Clean up some minor white space issues in trans-decl.c and trans-expr.c
[official-gcc.git] / gcc / cfgloopmanip.c
blob8cceb7d7b304495fc898ead4a3809e280a66b1ad
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "cfganal.h"
29 #include "cfgloop.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "tree-ssa-loop-manip.h"
33 #include "dumpfile.h"
35 static void copy_loops_to (struct loop **, int,
36 struct loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (const_basic_block, const void *);
40 static int find_path (edge, basic_block **);
41 static void fix_loop_placements (struct loop *, bool *);
42 static bool fix_bb_placement (basic_block);
43 static void fix_bb_placements (basic_block, bool *, bitmap);
45 /* Checks whether basic block BB is dominated by DATA. */
46 static bool
47 rpe_enum_p (const_basic_block bb, const void *data)
49 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
52 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
54 static void
55 remove_bbs (basic_block *bbs, int nbbs)
57 int i;
59 for (i = 0; i < nbbs; i++)
60 delete_basic_block (bbs[i]);
63 /* Find path -- i.e. the basic blocks dominated by edge E and put them
64 into array BBS, that will be allocated large enough to contain them.
65 E->dest must have exactly one predecessor for this to work (it is
66 easy to achieve and we do not put it here because we do not want to
67 alter anything by this function). The number of basic blocks in the
68 path is returned. */
69 static int
70 find_path (edge e, basic_block **bbs)
72 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
74 /* Find bbs in the path. */
75 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
76 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
77 n_basic_blocks_for_fn (cfun), e->dest);
80 /* Fix placement of basic block BB inside loop hierarchy --
81 Let L be a loop to that BB belongs. Then every successor of BB must either
82 1) belong to some superloop of loop L, or
83 2) be a header of loop K such that K->outer is superloop of L
84 Returns true if we had to move BB into other loop to enforce this condition,
85 false if the placement of BB was already correct (provided that placements
86 of its successors are correct). */
87 static bool
88 fix_bb_placement (basic_block bb)
90 edge e;
91 edge_iterator ei;
92 struct loop *loop = current_loops->tree_root, *act;
94 FOR_EACH_EDGE (e, ei, bb->succs)
96 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
97 continue;
99 act = e->dest->loop_father;
100 if (act->header == e->dest)
101 act = loop_outer (act);
103 if (flow_loop_nested_p (loop, act))
104 loop = act;
107 if (loop == bb->loop_father)
108 return false;
110 remove_bb_from_loops (bb);
111 add_bb_to_loop (bb, loop);
113 return true;
116 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
117 of LOOP to that leads at least one exit edge of LOOP, and set it
118 as the immediate superloop of LOOP. Return true if the immediate superloop
119 of LOOP changed.
121 IRRED_INVALIDATED is set to true if a change in the loop structures might
122 invalidate the information about irreducible regions. */
124 static bool
125 fix_loop_placement (struct loop *loop, bool *irred_invalidated)
127 unsigned i;
128 edge e;
129 vec<edge> exits = get_loop_exit_edges (loop);
130 struct loop *father = current_loops->tree_root, *act;
131 bool ret = false;
133 FOR_EACH_VEC_ELT (exits, i, e)
135 act = find_common_loop (loop, e->dest->loop_father);
136 if (flow_loop_nested_p (father, act))
137 father = act;
140 if (father != loop_outer (loop))
142 for (act = loop_outer (loop); act != father; act = loop_outer (act))
143 act->num_nodes -= loop->num_nodes;
144 flow_loop_tree_node_remove (loop);
145 flow_loop_tree_node_add (father, loop);
147 /* The exit edges of LOOP no longer exits its original immediate
148 superloops; remove them from the appropriate exit lists. */
149 FOR_EACH_VEC_ELT (exits, i, e)
151 /* We may need to recompute irreducible loops. */
152 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
153 *irred_invalidated = true;
154 rescan_loop_exit (e, false, false);
157 ret = true;
160 exits.release ();
161 return ret;
164 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
165 enforce condition stated in description of fix_bb_placement. We
166 start from basic block FROM that had some of its successors removed, so that
167 his placement no longer has to be correct, and iteratively fix placement of
168 its predecessors that may change if placement of FROM changed. Also fix
169 placement of subloops of FROM->loop_father, that might also be altered due
170 to this change; the condition for them is similar, except that instead of
171 successors we consider edges coming out of the loops.
