1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
4 Copyright (C) 2008-2013 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
33 Both passes operate in four stages:
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
76 #include "coretypes.h"
77 #include "hash-table.h"
78 #include "alloc-pool.h"
83 #include "tree-flow.h"
84 #include "tree-pass.h"
86 #include "statistics.h"
91 #include "tree-inline.h"
92 #include "gimple-pretty-print.h"
93 #include "ipa-inline.h"
95 /* Enumeration of all aggregate reductions we can do. */
96 enum sra_mode
{ SRA_MODE_EARLY_IPA
, /* early call regularization */
97 SRA_MODE_EARLY_INTRA
, /* early intraprocedural SRA */
98 SRA_MODE_INTRA
}; /* late intraprocedural SRA */
100 /* Global variable describing which aggregate reduction we are performing at
102 static enum sra_mode sra_mode
;
106 /* ACCESS represents each access to an aggregate variable (as a whole or a
107 part). It can also represent a group of accesses that refer to exactly the
108 same fragment of an aggregate (i.e. those that have exactly the same offset
109 and size). Such representatives for a single aggregate, once determined,
110 are linked in a linked list and have the group fields set.
112 Moreover, when doing intraprocedural SRA, a tree is built from those
113 representatives (by the means of first_child and next_sibling pointers), in
114 which all items in a subtree are "within" the root, i.e. their offset is
115 greater or equal to offset of the root and offset+size is smaller or equal
116 to offset+size of the root. Children of an access are sorted by offset.
118 Note that accesses to parts of vector and complex number types always
119 represented by an access to the whole complex number or a vector. It is a
120 duty of the modifying functions to replace them appropriately. */
124 /* Values returned by `get_ref_base_and_extent' for each component reference
125 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
126 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
127 HOST_WIDE_INT offset
;
131 /* Expression. It is context dependent so do not use it to create new
132 expressions to access the original aggregate. See PR 42154 for a
138 /* The statement this access belongs to. */
141 /* Next group representative for this aggregate. */
142 struct access
*next_grp
;
144 /* Pointer to the group representative. Pointer to itself if the struct is
145 the representative. */
146 struct access
*group_representative
;
148 /* If this access has any children (in terms of the definition above), this
149 points to the first one. */
150 struct access
*first_child
;
152 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
153 described above. In IPA-SRA this is a pointer to the next access
154 belonging to the same group (having the same representative). */
155 struct access
*next_sibling
;
157 /* Pointers to the first and last element in the linked list of assign
159 struct assign_link
*first_link
, *last_link
;
161 /* Pointer to the next access in the work queue. */
162 struct access
*next_queued
;
164 /* Replacement variable for this access "region." Never to be accessed
165 directly, always only by the means of get_access_replacement() and only
166 when grp_to_be_replaced flag is set. */
167 tree replacement_decl
;
169 /* Is this particular access write access? */
172 /* Is this access an access to a non-addressable field? */
173 unsigned non_addressable
: 1;
175 /* Is this access currently in the work queue? */
176 unsigned grp_queued
: 1;
178 /* Does this group contain a write access? This flag is propagated down the
180 unsigned grp_write
: 1;
182 /* Does this group contain a read access? This flag is propagated down the
184 unsigned grp_read
: 1;
186 /* Does this group contain a read access that comes from an assignment
187 statement? This flag is propagated down the access tree. */
188 unsigned grp_assignment_read
: 1;
190 /* Does this group contain a write access that comes from an assignment
191 statement? This flag is propagated down the access tree. */
192 unsigned grp_assignment_write
: 1;
194 /* Does this group contain a read access through a scalar type? This flag is
195 not propagated in the access tree in any direction. */
196 unsigned grp_scalar_read
: 1;
198 /* Does this group contain a write access through a scalar type? This flag
199 is not propagated in the access tree in any direction. */
200 unsigned grp_scalar_write
: 1;
202 /* Is this access an artificial one created to scalarize some record
204 unsigned grp_total_scalarization
: 1;
206 /* Other passes of the analysis use this bit to make function
207 analyze_access_subtree create scalar replacements for this group if
209 unsigned grp_hint
: 1;
211 /* Is the subtree rooted in this access fully covered by scalar
213 unsigned grp_covered
: 1;
215 /* If set to true, this access and all below it in an access tree must not be
217 unsigned grp_unscalarizable_region
: 1;
219 /* Whether data have been written to parts of the aggregate covered by this
220 access which is not to be scalarized. This flag is propagated up in the
222 unsigned grp_unscalarized_data
: 1;
224 /* Does this access and/or group contain a write access through a
226 unsigned grp_partial_lhs
: 1;
228 /* Set when a scalar replacement should be created for this variable. */
229 unsigned grp_to_be_replaced
: 1;
231 /* Set when we want a replacement for the sole purpose of having it in
232 generated debug statements. */
233 unsigned grp_to_be_debug_replaced
: 1;
235 /* Should TREE_NO_WARNING of a replacement be set? */
236 unsigned grp_no_warning
: 1;
238 /* Is it possible that the group refers to data which might be (directly or
239 otherwise) modified? */
240 unsigned grp_maybe_modified
: 1;
242 /* Set when this is a representative of a pointer to scalar (i.e. by
243 reference) parameter which we consider for turning into a plain scalar
244 (i.e. a by value parameter). */
245 unsigned grp_scalar_ptr
: 1;
247 /* Set when we discover that this pointer is not safe to dereference in the
249 unsigned grp_not_necessarilly_dereferenced
: 1;
252 typedef struct access
*access_p
;
255 /* Alloc pool for allocating access structures. */
256 static alloc_pool access_pool
;
258 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
259 are used to propagate subaccesses from rhs to lhs as long as they don't
260 conflict with what is already there. */
263 struct access
*lacc
, *racc
;
264 struct assign_link
*next
;
267 /* Alloc pool for allocating assign link structures. */
268 static alloc_pool link_pool
;
270 /* Base (tree) -> Vector (vec<access_p> *) map. */
271 static struct pointer_map_t
*base_access_vec
;
273 /* Candidate hash table helpers. */
275 struct uid_decl_hasher
: typed_noop_remove
<tree_node
>
277 typedef tree_node value_type
;
278 typedef tree_node compare_type
;
279 static inline hashval_t
hash (const value_type
*);
280 static inline bool equal (const value_type
*, const compare_type
*);
283 /* Hash a tree in a uid_decl_map. */
286 uid_decl_hasher::hash (const value_type
*item
)
288 return item
->decl_minimal
.uid
;
291 /* Return true if the DECL_UID in both trees are equal. */
294 uid_decl_hasher::equal (const value_type
*a
, const compare_type
*b
)
296 return (a
->decl_minimal
.uid
== b
->decl_minimal
.uid
);
299 /* Set of candidates. */
300 static bitmap candidate_bitmap
;
301 static hash_table
<uid_decl_hasher
> candidates
;
303 /* For a candidate UID return the candidates decl. */
306 candidate (unsigned uid
)
309 t
.decl_minimal
.uid
= uid
;
310 return candidates
.find_with_hash (&t
, static_cast <hashval_t
> (uid
));
313 /* Bitmap of candidates which we should try to entirely scalarize away and
314 those which cannot be (because they are and need be used as a whole). */
315 static bitmap should_scalarize_away_bitmap
, cannot_scalarize_away_bitmap
;
317 /* Obstack for creation of fancy names. */
318 static struct obstack name_obstack
;
320 /* Head of a linked list of accesses that need to have its subaccesses
321 propagated to their assignment counterparts. */
322 static struct access
*work_queue_head
;
324 /* Number of parameters of the analyzed function when doing early ipa SRA. */
325 static int func_param_count
;
327 /* scan_function sets the following to true if it encounters a call to
328 __builtin_apply_args. */
329 static bool encountered_apply_args
;
331 /* Set by scan_function when it finds a recursive call. */
332 static bool encountered_recursive_call
;
334 /* Set by scan_function when it finds a recursive call with less actual
335 arguments than formal parameters.. */
336 static bool encountered_unchangable_recursive_call
;
338 /* This is a table in which for each basic block and parameter there is a
339 distance (offset + size) in that parameter which is dereferenced and
340 accessed in that BB. */
341 static HOST_WIDE_INT
*bb_dereferences
;
342 /* Bitmap of BBs that can cause the function to "stop" progressing by
343 returning, throwing externally, looping infinitely or calling a function
344 which might abort etc.. */
345 static bitmap final_bbs
;
347 /* Representative of no accesses at all. */
348 static struct access no_accesses_representant
;
350 /* Predicate to test the special value. */
353 no_accesses_p (struct access
*access
)
355 return access
== &no_accesses_representant
;
358 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
359 representative fields are dumped, otherwise those which only describe the
360 individual access are. */
364 /* Number of processed aggregates is readily available in
365 analyze_all_variable_accesses and so is not stored here. */
367 /* Number of created scalar replacements. */
370 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
374 /* Number of statements created by generate_subtree_copies. */
377 /* Number of statements created by load_assign_lhs_subreplacements. */
380 /* Number of times sra_modify_assign has deleted a statement. */
383 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
384 RHS reparately due to type conversions or nonexistent matching
386 int separate_lhs_rhs_handling
;
388 /* Number of parameters that were removed because they were unused. */
389 int deleted_unused_parameters
;
391 /* Number of scalars passed as parameters by reference that have been
392 converted to be passed by value. */
393 int scalar_by_ref_to_by_val
;
395 /* Number of aggregate parameters that were replaced by one or more of their
397 int aggregate_params_reduced
;
399 /* Numbber of components created when splitting aggregate parameters. */
400 int param_reductions_created
;
404 dump_access (FILE *f
, struct access
*access
, bool grp
)
406 fprintf (f
, "access { ");
407 fprintf (f
, "base = (%d)'", DECL_UID (access
->base
));
408 print_generic_expr (f
, access
->base
, 0);
409 fprintf (f
, "', offset = " HOST_WIDE_INT_PRINT_DEC
, access
->offset
);
410 fprintf (f
, ", size = " HOST_WIDE_INT_PRINT_DEC
, access
->size
);
411 fprintf (f
, ", expr = ");
412 print_generic_expr (f
, access
->expr
, 0);
413 fprintf (f
, ", type = ");
414 print_generic_expr (f
, access
->type
, 0);
416 fprintf (f
, ", grp_read = %d, grp_write = %d, grp_assignment_read = %d, "
417 "grp_assignment_write = %d, grp_scalar_read = %d, "
418 "grp_scalar_write = %d, grp_total_scalarization = %d, "
419 "grp_hint = %d, grp_covered = %d, "
420 "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
421 "grp_partial_lhs = %d, grp_to_be_replaced = %d, "
422 "grp_to_be_debug_replaced = %d, grp_maybe_modified = %d, "
423 "grp_not_necessarilly_dereferenced = %d\n",
424 access
->grp_read
, access
->grp_write
, access
->grp_assignment_read
,
425 access
->grp_assignment_write
, access
->grp_scalar_read
,
426 access
->grp_scalar_write
, access
->grp_total_scalarization
,
427 access
->grp_hint
, access
->grp_covered
,
428 access
->grp_unscalarizable_region
, access
->grp_unscalarized_data
,
429 access
->grp_partial_lhs
, access
->grp_to_be_replaced
,
430 access
->grp_to_be_debug_replaced
, access
->grp_maybe_modified
,
431 access
->grp_not_necessarilly_dereferenced
);
433 fprintf (f
, ", write = %d, grp_total_scalarization = %d, "
434 "grp_partial_lhs = %d\n",
435 access
->write
, access
->grp_total_scalarization
,
436 access
->grp_partial_lhs
);
439 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
442 dump_access_tree_1 (FILE *f
, struct access
*access
, int level
)
448 for (i
= 0; i
< level
; i
++)
449 fputs ("* ", dump_file
);
451 dump_access (f
, access
, true);
453 if (access
->first_child
)
454 dump_access_tree_1 (f
, access
->first_child
, level
+ 1);
456 access
= access
->next_sibling
;
461 /* Dump all access trees for a variable, given the pointer to the first root in
465 dump_access_tree (FILE *f
, struct access
*access
)
467 for (; access
; access
= access
->next_grp
)
468 dump_access_tree_1 (f
, access
, 0);
471 /* Return true iff ACC is non-NULL and has subaccesses. */
474 access_has_children_p (struct access
*acc
)
476 return acc
&& acc
->first_child
;
479 /* Return true iff ACC is (partly) covered by at least one replacement. */
482 access_has_replacements_p (struct access
*acc
)
484 struct access
*child
;
485 if (acc
->grp_to_be_replaced
)
487 for (child
= acc
->first_child
; child
; child
= child
->next_sibling
)
488 if (access_has_replacements_p (child
))
493 /* Return a vector of pointers to accesses for the variable given in BASE or
494 NULL if there is none. */
496 static vec
<access_p
> *
497 get_base_access_vector (tree base
)
501 slot
= pointer_map_contains (base_access_vec
, base
);
505 return *(vec
<access_p
> **) slot
;
508 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
509 in ACCESS. Return NULL if it cannot be found. */
511 static struct access
*
512 find_access_in_subtree (struct access
*access
, HOST_WIDE_INT offset
,
515 while (access
&& (access
->offset
!= offset
|| access
->size
!= size
))
517 struct access
*child
= access
->first_child
;
519 while (child
&& (child
->offset
+ child
->size
<= offset
))
520 child
= child
->next_sibling
;
527 /* Return the first group representative for DECL or NULL if none exists. */
529 static struct access
*
530 get_first_repr_for_decl (tree base
)
532 vec
<access_p
> *access_vec
;
534 access_vec
= get_base_access_vector (base
);
538 return (*access_vec
)[0];
541 /* Find an access representative for the variable BASE and given OFFSET and
542 SIZE. Requires that access trees have already been built. Return NULL if
543 it cannot be found. */
545 static struct access
*
546 get_var_base_offset_size_access (tree base
, HOST_WIDE_INT offset
,
549 struct access
*access
;
551 access
= get_first_repr_for_decl (base
);
552 while (access
&& (access
->offset
+ access
->size
<= offset
))
553 access
= access
->next_grp
;
557 return find_access_in_subtree (access
, offset
, size
);
560 /* Add LINK to the linked list of assign links of RACC. */
562 add_link_to_rhs (struct access
*racc
, struct assign_link
*link
)
564 gcc_assert (link
->racc
== racc
);
566 if (!racc
->first_link
)
568 gcc_assert (!racc
->last_link
);
569 racc
->first_link
= link
;
572 racc
->last_link
->next
= link
;
574 racc
->last_link
= link
;
578 /* Move all link structures in their linked list in OLD_RACC to the linked list
581 relink_to_new_repr (struct access
*new_racc
, struct access
*old_racc
)
583 if (!old_racc
->first_link
)
585 gcc_assert (!old_racc
->last_link
);
589 if (new_racc
->first_link
)
591 gcc_assert (!new_racc
->last_link
->next
);
592 gcc_assert (!old_racc
->last_link
|| !old_racc
->last_link
->next
);
594 new_racc
->last_link
->next
= old_racc
->first_link
;
595 new_racc
->last_link
= old_racc
->last_link
;
599 gcc_assert (!new_racc
->last_link
);
601 new_racc
->first_link
= old_racc
->first_link
;
602 new_racc
->last_link
= old_racc
->last_link
;
604 old_racc
->first_link
= old_racc
->last_link
= NULL
;
607 /* Add ACCESS to the work queue (which is actually a stack). */
610 add_access_to_work_queue (struct access
*access
)
612 if (!access
->grp_queued
)
614 gcc_assert (!access
->next_queued
);
615 access
->next_queued
= work_queue_head
;
616 access
->grp_queued
= 1;
617 work_queue_head
= access
;
621 /* Pop an access from the work queue, and return it, assuming there is one. */
623 static struct access
*
624 pop_access_from_work_queue (void)
626 struct access
*access
= work_queue_head
;
628 work_queue_head
= access
->next_queued
;
629 access
->next_queued
= NULL
;
630 access
->grp_queued
= 0;
635 /* Allocate necessary structures. */
638 sra_initialize (void)
640 candidate_bitmap
= BITMAP_ALLOC (NULL
);
641 candidates
.create (vec_safe_length (cfun
->local_decls
) / 2);
642 should_scalarize_away_bitmap
= BITMAP_ALLOC (NULL
);
643 cannot_scalarize_away_bitmap
= BITMAP_ALLOC (NULL
);
644 gcc_obstack_init (&name_obstack
);
645 access_pool
= create_alloc_pool ("SRA accesses", sizeof (struct access
), 16);
646 link_pool
= create_alloc_pool ("SRA links", sizeof (struct assign_link
), 16);
647 base_access_vec
= pointer_map_create ();
648 memset (&sra_stats
, 0, sizeof (sra_stats
));
649 encountered_apply_args
= false;
650 encountered_recursive_call
= false;
651 encountered_unchangable_recursive_call
= false;
654 /* Hook fed to pointer_map_traverse, deallocate stored vectors. */
657 delete_base_accesses (const void *key ATTRIBUTE_UNUSED
, void **value
,
658 void *data ATTRIBUTE_UNUSED
)
660 vec
<access_p
> *access_vec
= (vec
<access_p
> *) *value
;
661 vec_free (access_vec
);
665 /* Deallocate all general structures. */
668 sra_deinitialize (void)
670 BITMAP_FREE (candidate_bitmap
);
671 candidates
.dispose ();
672 BITMAP_FREE (should_scalarize_away_bitmap
);
673 BITMAP_FREE (cannot_scalarize_away_bitmap
);
674 free_alloc_pool (access_pool
);
675 free_alloc_pool (link_pool
);
676 obstack_free (&name_obstack
, NULL
);
678 pointer_map_traverse (base_access_vec
, delete_base_accesses
, NULL
);
679 pointer_map_destroy (base_access_vec
);
682 /* Remove DECL from candidates for SRA and write REASON to the dump file if
685 disqualify_candidate (tree decl
, const char *reason
)
687 if (bitmap_clear_bit (candidate_bitmap
, DECL_UID (decl
)))
688 candidates
.clear_slot (candidates
.find_slot_with_hash (decl
,
692 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
694 fprintf (dump_file
, "! Disqualifying ");
695 print_generic_expr (dump_file
, decl
, 0);
696 fprintf (dump_file
, " - %s\n", reason
);
700 /* Return true iff the type contains a field or an element which does not allow
704 type_internals_preclude_sra_p (tree type
, const char **msg
)
709 switch (TREE_CODE (type
))
713 case QUAL_UNION_TYPE
:
714 for (fld
= TYPE_FIELDS (type
); fld
; fld
= DECL_CHAIN (fld
))
715 if (TREE_CODE (fld
) == FIELD_DECL
)
717 tree ft
= TREE_TYPE (fld
);
719 if (TREE_THIS_VOLATILE (fld
))
721 *msg
= "volatile structure field";
724 if (!DECL_FIELD_OFFSET (fld
))
726 *msg
= "no structure field offset";
729 if (!DECL_SIZE (fld
))
731 *msg
= "zero structure field size";
734 if (!host_integerp (DECL_FIELD_OFFSET (fld
), 1))
736 *msg
= "structure field offset not fixed";
739 if (!host_integerp (DECL_SIZE (fld
), 1))
741 *msg
= "structure field size not fixed";
744 if (!host_integerp (bit_position (fld
), 0))
746 *msg
= "structure field size too big";
749 if (AGGREGATE_TYPE_P (ft
)
750 && int_bit_position (fld
) % BITS_PER_UNIT
!= 0)
752 *msg
= "structure field is bit field";
756 if (AGGREGATE_TYPE_P (ft
) && type_internals_preclude_sra_p (ft
, msg
))
763 et
= TREE_TYPE (type
);
765 if (TYPE_VOLATILE (et
))
767 *msg
= "element type is volatile";
771 if (AGGREGATE_TYPE_P (et
) && type_internals_preclude_sra_p (et
, msg
))
781 /* If T is an SSA_NAME, return NULL if it is not a default def or return its
782 base variable if it is. Return T if it is not an SSA_NAME. */
785 get_ssa_base_param (tree t
)
787 if (TREE_CODE (t
) == SSA_NAME
)
789 if (SSA_NAME_IS_DEFAULT_DEF (t
))
790 return SSA_NAME_VAR (t
);
797 /* Mark a dereference of BASE of distance DIST in a basic block tht STMT
798 belongs to, unless the BB has already been marked as a potentially
802 mark_parm_dereference (tree base
, HOST_WIDE_INT dist
, gimple stmt
)
804 basic_block bb
= gimple_bb (stmt
);
805 int idx
, parm_index
= 0;
808 if (bitmap_bit_p (final_bbs
, bb
->index
))
811 for (parm
= DECL_ARGUMENTS (current_function_decl
);
812 parm
&& parm
!= base
;
813 parm
= DECL_CHAIN (parm
))
816 gcc_assert (parm_index
< func_param_count
);
818 idx
= bb
->index
* func_param_count
+ parm_index
;
819 if (bb_dereferences
[idx
] < dist
)
820 bb_dereferences
[idx
] = dist
;
823 /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
824 the three fields. Also add it to the vector of accesses corresponding to
825 the base. Finally, return the new access. */
827 static struct access
*
828 create_access_1 (tree base
, HOST_WIDE_INT offset
, HOST_WIDE_INT size
)
831 struct access
*access
;
834 access
= (struct access
*) pool_alloc (access_pool
);
835 memset (access
, 0, sizeof (struct access
));
837 access
->offset
= offset
;
840 slot
= pointer_map_contains (base_access_vec
, base
);
842 v
= (vec
<access_p
> *) *slot
;
846 v
->safe_push (access
);
849 pointer_map_insert (base_access_vec
, base
)) = v
;
854 /* Create and insert access for EXPR. Return created access, or NULL if it is
857 static struct access
*
858 create_access (tree expr
, gimple stmt
, bool write
)
860 struct access
*access
;
861 HOST_WIDE_INT offset
, size
, max_size
;
863 bool ptr
, unscalarizable_region
= false;
865 base
= get_ref_base_and_extent (expr
, &offset
, &size
, &max_size
);
867 if (sra_mode
== SRA_MODE_EARLY_IPA
868 && TREE_CODE (base
) == MEM_REF
)
870 base
= get_ssa_base_param (TREE_OPERAND (base
, 0));
878 if (!DECL_P (base
) || !bitmap_bit_p (candidate_bitmap
, DECL_UID (base
)))
881 if (sra_mode
== SRA_MODE_EARLY_IPA
)
883 if (size
< 0 || size
!= max_size
)
885 disqualify_candidate (base
, "Encountered a variable sized access.");
888 if (TREE_CODE (expr
) == COMPONENT_REF
889 && DECL_BIT_FIELD (TREE_OPERAND (expr
, 1)))
891 disqualify_candidate (base
, "Encountered a bit-field access.");
894 gcc_checking_assert ((offset
% BITS_PER_UNIT
) == 0);
897 mark_parm_dereference (base
, offset
+ size
, stmt
);
901 if (size
!= max_size
)
904 unscalarizable_region
= true;
908 disqualify_candidate (base
, "Encountered an unconstrained access.");
913 access
= create_access_1 (base
, offset
, size
);
915 access
->type
= TREE_TYPE (expr
);
916 access
->write
= write
;
917 access
->grp_unscalarizable_region
= unscalarizable_region
;
920 if (TREE_CODE (expr
) == COMPONENT_REF
921 && DECL_NONADDRESSABLE_P (TREE_OPERAND (expr
, 1)))
922 access
->non_addressable
= 1;
928 /* Return true iff TYPE is a RECORD_TYPE with fields that are either of gimple
929 register types or (recursively) records with only these two kinds of fields.
