTR (rtl, 0));
26158 tree tlen = size_int (len - 1);
26160 TREE_TYPE (t)
26161 = build_array_type (char_type_node, build_index_type (tlen));
26162 rtl = string_cst_pool_decl (t);
26163 if (!rtl)
26164 return false;
26166 if (GET_CODE (rtl) == SYMBOL_REF && SYMBOL_REF_DECL (rtl))
26168 decl = SYMBOL_REF_DECL (rtl);
26169 if (TREE_CODE (decl) == VAR_DECL && !DECL_EXTERNAL (decl))
26171 ref = lookup_decl_die (decl);
26172 if (ref && (get_AT (ref, DW_AT_location)
26173 || get_AT (ref, DW_AT_const_value)))
26175 loc->dw_loc_opc = DW_OP_GNU_implicit_pointer;
26176 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
26177 loc->dw_loc_oprnd1.val_entry = NULL;
26178 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
26179 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
26180 loc->dw_loc_next = loc->dw_loc_next->dw_loc_next;
26181 loc->dw_loc_oprnd2.v.val_int = offset;
26182 return true;
26186 return false;
26189 /* Helper function for resolve_addr, handle one location
26190 expression, return false if at least one CONST_STRING or SYMBOL_REF in
26191 the location list couldn't be resolved. */
26193 static bool
26194 resolve_addr_in_expr (dw_loc_descr_ref loc)
26196 dw_loc_descr_ref keep = NULL;
26197 for (dw_loc_descr_ref prev = NULL; loc; prev = loc, loc = loc->dw_loc_next)
26198 switch (loc->dw_loc_opc)
26200 case DW_OP_addr:
26201 if (!resolve_one_addr (&loc->dw_loc_oprnd1.v.val_addr))
26203 if ((prev == NULL
26204 || prev->dw_loc_opc == DW_OP_piece
26205 || prev->dw_loc_opc == DW_OP_bit_piece)
26206 && loc->dw_loc_next
26207 && loc->dw_loc_next->dw_loc_opc == DW_OP_stack_value
26208 && !dwarf_strict
26209 && optimize_one_addr_into_implicit_ptr (loc))
26210 break;
26211 return false;
26213 break;
26214 case DW_OP_GNU_addr_index:
26215 case DW_OP_GNU_const_index:
26216 if (loc->dw_loc_opc == DW_OP_GNU_addr_index
26217 || (loc->dw_loc_opc == DW_OP_GNU_const_index && loc->dtprel))
26219 rtx rtl = loc->dw_loc_oprnd1.val_entry->addr.rtl;
26220 if (!resolve_one_addr (&rtl))
26221 return false;
26222 remove_addr_table_entry (loc->dw_loc_oprnd1.val_entry);
26223 loc->dw_loc_oprnd1.val_entry =
26224 add_addr_table_entry (rtl, ate_kind_rtx);
26226 break;
26227 case DW_OP_const4u:
26228 case DW_OP_const8u:
26229 if (loc->dtprel
26230 && !resolve_one_addr (&loc->dw_loc_oprnd1.v.val_addr))
26231 return false;
26232 break;
26233 case DW_OP_plus_uconst:
26234 if (size_of_loc_descr (loc)
26235 > size_of_int_loc_descriptor (loc->dw_loc_oprnd1.v.val_unsigned)
26237 && loc->dw_loc_oprnd1.v.val_unsigned > 0)
26239 dw_loc_descr_ref repl
26240 = int_loc_descriptor (loc->dw_loc_oprnd1.v.val_unsigned);
26241 add_loc_descr (&repl, new_loc_descr (DW_OP_plus, 0, 0));
26242 add_loc_descr (&repl, loc->dw_loc_next);
26243 *loc = *repl;
26245 break;
26246 case DW_OP_implicit_value:
26247 if (loc->dw_loc_oprnd2.val_class == dw_val_class_addr
26248 && !resolve_one_addr (&loc->dw_loc_oprnd2.v.val_addr))
26249 return false;
26250 break;
26251 case DW_OP_GNU_implicit_pointer:
26252 case DW_OP_GNU_parameter_ref:
26253 if (loc->dw_loc_oprnd1.val_class == dw_val_class_decl_ref)
26255 dw_die_ref ref
26256 = lookup_decl_die (loc->dw_loc_oprnd1.v.val_decl_ref);
26257 if (ref == NULL)
26258 return false;
26259 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
26260 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
26261 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
26263 break;
26264 case DW_OP_GNU_const_type:
26265 case DW_OP_GNU_regval_type:
26266 case DW_OP_GNU_deref_type:
26267 case DW_OP_GNU_convert:
26268 case DW_OP_GNU_reinterpret:
26269 while (loc->dw_loc_next
26270 && loc->dw_loc_next->dw_loc_opc == DW_OP_GNU_convert)
26272 dw_die_ref base1, base2;
26273 unsigned enc1, enc2, size1, size2;
26274 if (loc->dw_loc_opc == DW_OP_GNU_regval_type
26275 || loc->dw_loc_opc == DW_OP_GNU_deref_type)
26276 base1 = loc->dw_loc_oprnd2.v.val_die_ref.die;
26277 else if (loc->dw_loc_oprnd1.val_class
26278 == dw_val_class_unsigned_const)
26279 break;
26280 else
26281 base1 = loc->dw_loc_oprnd1.v.val_die_ref.die;
26282 if (loc->dw_loc_next->dw_loc_oprnd1.val_class
26283 == dw_val_class_unsigned_const)
26284 break;
26285 base2 = loc->dw_loc_next->dw_loc_oprnd1.v.val_die_ref.die;
26286 gcc_assert (base1->die_tag == DW_TAG_base_type
26287 && base2->die_tag == DW_TAG_base_type);
26288 enc1 = get_AT_unsigned (base1, DW_AT_encoding);
26289 enc2 = get_AT_unsigned (base2, DW_AT_encoding);
26290 size1 = get_AT_unsigned (base1, DW_AT_byte_size);
26291 size2 = get_AT_unsigned (base2, DW_AT_byte_size);
26292 if (size1 == size2
26293 && (((enc1 == DW_ATE_unsigned || enc1 == DW_ATE_signed)