173 If the changes may invalidate the information about irreducible regions,
174 IRRED_INVALIDATED is set to true.
176 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
177 changed loop_father are collected there. */
179 static void
180 fix_bb_placements (basic_block from,
181 bool *irred_invalidated,
182 bitmap loop_closed_ssa_invalidated)
184 sbitmap in_queue;
185 basic_block *queue, *qtop, *qbeg, *qend;
186 struct loop *base_loop, *target_loop;
187 edge e;
189 /* We pass through blocks back-reachable from FROM, testing whether some
190 of their successors moved to outer loop. It may be necessary to
191 iterate several times, but it is finite, as we stop unless we move
192 the basic block up the loop structure. The whole story is a bit
193 more complicated due to presence of subloops, those are moved using
194 fix_loop_placement. */
196 base_loop = from->loop_father;
197 /* If we are already in the outermost loop, the basic blocks cannot be moved
198 outside of it. If FROM is the header of the base loop, it cannot be moved
199 outside of it, either. In both cases, we can end now. */
200 if (base_loop == current_loops->tree_root
201 || from == base_loop->header)
202 return;
204 in_queue = sbitmap_alloc (last_basic_block_for_fn (cfun));
205 bitmap_clear (in_queue);
206 bitmap_set_bit (in_queue, from->index);
207 /* Prevent us from going out of the base_loop. */
208 bitmap_set_bit (in_queue, base_loop->header->index);
210 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
211 qtop = queue + base_loop->num_nodes + 1;
212 qbeg = queue;
213 qend = queue + 1;
214 *qbeg = from;
216 while (qbeg != qend)
218 edge_iterator ei;
219 from = *qbeg;
220 qbeg++;
221 if (qbeg == qtop)
222 qbeg = queue;
223 bitmap_clear_bit (in_queue, from->index);
225 if (from->loop_father->header == from)
227 /* Subloop header, maybe move the loop upward. */
228 if (!fix_loop_placement (from->loop_father, irred_invalidated))
229 continue;
230 target_loop = loop_outer (from->loop_father);
231 if (loop_closed_ssa_invalidated)
233 basic_block *bbs = get_loop_body (from->loop_father);
234 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
235 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
236 free (bbs);
239 else
241 /* Ordinary basic block. */
242 if (!fix_bb_placement (from))
243 continue;
244 target_loop = from->loop_father;
245 if (loop_closed_ssa_invalidated)
246 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
249 FOR_EACH_EDGE (e, ei, from->succs)
251 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
252 *irred_invalidated = true;
255 /* Something has changed, insert predecessors into queue. */
256 FOR_EACH_EDGE (e, ei, from->preds)
258 basic_block pred = e->src;
259 struct loop *nca;
261 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
262 *irred_invalidated = true;
264 if (bitmap_bit_p (in_queue, pred->index))
265 continue;
267 /* If it is subloop, then it either was not moved, or
268 the path up the loop tree from base_loop do not contain
269 it. */
270 nca = find_common_loop (pred->loop_father, base_loop);
271 if (pred->loop_father != base_loop
272 && (nca == base_loop
273 || nca != pred->loop_father))
274 pred = pred->loop_father->header;
275 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
277 /* If PRED is already higher in the loop hierarchy than the
278 TARGET_LOOP to that we moved FROM, the change of the position
279 of FROM does not affect the position of PRED, so there is no
280 point in processing it. */
281 continue;
284 if (bitmap_bit_p (in_queue, pred->index))
285 continue;
287 /* Schedule the basic block. */
288 *qend = pred;
289 qend++;
290 if (qend == qtop)
291 qend = queue;
292 bitmap_set_bit (in_queue, pred->index);
295 free (in_queue);
296 free (queue);
299 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
300 and update loop structures and dominators. Return true if we were able
301 to remove the path, false otherwise (and nothing is affected then). */
302 bool
303 remove_path (edge e)
305 edge ae;
306 basic_block *rem_bbs, *bord_bbs, from, bb;
307 vec<basic_block> dom_bbs;
308 int i, nrem, n_bord_bbs;
309 sbitmap seen;
310 bool irred_invalidated = false;
311 edge_iterator ei;
312 struct loop *l, *f;
314 if (!can_remove_branch_p (e))
315 return false;
317 /* Keep track of whether we need to update information about irreducible
318 regions. This is the case if the removed area is a part of the
319 irreducible region, or if the set of basic blocks that belong to a loop
320 that is inside an irreducible region is changed, or if such a loop is
321 removed. */
322 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
323 irred_invalidated = true;
325 /* We need to check whether basic blocks are dominated by the edge
326 e, but we only have basic block dominators. This is easy to
327 fix -- when e->dest has exactly one predecessor, this corresponds
328 to blocks dominated by e->dest, if not, split the edge. */
329 if (!single_pred_p (e->dest))
330 e = single_pred_edge (split_edge (e));
332 /* It may happen that by removing path we remove one or more loops
333 we belong to. In this case first unloop the loops, then proceed
334 normally. We may assume that e->dest is not a header of any loop,
335 as it now has exactly one predecessor. */
336 for (l = e->src->loop_father; loop_outer (l); l = f)
338 f = loop_outer (l);
339 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
340 unloop (l, &irred_invalidated, NULL);
343 /* Identify the path. */
344 nrem = find_path (e, &rem_bbs);
346 n_bord_bbs = 0;
347 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
348 seen = sbitmap_alloc (last_basic_block_for_fn (cfun));
349 bitmap_clear (seen);
351 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
352 for (i = 0; i < nrem; i++)
353 bitmap_set_bit (seen, rem_bbs[i]->index);
354 if (!irred_invalidated)
355 FOR_EACH_EDGE (ae, ei, e->src->succs)
356 if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
357 && !bitmap_bit_p (seen, ae->dest->index)
358 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
360 irred_invalidated = true;
361 break;
364 for (i = 0; i < nrem; i++)
366 bb = rem_bbs[i];
367 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
368 if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
369 && !bitmap_bit_p (seen, ae->dest->index))
371 bitmap_set_bit (seen, ae->dest->index);
372 bord_bbs[n_bord_bbs++] = ae->dest;
374 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
375 irred_invalidated = true;
379 /* Remove the path. */
380 from = e->src;
381 remove_branch (e);
382 dom_bbs.create (0);
384 /* Cancel loops contained in the path. */
385 for (i = 0; i < nrem; i++)
386 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
387 cancel_loop_tree (rem_bbs[i]->loop_father);
389 remove_bbs (rem_bbs, nrem);
390 free (rem_bbs);
392 /* Find blocks whose dominators may be affected. */
393 bitmap_clear (seen);
394 for (i = 0; i < n_bord_bbs; i++)
396 basic_block ldom;
398 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
399 if (bitmap_bit_p (seen, bb->index))
400 continue;
401 bitmap_set_bit (seen, bb->index);
403 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
404 ldom;
405 ldom = next_dom_son (CDI_DOMINATORS, ldom))
406 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
407 dom_bbs.safe_push (ldom);
410 free (seen);
412 /* Recount dominators. */
413 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
414 dom_bbs.release ();
415 free (bord_bbs);
417 /* Fix placements of basic blocks inside loops and the placement of
418 loops in the loop tree. */
419 fix_bb_placements (from, &irred_invalidated, NULL);
420 fix_loop_placements (from->loop_father, &irred_invalidated);
422 if (irred_invalidated
423 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
424 mark_irreducible_loops ();
426 return true;
429 /* Creates place for a new LOOP in loops structure of FN. */
431 void
432 place_new_loop (struct function *fn, struct loop *loop)
434 loop->num = number_of_loops (fn);
435 vec_safe_push (loops_for_fn (fn)->larray, loop);
438 /* Given LOOP structure with filled header and latch, find the body of the
439 corresponding loop and add it to loops tree. Insert the LOOP as a son of
440 outer. */
442 void
443 add_loop (struct loop *loop, struct loop *outer)
445 basic_block *bbs;
446 int i, n;
447 struct loop *subloop;
448 edge e;
449 edge_iterator ei;
451 /* Add it to loop structure. */
452 place_new_loop (cfun, loop);
453 flow_loop_tree_node_add (outer, loop);
455 /* Find its nodes. */
456 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
457 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
459 for (i = 0; i < n; i++)
461 if (bbs[i]->loop_father == outer)
463 remove_bb_from_loops (bbs[i]);
464 add_bb_to_loop (bbs[i], loop);
465 continue;
468 loop->num_nodes++;
470 /* If we find a direct subloop of OUTER, move it to LOOP. */
471 subloop = bbs[i]->loop_father;
472 if (loop_outer (subloop) == outer
473 && subloop->header == bbs[i])
475 flow_loop_tree_node_remove (subloop);
476 flow_loop_tree_node_add (loop, subloop);
480 /* Update the information about loop exit edges. */
481 for (i = 0; i < n; i++)
483 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
485 rescan_loop_exit (e, false, false);
489 free (bbs);
492 /* Multiply all frequencies in LOOP by NUM/DEN. */
494 void
495 scale_loop_frequencies (struct loop *loop, int num, int den)
497 basic_block *bbs;
499 bbs = get_loop_body (loop);
500 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
501 free (bbs);
504 /* Multiply all frequencies in LOOP by SCALE/REG_BR_PROB_BASE.