930 It also returns false if any of these records contains a bit-field. */
933 type_consists_of_records_p (tree type
)
937 if (TREE_CODE (type
) != RECORD_TYPE
)
940 for (fld
= TYPE_FIELDS (type
); fld
; fld
= DECL_CHAIN (fld
))
941 if (TREE_CODE (fld
) == FIELD_DECL
)
943 tree ft
= TREE_TYPE (fld
);
945 if (DECL_BIT_FIELD (fld
))
948 if (!is_gimple_reg_type (ft
)
949 && !type_consists_of_records_p (ft
))
956 /* Create total_scalarization accesses for all scalar type fields in DECL that
957 must be of a RECORD_TYPE conforming to type_consists_of_records_p. BASE
958 must be the top-most VAR_DECL representing the variable, OFFSET must be the
959 offset of DECL within BASE. REF must be the memory reference expression for
963 completely_scalarize_record (tree base
, tree decl
, HOST_WIDE_INT offset
,
966 tree fld
, decl_type
= TREE_TYPE (decl
);
968 for (fld
= TYPE_FIELDS (decl_type
); fld
; fld
= DECL_CHAIN (fld
))
969 if (TREE_CODE (fld
) == FIELD_DECL
)
971 HOST_WIDE_INT pos
= offset
+ int_bit_position (fld
);
972 tree ft
= TREE_TYPE (fld
);
973 tree nref
= build3 (COMPONENT_REF
, TREE_TYPE (fld
), ref
, fld
,
976 if (is_gimple_reg_type (ft
))
978 struct access
*access
;
981 size
= tree_low_cst (DECL_SIZE (fld
), 1);
982 access
= create_access_1 (base
, pos
, size
);
985 access
->grp_total_scalarization
= 1;
986 /* Accesses for intraprocedural SRA can have their stmt NULL. */
989 completely_scalarize_record (base
, fld
, pos
, nref
);
993 /* Create total_scalarization accesses for all scalar type fields in VAR and
994 for VAR a a whole. VAR must be of a RECORD_TYPE conforming to
995 type_consists_of_records_p. */
998 completely_scalarize_var (tree var
)
1000 HOST_WIDE_INT size
= tree_low_cst (DECL_SIZE (var
), 1);
1001 struct access
*access
;
1003 access
= create_access_1 (var
, 0, size
);
1005 access
->type
= TREE_TYPE (var
);
1006 access
->grp_total_scalarization
= 1;
1008 completely_scalarize_record (var
, var
, 0, var
);
1011 /* Search the given tree for a declaration by skipping handled components and
1012 exclude it from the candidates. */
1015 disqualify_base_of_expr (tree t
, const char *reason
)
1017 t
= get_base_address (t
);
1018 if (sra_mode
== SRA_MODE_EARLY_IPA
1019 && TREE_CODE (t
) == MEM_REF
)
1020 t
= get_ssa_base_param (TREE_OPERAND (t
, 0));
1022 if (t
&& DECL_P (t
))
1023 disqualify_candidate (t
, reason
);
1026 /* Scan expression EXPR and create access structures for all accesses to
1027 candidates for scalarization. Return the created access or NULL if none is
1030 static struct access
*
1031 build_access_from_expr_1 (tree expr
, gimple stmt
, bool write
)
1033 struct access
*ret
= NULL
;
1036 if (TREE_CODE (expr
) == BIT_FIELD_REF
1037 || TREE_CODE (expr
) == IMAGPART_EXPR
1038 || TREE_CODE (expr
) == REALPART_EXPR
)
1040 expr
= TREE_OPERAND (expr
, 0);
1044 partial_ref
= false;
1046 /* We need to dive through V_C_Es in order to get the size of its parameter
1047 and not the result type. Ada produces such statements. We are also
1048 capable of handling the topmost V_C_E but not any of those buried in other
1049 handled components. */
1050 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
1051 expr
= TREE_OPERAND (expr
, 0);
1053 if (contains_view_convert_expr_p (expr
))
1055 disqualify_base_of_expr (expr
, "V_C_E under a different handled "
1060 switch (TREE_CODE (expr
))
1063 if (TREE_CODE (TREE_OPERAND (expr
, 0)) != ADDR_EXPR
1064 && sra_mode
!= SRA_MODE_EARLY_IPA
)
1072 case ARRAY_RANGE_REF
:
1073 ret
= create_access (expr
, stmt
, write
);
1080 if (write
&& partial_ref
&& ret
)
1081 ret
->grp_partial_lhs
= 1;
1086 /* Scan expression EXPR and create access structures for all accesses to
1087 candidates for scalarization. Return true if any access has been inserted.
1088 STMT must be the statement from which the expression is taken, WRITE must be
1089 true if the expression is a store and false otherwise. */
1092 build_access_from_expr (tree expr
, gimple stmt
, bool write
)
1094 struct access
*access
;
1096 access
= build_access_from_expr_1 (expr
, stmt
, write
);
1099 /* This means the aggregate is accesses as a whole in a way other than an
1100 assign statement and thus cannot be removed even if we had a scalar
1101 replacement for everything. */
1102 if (cannot_scalarize_away_bitmap
)
1103 bitmap_set_bit (cannot_scalarize_away_bitmap
, DECL_UID (access
->base
));
1109 /* Disqualify LHS and RHS for scalarization if STMT must end its basic block in
1110 modes in which it matters, return true iff they have been disqualified. RHS
1111 may be NULL, in that case ignore it. If we scalarize an aggregate in
1112 intra-SRA we may need to add statements after each statement. This is not
1113 possible if a statement unconditionally has to end the basic block. */
1115 disqualify_ops_if_throwing_stmt (gimple stmt
, tree lhs
, tree rhs
)
1117 if ((sra_mode
== SRA_MODE_EARLY_INTRA
|| sra_mode
== SRA_MODE_INTRA
)
1118 && (stmt_can_throw_internal (stmt
) || stmt_ends_bb_p (stmt
)))
1120 disqualify_base_of_expr (lhs
, "LHS of a throwing stmt.");
1122 disqualify_base_of_expr (rhs
, "RHS of a throwing stmt.");
1128 /* Scan expressions occurring in STMT, create access structures for all accesses
1129 to candidates for scalarization and remove those candidates which occur in
1130 statements or expressions that prevent them from being split apart. Return
1131 true if any access has been inserted. */
1134 build_accesses_from_assign (gimple stmt
)
1137 struct access
*lacc
, *racc
;
1139 if (!gimple_assign_single_p (stmt
)
1140 /* Scope clobbers don't influence scalarization. */
1141 || gimple_clobber_p (stmt
))
1144 lhs
= gimple_assign_lhs (stmt
);
1145 rhs
= gimple_assign_rhs1 (stmt
);
1147 if (disqualify_ops_if_throwing_stmt (stmt
, lhs
, rhs
))
1150 racc
= build_access_from_expr_1 (rhs
, stmt
, false);
1151 lacc
= build_access_from_expr_1 (lhs
, stmt
, true);
1154 lacc
->grp_assignment_write
= 1;
1158 racc
->grp_assignment_read
= 1;
1159 if (should_scalarize_away_bitmap
&& !gimple_has_volatile_ops (stmt
)
1160 && !is_gimple_reg_type (racc
->type
))
1161 bitmap_set_bit (should_scalarize_away_bitmap
, DECL_UID (racc
->base
));
1165 && (sra_mode
== SRA_MODE_EARLY_INTRA
|| sra_mode
== SRA_MODE_INTRA
)
1166 && !lacc
->grp_unscalarizable_region
1167 && !racc
->grp_unscalarizable_region
1168 && AGGREGATE_TYPE_P (TREE_TYPE (lhs
))
1169 && lacc
->size
== racc
->size
1170 && useless_type_conversion_p (lacc
->type
, racc
->type
))
1172 struct assign_link
*link
;
1174 link
= (struct assign_link
*) pool_alloc (link_pool
);
1175 memset (link
, 0, sizeof (struct assign_link
));
1180 add_link_to_rhs (racc
, link
);
1183 return lacc
|| racc
;
1186 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1187 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
1190 asm_visit_addr (gimple stmt ATTRIBUTE_UNUSED
, tree op
,
1191 void *data ATTRIBUTE_UNUSED
)
1193 op
= get_base_address (op
);
1196 disqualify_candidate (op
, "Non-scalarizable GIMPLE_ASM operand.");
1201 /* Return true iff callsite CALL has at least as many actual arguments as there
1202 are formal parameters of the function currently processed by IPA-SRA. */
1205 callsite_has_enough_arguments_p (gimple call
)
1207 return gimple_call_num_args (call
) >= (unsigned) func_param_count
;
1210 /* Scan function and look for interesting expressions and create access
1211 structures for them. Return true iff any access is created. */
1214 scan_function (void)
1221 gimple_stmt_iterator gsi
;
1222 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1224 gimple stmt
= gsi_stmt (gsi
);
1228 if (final_bbs
&& stmt_can_throw_external (stmt
))
1229 bitmap_set_bit (final_bbs
, bb
->index
);
1230 switch (gimple_code (stmt
))
1233 t
= gimple_return_retval (stmt
);
1235 ret
|= build_access_from_expr (t
, stmt
, false);
1237 bitmap_set_bit (final_bbs
, bb
->index
);
1241 ret
|= build_accesses_from_assign (stmt
);
1245 for (i
= 0; i
< gimple_call_num_args (stmt
); i
++)
1246 ret
|= build_access_from_expr (gimple_call_arg (stmt
, i
),
1249 if (sra_mode
== SRA_MODE_EARLY_IPA
)
1251 tree dest
= gimple_call_fndecl (stmt
);
1252 int flags
= gimple_call_flags (stmt
);
1256 if (DECL_BUILT_IN_CLASS (dest
) == BUILT_IN_NORMAL
1257 && DECL_FUNCTION_CODE (dest
) == BUILT_IN_APPLY_ARGS
)
1258 encountered_apply_args
= true;
1259 if (cgraph_get_node (dest
)
1260 == cgraph_get_node (current_function_decl
))
1262 encountered_recursive_call
= true;
1263 if (!callsite_has_enough_arguments_p (stmt
))
1264 encountered_unchangable_recursive_call
= true;
1269 && (flags
& (ECF_CONST
| ECF_PURE
)) == 0)
1270 bitmap_set_bit (final_bbs
, bb
->index
);
1273 t
= gimple_call_lhs (stmt
);
1274 if (t
&& !disqualify_ops_if_throwing_stmt (stmt
, t
, NULL
))
1275 ret
|= build_access_from_expr (t
, stmt
, true);
1279 walk_stmt_load_store_addr_ops (stmt
, NULL
, NULL
, NULL
,
1282 bitmap_set_bit (final_bbs
, bb
->index
);
1284 for (i
= 0; i
< gimple_asm_ninputs (stmt
); i
++)
1286 t
= TREE_VALUE (gimple_asm_input_op (stmt
, i
));
1287 ret
|= build_access_from_expr (t
, stmt
, false);
1289 for (i
= 0; i
< gimple_asm_noutputs (stmt
); i
++)
1291 t
= TREE_VALUE (gimple_asm_output_op (stmt
, i
));
1292 ret
|= build_access_from_expr (t
, stmt
, true);
1305 /* Helper of QSORT function. There are pointers to accesses in the array. An
1306 access is considered smaller than another if it has smaller offset or if the
1307 offsets are the same but is size is bigger. */
1310 compare_access_positions (const void *a
, const void *b
)
1312 const access_p
*fp1
= (const access_p
*) a
;
1313 const access_p
*fp2
= (const access_p
*) b
;
1314 const access_p f1
= *fp1
;
1315 const access_p f2
= *fp2
;
1317 if (f1
->offset
!= f2
->offset
)
1318 return f1
->offset
< f2
->offset
? -1 : 1;
1320 if (f1
->size
== f2
->size
)
1322 if (f1
->type
== f2
->type
)
1324 /* Put any non-aggregate type before any aggregate type. */
1325 else if (!is_gimple_reg_type (f1
->type
)
1326 && is_gimple_reg_type (f2
->type
))
1328 else if (is_gimple_reg_type (f1
->type
)
1329 && !is_gimple_reg_type (f2
->type
))
1331 /* Put any complex or vector type before any other scalar type. */
1332 else if (TREE_CODE (f1
->type
) != COMPLEX_TYPE
1333 && TREE_CODE (f1
->type
) != VECTOR_TYPE
1334 && (TREE_CODE (f2
->type
) == COMPLEX_TYPE
1335 || TREE_CODE (f2
->type
) == VECTOR_TYPE
))
1337 else if ((TREE_CODE (f1
->type
) == COMPLEX_TYPE
1338 || TREE_CODE (f1
->type
) == VECTOR_TYPE
)
1339 && TREE_CODE (f2
->type
) != COMPLEX_TYPE
1340 && TREE_CODE (f2
->type
) != VECTOR_TYPE
)
1342 /* Put the integral type with the bigger precision first. */
1343 else if (INTEGRAL_TYPE_P (f1
->type
)
1344 && INTEGRAL_TYPE_P (f2
->type
))
1345 return TYPE_PRECISION (f2
->type
) - TYPE_PRECISION (f1
->type
);
1346 /* Put any integral type with non-full precision last. */
1347 else if (INTEGRAL_TYPE_P (f1
->type
)
1348 && (TREE_INT_CST_LOW (TYPE_SIZE (f1
->type
))
1349 != TYPE_PRECISION (f1
->type
)))
1351 else if (INTEGRAL_TYPE_P (f2
->type
)
1352 && (TREE_INT_CST_LOW (TYPE_SIZE (f2
->type
))
1353 != TYPE_PRECISION (f2
->type
)))
1355 /* Stabilize the sort. */
1356 return TYPE_UID (f1
->type
) - TYPE_UID (f2
->type
);
1359 /* We want the bigger accesses first, thus the opposite operator in the next
1361 return f1
->size
> f2
->size
? -1 : 1;
1365 /* Append a name of the declaration to the name obstack. A helper function for
1369 make_fancy_decl_name (tree decl
)
1373 tree name
= DECL_NAME (decl
);
1375 obstack_grow (&name_obstack
, IDENTIFIER_POINTER (name
),
1376 IDENTIFIER_LENGTH (name
));
1379 sprintf (buffer
, "D%u", DECL_UID (decl
));
1380 obstack_grow (&name_obstack
, buffer
, strlen (buffer
));
1384 /* Helper for make_fancy_name. */
1387 make_fancy_name_1 (tree expr
)
1394 make_fancy_decl_name (expr
);
1398 switch (TREE_CODE (expr
))
1401 make_fancy_name_1 (TREE_OPERAND (expr
, 0));
1402 obstack_1grow (&name_obstack
, '$');
1403 make_fancy_decl_name (TREE_OPERAND (expr
, 1));
1407 make_fancy_name_1 (TREE_OPERAND (expr
, 0));
1408 obstack_1grow (&name_obstack
, '$');
1409 /* Arrays with only one element may not have a constant as their
1411 index
= TREE_OPERAND (expr
, 1);
1412 if (TREE_CODE (index
) != INTEGER_CST
)
1414 sprintf (buffer
, HOST_WIDE_INT_PRINT_DEC
, TREE_INT_CST_LOW (index
));
1415 obstack_grow (&name_obstack
, buffer
, strlen (buffer
));
1419 make_fancy_name_1 (TREE_OPERAND (expr
, 0));
1423 make_fancy_name_1 (TREE_OPERAND (expr
, 0));
1424 if (!integer_zerop (TREE_OPERAND (expr
, 1)))
1426 obstack_1grow (&name_obstack
, '$');
1427 sprintf (buffer
, HOST_WIDE_INT_PRINT_DEC
,
1428 TREE_INT_CST_LOW (TREE_OPERAND (expr
, 1)));
1429 obstack_grow (&name_obstack
, buffer
, strlen (buffer
));
1436 gcc_unreachable (); /* we treat these as scalars. */
1443 /* Create a human readable name for replacement variable of ACCESS. */
1446 make_fancy_name (tree expr
)
1448 make_fancy_name_1 (expr
);
1449 obstack_1grow (&name_obstack
, '\0');
1450 return XOBFINISH (&name_obstack
, char *);
1453 /* Construct a MEM_REF that would reference a part of aggregate BASE of type
1454 EXP_TYPE at the given OFFSET. If BASE is something for which
1455 get_addr_base_and_unit_offset returns NULL, gsi must be non-NULL and is used
1456 to insert new statements either before or below the current one as specified
1457 by INSERT_AFTER. This function is not capable of handling bitfields.
