Daily bump.
[official-gcc.git] / gcc / sched-rgn.c
blob6eb00e93adc1fb94c6f5805aa2d11c9806afad61
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2013 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass implements list scheduling within basic blocks. It is
23 run twice: (1) after flow analysis, but before register allocation,
24 and (2) after register allocation.
26 The first run performs interblock scheduling, moving insns between
27 different blocks in the same "region", and the second runs only
28 basic block scheduling.
30 Interblock motions performed are useful motions and speculative
31 motions, including speculative loads. Motions requiring code
32 duplication are not supported. The identification of motion type
33 and the check for validity of speculative motions requires
34 construction and analysis of the function's control flow graph.
36 The main entry point for this pass is schedule_insns(), called for
37 each function. The work of the scheduler is organized in three
38 levels: (1) function level: insns are subject to splitting,
39 control-flow-graph is constructed, regions are computed (after
40 reload, each region is of one block), (2) region level: control
41 flow graph attributes required for interblock scheduling are
42 computed (dominators, reachability, etc.), data dependences and
43 priorities are computed, and (3) block level: insns in the block
44 are actually scheduled. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "diagnostic-core.h"
51 #include "rtl.h"
52 #include "tm_p.h"
53 #include "hard-reg-set.h"
54 #include "regs.h"
55 #include "function.h"
56 #include "flags.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
59 #include "except.h"
60 #include "recog.h"
61 #include "params.h"
62 #include "sched-int.h"
63 #include "sel-sched.h"
64 #include "target.h"
65 #include "tree-pass.h"
66 #include "dbgcnt.h"
68 #ifdef INSN_SCHEDULING
70 /* Some accessor macros for h_i_d members only used within this file. */
71 #define FED_BY_SPEC_LOAD(INSN) (HID (INSN)->fed_by_spec_load)
72 #define IS_LOAD_INSN(INSN) (HID (insn)->is_load_insn)
74 /* nr_inter/spec counts interblock/speculative motion for the function. */
75 static int nr_inter, nr_spec;
77 static int is_cfg_nonregular (void);
79 /* Number of regions in the procedure. */
80 int nr_regions = 0;
82 /* Table of region descriptions. */
83 region *rgn_table = NULL;
85 /* Array of lists of regions' blocks. */
86 int *rgn_bb_table = NULL;
88 /* Topological order of blocks in the region (if b2 is reachable from
89 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
90 always referred to by either block or b, while its topological
91 order name (in the region) is referred to by bb. */
92 int *block_to_bb = NULL;
94 /* The number of the region containing a block. */
95 int *containing_rgn = NULL;
97 /* ebb_head [i] - is index in rgn_bb_table of the head basic block of i'th ebb.
98 Currently we can get a ebb only through splitting of currently
99 scheduling block, therefore, we don't need ebb_head array for every region,
100 hence, its sufficient to hold it for current one only. */
101 int *ebb_head = NULL;
103 /* The minimum probability of reaching a source block so that it will be
104 considered for speculative scheduling. */
105 static int min_spec_prob;
107 static void find_single_block_region (bool);
108 static void find_rgns (void);
109 static bool too_large (int, int *, int *);
111 /* Blocks of the current region being scheduled. */
112 int current_nr_blocks;
113 int current_blocks;
115 /* A speculative motion requires checking live information on the path
116 from 'source' to 'target'. The split blocks are those to be checked.
117 After a speculative motion, live information should be modified in
118 the 'update' blocks.
120 Lists of split and update blocks for each candidate of the current
121 target are in array bblst_table. */
122 static basic_block *bblst_table;
123 static int bblst_size, bblst_last;
125 /* Arrays that hold the DFA state at the end of a basic block, to re-use
126 as the initial state at the start of successor blocks. The BB_STATE
127 array holds the actual DFA state, and BB_STATE_ARRAY[I] is a pointer
128 into BB_STATE for basic block I. FIXME: This should be a vec. */
129 static char *bb_state_array = NULL;
130 static state_t *bb_state = NULL;
132 /* Target info declarations.
134 The block currently being scheduled is referred to as the "target" block,
135 while other blocks in the region from which insns can be moved to the
136 target are called "source" blocks. The candidate structure holds info
137 about such sources: are they valid? Speculative? Etc. */
138 typedef struct
140 basic_block *first_member;
141 int nr_members;
143 bblst;
145 typedef struct
147 char is_valid;
148 char is_speculative;
149 int src_prob;
150 bblst split_bbs;
151 bblst update_bbs;
153 candidate;
155 static candidate *candidate_table;
156 #define IS_VALID(src) (candidate_table[src].is_valid)
157 #define IS_SPECULATIVE(src) (candidate_table[src].is_speculative)
158 #define IS_SPECULATIVE_INSN(INSN) \
159 (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
160 #define SRC_PROB(src) ( candidate_table[src].src_prob )
162 /* The bb being currently scheduled. */
163 int target_bb;
165 /* List of edges. */
166 typedef struct
168 edge *first_member;
169 int nr_members;
171 edgelst;
173 static edge *edgelst_table;
174 static int edgelst_last;
176 static void extract_edgelst (sbitmap, edgelst *);
178 /* Target info functions. */
179 static void split_edges (int, int, edgelst *);
180 static void compute_trg_info (int);
181 void debug_candidate (int);
182 void debug_candidates (int);
184 /* Dominators array: dom[i] contains the sbitmap of dominators of
185 bb i in the region. */
186 static sbitmap *dom;
188 /* bb 0 is the only region entry. */
189 #define IS_RGN_ENTRY(bb) (!bb)
191 /* Is bb_src dominated by bb_trg. */
192 #define IS_DOMINATED(bb_src, bb_trg) \
193 ( bitmap_bit_p (dom[bb_src], bb_trg) )
195 /* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
196 the probability of bb i relative to the region entry. */
197 static int *prob;
199 /* Bit-set of edges, where bit i stands for edge i. */
200 typedef sbitmap edgeset;
202 /* Number of edges in the region. */
203 static int rgn_nr_edges;
205 /* Array of size rgn_nr_edges. */
206 static edge *rgn_edges;
208 /* Mapping from each edge in the graph to its number in the rgn. */
209 #define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
210 #define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
212 /* The split edges of a source bb is different for each target
213 bb. In order to compute this efficiently, the 'potential-split edges'
214 are computed for each bb prior to scheduling a region. This is actually
215 the split edges of each bb relative to the region entry.
217 pot_split[bb] is the set of potential split edges of bb. */
218 static edgeset *pot_split;
220 /* For every bb, a set of its ancestor edges. */
221 static edgeset *ancestor_edges;
223 #define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
225 /* Speculative scheduling functions. */
226 static int check_live_1 (int, rtx);
227 static void update_live_1 (int, rtx);
228 static int is_pfree (rtx, int, int);
229 static int find_conditional_protection (rtx, int);
230 static int is_conditionally_protected (rtx, int, int);
231 static int is_prisky (rtx, int, int);
232 static int is_exception_free (rtx, int, int);
234 static bool sets_likely_spilled (rtx);
235 static void sets_likely_spilled_1 (rtx, const_rtx, void *);
236 static void add_branch_dependences (rtx, rtx);
237 static void compute_block_dependences (int);
239 static void schedule_region (int);
240 static void concat_insn_mem_list (rtx, rtx, rtx *, rtx *);
241 static void propagate_deps (int, struct deps_desc *);
242 static void free_pending_lists (void);
244 /* Functions for construction of the control flow graph. */
246 /* Return 1 if control flow graph should not be constructed, 0 otherwise.
248 We decide not to build the control flow graph if there is possibly more
249 than one entry to the function, if computed branches exist, if we
250 have nonlocal gotos, or if we have an unreachable loop. */
252 static int
253 is_cfg_nonregular (void)
255 basic_block b;
256 rtx insn;
258 /* If we have a label that could be the target of a nonlocal goto, then
259 the cfg is not well structured. */
260 if (nonlocal_goto_handler_labels)
261 return 1;
263 /* If we have any forced labels, then the cfg is not well structured. */
264 if (forced_labels)
265 return 1;
267 /* If we have exception handlers, then we consider the cfg not well
268 structured. ?!? We should be able to handle this now that we
269 compute an accurate cfg for EH. */
270 if (current_function_has_exception_handlers ())
271 return 1;
273 /* If we have insns which refer to labels as non-jumped-to operands,
274 then we consider the cfg not well structured. */
275 FOR_EACH_BB (b)
276 FOR_BB_INSNS (b, insn)
278 rtx note, next, set, dest;
280 /* If this function has a computed jump, then we consider the cfg
281 not well structured. */
282 if (JUMP_P (insn) && computed_jump_p (insn))
283 return 1;
285 if (!INSN_P (insn))
286 continue;
288 note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX);
289 if (note == NULL_RTX)
290 continue;
292 /* For that label not to be seen as a referred-to label, this
293 must be a single-set which is feeding a jump *only*. This
294 could be a conditional jump with the label split off for
295 machine-specific reasons or a casesi/tablejump. */
296 next = next_nonnote_insn (insn);
297 if (next == NULL_RTX
298 || !JUMP_P (next)
299 || (JUMP_LABEL (next) != XEXP (note, 0)
300 && find_reg_note (next, REG_LABEL_TARGET,
301 XEXP (note, 0)) == NULL_RTX)
302 || BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (next))
303 return 1;
305 set = single_set (insn);
306 if (set == NULL_RTX)
307 return 1;
309 dest = SET_DEST (set);
310 if (!REG_P (dest) || !dead_or_set_p (next, dest))
311 return 1;
314 /* Unreachable loops with more than one basic block are detected
315 during the DFS traversal in find_rgns.
317 Unreachable loops with a single block are detected here. This
318 test is redundant with the one in find_rgns, but it's much
319 cheaper to go ahead and catch the trivial case here. */
320 FOR_EACH_BB (b)
322 if (EDGE_COUNT (b->preds) == 0
323 || (single_pred_p (b)
324 && single_pred (b) == b))
325 return 1;
328 /* All the tests passed. Consider the cfg well structured. */
329 return 0;
332 /* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
334 static void
335 extract_edgelst (sbitmap set, edgelst *el)
337 unsigned int i = 0;
338 sbitmap_iterator sbi;
340 /* edgelst table space is reused in each call to extract_edgelst. */
341 edgelst_last = 0;
343 el->first_member = &edgelst_table[edgelst_last];
344 el->nr_members = 0;
346 /* Iterate over each word in the bitset. */
347 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, sbi)
349 edgelst_table[edgelst_last++] = rgn_edges[i];
350 el->nr_members++;
354 /* Functions for the construction of regions. */
356 /* Print the regions, for debugging purposes. Callable from debugger. */
358 DEBUG_FUNCTION void
359 debug_regions (void)
361 int rgn, bb;
363 fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
364 for (rgn = 0; rgn < nr_regions; rgn++)
366 fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
367 rgn_table[rgn].rgn_nr_blocks);
368 fprintf (sched_dump, ";;\tbb/block: ");
370 /* We don't have ebb_head initialized yet, so we can't use
371 BB_TO_BLOCK (). */
372 current_blocks = RGN_BLOCKS (rgn);
374 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
375 fprintf (sched_dump, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
377 fprintf (sched_dump, "\n\n");
381 /* Print the region's basic blocks. */
383 DEBUG_FUNCTION void
384 debug_region (int rgn)
386 int bb;
388 fprintf (stderr, "\n;; ------------ REGION %d ----------\n\n", rgn);
389 fprintf (stderr, ";;\trgn %d nr_blocks %d:\n", rgn,
390 rgn_table[rgn].rgn_nr_blocks);
391 fprintf (stderr, ";;\tbb/block: ");
393 /* We don't have ebb_head initialized yet, so we can't use
394 BB_TO_BLOCK (). */
395 current_blocks = RGN_BLOCKS (rgn);
397 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
398 fprintf (stderr, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
400 fprintf (stderr, "\n\n");
402 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
404 dump_bb (stderr, BASIC_BLOCK (rgn_bb_table[current_blocks + bb]),
405 0, TDF_SLIM | TDF_BLOCKS);
406 fprintf (stderr, "\n");
409 fprintf (stderr, "\n");
413 /* True when a bb with index BB_INDEX contained in region RGN. */
414 static bool
415 bb_in_region_p (int bb_index, int rgn)
417 int i;
419 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
420 if (rgn_bb_table[current_blocks + i] == bb_index)
421 return true;
423 return false;
426 /* Dump region RGN to file F using dot syntax. */
427 void
428 dump_region_dot (FILE *f, int rgn)
430 int i;
432 fprintf (f, "digraph Region_%d {\n", rgn);
434 /* We don't have ebb_head initialized yet, so we can't use
435 BB_TO_BLOCK (). */
436 current_blocks = RGN_BLOCKS (rgn);
438 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
440 edge e;
441 edge_iterator ei;
442 int src_bb_num = rgn_bb_table[current_blocks + i];
443 basic_block bb = BASIC_BLOCK (src_bb_num);
445 FOR_EACH_EDGE (e, ei, bb->succs)
446 if (bb_in_region_p (e->dest->index, rgn))
447 fprintf (f, "\t%d -> %d\n", src_bb_num, e->dest->index);
449 fprintf (f, "}\n");
452 /* The same, but first open a file specified by FNAME. */
453 void
454 dump_region_dot_file (const char *fname, int rgn)
456 FILE *f = fopen (fname, "wt");
457 dump_region_dot (f, rgn);
458 fclose (f);
461 /* Build a single block region for each basic block in the function.