505 If ITERATION_BOUND is non-zero, scale even further if loop is predicted
506 to iterate too many times. */
508 void
509 scale_loop_profile (struct loop *loop, int scale, gcov_type iteration_bound)
511 gcov_type iterations = expected_loop_iterations_unbounded (loop);
512 edge e;
513 edge_iterator ei;
515 if (dump_file && (dump_flags & TDF_DETAILS))
516 fprintf (dump_file, ";; Scaling loop %i with scale %f, "
517 "bounding iterations to %i from guessed %i\n",
518 loop->num, (double)scale / REG_BR_PROB_BASE,
519 (int)iteration_bound, (int)iterations);
521 /* See if loop is predicted to iterate too many times. */
522 if (iteration_bound && iterations > 0
523 && apply_probability (iterations, scale) > iteration_bound)
525 /* Fixing loop profile for different trip count is not trivial; the exit
526 probabilities has to be updated to match and frequencies propagated down
527 to the loop body.
529 We fully update only the simple case of loop with single exit that is
530 either from the latch or BB just before latch and leads from BB with
531 simple conditional jump. This is OK for use in vectorizer. */
532 e = single_exit (loop);
533 if (e)
535 edge other_e;
536 int freq_delta;
537 gcov_type count_delta;
539 FOR_EACH_EDGE (other_e, ei, e->src->succs)
540 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
541 && e != other_e)
542 break;
544 /* Probability of exit must be 1/iterations. */
545 freq_delta = EDGE_FREQUENCY (e);
546 e->probability = REG_BR_PROB_BASE / iteration_bound;
547 other_e->probability = inverse_probability (e->probability);
548 freq_delta -= EDGE_FREQUENCY (e);
550 /* Adjust counts accordingly. */
551 count_delta = e->count;
552 e->count = apply_probability (e->src->count, e->probability);
553 other_e->count = apply_probability (e->src->count, other_e->probability);
554 count_delta -= e->count;
556 /* If latch exists, change its frequency and count, since we changed
557 probability of exit. Theoretically we should update everything from
558 source of exit edge to latch, but for vectorizer this is enough. */
559 if (loop->latch
560 && loop->latch != e->src)
562 loop->latch->frequency += freq_delta;
563 if (loop->latch->frequency < 0)
564 loop->latch->frequency = 0;
565 loop->latch->count += count_delta;
566 if (loop->latch->count < 0)
567 loop->latch->count = 0;
571 /* Roughly speaking we want to reduce the loop body profile by the
572 the difference of loop iterations. We however can do better if
573 we look at the actual profile, if it is available. */
574 scale = RDIV (iteration_bound * scale, iterations);
575 if (loop->header->count)
577 gcov_type count_in = 0;
579 FOR_EACH_EDGE (e, ei, loop->header->preds)
580 if (e->src != loop->latch)
581 count_in += e->count;
583 if (count_in != 0)
584 scale = GCOV_COMPUTE_SCALE (count_in * iteration_bound,
585 loop->header->count);
587 else if (loop->header->frequency)
589 int freq_in = 0;
591 FOR_EACH_EDGE (e, ei, loop->header->preds)
592 if (e->src != loop->latch)
593 freq_in += EDGE_FREQUENCY (e);
595 if (freq_in != 0)
596 scale = GCOV_COMPUTE_SCALE (freq_in * iteration_bound,
597 loop->header->frequency);
599 if (!scale)
600 scale = 1;
603 if (scale == REG_BR_PROB_BASE)
604 return;
606 /* Scale the actual probabilities. */
607 scale_loop_frequencies (loop, scale, REG_BR_PROB_BASE);
608 if (dump_file && (dump_flags & TDF_DETAILS))
609 fprintf (dump_file, ";; guessed iterations are now %i\n",
610 (int)expected_loop_iterations_unbounded (loop));
613 /* Recompute dominance information for basic blocks outside LOOP. */
615 static void
616 update_dominators_in_loop (struct loop *loop)
618 vec<basic_block> dom_bbs = vNULL;
619 sbitmap seen;
620 basic_block *body;
621 unsigned i;
623 seen = sbitmap_alloc (last_basic_block_for_fn (cfun));
624 bitmap_clear (seen);
625 body = get_loop_body (loop);
627 for (i = 0; i < loop->num_nodes; i++)
628 bitmap_set_bit (seen, body[i]->index);
630 for (i = 0; i < loop->num_nodes; i++)
632 basic_block ldom;
634 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
635 ldom;
636 ldom = next_dom_son (CDI_DOMINATORS, ldom))
637 if (!bitmap_bit_p (seen, ldom->index))
639 bitmap_set_bit (seen, ldom->index);
640 dom_bbs.safe_push (ldom);
644 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
645 free (body);
646 free (seen);
647 dom_bbs.release ();
650 /* Creates an if region as shown above. CONDITION is used to create
651 the test for the if.