1459 BASE must be either a declaration or a memory reference that has correct
1460 alignment ifformation embeded in it (e.g. a pre-existing one in SRA). */
1463 build_ref_for_offset (location_t loc
, tree base
, HOST_WIDE_INT offset
,
1464 tree exp_type
, gimple_stmt_iterator
*gsi
,
1467 tree prev_base
= base
;
1469 HOST_WIDE_INT base_offset
;
1470 unsigned HOST_WIDE_INT misalign
;
1473 gcc_checking_assert (offset
% BITS_PER_UNIT
== 0);
1474 get_object_alignment_1 (base
, &align
, &misalign
);
1475 base
= get_addr_base_and_unit_offset (base
, &base_offset
);
1477 /* get_addr_base_and_unit_offset returns NULL for references with a variable
1478 offset such as array[var_index]. */
1484 gcc_checking_assert (gsi
);
1485 tmp
= make_ssa_name (build_pointer_type (TREE_TYPE (prev_base
)), NULL
);
1486 addr
= build_fold_addr_expr (unshare_expr (prev_base
));
1487 STRIP_USELESS_TYPE_CONVERSION (addr
);
1488 stmt
= gimple_build_assign (tmp
, addr
);
1489 gimple_set_location (stmt
, loc
);
1491 gsi_insert_after (gsi
, stmt
, GSI_NEW_STMT
);
1493 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1495 off
= build_int_cst (reference_alias_ptr_type (prev_base
),
1496 offset
/ BITS_PER_UNIT
);
1499 else if (TREE_CODE (base
) == MEM_REF
)
1501 off
= build_int_cst (TREE_TYPE (TREE_OPERAND (base
, 1)),
1502 base_offset
+ offset
/ BITS_PER_UNIT
);
1503 off
= int_const_binop (PLUS_EXPR
, TREE_OPERAND (base
, 1), off
);
1504 base
= unshare_expr (TREE_OPERAND (base
, 0));
1508 off
= build_int_cst (reference_alias_ptr_type (base
),
1509 base_offset
+ offset
/ BITS_PER_UNIT
);
1510 base
= build_fold_addr_expr (unshare_expr (base
));
1513 misalign
= (misalign
+ offset
) & (align
- 1);
1515 align
= (misalign
& -misalign
);
1516 if (align
< TYPE_ALIGN (exp_type
))
1517 exp_type
= build_aligned_type (exp_type
, align
);
1519 return fold_build2_loc (loc
, MEM_REF
, exp_type
, base
, off
);
1522 /* Construct a memory reference to a part of an aggregate BASE at the given
1523 OFFSET and of the same type as MODEL. In case this is a reference to a
1524 bit-field, the function will replicate the last component_ref of model's
1525 expr to access it. GSI and INSERT_AFTER have the same meaning as in
1526 build_ref_for_offset. */
1529 build_ref_for_model (location_t loc
, tree base
, HOST_WIDE_INT offset
,
1530 struct access
*model
, gimple_stmt_iterator
*gsi
,
1533 if (TREE_CODE (model
->expr
) == COMPONENT_REF
1534 && DECL_BIT_FIELD (TREE_OPERAND (model
->expr
, 1)))
1536 /* This access represents a bit-field. */
1537 tree t
, exp_type
, fld
= TREE_OPERAND (model
->expr
, 1);
1539 offset
-= int_bit_position (fld
);
1540 exp_type
= TREE_TYPE (TREE_OPERAND (model
->expr
, 0));
1541 t
= build_ref_for_offset (loc
, base
, offset
, exp_type
, gsi
, insert_after
);
1542 return fold_build3_loc (loc
, COMPONENT_REF
, TREE_TYPE (fld
), t
, fld
,
1546 return build_ref_for_offset (loc
, base
, offset
, model
->type
,
1550 /* Attempt to build a memory reference that we could but into a gimple
1551 debug_bind statement. Similar to build_ref_for_model but punts if it has to
1552 create statements and return s NULL instead. This function also ignores
1553 alignment issues and so its results should never end up in non-debug
1557 build_debug_ref_for_model (location_t loc
, tree base
, HOST_WIDE_INT offset
,
1558 struct access
*model
)
1560 HOST_WIDE_INT base_offset
;
1563 if (TREE_CODE (model
->expr
) == COMPONENT_REF
1564 && DECL_BIT_FIELD (TREE_OPERAND (model
->expr
, 1)))
1567 base
= get_addr_base_and_unit_offset (base
, &base_offset
);
1570 if (TREE_CODE (base
) == MEM_REF
)
1572 off
= build_int_cst (TREE_TYPE (TREE_OPERAND (base
, 1)),
1573 base_offset
+ offset
/ BITS_PER_UNIT
);
1574 off
= int_const_binop (PLUS_EXPR
, TREE_OPERAND (base
, 1), off
);
1575 base
= unshare_expr (TREE_OPERAND (base
, 0));
1579 off
= build_int_cst (reference_alias_ptr_type (base
),
1580 base_offset
+ offset
/ BITS_PER_UNIT
);
1581 base
= build_fold_addr_expr (unshare_expr (base
));
1584 return fold_build2_loc (loc
, MEM_REF
, model
->type
, base
, off
);
1587 /* Construct a memory reference consisting of component_refs and array_refs to
1588 a part of an aggregate *RES (which is of type TYPE). The requested part
1589 should have type EXP_TYPE at be the given OFFSET. This function might not
1590 succeed, it returns true when it does and only then *RES points to something
1591 meaningful. This function should be used only to build expressions that we
1592 might need to present to user (e.g. in warnings). In all other situations,
1593 build_ref_for_model or build_ref_for_offset should be used instead. */
1596 build_user_friendly_ref_for_offset (tree
*res
, tree type
, HOST_WIDE_INT offset
,
1602 tree tr_size
, index
, minidx
;
1603 HOST_WIDE_INT el_size
;
1605 if (offset
== 0 && exp_type
1606 && types_compatible_p (exp_type
, type
))
1609 switch (TREE_CODE (type
))
1612 case QUAL_UNION_TYPE
:
1614 for (fld
= TYPE_FIELDS (type
); fld
; fld
= DECL_CHAIN (fld
))
1616 HOST_WIDE_INT pos
, size
;
1617 tree tr_pos
, expr
, *expr_ptr
;
1619 if (TREE_CODE (fld
) != FIELD_DECL
)
1622 tr_pos
= bit_position (fld
);
1623 if (!tr_pos
|| !host_integerp (tr_pos
, 1))
1625 pos
= TREE_INT_CST_LOW (tr_pos
);
1626 gcc_assert (TREE_CODE (type
) == RECORD_TYPE
|| pos
== 0);
1627 tr_size
= DECL_SIZE (fld
);
1628 if (!tr_size
|| !host_integerp (tr_size
, 1))
1630 size
= TREE_INT_CST_LOW (tr_size
);
1636 else if (pos
> offset
|| (pos
+ size
) <= offset
)
1639 expr
= build3 (COMPONENT_REF
, TREE_TYPE (fld
), *res
, fld
,
1642 if (build_user_friendly_ref_for_offset (expr_ptr
, TREE_TYPE (fld
),
1643 offset
- pos
, exp_type
))
1652 tr_size
= TYPE_SIZE (TREE_TYPE (type
));
1653 if (!tr_size
|| !host_integerp (tr_size
, 1))
1655 el_size
= tree_low_cst (tr_size
, 1);
1657 minidx
= TYPE_MIN_VALUE (TYPE_DOMAIN (type
));
1658 if (TREE_CODE (minidx
) != INTEGER_CST
|| el_size
== 0)
1660 index
= build_int_cst (TYPE_DOMAIN (type
), offset
/ el_size
);
1661 if (!integer_zerop (minidx
))
1662 index
= int_const_binop (PLUS_EXPR
, index
, minidx
);
1663 *res
= build4 (ARRAY_REF
, TREE_TYPE (type
), *res
, index
,
1664 NULL_TREE
, NULL_TREE
);
1665 offset
= offset
% el_size
;
1666 type
= TREE_TYPE (type
);
1681 /* Return true iff TYPE is stdarg va_list type. */
1684 is_va_list_type (tree type
)
1686 return TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (va_list_type_node
);
1689 /* Print message to dump file why a variable was rejected. */
1692 reject (tree var
, const char *msg
)
1694 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1696 fprintf (dump_file
, "Rejected (%d): %s: ", DECL_UID (var
), msg
);
1697 print_generic_expr (dump_file
, var
, 0);
1698 fprintf (dump_file
, "\n");
1702 /* Return true if VAR is a candidate for SRA. */
1705 maybe_add_sra_candidate (tree var
)
1707 tree type
= TREE_TYPE (var
);
1711 if (!AGGREGATE_TYPE_P (type
))
1713 reject (var
, "not aggregate");
1716 if (needs_to_live_in_memory (var
))
1718 reject (var
, "needs to live in memory");
1721 if (TREE_THIS_VOLATILE (var
))
1723 reject (var
, "is volatile");
1726 if (!COMPLETE_TYPE_P (type
))
1728 reject (var
, "has incomplete type");
1731 if (!host_integerp (TYPE_SIZE (type
), 1))
1733 reject (var
, "type size not fixed");
1736 if (tree_low_cst (TYPE_SIZE (type
), 1) == 0)
1738 reject (var
, "type size is zero");
1741 if (type_internals_preclude_sra_p (type
, &msg
))
1746 if (/* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1747 we also want to schedule it rather late. Thus we ignore it in
1749 (sra_mode
== SRA_MODE_EARLY_INTRA
1750 && is_va_list_type (type
)))
1752 reject (var
, "is va_list");
1756 bitmap_set_bit (candidate_bitmap
, DECL_UID (var
));
1757 slot
= candidates
.find_slot_with_hash (var
, DECL_UID (var
), INSERT
);
1760 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1762 fprintf (dump_file
, "Candidate (%d): ", DECL_UID (var
));
1763 print_generic_expr (dump_file
, var
, 0);
1764 fprintf (dump_file
, "\n");
1770 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1771 those with type which is suitable for scalarization. */
1774 find_var_candidates (void)
1780 for (parm
= DECL_ARGUMENTS (current_function_decl
);
1782 parm
= DECL_CHAIN (parm
))
1783 ret
|= maybe_add_sra_candidate (parm
);
1785 FOR_EACH_LOCAL_DECL (cfun
, i
, var
)
1787 if (TREE_CODE (var
) != VAR_DECL
)
1790 ret
|= maybe_add_sra_candidate (var
);
1796 /* Sort all accesses for the given variable, check for partial overlaps and
1797 return NULL if there are any. If there are none, pick a representative for
1798 each combination of offset and size and create a linked list out of them.
1799 Return the pointer to the first representative and make sure it is the first
1800 one in the vector of accesses. */
1802 static struct access
*
1803 sort_and_splice_var_accesses (tree var
)
1805 int i
, j
, access_count
;
1806 struct access
*res
, **prev_acc_ptr
= &res
;
1807 vec
<access_p
> *access_vec
;
1809 HOST_WIDE_INT low
= -1, high
= 0;
1811 access_vec
= get_base_access_vector (var
);
1814 access_count
= access_vec
->length ();
1816 /* Sort by <OFFSET, SIZE>. */
1817 access_vec
->qsort (compare_access_positions
);
1820 while (i
< access_count
)
1822 struct access
*access
= (*access_vec
)[i
];
1823 bool grp_write
= access
->write
;
1824 bool grp_read
= !access
->write
;
1825 bool grp_scalar_write
= access
->write
1826 && is_gimple_reg_type (access
->type
);
1827 bool grp_scalar_read
= !access
->write
1828 && is_gimple_reg_type (access
->type
);
1829 bool grp_assignment_read
= access
->grp_assignment_read
;
1830 bool grp_assignment_write
= access
->grp_assignment_write
;
1831 bool multiple_scalar_reads
= false;
1832 bool total_scalarization
= access
->grp_total_scalarization
;
1833 bool grp_partial_lhs
= access
->grp_partial_lhs
;
1834 bool first_scalar
= is_gimple_reg_type (access
->type
);
1835 bool unscalarizable_region
= access
->grp_unscalarizable_region
;
1837 if (first
|| access
->offset
>= high
)
1840 low
= access
->offset
;
1841 high
= access
->offset
+ access
->size
;
1843 else if (access
->offset
> low
&& access
->offset
+ access
->size
> high
)
1846 gcc_assert (access
->offset
>= low
1847 && access
->offset
+ access
->size
<= high
);
1850 while (j
< access_count
)
1852 struct access
*ac2
= (*access_vec
)[j
];
1853 if (ac2
->offset
!= access
->offset
|| ac2
->size
!= access
->size
)
1858 grp_scalar_write
= (grp_scalar_write
1859 || is_gimple_reg_type (ac2
->type
));
1864 if (is_gimple_reg_type (ac2
->type
))
1866 if (grp_scalar_read
)
1867 multiple_scalar_reads
= true;
1869 grp_scalar_read
= true;
1872 grp_assignment_read
|= ac2
->grp_assignment_read
;
1873 grp_assignment_write
|= ac2
->grp_assignment_write
;
1874 grp_partial_lhs
|= ac2
->grp_partial_lhs
;
1875 unscalarizable_region
|= ac2
->grp_unscalarizable_region
;
1876 total_scalarization
|= ac2
->grp_total_scalarization
;
1877 relink_to_new_repr (access
, ac2
);
1879 /* If there are both aggregate-type and scalar-type accesses with
1880 this combination of size and offset, the comparison function
1881 should have put the scalars first. */
1882 gcc_assert (first_scalar
|| !is_gimple_reg_type (ac2
->type
));
1883 ac2
->group_representative
= access
;
1889 access
->group_representative
= access
;
1890 access
->grp_write
= grp_write
;
1891 access
->grp_read
= grp_read
;
1892 access
->grp_scalar_read
= grp_scalar_read
;
1893 access
->grp_scalar_write
= grp_scalar_write
;
1894 access
->grp_assignment_read
= grp_assignment_read
;
1895 access
->grp_assignment_write
= grp_assignment_write
;
1896 access
->grp_hint
= multiple_scalar_reads
|| total_scalarization
;
1897 access
->grp_total_scalarization
= total_scalarization
;
1898 access
->grp_partial_lhs
= grp_partial_lhs
;
1899 access
->grp_unscalarizable_region
= unscalarizable_region
;
1900 if (access
->first_link
)
1901 add_access_to_work_queue (access
);
1903 *prev_acc_ptr
= access
;
1904 prev_acc_ptr
= &access
->next_grp
;
1907 gcc_assert (res
== (*access_vec
)[0]);
1911 /* Create a variable for the given ACCESS which determines the type, name and a
1912 few other properties. Return the variable declaration and store it also to
1913 ACCESS->replacement. */
1916 create_access_replacement (struct access
*access
)
1920 if (access
->grp_to_be_debug_replaced
)
1922 repl
= create_tmp_var_raw (access
->type
, NULL
);
1923 DECL_CONTEXT (repl
) = current_function_decl
;
1926 repl
= create_tmp_var (access
->type
, "SR");
1927 if (TREE_CODE (access
->type
) == COMPLEX_TYPE
1928 || TREE_CODE (access
->type
) == VECTOR_TYPE
)
1930 if (!access
->grp_partial_lhs
)
1931 DECL_GIMPLE_REG_P (repl
) = 1;
1933 else if (access
->grp_partial_lhs
1934 && is_gimple_reg_type (access
->type
))
1935 TREE_ADDRESSABLE (repl
) = 1;
1937 DECL_SOURCE_LOCATION (repl
) = DECL_SOURCE_LOCATION (access
->base
);
1938 DECL_ARTIFICIAL (repl
) = 1;
1939 DECL_IGNORED_P (repl
) = DECL_IGNORED_P (access
->base
);
1941 if (DECL_NAME (access
->base
)
1942 && !DECL_IGNORED_P (access
->base
)
1943 && !DECL_ARTIFICIAL (access
->base
))
1945 char *pretty_name
= make_fancy_name (access
->expr
);
1946 tree debug_expr
= unshare_expr_without_location (access
->expr
), d
;
1949 DECL_NAME (repl
) = get_identifier (pretty_name
);
1950 obstack_free (&name_obstack
, pretty_name
);
1952 /* Get rid of any SSA_NAMEs embedded in debug_expr,
1953 as DECL_DEBUG_EXPR isn't considered when looking for still
1954 used SSA_NAMEs and thus they could be freed. All debug info
1955 generation cares is whether something is constant or variable
1956 and that get_ref_base_and_extent works properly on the
1957 expression. It cannot handle accesses at a non-constant offset
1958 though, so just give up in those cases. */
1959 for (d
= debug_expr
;
1960 !fail
&& (handled_component_p (d
) || TREE_CODE (d
) == MEM_REF
);
1961 d
= TREE_OPERAND (d
, 0))
1962 switch (TREE_CODE (d
))
1965 case ARRAY_RANGE_REF
:
1966 if (TREE_OPERAND (d
, 1)
1967 && TREE_CODE (TREE_OPERAND (d
, 1)) != INTEGER_CST
)
1969 if (TREE_OPERAND (d
, 3)
1970 && TREE_CODE (TREE_OPERAND (d
, 3)) != INTEGER_CST
)
1974 if (TREE_OPERAND (d
, 2)
1975 && TREE_CODE (TREE_OPERAND (d
, 2)) != INTEGER_CST
)
1979 if (TREE_CODE (TREE_OPERAND (d
, 0)) != ADDR_EXPR
)
1982 d
= TREE_OPERAND (d
, 0);
1989 SET_DECL_DEBUG_EXPR (repl
, debug_expr
);
1990 DECL_HAS_DEBUG_EXPR_P (repl
) = 1;
1992 if (access
->grp_no_warning
)
1993 TREE_NO_WARNING (repl
) = 1;
1995 TREE_NO_WARNING (repl
) = TREE_NO_WARNING (access
->base
);
1998 TREE_NO_WARNING (repl
) = 1;
2002 if (access
->grp_to_be_debug_replaced
)
2004 fprintf (dump_file
, "Created a debug-only replacement for ");
2005 print_generic_expr (dump_file
, access
->base
, 0);
2006 fprintf (dump_file
, " offset: %u, size: %u\n",
2007 (unsigned) access
->offset
, (unsigned) access
->size
);
2011 fprintf (dump_file
, "Created a replacement for ");
2012 print_generic_expr (dump_file
, access
->base
, 0);
2013 fprintf (dump_file
, " offset: %u, size: %u: ",
2014 (unsigned) access
->offset
, (unsigned) access
->size
);
2015 print_generic_expr (dump_file
, repl
, 0);
2016 fprintf (dump_file
, "\n");
2019 sra_stats
.replacements
++;
2024 /* Return ACCESS scalar replacement, create it if it does not exist yet. */
2027 get_access_replacement (struct access
*access
)
2029 gcc_checking_assert (access
->replacement_decl
);
2030 return access
->replacement_decl
;
2034 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
2035 linked list along the way. Stop when *ACCESS is NULL or the access pointed
2036 to it is not "within" the root. Return false iff some accesses partially
2040 build_access_subtree (struct access
**access
)
2042 struct access
*root
= *access
, *last_child
= NULL
;
2043 HOST_WIDE_INT limit
= root
->offset
+ root
->size
;
2045 *access
= (*access
)->next_grp
;
2046 while (*access
&& (*access
)->offset
+ (*access
)->size
<= limit
)
2049 root
->first_child
= *access
;
2051 last_child
->next_sibling
= *access
;
2052 last_child
= *access
;
2054 if (!build_access_subtree (access
))
2058 if (*access
&& (*access
)->offset
< limit
)
2064 /* Build a tree of access representatives, ACCESS is the pointer to the first
2065 one, others are linked in a list by the next_grp field. Return false iff
2066 some accesses partially overlap. */
2069 build_access_trees (struct access
*access
)
2073 struct access
*root
= access
;
2075 if (!build_access_subtree (&access
))
2077 root
->next_grp
= access
;
2082 /* Return true if expr contains some ARRAY_REFs into a variable bounded
2086 expr_with_var_bounded_array_refs_p (tree expr
)
2088 while (handled_component_p (expr
))
2090 if (TREE_CODE (expr
) == ARRAY_REF
2091 && !host_integerp (array_ref_low_bound (expr
), 0))
2093 expr
= TREE_OPERAND (expr
, 0);
2098 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
2099 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
2100 sorts of access flags appropriately along the way, notably always set
2101 grp_read and grp_assign_read according to MARK_READ and grp_write when
2104 Creating a replacement for a scalar access is considered beneficial if its
2105 grp_hint is set (this means we are either attempting total scalarization or
2106 there is more than one direct read access) or according to the following
2109 Access written to through a scalar type (once or more times)
2111 | Written to in an assignment statement
2113 | | Access read as scalar _once_
2115 | | | Read in an assignment statement
2117 | | | | Scalarize Comment
2118 -----------------------------------------------------------------------------
2119 0 0 0 0 No access for the scalar
2120 0 0 0 1 No access for the scalar
2121 0 0 1 0 No Single read - won't help
2122 0 0 1 1 No The same case
2123 0 1 0 0 No access for the scalar
2124 0 1 0 1 No access for the scalar
2125 0 1 1 0 Yes s = *g; return s.i;
2126 0 1 1 1 Yes The same case as above
2127 1 0 0 0 No Won't help
2128 1 0 0 1 Yes s.i = 1; *g = s;
2129 1 0 1 0 Yes s.i = 5; g = s.i;
2130 1 0 1 1 Yes The same case as above
2131 1 1 0 0 No Won't help.