462 This allows for using the same code for interblock and basic block
463 scheduling. */
465 static void
466 find_single_block_region (bool ebbs_p)
468 basic_block bb, ebb_start;
469 int i = 0;
471 nr_regions = 0;
473 if (ebbs_p) {
474 int probability_cutoff;
475 if (profile_info && flag_branch_probabilities)
476 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY_FEEDBACK);
477 else
478 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY);
479 probability_cutoff = REG_BR_PROB_BASE / 100 * probability_cutoff;
481 FOR_EACH_BB (ebb_start)
483 RGN_NR_BLOCKS (nr_regions) = 0;
484 RGN_BLOCKS (nr_regions) = i;
485 RGN_DONT_CALC_DEPS (nr_regions) = 0;
486 RGN_HAS_REAL_EBB (nr_regions) = 0;
488 for (bb = ebb_start; ; bb = bb->next_bb)
490 edge e;
492 rgn_bb_table[i] = bb->index;
493 RGN_NR_BLOCKS (nr_regions)++;
494 CONTAINING_RGN (bb->index) = nr_regions;
495 BLOCK_TO_BB (bb->index) = i - RGN_BLOCKS (nr_regions);
496 i++;
498 if (bb->next_bb == EXIT_BLOCK_PTR
499 || LABEL_P (BB_HEAD (bb->next_bb)))
500 break;
502 e = find_fallthru_edge (bb->succs);
503 if (! e)
504 break;
505 if (e->probability <= probability_cutoff)
506 break;
509 ebb_start = bb;
510 nr_regions++;
513 else
514 FOR_EACH_BB (bb)
516 rgn_bb_table[nr_regions] = bb->index;
517 RGN_NR_BLOCKS (nr_regions) = 1;
518 RGN_BLOCKS (nr_regions) = nr_regions;
519 RGN_DONT_CALC_DEPS (nr_regions) = 0;
520 RGN_HAS_REAL_EBB (nr_regions) = 0;
522 CONTAINING_RGN (bb->index) = nr_regions;
523 BLOCK_TO_BB (bb->index) = 0;
524 nr_regions++;
528 /* Estimate number of the insns in the BB. */
529 static int
530 rgn_estimate_number_of_insns (basic_block bb)
532 int count;
534 count = INSN_LUID (BB_END (bb)) - INSN_LUID (BB_HEAD (bb));
536 if (MAY_HAVE_DEBUG_INSNS)
538 rtx insn;
540 FOR_BB_INSNS (bb, insn)
541 if (DEBUG_INSN_P (insn))
542 count--;
545 return count;
548 /* Update number of blocks and the estimate for number of insns
549 in the region. Return true if the region is "too large" for interblock
550 scheduling (compile time considerations). */
552 static bool
553 too_large (int block, int *num_bbs, int *num_insns)
555 (*num_bbs)++;
556 (*num_insns) += (common_sched_info->estimate_number_of_insns
557 (BASIC_BLOCK (block)));
559 return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
560 || (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
563 /* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
564 is still an inner loop. Put in max_hdr[blk] the header of the most inner
565 loop containing blk. */
566 #define UPDATE_LOOP_RELATIONS(blk, hdr) \
568 if (max_hdr[blk] == -1) \
569 max_hdr[blk] = hdr; \
570 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
571 bitmap_clear_bit (inner, hdr); \
572 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
574 bitmap_clear_bit (inner,max_hdr[blk]); \
575 max_hdr[blk] = hdr; \
579 /* Find regions for interblock scheduling.
581 A region for scheduling can be:
583 * A loop-free procedure, or
585 * A reducible inner loop, or
587 * A basic block not contained in any other region.
589 ?!? In theory we could build other regions based on extended basic
590 blocks or reverse extended basic blocks. Is it worth the trouble?
592 Loop blocks that form a region are put into the region's block list
593 in topological order.
595 This procedure stores its results into the following global (ick) variables
597 * rgn_nr
598 * rgn_table
599 * rgn_bb_table
600 * block_to_bb
601 * containing region
603 We use dominator relationships to avoid making regions out of non-reducible
604 loops.
606 This procedure needs to be converted to work on pred/succ lists instead
607 of edge tables. That would simplify it somewhat. */
609 static void
610 haifa_find_rgns (void)
612 int *max_hdr, *dfs_nr, *degree;
613 char no_loops = 1;
614 int node, child, loop_head, i, head, tail;
615 int count = 0, sp, idx = 0;
616 edge_iterator current_edge;
617 edge_iterator *stack;
618 int num_bbs, num_insns, unreachable;
619 int too_large_failure;
620 basic_block bb;
622 /* Note if a block is a natural loop header. */
623 sbitmap header;
625 /* Note if a block is a natural inner loop header. */
626 sbitmap inner;
628 /* Note if a block is in the block queue. */
629 sbitmap in_queue;
631 /* Note if a block is in the block queue. */
632 sbitmap in_stack;
634 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
635 and a mapping from block to its loop header (if the block is contained
636 in a loop, else -1).
638 Store results in HEADER, INNER, and MAX_HDR respectively, these will
639 be used as inputs to the second traversal.
641 STACK, SP and DFS_NR are only used during the first traversal. */
643 /* Allocate and initialize variables for the first traversal. */
644 max_hdr = XNEWVEC (int, last_basic_block);
645 dfs_nr = XCNEWVEC (int, last_basic_block);
646 stack = XNEWVEC (edge_iterator, n_edges);
648 inner = sbitmap_alloc (last_basic_block);
649 bitmap_ones (inner);
651 header = sbitmap_alloc (last_basic_block);
652 bitmap_clear (header);
654 in_queue = sbitmap_alloc (last_basic_block);
655 bitmap_clear (in_queue);
657 in_stack = sbitmap_alloc (last_basic_block);
658 bitmap_clear (in_stack);
660 for (i = 0; i < last_basic_block; i++)
661 max_hdr[i] = -1;
663 #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
664 #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
666 /* DFS traversal to find inner loops in the cfg. */
668 current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR)->succs);
669 sp = -1;
671 while (1)
673 if (EDGE_PASSED (current_edge))
675 /* We have reached a leaf node or a node that was already
676 processed. Pop edges off the stack until we find
677 an edge that has not yet been processed. */
678 while (sp >= 0 && EDGE_PASSED (current_edge))
680 /* Pop entry off the stack. */
681 current_edge = stack[sp--];
682 node = ei_edge (current_edge)->src->index;
683 gcc_assert (node != ENTRY_BLOCK);
684 child = ei_edge (current_edge)->dest->index;
685 gcc_assert (child != EXIT_BLOCK);
686 bitmap_clear_bit (in_stack, child);
687 if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
688 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
689 ei_next (&current_edge);
692 /* See if have finished the DFS tree traversal. */
693 if (sp < 0 && EDGE_PASSED (current_edge))
694 break;
696 /* Nope, continue the traversal with the popped node. */
697 continue;
700 /* Process a node. */
701 node = ei_edge (current_edge)->src->index;
702 gcc_assert (node != ENTRY_BLOCK);
703 bitmap_set_bit (in_stack, node);
704 dfs_nr[node] = ++count;
706 /* We don't traverse to the exit block. */
707 child = ei_edge (current_edge)->dest->index;
708 if (child == EXIT_BLOCK)
710 SET_EDGE_PASSED (current_edge);
711 ei_next (&current_edge);
712 continue;
715 /* If the successor is in the stack, then we've found a loop.
716 Mark the loop, if it is not a natural loop, then it will
717 be rejected during the second traversal. */
718 if (bitmap_bit_p (in_stack, child))
720 no_loops = 0;
721 bitmap_set_bit (header, child);
722 UPDATE_LOOP_RELATIONS (node, child);
723 SET_EDGE_PASSED (current_edge);
724 ei_next (&current_edge);
725 continue;
728 /* If the child was already visited, then there is no need to visit
729 it again. Just update the loop relationships and restart
730 with a new edge. */
731 if (dfs_nr[child])
733 if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
734 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
735 SET_EDGE_PASSED (current_edge);
736 ei_next (&current_edge);
737 continue;
740 /* Push an entry on the stack and continue DFS traversal. */
741 stack[++sp] = current_edge;
742 SET_EDGE_PASSED (current_edge);
743 current_edge = ei_start (ei_edge (current_edge)->dest->succs);
746 /* Reset ->aux field used by EDGE_PASSED. */
747 FOR_ALL_BB (bb)
749 edge_iterator ei;
750 edge e;
751 FOR_EACH_EDGE (e, ei, bb->succs)
752 e->aux = NULL;
756 /* Another check for unreachable blocks. The earlier test in
757 is_cfg_nonregular only finds unreachable blocks that do not
758 form a loop.
760 The DFS traversal will mark every block that is reachable from
761 the entry node by placing a nonzero value in dfs_nr. Thus if
762 dfs_nr is zero for any block, then it must be unreachable. */
763 unreachable = 0;
764 FOR_EACH_BB (bb)
765 if (dfs_nr[bb->index] == 0)
767 unreachable = 1;
768 break;
771 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
772 to hold degree counts. */
773 degree = dfs_nr;
775 FOR_EACH_BB (bb)
776 degree[bb->index] = EDGE_COUNT (bb->preds);
778 /* Do not perform region scheduling if there are any unreachable
779 blocks. */
780 if (!unreachable)
782 int *queue, *degree1 = NULL;
783 /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
784 there basic blocks, which are forced to be region heads.
785 This is done to try to assemble few smaller regions
786 from a too_large region. */
787 sbitmap extended_rgn_header = NULL;
788 bool extend_regions_p;
790 if (no_loops)
791 bitmap_set_bit (header, 0);
793 /* Second traversal:find reducible inner loops and topologically sort
794 block of each region. */
796 queue = XNEWVEC (int, n_basic_blocks);
798 extend_regions_p = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS) > 0;
799 if (extend_regions_p)
801 degree1 = XNEWVEC (int, last_basic_block);
802 extended_rgn_header = sbitmap_alloc (last_basic_block);
803 bitmap_clear (extended_rgn_header);
806 /* Find blocks which are inner loop headers. We still have non-reducible
807 loops to consider at this point. */
808 FOR_EACH_BB (bb)
810 if (bitmap_bit_p (header, bb->index) && bitmap_bit_p (inner, bb->index))
812 edge e;
813 edge_iterator ei;
814 basic_block jbb;
816 /* Now check that the loop is reducible. We do this separate
817 from finding inner loops so that we do not find a reducible
818 loop which contains an inner non-reducible loop.
820 A simple way to find reducible/natural loops is to verify
821 that each block in the loop is dominated by the loop
822 header.
824 If there exists a block that is not dominated by the loop
825 header, then the block is reachable from outside the loop
826 and thus the loop is not a natural loop. */
827 FOR_EACH_BB (jbb)
829 /* First identify blocks in the loop, except for the loop
830 entry block. */
831 if (bb->index == max_hdr[jbb->index] && bb != jbb)
833 /* Now verify that the block is dominated by the loop
834 header. */
835 if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
836 break;
840 /* If we exited the loop early, then I is the header of
841 a non-reducible loop and we should quit processing it
842 now. */
843 if (jbb != EXIT_BLOCK_PTR)
844 continue;
846 /* I is a header of an inner loop, or block 0 in a subroutine
847 with no loops at all. */
848 head = tail = -1;
849 too_large_failure = 0;
850 loop_head = max_hdr[bb->index];
852 if (extend_regions_p)
853 /* We save degree in case when we meet a too_large region
854 and cancel it. We need a correct degree later when
855 calling extend_rgns. */
856 memcpy (degree1, degree, last_basic_block * sizeof (int));
858 /* Decrease degree of all I's successors for topological
859 ordering. */
860 FOR_EACH_EDGE (e, ei, bb->succs)
861 if (e->dest != EXIT_BLOCK_PTR)
862 --degree[e->dest->index];
864 /* Estimate # insns, and count # blocks in the region. */
865 num_bbs = 1;
866 num_insns = common_sched_info->estimate_number_of_insns (bb);
868 /* Find all loop latches (blocks with back edges to the loop
869 header) or all the leaf blocks in the cfg has no loops.