26294 && (enc2 == DW_ATE_unsigned || enc2 == DW_ATE_signed)
26295 && loc != keep)
26296 || enc1 == enc2))
26298 /* Optimize away next DW_OP_GNU_convert after
26299 adjusting LOC's base type die reference. */
26300 if (loc->dw_loc_opc == DW_OP_GNU_regval_type
26301 || loc->dw_loc_opc == DW_OP_GNU_deref_type)
26302 loc->dw_loc_oprnd2.v.val_die_ref.die = base2;
26303 else
26304 loc->dw_loc_oprnd1.v.val_die_ref.die = base2;
26305 loc->dw_loc_next = loc->dw_loc_next->dw_loc_next;
26306 continue;
26308 /* Don't change integer DW_OP_GNU_convert after e.g. floating
26309 point typed stack entry. */
26310 else if (enc1 != DW_ATE_unsigned && enc1 != DW_ATE_signed)
26311 keep = loc->dw_loc_next;
26312 break;
26314 break;
26315 default:
26316 break;
26318 return true;
26321 /* Helper function of resolve_addr. DIE had DW_AT_location of
26322 DW_OP_addr alone, which referred to DECL in DW_OP_addr's operand
26323 and DW_OP_addr couldn't be resolved. resolve_addr has already
26324 removed the DW_AT_location attribute. This function attempts to
26325 add a new DW_AT_location attribute with DW_OP_GNU_implicit_pointer
26326 to it or DW_AT_const_value attribute, if possible. */
26328 static void
26329 optimize_location_into_implicit_ptr (dw_die_ref die, tree decl)
26331 if (TREE_CODE (decl) != VAR_DECL
26332 || lookup_decl_die (decl) != die
26333 || DECL_EXTERNAL (decl)
26334 || !TREE_STATIC (decl)
26335 || DECL_INITIAL (decl) == NULL_TREE
26336 || DECL_P (DECL_INITIAL (decl))
26337 || get_AT (die, DW_AT_const_value))
26338 return;
26340 tree init = DECL_INITIAL (decl);
26341 HOST_WIDE_INT offset = 0;
26342 /* For variables that have been optimized away and thus
26343 don't have a memory location, see if we can emit
26344 DW_AT_const_value instead. */
26345 if (tree_add_const_value_attribute (die, init))
26346 return;
26347 if (dwarf_strict)
26348 return;
26349 /* If init is ADDR_EXPR or POINTER_PLUS_EXPR of ADDR_EXPR,
26350 and ADDR_EXPR refers to a decl that has DW_AT_location or
26351 DW_AT_const_value (but isn't addressable, otherwise
26352 resolving the original DW_OP_addr wouldn't fail), see if
26353 we can add DW_OP_GNU_implicit_pointer. */
26354 STRIP_NOPS (init);
26355 if (TREE_CODE (init) == POINTER_PLUS_EXPR
26356 && tree_fits_shwi_p (TREE_OPERAND (init, 1)))
26358 offset = tree_to_shwi (TREE_OPERAND (init, 1));
26359 init = TREE_OPERAND (init, 0);
26360 STRIP_NOPS (init);
26362 if (TREE_CODE (init) != ADDR_EXPR)
26363 return;
26364 if ((TREE_CODE (TREE_OPERAND (init, 0)) == STRING_CST
26365 && !TREE_ASM_WRITTEN (TREE_OPERAND (init, 0)))
26366 || (TREE_CODE (TREE_OPERAND (init, 0)) == VAR_DECL
26367 && !DECL_EXTERNAL (TREE_OPERAND (init, 0))
26368 && TREE_OPERAND (init, 0) != decl))
26370 dw_die_ref ref;
26371 dw_loc_descr_ref l;
26373 if (TREE_CODE (TREE_OPERAND (init, 0)) == STRING_CST)
26375 rtx rtl = string_cst_pool_decl (TREE_OPERAND (init, 0));
26376 if (!rtl)
26377 return;
26378 decl = SYMBOL_REF_DECL (rtl);
26380 else
26381 decl = TREE_OPERAND (init, 0);
26382 ref = lookup_decl_die (decl);
26383 if (ref == NULL
26384 || (!get_AT (ref, DW_AT_location)
26385 && !get_AT (ref, DW_AT_const_value)))
26386 return;
26387 l = new_loc_descr (DW_OP_GNU_implicit_pointer, 0, offset);
26388 l->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
26389 l->dw_loc_oprnd1.v.val_die_ref.die = ref;
26390 l->dw_loc_oprnd1.v.val_die_ref.external = 0;
26391 add_AT_loc (die, DW_AT_location, l);
26395 /* Resolve DW_OP_addr and DW_AT_const_value CONST_STRING arguments to
26396 an address in .rodata section if the string literal is emitted there,
26397 or remove the containing location list or replace DW_AT_const_value
26398 with DW_AT_location and empty location expression, if it isn't found
26399 in .rodata. Similarly for SYMBOL_REFs, keep only those that refer
26400 to something that has been emitted in the current CU. */
26402 static void
26403 resolve_addr (dw_die_ref die)
26405 dw_die_ref c;
26406 dw_attr_node *a;
26407 dw_loc_list_ref *curr, *start, loc;
26408 unsigned ix;
26410 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
26411 switch (AT_class (a))
26413 case dw_val_class_loc_list:
26414 start = curr = AT_loc_list_ptr (a);
26415 loc = *curr;
26416 gcc_assert (loc);
26417 /* The same list can be referenced more than once. See if we have
26418 already recorded the result from a previous pass. */
26419 if (loc->replaced)
26420 *curr = loc->dw_loc_next;
26421 else if (!loc->resolved_addr)
26423 /* As things stand, we do not expect or allow one die to
26424 reference a suffix of another die's location list chain.