654 | ------------- -------------
655 | | pred_bb | | pred_bb |
656 | ------------- -------------
657 | | |
658 | | | ENTRY_EDGE
659 | | ENTRY_EDGE V
660 | | ====> -------------
661 | | | cond_bb |
662 | | | CONDITION |
663 | | -------------
664 | V / \
665 | ------------- e_false / \ e_true
666 | | succ_bb | V V
667 | ------------- ----------- -----------
668 | | false_bb | | true_bb |
669 | ----------- -----------
670 | \ /
671 | \ /
672 | V V
673 | -------------
674 | | join_bb |
675 | -------------
676 | | exit_edge (result)
678 | -----------
679 | | succ_bb |
680 | -----------
684 edge
685 create_empty_if_region_on_edge (edge entry_edge, tree condition)
688 basic_block cond_bb, true_bb, false_bb, join_bb;
689 edge e_true, e_false, exit_edge;
690 gcond *cond_stmt;
691 tree simple_cond;
692 gimple_stmt_iterator gsi;
694 cond_bb = split_edge (entry_edge);
696 /* Insert condition in cond_bb. */
697 gsi = gsi_last_bb (cond_bb);
698 simple_cond =
699 force_gimple_operand_gsi (&gsi, condition, true, NULL,
700 false, GSI_NEW_STMT);
701 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
702 gsi = gsi_last_bb (cond_bb);
703 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
705 join_bb = split_edge (single_succ_edge (cond_bb));
707 e_true = single_succ_edge (cond_bb);
708 true_bb = split_edge (e_true);
710 e_false = make_edge (cond_bb, join_bb, 0);
711 false_bb = split_edge (e_false);
713 e_true->flags &= ~EDGE_FALLTHRU;
714 e_true->flags |= EDGE_TRUE_VALUE;
715 e_false->flags &= ~EDGE_FALLTHRU;
716 e_false->flags |= EDGE_FALSE_VALUE;
718 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
719 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
720 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
721 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
723 exit_edge = single_succ_edge (join_bb);
725 if (single_pred_p (exit_edge->dest))
726 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
728 return exit_edge;
731 /* create_empty_loop_on_edge
733 | - pred_bb - ------ pred_bb ------
734 | | | | iv0 = initial_value |
735 | -----|----- ---------|-----------
736 | | ______ | entry_edge
737 | | entry_edge / | |
738 | | ====> | -V---V- loop_header -------------
739 | V | | iv_before = phi (iv0, iv_after) |
740 | - succ_bb - | ---|-----------------------------
741 | | | | |
742 | ----------- | ---V--- loop_body ---------------
743 | | | iv_after = iv_before + stride |
744 | | | if (iv_before < upper_bound) |
745 | | ---|--------------\--------------
746 | | | \ exit_e
747 | | V \
748 | | - loop_latch - V- succ_bb -
749 | | | | | |
750 | | /------------- -----------
751 | \ ___ /
753 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
754 that is used before the increment of IV. IV_BEFORE should be used for
755 adding code to the body that uses the IV. OUTER is the outer loop in
756 which the new loop should be inserted.
758 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
759 inserted on the loop entry edge. This implies that this function
760 should be used only when the UPPER_BOUND expression is a loop
761 invariant. */
763 struct loop *
764 create_empty_loop_on_edge (edge entry_edge,
765 tree initial_value,
766 tree stride, tree upper_bound,
767 tree iv,
768 tree *iv_before,
769 tree *iv_after,
770 struct loop *outer)
772 basic_block loop_header, loop_latch, succ_bb, pred_bb;
773 struct loop *loop;
774 gimple_stmt_iterator gsi;
775 gimple_seq stmts;
776 gcond *cond_expr;
777 tree exit_test;
778 edge exit_e;
779 int prob;
781 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
783 /* Create header, latch and wire up the loop. */
784 pred_bb = entry_edge->src;
785 loop_header = split_edge (entry_edge);
786 loop_latch = split_edge (single_succ_edge (loop_header));
787 succ_bb = single_succ (loop_latch);
788 make_edge (loop_header, succ_bb, 0);
789 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
791 /* Set immediate dominator information. */
792 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
793 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
794 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
796 /* Initialize a loop structure and put it in a loop hierarchy. */
797 loop = alloc_loop ();
798 loop->header = loop_header;
799 loop->latch = loop_latch;
800 add_loop (loop, outer);
802 /* TODO: Fix frequencies and counts. */
803 prob = REG_BR_PROB_BASE / 2;
805 scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE);
807 /* Update dominators. */
808 update_dominators_in_loop (loop);
810 /* Modify edge flags. */
811 exit_e = single_exit (loop);
812 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
813 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
815 /* Construct IV code in loop. */
816 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
817 if (stmts)
819 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
820 gsi_commit_edge_inserts ();
823 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
824 if (stmts)
826 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
827 gsi_commit_edge_inserts ();
830 gsi = gsi_last_bb (loop_header);
831 create_iv (initial_value, stride, iv, loop, &gsi, false,
832 iv_before, iv_after);
834 /* Insert loop exit condition. */
835 cond_expr = gimple_build_cond
836 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
838 exit_test = gimple_cond_lhs (cond_expr);
839 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
840 false, GSI_NEW_STMT);
841 gimple_cond_set_lhs (cond_expr, exit_test);
842 gsi = gsi_last_bb (exit_e->src);
843 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
845 split_block_after_labels (loop_header);
847 return loop;
850 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
851 latch to header and update loop tree and dominators
852 accordingly. Everything between them plus LATCH_EDGE destination must
853 be dominated by HEADER_EDGE destination, and back-reachable from
854 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
855 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
856 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
857 Returns the newly created loop. Frequencies and counts in the new loop
858 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
860 struct loop *
861 loopify (edge latch_edge, edge header_edge,
862 basic_block switch_bb, edge true_edge, edge false_edge,
863 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
865 basic_block succ_bb = latch_edge->dest;
866 basic_block pred_bb = header_edge->src;
867 struct loop *loop = alloc_loop ();
868 struct loop *outer = loop_outer (succ_bb->loop_father);
869 int freq;
870 gcov_type cnt;
871 edge e;
872 edge_iterator ei;
874 loop->header = header_edge->dest;
875 loop->latch = latch_edge->src;
877 freq = EDGE_FREQUENCY (header_edge);
878 cnt = header_edge->count;
880 /* Redirect edges. */
881 loop_redirect_edge (latch_edge, loop->header);
882 loop_redirect_edge (true_edge, succ_bb);
884 /* During loop versioning, one of the switch_bb edge is already properly
885 set. Do not redirect it again unless redirect_all_edges is true. */
886 if (redirect_all_edges)
888 loop_redirect_edge (header_edge, switch_bb);
889 loop_redirect_edge (false_edge, loop->header);
891 /* Update dominators. */
892 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
893 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
896 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
898 /* Compute new loop. */
899 add_loop (loop, outer);
901 /* Add switch_bb to appropriate loop. */
902 if (switch_bb->loop_father)
903 remove_bb_from_loops (switch_bb);
904 add_bb_to_loop (switch_bb, outer);
906 /* Fix frequencies. */
907 if (redirect_all_edges)
909 switch_bb->frequency = freq;
910 switch_bb->count = cnt;
911 FOR_EACH_EDGE (e, ei, switch_bb->succs)
913 e->count = apply_probability (switch_bb->count, e->probability);
916 scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
917 scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
918 update_dominators_in_loop (loop);
920 return loop;
923 /* Remove the latch edge of a LOOP and update loops to indicate that
924 the LOOP was removed. After this function, original loop latch will
925 have no successor, which caller is expected to fix somehow.