871 Place those blocks into the queue. */
872 if (no_loops)
874 FOR_EACH_BB (jbb)
875 /* Leaf nodes have only a single successor which must
876 be EXIT_BLOCK. */
877 if (single_succ_p (jbb)
878 && single_succ (jbb) == EXIT_BLOCK_PTR)
880 queue[++tail] = jbb->index;
881 bitmap_set_bit (in_queue, jbb->index);
883 if (too_large (jbb->index, &num_bbs, &num_insns))
885 too_large_failure = 1;
886 break;
890 else
892 edge e;
894 FOR_EACH_EDGE (e, ei, bb->preds)
896 if (e->src == ENTRY_BLOCK_PTR)
897 continue;
899 node = e->src->index;
901 if (max_hdr[node] == loop_head && node != bb->index)
903 /* This is a loop latch. */
904 queue[++tail] = node;
905 bitmap_set_bit (in_queue, node);
907 if (too_large (node, &num_bbs, &num_insns))
909 too_large_failure = 1;
910 break;
916 /* Now add all the blocks in the loop to the queue.
918 We know the loop is a natural loop; however the algorithm
919 above will not always mark certain blocks as being in the
920 loop. Consider:
921 node children
922 a b,c
924 c a,d
927 The algorithm in the DFS traversal may not mark B & D as part
928 of the loop (i.e. they will not have max_hdr set to A).
930 We know they can not be loop latches (else they would have
931 had max_hdr set since they'd have a backedge to a dominator
932 block). So we don't need them on the initial queue.
934 We know they are part of the loop because they are dominated
935 by the loop header and can be reached by a backwards walk of
936 the edges starting with nodes on the initial queue.
938 It is safe and desirable to include those nodes in the
939 loop/scheduling region. To do so we would need to decrease
940 the degree of a node if it is the target of a backedge
941 within the loop itself as the node is placed in the queue.
943 We do not do this because I'm not sure that the actual
944 scheduling code will properly handle this case. ?!? */
946 while (head < tail && !too_large_failure)
948 edge e;
949 child = queue[++head];
951 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->preds)
953 node = e->src->index;
955 /* See discussion above about nodes not marked as in
956 this loop during the initial DFS traversal. */
957 if (e->src == ENTRY_BLOCK_PTR
958 || max_hdr[node] != loop_head)
960 tail = -1;
961 break;
963 else if (!bitmap_bit_p (in_queue, node) && node != bb->index)
965 queue[++tail] = node;
966 bitmap_set_bit (in_queue, node);
968 if (too_large (node, &num_bbs, &num_insns))
970 too_large_failure = 1;
971 break;
977 if (tail >= 0 && !too_large_failure)
979 /* Place the loop header into list of region blocks. */
980 degree[bb->index] = -1;
981 rgn_bb_table[idx] = bb->index;
982 RGN_NR_BLOCKS (nr_regions) = num_bbs;
983 RGN_BLOCKS (nr_regions) = idx++;
984 RGN_DONT_CALC_DEPS (nr_regions) = 0;
985 RGN_HAS_REAL_EBB (nr_regions) = 0;
986 CONTAINING_RGN (bb->index) = nr_regions;
987 BLOCK_TO_BB (bb->index) = count = 0;
989 /* Remove blocks from queue[] when their in degree
990 becomes zero. Repeat until no blocks are left on the
991 list. This produces a topological list of blocks in
992 the region. */
993 while (tail >= 0)
995 if (head < 0)
996 head = tail;
997 child = queue[head];
998 if (degree[child] == 0)
1000 edge e;
1002 degree[child] = -1;
1003 rgn_bb_table[idx++] = child;
1004 BLOCK_TO_BB (child) = ++count;
1005 CONTAINING_RGN (child) = nr_regions;
1006 queue[head] = queue[tail--];
1008 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->succs)
1009 if (e->dest != EXIT_BLOCK_PTR)
1010 --degree[e->dest->index];
1012 else
1013 --head;
1015 ++nr_regions;
1017 else if (extend_regions_p)
1019 /* Restore DEGREE. */
1020 int *t = degree;
1022 degree = degree1;
1023 degree1 = t;
1025 /* And force successors of BB to be region heads.
1026 This may provide several smaller regions instead
1027 of one too_large region. */
1028 FOR_EACH_EDGE (e, ei, bb->succs)
1029 if (e->dest != EXIT_BLOCK_PTR)
1030 bitmap_set_bit (extended_rgn_header, e->dest->index);
1034 free (queue);
1036 if (extend_regions_p)
1038 free (degree1);
1040 bitmap_ior (header, header, extended_rgn_header);
1041 sbitmap_free (extended_rgn_header);
1043 extend_rgns (degree, &idx, header, max_hdr);
1047 /* Any block that did not end up in a region is placed into a region
1048 by itself. */
1049 FOR_EACH_BB (bb)
1050 if (degree[bb->index] >= 0)
1052 rgn_bb_table[idx] = bb->index;
1053 RGN_NR_BLOCKS (nr_regions) = 1;
1054 RGN_BLOCKS (nr_regions) = idx++;
1055 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1056 RGN_HAS_REAL_EBB (nr_regions) = 0;
1057 CONTAINING_RGN (bb->index) = nr_regions++;
1058 BLOCK_TO_BB (bb->index) = 0;
1061 free (max_hdr);
1062 free (degree);
1063 free (stack);
1064 sbitmap_free (header);
1065 sbitmap_free (inner);
1066 sbitmap_free (in_queue);
1067 sbitmap_free (in_stack);
1071 /* Wrapper function.
1072 If FLAG_SEL_SCHED_PIPELINING is set, then use custom function to form
1073 regions. Otherwise just call find_rgns_haifa. */
1074 static void
1075 find_rgns (void)
1077 if (sel_sched_p () && flag_sel_sched_pipelining)
1078 sel_find_rgns ();
1079 else
1080 haifa_find_rgns ();
1083 static int gather_region_statistics (int **);
1084 static void print_region_statistics (int *, int, int *, int);
1086 /* Calculate the histogram that shows the number of regions having the
1087 given number of basic blocks, and store it in the RSP array. Return
1088 the size of this array. */
1089 static int
1090 gather_region_statistics (int **rsp)
1092 int i, *a = 0, a_sz = 0;
1094 /* a[i] is the number of regions that have (i + 1) basic blocks. */
1095 for (i = 0; i < nr_regions; i++)
1097 int nr_blocks = RGN_NR_BLOCKS (i);
1099 gcc_assert (nr_blocks >= 1);
1101 if (nr_blocks > a_sz)
1103 a = XRESIZEVEC (int, a, nr_blocks);
1105 a[a_sz++] = 0;
1106 while (a_sz != nr_blocks);
1109 a[nr_blocks - 1]++;
1112 *rsp = a;
1113 return a_sz;
1116 /* Print regions statistics. S1 and S2 denote the data before and after
1117 calling extend_rgns, respectively. */
1118 static void
1119 print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
1121 int i;
1123 /* We iterate until s2_sz because extend_rgns does not decrease
1124 the maximal region size. */
1125 for (i = 1; i < s2_sz; i++)
1127 int n1, n2;
1129 n2 = s2[i];
1131 if (n2 == 0)
1132 continue;
1134 if (i >= s1_sz)
1135 n1 = 0;
1136 else
1137 n1 = s1[i];
1139 fprintf (sched_dump, ";; Region extension statistics: size %d: " \
1140 "was %d + %d more\n", i + 1, n1, n2 - n1);
1144 /* Extend regions.
1145 DEGREE - Array of incoming edge count, considering only
1146 the edges, that don't have their sources in formed regions yet.
1147 IDXP - pointer to the next available index in rgn_bb_table.
1148 HEADER - set of all region heads.
1149 LOOP_HDR - mapping from block to the containing loop
1150 (two blocks can reside within one region if they have
1151 the same loop header). */
1152 void
1153 extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
1155 int *order, i, rescan = 0, idx = *idxp, iter = 0, max_iter, *max_hdr;
1156 int nblocks = n_basic_blocks - NUM_FIXED_BLOCKS;
1158 max_iter = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS);
1160 max_hdr = XNEWVEC (int, last_basic_block);
1162 order = XNEWVEC (int, last_basic_block);
1163 post_order_compute (order, false, false);
1165 for (i = nblocks - 1; i >= 0; i--)
1167 int bbn = order[i];
1168 if (degree[bbn] >= 0)
1170 max_hdr[bbn] = bbn;
1171 rescan = 1;
1173 else
1174 /* This block already was processed in find_rgns. */
1175 max_hdr[bbn] = -1;
1178 /* The idea is to topologically walk through CFG in top-down order.
1179 During the traversal, if all the predecessors of a node are
1180 marked to be in the same region (they all have the same max_hdr),
1181 then current node is also marked to be a part of that region.
1182 Otherwise the node starts its own region.
1183 CFG should be traversed until no further changes are made. On each
1184 iteration the set of the region heads is extended (the set of those
1185 blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
1186 set of all basic blocks, thus the algorithm is guaranteed to
1187 terminate. */
1189 while (rescan && iter < max_iter)
1191 rescan = 0;
1193 for (i = nblocks - 1; i >= 0; i--)
1195 edge e;
1196 edge_iterator ei;
1197 int bbn = order[i];
1199 if (max_hdr[bbn] != -1 && !bitmap_bit_p (header, bbn))
1201 int hdr = -1;
1203 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->preds)
1205 int predn = e->src->index;
1207 if (predn != ENTRY_BLOCK
1208 /* If pred wasn't processed in find_rgns. */
1209 && max_hdr[predn] != -1
1210 /* And pred and bb reside in the same loop.
1211 (Or out of any loop). */
1212 && loop_hdr[bbn] == loop_hdr[predn])
1214 if (hdr == -1)
1215 /* Then bb extends the containing region of pred. */
1216 hdr = max_hdr[predn];
1217 else if (hdr != max_hdr[predn])
1218 /* Too bad, there are at least two predecessors
1219 that reside in different regions. Thus, BB should
1220 begin its own region. */
1222 hdr = bbn;
1223 break;
1226 else
1227 /* BB starts its own region. */
1229 hdr = bbn;
1230 break;
1234 if (hdr == bbn)
1236 /* If BB start its own region,
1237 update set of headers with BB. */
1238 bitmap_set_bit (header, bbn);
1239 rescan = 1;
1241 else
1242 gcc_assert (hdr != -1);
1244 max_hdr[bbn] = hdr;
1248 iter++;
1251 /* Statistics were gathered on the SPEC2000 package of tests with
1252 mainline weekly snapshot gcc-4.1-20051015 on ia64.
1254 Statistics for SPECint:
1255 1 iteration : 1751 cases (38.7%)
1256 2 iterations: 2770 cases (61.3%)
1257 Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1258 Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1259 (We don't count single block regions here).
1261 Statistics for SPECfp:
1262 1 iteration : 621 cases (35.9%)
1263 2 iterations: 1110 cases (64.1%)
1264 Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1265 Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1266 (We don't count single block regions here).
1268 By default we do at most 2 iterations.
1269 This can be overridden with max-sched-extend-regions-iters parameter:
1270 0 - disable region extension,
1271 N > 0 - do at most N iterations. */
1273 if (sched_verbose && iter != 0)
1274 fprintf (sched_dump, ";; Region extension iterations: %d%s\n", iter,
1275 rescan ? "... failed" : "");
1277 if (!rescan && iter != 0)
1279 int *s1 = NULL, s1_sz = 0;
1281 /* Save the old statistics for later printout. */
1282 if (sched_verbose >= 6)
1283 s1_sz = gather_region_statistics (&s1);
1285 /* We have succeeded. Now assemble the regions. */
1286 for (i = nblocks - 1; i >= 0; i--)
1288 int bbn = order[i];
1290 if (max_hdr[bbn] == bbn)
1291 /* BBN is a region head. */
1293 edge e;
1294 edge_iterator ei;
1295 int num_bbs = 0, j, num_insns = 0, large;
1297 large = too_large (bbn, &num_bbs, &num_insns);
1299 degree[bbn] = -1;
1300 rgn_bb_table[idx] = bbn;
1301 RGN_BLOCKS (nr_regions) = idx++;
1302 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1303 RGN_HAS_REAL_EBB (nr_regions) = 0;
1304 CONTAINING_RGN (bbn) = nr_regions;
1305 BLOCK_TO_BB (bbn) = 0;
1307 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->succs)
1308 if (e->dest != EXIT_BLOCK_PTR)
1309 degree[e->dest->index]--;
1311 if (!large)
1312 /* Here we check whether the region is too_large. */
1313 for (j = i - 1; j >= 0; j--)
1315 int succn = order[j];
1316 if (max_hdr[succn] == bbn)
1318 if ((large = too_large (succn, &num_bbs, &num_insns)))
1319 break;
1323 if (large)
1324 /* If the region is too_large, then wrap every block of
1325 the region into single block region.