2132 1 1 0 1 Yes s.i = 1; *g = s;
2133 1 1 1 0 Yes s = *g; return s.i;
2134 1 1 1 1 Yes Any of the above yeses */
2137 analyze_access_subtree (struct access
*root
, struct access
*parent
,
2138 bool allow_replacements
)
2140 struct access
*child
;
2141 HOST_WIDE_INT limit
= root
->offset
+ root
->size
;
2142 HOST_WIDE_INT covered_to
= root
->offset
;
2143 bool scalar
= is_gimple_reg_type (root
->type
);
2144 bool hole
= false, sth_created
= false;
2148 if (parent
->grp_read
)
2150 if (parent
->grp_assignment_read
)
2151 root
->grp_assignment_read
= 1;
2152 if (parent
->grp_write
)
2153 root
->grp_write
= 1;
2154 if (parent
->grp_assignment_write
)
2155 root
->grp_assignment_write
= 1;
2156 if (parent
->grp_total_scalarization
)
2157 root
->grp_total_scalarization
= 1;
2160 if (root
->grp_unscalarizable_region
)
2161 allow_replacements
= false;
2163 if (allow_replacements
&& expr_with_var_bounded_array_refs_p (root
->expr
))
2164 allow_replacements
= false;
2166 for (child
= root
->first_child
; child
; child
= child
->next_sibling
)
2168 hole
|= covered_to
< child
->offset
;
2169 sth_created
|= analyze_access_subtree (child
, root
,
2170 allow_replacements
&& !scalar
);
2172 root
->grp_unscalarized_data
|= child
->grp_unscalarized_data
;
2173 root
->grp_total_scalarization
&= child
->grp_total_scalarization
;
2174 if (child
->grp_covered
)
2175 covered_to
+= child
->size
;
2180 if (allow_replacements
&& scalar
&& !root
->first_child
2182 || ((root
->grp_scalar_read
|| root
->grp_assignment_read
)
2183 && (root
->grp_scalar_write
|| root
->grp_assignment_write
))))
2185 /* Always create access replacements that cover the whole access.
2186 For integral types this means the precision has to match.
2187 Avoid assumptions based on the integral type kind, too. */
2188 if (INTEGRAL_TYPE_P (root
->type
)
2189 && (TREE_CODE (root
->type
) != INTEGER_TYPE
2190 || TYPE_PRECISION (root
->type
) != root
->size
)
2191 /* But leave bitfield accesses alone. */
2192 && (TREE_CODE (root
->expr
) != COMPONENT_REF
2193 || !DECL_BIT_FIELD (TREE_OPERAND (root
->expr
, 1))))
2195 tree rt
= root
->type
;
2196 gcc_assert ((root
->offset
% BITS_PER_UNIT
) == 0
2197 && (root
->size
% BITS_PER_UNIT
) == 0);
2198 root
->type
= build_nonstandard_integer_type (root
->size
,
2199 TYPE_UNSIGNED (rt
));
2200 root
->expr
= build_ref_for_offset (UNKNOWN_LOCATION
,
2201 root
->base
, root
->offset
,
2202 root
->type
, NULL
, false);
2204 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2206 fprintf (dump_file
, "Changing the type of a replacement for ");
2207 print_generic_expr (dump_file
, root
->base
, 0);
2208 fprintf (dump_file
, " offset: %u, size: %u ",
2209 (unsigned) root
->offset
, (unsigned) root
->size
);
2210 fprintf (dump_file
, " to an integer.\n");
2214 root
->grp_to_be_replaced
= 1;
2215 root
->replacement_decl
= create_access_replacement (root
);
2221 if (allow_replacements
2222 && scalar
&& !root
->first_child
2223 && (root
->grp_scalar_write
|| root
->grp_assignment_write
)
2224 && !bitmap_bit_p (cannot_scalarize_away_bitmap
,
2225 DECL_UID (root
->base
)))
2227 gcc_checking_assert (!root
->grp_scalar_read
2228 && !root
->grp_assignment_read
);
2230 if (MAY_HAVE_DEBUG_STMTS
)
2232 root
->grp_to_be_debug_replaced
= 1;
2233 root
->replacement_decl
= create_access_replacement (root
);
2237 if (covered_to
< limit
)
2240 root
->grp_total_scalarization
= 0;
2243 if (!hole
|| root
->grp_total_scalarization
)
2244 root
->grp_covered
= 1;
2245 else if (root
->grp_write
|| TREE_CODE (root
->base
) == PARM_DECL
)
2246 root
->grp_unscalarized_data
= 1; /* not covered and written to */
2250 /* Analyze all access trees linked by next_grp by the means of
2251 analyze_access_subtree. */
2253 analyze_access_trees (struct access
*access
)
2259 if (analyze_access_subtree (access
, NULL
, true))
2261 access
= access
->next_grp
;
2267 /* Return true iff a potential new child of LACC at offset OFFSET and with size
2268 SIZE would conflict with an already existing one. If exactly such a child
2269 already exists in LACC, store a pointer to it in EXACT_MATCH. */
2272 child_would_conflict_in_lacc (struct access
*lacc
, HOST_WIDE_INT norm_offset
,
2273 HOST_WIDE_INT size
, struct access
**exact_match
)
2275 struct access
*child
;
2277 for (child
= lacc
->first_child
; child
; child
= child
->next_sibling
)
2279 if (child
->offset
== norm_offset
&& child
->size
== size
)
2281 *exact_match
= child
;
2285 if (child
->offset
< norm_offset
+ size
2286 && child
->offset
+ child
->size
> norm_offset
)
2293 /* Create a new child access of PARENT, with all properties just like MODEL
2294 except for its offset and with its grp_write false and grp_read true.
2295 Return the new access or NULL if it cannot be created. Note that this access
2296 is created long after all splicing and sorting, it's not located in any
2297 access vector and is automatically a representative of its group. */
2299 static struct access
*
2300 create_artificial_child_access (struct access
*parent
, struct access
*model
,
2301 HOST_WIDE_INT new_offset
)
2303 struct access
*access
;
2304 struct access
**child
;
2305 tree expr
= parent
->base
;
2307 gcc_assert (!model
->grp_unscalarizable_region
);
2309 access
= (struct access
*) pool_alloc (access_pool
);
2310 memset (access
, 0, sizeof (struct access
));
2311 if (!build_user_friendly_ref_for_offset (&expr
, TREE_TYPE (expr
), new_offset
,
2314 access
->grp_no_warning
= true;
2315 expr
= build_ref_for_model (EXPR_LOCATION (parent
->base
), parent
->base
,
2316 new_offset
, model
, NULL
, false);
2319 access
->base
= parent
->base
;
2320 access
->expr
= expr
;
2321 access
->offset
= new_offset
;
2322 access
->size
= model
->size
;
2323 access
->type
= model
->type
;
2324 access
->grp_write
= true;
2325 access
->grp_read
= false;
2327 child
= &parent
->first_child
;
2328 while (*child
&& (*child
)->offset
< new_offset
)
2329 child
= &(*child
)->next_sibling
;
2331 access
->next_sibling
= *child
;
2338 /* Propagate all subaccesses of RACC across an assignment link to LACC. Return
2339 true if any new subaccess was created. Additionally, if RACC is a scalar
2340 access but LACC is not, change the type of the latter, if possible. */
2343 propagate_subaccesses_across_link (struct access
*lacc
, struct access
*racc
)
2345 struct access
*rchild
;
2346 HOST_WIDE_INT norm_delta
= lacc
->offset
- racc
->offset
;
2349 if (is_gimple_reg_type (lacc
->type
)
2350 || lacc
->grp_unscalarizable_region
2351 || racc
->grp_unscalarizable_region
)
2354 if (is_gimple_reg_type (racc
->type
))
2356 if (!lacc
->first_child
&& !racc
->first_child
)
2358 tree t
= lacc
->base
;
2360 lacc
->type
= racc
->type
;
2361 if (build_user_friendly_ref_for_offset (&t
, TREE_TYPE (t
),
2362 lacc
->offset
, racc
->type
))
2366 lacc
->expr
= build_ref_for_model (EXPR_LOCATION (lacc
->base
),
2367 lacc
->base
, lacc
->offset
,
2369 lacc
->grp_no_warning
= true;
2375 for (rchild
= racc
->first_child
; rchild
; rchild
= rchild
->next_sibling
)
2377 struct access
*new_acc
= NULL
;
2378 HOST_WIDE_INT norm_offset
= rchild
->offset
+ norm_delta
;
2380 if (rchild
->grp_unscalarizable_region
)
2383 if (child_would_conflict_in_lacc (lacc
, norm_offset
, rchild
->size
,
2388 rchild
->grp_hint
= 1;
2389 new_acc
->grp_hint
|= new_acc
->grp_read
;
2390 if (rchild
->first_child
)
2391 ret
|= propagate_subaccesses_across_link (new_acc
, rchild
);
2396 rchild
->grp_hint
= 1;
2397 new_acc
= create_artificial_child_access (lacc
, rchild
, norm_offset
);
2401 if (racc
->first_child
)
2402 propagate_subaccesses_across_link (new_acc
, rchild
);
2409 /* Propagate all subaccesses across assignment links. */
2412 propagate_all_subaccesses (void)
2414 while (work_queue_head
)
2416 struct access
*racc
= pop_access_from_work_queue ();
2417 struct assign_link
*link
;
2419 gcc_assert (racc
->first_link
);
2421 for (link
= racc
->first_link
; link
; link
= link
->next
)
2423 struct access
*lacc
= link
->lacc
;
2425 if (!bitmap_bit_p (candidate_bitmap
, DECL_UID (lacc
->base
)))
2427 lacc
= lacc
->group_representative
;
2428 if (propagate_subaccesses_across_link (lacc
, racc
)
2429 && lacc
->first_link
)
2430 add_access_to_work_queue (lacc
);
2435 /* Go through all accesses collected throughout the (intraprocedural) analysis
2436 stage, exclude overlapping ones, identify representatives and build trees
2437 out of them, making decisions about scalarization on the way. Return true
2438 iff there are any to-be-scalarized variables after this stage. */
2441 analyze_all_variable_accesses (void)
2444 bitmap tmp
= BITMAP_ALLOC (NULL
);
2446 unsigned i
, max_total_scalarization_size
;
2448 max_total_scalarization_size
= UNITS_PER_WORD
* BITS_PER_UNIT
2449 * MOVE_RATIO (optimize_function_for_speed_p (cfun
));
2451 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap
, 0, i
, bi
)
2452 if (bitmap_bit_p (should_scalarize_away_bitmap
, i
)
2453 && !bitmap_bit_p (cannot_scalarize_away_bitmap
, i
))
2455 tree var
= candidate (i
);
2457 if (TREE_CODE (var
) == VAR_DECL
2458 && type_consists_of_records_p (TREE_TYPE (var
)))
2460 if ((unsigned) tree_low_cst (TYPE_SIZE (TREE_TYPE (var
)), 1)
2461 <= max_total_scalarization_size
)
2463 completely_scalarize_var (var
);
2464 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2466 fprintf (dump_file
, "Will attempt to totally scalarize ");
2467 print_generic_expr (dump_file
, var
, 0);
2468 fprintf (dump_file
, " (UID: %u): \n", DECL_UID (var
));
2471 else if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2473 fprintf (dump_file
, "Too big to totally scalarize: ");
2474 print_generic_expr (dump_file
, var
, 0);
2475 fprintf (dump_file
, " (UID: %u)\n", DECL_UID (var
));
2480 bitmap_copy (tmp
, candidate_bitmap
);
2481 EXECUTE_IF_SET_IN_BITMAP (tmp
, 0, i
, bi
)
2483 tree var
= candidate (i
);
2484 struct access
*access
;
2486 access
= sort_and_splice_var_accesses (var
);
2487 if (!access
|| !build_access_trees (access
))
2488 disqualify_candidate (var
,
2489 "No or inhibitingly overlapping accesses.");
2492 propagate_all_subaccesses ();
2494 bitmap_copy (tmp
, candidate_bitmap
);
2495 EXECUTE_IF_SET_IN_BITMAP (tmp
, 0, i
, bi
)
2497 tree var
= candidate (i
);
2498 struct access
*access
= get_first_repr_for_decl (var
);
2500 if (analyze_access_trees (access
))
2503 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2505 fprintf (dump_file
, "\nAccess trees for ");
2506 print_generic_expr (dump_file
, var
, 0);
2507 fprintf (dump_file
, " (UID: %u): \n", DECL_UID (var
));
2508 dump_access_tree (dump_file
, access
);
2509 fprintf (dump_file
, "\n");
2513 disqualify_candidate (var
, "No scalar replacements to be created.");
2520 statistics_counter_event (cfun
, "Scalarized aggregates", res
);
2527 /* Generate statements copying scalar replacements of accesses within a subtree
2528 into or out of AGG. ACCESS, all its children, siblings and their children
2529 are to be processed. AGG is an aggregate type expression (can be a
2530 declaration but does not have to be, it can for example also be a mem_ref or
2531 a series of handled components). TOP_OFFSET is the offset of the processed
2532 subtree which has to be subtracted from offsets of individual accesses to
2533 get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only
2534 replacements in the interval <start_offset, start_offset + chunk_size>,
2535 otherwise copy all. GSI is a statement iterator used to place the new
2536 statements. WRITE should be true when the statements should write from AGG
2537 to the replacement and false if vice versa. if INSERT_AFTER is true, new
2538 statements will be added after the current statement in GSI, they will be
2539 added before the statement otherwise. */
2542 generate_subtree_copies (struct access
*access
, tree agg
,
2543 HOST_WIDE_INT top_offset
,
2544 HOST_WIDE_INT start_offset
, HOST_WIDE_INT chunk_size
,
2545 gimple_stmt_iterator
*gsi
, bool write
,
2546 bool insert_after
, location_t loc
)
2550 if (chunk_size
&& access
->offset
>= start_offset
+ chunk_size
)
2553 if (access
->grp_to_be_replaced
2555 || access
->offset
+ access
->size
> start_offset
))
2557 tree expr
, repl
= get_access_replacement (access
);
2560 expr
= build_ref_for_model (loc
, agg
, access
->offset
- top_offset
,
2561 access
, gsi
, insert_after
);
2565 if (access
->grp_partial_lhs
)
2566 expr
= force_gimple_operand_gsi (gsi
, expr
, true, NULL_TREE
,
2568 insert_after
? GSI_NEW_STMT
2570 stmt
= gimple_build_assign (repl
, expr
);
2574 TREE_NO_WARNING (repl
) = 1;
2575 if (access
->grp_partial_lhs
)
2576 repl
= force_gimple_operand_gsi (gsi
, repl
, true, NULL_TREE
,
2578 insert_after
? GSI_NEW_STMT
2580 stmt
= gimple_build_assign (expr
, repl
);
2582 gimple_set_location (stmt
, loc
);
2585 gsi_insert_after (gsi
, stmt
, GSI_NEW_STMT
);
2587 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
2589 sra_stats
.subtree_copies
++;
2592 && access
->grp_to_be_debug_replaced
2594 || access
->offset
+ access
->size
> start_offset
))
2597 tree drhs
= build_debug_ref_for_model (loc
, agg
,
2598 access
->offset
- top_offset
,
2600 ds
= gimple_build_debug_bind (get_access_replacement (access
),
2601 drhs
, gsi_stmt (*gsi
));
2603 gsi_insert_after (gsi
, ds
, GSI_NEW_STMT
);
2605 gsi_insert_before (gsi
, ds
, GSI_SAME_STMT
);
2608 if (access
->first_child
)
2609 generate_subtree_copies (access
->first_child
, agg
, top_offset
,
2610 start_offset
, chunk_size
, gsi
,
2611 write
, insert_after
, loc
);
2613 access
= access
->next_sibling
;
2618 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
2619 the root of the subtree to be processed. GSI is the statement iterator used
2620 for inserting statements which are added after the current statement if
2621 INSERT_AFTER is true or before it otherwise. */
2624 init_subtree_with_zero (struct access
*access
, gimple_stmt_iterator
*gsi
,
2625 bool insert_after
, location_t loc
)
2628 struct access
*child
;
2630 if (access
->grp_to_be_replaced
)
2634 stmt
= gimple_build_assign (get_access_replacement (access
),
2635 build_zero_cst (access
->type
));
2637 gsi_insert_after (gsi
, stmt
, GSI_NEW_STMT
);
2639 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
2641 gimple_set_location (stmt
, loc
);
2643 else if (access
->grp_to_be_debug_replaced
)
2645 gimple ds
= gimple_build_debug_bind (get_access_replacement (access
),
2646 build_zero_cst (access
->type
),
2649 gsi_insert_after (gsi
, ds
, GSI_NEW_STMT
);
2651 gsi_insert_before (gsi
, ds
, GSI_SAME_STMT
);
2654 for (child
= access
->first_child
; child
; child
= child
->next_sibling
)
2655 init_subtree_with_zero (child
, gsi
, insert_after
, loc
);
2658 /* Search for an access representative for the given expression EXPR and
2659 return it or NULL if it cannot be found. */
2661 static struct access
*
2662 get_access_for_expr (tree expr
)
2664 HOST_WIDE_INT offset
, size
, max_size
;
2667 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
2668 a different size than the size of its argument and we need the latter
2670 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
2671 expr
= TREE_OPERAND (expr
, 0);
2673 base
= get_ref_base_and_extent (expr
, &offset
, &size
, &max_size
);
2674 if (max_size
== -1 || !DECL_P (base
))
2677 if (!bitmap_bit_p (candidate_bitmap
, DECL_UID (base
)))
2680 return get_var_base_offset_size_access (base
, offset
, max_size
);
2683 /* Replace the expression EXPR with a scalar replacement if there is one and
2684 generate other statements to do type conversion or subtree copying if
2685 necessary. GSI is used to place newly created statements, WRITE is true if
2686 the expression is being written to (it is on a LHS of a statement or output
2687 in an assembly statement). */
2690 sra_modify_expr (tree
*expr
, gimple_stmt_iterator
*gsi
, bool write
)
2693 struct access
*access
;
2696 if (TREE_CODE (*expr
) == BIT_FIELD_REF
)
2699 expr
= &TREE_OPERAND (*expr
, 0);
2704 if (TREE_CODE (*expr
) == REALPART_EXPR
|| TREE_CODE (*expr
) == IMAGPART_EXPR
)
2705 expr
= &TREE_OPERAND (*expr
, 0);
2706 access
= get_access_for_expr (*expr
);
2709 type
= TREE_TYPE (*expr
);
2711 loc
= gimple_location (gsi_stmt (*gsi
));
2712 if (access
->grp_to_be_replaced
)
2714 tree repl
= get_access_replacement (access
);
2715 /* If we replace a non-register typed access simply use the original
2716 access expression to extract the scalar component afterwards.