26425 References must be identical or completely separate.
26426 There is therefore no need to cache the result of this
26427 pass on any list other than the first; doing so
26428 would lead to unnecessary writes. */
26429 while (*curr)
26431 gcc_assert (!(*curr)->replaced && !(*curr)->resolved_addr);
26432 if (!resolve_addr_in_expr ((*curr)->expr))
26434 dw_loc_list_ref next = (*curr)->dw_loc_next;
26435 dw_loc_descr_ref l = (*curr)->expr;
26437 if (next && (*curr)->ll_symbol)
26439 gcc_assert (!next->ll_symbol);
26440 next->ll_symbol = (*curr)->ll_symbol;
26442 if (dwarf_split_debug_info)
26443 remove_loc_list_addr_table_entries (l);
26444 *curr = next;
26446 else
26448 mark_base_types ((*curr)->expr);
26449 curr = &(*curr)->dw_loc_next;
26452 if (loc == *start)
26453 loc->resolved_addr = 1;
26454 else
26456 loc->replaced = 1;
26457 loc->dw_loc_next = *start;
26460 if (!*start)
26462 remove_AT (die, a->dw_attr);
26463 ix--;
26465 break;
26466 case dw_val_class_loc:
26468 dw_loc_descr_ref l = AT_loc (a);
26469 /* For -gdwarf-2 don't attempt to optimize
26470 DW_AT_data_member_location containing
26471 DW_OP_plus_uconst - older consumers might
26472 rely on it being that op instead of a more complex,
26473 but shorter, location description. */
26474 if ((dwarf_version > 2
26475 || a->dw_attr != DW_AT_data_member_location
26476 || l == NULL
26477 || l->dw_loc_opc != DW_OP_plus_uconst
26478 || l->dw_loc_next != NULL)
26479 && !resolve_addr_in_expr (l))
26481 if (dwarf_split_debug_info)
26482 remove_loc_list_addr_table_entries (l);
26483 if (l != NULL
26484 && l->dw_loc_next == NULL
26485 && l->dw_loc_opc == DW_OP_addr
26486 && GET_CODE (l->dw_loc_oprnd1.v.val_addr) == SYMBOL_REF
26487 && SYMBOL_REF_DECL (l->dw_loc_oprnd1.v.val_addr)
26488 && a->dw_attr == DW_AT_location)
26490 tree decl = SYMBOL_REF_DECL (l->dw_loc_oprnd1.v.val_addr);
26491 remove_AT (die, a->dw_attr);
26492 ix--;
26493 optimize_location_into_implicit_ptr (die, decl);
26494 break;
26496 remove_AT (die, a->dw_attr);
26497 ix--;
26499 else
26500 mark_base_types (l);
26502 break;
26503 case dw_val_class_addr:
26504 if (a->dw_attr == DW_AT_const_value
26505 && !resolve_one_addr (&a->dw_attr_val.v.val_addr))
26507 if (AT_index (a) != NOT_INDEXED)
26508 remove_addr_table_entry (a->dw_attr_val.val_entry);
26509 remove_AT (die, a->dw_attr);
26510 ix--;
26512 if (die->die_tag == DW_TAG_GNU_call_site
26513 && a->dw_attr == DW_AT_abstract_origin)
26515 tree tdecl = SYMBOL_REF_DECL (a->dw_attr_val.v.val_addr);
26516 dw_die_ref tdie = lookup_decl_die (tdecl);
26517 dw_die_ref cdie;
26518 if (tdie == NULL
26519 && DECL_EXTERNAL (tdecl)
26520 && DECL_ABSTRACT_ORIGIN (tdecl) == NULL_TREE
26521 && (cdie = lookup_context_die (DECL_CONTEXT (tdecl))))
26523 /* Creating a full DIE for tdecl is overly expensive and
26524 at this point even wrong when in the LTO phase
26525 as it can end up generating new type DIEs we didn't
26526 output and thus optimize_external_refs will crash. */
26527 tdie = new_die (DW_TAG_subprogram, cdie, NULL_TREE);
26528 add_AT_flag (tdie, DW_AT_external, 1);
26529 add_AT_flag (tdie, DW_AT_declaration, 1);
26530 add_linkage_attr (tdie, tdecl);
26531 add_name_and_src_coords_attributes (tdie, tdecl);
26532 equate_decl_number_to_die (tdecl, tdie);
26534 if (tdie)
26536 a->dw_attr_val.val_class = dw_val_class_die_ref;
26537 a->dw_attr_val.v.val_die_ref.die = tdie;
26538 a->dw_attr_val.v.val_die_ref.external = 0;
26540 else
26542 if (AT_index (a) != NOT_INDEXED)
26543 remove_addr_table_entry (a->dw_attr_val.val_entry);
26544 remove_AT (die, a->dw_attr);
26545 ix--;
26548 break;
26549 default:
26550 break;
26553 FOR_EACH_CHILD (die, c, resolve_addr (c));
26556 /* Helper routines for optimize_location_lists.
26557 This pass tries to share identical local lists in .debug_loc
26558 section. */
26560 /* Iteratively hash operands of LOC opcode into HSTATE. */
26562 static void
26563 hash_loc_operands (dw_loc_descr_ref loc, inchash::hash &hstate)
26565 dw_val_ref val1 = &loc->dw_loc_oprnd1;
26566 dw_val_ref val2 = &loc->dw_loc_oprnd2;
26568 switch (loc->dw_loc_opc)
26570 case DW_OP_const4u:
26571 case DW_OP_const8u:
26572 if (loc->dtprel)
26573 goto hash_addr;
26574 /* FALLTHRU */
26575 case DW_OP_const1u:
26576 case DW_OP_const1s:
26577 case DW_OP_const2u:
26578 case DW_OP_const2s:
26579 case DW_OP_const4s:
26580 case DW_OP_const8s:
26581 case DW_OP_constu:
26582 case DW_OP_consts:
26583 case DW_OP_pick:
26584 case DW_OP_plus_uconst:
26585 case DW_OP_breg0:
26586 case DW_OP_breg1:
26587 case DW_OP_breg2:
26588 case DW_OP_breg3:
26589 case DW_OP_breg4:
26590 case DW_OP_breg5:
26591 case DW_OP_breg6:
26592 case DW_OP_breg7:
26593 case DW_OP_breg8:
26594 case DW_OP_breg9:
26595 case DW_OP_breg10:
26596 case DW_OP_breg11:
26597 case DW_OP_breg12:
26598 case DW_OP_breg13:
26599 case DW_OP_breg14:
26600 case DW_OP_breg15:
26601 case DW_OP_breg16:
26602 case DW_OP_breg17:
26603 case DW_OP_breg18:
26604 case DW_OP_breg19:
26605 case DW_OP_breg20:
26606 case DW_OP_breg21:
26607 case DW_OP_breg22:
26608 case DW_OP_breg23:
26609 case DW_OP_breg24:
26610 case DW_OP_breg25:
26611 case DW_OP_breg26:
26612 case DW_OP_breg27:
26613 case DW_OP_breg28:
26614 case DW_OP_breg29:
26615 case DW_OP_breg30:
26616 case DW_OP_breg31:
26617 case DW_OP_regx:
26618 case DW_OP_fbreg:
26619 case DW_OP_piece:
26620 case DW_OP_deref_size:
26621 case DW_OP_xderef_size:
26622 hstate.add_object (val1->v.val_int);
26623 break;
26624 case DW_OP_skip:
26625 case DW_OP_bra:
26627 int offset;
26629 gcc_assert (val1->val_class == dw_val_class_loc);
26630 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
26631 hstate.add_object (offset);
26633 break;
26634 case DW_OP_implicit_value:
26635 hstate.add_object (val1->v.val_unsigned);
26636 switch (val2->val_class)
26638 case dw_val_class_const:
26639 hstate.add_object (val2->v.val_int);
26640 break;
26641 case dw_val_class_vec:
26643 unsigned int elt_size = val2->v.val_vec.elt_size;
26644 unsigned int len = val2->v.val_vec.length;
26646 hstate.add_int (elt_size);
26647 hstate.add_int (len);