1326 Here we wrap region head only. Other blocks are
1327 processed in the below cycle. */
1329 RGN_NR_BLOCKS (nr_regions) = 1;
1330 nr_regions++;
1333 num_bbs = 1;
1335 for (j = i - 1; j >= 0; j--)
1337 int succn = order[j];
1339 if (max_hdr[succn] == bbn)
1340 /* This cycle iterates over all basic blocks, that
1341 are supposed to be in the region with head BBN,
1342 and wraps them into that region (or in single
1343 block region). */
1345 gcc_assert (degree[succn] == 0);
1347 degree[succn] = -1;
1348 rgn_bb_table[idx] = succn;
1349 BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
1350 CONTAINING_RGN (succn) = nr_regions;
1352 if (large)
1353 /* Wrap SUCCN into single block region. */
1355 RGN_BLOCKS (nr_regions) = idx;
1356 RGN_NR_BLOCKS (nr_regions) = 1;
1357 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1358 RGN_HAS_REAL_EBB (nr_regions) = 0;
1359 nr_regions++;
1362 idx++;
1364 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (succn)->succs)
1365 if (e->dest != EXIT_BLOCK_PTR)
1366 degree[e->dest->index]--;
1370 if (!large)
1372 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1373 nr_regions++;
1378 if (sched_verbose >= 6)
1380 int *s2, s2_sz;
1382 /* Get the new statistics and print the comparison with the
1383 one before calling this function. */
1384 s2_sz = gather_region_statistics (&s2);
1385 print_region_statistics (s1, s1_sz, s2, s2_sz);
1386 free (s1);
1387 free (s2);
1391 free (order);
1392 free (max_hdr);
1394 *idxp = idx;
1397 /* Functions for regions scheduling information. */
1399 /* Compute dominators, probability, and potential-split-edges of bb.
1400 Assume that these values were already computed for bb's predecessors. */
1402 static void
1403 compute_dom_prob_ps (int bb)
1405 edge_iterator in_ei;
1406 edge in_edge;
1408 /* We shouldn't have any real ebbs yet. */
1409 gcc_assert (ebb_head [bb] == bb + current_blocks);
1411 if (IS_RGN_ENTRY (bb))
1413 bitmap_set_bit (dom[bb], 0);
1414 prob[bb] = REG_BR_PROB_BASE;
1415 return;
1418 prob[bb] = 0;
1420 /* Initialize dom[bb] to '111..1'. */
1421 bitmap_ones (dom[bb]);
1423 FOR_EACH_EDGE (in_edge, in_ei, BASIC_BLOCK (BB_TO_BLOCK (bb))->preds)
1425 int pred_bb;
1426 edge out_edge;
1427 edge_iterator out_ei;
1429 if (in_edge->src == ENTRY_BLOCK_PTR)
1430 continue;
1432 pred_bb = BLOCK_TO_BB (in_edge->src->index);
1433 bitmap_and (dom[bb], dom[bb], dom[pred_bb]);
1434 bitmap_ior (ancestor_edges[bb],
1435 ancestor_edges[bb], ancestor_edges[pred_bb]);
1437 bitmap_set_bit (ancestor_edges[bb], EDGE_TO_BIT (in_edge));
1439 bitmap_ior (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
1441 FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
1442 bitmap_set_bit (pot_split[bb], EDGE_TO_BIT (out_edge));
1444 /* Update to use apply_probability(). */
1445 prob[bb] += ((prob[pred_bb] * in_edge->probability) / REG_BR_PROB_BASE);
1448 bitmap_set_bit (dom[bb], bb);
1449 bitmap_and_compl (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
1451 if (sched_verbose >= 2)
1452 fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
1453 (100 * prob[bb]) / REG_BR_PROB_BASE);
1456 /* Functions for target info. */
1458 /* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1459 Note that bb_trg dominates bb_src. */
1461 static void
1462 split_edges (int bb_src, int bb_trg, edgelst *bl)
1464 sbitmap src = sbitmap_alloc (SBITMAP_SIZE (pot_split[bb_src]));
1465 bitmap_copy (src, pot_split[bb_src]);
1467 bitmap_and_compl (src, src, pot_split[bb_trg]);
1468 extract_edgelst (src, bl);
1469 sbitmap_free (src);
1472 /* Find the valid candidate-source-blocks for the target block TRG, compute
1473 their probability, and check if they are speculative or not.
1474 For speculative sources, compute their update-blocks and split-blocks. */
1476 static void
1477 compute_trg_info (int trg)
1479 candidate *sp;
1480 edgelst el = { NULL, 0 };
1481 int i, j, k, update_idx;
1482 basic_block block;
1483 sbitmap visited;
1484 edge_iterator ei;
1485 edge e;
1487 candidate_table = XNEWVEC (candidate, current_nr_blocks);
1489 bblst_last = 0;
1490 /* bblst_table holds split blocks and update blocks for each block after
1491 the current one in the region. split blocks and update blocks are
1492 the TO blocks of region edges, so there can be at most rgn_nr_edges
1493 of them. */
1494 bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
1495 bblst_table = XNEWVEC (basic_block, bblst_size);
1497 edgelst_last = 0;
1498 edgelst_table = XNEWVEC (edge, rgn_nr_edges);
1500 /* Define some of the fields for the target bb as well. */
1501 sp = candidate_table + trg;
1502 sp->is_valid = 1;
1503 sp->is_speculative = 0;
1504 sp->src_prob = REG_BR_PROB_BASE;
1506 visited = sbitmap_alloc (last_basic_block);
1508 for (i = trg + 1; i < current_nr_blocks; i++)
1510 sp = candidate_table + i;
1512 sp->is_valid = IS_DOMINATED (i, trg);
1513 if (sp->is_valid)
1515 int tf = prob[trg], cf = prob[i];
1517 /* In CFGs with low probability edges TF can possibly be zero. */
1518 /* Update to use GCOV_COMPUTE_SCALE. */
1519 sp->src_prob = (tf ? ((cf * REG_BR_PROB_BASE) / tf) : 0);
1520 sp->is_valid = (sp->src_prob >= min_spec_prob);
1523 if (sp->is_valid)
1525 split_edges (i, trg, &el);
1526 sp->is_speculative = (el.nr_members) ? 1 : 0;
1527 if (sp->is_speculative && !flag_schedule_speculative)
1528 sp->is_valid = 0;
1531 if (sp->is_valid)
1533 /* Compute split blocks and store them in bblst_table.
1534 The TO block of every split edge is a split block. */
1535 sp->split_bbs.first_member = &bblst_table[bblst_last];
1536 sp->split_bbs.nr_members = el.nr_members;
1537 for (j = 0; j < el.nr_members; bblst_last++, j++)
1538 bblst_table[bblst_last] = el.first_member[j]->dest;
1539 sp->update_bbs.first_member = &bblst_table[bblst_last];
1541 /* Compute update blocks and store them in bblst_table.
1542 For every split edge, look at the FROM block, and check
1543 all out edges. For each out edge that is not a split edge,
1544 add the TO block to the update block list. This list can end
1545 up with a lot of duplicates. We need to weed them out to avoid
1546 overrunning the end of the bblst_table. */
1548 update_idx = 0;
1549 bitmap_clear (visited);
1550 for (j = 0; j < el.nr_members; j++)
1552 block = el.first_member[j]->src;
1553 FOR_EACH_EDGE (e, ei, block->succs)
1555 if (!bitmap_bit_p (visited, e->dest->index))
1557 for (k = 0; k < el.nr_members; k++)
1558 if (e == el.first_member[k])
1559 break;
1561 if (k >= el.nr_members)
1563 bblst_table[bblst_last++] = e->dest;
1564 bitmap_set_bit (visited, e->dest->index);
1565 update_idx++;
1570 sp->update_bbs.nr_members = update_idx;
1572 /* Make sure we didn't overrun the end of bblst_table. */
1573 gcc_assert (bblst_last <= bblst_size);
1575 else
1577 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1579 sp->is_speculative = 0;
1580 sp->src_prob = 0;
1584 sbitmap_free (visited);
1587 /* Free the computed target info. */
1588 static void
1589 free_trg_info (void)
1591 free (candidate_table);
1592 free (bblst_table);
1593 free (edgelst_table);
1596 /* Print candidates info, for debugging purposes. Callable from debugger. */
1598 DEBUG_FUNCTION void
1599 debug_candidate (int i)
1601 if (!candidate_table[i].is_valid)
1602 return;
1604 if (candidate_table[i].is_speculative)
1606 int j;
1607 fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1609 fprintf (sched_dump, "split path: ");
1610 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1612 int b = candidate_table[i].split_bbs.first_member[j]->index;
1614 fprintf (sched_dump, " %d ", b);
1616 fprintf (sched_dump, "\n");
1618 fprintf (sched_dump, "update path: ");
1619 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1621 int b = candidate_table[i].update_bbs.first_member[j]->index;
1623 fprintf (sched_dump, " %d ", b);
1625 fprintf (sched_dump, "\n");
1627 else
1629 fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
1633 /* Print candidates info, for debugging purposes. Callable from debugger. */
1635 DEBUG_FUNCTION void
1636 debug_candidates (int trg)
1638 int i;
1640 fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
1641 BB_TO_BLOCK (trg), trg);
1642 for (i = trg + 1; i < current_nr_blocks; i++)
1643 debug_candidate (i);
1646 /* Functions for speculative scheduling. */
1648 static bitmap_head not_in_df;
1650 /* Return 0 if x is a set of a register alive in the beginning of one
1651 of the split-blocks of src, otherwise return 1. */
1653 static int
1654 check_live_1 (int src, rtx x)
1656 int i;
1657 int regno;
1658 rtx reg = SET_DEST (x);
1660 if (reg == 0)
1661 return 1;
1663 while (GET_CODE (reg) == SUBREG
1664 || GET_CODE (reg) == ZERO_EXTRACT
1665 || GET_CODE (reg) == STRICT_LOW_PART)
1666 reg = XEXP (reg, 0);
1668 if (GET_CODE (reg) == PARALLEL)
1670 int i;
1672 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1673 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1674 if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
1675 return 1;
1677 return 0;
1680 if (!REG_P (reg))
1681 return 1;
1683 regno = REGNO (reg);
1685 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1687 /* Global registers are assumed live. */
1688 return 0;
1690 else
1692 if (regno < FIRST_PSEUDO_REGISTER)
1694 /* Check for hard registers. */
1695 int j = hard_regno_nregs[regno][GET_MODE (reg)];
1696 while (--j >= 0)
1698 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1700 basic_block b = candidate_table[src].split_bbs.first_member[i];
1701 int t = bitmap_bit_p (&not_in_df, b->index);
1703 /* We can have split blocks, that were recently generated.