2717 This happens if scalarizing a function return value or parameter
2718 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
2719 gcc.c-torture/compile/20011217-1.c.
2721 We also want to use this when accessing a complex or vector which can
2722 be accessed as a different type too, potentially creating a need for
2723 type conversion (see PR42196) and when scalarized unions are involved
2724 in assembler statements (see PR42398). */
2725 if (!useless_type_conversion_p (type
, access
->type
))
2729 ref
= build_ref_for_model (loc
, access
->base
, access
->offset
, access
,
2736 if (access
->grp_partial_lhs
)
2737 ref
= force_gimple_operand_gsi (gsi
, ref
, true, NULL_TREE
,
2738 false, GSI_NEW_STMT
);
2739 stmt
= gimple_build_assign (repl
, ref
);
2740 gimple_set_location (stmt
, loc
);
2741 gsi_insert_after (gsi
, stmt
, GSI_NEW_STMT
);
2747 if (access
->grp_partial_lhs
)
2748 repl
= force_gimple_operand_gsi (gsi
, repl
, true, NULL_TREE
,
2749 true, GSI_SAME_STMT
);
2750 stmt
= gimple_build_assign (ref
, repl
);
2751 gimple_set_location (stmt
, loc
);
2752 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
2759 else if (write
&& access
->grp_to_be_debug_replaced
)
2761 gimple ds
= gimple_build_debug_bind (get_access_replacement (access
),
2764 gsi_insert_after (gsi
, ds
, GSI_NEW_STMT
);
2767 if (access
->first_child
)
2769 HOST_WIDE_INT start_offset
, chunk_size
;
2771 && host_integerp (TREE_OPERAND (bfr
, 1), 1)
2772 && host_integerp (TREE_OPERAND (bfr
, 2), 1))
2774 chunk_size
= tree_low_cst (TREE_OPERAND (bfr
, 1), 1);
2775 start_offset
= access
->offset
2776 + tree_low_cst (TREE_OPERAND (bfr
, 2), 1);
2779 start_offset
= chunk_size
= 0;
2781 generate_subtree_copies (access
->first_child
, access
->base
, 0,
2782 start_offset
, chunk_size
, gsi
, write
, write
,
2788 /* Where scalar replacements of the RHS have been written to when a replacement
2789 of a LHS of an assigments cannot be direclty loaded from a replacement of
2791 enum unscalarized_data_handling
{ SRA_UDH_NONE
, /* Nothing done so far. */
2792 SRA_UDH_RIGHT
, /* Data flushed to the RHS. */
2793 SRA_UDH_LEFT
}; /* Data flushed to the LHS. */
2795 /* Store all replacements in the access tree rooted in TOP_RACC either to their
2796 base aggregate if there are unscalarized data or directly to LHS of the
2797 statement that is pointed to by GSI otherwise. */
2799 static enum unscalarized_data_handling
2800 handle_unscalarized_data_in_subtree (struct access
*top_racc
,
2801 gimple_stmt_iterator
*gsi
)
2803 if (top_racc
->grp_unscalarized_data
)
2805 generate_subtree_copies (top_racc
->first_child
, top_racc
->base
, 0, 0, 0,
2807 gimple_location (gsi_stmt (*gsi
)));
2808 return SRA_UDH_RIGHT
;
2812 tree lhs
= gimple_assign_lhs (gsi_stmt (*gsi
));
2813 generate_subtree_copies (top_racc
->first_child
, lhs
, top_racc
->offset
,
2814 0, 0, gsi
, false, false,
2815 gimple_location (gsi_stmt (*gsi
)));
2816 return SRA_UDH_LEFT
;
2821 /* Try to generate statements to load all sub-replacements in an access subtree
2822 formed by children of LACC from scalar replacements in the TOP_RACC subtree.
2823 If that is not possible, refresh the TOP_RACC base aggregate and load the
2824 accesses from it. LEFT_OFFSET is the offset of the left whole subtree being
2825 copied. NEW_GSI is stmt iterator used for statement insertions after the
2826 original assignment, OLD_GSI is used to insert statements before the
2827 assignment. *REFRESHED keeps the information whether we have needed to
2828 refresh replacements of the LHS and from which side of the assignments this
2832 load_assign_lhs_subreplacements (struct access
*lacc
, struct access
*top_racc
,
2833 HOST_WIDE_INT left_offset
,
2834 gimple_stmt_iterator
*old_gsi
,
2835 gimple_stmt_iterator
*new_gsi
,
2836 enum unscalarized_data_handling
*refreshed
)
2838 location_t loc
= gimple_location (gsi_stmt (*old_gsi
));
2839 for (lacc
= lacc
->first_child
; lacc
; lacc
= lacc
->next_sibling
)
2841 HOST_WIDE_INT offset
= lacc
->offset
- left_offset
+ top_racc
->offset
;
2843 if (lacc
->grp_to_be_replaced
)
2845 struct access
*racc
;
2849 racc
= find_access_in_subtree (top_racc
, offset
, lacc
->size
);
2850 if (racc
&& racc
->grp_to_be_replaced
)
2852 rhs
= get_access_replacement (racc
);
2853 if (!useless_type_conversion_p (lacc
->type
, racc
->type
))
2854 rhs
= fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, lacc
->type
, rhs
);
2856 if (racc
->grp_partial_lhs
&& lacc
->grp_partial_lhs
)
2857 rhs
= force_gimple_operand_gsi (old_gsi
, rhs
, true, NULL_TREE
,
2858 true, GSI_SAME_STMT
);
2862 /* No suitable access on the right hand side, need to load from
2863 the aggregate. See if we have to update it first... */
2864 if (*refreshed
== SRA_UDH_NONE
)
2865 *refreshed
= handle_unscalarized_data_in_subtree (top_racc
,
2868 if (*refreshed
== SRA_UDH_LEFT
)
2869 rhs
= build_ref_for_model (loc
, lacc
->base
, lacc
->offset
, lacc
,
2872 rhs
= build_ref_for_model (loc
, top_racc
->base
, offset
, lacc
,
2874 if (lacc
->grp_partial_lhs
)
2875 rhs
= force_gimple_operand_gsi (new_gsi
, rhs
, true, NULL_TREE
,
2876 false, GSI_NEW_STMT
);
2879 stmt
= gimple_build_assign (get_access_replacement (lacc
), rhs
);
2880 gsi_insert_after (new_gsi
, stmt
, GSI_NEW_STMT
);
2881 gimple_set_location (stmt
, loc
);
2883 sra_stats
.subreplacements
++;
2887 if (*refreshed
== SRA_UDH_NONE
2888 && lacc
->grp_read
&& !lacc
->grp_covered
)
2889 *refreshed
= handle_unscalarized_data_in_subtree (top_racc
,
2891 if (lacc
&& lacc
->grp_to_be_debug_replaced
)
2895 struct access
*racc
= find_access_in_subtree (top_racc
, offset
,
2898 if (racc
&& racc
->grp_to_be_replaced
)
2900 if (racc
->grp_write
)
2901 drhs
= get_access_replacement (racc
);
2905 else if (*refreshed
== SRA_UDH_LEFT
)
2906 drhs
= build_debug_ref_for_model (loc
, lacc
->base
, lacc
->offset
,
2908 else if (*refreshed
== SRA_UDH_RIGHT
)
2909 drhs
= build_debug_ref_for_model (loc
, top_racc
->base
, offset
,
2913 ds
= gimple_build_debug_bind (get_access_replacement (lacc
),
2914 drhs
, gsi_stmt (*old_gsi
));
2915 gsi_insert_after (new_gsi
, ds
, GSI_NEW_STMT
);
2919 if (lacc
->first_child
)
2920 load_assign_lhs_subreplacements (lacc
, top_racc
, left_offset
,
2921 old_gsi
, new_gsi
, refreshed
);
2925 /* Result code for SRA assignment modification. */
2926 enum assignment_mod_result
{ SRA_AM_NONE
, /* nothing done for the stmt */
2927 SRA_AM_MODIFIED
, /* stmt changed but not
2929 SRA_AM_REMOVED
}; /* stmt eliminated */
2931 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
2932 to the assignment and GSI is the statement iterator pointing at it. Returns
2933 the same values as sra_modify_assign. */
2935 static enum assignment_mod_result
2936 sra_modify_constructor_assign (gimple
*stmt
, gimple_stmt_iterator
*gsi
)
2938 tree lhs
= gimple_assign_lhs (*stmt
);
2942 acc
= get_access_for_expr (lhs
);
2946 if (gimple_clobber_p (*stmt
))
2948 /* Remove clobbers of fully scalarized variables, otherwise
2950 if (acc
->grp_covered
)
2952 unlink_stmt_vdef (*stmt
);
2953 gsi_remove (gsi
, true);
2954 release_defs (*stmt
);
2955 return SRA_AM_REMOVED
;
2961 loc
= gimple_location (*stmt
);
2962 if (vec_safe_length (CONSTRUCTOR_ELTS (gimple_assign_rhs1 (*stmt
))) > 0)
2964 /* I have never seen this code path trigger but if it can happen the
2965 following should handle it gracefully. */
2966 if (access_has_children_p (acc
))
2967 generate_subtree_copies (acc
->first_child
, acc
->base
, 0, 0, 0, gsi
,
2969 return SRA_AM_MODIFIED
;
2972 if (acc
->grp_covered
)
2974 init_subtree_with_zero (acc
, gsi
, false, loc
);
2975 unlink_stmt_vdef (*stmt
);
2976 gsi_remove (gsi
, true);
2977 release_defs (*stmt
);
2978 return SRA_AM_REMOVED
;
2982 init_subtree_with_zero (acc
, gsi
, true, loc
);
2983 return SRA_AM_MODIFIED
;
2987 /* Create and return a new suitable default definition SSA_NAME for RACC which
2988 is an access describing an uninitialized part of an aggregate that is being
2992 get_repl_default_def_ssa_name (struct access
*racc
)
2994 gcc_checking_assert (!racc
->grp_to_be_replaced
2995 && !racc
->grp_to_be_debug_replaced
);
2996 if (!racc
->replacement_decl
)
2997 racc
->replacement_decl
= create_access_replacement (racc
);
2998 return get_or_create_ssa_default_def (cfun
, racc
->replacement_decl
);
3001 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
3005 contains_bitfld_comp_ref_p (const_tree ref
)
3007 while (handled_component_p (ref
))
3009 if (TREE_CODE (ref
) == COMPONENT_REF
3010 && DECL_BIT_FIELD (TREE_OPERAND (ref
, 1)))
3012 ref
= TREE_OPERAND (ref
, 0);
3018 /* Return true if REF has an VIEW_CONVERT_EXPR or a COMPONENT_REF with a
3019 bit-field field declaration somewhere in it. */
3022 contains_vce_or_bfcref_p (const_tree ref
)
3024 while (handled_component_p (ref
))
3026 if (TREE_CODE (ref
) == VIEW_CONVERT_EXPR
3027 || (TREE_CODE (ref
) == COMPONENT_REF
3028 && DECL_BIT_FIELD (TREE_OPERAND (ref
, 1))))
3030 ref
= TREE_OPERAND (ref
, 0);
3036 /* Examine both sides of the assignment statement pointed to by STMT, replace
3037 them with a scalare replacement if there is one and generate copying of
3038 replacements if scalarized aggregates have been used in the assignment. GSI
3039 is used to hold generated statements for type conversions and subtree
3042 static enum assignment_mod_result
3043 sra_modify_assign (gimple
*stmt
, gimple_stmt_iterator
*gsi
)
3045 struct access
*lacc
, *racc
;
3047 bool modify_this_stmt
= false;
3048 bool force_gimple_rhs
= false;
3050 gimple_stmt_iterator orig_gsi
= *gsi
;
3052 if (!gimple_assign_single_p (*stmt
))
3054 lhs
= gimple_assign_lhs (*stmt
);
3055 rhs
= gimple_assign_rhs1 (*stmt
);
3057 if (TREE_CODE (rhs
) == CONSTRUCTOR
)
3058 return sra_modify_constructor_assign (stmt
, gsi
);
3060 if (TREE_CODE (rhs
) == REALPART_EXPR
|| TREE_CODE (lhs
) == REALPART_EXPR
3061 || TREE_CODE (rhs
) == IMAGPART_EXPR
|| TREE_CODE (lhs
) == IMAGPART_EXPR
3062 || TREE_CODE (rhs
) == BIT_FIELD_REF
|| TREE_CODE (lhs
) == BIT_FIELD_REF
)
3064 modify_this_stmt
= sra_modify_expr (gimple_assign_rhs1_ptr (*stmt
),
3066 modify_this_stmt
|= sra_modify_expr (gimple_assign_lhs_ptr (*stmt
),
3068 return modify_this_stmt
? SRA_AM_MODIFIED
: SRA_AM_NONE
;
3071 lacc
= get_access_for_expr (lhs
);
3072 racc
= get_access_for_expr (rhs
);
3076 loc
= gimple_location (*stmt
);
3077 if (lacc
&& lacc
->grp_to_be_replaced
)
3079 lhs
= get_access_replacement (lacc
);
3080 gimple_assign_set_lhs (*stmt
, lhs
);
3081 modify_this_stmt
= true;
3082 if (lacc
->grp_partial_lhs
)
3083 force_gimple_rhs
= true;
3087 if (racc
&& racc
->grp_to_be_replaced
)
3089 rhs
= get_access_replacement (racc
);
3090 modify_this_stmt
= true;
3091 if (racc
->grp_partial_lhs
)
3092 force_gimple_rhs
= true;
3096 && !racc
->grp_unscalarized_data
3097 && TREE_CODE (lhs
) == SSA_NAME
3098 && !access_has_replacements_p (racc
))
3100 rhs
= get_repl_default_def_ssa_name (racc
);
3101 modify_this_stmt
= true;
3105 if (modify_this_stmt
)
3107 if (!useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (rhs
)))
3109 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
3110 ??? This should move to fold_stmt which we simply should
3111 call after building a VIEW_CONVERT_EXPR here. */
3112 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs
))
3113 && !contains_bitfld_comp_ref_p (lhs
))
3115 lhs
= build_ref_for_model (loc
, lhs
, 0, racc
, gsi
, false);
3116 gimple_assign_set_lhs (*stmt
, lhs
);
3118 else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs
))
3119 && !contains_vce_or_bfcref_p (rhs
))
3120 rhs
= build_ref_for_model (loc
, rhs
, 0, lacc
, gsi
, false);
3122 if (!useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (rhs
)))
3124 rhs
= fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, TREE_TYPE (lhs
),
3126 if (is_gimple_reg_type (TREE_TYPE (lhs
))
3127 && TREE_CODE (lhs
) != SSA_NAME
)
3128 force_gimple_rhs
= true;
3133 if (lacc
&& lacc
->grp_to_be_debug_replaced
)
3135 tree dlhs
= get_access_replacement (lacc
);
3136 tree drhs
= unshare_expr (rhs
);
3137 if (!useless_type_conversion_p (TREE_TYPE (dlhs
), TREE_TYPE (drhs
)))
3139 if (AGGREGATE_TYPE_P (TREE_TYPE (drhs
))
3140 && !contains_vce_or_bfcref_p (drhs
))
3141 drhs
= build_debug_ref_for_model (loc
, drhs
, 0, lacc
);
3143 && !useless_type_conversion_p (TREE_TYPE (dlhs
),
3145 drhs
= fold_build1_loc (loc
, VIEW_CONVERT_EXPR
,
3146 TREE_TYPE (dlhs
), drhs
);
3148 gimple ds
= gimple_build_debug_bind (dlhs
, drhs
, *stmt
);
3149 gsi_insert_before (gsi
, ds
, GSI_SAME_STMT
);
3152 /* From this point on, the function deals with assignments in between
3153 aggregates when at least one has scalar reductions of some of its
3154 components. There are three possible scenarios: Both the LHS and RHS have
3155 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
3157 In the first case, we would like to load the LHS components from RHS
3158 components whenever possible. If that is not possible, we would like to
3159 read it directly from the RHS (after updating it by storing in it its own
3160 components). If there are some necessary unscalarized data in the LHS,
3161 those will be loaded by the original assignment too. If neither of these
3162 cases happen, the original statement can be removed. Most of this is done
3163 by load_assign_lhs_subreplacements.