26648 hstate.add (val2->v.val_vec.array, len * elt_size);
26650 break;
26651 case dw_val_class_const_double:
26652 hstate.add_object (val2->v.val_double.low);
26653 hstate.add_object (val2->v.val_double.high);
26654 break;
26655 case dw_val_class_wide_int:
26656 hstate.add (val2->v.val_wide->get_val (),
26657 get_full_len (*val2->v.val_wide)
26658 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
26659 break;
26660 case dw_val_class_addr:
26661 inchash::add_rtx (val2->v.val_addr, hstate);
26662 break;
26663 default:
26664 gcc_unreachable ();
26666 break;
26667 case DW_OP_bregx:
26668 case DW_OP_bit_piece:
26669 hstate.add_object (val1->v.val_int);
26670 hstate.add_object (val2->v.val_int);
26671 break;
26672 case DW_OP_addr:
26673 hash_addr:
26674 if (loc->dtprel)
26676 unsigned char dtprel = 0xd1;
26677 hstate.add_object (dtprel);
26679 inchash::add_rtx (val1->v.val_addr, hstate);
26680 break;
26681 case DW_OP_GNU_addr_index:
26682 case DW_OP_GNU_const_index:
26684 if (loc->dtprel)
26686 unsigned char dtprel = 0xd1;
26687 hstate.add_object (dtprel);
26689 inchash::add_rtx (val1->val_entry->addr.rtl, hstate);
26691 break;
26692 case DW_OP_GNU_implicit_pointer:
26693 hstate.add_int (val2->v.val_int);
26694 break;
26695 case DW_OP_GNU_entry_value:
26696 hstate.add_object (val1->v.val_loc);
26697 break;
26698 case DW_OP_GNU_regval_type:
26699 case DW_OP_GNU_deref_type:
26701 unsigned int byte_size
26702 = get_AT_unsigned (val2->v.val_die_ref.die, DW_AT_byte_size);
26703 unsigned int encoding
26704 = get_AT_unsigned (val2->v.val_die_ref.die, DW_AT_encoding);
26705 hstate.add_object (val1->v.val_int);
26706 hstate.add_object (byte_size);
26707 hstate.add_object (encoding);
26709 break;
26710 case DW_OP_GNU_convert:
26711 case DW_OP_GNU_reinterpret:
26712 if (val1->val_class == dw_val_class_unsigned_const)
26714 hstate.add_object (val1->v.val_unsigned);
26715 break;
26717 /* FALLTHRU */
26718 case DW_OP_GNU_const_type:
26720 unsigned int byte_size
26721 = get_AT_unsigned (val1->v.val_die_ref.die, DW_AT_byte_size);
26722 unsigned int encoding
26723 = get_AT_unsigned (val1->v.val_die_ref.die, DW_AT_encoding);
26724 hstate.add_object (byte_size);
26725 hstate.add_object (encoding);
26726 if (loc->dw_loc_opc != DW_OP_GNU_const_type)
26727 break;
26728 hstate.add_object (val2->val_class);
26729 switch (val2->val_class)
26731 case dw_val_class_const:
26732 hstate.add_object (val2->v.val_int);
26733 break;
26734 case dw_val_class_vec:
26736 unsigned int elt_size = val2->v.val_vec.elt_size;
26737 unsigned int len = val2->v.val_vec.length;
26739 hstate.add_object (elt_size);
26740 hstate.add_object (len);
26741 hstate.add (val2->v.val_vec.array, len * elt_size);
26743 break;
26744 case dw_val_class_const_double:
26745 hstate.add_object (val2->v.val_double.low);
26746 hstate.add_object (val2->v.val_double.high);
26747 break;
26748 case dw_val_class_wide_int:
26749 hstate.add (val2->v.val_wide->get_val (),
26750 get_full_len (*val2->v.val_wide)
26751 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
26752 break;
26753 default:
26754 gcc_unreachable ();
26757 break;
26759 default:
26760 /* Other codes have no operands. */
26761 break;
26765 /* Iteratively hash the whole DWARF location expression LOC into HSTATE. */
26767 static inline void
26768 hash_locs (dw_loc_descr_ref loc, inchash::hash &hstate)
26770 dw_loc_descr_ref l;
26771 bool sizes_computed = false;
26772 /* Compute sizes, so that DW_OP_skip/DW_OP_bra can be checksummed. */
26773 size_of_locs (loc);
26775 for (l = loc; l != NULL; l = l->dw_loc_next)
26777 enum dwarf_location_atom opc = l->dw_loc_opc;
26778 hstate.add_object (opc);
26779 if ((opc == DW_OP_skip || opc == DW_OP_bra) && !sizes_computed)
26781 size_of_locs (loc);
26782 sizes_computed = true;
26784 hash_loc_operands (l, hstate);
26788 /* Compute hash of the whole location list LIST_HEAD. */
26790 static inline void
26791 hash_loc_list (dw_loc_list_ref list_head)
26793 dw_loc_list_ref curr = list_head;
26794 inchash::hash hstate;
26796 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
26798 hstate.add (curr->begin, strlen (curr->begin) + 1);
26799 hstate.add (curr->end, strlen (curr->end) + 1);
26800 if (curr->section)
26801 hstate.add (curr->section, strlen (curr->section) + 1);
26802 hash_locs (curr->expr, hstate);
26804 list_head->hash = hstate.end ();
26807 /* Return true if X and Y opcodes have the same operands. */
26809 static inline bool
26810 compare_loc_operands (dw_loc_descr_ref x, dw_loc_descr_ref y)
26812 dw_val_ref valx1 = &x->dw_loc_oprnd1;
26813 dw_val_ref valx2 = &x->dw_loc_oprnd2;
26814 dw_val_ref valy1 = &y->dw_loc_oprnd1;
26815 dw_val_ref valy2 = &y->dw_loc_oprnd2;
26817 switch (x->dw_loc_opc)
26819 case DW_OP_const4u:
26820 case DW_OP_const8u:
26821 if (x->dtprel)
26822 goto hash_addr;
26823 /* FALLTHRU */
26824 case DW_OP_const1u:
26825 case DW_OP_const1s:
26826 case DW_OP_const2u:
26827 case DW_OP_const2s:
26828 case DW_OP_const4s:
26829 case DW_OP_const8s:
26830 case DW_OP_constu:
26831 case DW_OP_consts:
26832 case DW_OP_pick:
26833 case DW_OP_plus_uconst:
26834 case DW_OP_breg0:
26835 case DW_OP_breg1:
26836 case DW_OP_breg2:
26837 case DW_OP_breg3:
26838 case DW_OP_breg4:
26839 case DW_OP_breg5:
26840 case DW_OP_breg6:
26841 case DW_OP_breg7:
26842 case DW_OP_breg8:
26843 case DW_OP_breg9:
26844 case DW_OP_breg10:
26845 case DW_OP_breg11:
26846 case DW_OP_breg12:
26847 case DW_OP_breg13:
26848 case DW_OP_breg14:
26849 case DW_OP_breg15:
26850 case DW_OP_breg16:
26851 case DW_OP_breg17:
26852 case DW_OP_breg18:
26853 case DW_OP_breg19:
26854 case DW_OP_breg20:
26855 case DW_OP_breg21:
26856 case DW_OP_breg22:
26857 case DW_OP_breg23:
26858 case DW_OP_breg24:
26859 case DW_OP_breg25:
26860 case DW_OP_breg26:
26861 case DW_OP_breg27:
26862 case DW_OP_breg28:
26863 case DW_OP_breg29:
26864 case DW_OP_breg30:
26865 case DW_OP_breg31:
26866 case DW_OP_regx:
26867 case DW_OP_fbreg:
26868 case DW_OP_piece:
26869 case DW_OP_deref_size:
26870 case DW_OP_xderef_size:
26871 return valx1->v.val_int == valy1->v.val_int;