1704 Such blocks are always outside current region. */
1705 gcc_assert (!t || (CONTAINING_RGN (b->index)
1706 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1708 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno + j))
1709 return 0;
1713 else
1715 /* Check for pseudo registers. */
1716 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1718 basic_block b = candidate_table[src].split_bbs.first_member[i];
1719 int t = bitmap_bit_p (&not_in_df, b->index);
1721 gcc_assert (!t || (CONTAINING_RGN (b->index)
1722 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1724 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno))
1725 return 0;
1730 return 1;
1733 /* If x is a set of a register R, mark that R is alive in the beginning
1734 of every update-block of src. */
1736 static void
1737 update_live_1 (int src, rtx x)
1739 int i;
1740 int regno;
1741 rtx reg = SET_DEST (x);
1743 if (reg == 0)
1744 return;
1746 while (GET_CODE (reg) == SUBREG
1747 || GET_CODE (reg) == ZERO_EXTRACT
1748 || GET_CODE (reg) == STRICT_LOW_PART)
1749 reg = XEXP (reg, 0);
1751 if (GET_CODE (reg) == PARALLEL)
1753 int i;
1755 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1756 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1757 update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
1759 return;
1762 if (!REG_P (reg))
1763 return;
1765 /* Global registers are always live, so the code below does not apply
1766 to them. */
1768 regno = REGNO (reg);
1770 if (! HARD_REGISTER_NUM_P (regno)
1771 || !global_regs[regno])
1773 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1775 basic_block b = candidate_table[src].update_bbs.first_member[i];
1777 if (HARD_REGISTER_NUM_P (regno))
1778 bitmap_set_range (df_get_live_in (b), regno,
1779 hard_regno_nregs[regno][GET_MODE (reg)]);
1780 else
1781 bitmap_set_bit (df_get_live_in (b), regno);
1786 /* Return 1 if insn can be speculatively moved from block src to trg,
1787 otherwise return 0. Called before first insertion of insn to
1788 ready-list or before the scheduling. */
1790 static int
1791 check_live (rtx insn, int src)
1793 /* Find the registers set by instruction. */
1794 if (GET_CODE (PATTERN (insn)) == SET
1795 || GET_CODE (PATTERN (insn)) == CLOBBER)
1796 return check_live_1 (src, PATTERN (insn));
1797 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1799 int j;
1800 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1801 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1802 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1803 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1804 return 0;
1806 return 1;
1809 return 1;
1812 /* Update the live registers info after insn was moved speculatively from
1813 block src to trg. */
1815 static void
1816 update_live (rtx insn, int src)
1818 /* Find the registers set by instruction. */
1819 if (GET_CODE (PATTERN (insn)) == SET
1820 || GET_CODE (PATTERN (insn)) == CLOBBER)
1821 update_live_1 (src, PATTERN (insn));
1822 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1824 int j;
1825 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1826 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1827 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1828 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1832 /* Nonzero if block bb_to is equal to, or reachable from block bb_from. */
1833 #define IS_REACHABLE(bb_from, bb_to) \
1834 (bb_from == bb_to \
1835 || IS_RGN_ENTRY (bb_from) \
1836 || (bitmap_bit_p (ancestor_edges[bb_to], \
1837 EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK (BB_TO_BLOCK (bb_from)))))))
1839 /* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1841 static void
1842 set_spec_fed (rtx load_insn)
1844 sd_iterator_def sd_it;
1845 dep_t dep;
1847 FOR_EACH_DEP (load_insn, SD_LIST_FORW, sd_it, dep)
1848 if (DEP_TYPE (dep) == REG_DEP_TRUE)
1849 FED_BY_SPEC_LOAD (DEP_CON (dep)) = 1;
1852 /* On the path from the insn to load_insn_bb, find a conditional
1853 branch depending on insn, that guards the speculative load. */
1855 static int
1856 find_conditional_protection (rtx insn, int load_insn_bb)
1858 sd_iterator_def sd_it;
1859 dep_t dep;
1861 /* Iterate through DEF-USE forward dependences. */
1862 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
1864 rtx next = DEP_CON (dep);
1866 if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1867 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1868 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1869 && load_insn_bb != INSN_BB (next)
1870 && DEP_TYPE (dep) == REG_DEP_TRUE
1871 && (JUMP_P (next)
1872 || find_conditional_protection (next, load_insn_bb)))
1873 return 1;
1875 return 0;
1876 } /* find_conditional_protection */
1878 /* Returns 1 if the same insn1 that participates in the computation
1879 of load_insn's address is feeding a conditional branch that is
1880 guarding on load_insn. This is true if we find two DEF-USE
1881 chains:
1882 insn1 -> ... -> conditional-branch
1883 insn1 -> ... -> load_insn,
1884 and if a flow path exists:
1885 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1886 and if insn1 is on the path
1887 region-entry -> ... -> bb_trg -> ... load_insn.
1889 Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
1890 Locate the branch by following INSN_FORW_DEPS from insn1. */
1892 static int
1893 is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
1895 sd_iterator_def sd_it;
1896 dep_t dep;
1898 FOR_EACH_DEP (load_insn, SD_LIST_BACK, sd_it, dep)
1900 rtx insn1 = DEP_PRO (dep);
1902 /* Must be a DEF-USE dependence upon non-branch. */
1903 if (DEP_TYPE (dep) != REG_DEP_TRUE
1904 || JUMP_P (insn1))
1905 continue;
1907 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1908 if (INSN_BB (insn1) == bb_src
1909 || (CONTAINING_RGN (BLOCK_NUM (insn1))
1910 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1911 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1912 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1913 continue;
1915 /* Now search for the conditional-branch. */
1916 if (find_conditional_protection (insn1, bb_src))
1917 return 1;
1919 /* Recursive step: search another insn1, "above" current insn1. */
1920 return is_conditionally_protected (insn1, bb_src, bb_trg);
1923 /* The chain does not exist. */
1924 return 0;
1925 } /* is_conditionally_protected */
1927 /* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1928 load_insn can move speculatively from bb_src to bb_trg. All the
1929 following must hold:
1931 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1932 (2) load_insn and load1 have a def-use dependence upon
1933 the same insn 'insn1'.
1934 (3) either load2 is in bb_trg, or:
1935 - there's only one split-block, and
1936 - load1 is on the escape path, and
1938 From all these we can conclude that the two loads access memory
1939 addresses that differ at most by a constant, and hence if moving
1940 load_insn would cause an exception, it would have been caused by
1941 load2 anyhow. */
1943 static int
1944 is_pfree (rtx load_insn, int bb_src, int bb_trg)
1946 sd_iterator_def back_sd_it;
1947 dep_t back_dep;
1948 candidate *candp = candidate_table + bb_src;
1950 if (candp->split_bbs.nr_members != 1)
1951 /* Must have exactly one escape block. */
1952 return 0;
1954 FOR_EACH_DEP (load_insn, SD_LIST_BACK, back_sd_it, back_dep)
1956 rtx insn1 = DEP_PRO (back_dep);
1958 if (DEP_TYPE (back_dep) == REG_DEP_TRUE)
1959 /* Found a DEF-USE dependence (insn1, load_insn). */
1961 sd_iterator_def fore_sd_it;
1962 dep_t fore_dep;
1964 FOR_EACH_DEP (insn1, SD_LIST_FORW, fore_sd_it, fore_dep)
1966 rtx insn2 = DEP_CON (fore_dep);
1968 if (DEP_TYPE (fore_dep) == REG_DEP_TRUE)
1970 /* Found a DEF-USE dependence (insn1, insn2). */
1971 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
1972 /* insn2 not guaranteed to be a 1 base reg load. */
1973 continue;
1975 if (INSN_BB (insn2) == bb_trg)
1976 /* insn2 is the similar load, in the target block. */
1977 return 1;
1979 if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn2))
1980 /* insn2 is a similar load, in a split-block. */
1981 return 1;
1987 /* Couldn't find a similar load. */
1988 return 0;
1989 } /* is_pfree */
1991 /* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
1992 a load moved speculatively, or if load_insn is protected by
1993 a compare on load_insn's address). */
1995 static int
1996 is_prisky (rtx load_insn, int bb_src, int bb_trg)
1998 if (FED_BY_SPEC_LOAD (load_insn))
1999 return 1;
2001 if (sd_lists_empty_p (load_insn, SD_LIST_BACK))
2002 /* Dependence may 'hide' out of the region. */
2003 return 1;
2005 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
2006 return 1;
2008 return 0;
2011 /* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2012 Return 1 if insn is exception-free (and the motion is valid)
2013 and 0 otherwise. */
2015 static int
2016 is_exception_free (rtx insn, int bb_src, int bb_trg)
2018 int insn_class = haifa_classify_insn (insn);
2020 /* Handle non-load insns. */
2021 switch (insn_class)
2023 case TRAP_FREE:
2024 return 1;
2025 case TRAP_RISKY:
2026 return 0;
2027 default:;
2030 /* Handle loads. */
2031 if (!flag_schedule_speculative_load)
2032 return 0;
2033 IS_LOAD_INSN (insn) = 1;
2034 switch (insn_class)
2036 case IFREE:
2037 return (1);
2038 case IRISKY:
2039 return 0;
2040 case PFREE_CANDIDATE:
2041 if (is_pfree (insn, bb_src, bb_trg))
2042 return 1;
2043 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
2044 case PRISKY_CANDIDATE:
2045 if (!flag_schedule_speculative_load_dangerous
2046 || is_prisky (insn, bb_src, bb_trg))
2047 return 0;
2048 break;
2049 default:;
2052 return flag_schedule_speculative_load_dangerous;
2055 /* The number of insns from the current block scheduled so far. */
2056 static int sched_target_n_insns;
2057 /* The number of insns from the current block to be scheduled in total. */
2058 static int target_n_insns;
2059 /* The number of insns from the entire region scheduled so far. */
2060 static int sched_n_insns;
2062 /* Implementations of the sched_info functions for region scheduling. */
2063 static void init_ready_list (void);
2064 static int can_schedule_ready_p (rtx);
2065 static void begin_schedule_ready (rtx);
2066 static ds_t new_ready (rtx, ds_t);
2067 static int schedule_more_p (void);
2068 static const char *rgn_print_insn (const_rtx, int);
2069 static int rgn_rank (rtx, rtx);
2070 static void compute_jump_reg_dependencies (rtx, regset);
2072 /* Functions for speculative scheduling. */
2073 static void rgn_add_remove_insn (rtx, int);
2074 static void rgn_add_block (basic_block, basic_block);
2075 static void rgn_fix_recovery_cfg (int, int, int);
2076 static basic_block advance_target_bb (basic_block, rtx);
2078 /* Return nonzero if there are more insns that should be scheduled. */
2080 static int
2081 schedule_more_p (void)
2083 return sched_target_n_insns < target_n_insns;
2086 /* Add all insns that are initially ready to the ready list READY. Called
2087 once before scheduling a set of insns. */
2089 static void
2090 init_ready_list (void)
2092 rtx prev_head = current_sched_info->prev_head;
2093 rtx next_tail = current_sched_info->next_tail;
2094 int bb_src;
2095 rtx insn;
2097 target_n_insns = 0;
2098 sched_target_n_insns = 0;
2099 sched_n_insns = 0;
2101 /* Print debugging information. */
2102 if (sched_verbose >= 5)
2103 debug_rgn_dependencies (target_bb);
2105 /* Prepare current target block info. */
2106 if (current_nr_blocks > 1)
2107 compute_trg_info (target_bb);
2109 /* Initialize ready list with all 'ready' insns in target block.
2110 Count number of insns in the target block being scheduled. */
2111 for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
2113 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2114 TODO_SPEC (insn) = HARD_DEP;
2115 try_ready (insn);
2116 target_n_insns++;
2118 gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
2121 /* Add to ready list all 'ready' insns in valid source blocks.
2122 For speculative insns, check-live, exception-free, and
2123 issue-delay. */
2124 for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
2125 if (IS_VALID (bb_src))
2127 rtx src_head;
2128 rtx src_next_tail;
2129 rtx tail, head;
2131 get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
2132 &head, &tail);
2133 src_next_tail = NEXT_INSN (tail);
2134 src_head = head;
2136 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
2137 if (INSN_P (insn))
2139 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2140 TODO_SPEC (insn) = HARD_DEP;
2141 try_ready (insn);
2146 /* Called after taking INSN from the ready list. Returns nonzero if this
2147 insn can be scheduled, nonzero if we should silently discard it. */
2149 static int
2150 can_schedule_ready_p (rtx insn)
2152 /* An interblock motion? */
2153 if (INSN_BB (insn) != target_bb
2154 && IS_SPECULATIVE_INSN (insn)
2155 && !check_live (insn, INSN_BB (insn)))
2156 return 0;
2157 else
2158 return 1;
2161 /* Updates counter and other information. Split from can_schedule_ready_p ()
2162 because when we schedule insn speculatively then insn passed to
2163 can_schedule_ready_p () differs from the one passed to
2164 begin_schedule_ready (). */
2165 static void
2166 begin_schedule_ready (rtx insn)
2168 /* An interblock motion? */
2169 if (INSN_BB (insn) != target_bb)
2171 if (IS_SPECULATIVE_INSN (insn))
2173 gcc_assert (check_live (insn, INSN_BB (insn)));
2175 update_live (insn, INSN_BB (insn));
2177 /* For speculative load, mark insns fed by it. */
2178 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
2179 set_spec_fed (insn);
2181 nr_spec++;
2183 nr_inter++;
2185 else
2187 /* In block motion. */
2188 sched_target_n_insns++;
2190 sched_n_insns++;
2193 /* Called after INSN has all its hard dependencies resolved and the speculation
2194 of type TS is enough to overcome them all.
2195 Return nonzero if it should be moved to the ready list or the queue, or zero
2196 if we should silently discard it. */
2197 static ds_t
2198 new_ready (rtx next, ds_t ts)
2200 if (INSN_BB (next) != target_bb)
2202 int not_ex_free = 0;
2204 /* For speculative insns, before inserting to ready/queue,
2205 check live, exception-free, and issue-delay. */
2206 if (!IS_VALID (INSN_BB (next))
2207 || CANT_MOVE (next)
2208 || (IS_SPECULATIVE_INSN (next)
2209 && ((recog_memoized (next) >= 0
2210 && min_insn_conflict_delay (curr_state, next, next)
2211 > PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY))
2212 || IS_SPECULATION_CHECK_P (next)
2213 || !check_live (next, INSN_BB (next))
2214 || (not_ex_free = !is_exception_free (next, INSN_BB (next),
2215 target_bb)))))
2217 if (not_ex_free
2218 /* We are here because is_exception_free () == false.