3165 In the second case, we would like to store all RHS scalarized components
3166 directly into LHS and if they cover the aggregate completely, remove the
3167 statement too. In the third case, we want the LHS components to be loaded
3168 directly from the RHS (DSE will remove the original statement if it
3171 This is a bit complex but manageable when types match and when unions do
3172 not cause confusion in a way that we cannot really load a component of LHS
3173 from the RHS or vice versa (the access representing this level can have
3174 subaccesses that are accessible only through a different union field at a
3175 higher level - different from the one used in the examined expression).
3178 Therefore, I specially handle a fourth case, happening when there is a
3179 specific type cast or it is impossible to locate a scalarized subaccess on
3180 the other side of the expression. If that happens, I simply "refresh" the
3181 RHS by storing in it is scalarized components leave the original statement
3182 there to do the copying and then load the scalar replacements of the LHS.
3183 This is what the first branch does. */
3185 if (modify_this_stmt
3186 || gimple_has_volatile_ops (*stmt
)
3187 || contains_vce_or_bfcref_p (rhs
)
3188 || contains_vce_or_bfcref_p (lhs
))
3190 if (access_has_children_p (racc
))
3191 generate_subtree_copies (racc
->first_child
, racc
->base
, 0, 0, 0,
3192 gsi
, false, false, loc
);
3193 if (access_has_children_p (lacc
))
3194 generate_subtree_copies (lacc
->first_child
, lacc
->base
, 0, 0, 0,
3195 gsi
, true, true, loc
);
3196 sra_stats
.separate_lhs_rhs_handling
++;
3198 /* This gimplification must be done after generate_subtree_copies,
3199 lest we insert the subtree copies in the middle of the gimplified
3201 if (force_gimple_rhs
)
3202 rhs
= force_gimple_operand_gsi (&orig_gsi
, rhs
, true, NULL_TREE
,
3203 true, GSI_SAME_STMT
);
3204 if (gimple_assign_rhs1 (*stmt
) != rhs
)
3206 modify_this_stmt
= true;
3207 gimple_assign_set_rhs_from_tree (&orig_gsi
, rhs
);
3208 gcc_assert (*stmt
== gsi_stmt (orig_gsi
));
3211 return modify_this_stmt
? SRA_AM_MODIFIED
: SRA_AM_NONE
;
3215 if (access_has_children_p (lacc
)
3216 && access_has_children_p (racc
)
3217 /* When an access represents an unscalarizable region, it usually
3218 represents accesses with variable offset and thus must not be used
3219 to generate new memory accesses. */
3220 && !lacc
->grp_unscalarizable_region
3221 && !racc
->grp_unscalarizable_region
)
3223 gimple_stmt_iterator orig_gsi
= *gsi
;
3224 enum unscalarized_data_handling refreshed
;
3226 if (lacc
->grp_read
&& !lacc
->grp_covered
)
3227 refreshed
= handle_unscalarized_data_in_subtree (racc
, gsi
);
3229 refreshed
= SRA_UDH_NONE
;
3231 load_assign_lhs_subreplacements (lacc
, racc
, lacc
->offset
,
3232 &orig_gsi
, gsi
, &refreshed
);
3233 if (refreshed
!= SRA_UDH_RIGHT
)
3236 unlink_stmt_vdef (*stmt
);
3237 gsi_remove (&orig_gsi
, true);
3238 release_defs (*stmt
);
3239 sra_stats
.deleted
++;
3240 return SRA_AM_REMOVED
;
3245 if (access_has_children_p (racc
)
3246 && !racc
->grp_unscalarized_data
)
3250 fprintf (dump_file
, "Removing load: ");
3251 print_gimple_stmt (dump_file
, *stmt
, 0, 0);
3253 generate_subtree_copies (racc
->first_child
, lhs
,
3254 racc
->offset
, 0, 0, gsi
,
3256 gcc_assert (*stmt
== gsi_stmt (*gsi
));
3257 unlink_stmt_vdef (*stmt
);
3258 gsi_remove (gsi
, true);
3259 release_defs (*stmt
);
3260 sra_stats
.deleted
++;
3261 return SRA_AM_REMOVED
;
3263 /* Restore the aggregate RHS from its components so the
3264 prevailing aggregate copy does the right thing. */
3265 if (access_has_children_p (racc
))
3266 generate_subtree_copies (racc
->first_child
, racc
->base
, 0, 0, 0,
3267 gsi
, false, false, loc
);
3268 /* Re-load the components of the aggregate copy destination.
3269 But use the RHS aggregate to load from to expose more
3270 optimization opportunities. */
3271 if (access_has_children_p (lacc
))
3272 generate_subtree_copies (lacc
->first_child
, rhs
, lacc
->offset
,
3273 0, 0, gsi
, true, true, loc
);
3280 /* Traverse the function body and all modifications as decided in
3281 analyze_all_variable_accesses. Return true iff the CFG has been
3285 sra_modify_function_body (void)
3287 bool cfg_changed
= false;
3292 gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
3293 while (!gsi_end_p (gsi
))
3295 gimple stmt
= gsi_stmt (gsi
);
3296 enum assignment_mod_result assign_result
;
3297 bool modified
= false, deleted
= false;
3301 switch (gimple_code (stmt
))
3304 t
= gimple_return_retval_ptr (stmt
);
3305 if (*t
!= NULL_TREE
)
3306 modified
|= sra_modify_expr (t
, &gsi
, false);
3310 assign_result
= sra_modify_assign (&stmt
, &gsi
);
3311 modified
|= assign_result
== SRA_AM_MODIFIED
;
3312 deleted
= assign_result
== SRA_AM_REMOVED
;
3316 /* Operands must be processed before the lhs. */
3317 for (i
= 0; i
< gimple_call_num_args (stmt
); i
++)
3319 t
= gimple_call_arg_ptr (stmt
, i
);
3320 modified
|= sra_modify_expr (t
, &gsi
, false);
3323 if (gimple_call_lhs (stmt
))
3325 t
= gimple_call_lhs_ptr (stmt
);
3326 modified
|= sra_modify_expr (t
, &gsi
, true);
3331 for (i
= 0; i
< gimple_asm_ninputs (stmt
); i
++)
3333 t
= &TREE_VALUE (gimple_asm_input_op (stmt
, i
));
3334 modified
|= sra_modify_expr (t
, &gsi
, false);
3336 for (i
= 0; i
< gimple_asm_noutputs (stmt
); i
++)
3338 t
= &TREE_VALUE (gimple_asm_output_op (stmt
, i
));
3339 modified
|= sra_modify_expr (t
, &gsi
, true);
3350 if (maybe_clean_eh_stmt (stmt
)
3351 && gimple_purge_dead_eh_edges (gimple_bb (stmt
)))
3362 /* Generate statements initializing scalar replacements of parts of function
3366 initialize_parameter_reductions (void)
3368 gimple_stmt_iterator gsi
;
3369 gimple_seq seq
= NULL
;
3372 gsi
= gsi_start (seq
);
3373 for (parm
= DECL_ARGUMENTS (current_function_decl
);
3375 parm
= DECL_CHAIN (parm
))
3377 vec
<access_p
> *access_vec
;
3378 struct access
*access
;
3380 if (!bitmap_bit_p (candidate_bitmap
, DECL_UID (parm
)))
3382 access_vec
= get_base_access_vector (parm
);
3386 for (access
= (*access_vec
)[0];
3388 access
= access
->next_grp
)
3389 generate_subtree_copies (access
, parm
, 0, 0, 0, &gsi
, true, true,
3390 EXPR_LOCATION (parm
));
3393 seq
= gsi_seq (gsi
);
3395 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR
), seq
);
3398 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
3399 it reveals there are components of some aggregates to be scalarized, it runs
3400 the required transformations. */
3402 perform_intra_sra (void)
3407 if (!find_var_candidates ())
3410 if (!scan_function ())
3413 if (!analyze_all_variable_accesses ())
3416 if (sra_modify_function_body ())
3417 ret
= TODO_update_ssa
| TODO_cleanup_cfg
;
3419 ret
= TODO_update_ssa
;
3420 initialize_parameter_reductions ();
3422 statistics_counter_event (cfun
, "Scalar replacements created",
3423 sra_stats
.replacements
);
3424 statistics_counter_event (cfun
, "Modified expressions", sra_stats
.exprs
);
3425 statistics_counter_event (cfun
, "Subtree copy stmts",
3426 sra_stats
.subtree_copies
);
3427 statistics_counter_event (cfun
, "Subreplacement stmts",
3428 sra_stats
.subreplacements
);
3429 statistics_counter_event (cfun
, "Deleted stmts", sra_stats
.deleted
);
3430 statistics_counter_event (cfun
, "Separate LHS and RHS handling",
3431 sra_stats
.separate_lhs_rhs_handling
);
3434 sra_deinitialize ();
3438 /* Perform early intraprocedural SRA. */
3440 early_intra_sra (void)
3442 sra_mode
= SRA_MODE_EARLY_INTRA
;
3443 return perform_intra_sra ();
3446 /* Perform "late" intraprocedural SRA. */
3448 late_intra_sra (void)
3450 sra_mode
= SRA_MODE_INTRA
;
3451 return perform_intra_sra ();
3456 gate_intra_sra (void)
3458 return flag_tree_sra
!= 0 && dbg_cnt (tree_sra
);
3462 struct gimple_opt_pass pass_sra_early
=
3467 OPTGROUP_NONE
, /* optinfo_flags */
3468 gate_intra_sra
, /* gate */
3469 early_intra_sra
, /* execute */
3472 0, /* static_pass_number */
3473 TV_TREE_SRA
, /* tv_id */
3474 PROP_cfg
| PROP_ssa
, /* properties_required */
3475 0, /* properties_provided */
3476 0, /* properties_destroyed */
3477 0, /* todo_flags_start */
3479 | TODO_verify_ssa
/* todo_flags_finish */
3483 struct gimple_opt_pass pass_sra
=
3488 OPTGROUP_NONE
, /* optinfo_flags */
3489 gate_intra_sra
, /* gate */
3490 late_intra_sra
, /* execute */
3493 0, /* static_pass_number */
3494 TV_TREE_SRA
, /* tv_id */
3495 PROP_cfg
| PROP_ssa
, /* properties_required */
3496 0, /* properties_provided */
3497 0, /* properties_destroyed */
3498 TODO_update_address_taken
, /* todo_flags_start */
3500 | TODO_verify_ssa
/* todo_flags_finish */
3505 /* Return true iff PARM (which must be a parm_decl) is an unused scalar
3509 is_unused_scalar_param (tree parm
)
3512 return (is_gimple_reg (parm
)
3513 && (!(name
= ssa_default_def (cfun
, parm
))
3514 || has_zero_uses (name
)));
3517 /* Scan immediate uses of a default definition SSA name of a parameter PARM and
3518 examine whether there are any direct or otherwise infeasible ones. If so,
3519 return true, otherwise return false. PARM must be a gimple register with a
3520 non-NULL default definition. */
3523 ptr_parm_has_direct_uses (tree parm
)
3525 imm_use_iterator ui
;
3527 tree name
= ssa_default_def (cfun
, parm
);
3530 FOR_EACH_IMM_USE_STMT (stmt
, ui
, name
)
3533 use_operand_p use_p
;
3535 if (is_gimple_debug (stmt
))
3538 /* Valid uses include dereferences on the lhs and the rhs. */
3539 if (gimple_has_lhs (stmt
))
3541 tree lhs
= gimple_get_lhs (stmt
);
3542 while (handled_component_p (lhs
))
3543 lhs
= TREE_OPERAND (lhs
, 0);
3544 if (TREE_CODE (lhs
) == MEM_REF
3545 && TREE_OPERAND (lhs
, 0) == name
3546 && integer_zerop (TREE_OPERAND (lhs
, 1))
3547 && types_compatible_p (TREE_TYPE (lhs
),
3548 TREE_TYPE (TREE_TYPE (name
)))
3549 && !TREE_THIS_VOLATILE (lhs
))
3552 if (gimple_assign_single_p (stmt
))
3554 tree rhs
= gimple_assign_rhs1 (stmt
);
3555 while (handled_component_p (rhs
))
3556 rhs
= TREE_OPERAND (rhs
, 0);
3557 if (TREE_CODE (rhs
) == MEM_REF
3558 && TREE_OPERAND (rhs
, 0) == name
3559 && integer_zerop (TREE_OPERAND (rhs
, 1))
3560 && types_compatible_p (TREE_TYPE (rhs
),
3561 TREE_TYPE (TREE_TYPE (name
)))
3562 && !TREE_THIS_VOLATILE (rhs
))
3565 else if (is_gimple_call (stmt
))
3568 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3570 tree arg
= gimple_call_arg (stmt
, i
);
3571 while (handled_component_p (arg
))
3572 arg
= TREE_OPERAND (arg
, 0);
3573 if (TREE_CODE (arg
) == MEM_REF
3574 && TREE_OPERAND (arg
, 0) == name
3575 && integer_zerop (TREE_OPERAND (arg
, 1))
3576 && types_compatible_p (TREE_TYPE (arg
),
3577 TREE_TYPE (TREE_TYPE (name
)))
3578 && !TREE_THIS_VOLATILE (arg
))
3583 /* If the number of valid uses does not match the number of
3584 uses in this stmt there is an unhandled use. */
3585 FOR_EACH_IMM_USE_ON_STMT (use_p
, ui
)
3592 BREAK_FROM_IMM_USE_STMT (ui
);
3598 /* Identify candidates for reduction for IPA-SRA based on their type and mark
3599 them in candidate_bitmap. Note that these do not necessarily include
3600 parameter which are unused and thus can be removed. Return true iff any
3601 such candidate has been found. */
3604 find_param_candidates (void)
3611 for (parm
= DECL_ARGUMENTS (current_function_decl
);
3613 parm
= DECL_CHAIN (parm
))
3615 tree type
= TREE_TYPE (parm
);
3620 if (TREE_THIS_VOLATILE (parm
)
3621 || TREE_ADDRESSABLE (parm
)
3622 || (!is_gimple_reg_type (type
) && is_va_list_type (type
)))
3625 if (is_unused_scalar_param (parm
))
3631 if (POINTER_TYPE_P (type
))
3633 type
= TREE_TYPE (type
);
3635 if (TREE_CODE (type
) == FUNCTION_TYPE
3636 || TYPE_VOLATILE (type
)
3637 || (TREE_CODE (type
) == ARRAY_TYPE
3638 && TYPE_NONALIASED_COMPONENT (type
))
3639 || !is_gimple_reg (parm
)
3640 || is_va_list_type (type
)
3641 || ptr_parm_has_direct_uses (parm
))
3644 else if (!AGGREGATE_TYPE_P (type
))
3647 if (!COMPLETE_TYPE_P (type
)
3648 || !host_integerp (TYPE_SIZE (type
), 1)
3649 || tree_low_cst (TYPE_SIZE (type
), 1) == 0
3650 || (AGGREGATE_TYPE_P (type
)
3651 && type_internals_preclude_sra_p (type
, &msg
)))
3654 bitmap_set_bit (candidate_bitmap
, DECL_UID (parm
));
3655 slot
= candidates
.find_slot_with_hash (parm
, DECL_UID (parm
), INSERT
);
3659 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3661 fprintf (dump_file
, "Candidate (%d): ", DECL_UID (parm
));
3662 print_generic_expr (dump_file
, parm
, 0);
3663 fprintf (dump_file
, "\n");
3667 func_param_count
= count
;
3671 /* Callback of walk_aliased_vdefs, marks the access passed as DATA as
3675 mark_maybe_modified (ao_ref
*ao ATTRIBUTE_UNUSED
, tree vdef ATTRIBUTE_UNUSED
,
3678 struct access
*repr
= (struct access
*) data
;
3680 repr
->grp_maybe_modified
= 1;
3684 /* Analyze what representatives (in linked lists accessible from
3685 REPRESENTATIVES) can be modified by side effects of statements in the
3686 current function. */
3689 analyze_modified_params (vec
<access_p
> representatives
)
3693 for (i
= 0; i
< func_param_count
; i
++)
3695 struct access
*repr
;
3697 for (repr
= representatives
[i
];
3699 repr
= repr
->next_grp
)
3701 struct access
*access
;
3705 if (no_accesses_p (repr
))
3707 if (!POINTER_TYPE_P (TREE_TYPE (repr
->base
))
3708 || repr
->grp_maybe_modified
)
3711 ao_ref_init (&ar
, repr
->expr
);
3712 visited
= BITMAP_ALLOC (NULL
);
3713 for (access
= repr
; access
; access
= access
->next_sibling
)
3715 /* All accesses are read ones, otherwise grp_maybe_modified would
3716 be trivially set. */
3717 walk_aliased_vdefs (&ar
, gimple_vuse (access
->stmt
),
3718 mark_maybe_modified
, repr
, &visited
);
3719 if (repr
->grp_maybe_modified
)
3722 BITMAP_FREE (visited
);
3727 /* Propagate distances in bb_dereferences in the opposite direction than the
3728 control flow edges, in each step storing the maximum of the current value
3729 and the minimum of all successors. These steps are repeated until the table
3730 stabilizes. Note that BBs which might terminate the functions (according to
3731 final_bbs bitmap) never updated in this way. */
3734 propagate_dereference_distances (void)
3736 vec
<basic_block
> queue
;
3739 queue
.create (last_basic_block_for_function (cfun
));
3740 queue
.quick_push (ENTRY_BLOCK_PTR
);
3743 queue
.quick_push (bb
);
3747 while (!queue
.is_empty ())
3751 bool change
= false;
3757 if (bitmap_bit_p (final_bbs
, bb
->index
))
3760 for (i
= 0; i
< func_param_count
; i
++)
3762 int idx
= bb
->index
* func_param_count
+ i
;
3764 HOST_WIDE_INT inh
= 0;
3766 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3768 int succ_idx
= e
->dest
->index
* func_param_count
+ i
;
3770 if (e
->src
== EXIT_BLOCK_PTR
)
3776 inh
= bb_dereferences
[succ_idx
];
3778 else if (bb_dereferences
[succ_idx
] < inh
)
3779 inh
= bb_dereferences
[succ_idx
];
3782 if (!first
&& bb_dereferences
[idx
] < inh
)
3784 bb_dereferences
[idx
] = inh
;
3789 if (change
&& !bitmap_bit_p (final_bbs
, bb
->index
))
3790 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3795 e
->src
->aux
= e
->src
;
3796 queue
.quick_push (e
->src
);
3803 /* Dump a dereferences TABLE with heading STR to file F. */
3806 dump_dereferences_table (FILE *f
, const char *str
, HOST_WIDE_INT
*table
)
3810 fprintf (dump_file
, str
);
3811 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
3813 fprintf (f
, "%4i %i ", bb
->index
, bitmap_bit_p (final_bbs
, bb
->index
));
3814 if (bb
!= EXIT_BLOCK_PTR
)
3817 for (i
= 0; i
< func_param_count
; i
++)
3819 int idx
= bb
->index
* func_param_count
+ i
;
3820 fprintf (f
, " %4" HOST_WIDE_INT_PRINT
"d", table
[idx
]);
3825 fprintf (dump_file
, "\n");
3828 /* Determine what (parts of) parameters passed by reference that are not
3829 assigned to are not certainly dereferenced in this function and thus the
3830 dereferencing cannot be safely moved to the caller without potentially
3831 introducing a segfault. Mark such REPRESENTATIVES as
3832 grp_not_necessarilly_dereferenced.