26872 case DW_OP_skip:
26873 case DW_OP_bra:
26874 /* If splitting debug info, the use of DW_OP_GNU_addr_index
26875 can cause irrelevant differences in dw_loc_addr. */
26876 gcc_assert (valx1->val_class == dw_val_class_loc
26877 && valy1->val_class == dw_val_class_loc
26878 && (dwarf_split_debug_info
26879 || x->dw_loc_addr == y->dw_loc_addr));
26880 return valx1->v.val_loc->dw_loc_addr == valy1->v.val_loc->dw_loc_addr;
26881 case DW_OP_implicit_value:
26882 if (valx1->v.val_unsigned != valy1->v.val_unsigned
26883 || valx2->val_class != valy2->val_class)
26884 return false;
26885 switch (valx2->val_class)
26887 case dw_val_class_const:
26888 return valx2->v.val_int == valy2->v.val_int;
26889 case dw_val_class_vec:
26890 return valx2->v.val_vec.elt_size == valy2->v.val_vec.elt_size
26891 && valx2->v.val_vec.length == valy2->v.val_vec.length
26892 && memcmp (valx2->v.val_vec.array, valy2->v.val_vec.array,
26893 valx2->v.val_vec.elt_size
26894 * valx2->v.val_vec.length) == 0;
26895 case dw_val_class_const_double:
26896 return valx2->v.val_double.low == valy2->v.val_double.low
26897 && valx2->v.val_double.high == valy2->v.val_double.high;
26898 case dw_val_class_wide_int:
26899 return *valx2->v.val_wide == *valy2->v.val_wide;
26900 case dw_val_class_addr:
26901 return rtx_equal_p (valx2->v.val_addr, valy2->v.val_addr);
26902 default:
26903 gcc_unreachable ();
26905 case DW_OP_bregx:
26906 case DW_OP_bit_piece:
26907 return valx1->v.val_int == valy1->v.val_int
26908 && valx2->v.val_int == valy2->v.val_int;
26909 case DW_OP_addr:
26910 hash_addr:
26911 return rtx_equal_p (valx1->v.val_addr, valy1->v.val_addr);
26912 case DW_OP_GNU_addr_index:
26913 case DW_OP_GNU_const_index:
26915 rtx ax1 = valx1->val_entry->addr.rtl;
26916 rtx ay1 = valy1->val_entry->addr.rtl;
26917 return rtx_equal_p (ax1, ay1);
26919 case DW_OP_GNU_implicit_pointer:
26920 return valx1->val_class == dw_val_class_die_ref
26921 && valx1->val_class == valy1->val_class
26922 && valx1->v.val_die_ref.die == valy1->v.val_die_ref.die
26923 && valx2->v.val_int == valy2->v.val_int;
26924 case DW_OP_GNU_entry_value:
26925 return compare_loc_operands (valx1->v.val_loc, valy1->v.val_loc);
26926 case DW_OP_GNU_const_type:
26927 if (valx1->v.val_die_ref.die != valy1->v.val_die_ref.die
26928 || valx2->val_class != valy2->val_class)
26929 return false;
26930 switch (valx2->val_class)
26932 case dw_val_class_const:
26933 return valx2->v.val_int == valy2->v.val_int;
26934 case dw_val_class_vec:
26935 return valx2->v.val_vec.elt_size == valy2->v.val_vec.elt_size
26936 && valx2->v.val_vec.length == valy2->v.val_vec.length
26937 && memcmp (valx2->v.val_vec.array, valy2->v.val_vec.array,
26938 valx2->v.val_vec.elt_size
26939 * valx2->v.val_vec.length) == 0;
26940 case dw_val_class_const_double:
26941 return valx2->v.val_double.low == valy2->v.val_double.low
26942 && valx2->v.val_double.high == valy2->v.val_double.high;
26943 case dw_val_class_wide_int:
26944 return *valx2->v.val_wide == *valy2->v.val_wide;
26945 default:
26946 gcc_unreachable ();
26948 case DW_OP_GNU_regval_type:
26949 case DW_OP_GNU_deref_type:
26950 return valx1->v.val_int == valy1->v.val_int
26951 && valx2->v.val_die_ref.die == valy2->v.val_die_ref.die;
26952 case DW_OP_GNU_convert:
26953 case DW_OP_GNU_reinterpret:
26954 if (valx1->val_class != valy1->val_class)
26955 return false;
26956 if (valx1->val_class == dw_val_class_unsigned_const)
26957 return valx1->v.val_unsigned == valy1->v.val_unsigned;
26958 return valx1->v.val_die_ref.die == valy1->v.val_die_ref.die;
26959 case DW_OP_GNU_parameter_ref:
26960 return valx1->val_class == dw_val_class_die_ref
26961 && valx1->val_class == valy1->val_class
26962 && valx1->v.val_die_ref.die == valy1->v.val_die_ref.die;
26963 default:
26964 /* Other codes have no operands. */
26965 return true;
26969 /* Return true if DWARF location expressions X and Y are the same. */
26971 static inline bool
26972 compare_locs (dw_loc_descr_ref x, dw_loc_descr_ref y)
26974 for (; x != NULL && y != NULL; x = x->dw_loc_next, y = y->dw_loc_next)
26975 if (x->dw_loc_opc != y->dw_loc_opc
26976 || x->dtprel != y->dtprel
26977 || !compare_loc_operands (x, y))
26978 break;
26979 return x == NULL && y == NULL;
26982 /* Hashtable helpers. */
26984 struct loc_list_hasher : nofree_ptr_hash <dw_loc_list_struct>
26986 static inline hashval_t hash (const dw_loc_list_struct *);
26987 static inline bool equal (const dw_loc_list_struct *,
26988 const dw_loc_list_struct *);
26991 /* Return precomputed hash of location list X. */
26993 inline hashval_t
26994 loc_list_hasher::hash (const dw_loc_list_struct *x)
26996 return x->hash;
26999 /* Return true if location lists A and B are the same. */
27001 inline bool
27002 loc_list_hasher::equal (const dw_loc_list_struct *a,
27003 const dw_loc_list_struct *b)
27005 if (a == b)
27006 return 1;
27007 if (a->hash != b->hash)
27008 return 0;
27009 for (; a != NULL && b != NULL; a = a->dw_loc_next, b = b->dw_loc_next)
27010 if (strcmp (a->begin, b->begin) != 0
27011 || strcmp (a->end, b->end) != 0
27012 || (a->section == NULL) != (b->section == NULL)
27013 || (a->section && strcmp (a->section, b->section) != 0)
27014 || !compare_locs (a->expr, b->expr))
27015 break;
27016 return a == NULL && b == NULL;
27019 typedef hash_table<loc_list_hasher> loc_list_hash_type;
27022 /* Recursively optimize location lists referenced from DIE
27023 children and share them whenever possible. */
27025 static void
27026 optimize_location_lists_1 (dw_die_ref die, loc_list_hash_type *htab)
27028 dw_die_ref c;
27029 dw_attr_node *a;
27030 unsigned ix;
27031 dw_loc_list_struct **slot;
27033 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
27034 if (AT_class (a) == dw_val_class_loc_list)
27036 dw_loc_list_ref list = AT_loc_list (a);
27037 /* TODO: perform some optimizations here, before hashing
27038 it and storing into the hash table. */
27039 hash_loc_list (list);
27040 slot = htab->find_slot_with_hash (list, list->hash, INSERT);
27041 if (*slot == NULL)
27042 *slot = list;
27043 else
27044 a->dw_attr_val.v.val_loc_list = *slot;