2219 But we possibly can handle that with control speculation. */
2220 && sched_deps_info->generate_spec_deps
2221 && spec_info->mask & BEGIN_CONTROL)
2223 ds_t new_ds;
2225 /* Add control speculation to NEXT's dependency type. */
2226 new_ds = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
2228 /* Check if NEXT can be speculated with new dependency type. */
2229 if (sched_insn_is_legitimate_for_speculation_p (next, new_ds))
2230 /* Here we got new control-speculative instruction. */
2231 ts = new_ds;
2232 else
2233 /* NEXT isn't ready yet. */
2234 ts = DEP_POSTPONED;
2236 else
2237 /* NEXT isn't ready yet. */
2238 ts = DEP_POSTPONED;
2242 return ts;
2245 /* Return a string that contains the insn uid and optionally anything else
2246 necessary to identify this insn in an output. It's valid to use a
2247 static buffer for this. The ALIGNED parameter should cause the string
2248 to be formatted so that multiple output lines will line up nicely. */
2250 static const char *
2251 rgn_print_insn (const_rtx insn, int aligned)
2253 static char tmp[80];
2255 if (aligned)
2256 sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
2257 else
2259 if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
2260 sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
2261 else
2262 sprintf (tmp, "%d", INSN_UID (insn));
2264 return tmp;
2267 /* Compare priority of two insns. Return a positive number if the second
2268 insn is to be preferred for scheduling, and a negative one if the first
2269 is to be preferred. Zero if they are equally good. */
2271 static int
2272 rgn_rank (rtx insn1, rtx insn2)
2274 /* Some comparison make sense in interblock scheduling only. */
2275 if (INSN_BB (insn1) != INSN_BB (insn2))
2277 int spec_val, prob_val;
2279 /* Prefer an inblock motion on an interblock motion. */
2280 if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
2281 return 1;
2282 if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
2283 return -1;
2285 /* Prefer a useful motion on a speculative one. */
2286 spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
2287 if (spec_val)
2288 return spec_val;
2290 /* Prefer a more probable (speculative) insn. */
2291 prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
2292 if (prob_val)
2293 return prob_val;
2295 return 0;
2298 /* NEXT is an instruction that depends on INSN (a backward dependence);
2299 return nonzero if we should include this dependence in priority
2300 calculations. */
2303 contributes_to_priority (rtx next, rtx insn)
2305 /* NEXT and INSN reside in one ebb. */
2306 return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
2309 /* INSN is a JUMP_INSN. Store the set of registers that must be
2310 considered as used by this jump in USED. */
2312 static void
2313 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
2314 regset used ATTRIBUTE_UNUSED)
2316 /* Nothing to do here, since we postprocess jumps in
2317 add_branch_dependences. */
2320 /* This variable holds common_sched_info hooks and data relevant to
2321 the interblock scheduler. */
2322 static struct common_sched_info_def rgn_common_sched_info;
2325 /* This holds data for the dependence analysis relevant to
2326 the interblock scheduler. */
2327 static struct sched_deps_info_def rgn_sched_deps_info;
2329 /* This holds constant data used for initializing the above structure
2330 for the Haifa scheduler. */
2331 static const struct sched_deps_info_def rgn_const_sched_deps_info =
2333 compute_jump_reg_dependencies,
2334 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2335 0, 0, 0
2338 /* Same as above, but for the selective scheduler. */
2339 static const struct sched_deps_info_def rgn_const_sel_sched_deps_info =
2341 compute_jump_reg_dependencies,
2342 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2343 0, 0, 0
2346 /* Return true if scheduling INSN will trigger finish of scheduling
2347 current block. */
2348 static bool
2349 rgn_insn_finishes_block_p (rtx insn)
2351 if (INSN_BB (insn) == target_bb
2352 && sched_target_n_insns + 1 == target_n_insns)
2353 /* INSN is the last not-scheduled instruction in the current block. */
2354 return true;
2356 return false;
2359 /* Used in schedule_insns to initialize current_sched_info for scheduling
2360 regions (or single basic blocks). */
2362 static const struct haifa_sched_info rgn_const_sched_info =
2364 init_ready_list,
2365 can_schedule_ready_p,
2366 schedule_more_p,
2367 new_ready,
2368 rgn_rank,
2369 rgn_print_insn,
2370 contributes_to_priority,
2371 rgn_insn_finishes_block_p,
2373 NULL, NULL,
2374 NULL, NULL,
2375 0, 0,
2377 rgn_add_remove_insn,
2378 begin_schedule_ready,
2379 NULL,
2380 advance_target_bb,
2381 NULL, NULL,
2382 SCHED_RGN
2385 /* This variable holds the data and hooks needed to the Haifa scheduler backend
2386 for the interblock scheduler frontend. */
2387 static struct haifa_sched_info rgn_sched_info;
2389 /* Returns maximum priority that an insn was assigned to. */
2392 get_rgn_sched_max_insns_priority (void)
2394 return rgn_sched_info.sched_max_insns_priority;
2397 /* Determine if PAT sets a TARGET_CLASS_LIKELY_SPILLED_P register. */
2399 static bool
2400 sets_likely_spilled (rtx pat)
2402 bool ret = false;
2403 note_stores (pat, sets_likely_spilled_1, &ret);
2404 return ret;
2407 static void
2408 sets_likely_spilled_1 (rtx x, const_rtx pat, void *data)
2410 bool *ret = (bool *) data;
2412 if (GET_CODE (pat) == SET
2413 && REG_P (x)
2414 && HARD_REGISTER_P (x)
2415 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2416 *ret = true;
2419 /* A bitmap to note insns that participate in any dependency. Used in
2420 add_branch_dependences. */
2421 static sbitmap insn_referenced;
2423 /* Add dependences so that branches are scheduled to run last in their
2424 block. */
2425 static void
2426 add_branch_dependences (rtx head, rtx tail)
2428 rtx insn, last;
2430 /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
2431 that can throw exceptions, force them to remain in order at the end of
2432 the block by adding dependencies and giving the last a high priority.
2433 There may be notes present, and prev_head may also be a note.
2435 Branches must obviously remain at the end. Calls should remain at the
2436 end since moving them results in worse register allocation. Uses remain
2437 at the end to ensure proper register allocation.
2439 cc0 setters remain at the end because they can't be moved away from
2440 their cc0 user.
2442 COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2444 Insns setting TARGET_CLASS_LIKELY_SPILLED_P registers (usually return
2445 values) are not moved before reload because we can wind up with register
2446 allocation failures. */
2448 while (tail != head && DEBUG_INSN_P (tail))
2449 tail = PREV_INSN (tail);
2451 insn = tail;
2452 last = 0;
2453 while (CALL_P (insn)
2454 || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
2455 || (NONJUMP_INSN_P (insn)
2456 && (GET_CODE (PATTERN (insn)) == USE
2457 || GET_CODE (PATTERN (insn)) == CLOBBER
2458 || can_throw_internal (insn)
2459 #ifdef HAVE_cc0
2460 || sets_cc0_p (PATTERN (insn))
2461 #endif
2462 || (!reload_completed
2463 && sets_likely_spilled (PATTERN (insn)))))
2464 || NOTE_P (insn))
2466 if (!NOTE_P (insn))
2468 if (last != 0
2469 && sd_find_dep_between (insn, last, false) == NULL)
2471 if (! sched_insns_conditions_mutex_p (last, insn))
2472 add_dependence (last, insn, REG_DEP_ANTI);
2473 bitmap_set_bit (insn_referenced, INSN_LUID (insn));
2476 CANT_MOVE (insn) = 1;
2478 last = insn;
2481 /* Don't overrun the bounds of the basic block. */
2482 if (insn == head)
2483 break;
2486 insn = PREV_INSN (insn);
2487 while (insn != head && DEBUG_INSN_P (insn));
2490 /* Make sure these insns are scheduled last in their block. */
2491 insn = last;
2492 if (insn != 0)
2493 while (insn != head)
2495 insn = prev_nonnote_insn (insn);
2497 if (bitmap_bit_p (insn_referenced, INSN_LUID (insn))
2498 || DEBUG_INSN_P (insn))
2499 continue;
2501 if (! sched_insns_conditions_mutex_p (last, insn))
2502 add_dependence (last, insn, REG_DEP_ANTI);
2505 if (!targetm.have_conditional_execution ())
2506 return;
2508 /* Finally, if the block ends in a jump, and we are doing intra-block
2509 scheduling, make sure that the branch depends on any COND_EXEC insns
2510 inside the block to avoid moving the COND_EXECs past the branch insn.
2512 We only have to do this after reload, because (1) before reload there
2513 are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2514 scheduler after reload.
2516 FIXME: We could in some cases move COND_EXEC insns past the branch if
2517 this scheduler would be a little smarter. Consider this code:
2519 T = [addr]
2520 C ? addr += 4
2521 !C ? X += 12
2522 C ? T += 1
2523 C ? jump foo
2525 On a target with a one cycle stall on a memory access the optimal
2526 sequence would be:
2528 T = [addr]
2529 C ? addr += 4
2530 C ? T += 1
2531 C ? jump foo
2532 !C ? X += 12
2534 We don't want to put the 'X += 12' before the branch because it just
2535 wastes a cycle of execution time when the branch is taken.
2537 Note that in the example "!C" will always be true. That is another
2538 possible improvement for handling COND_EXECs in this scheduler: it
2539 could remove always-true predicates. */
2541 if (!reload_completed || ! (JUMP_P (tail) || JUMP_TABLE_DATA_P (tail)))
2542 return;
2544 insn = tail;
2545 while (insn != head)
2547 insn = PREV_INSN (insn);
2549 /* Note that we want to add this dependency even when
2550 sched_insns_conditions_mutex_p returns true. The whole point
2551 is that we _want_ this dependency, even if these insns really
2552 are independent. */
2553 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
2554 add_dependence (tail, insn, REG_DEP_ANTI);
2558 /* Data structures for the computation of data dependences in a regions. We
2559 keep one `deps' structure for every basic block. Before analyzing the
2560 data dependences for a bb, its variables are initialized as a function of
2561 the variables of its predecessors. When the analysis for a bb completes,
2562 we save the contents to the corresponding bb_deps[bb] variable. */
2564 static struct deps_desc *bb_deps;
2566 static void
2567 concat_insn_mem_list (rtx copy_insns, rtx copy_mems, rtx *old_insns_p,
2568 rtx *old_mems_p)
2570 rtx new_insns = *old_insns_p;
2571 rtx new_mems = *old_mems_p;
2573 while (copy_insns)
2575 new_insns = alloc_INSN_LIST (XEXP (copy_insns, 0), new_insns);
2576 new_mems = alloc_EXPR_LIST (VOIDmode, XEXP (copy_mems, 0), new_mems);
2577 copy_insns = XEXP (copy_insns, 1);
2578 copy_mems = XEXP (copy_mems, 1);
2581 *old_insns_p = new_insns;
2582 *old_mems_p = new_mems;
2585 /* Join PRED_DEPS to the SUCC_DEPS. */
2586 void
2587 deps_join (struct deps_desc *succ_deps, struct deps_desc *pred_deps)
2589 unsigned reg;
2590 reg_set_iterator rsi;
2592 /* The reg_last lists are inherited by successor. */
2593 EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
2595 struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
2596 struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
2598 succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
2599 succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
2600 succ_rl->implicit_sets
2601 = concat_INSN_LIST (pred_rl->implicit_sets, succ_rl->implicit_sets);
2602 succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
2603 succ_rl->clobbers);
2604 succ_rl->uses_length += pred_rl->uses_length;
2605 succ_rl->clobbers_length += pred_rl->clobbers_length;
2607 IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
2609 /* Mem read/write lists are inherited by successor. */
2610 concat_insn_mem_list (pred_deps->pending_read_insns,
2611 pred_deps->pending_read_mems,
2612 &succ_deps->pending_read_insns,
2613 &succ_deps->pending_read_mems);
2614 concat_insn_mem_list (pred_deps->pending_write_insns,
2615 pred_deps->pending_write_mems,
2616 &succ_deps->pending_write_insns,
2617 &succ_deps->pending_write_mems);
2619 succ_deps->pending_jump_insns
2620 = concat_INSN_LIST (pred_deps->pending_jump_insns,
2621 succ_deps->pending_jump_insns);
2622 succ_deps->last_pending_memory_flush
2623 = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
2624 succ_deps->last_pending_memory_flush);
2626 succ_deps->pending_read_list_length += pred_deps->pending_read_list_length;
2627 succ_deps->pending_write_list_length += pred_deps->pending_write_list_length;
2628 succ_deps->pending_flush_length += pred_deps->pending_flush_length;
2630 /* last_function_call is inherited by successor. */
2631 succ_deps->last_function_call
2632 = concat_INSN_LIST (pred_deps->last_function_call,
2633 succ_deps->last_function_call);
2635 /* last_function_call_may_noreturn is inherited by successor. */
2636 succ_deps->last_function_call_may_noreturn
2637 = concat_INSN_LIST (pred_deps->last_function_call_may_noreturn,
2638 succ_deps->last_function_call_may_noreturn);
2640 /* sched_before_next_call is inherited by successor. */
2641 succ_deps->sched_before_next_call
2642 = concat_INSN_LIST (pred_deps->sched_before_next_call,
2643 succ_deps->sched_before_next_call);
2646 /* After computing the dependencies for block BB, propagate the dependencies
2647 found in TMP_DEPS to the successors of the block. */
2648 static void
2649 propagate_deps (int bb, struct deps_desc *pred_deps)
2651 basic_block block = BASIC_BLOCK (BB_TO_BLOCK (bb));
2652 edge_iterator ei;
2653 edge e;
2655 /* bb's structures are inherited by its successors. */
2656 FOR_EACH_EDGE (e, ei, block->succs)
2658 /* Only bbs "below" bb, in the same region, are interesting. */
2659 if (e->dest == EXIT_BLOCK_PTR
2660 || CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
2661 || BLOCK_TO_BB (e->dest->index) <= bb)
2662 continue;
2664 deps_join (bb_deps + BLOCK_TO_BB (e->dest->index), pred_deps);
2667 /* These lists should point to the right place, for correct
2668 freeing later. */
2669 bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
2670 bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
2671 bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
2672 bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
2673 bb_deps[bb].pending_jump_insns = pred_deps->pending_jump_insns;
2675 /* Can't allow these to be freed twice. */
2676 pred_deps->pending_read_insns = 0;
2677 pred_deps->pending_read_mems = 0;
2678 pred_deps->pending_write_insns = 0;
2679 pred_deps->pending_write_mems = 0;
2680 pred_deps->pending_jump_insns = 0;
2683 /* Compute dependences inside bb. In a multiple blocks region:
2684 (1) a bb is analyzed after its predecessors, and (2) the lists in
2685 effect at the end of bb (after analyzing for bb) are inherited by
2686 bb's successors.