3834 The dereferenced maximum "distance," i.e. the offset + size of the accessed
3835 part is calculated rather than simple booleans are calculated for each
3836 pointer parameter to handle cases when only a fraction of the whole
3837 aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for
3840 The maximum dereference distances for each pointer parameter and BB are
3841 already stored in bb_dereference. This routine simply propagates these
3842 values upwards by propagate_dereference_distances and then compares the
3843 distances of individual parameters in the ENTRY BB to the equivalent
3844 distances of each representative of a (fraction of a) parameter. */
3847 analyze_caller_dereference_legality (vec
<access_p
> representatives
)
3851 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3852 dump_dereferences_table (dump_file
,
3853 "Dereference table before propagation:\n",
3856 propagate_dereference_distances ();
3858 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3859 dump_dereferences_table (dump_file
,
3860 "Dereference table after propagation:\n",
3863 for (i
= 0; i
< func_param_count
; i
++)
3865 struct access
*repr
= representatives
[i
];
3866 int idx
= ENTRY_BLOCK_PTR
->index
* func_param_count
+ i
;
3868 if (!repr
|| no_accesses_p (repr
))
3873 if ((repr
->offset
+ repr
->size
) > bb_dereferences
[idx
])
3874 repr
->grp_not_necessarilly_dereferenced
= 1;
3875 repr
= repr
->next_grp
;
3881 /* Return the representative access for the parameter declaration PARM if it is
3882 a scalar passed by reference which is not written to and the pointer value
3883 is not used directly. Thus, if it is legal to dereference it in the caller
3884 and we can rule out modifications through aliases, such parameter should be
3885 turned into one passed by value. Return NULL otherwise. */
3887 static struct access
*
3888 unmodified_by_ref_scalar_representative (tree parm
)
3890 int i
, access_count
;
3891 struct access
*repr
;
3892 vec
<access_p
> *access_vec
;
3894 access_vec
= get_base_access_vector (parm
);
3895 gcc_assert (access_vec
);
3896 repr
= (*access_vec
)[0];
3899 repr
->group_representative
= repr
;
3901 access_count
= access_vec
->length ();
3902 for (i
= 1; i
< access_count
; i
++)
3904 struct access
*access
= (*access_vec
)[i
];
3907 access
->group_representative
= repr
;
3908 access
->next_sibling
= repr
->next_sibling
;
3909 repr
->next_sibling
= access
;
3913 repr
->grp_scalar_ptr
= 1;
3917 /* Return true iff this ACCESS precludes IPA-SRA of the parameter it is
3918 associated with. REQ_ALIGN is the minimum required alignment. */
3921 access_precludes_ipa_sra_p (struct access
*access
, unsigned int req_align
)
3923 unsigned int exp_align
;
3924 /* Avoid issues such as the second simple testcase in PR 42025. The problem
3925 is incompatible assign in a call statement (and possibly even in asm
3926 statements). This can be relaxed by using a new temporary but only for
3927 non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In
3928 intraprocedural SRA we deal with this by keeping the old aggregate around,
3929 something we cannot do in IPA-SRA.) */
3931 && (is_gimple_call (access
->stmt
)
3932 || gimple_code (access
->stmt
) == GIMPLE_ASM
))
3935 exp_align
= get_object_alignment (access
->expr
);
3936 if (exp_align
< req_align
)
3943 /* Sort collected accesses for parameter PARM, identify representatives for
3944 each accessed region and link them together. Return NULL if there are
3945 different but overlapping accesses, return the special ptr value meaning
3946 there are no accesses for this parameter if that is the case and return the
3947 first representative otherwise. Set *RO_GRP if there is a group of accesses
3948 with only read (i.e. no write) accesses. */
3950 static struct access
*
3951 splice_param_accesses (tree parm
, bool *ro_grp
)
3953 int i
, j
, access_count
, group_count
;
3954 int agg_size
, total_size
= 0;
3955 struct access
*access
, *res
, **prev_acc_ptr
= &res
;
3956 vec
<access_p
> *access_vec
;
3958 access_vec
= get_base_access_vector (parm
);
3960 return &no_accesses_representant
;
3961 access_count
= access_vec
->length ();
3963 access_vec
->qsort (compare_access_positions
);
3968 while (i
< access_count
)
3972 access
= (*access_vec
)[i
];
3973 modification
= access
->write
;
3974 if (access_precludes_ipa_sra_p (access
, TYPE_ALIGN (access
->type
)))
3976 a1_alias_type
= reference_alias_ptr_type (access
->expr
);
3978 /* Access is about to become group representative unless we find some
3979 nasty overlap which would preclude us from breaking this parameter
3983 while (j
< access_count
)
3985 struct access
*ac2
= (*access_vec
)[j
];
3986 if (ac2
->offset
!= access
->offset
)
3988 /* All or nothing law for parameters. */
3989 if (access
->offset
+ access
->size
> ac2
->offset
)
3994 else if (ac2
->size
!= access
->size
)
3997 if (access_precludes_ipa_sra_p (ac2
, TYPE_ALIGN (access
->type
))
3998 || (ac2
->type
!= access
->type
3999 && (TREE_ADDRESSABLE (ac2
->type
)
4000 || TREE_ADDRESSABLE (access
->type
)))
4001 || (reference_alias_ptr_type (ac2
->expr
) != a1_alias_type
))
4004 modification
|= ac2
->write
;
4005 ac2
->group_representative
= access
;
4006 ac2
->next_sibling
= access
->next_sibling
;
4007 access
->next_sibling
= ac2
;
4012 access
->grp_maybe_modified
= modification
;
4015 *prev_acc_ptr
= access
;
4016 prev_acc_ptr
= &access
->next_grp
;
4017 total_size
+= access
->size
;
4021 if (POINTER_TYPE_P (TREE_TYPE (parm
)))
4022 agg_size
= tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm
))), 1);
4024 agg_size
= tree_low_cst (TYPE_SIZE (TREE_TYPE (parm
)), 1);
4025 if (total_size
>= agg_size
)
4028 gcc_assert (group_count
> 0);
4032 /* Decide whether parameters with representative accesses given by REPR should
4033 be reduced into components. */
4036 decide_one_param_reduction (struct access
*repr
)
4038 int total_size
, cur_parm_size
, agg_size
, new_param_count
, parm_size_limit
;
4043 cur_parm_size
= tree_low_cst (TYPE_SIZE (TREE_TYPE (parm
)), 1);
4044 gcc_assert (cur_parm_size
> 0);
4046 if (POINTER_TYPE_P (TREE_TYPE (parm
)))
4049 agg_size
= tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm
))), 1);
4054 agg_size
= cur_parm_size
;
4060 fprintf (dump_file
, "Evaluating PARAM group sizes for ");
4061 print_generic_expr (dump_file
, parm
, 0);
4062 fprintf (dump_file
, " (UID: %u): \n", DECL_UID (parm
));
4063 for (acc
= repr
; acc
; acc
= acc
->next_grp
)
4064 dump_access (dump_file
, acc
, true);
4068 new_param_count
= 0;
4070 for (; repr
; repr
= repr
->next_grp
)
4072 gcc_assert (parm
== repr
->base
);
4074 /* Taking the address of a non-addressable field is verboten. */
4075 if (by_ref
&& repr
->non_addressable
)
4078 /* Do not decompose a non-BLKmode param in a way that would
4079 create BLKmode params. Especially for by-reference passing
4080 (thus, pointer-type param) this is hardly worthwhile. */
4081 if (DECL_MODE (parm
) != BLKmode
4082 && TYPE_MODE (repr
->type
) == BLKmode
)
4085 if (!by_ref
|| (!repr
->grp_maybe_modified
4086 && !repr
->grp_not_necessarilly_dereferenced
))
4087 total_size
+= repr
->size
;
4089 total_size
+= cur_parm_size
;
4094 gcc_assert (new_param_count
> 0);
4096 if (optimize_function_for_size_p (cfun
))
4097 parm_size_limit
= cur_parm_size
;
4099 parm_size_limit
= (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR
)
4102 if (total_size
< agg_size
4103 && total_size
<= parm_size_limit
)
4106 fprintf (dump_file
, " ....will be split into %i components\n",
4108 return new_param_count
;
4114 /* The order of the following enums is important, we need to do extra work for
4115 UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */
4116 enum ipa_splicing_result
{ NO_GOOD_ACCESS
, UNUSED_PARAMS
, BY_VAL_ACCESSES
,
4117 MODIF_BY_REF_ACCESSES
, UNMODIF_BY_REF_ACCESSES
};
4119 /* Identify representatives of all accesses to all candidate parameters for
4120 IPA-SRA. Return result based on what representatives have been found. */
4122 static enum ipa_splicing_result
4123 splice_all_param_accesses (vec
<access_p
> &representatives
)
4125 enum ipa_splicing_result result
= NO_GOOD_ACCESS
;
4127 struct access
*repr
;
4129 representatives
.create (func_param_count
);
4131 for (parm
= DECL_ARGUMENTS (current_function_decl
);
4133 parm
= DECL_CHAIN (parm
))
4135 if (is_unused_scalar_param (parm
))
4137 representatives
.quick_push (&no_accesses_representant
);
4138 if (result
== NO_GOOD_ACCESS
)
4139 result
= UNUSED_PARAMS
;
4141 else if (POINTER_TYPE_P (TREE_TYPE (parm
))
4142 && is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm
)))
4143 && bitmap_bit_p (candidate_bitmap
, DECL_UID (parm
)))
4145 repr
= unmodified_by_ref_scalar_representative (parm
);
4146 representatives
.quick_push (repr
);
4148 result
= UNMODIF_BY_REF_ACCESSES
;
4150 else if (bitmap_bit_p (candidate_bitmap
, DECL_UID (parm
)))
4152 bool ro_grp
= false;
4153 repr
= splice_param_accesses (parm
, &ro_grp
);
4154 representatives
.quick_push (repr
);
4156 if (repr
&& !no_accesses_p (repr
))
4158 if (POINTER_TYPE_P (TREE_TYPE (parm
)))
4161 result
= UNMODIF_BY_REF_ACCESSES
;
4162 else if (result
< MODIF_BY_REF_ACCESSES
)
4163 result
= MODIF_BY_REF_ACCESSES
;
4165 else if (result
< BY_VAL_ACCESSES
)
4166 result
= BY_VAL_ACCESSES
;
4168 else if (no_accesses_p (repr
) && (result
== NO_GOOD_ACCESS
))
4169 result
= UNUSED_PARAMS
;
4172 representatives
.quick_push (NULL
);
4175 if (result
== NO_GOOD_ACCESS
)
4177 representatives
.release ();
4178 return NO_GOOD_ACCESS
;
4184 /* Return the index of BASE in PARMS. Abort if it is not found. */
4187 get_param_index (tree base
, vec
<tree
> parms
)
4191 len
= parms
.length ();
4192 for (i
= 0; i
< len
; i
++)
4193 if (parms
[i
] == base
)
4198 /* Convert the decisions made at the representative level into compact
4199 parameter adjustments. REPRESENTATIVES are pointers to first
4200 representatives of each param accesses, ADJUSTMENTS_COUNT is the expected
4201 final number of adjustments. */
4203 static ipa_parm_adjustment_vec
4204 turn_representatives_into_adjustments (vec
<access_p
> representatives
,
4205 int adjustments_count
)
4208 ipa_parm_adjustment_vec adjustments
;
4212 gcc_assert (adjustments_count
> 0);
4213 parms
= ipa_get_vector_of_formal_parms (current_function_decl
);
4214 adjustments
.create (adjustments_count
);
4215 parm
= DECL_ARGUMENTS (current_function_decl
);
4216 for (i
= 0; i
< func_param_count
; i
++, parm
= DECL_CHAIN (parm
))
4218 struct access
*repr
= representatives
[i
];
4220 if (!repr
|| no_accesses_p (repr
))
4222 struct ipa_parm_adjustment adj
;
4224 memset (&adj
, 0, sizeof (adj
));
4225 adj
.base_index
= get_param_index (parm
, parms
);
4230 adj
.remove_param
= 1;
4231 adjustments
.quick_push (adj
);
4235 struct ipa_parm_adjustment adj
;
4236 int index
= get_param_index (parm
, parms
);
4238 for (; repr
; repr
= repr
->next_grp
)
4240 memset (&adj
, 0, sizeof (adj
));
4241 gcc_assert (repr
->base
== parm
);
4242 adj
.base_index
= index
;
4243 adj
.base
= repr
->base
;
4244 adj
.type
= repr
->type
;
4245 adj
.alias_ptr_type
= reference_alias_ptr_type (repr
->expr
);
4246 adj
.offset
= repr
->offset
;
4247 adj
.by_ref
= (POINTER_TYPE_P (TREE_TYPE (repr
->base
))
4248 && (repr
->grp_maybe_modified
4249 || repr
->grp_not_necessarilly_dereferenced
));
4250 adjustments
.quick_push (adj
);
4258 /* Analyze the collected accesses and produce a plan what to do with the
4259 parameters in the form of adjustments, NULL meaning nothing. */
4261 static ipa_parm_adjustment_vec
4262 analyze_all_param_acesses (void)
4264 enum ipa_splicing_result repr_state
;
4265 bool proceed
= false;
4266 int i
, adjustments_count
= 0;
4267 vec
<access_p
> representatives
;
4268 ipa_parm_adjustment_vec adjustments
;
4270 repr_state
= splice_all_param_accesses (representatives
);
4271 if (repr_state
== NO_GOOD_ACCESS
)
4272 return ipa_parm_adjustment_vec();
4274 /* If there are any parameters passed by reference which are not modified
4275 directly, we need to check whether they can be modified indirectly. */
4276 if (repr_state
== UNMODIF_BY_REF_ACCESSES
)
4278 analyze_caller_dereference_legality (representatives
);
4279 analyze_modified_params (representatives
);
4282 for (i
= 0; i
< func_param_count
; i
++)
4284 struct access
*repr
= representatives
[i
];
4286 if (repr
&& !no_accesses_p (repr
))
4288 if (repr
->grp_scalar_ptr
)
4290 adjustments_count
++;
4291 if (repr
->grp_not_necessarilly_dereferenced
4292 || repr
->grp_maybe_modified
)
4293 representatives
[i
] = NULL
;
4297 sra_stats
.scalar_by_ref_to_by_val
++;
4302 int new_components
= decide_one_param_reduction (repr
);
4304 if (new_components
== 0)
4306 representatives
[i
] = NULL
;
4307 adjustments_count
++;
4311 adjustments_count
+= new_components
;
4312 sra_stats
.aggregate_params_reduced
++;
4313 sra_stats
.param_reductions_created
+= new_components
;
4320 if (no_accesses_p (repr
))
4323 sra_stats
.deleted_unused_parameters
++;
4325 adjustments_count
++;
4329 if (!proceed
&& dump_file
)
4330 fprintf (dump_file
, "NOT proceeding to change params.\n");
4333 adjustments
= turn_representatives_into_adjustments (representatives
,
4336 adjustments
= ipa_parm_adjustment_vec();
4338 representatives
.release ();
4342 /* If a parameter replacement identified by ADJ does not yet exist in the form
4343 of declaration, create it and record it, otherwise return the previously
4347 get_replaced_param_substitute (struct ipa_parm_adjustment
*adj
)
4350 if (!adj
->new_ssa_base
)
4352 char *pretty_name
= make_fancy_name (adj
->base
);
4354 repl
= create_tmp_reg (TREE_TYPE (adj
->base
), "ISR");
4355 DECL_NAME (repl
) = get_identifier (pretty_name
);
4356 obstack_free (&name_obstack
, pretty_name
);
4358 adj
->new_ssa_base
= repl
;
4361 repl
= adj
->new_ssa_base
;
4365 /* Find the first adjustment for a particular parameter BASE in a vector of
4366 ADJUSTMENTS which is not a copy_param. Return NULL if there is no such
4369 static struct ipa_parm_adjustment
*
4370 get_adjustment_for_base (ipa_parm_adjustment_vec adjustments
, tree base
)
4374 len
= adjustments
.length ();
4375 for (i
= 0; i
< len
; i
++)
4377 struct ipa_parm_adjustment
*adj
;
4379 adj
= &adjustments
[i
];
4380 if (!adj
->copy_param
&& adj
->base
== base
)
4387 /* If the statement STMT defines an SSA_NAME of a parameter which is to be
4388 removed because its value is not used, replace the SSA_NAME with a one
4389 relating to a created VAR_DECL together all of its uses and return true.