927 If this may cause the information about irreducible regions to become
928 invalid, IRRED_INVALIDATED is set to true.
930 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
931 basic blocks that had non-trivial update on their loop_father.*/
933 void
934 unloop (struct loop *loop, bool *irred_invalidated,
935 bitmap loop_closed_ssa_invalidated)
937 basic_block *body;
938 struct loop *ploop;
939 unsigned i, n;
940 basic_block latch = loop->latch;
941 bool dummy = false;
943 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
944 *irred_invalidated = true;
946 /* This is relatively straightforward. The dominators are unchanged, as
947 loop header dominates loop latch, so the only thing we have to care of
948 is the placement of loops and basic blocks inside the loop tree. We
949 move them all to the loop->outer, and then let fix_bb_placements do
950 its work. */
952 body = get_loop_body (loop);
953 n = loop->num_nodes;
954 for (i = 0; i < n; i++)
955 if (body[i]->loop_father == loop)
957 remove_bb_from_loops (body[i]);
958 add_bb_to_loop (body[i], loop_outer (loop));
960 free (body);
962 while (loop->inner)
964 ploop = loop->inner;
965 flow_loop_tree_node_remove (ploop);
966 flow_loop_tree_node_add (loop_outer (loop), ploop);
969 /* Remove the loop and free its data. */
970 delete_loop (loop);
972 remove_edge (single_succ_edge (latch));
974 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
975 there is an irreducible region inside the cancelled loop, the flags will
976 be still correct. */
977 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
980 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
981 condition stated in description of fix_loop_placement holds for them.
982 It is used in case when we removed some edges coming out of LOOP, which
983 may cause the right placement of LOOP inside loop tree to change.
985 IRRED_INVALIDATED is set to true if a change in the loop structures might
986 invalidate the information about irreducible regions. */
988 static void
989 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
991 struct loop *outer;
993 while (loop_outer (loop))
995 outer = loop_outer (loop);
996 if (!fix_loop_placement (loop, irred_invalidated))
997 break;
999 /* Changing the placement of a loop in the loop tree may alter the
1000 validity of condition 2) of the description of fix_bb_placement
1001 for its preheader, because the successor is the header and belongs
1002 to the loop. So call fix_bb_placements to fix up the placement
1003 of the preheader and (possibly) of its predecessors. */
1004 fix_bb_placements (loop_preheader_edge (loop)->src,
1005 irred_invalidated, NULL);
1006 loop = outer;
1010 /* Duplicate loop bounds and other information we store about
1011 the loop into its duplicate. */
1013 void
1014 copy_loop_info (struct loop *loop, struct loop *target)
1016 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
1017 target->any_upper_bound = loop->any_upper_bound;
1018 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
1019 target->any_estimate = loop->any_estimate;
1020 target->nb_iterations_estimate = loop->nb_iterations_estimate;
1021 target->estimate_state = loop->estimate_state;
1022 target->warned_aggressive_loop_optimizations
1023 |= loop->warned_aggressive_loop_optimizations;
1024 target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
1027 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1028 created loop into loops structure. */
1029 struct loop *
1030 duplicate_loop (struct loop *loop, struct loop *target)
1032 struct loop *cloop;
1033 cloop = alloc_loop ();
1034 place_new_loop (cfun, cloop);
1036 copy_loop_info (loop, cloop);
1038 /* Mark the new loop as copy of LOOP. */
1039 set_loop_copy (loop, cloop);
1041 /* Add it to target. */
1042 flow_loop_tree_node_add (target, cloop);
1044 return cloop;
1047 /* Copies structure of subloops of LOOP into TARGET loop, placing
1048 newly created loops into loop tree. */
1049 void
1050 duplicate_subloops (struct loop *loop, struct loop *target)
1052 struct loop *aloop, *cloop;
1054 for (aloop = loop->inner; aloop; aloop = aloop->next)
1056 cloop = duplicate_loop (aloop, target);
1057 duplicate_subloops (aloop, cloop);
1061 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1062 into TARGET loop, placing newly created loops into loop tree. */
1063 static void
1064 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
1066 struct loop *aloop;
1067 int i;
1069 for (i = 0; i < n; i++)
1071 aloop = duplicate_loop (copied_loops[i], target);
1072 duplicate_subloops (copied_loops[i], aloop);
1076 /* Redirects edge E to basic block DEST. */
1077 static void
1078 loop_redirect_edge (edge e, basic_block dest)
1080 if (e->dest == dest)
1081 return;
1083 redirect_edge_and_branch_force (e, dest);
1086 /* Check whether LOOP's body can be duplicated. */
1087 bool
1088 can_duplicate_loop_p (const struct loop *loop)
1090 int ret;
1091 basic_block *bbs = get_loop_body (loop);
1093 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1094 free (bbs);
1096 return ret;
1099 /* Sets probability and count of edge E to zero. The probability and count
1100 is redistributed evenly to the remaining edges coming from E->src. */
1102 static void
1103 set_zero_probability (edge e)
1105 basic_block bb = e->src;
1106 edge_iterator ei;
1107 edge ae, last = NULL;
1108 unsigned n = EDGE_COUNT (bb->succs);
1109 gcov_type cnt = e->count, cnt1;
1110 unsigned prob = e->probability, prob1;
1112 gcc_assert (n > 1);
1113 cnt1 = cnt / (n - 1);
1114 prob1 = prob / (n - 1);
1116 FOR_EACH_EDGE (ae, ei, bb->succs)
1118 if (ae == e)
1119 continue;
1121 ae->probability += prob1;
1122 ae->count += cnt1;
1123 last = ae;
1126 /* Move the rest to one of the edges. */
1127 last->probability += prob % (n - 1);
1128 last->count += cnt % (n - 1);
1130 e->probability = 0;
1131 e->count = 0;
1134 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1135 loop structure and dominators. E's destination must be LOOP header for
1136 this to work, i.e. it must be entry or latch edge of this loop; these are
1137 unique, as the loops must have preheaders for this function to work
1138 correctly (in case E is latch, the function unrolls the loop, if E is entry
1139 edge, it peels the loop). Store edges created by copying ORIG edge from