27047 FOR_EACH_CHILD (die, c, optimize_location_lists_1 (c, htab));
27051 /* Recursively assign each location list a unique index into the debug_addr
27052 section. */
27054 static void
27055 index_location_lists (dw_die_ref die)
27057 dw_die_ref c;
27058 dw_attr_node *a;
27059 unsigned ix;
27061 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
27062 if (AT_class (a) == dw_val_class_loc_list)
27064 dw_loc_list_ref list = AT_loc_list (a);
27065 dw_loc_list_ref curr;
27066 for (curr = list; curr != NULL; curr = curr->dw_loc_next)
27068 /* Don't index an entry that has already been indexed
27069 or won't be output. */
27070 if (curr->begin_entry != NULL
27071 || (strcmp (curr->begin, curr->end) == 0 && !curr->force))
27072 continue;
27074 curr->begin_entry
27075 = add_addr_table_entry (xstrdup (curr->begin),
27076 ate_kind_label);
27080 FOR_EACH_CHILD (die, c, index_location_lists (c));
27083 /* Optimize location lists referenced from DIE
27084 children and share them whenever possible. */
27086 static void
27087 optimize_location_lists (dw_die_ref die)
27089 loc_list_hash_type htab (500);
27090 optimize_location_lists_1 (die, &htab);
27093 /* Traverse the limbo die list, and add parent/child links. The only
27094 dies without parents that should be here are concrete instances of
27095 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
27096 For concrete instances, we can get the parent die from the abstract
27097 instance. */
27099 static void
27100 flush_limbo_die_list (void)
27102 limbo_die_node *node, *next_node;
27104 for (node = limbo_die_list; node; node = next_node)
27106 dw_die_ref die = node->die;
27107 next_node = node->next;
27109 if (die->die_parent == NULL)
27111 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
27113 if (origin && origin->die_parent)
27114 add_child_die (origin->die_parent, die);
27115 else if (is_cu_die (die))
27117 else if (seen_error ())
27118 /* It's OK to be confused by errors in the input. */
27119 add_child_die (comp_unit_die (), die);
27120 else
27122 /* In certain situations, the lexical block containing a
27123 nested function can be optimized away, which results
27124 in the nested function die being orphaned. Likewise
27125 with the return type of that nested function. Force
27126 this to be a child of the containing function.
27128 It may happen that even the containing function got fully
27129 inlined and optimized out. In that case we are lost and
27130 assign the empty child. This should not be big issue as
27131 the function is likely unreachable too. */
27132 gcc_assert (node->created_for);
27134 if (DECL_P (node->created_for))
27135 origin = get_context_die (DECL_CONTEXT (node->created_for));
27136 else if (TYPE_P (node->created_for))
27137 origin = scope_die_for (node->created_for, comp_unit_die ());
27138 else
27139 origin = comp_unit_die ();
27141 add_child_die (origin, die);
27146 limbo_die_list = NULL;
27149 /* Output stuff that dwarf requires at the end of every file,
27150 and generate the DWARF-2 debugging info. */
27152 static void
27153 dwarf2out_finish (const char *filename)
27155 comdat_type_node *ctnode;
27156 dw_die_ref main_comp_unit_die;
27158 /* Flush out any latecomers to the limbo party. */
27159 flush_limbo_die_list ();
27161 /* We shouldn't have any symbols with delayed asm names for
27162 DIEs generated after early finish. */
27163 gcc_assert (deferred_asm_name == NULL);
27165 /* PCH might result in DW_AT_producer string being restored from the
27166 header compilation, so always fill it with empty string initially
27167 and overwrite only here. */
27168 dw_attr_node *producer = get_AT (comp_unit_die (), DW_AT_producer);
27169 producer_string = gen_producer_string ();
27170 producer->dw_attr_val.v.val_str->refcount--;
27171 producer->dw_attr_val.v.val_str = find_AT_string (producer_string);
27173 gen_remaining_tmpl_value_param_die_attribute ();
27175 /* Add the name for the main input file now. We delayed this from
27176 dwarf2out_init to avoid complications with PCH.
27177 For LTO produced units use a fixed artificial name to avoid
27178 leaking tempfile names into the dwarf. */
27179 if (!in_lto_p)
27180 add_name_attribute (comp_unit_die (), remap_debug_filename (filename));
27181 else
27182 add_name_attribute (comp_unit_die (), "<artificial>");
27183 if (!IS_ABSOLUTE_PATH (filename) || targetm.force_at_comp_dir)
27184 add_comp_dir_attribute (comp_unit_die ());
27185 else if (get_AT (comp_unit_die (), DW_AT_comp_dir) == NULL)
27187 bool p = false;
27188 file_table->traverse<bool *, file_table_relative_p> (&p);
27189 if (p)
27190 add_comp_dir_attribute (comp_unit_die ());
27193 #if ENABLE_ASSERT_CHECKING
27195 dw_die_ref die = comp_unit_die (), c;
27196 FOR_EACH_CHILD (die, c, gcc_assert (! c->die_mark));
27198 #endif
27199 resolve_addr (comp_unit_die ());
27200 move_marked_base_types ();
27202 /* Walk through the list of incomplete types again, trying once more to
27203 emit full debugging info for them. */
27204 retry_incomplete_types ();
27206 if (flag_eliminate_unused_debug_types)
27207 prune_unused_types ();
27209 /* Generate separate COMDAT sections for type DIEs. */
27210 if (use_debug_types)
27212 break_out_comdat_types (comp_unit_die ());
27214 /* Each new type_unit DIE was added to the limbo die list when created.
27215 Since these have all been added to comdat_type_list, clear the
27216 limbo die list. */
27217 limbo_die_list = NULL;
27219 /* For each new comdat type unit, copy declarations for incomplete
27220 types to make the new unit self-contained (i.e., no direct
27221 references to the main compile unit). */
27222 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
27223 copy_decls_for_unworthy_types (ctnode->root_die);
27224 copy_decls_for_unworthy_types (comp_unit_die ());
27226 /* In the process of copying declarations from one unit to another,
27227 we may have left some declarations behind that are no longer
27228 referenced. Prune them. */
27229 prune_unused_types ();
27232 /* Generate separate CUs for each of the include files we've seen.