4390 ADJUSTMENTS is a pointer to an adjustments vector. */
4393 replace_removed_params_ssa_names (gimple stmt
,
4394 ipa_parm_adjustment_vec adjustments
)
4396 struct ipa_parm_adjustment
*adj
;
4397 tree lhs
, decl
, repl
, name
;
4399 if (gimple_code (stmt
) == GIMPLE_PHI
)
4400 lhs
= gimple_phi_result (stmt
);
4401 else if (is_gimple_assign (stmt
))
4402 lhs
= gimple_assign_lhs (stmt
);
4403 else if (is_gimple_call (stmt
))
4404 lhs
= gimple_call_lhs (stmt
);
4408 if (TREE_CODE (lhs
) != SSA_NAME
)
4411 decl
= SSA_NAME_VAR (lhs
);
4412 if (decl
== NULL_TREE
4413 || TREE_CODE (decl
) != PARM_DECL
)
4416 adj
= get_adjustment_for_base (adjustments
, decl
);
4420 repl
= get_replaced_param_substitute (adj
);
4421 name
= make_ssa_name (repl
, stmt
);
4425 fprintf (dump_file
, "replacing an SSA name of a removed param ");
4426 print_generic_expr (dump_file
, lhs
, 0);
4427 fprintf (dump_file
, " with ");
4428 print_generic_expr (dump_file
, name
, 0);
4429 fprintf (dump_file
, "\n");
4432 if (is_gimple_assign (stmt
))
4433 gimple_assign_set_lhs (stmt
, name
);
4434 else if (is_gimple_call (stmt
))
4435 gimple_call_set_lhs (stmt
, name
);
4437 gimple_phi_set_result (stmt
, name
);
4439 replace_uses_by (lhs
, name
);
4440 release_ssa_name (lhs
);
4444 /* If the expression *EXPR should be replaced by a reduction of a parameter, do
4445 so. ADJUSTMENTS is a pointer to a vector of adjustments. CONVERT
4446 specifies whether the function should care about type incompatibility the
4447 current and new expressions. If it is false, the function will leave
4448 incompatibility issues to the caller. Return true iff the expression
4452 sra_ipa_modify_expr (tree
*expr
, bool convert
,
4453 ipa_parm_adjustment_vec adjustments
)
4456 struct ipa_parm_adjustment
*adj
, *cand
= NULL
;
4457 HOST_WIDE_INT offset
, size
, max_size
;
4460 len
= adjustments
.length ();
4462 if (TREE_CODE (*expr
) == BIT_FIELD_REF
4463 || TREE_CODE (*expr
) == IMAGPART_EXPR
4464 || TREE_CODE (*expr
) == REALPART_EXPR
)
4466 expr
= &TREE_OPERAND (*expr
, 0);
4470 base
= get_ref_base_and_extent (*expr
, &offset
, &size
, &max_size
);
4471 if (!base
|| size
== -1 || max_size
== -1)
4474 if (TREE_CODE (base
) == MEM_REF
)
4476 offset
+= mem_ref_offset (base
).low
* BITS_PER_UNIT
;
4477 base
= TREE_OPERAND (base
, 0);
4480 base
= get_ssa_base_param (base
);
4481 if (!base
|| TREE_CODE (base
) != PARM_DECL
)
4484 for (i
= 0; i
< len
; i
++)
4486 adj
= &adjustments
[i
];
4488 if (adj
->base
== base
4489 && (adj
->offset
== offset
|| adj
->remove_param
))
4495 if (!cand
|| cand
->copy_param
|| cand
->remove_param
)
4499 src
= build_simple_mem_ref (cand
->reduction
);
4501 src
= cand
->reduction
;
4503 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4505 fprintf (dump_file
, "About to replace expr ");
4506 print_generic_expr (dump_file
, *expr
, 0);
4507 fprintf (dump_file
, " with ");
4508 print_generic_expr (dump_file
, src
, 0);
4509 fprintf (dump_file
, "\n");
4512 if (convert
&& !useless_type_conversion_p (TREE_TYPE (*expr
), cand
->type
))
4514 tree vce
= build1 (VIEW_CONVERT_EXPR
, TREE_TYPE (*expr
), src
);
4522 /* If the statement pointed to by STMT_PTR contains any expressions that need
4523 to replaced with a different one as noted by ADJUSTMENTS, do so. Handle any
4524 potential type incompatibilities (GSI is used to accommodate conversion
4525 statements and must point to the statement). Return true iff the statement
4529 sra_ipa_modify_assign (gimple
*stmt_ptr
, gimple_stmt_iterator
*gsi
,
4530 ipa_parm_adjustment_vec adjustments
)
4532 gimple stmt
= *stmt_ptr
;
4533 tree
*lhs_p
, *rhs_p
;
4536 if (!gimple_assign_single_p (stmt
))
4539 rhs_p
= gimple_assign_rhs1_ptr (stmt
);
4540 lhs_p
= gimple_assign_lhs_ptr (stmt
);
4542 any
= sra_ipa_modify_expr (rhs_p
, false, adjustments
);
4543 any
|= sra_ipa_modify_expr (lhs_p
, false, adjustments
);
4546 tree new_rhs
= NULL_TREE
;
4548 if (!useless_type_conversion_p (TREE_TYPE (*lhs_p
), TREE_TYPE (*rhs_p
)))
4550 if (TREE_CODE (*rhs_p
) == CONSTRUCTOR
)
4552 /* V_C_Es of constructors can cause trouble (PR 42714). */
4553 if (is_gimple_reg_type (TREE_TYPE (*lhs_p
)))
4554 *rhs_p
= build_zero_cst (TREE_TYPE (*lhs_p
));
4556 *rhs_p
= build_constructor (TREE_TYPE (*lhs_p
),
4560 new_rhs
= fold_build1_loc (gimple_location (stmt
),
4561 VIEW_CONVERT_EXPR
, TREE_TYPE (*lhs_p
),
4564 else if (REFERENCE_CLASS_P (*rhs_p
)
4565 && is_gimple_reg_type (TREE_TYPE (*lhs_p
))
4566 && !is_gimple_reg (*lhs_p
))
4567 /* This can happen when an assignment in between two single field
4568 structures is turned into an assignment in between two pointers to
4569 scalars (PR 42237). */
4574 tree tmp
= force_gimple_operand_gsi (gsi
, new_rhs
, true, NULL_TREE
,
4575 true, GSI_SAME_STMT
);
4577 gimple_assign_set_rhs_from_tree (gsi
, tmp
);
4586 /* Traverse the function body and all modifications as described in
4587 ADJUSTMENTS. Return true iff the CFG has been changed. */
4590 ipa_sra_modify_function_body (ipa_parm_adjustment_vec adjustments
)
4592 bool cfg_changed
= false;
4597 gimple_stmt_iterator gsi
;
4599 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4600 replace_removed_params_ssa_names (gsi_stmt (gsi
), adjustments
);
4602 gsi
= gsi_start_bb (bb
);
4603 while (!gsi_end_p (gsi
))
4605 gimple stmt
= gsi_stmt (gsi
);
4606 bool modified
= false;
4610 switch (gimple_code (stmt
))
4613 t
= gimple_return_retval_ptr (stmt
);
4614 if (*t
!= NULL_TREE
)
4615 modified
|= sra_ipa_modify_expr (t
, true, adjustments
);
4619 modified
|= sra_ipa_modify_assign (&stmt
, &gsi
, adjustments
);
4620 modified
|= replace_removed_params_ssa_names (stmt
, adjustments
);
4624 /* Operands must be processed before the lhs. */
4625 for (i
= 0; i
< gimple_call_num_args (stmt
); i
++)
4627 t
= gimple_call_arg_ptr (stmt
, i
);
4628 modified
|= sra_ipa_modify_expr (t
, true, adjustments
);
4631 if (gimple_call_lhs (stmt
))
4633 t
= gimple_call_lhs_ptr (stmt
);
4634 modified
|= sra_ipa_modify_expr (t
, false, adjustments
);
4635 modified
|= replace_removed_params_ssa_names (stmt
,
4641 for (i
= 0; i
< gimple_asm_ninputs (stmt
); i
++)
4643 t
= &TREE_VALUE (gimple_asm_input_op (stmt
, i
));
4644 modified
|= sra_ipa_modify_expr (t
, true, adjustments
);
4646 for (i
= 0; i
< gimple_asm_noutputs (stmt
); i
++)
4648 t
= &TREE_VALUE (gimple_asm_output_op (stmt
, i
));
4649 modified
|= sra_ipa_modify_expr (t
, false, adjustments
);
4660 if (maybe_clean_eh_stmt (stmt
)
4661 && gimple_purge_dead_eh_edges (gimple_bb (stmt
)))
4671 /* Call gimple_debug_bind_reset_value on all debug statements describing
4672 gimple register parameters that are being removed or replaced. */
4675 sra_ipa_reset_debug_stmts (ipa_parm_adjustment_vec adjustments
)
4678 gimple_stmt_iterator
*gsip
= NULL
, gsi
;
4680 if (MAY_HAVE_DEBUG_STMTS
&& single_succ_p (ENTRY_BLOCK_PTR
))
4682 gsi
= gsi_after_labels (single_succ (ENTRY_BLOCK_PTR
));
4685 len
= adjustments
.length ();
4686 for (i
= 0; i
< len
; i
++)
4688 struct ipa_parm_adjustment
*adj
;
4689 imm_use_iterator ui
;
4690 gimple stmt
, def_temp
;
4691 tree name
, vexpr
, copy
= NULL_TREE
;
4692 use_operand_p use_p
;
4694 adj
= &adjustments
[i
];
4695 if (adj
->copy_param
|| !is_gimple_reg (adj
->base
))
4697 name
= ssa_default_def (cfun
, adj
->base
);
4700 FOR_EACH_IMM_USE_STMT (stmt
, ui
, name
)
4702 if (gimple_clobber_p (stmt
))
4704 gimple_stmt_iterator cgsi
= gsi_for_stmt (stmt
);
4705 unlink_stmt_vdef (stmt
);
4706 gsi_remove (&cgsi
, true);
4707 release_defs (stmt
);
4710 /* All other users must have been removed by
4711 ipa_sra_modify_function_body. */
4712 gcc_assert (is_gimple_debug (stmt
));
4713 if (vexpr
== NULL
&& gsip
!= NULL
)
4715 gcc_assert (TREE_CODE (adj
->base
) == PARM_DECL
);
4716 vexpr
= make_node (DEBUG_EXPR_DECL
);
4717 def_temp
= gimple_build_debug_source_bind (vexpr
, adj
->base
,
4719 DECL_ARTIFICIAL (vexpr
) = 1;
4720 TREE_TYPE (vexpr
) = TREE_TYPE (name
);
4721 DECL_MODE (vexpr
) = DECL_MODE (adj
->base
);
4722 gsi_insert_before (gsip
, def_temp
, GSI_SAME_STMT
);
4726 FOR_EACH_IMM_USE_ON_STMT (use_p
, ui
)
4727 SET_USE (use_p
, vexpr
);
4730 gimple_debug_bind_reset_value (stmt
);
4733 /* Create a VAR_DECL for debug info purposes. */
4734 if (!DECL_IGNORED_P (adj
->base
))
4736 copy
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
4737 VAR_DECL
, DECL_NAME (adj
->base
),
4738 TREE_TYPE (adj
->base
));
4739 if (DECL_PT_UID_SET_P (adj
->base
))
4740 SET_DECL_PT_UID (copy
, DECL_PT_UID (adj
->base
));
4741 TREE_ADDRESSABLE (copy
) = TREE_ADDRESSABLE (adj
->base
);
4742 TREE_READONLY (copy
) = TREE_READONLY (adj
->base
);
4743 TREE_THIS_VOLATILE (copy
) = TREE_THIS_VOLATILE (adj
->base
);
4744 DECL_GIMPLE_REG_P (copy
) = DECL_GIMPLE_REG_P (adj
->base
);
4745 DECL_ARTIFICIAL (copy
) = DECL_ARTIFICIAL (adj
->base
);
4746 DECL_IGNORED_P (copy
) = DECL_IGNORED_P (adj
->base
);
4747 DECL_ABSTRACT_ORIGIN (copy
) = DECL_ORIGIN (adj
->base
);
4748 DECL_SEEN_IN_BIND_EXPR_P (copy
) = 1;
4749 SET_DECL_RTL (copy
, 0);
4750 TREE_USED (copy
) = 1;
4751 DECL_CONTEXT (copy
) = current_function_decl
;
4752 add_local_decl (cfun
, copy
);
4754 BLOCK_VARS (DECL_INITIAL (current_function_decl
));
4755 BLOCK_VARS (DECL_INITIAL (current_function_decl
)) = copy
;
4757 if (gsip
!= NULL
&& copy
&& target_for_debug_bind (adj
->base
))
4759 gcc_assert (TREE_CODE (adj
->base
) == PARM_DECL
);
4761 def_temp
= gimple_build_debug_bind (copy
, vexpr
, NULL
);
4763 def_temp
= gimple_build_debug_source_bind (copy
, adj
->base
,
4765 gsi_insert_before (gsip
, def_temp
, GSI_SAME_STMT
);
4770 /* Return false iff all callers have at least as many actual arguments as there
4771 are formal parameters in the current function. */
4774 not_all_callers_have_enough_arguments_p (struct cgraph_node
*node
,
4775 void *data ATTRIBUTE_UNUSED
)
4777 struct cgraph_edge
*cs
;
4778 for (cs
= node
->callers
; cs
; cs
= cs
->next_caller
)
4779 if (!callsite_has_enough_arguments_p (cs
->call_stmt
))
4785 /* Convert all callers of NODE. */
4788 convert_callers_for_node (struct cgraph_node
*node
,
4791 ipa_parm_adjustment_vec
*adjustments
= (ipa_parm_adjustment_vec
*) data
;
4792 bitmap recomputed_callers
= BITMAP_ALLOC (NULL
);
4793 struct cgraph_edge
*cs
;
4795 for (cs
= node
->callers
; cs
; cs
= cs
->next_caller
)
4797 push_cfun (DECL_STRUCT_FUNCTION (cs
->caller
->symbol
.decl
));
4800 fprintf (dump_file
, "Adjusting call (%i -> %i) %s -> %s\n",
4801 cs
->caller
->uid
, cs
->callee
->uid
,
4802 xstrdup (cgraph_node_name (cs
->caller
)),
4803 xstrdup (cgraph_node_name (cs
->callee
)));
4805 ipa_modify_call_arguments (cs
, cs
->call_stmt
, *adjustments
);
4810 for (cs
= node
->callers
; cs
; cs
= cs
->next_caller
)
4811 if (bitmap_set_bit (recomputed_callers
, cs
->caller
->uid
)
4812 && gimple_in_ssa_p (DECL_STRUCT_FUNCTION (cs
->caller
->symbol
.decl
)))
4813 compute_inline_parameters (cs
->caller
, true);
4814 BITMAP_FREE (recomputed_callers
);
4819 /* Convert all callers of NODE to pass parameters as given in ADJUSTMENTS. */
4822 convert_callers (struct cgraph_node
*node
, tree old_decl
,
4823 ipa_parm_adjustment_vec adjustments
)
4825 basic_block this_block
;
4827 cgraph_for_node_and_aliases (node
, convert_callers_for_node
,
4828 &adjustments
, false);
4830 if (!encountered_recursive_call
)
4833 FOR_EACH_BB (this_block
)
4835 gimple_stmt_iterator gsi
;
4837 for (gsi
= gsi_start_bb (this_block
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4839 gimple stmt
= gsi_stmt (gsi
);
4841 if (gimple_code (stmt
) != GIMPLE_CALL
)
4843 call_fndecl
= gimple_call_fndecl (stmt
);
4844 if (call_fndecl
== old_decl
)
4847 fprintf (dump_file
, "Adjusting recursive call");
4848 gimple_call_set_fndecl (stmt
, node
->symbol
.decl
);
4849 ipa_modify_call_arguments (NULL
, stmt
, adjustments
);
4857 /* Perform all the modification required in IPA-SRA for NODE to have parameters
4858 as given in ADJUSTMENTS. Return true iff the CFG has been changed. */
4861 modify_function (struct cgraph_node
*node
, ipa_parm_adjustment_vec adjustments
)
4863 struct cgraph_node
*new_node
;
4865 vec
<cgraph_edge_p
> redirect_callers
= collect_callers_of_node (node
);
4867 rebuild_cgraph_edges ();
4868 free_dominance_info (CDI_DOMINATORS
);
4871 new_node
= cgraph_function_versioning (node
, redirect_callers
,
4873 NULL
, false, NULL
, NULL
, "isra");
4874 redirect_callers
.release ();
4876 push_cfun (DECL_STRUCT_FUNCTION (new_node
->symbol
.decl
));
4877 ipa_modify_formal_parameters (current_function_decl
, adjustments
, "ISRA");
4878 cfg_changed
= ipa_sra_modify_function_body (adjustments
);
4879 sra_ipa_reset_debug_stmts (adjustments
);
4880 convert_callers (new_node
, node
->symbol
.decl
, adjustments
);
4881 cgraph_make_node_local (new_node
);
4885 /* Return false the function is apparently unsuitable for IPA-SRA based on it's
4886 attributes, return true otherwise. NODE is the cgraph node of the current
4890 ipa_sra_preliminary_function_checks (struct cgraph_node
*node
)
4892 if (!cgraph_node_can_be_local_p (node
))
4895 fprintf (dump_file
, "Function not local to this compilation unit.\n");
4899 if (!node
->local
.can_change_signature
)
4902 fprintf (dump_file
, "Function can not change signature.\n");
4906 if (!tree_versionable_function_p (node
->symbol
.decl
))
4909 fprintf (dump_file
, "Function is not versionable.\n");
4913 if (DECL_VIRTUAL_P (current_function_decl
))
4916 fprintf (dump_file
, "Function is a virtual method.\n");
4920 if ((DECL_COMDAT (node
->symbol
.decl
) || DECL_EXTERNAL (node
->symbol
.decl
))
4921 && inline_summary(node
)->size
>= MAX_INLINE_INSNS_AUTO
)
4924 fprintf (dump_file
, "Function too big to be made truly local.\n");
4932 "Function has no callers in this compilation unit.\n");
4939 fprintf (dump_file
, "Function uses stdarg. \n");
4943 if (TYPE_ATTRIBUTES (TREE_TYPE (node
->symbol
.decl
)))
4949 /* Perform early interprocedural SRA. */
4952 ipa_early_sra (void)
4954 struct cgraph_node
*node
= cgraph_get_node (current_function_decl
);
4955 ipa_parm_adjustment_vec adjustments
;
4958 if (!ipa_sra_preliminary_function_checks (node
))
4962 sra_mode
= SRA_MODE_EARLY_IPA
;
4964 if (!find_param_candidates ())
4967 fprintf (dump_file
, "Function has no IPA-SRA candidates.\n");
4971 if (cgraph_for_node_and_aliases (node
, not_all_callers_have_enough_arguments_p
,
4975 fprintf (dump_file
, "There are callers with insufficient number of "
4980 bb_dereferences
= XCNEWVEC (HOST_WIDE_INT
,
4982 * last_basic_block_for_function (cfun
));
4983 final_bbs
= BITMAP_ALLOC (NULL
);
4986 if (encountered_apply_args
)
4989 fprintf (dump_file
, "Function calls __builtin_apply_args().\n");
4993 if (encountered_unchangable_recursive_call
)
4996 fprintf (dump_file
, "Function calls itself with insufficient "
4997 "number of arguments.\n");
5001 adjustments
= analyze_all_param_acesses ();
5002 if (!adjustments
.exists ())
5005 ipa_dump_param_adjustments (dump_file
, adjustments
, current_function_decl
);
5007 if (modify_function (node
, adjustments
))
5008 ret
= TODO_update_ssa
| TODO_cleanup_cfg
;
5010 ret
= TODO_update_ssa
;
5011 adjustments
.release ();
5013 statistics_counter_event (cfun
, "Unused parameters deleted",
5014 sra_stats
.deleted_unused_parameters
);
5015 statistics_counter_event (cfun
, "Scalar parameters converted to by-value",
5016 sra_stats
.scalar_by_ref_to_by_val
);
5017 statistics_counter_event (cfun
, "Aggregate parameters broken up",
5018 sra_stats
.aggregate_params_reduced
);
5019 statistics_counter_event (cfun
, "Aggregate parameter components created",
5020 sra_stats
.param_reductions_created
);
5023 BITMAP_FREE (final_bbs
);
5024 free (bb_dereferences
);
5026 sra_deinitialize ();
5030 /* Return if early ipa sra shall be performed. */
5032 ipa_early_sra_gate (void)
5034 return flag_ipa_sra
&& dbg_cnt (eipa_sra
);
5037 struct gimple_opt_pass pass_early_ipa_sra
=
5041 "eipa_sra", /* name */
5042 OPTGROUP_NONE
, /* optinfo_flags */
5043 ipa_early_sra_gate
, /* gate */
5044 ipa_early_sra
, /* execute */
5047 0, /* static_pass_number */
5048 TV_IPA_SRA
, /* tv_id */
5049 0, /* properties_required */
5050 0, /* properties_provided */
5051 0, /* properties_destroyed */
5052 0, /* todo_flags_start */
5053 TODO_dump_symtab
/* todo_flags_finish */