1140 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
1141 original LOOP body, the other copies are numbered in order given by control
1142 flow through them) into TO_REMOVE array. Returns false if duplication is
1143 impossible. */
1145 bool
1146 duplicate_loop_to_header_edge (struct loop *loop, edge e,
1147 unsigned int ndupl, sbitmap wont_exit,
1148 edge orig, vec<edge> *to_remove,
1149 int flags)
1151 struct loop *target, *aloop;
1152 struct loop **orig_loops;
1153 unsigned n_orig_loops;
1154 basic_block header = loop->header, latch = loop->latch;
1155 basic_block *new_bbs, *bbs, *first_active;
1156 basic_block new_bb, bb, first_active_latch = NULL;
1157 edge ae, latch_edge;
1158 edge spec_edges[2], new_spec_edges[2];
1159 #define SE_LATCH 0
1160 #define SE_ORIG 1
1161 unsigned i, j, n;
1162 int is_latch = (latch == e->src);
1163 int scale_act = 0, *scale_step = NULL, scale_main = 0;
1164 int scale_after_exit = 0;
1165 int p, freq_in, freq_le, freq_out_orig;
1166 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
1167 int add_irreducible_flag;
1168 basic_block place_after;
1169 bitmap bbs_to_scale = NULL;
1170 bitmap_iterator bi;
1172 gcc_assert (e->dest == loop->header);
1173 gcc_assert (ndupl > 0);
1175 if (orig)
1177 /* Orig must be edge out of the loop. */
1178 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1179 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1182 n = loop->num_nodes;
1183 bbs = get_loop_body_in_dom_order (loop);
1184 gcc_assert (bbs[0] == loop->header);
1185 gcc_assert (bbs[n - 1] == loop->latch);
1187 /* Check whether duplication is possible. */
1188 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1190 free (bbs);
1191 return false;
1193 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1195 /* In case we are doing loop peeling and the loop is in the middle of
1196 irreducible region, the peeled copies will be inside it too. */
1197 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1198 gcc_assert (!is_latch || !add_irreducible_flag);
1200 /* Find edge from latch. */
1201 latch_edge = loop_latch_edge (loop);
1203 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1205 /* Calculate coefficients by that we have to scale frequencies
1206 of duplicated loop bodies. */
1207 freq_in = header->frequency;
1208 freq_le = EDGE_FREQUENCY (latch_edge);
1209 if (freq_in == 0)
1210 freq_in = 1;
1211 if (freq_in < freq_le)
1212 freq_in = freq_le;
1213 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
1214 if (freq_out_orig > freq_in - freq_le)
1215 freq_out_orig = freq_in - freq_le;
1216 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
1217 prob_pass_wont_exit =
1218 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
1220 if (orig
1221 && REG_BR_PROB_BASE - orig->probability != 0)
1223 /* The blocks that are dominated by a removed exit edge ORIG have
1224 frequencies scaled by this. */
1225 scale_after_exit
1226 = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE,
1227 REG_BR_PROB_BASE - orig->probability);
1228 bbs_to_scale = BITMAP_ALLOC (NULL);
1229 for (i = 0; i < n; i++)
1231 if (bbs[i] != orig->src
1232 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1233 bitmap_set_bit (bbs_to_scale, i);
1237 scale_step = XNEWVEC (int, ndupl);
1239 for (i = 1; i <= ndupl; i++)
1240 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1241 ? prob_pass_wont_exit
1242 : prob_pass_thru;
1244 /* Complete peeling is special as the probability of exit in last
1245 copy becomes 1. */
1246 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1248 int wanted_freq = EDGE_FREQUENCY (e);
1250 if (wanted_freq > freq_in)
1251 wanted_freq = freq_in;
1253 gcc_assert (!is_latch);
1254 /* First copy has frequency of incoming edge. Each subsequent
1255 frequency should be reduced by prob_pass_wont_exit. Caller
1256 should've managed the flags so all except for original loop
1257 has won't exist set. */
1258 scale_act = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1259 /* Now simulate the duplication adjustments and compute header
1260 frequency of the last copy. */
1261 for (i = 0; i < ndupl; i++)
1262 wanted_freq = combine_probabilities (wanted_freq, scale_step[i]);
1263 scale_main = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1265 else if (is_latch)
1267 prob_pass_main = bitmap_bit_p (wont_exit, 0)
1268 ? prob_pass_wont_exit
1269 : prob_pass_thru;
1270 p = prob_pass_main;
1271 scale_main = REG_BR_PROB_BASE;
1272 for (i = 0; i < ndupl; i++)
1274 scale_main += p;
1275 p = combine_probabilities (p, scale_step[i]);
1277 scale_main = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE, scale_main);
1278 scale_act = combine_probabilities (scale_main, prob_pass_main);
1280 else
1282 scale_main = REG_BR_PROB_BASE;
1283 for (i = 0; i < ndupl; i++)
1284 scale_main = combine_probabilities (scale_main, scale_step[i]);
1285 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
1287 for (i = 0; i < ndupl; i++)
1288 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
1289 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
1290 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
1293 /* Loop the new bbs will belong to. */
1294 target = e->src->loop_father;
1296 /* Original loops. */
1297 n_orig_loops = 0;
1298 for (aloop = loop->inner; aloop; aloop = aloop->next)
1299 n_orig_loops++;
1300 orig_loops = XNEWVEC (struct loop *, n_orig_loops);
1301 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1302 orig_loops[i] = aloop;
1304 set_loop_copy (loop, target);
1306 first_active = XNEWVEC (basic_block, n);
1307 if (is_latch)
1309 memcpy (first_active, bbs, n * sizeof (basic_block));
1310 first_active_latch = latch;
1313 spec_edges[SE_ORIG] = orig;
1314 spec_edges[SE_LATCH] = latch_edge;
1316 place_after = e->src;
1317 for (j = 0; j < ndupl; j++)
1319 /* Copy loops. */
1320 copy_loops_to (orig_loops, n_orig_loops, target);
1322 /* Copy bbs. */
1323 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1324 place_after, true);
1325 place_after = new_spec_edges[SE_LATCH]->src;
1327 if (flags & DLTHE_RECORD_COPY_NUMBER)
1328 for (i = 0; i < n; i++)
1330 gcc_assert (!new_bbs[i]->aux);
1331 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1334 /* Note whether the blocks and edges belong to an irreducible loop. */