2688 Specifically for reg-reg data dependences, the block insns are
2689 scanned by sched_analyze () top-to-bottom. Three lists are
2690 maintained by sched_analyze (): reg_last[].sets for register DEFs,
2691 reg_last[].implicit_sets for implicit hard register DEFs, and
2692 reg_last[].uses for register USEs.
2694 When analysis is completed for bb, we update for its successors:
2695 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2696 ; - IMPLICIT_DEFS[succ] = Union (IMPLICIT_DEFS [succ], IMPLICIT_DEFS [bb])
2697 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2699 The mechanism for computing mem-mem data dependence is very
2700 similar, and the result is interblock dependences in the region. */
2702 static void
2703 compute_block_dependences (int bb)
2705 rtx head, tail;
2706 struct deps_desc tmp_deps;
2708 tmp_deps = bb_deps[bb];
2710 /* Do the analysis for this block. */
2711 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2712 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2714 sched_analyze (&tmp_deps, head, tail);
2716 /* Selective scheduling handles control dependencies by itself. */
2717 if (!sel_sched_p ())
2718 add_branch_dependences (head, tail);
2720 if (current_nr_blocks > 1)
2721 propagate_deps (bb, &tmp_deps);
2723 /* Free up the INSN_LISTs. */
2724 free_deps (&tmp_deps);
2726 if (targetm.sched.dependencies_evaluation_hook)
2727 targetm.sched.dependencies_evaluation_hook (head, tail);
2730 /* Free dependencies of instructions inside BB. */
2731 static void
2732 free_block_dependencies (int bb)
2734 rtx head;
2735 rtx tail;
2737 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2739 if (no_real_insns_p (head, tail))
2740 return;
2742 sched_free_deps (head, tail, true);
2745 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2746 them to the unused_*_list variables, so that they can be reused. */
2748 static void
2749 free_pending_lists (void)
2751 int bb;
2753 for (bb = 0; bb < current_nr_blocks; bb++)
2755 free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2756 free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2757 free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2758 free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
2759 free_INSN_LIST_list (&bb_deps[bb].pending_jump_insns);
2763 /* Print dependences for debugging starting from FROM_BB.
2764 Callable from debugger. */
2765 /* Print dependences for debugging starting from FROM_BB.
2766 Callable from debugger. */
2767 DEBUG_FUNCTION void
2768 debug_rgn_dependencies (int from_bb)
2770 int bb;
2772 fprintf (sched_dump,
2773 ";; --------------- forward dependences: ------------ \n");
2775 for (bb = from_bb; bb < current_nr_blocks; bb++)
2777 rtx head, tail;
2779 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2780 fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
2781 BB_TO_BLOCK (bb), bb);
2783 debug_dependencies (head, tail);
2787 /* Print dependencies information for instructions between HEAD and TAIL.
2788 ??? This function would probably fit best in haifa-sched.c. */
2789 void debug_dependencies (rtx head, rtx tail)
2791 rtx insn;
2792 rtx next_tail = NEXT_INSN (tail);
2794 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2795 "insn", "code", "bb", "dep", "prio", "cost",
2796 "reservation");
2797 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2798 "----", "----", "--", "---", "----", "----",
2799 "-----------");
2801 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2803 if (! INSN_P (insn))
2805 int n;
2806 fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
2807 if (NOTE_P (insn))
2809 n = NOTE_KIND (insn);
2810 fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
2812 else
2813 fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2814 continue;
2817 fprintf (sched_dump,
2818 ";; %s%5d%6d%6d%6d%6d%6d ",
2819 (SCHED_GROUP_P (insn) ? "+" : " "),
2820 INSN_UID (insn),
2821 INSN_CODE (insn),
2822 BLOCK_NUM (insn),
2823 sched_emulate_haifa_p ? -1 : sd_lists_size (insn, SD_LIST_BACK),
2824 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2825 : INSN_PRIORITY (insn))
2826 : INSN_PRIORITY (insn)),
2827 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2828 : insn_cost (insn))
2829 : insn_cost (insn)));
2831 if (recog_memoized (insn) < 0)
2832 fprintf (sched_dump, "nothing");
2833 else
2834 print_reservation (sched_dump, insn);
2836 fprintf (sched_dump, "\t: ");
2838 sd_iterator_def sd_it;
2839 dep_t dep;
2841 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
2842 fprintf (sched_dump, "%d%s%s ", INSN_UID (DEP_CON (dep)),
2843 DEP_NONREG (dep) ? "n" : "",
2844 DEP_MULTIPLE (dep) ? "m" : "");
2846 fprintf (sched_dump, "\n");
2849 fprintf (sched_dump, "\n");
2852 /* Returns true if all the basic blocks of the current region have
2853 NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
2854 bool
2855 sched_is_disabled_for_current_region_p (void)
2857 int bb;
2859 for (bb = 0; bb < current_nr_blocks; bb++)
2860 if (!(BASIC_BLOCK (BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
2861 return false;
2863 return true;
2866 /* Free all region dependencies saved in INSN_BACK_DEPS and
2867 INSN_RESOLVED_BACK_DEPS. The Haifa scheduler does this on the fly
2868 when scheduling, so this function is supposed to be called from
2869 the selective scheduling only. */
2870 void
2871 free_rgn_deps (void)
2873 int bb;
2875 for (bb = 0; bb < current_nr_blocks; bb++)
2877 rtx head, tail;
2879 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2880 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2882 sched_free_deps (head, tail, false);
2886 static int rgn_n_insns;
2888 /* Compute insn priority for a current region. */
2889 void
2890 compute_priorities (void)
2892 int bb;
2894 current_sched_info->sched_max_insns_priority = 0;
2895 for (bb = 0; bb < current_nr_blocks; bb++)
2897 rtx head, tail;
2899 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2900 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2902 if (no_real_insns_p (head, tail))
2903 continue;
2905 rgn_n_insns += set_priorities (head, tail);
2907 current_sched_info->sched_max_insns_priority++;
2910 /* (Re-)initialize the arrays of DFA states at the end of each basic block.
2912 SAVED_LAST_BASIC_BLOCK is the previous length of the arrays. It must be
2913 zero for the first call to this function, to allocate the arrays for the
2914 first time.
2916 This function is called once during initialization of the scheduler, and
2917 called again to resize the arrays if new basic blocks have been created,
2918 for example for speculation recovery code. */
2920 static void
2921 realloc_bb_state_array (int saved_last_basic_block)
2923 char *old_bb_state_array = bb_state_array;
2924 size_t lbb = (size_t) last_basic_block;
2925 size_t slbb = (size_t) saved_last_basic_block;
2927 /* Nothing to do if nothing changed since the last time this was called. */
2928 if (saved_last_basic_block == last_basic_block)
2929 return;
2931 /* The selective scheduler doesn't use the state arrays. */
2932 if (sel_sched_p ())
2934 gcc_assert (bb_state_array == NULL && bb_state == NULL);
2935 return;
2938 gcc_checking_assert (saved_last_basic_block == 0
2939 || (bb_state_array != NULL && bb_state != NULL));
2941 bb_state_array = XRESIZEVEC (char, bb_state_array, lbb * dfa_state_size);
2942 bb_state = XRESIZEVEC (state_t, bb_state, lbb);
2944 /* If BB_STATE_ARRAY has moved, fixup all the state pointers array.
2945 Otherwise only fixup the newly allocated ones. For the state
2946 array itself, only initialize the new entries. */
2947 bool bb_state_array_moved = (bb_state_array != old_bb_state_array);
2948 for (size_t i = bb_state_array_moved ? 0 : slbb; i < lbb; i++)
2949 bb_state[i] = (state_t) (bb_state_array + i * dfa_state_size);
2950 for (size_t i = slbb; i < lbb; i++)
2951 state_reset (bb_state[i]);
2954 /* Free the arrays of DFA states at the end of each basic block. */
2956 static void
2957 free_bb_state_array (void)
2959 free (bb_state_array);
2960 free (bb_state);
2961 bb_state_array = NULL;
2962 bb_state = NULL;
2965 /* Schedule a region. A region is either an inner loop, a loop-free
2966 subroutine, or a single basic block. Each bb in the region is
2967 scheduled after its flow predecessors. */
2969 static void
2970 schedule_region (int rgn)
2972 int bb;
2973 int sched_rgn_n_insns = 0;
2975 rgn_n_insns = 0;
2977 rgn_setup_region (rgn);
2979 /* Don't schedule region that is marked by
2980 NOTE_DISABLE_SCHED_OF_BLOCK. */
2981 if (sched_is_disabled_for_current_region_p ())
2982 return;
2984 sched_rgn_compute_dependencies (rgn);
2986 sched_rgn_local_init (rgn);
2988 /* Set priorities. */
2989 compute_priorities ();
2991 sched_extend_ready_list (rgn_n_insns);
2993 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2995 sched_init_region_reg_pressure_info ();
2996 for (bb = 0; bb < current_nr_blocks; bb++)
2998 basic_block first_bb, last_bb;
2999 rtx head, tail;
3001 first_bb = EBB_FIRST_BB (bb);
3002 last_bb = EBB_LAST_BB (bb);
3004 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3006 if (no_real_insns_p (head, tail))
3008 gcc_assert (first_bb == last_bb);
3009 continue;
3011 sched_setup_bb_reg_pressure_info (first_bb, PREV_INSN (head));
3015 /* Now we can schedule all blocks. */
3016 for (bb = 0; bb < current_nr_blocks; bb++)
3018 basic_block first_bb, last_bb, curr_bb;
3019 rtx head, tail;
3021 first_bb = EBB_FIRST_BB (bb);
3022 last_bb = EBB_LAST_BB (bb);
3024 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3026 if (no_real_insns_p (head, tail))
3028 gcc_assert (first_bb == last_bb);
3029 continue;
3032 current_sched_info->prev_head = PREV_INSN (head);
3033 current_sched_info->next_tail = NEXT_INSN (tail);
3035 remove_notes (head, tail);
3037 unlink_bb_notes (first_bb, last_bb);
3039 target_bb = bb;
3041 gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
3042 current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
3044 curr_bb = first_bb;
3045 if (dbg_cnt (sched_block))
3047 edge f;
3048 int saved_last_basic_block = last_basic_block;
3050 schedule_block (&curr_bb, bb_state[first_bb->index]);
3051 gcc_assert (EBB_FIRST_BB (bb) == first_bb);
3052 sched_rgn_n_insns += sched_n_insns;
3053 realloc_bb_state_array (saved_last_basic_block);
3054 f = find_fallthru_edge (last_bb->succs);
3055 if (f && f->probability * 100 / REG_BR_PROB_BASE >=
3056 PARAM_VALUE (PARAM_SCHED_STATE_EDGE_PROB_CUTOFF))
3058 memcpy (bb_state[f->dest->index], curr_state,
3059 dfa_state_size);
3060 if (sched_verbose >= 5)
3061 fprintf (sched_dump, "saving state for edge %d->%d\n",
3062 f->src->index, f->dest->index);
3065 else
3067 sched_rgn_n_insns += rgn_n_insns;
3070 /* Clean up. */
3071 if (current_nr_blocks > 1)
3072 free_trg_info ();
3075 /* Sanity check: verify that all region insns were scheduled. */
3076 gcc_assert (sched_rgn_n_insns == rgn_n_insns);
3078 sched_finish_ready_list ();
3080 /* Done with this region. */
3081 sched_rgn_local_finish ();
3083 /* Free dependencies. */
3084 for (bb = 0; bb < current_nr_blocks; ++bb)
3085 free_block_dependencies (bb);
3087 gcc_assert (haifa_recovery_bb_ever_added_p
3088 || deps_pools_are_empty_p ());
3091 /* Initialize data structures for region scheduling. */
3093 void
3094 sched_rgn_init (bool single_blocks_p)
3096 min_spec_prob = ((PARAM_VALUE (PARAM_MIN_SPEC_PROB) * REG_BR_PROB_BASE)
3097 / 100);
3099 nr_inter = 0;
3100 nr_spec = 0;
3102 extend_regions ();
3104 CONTAINING_RGN (ENTRY_BLOCK) = -1;
3105 CONTAINING_RGN (EXIT_BLOCK) = -1;
3107 realloc_bb_state_array (0);
3109 /* Compute regions for scheduling. */
3110 if (single_blocks_p
3111 || n_basic_blocks == NUM_FIXED_BLOCKS + 1
3112 || !flag_schedule_interblock
3113 || is_cfg_nonregular ())
3115 find_single_block_region (sel_sched_p ());
3117 else
3119 /* Compute the dominators and post dominators. */
3120 if (!sel_sched_p ())
3121 calculate_dominance_info (CDI_DOMINATORS);
3123 /* Find regions. */
3124 find_rgns ();
3126 if (sched_verbose >= 3)
3127 debug_regions ();
3129 /* For now. This will move as more and more of haifa is converted
3130 to using the cfg code. */
3131 if (!sel_sched_p ())
3132 free_dominance_info (CDI_DOMINATORS);
3135 gcc_assert (0 < nr_regions && nr_regions <= n_basic_blocks);
3137 RGN_BLOCKS (nr_regions) = (RGN_BLOCKS (nr_regions - 1) +
3138 RGN_NR_BLOCKS (nr_regions - 1));
3141 /* Free data structures for region scheduling. */
3142 void
3143 sched_rgn_finish (void)
3145 free_bb_state_array ();
3147 /* Reposition the prologue and epilogue notes in case we moved the
3148 prologue/epilogue insns. */
3149 if (reload_completed)
3150 reposition_prologue_and_epilogue_notes ();
3152 if (sched_verbose)
3154 if (reload_completed == 0
3155 && flag_schedule_interblock)
3157 fprintf (sched_dump,
3158 "\n;; Procedure interblock/speculative motions == %d/%d \n",
3159 nr_inter, nr_spec);
3161 else
3162 gcc_assert (nr_inter <= 0);
3163 fprintf (sched_dump, "\n\n");
3166 nr_regions = 0;
3168 free (rgn_table);
3169 rgn_table = NULL;
3171 free (rgn_bb_table);
3172 rgn_bb_table = NULL;
3174 free (block_to_bb);
3175 block_to_bb = NULL;
3177 free (containing_rgn);
3178 containing_rgn = NULL;
3180 free (ebb_head);
3181 ebb_head = NULL;
3184 /* Setup global variables like CURRENT_BLOCKS and CURRENT_NR_BLOCK to
3185 point to the region RGN. */
3186 void
3187 rgn_setup_region (int rgn)
3189 int bb;
3191 /* Set variables for the current region. */
3192 current_nr_blocks = RGN_NR_BLOCKS (rgn);
3193 current_blocks = RGN_BLOCKS (rgn);
3195 /* EBB_HEAD is a region-scope structure. But we realloc it for
3196 each region to save time/memory/something else.