27233 They will go into limbo_die_list. */
27234 if (flag_eliminate_dwarf2_dups)
27235 break_out_includes (comp_unit_die ());
27237 /* Traverse the DIE's and add sibling attributes to those DIE's that
27238 have children. */
27239 add_sibling_attributes (comp_unit_die ());
27240 limbo_die_node *node;
27241 for (node = limbo_die_list; node; node = node->next)
27242 add_sibling_attributes (node->die);
27243 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
27244 add_sibling_attributes (ctnode->root_die);
27246 /* When splitting DWARF info, we put some attributes in the
27247 skeleton compile_unit DIE that remains in the .o, while
27248 most attributes go in the DWO compile_unit_die. */
27249 if (dwarf_split_debug_info)
27250 main_comp_unit_die = gen_compile_unit_die (NULL);
27251 else
27252 main_comp_unit_die = comp_unit_die ();
27254 /* Output a terminator label for the .text section. */
27255 switch_to_section (text_section);
27256 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
27257 if (cold_text_section)
27259 switch_to_section (cold_text_section);
27260 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
27263 /* We can only use the low/high_pc attributes if all of the code was
27264 in .text. */
27265 if (!have_multiple_function_sections
27266 || (dwarf_version < 3 && dwarf_strict))
27268 /* Don't add if the CU has no associated code. */
27269 if (text_section_used)
27270 add_AT_low_high_pc (main_comp_unit_die, text_section_label,
27271 text_end_label, true);
27273 else
27275 unsigned fde_idx;
27276 dw_fde_ref fde;
27277 bool range_list_added = false;
27279 if (text_section_used)
27280 add_ranges_by_labels (main_comp_unit_die, text_section_label,
27281 text_end_label, &range_list_added, true);
27282 if (cold_text_section_used)
27283 add_ranges_by_labels (main_comp_unit_die, cold_text_section_label,
27284 cold_end_label, &range_list_added, true);
27286 FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
27288 if (DECL_IGNORED_P (fde->decl))
27289 continue;
27290 if (!fde->in_std_section)
27291 add_ranges_by_labels (main_comp_unit_die, fde->dw_fde_begin,
27292 fde->dw_fde_end, &range_list_added,
27293 true);
27294 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
27295 add_ranges_by_labels (main_comp_unit_die, fde->dw_fde_second_begin,
27296 fde->dw_fde_second_end, &range_list_added,
27297 true);
27300 if (range_list_added)
27302 /* We need to give .debug_loc and .debug_ranges an appropriate
27303 "base address". Use zero so that these addresses become
27304 absolute. Historically, we've emitted the unexpected
27305 DW_AT_entry_pc instead of DW_AT_low_pc for this purpose.
27306 Emit both to give time for other tools to adapt. */
27307 add_AT_addr (main_comp_unit_die, DW_AT_low_pc, const0_rtx, true);
27308 if (! dwarf_strict && dwarf_version < 4)
27309 add_AT_addr (main_comp_unit_die, DW_AT_entry_pc, const0_rtx, true);
27311 add_ranges (NULL);
27315 if (debug_info_level >= DINFO_LEVEL_TERSE)
27316 add_AT_lineptr (main_comp_unit_die, DW_AT_stmt_list,
27317 debug_line_section_label);
27319 if (have_macinfo)
27320 add_AT_macptr (comp_unit_die (),
27321 dwarf_strict ? DW_AT_macro_info : DW_AT_GNU_macros,
27322 macinfo_section_label);
27324 if (dwarf_split_debug_info)
27326 /* optimize_location_lists calculates the size of the lists,
27327 so index them first, and assign indices to the entries.
27328 Although optimize_location_lists will remove entries from
27329 the table, it only does so for duplicates, and therefore
27330 only reduces ref_counts to 1. */
27331 index_location_lists (comp_unit_die ());
27333 if (addr_index_table != NULL)
27335 unsigned int index = 0;
27336 addr_index_table
27337 ->traverse_noresize<unsigned int *, index_addr_table_entry>
27338 (&index);
27342 if (have_location_lists)
27343 optimize_location_lists (comp_unit_die ());
27345 save_macinfo_strings ();
27347 if (dwarf_split_debug_info)
27349 unsigned int index = 0;
27351 /* Add attributes common to skeleton compile_units and
27352 type_units. Because these attributes include strings, it
27353 must be done before freezing the string table. Top-level
27354 skeleton die attrs are added when the skeleton type unit is
27355 created, so ensure it is created by this point. */
27356 add_top_level_skeleton_die_attrs (main_comp_unit_die);
27357 debug_str_hash->traverse_noresize<unsigned int *, index_string> (&index);
27360 /* Output all of the compilation units. We put the main one last so that
27361 the offsets are available to output_pubnames. */
27362 for (node = limbo_die_list; node; node = node->next)
27363 output_comp_unit (node->die, 0);
27365 hash_table<comdat_type_hasher> comdat_type_table (100);
27366 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
27368 comdat_type_node **slot = comdat_type_table.find_slot (ctnode, INSERT);
27370 /* Don't output duplicate types. */
27371 if (*slot != HTAB_EMPTY_ENTRY)
27372 continue;
27374 /* Add a pointer to the line table for the main compilation unit
27375 so that the debugger can make sense of DW_AT_decl_file
27376 attributes. */
27377 if (debug_info_level >= DINFO_LEVEL_TERSE)
27378 add_AT_lineptr (ctnode->root_die, DW_AT_stmt_list,
27379 (!dwarf_split_debug_info
27380 ? debug_line_section_label
27381 : debug_skeleton_line_section_label));
27383 output_comdat_type_unit (ctnode);
27384 *slot = ctnode;
27387 /* The AT_pubnames attribute needs to go in all skeleton dies, including
27388 both the main_cu and all skeleton TUs. Making this call unconditional
27389 would end up either adding a second copy of the AT_pubnames attribute, or
27390 requiring a special case in add_top_level_skeleton_die_attrs. */
27391 if (!dwarf_split_debug_info)
27392 add_AT_pubnames (comp_unit_die ());
27394 if (dwarf_split_debug_info)
27396 int mark;
27397 unsigned char checksum[16];
27398 struct md5_ctx ctx;
27400 /* Compute a checksum of the comp_unit to use as the dwo_id. */
27401 md5_init_ctx (&ctx);
27402 mark = 0;
27403 die_checksum (comp_unit_die (), &ctx, &mark);
27404 unmark_all_dies (comp_unit_die ());
27405 md5_finish_ctx (&ctx, checksum);
27407 /* Use the first 8 bytes of the checksum as the dwo_id,
27408 and add it to both comp-unit DIEs. */
27409 add_AT_data8 (main_comp_unit_die, DW_AT_GNU_dwo_id, checksum);
27410 add_AT_data8 (comp_unit_die (), DW_AT_GNU_dwo_id, checksum);
27412 /* Add the base offset of the ranges table to the skeleton
27413 comp-unit DIE. */
27414 if (ranges_table_in_use)
27415 add_AT_lineptr (main_comp_unit_die, DW_AT_GNU_ranges_base,
27416 ranges_section_label);
27418 switch_to_section (debug_addr_section);