1335 if (add_irreducible_flag)
1337 for (i = 0; i < n; i++)
1338 new_bbs[i]->flags |= BB_DUPLICATED;
1339 for (i = 0; i < n; i++)
1341 edge_iterator ei;
1342 new_bb = new_bbs[i];
1343 if (new_bb->loop_father == target)
1344 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1346 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1347 if ((ae->dest->flags & BB_DUPLICATED)
1348 && (ae->src->loop_father == target
1349 || ae->dest->loop_father == target))
1350 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1352 for (i = 0; i < n; i++)
1353 new_bbs[i]->flags &= ~BB_DUPLICATED;
1356 /* Redirect the special edges. */
1357 if (is_latch)
1359 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1360 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1361 loop->header);
1362 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1363 latch = loop->latch = new_bbs[n - 1];
1364 e = latch_edge = new_spec_edges[SE_LATCH];
1366 else
1368 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1369 loop->header);
1370 redirect_edge_and_branch_force (e, new_bbs[0]);
1371 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1372 e = new_spec_edges[SE_LATCH];
1375 /* Record exit edge in this copy. */
1376 if (orig && bitmap_bit_p (wont_exit, j + 1))
1378 if (to_remove)
1379 to_remove->safe_push (new_spec_edges[SE_ORIG]);
1380 set_zero_probability (new_spec_edges[SE_ORIG]);
1382 /* Scale the frequencies of the blocks dominated by the exit. */
1383 if (bbs_to_scale)
1385 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1387 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1388 REG_BR_PROB_BASE);
1393 /* Record the first copy in the control flow order if it is not
1394 the original loop (i.e. in case of peeling). */
1395 if (!first_active_latch)
1397 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1398 first_active_latch = new_bbs[n - 1];
1401 /* Set counts and frequencies. */
1402 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1404 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1405 scale_act = combine_probabilities (scale_act, scale_step[j]);
1408 free (new_bbs);
1409 free (orig_loops);
1411 /* Record the exit edge in the original loop body, and update the frequencies. */
1412 if (orig && bitmap_bit_p (wont_exit, 0))
1414 if (to_remove)
1415 to_remove->safe_push (orig);
1416 set_zero_probability (orig);
1418 /* Scale the frequencies of the blocks dominated by the exit. */
1419 if (bbs_to_scale)
1421 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1423 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1424 REG_BR_PROB_BASE);
1429 /* Update the original loop. */
1430 if (!is_latch)
1431 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1432 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1434 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1435 free (scale_step);
1438 /* Update dominators of outer blocks if affected. */
1439 for (i = 0; i < n; i++)
1441 basic_block dominated, dom_bb;
1442 vec<basic_block> dom_bbs;
1443 unsigned j;
1445 bb = bbs[i];
1446 bb->aux = 0;
1448 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1449 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1451 if (flow_bb_inside_loop_p (loop, dominated))
1452 continue;
1453 dom_bb = nearest_common_dominator (
1454 CDI_DOMINATORS, first_active[i], first_active_latch);
1455 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1457 dom_bbs.release ();
1459 free (first_active);
1461 free (bbs);
1462 BITMAP_FREE (bbs_to_scale);
1464 return true;
1467 /* A callback for make_forwarder block, to redirect all edges except for
1468 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1469 whether to redirect it. */
1471 edge mfb_kj_edge;
1472 bool
1473 mfb_keep_just (edge e)
1475 return e != mfb_kj_edge;
1478 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1480 static bool
1481 has_preds_from_loop (basic_block block, struct loop *loop)
1483 edge e;
1484 edge_iterator ei;
1486 FOR_EACH_EDGE (e, ei, block->preds)
1487 if (e->src->loop_father == loop)
1488 return true;
1489 return false;
1492 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1493 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1494 entry; otherwise we also force preheader block to have only one successor.
1495 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1496 to be a fallthru predecessor to the loop header and to have only
1497 predecessors from outside of the loop.
1498 The function also updates dominators. */
1500 basic_block
1501 create_preheader (struct loop *loop, int flags)
1503 edge e, fallthru;
1504 basic_block dummy;
1505 int nentry = 0;
1506 bool irred = false;
1507 bool latch_edge_was_fallthru;
1508 edge one_succ_pred = NULL, single_entry = NULL;
1509 edge_iterator ei;
1511 FOR_EACH_EDGE (e, ei, loop->header->preds)
1513 if (e->src == loop->latch)
1514 continue;
1515 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1516 nentry++;
1517 single_entry = e;
1518 if (single_succ_p (e->src))
1519 one_succ_pred = e;
1521 gcc_assert (nentry);
1522 if (nentry == 1)
1524 bool need_forwarder_block = false;
1526 /* We do not allow entry block to be the loop preheader, since we
1527 cannot emit code there. */
1528 if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1529 need_forwarder_block = true;
1530 else
1532 /* If we want simple preheaders, also force the preheader to have
1533 just a single successor. */
1534 if ((flags & CP_SIMPLE_PREHEADERS)
1535 && !single_succ_p (single_entry->src))
1536 need_forwarder_block = true;
1537 /* If we want fallthru preheaders, also create forwarder block when
1538 preheader ends with a jump or has predecessors from loop. */
1539 else if ((flags & CP_FALLTHRU_PREHEADERS)
1540 && (JUMP_P (BB_END (single_entry->src))
1541 || has_preds_from_loop (single_entry->src, loop)))
1542 need_forwarder_block = true;
1544 if (! need_forwarder_block)
1545 return NULL;
1548 mfb_kj_edge = loop_latch_edge (loop);
1549 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1550 fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1551 dummy = fallthru->src;
1552 loop->header = fallthru->dest;
1554 /* Try to be clever in placing the newly created preheader. The idea is to
1555 avoid breaking any "fallthruness" relationship between blocks.
1557 The preheader was created just before the header and all incoming edges
1558 to the header were redirected to the preheader, except the latch edge.
1559 So the only problematic case is when this latch edge was a fallthru
1560 edge: it is not anymore after the preheader creation so we have broken
1561 the fallthruness. We're therefore going to look for a better place. */
1562 if (latch_edge_was_fallthru)
1564 if (one_succ_pred)
1565 e = one_succ_pred;
1566 else
1567 e = EDGE_PRED (dummy, 0);
1569 move_block_after (dummy, e->src);
1572 if (irred)
1574 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1575 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1578 if (dump_file)
1579 fprintf (dump_file, "Created preheader block for loop %i\n",
1580 loop->num);
1582 if (flags & CP_FALLTHRU_PREHEADERS)
1583 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1584 && !JUMP_P (BB_END (dummy)));
1586 return dummy;
1589 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1591 void
1592 create_preheaders (int flags)
1594 struct loop *loop;
1596 if (!current_loops)
1597 return;
1599 FOR_EACH_LOOP (loop, 0)
1600 create_preheader (loop, flags);
1601 loops_state_set (LOOPS_HAVE_PREHEADERS);
1604 /* Forces all loop latches to have only single successor. */
1606 void
1607 force_single_succ_latches (void)
1609 struct loop *loop;
1610 edge e;
1612 FOR_EACH_LOOP (loop, 0)
1614 if (loop->latch != loop->header && single_succ_p (loop->latch))
1615 continue;
1617 e = find_edge (loop->latch, loop->header);
1618 gcc_checking_assert (e != NULL);
1620 split_edge (e);
1622 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1625 /* This function is called from loop_version. It splits the entry edge
1626 of the loop we want to version, adds the versioning condition, and
1627 adjust the edges to the two versions of the loop appropriately.
1628 e is an incoming edge. Returns the basic block containing the
1629 condition.
1631 --- edge e ---- > [second_head]
1633 Split it and insert new conditional expression and adjust edges.
1635 --- edge e ---> [cond expr] ---> [first_head]
1637 +---------> [second_head]
1639 THEN_PROB is the probability of then branch of the condition. */
1641 static basic_block
1642 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1643 edge e, void *cond_expr, unsigned then_prob)
1645 basic_block new_head = NULL;
1646 edge e1;
1648 gcc_assert (e->dest == second_head);
1650 /* Split edge 'e'. This will create a new basic block, where we can
1651 insert conditional expr. */
1652 new_head = split_edge (e);
1654 lv_add_condition_to_bb (first_head, second_head, new_head,
1655 cond_expr);
1657 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1658 e = single_succ_edge (new_head);
1659 e1 = make_edge (new_head, first_head,
1660 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1661 e1->probability = then_prob;
1662 e->probability = REG_BR_PROB_BASE - then_prob;
1663 e1->count = apply_probability (e->count, e1->probability);
1664 e->count = apply_probability (e->count, e->probability);
1666 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1667 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1669 /* Adjust loop header phi nodes. */
1670 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1672 return new_head;
1675 /* Main entry point for Loop Versioning transformation.
1677 This transformation given a condition and a loop, creates
1678 -if (condition) { loop_copy1 } else { loop_copy2 },
1679 where loop_copy1 is the loop transformed in one way, and loop_copy2
1680 is the loop transformed in another way (or unchanged). 'condition'
1681 may be a run time test for things that were not resolved by static
1682 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1684 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1685 is the ratio by that the frequencies in the original loop should
1686 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1687 new loop should be scaled.
1689 If PLACE_AFTER is true, we place the new loop after LOOP in the
1690 instruction stream, otherwise it is placed before LOOP. */
1692 struct loop *
1693 loop_version (struct loop *loop,
1694 void *cond_expr, basic_block *condition_bb,
1695 unsigned then_prob, unsigned then_scale, unsigned else_scale,
1696 bool place_after)
1698 basic_block first_head, second_head;
1699 edge entry, latch_edge, true_edge, false_edge;
1700 int irred_flag;
1701 struct loop *nloop;
1702 basic_block cond_bb;
1704 /* Record entry and latch edges for the loop */
1705 entry = loop_preheader_edge (loop);
1706 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1707 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1709 /* Note down head of loop as first_head. */
1710 first_head = entry->dest;
1712 /* Duplicate loop. */
1713 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1714 NULL, NULL, NULL, 0))
1716 entry->flags |= irred_flag;
1717 return NULL;
1720 /* After duplication entry edge now points to new loop head block.
1721 Note down new head as second_head. */
1722 second_head = entry->dest;
1724 /* Split loop entry edge and insert new block with cond expr. */
1725 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1726 entry, cond_expr, then_prob);
1727 if (condition_bb)
1728 *condition_bb = cond_bb;
1730 if (!cond_bb)
1732 entry->flags |= irred_flag;
1733 return NULL;
1736 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1738 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1739 nloop = loopify (latch_edge,
1740 single_pred_edge (get_bb_copy (loop->header)),
1741 cond_bb, true_edge, false_edge,
1742 false /* Do not redirect all edges. */,
1743 then_scale, else_scale);
1745 copy_loop_info (loop, nloop);
1747 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1748 lv_flush_pending_stmts (latch_edge);
1750 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1751 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1752 lv_flush_pending_stmts (false_edge);
1753 /* Adjust irreducible flag. */
1754 if (irred_flag)
1756 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1757 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1758 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1759 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1762 if (place_after)
1764 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1765 unsigned i;
1767 after = loop->latch;
1769 for (i = 0; i < nloop->num_nodes; i++)
1771 move_block_after (bbs[i], after);
1772 after = bbs[i];
1774 free (bbs);
1777 /* At this point condition_bb is loop preheader with two successors,
1778 first_head and second_head. Make sure that loop preheader has only
1779 one successor. */
1780 split_edge (loop_preheader_edge (loop));
1781 split_edge (loop_preheader_edge (nloop));
1783 return nloop;