27419 ASM_OUTPUT_LABEL (asm_out_file, debug_addr_section_label);
27420 output_addr_table ();
27423 /* Output the main compilation unit if non-empty or if .debug_macinfo
27424 or .debug_macro will be emitted. */
27425 output_comp_unit (comp_unit_die (), have_macinfo);
27427 if (dwarf_split_debug_info && info_section_emitted)
27428 output_skeleton_debug_sections (main_comp_unit_die);
27430 /* Output the abbreviation table. */
27431 if (abbrev_die_table_in_use != 1)
27433 switch_to_section (debug_abbrev_section);
27434 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
27435 output_abbrev_section ();
27438 /* Output location list section if necessary. */
27439 if (have_location_lists)
27441 /* Output the location lists info. */
27442 switch_to_section (debug_loc_section);
27443 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
27444 output_location_lists (comp_unit_die ());
27447 output_pubtables ();
27449 /* Output the address range information if a CU (.debug_info section)
27450 was emitted. We output an empty table even if we had no functions
27451 to put in it. This because the consumer has no way to tell the
27452 difference between an empty table that we omitted and failure to
27453 generate a table that would have contained data. */
27454 if (info_section_emitted)
27456 switch_to_section (debug_aranges_section);
27457 output_aranges ();
27460 /* Output ranges section if necessary. */
27461 if (ranges_table_in_use)
27463 switch_to_section (debug_ranges_section);
27464 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
27465 output_ranges ();
27468 /* Have to end the macro section. */
27469 if (have_macinfo)
27471 switch_to_section (debug_macinfo_section);
27472 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
27473 output_macinfo ();
27474 dw2_asm_output_data (1, 0, "End compilation unit");
27477 /* Output the source line correspondence table. We must do this
27478 even if there is no line information. Otherwise, on an empty
27479 translation unit, we will generate a present, but empty,
27480 .debug_info section. IRIX 6.5 `nm' will then complain when
27481 examining the file. This is done late so that any filenames
27482 used by the debug_info section are marked as 'used'. */
27483 switch_to_section (debug_line_section);
27484 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
27485 if (! DWARF2_ASM_LINE_DEBUG_INFO)
27486 output_line_info (false);
27488 if (dwarf_split_debug_info && info_section_emitted)
27490 switch_to_section (debug_skeleton_line_section);
27491 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_line_section_label);
27492 output_line_info (true);
27495 /* If we emitted any indirect strings, output the string table too. */
27496 if (debug_str_hash || skeleton_debug_str_hash)
27497 output_indirect_strings ();
27500 /* Perform any cleanups needed after the early debug generation pass
27501 has run. */
27503 static void
27504 dwarf2out_early_finish (void)
27506 limbo_die_node *node;
27508 /* Add DW_AT_linkage_name for all deferred DIEs. */
27509 for (node = deferred_asm_name; node; node = node->next)
27511 tree decl = node->created_for;
27512 if (DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
27513 /* A missing DECL_ASSEMBLER_NAME can be a constant DIE that
27514 ended up in deferred_asm_name before we knew it was
27515 constant and never written to disk. */
27516 && DECL_ASSEMBLER_NAME (decl))
27518 add_linkage_attr (node->die, decl);
27519 move_linkage_attr (node->die);
27522 deferred_asm_name = NULL;
27524 /* The point here is to flush out the limbo list so that it is empty
27525 and we don't need to stream it for LTO. */
27526 flush_limbo_die_list ();
27528 gen_scheduled_generic_parms_dies ();
27529 gen_remaining_tmpl_value_param_die_attribute ();
27532 /* Reset all state within dwarf2out.c so that we can rerun the compiler
27533 within the same process. For use by toplev::finalize. */
27535 void
27536 dwarf2out_c_finalize (void)
27538 last_var_location_insn = NULL;
27539 cached_next_real_insn = NULL;
27540 used_rtx_array = NULL;
27541 incomplete_types = NULL;
27542 decl_scope_table = NULL;
27543 debug_info_section = NULL;
27544 debug_skeleton_info_section = NULL;
27545 debug_abbrev_section = NULL;
27546 debug_skeleton_abbrev_section = NULL;
27547 debug_aranges_section = NULL;
27548 debug_addr_section = NULL;
27549 debug_macinfo_section = NULL;
27550 debug_line_section = NULL;
27551 debug_skeleton_line_section = NULL;
27552 debug_loc_section = NULL;
27553 debug_pubnames_section = NULL;
27554 debug_pubtypes_section = NULL;
27555 debug_str_section = NULL;
27556 debug_str_dwo_section = NULL;
27557 debug_str_offsets_section = NULL;
27558 debug_ranges_section = NULL;
27559 debug_frame_section = NULL;
27560 fde_vec = NULL;
27561 debug_str_hash = NULL;
27562 skeleton_debug_str_hash = NULL;
27563 dw2_string_counter = 0;
27564 have_multiple_function_sections = false;
27565 text_section_used = false;
27566 cold_text_section_used = false;
27567 cold_text_section = NULL;
27568 current_unit_personality = NULL;
27570 next_die_offset = 0;
27571 single_comp_unit_die = NULL;
27572 comdat_type_list = NULL;
27573 limbo_die_list = NULL;
27574 file_table = NULL;
27575 decl_die_table = NULL;
27576 common_block_die_table = NULL;
27577 decl_loc_table = NULL;
27578 call_arg_locations = NULL;
27579 call_arg_loc_last = NULL;
27580 call_site_count = -1;
27581 tail_call_site_count = -1;
27582 cached_dw_loc_list_table = NULL;
27583 abbrev_die_table = NULL;
27584 abbrev_die_table_allocated = 0;
27585 abbrev_die_table_in_use = 0;
27586 delete dwarf_proc_stack_usage_map;
27587 dwarf_proc_stack_usage_map = NULL;
27588 line_info_label_num = 0;
27589 cur_line_info_table = NULL;
27590 text_section_line_info = NULL;
27591 cold_text_section_line_info = NULL;
27592 separate_line_info = NULL;
27593 info_section_emitted = false;
27594 pubname_table = NULL;
27595 pubtype_table = NULL;
27596 macinfo_table = NULL;
27597 ranges_table = NULL;
27598 ranges_table_allocated = 0;
27599 ranges_table_in_use = 0;
27600 ranges_by_label = 0;
27601 ranges_by_label_allocated = 0;
27602 ranges_by_label_in_use = 0;
27603 have_location_lists = false;
27604 loclabel_num = 0;
27605 poc_label_num = 0;
27606 last_emitted_file = NULL;
27607 label_num = 0;
27608 tmpl_value_parm_die_table = NULL;
27609 generic_type_instances = NULL;
27610 frame_pointer_fb_offset = 0;
27611 frame_pointer_fb_offset_valid = false;
27612 base_types.release ();
27613 XDELETEVEC (producer_string);
27614 producer_string = NULL;
27617 #include "gt-dwarf2out.h"