3197 See comments in add_block1, for what reasons we allocate +1 element. */
3198 ebb_head = XRESIZEVEC (int, ebb_head, current_nr_blocks + 1);
3199 for (bb = 0; bb <= current_nr_blocks; bb++)
3200 ebb_head[bb] = current_blocks + bb;
3203 /* Compute instruction dependencies in region RGN. */
3204 void
3205 sched_rgn_compute_dependencies (int rgn)
3207 if (!RGN_DONT_CALC_DEPS (rgn))
3209 int bb;
3211 if (sel_sched_p ())
3212 sched_emulate_haifa_p = 1;
3214 init_deps_global ();
3216 /* Initializations for region data dependence analysis. */
3217 bb_deps = XNEWVEC (struct deps_desc, current_nr_blocks);
3218 for (bb = 0; bb < current_nr_blocks; bb++)
3219 init_deps (bb_deps + bb, false);
3221 /* Initialize bitmap used in add_branch_dependences. */
3222 insn_referenced = sbitmap_alloc (sched_max_luid);
3223 bitmap_clear (insn_referenced);
3225 /* Compute backward dependencies. */
3226 for (bb = 0; bb < current_nr_blocks; bb++)
3227 compute_block_dependences (bb);
3229 sbitmap_free (insn_referenced);
3230 free_pending_lists ();
3231 finish_deps_global ();
3232 free (bb_deps);
3234 /* We don't want to recalculate this twice. */
3235 RGN_DONT_CALC_DEPS (rgn) = 1;
3237 if (sel_sched_p ())
3238 sched_emulate_haifa_p = 0;
3240 else
3241 /* (This is a recovery block. It is always a single block region.)
3242 OR (We use selective scheduling.) */
3243 gcc_assert (current_nr_blocks == 1 || sel_sched_p ());
3246 /* Init region data structures. Returns true if this region should
3247 not be scheduled. */
3248 void
3249 sched_rgn_local_init (int rgn)
3251 int bb;
3253 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
3254 if (current_nr_blocks > 1)
3256 basic_block block;
3257 edge e;
3258 edge_iterator ei;
3260 prob = XNEWVEC (int, current_nr_blocks);
3262 dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
3263 bitmap_vector_clear (dom, current_nr_blocks);
3265 /* Use ->aux to implement EDGE_TO_BIT mapping. */
3266 rgn_nr_edges = 0;
3267 FOR_EACH_BB (block)
3269 if (CONTAINING_RGN (block->index) != rgn)
3270 continue;
3271 FOR_EACH_EDGE (e, ei, block->succs)
3272 SET_EDGE_TO_BIT (e, rgn_nr_edges++);
3275 rgn_edges = XNEWVEC (edge, rgn_nr_edges);
3276 rgn_nr_edges = 0;
3277 FOR_EACH_BB (block)
3279 if (CONTAINING_RGN (block->index) != rgn)
3280 continue;
3281 FOR_EACH_EDGE (e, ei, block->succs)
3282 rgn_edges[rgn_nr_edges++] = e;
3285 /* Split edges. */
3286 pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3287 bitmap_vector_clear (pot_split, current_nr_blocks);
3288 ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3289 bitmap_vector_clear (ancestor_edges, current_nr_blocks);
3291 /* Compute probabilities, dominators, split_edges. */
3292 for (bb = 0; bb < current_nr_blocks; bb++)
3293 compute_dom_prob_ps (bb);
3295 /* Cleanup ->aux used for EDGE_TO_BIT mapping. */
3296 /* We don't need them anymore. But we want to avoid duplication of
3297 aux fields in the newly created edges. */
3298 FOR_EACH_BB (block)
3300 if (CONTAINING_RGN (block->index) != rgn)
3301 continue;
3302 FOR_EACH_EDGE (e, ei, block->succs)
3303 e->aux = NULL;
3308 /* Free data computed for the finished region. */
3309 void
3310 sched_rgn_local_free (void)
3312 free (prob);
3313 sbitmap_vector_free (dom);
3314 sbitmap_vector_free (pot_split);
3315 sbitmap_vector_free (ancestor_edges);
3316 free (rgn_edges);
3319 /* Free data computed for the finished region. */
3320 void
3321 sched_rgn_local_finish (void)
3323 if (current_nr_blocks > 1 && !sel_sched_p ())
3325 sched_rgn_local_free ();
3329 /* Setup scheduler infos. */
3330 void
3331 rgn_setup_common_sched_info (void)
3333 memcpy (&rgn_common_sched_info, &haifa_common_sched_info,
3334 sizeof (rgn_common_sched_info));
3336 rgn_common_sched_info.fix_recovery_cfg = rgn_fix_recovery_cfg;
3337 rgn_common_sched_info.add_block = rgn_add_block;
3338 rgn_common_sched_info.estimate_number_of_insns
3339 = rgn_estimate_number_of_insns;
3340 rgn_common_sched_info.sched_pass_id = SCHED_RGN_PASS;
3342 common_sched_info = &rgn_common_sched_info;
3345 /* Setup all *_sched_info structures (for the Haifa frontend
3346 and for the dependence analysis) in the interblock scheduler. */
3347 void
3348 rgn_setup_sched_infos (void)
3350 if (!sel_sched_p ())
3351 memcpy (&rgn_sched_deps_info, &rgn_const_sched_deps_info,
3352 sizeof (rgn_sched_deps_info));
3353 else
3354 memcpy (&rgn_sched_deps_info, &rgn_const_sel_sched_deps_info,
3355 sizeof (rgn_sched_deps_info));
3357 sched_deps_info = &rgn_sched_deps_info;
3359 memcpy (&rgn_sched_info, &rgn_const_sched_info, sizeof (rgn_sched_info));
3360 current_sched_info = &rgn_sched_info;
3363 /* The one entry point in this file. */
3364 void
3365 schedule_insns (void)
3367 int rgn;
3369 /* Taking care of this degenerate case makes the rest of
3370 this code simpler. */
3371 if (n_basic_blocks == NUM_FIXED_BLOCKS)
3372 return;
3374 rgn_setup_common_sched_info ();
3375 rgn_setup_sched_infos ();
3377 haifa_sched_init ();
3378 sched_rgn_init (reload_completed);
3380 bitmap_initialize (&not_in_df, 0);
3381 bitmap_clear (&not_in_df);
3383 /* Schedule every region in the subroutine. */
3384 for (rgn = 0; rgn < nr_regions; rgn++)
3385 if (dbg_cnt (sched_region))
3386 schedule_region (rgn);
3388 /* Clean up. */
3389 sched_rgn_finish ();
3390 bitmap_clear (&not_in_df);
3392 haifa_sched_finish ();
3395 /* INSN has been added to/removed from current region. */
3396 static void
3397 rgn_add_remove_insn (rtx insn, int remove_p)
3399 if (!remove_p)
3400 rgn_n_insns++;
3401 else
3402 rgn_n_insns--;
3404 if (INSN_BB (insn) == target_bb)
3406 if (!remove_p)
3407 target_n_insns++;
3408 else
3409 target_n_insns--;
3413 /* Extend internal data structures. */
3414 void
3415 extend_regions (void)
3417 rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks);
3418 rgn_bb_table = XRESIZEVEC (int, rgn_bb_table, n_basic_blocks);
3419 block_to_bb = XRESIZEVEC (int, block_to_bb, last_basic_block);
3420 containing_rgn = XRESIZEVEC (int, containing_rgn, last_basic_block);
3423 void
3424 rgn_make_new_region_out_of_new_block (basic_block bb)
3426 int i;
3428 i = RGN_BLOCKS (nr_regions);
3429 /* I - first free position in rgn_bb_table. */
3431 rgn_bb_table[i] = bb->index;
3432 RGN_NR_BLOCKS (nr_regions) = 1;
3433 RGN_HAS_REAL_EBB (nr_regions) = 0;
3434 RGN_DONT_CALC_DEPS (nr_regions) = 0;
3435 CONTAINING_RGN (bb->index) = nr_regions;
3436 BLOCK_TO_BB (bb->index) = 0;
3438 nr_regions++;
3440 RGN_BLOCKS (nr_regions) = i + 1;
3443 /* BB was added to ebb after AFTER. */
3444 static void
3445 rgn_add_block (basic_block bb, basic_block after)
3447 extend_regions ();
3448 bitmap_set_bit (&not_in_df, bb->index);
3450 if (after == 0 || after == EXIT_BLOCK_PTR)
3452 rgn_make_new_region_out_of_new_block (bb);
3453 RGN_DONT_CALC_DEPS (nr_regions - 1) = (after == EXIT_BLOCK_PTR);
3455 else
3457 int i, pos;
3459 /* We need to fix rgn_table, block_to_bb, containing_rgn
3460 and ebb_head. */
3462 BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
3464 /* We extend ebb_head to one more position to
3465 easily find the last position of the last ebb in
3466 the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3467 is _always_ valid for access. */
3469 i = BLOCK_TO_BB (after->index) + 1;
3470 pos = ebb_head[i] - 1;
3471 /* Now POS is the index of the last block in the region. */
3473 /* Find index of basic block AFTER. */
3474 for (; rgn_bb_table[pos] != after->index; pos--)
3477 pos++;
3478 gcc_assert (pos > ebb_head[i - 1]);
3480 /* i - ebb right after "AFTER". */
3481 /* ebb_head[i] - VALID. */
3483 /* Source position: ebb_head[i]
3484 Destination position: ebb_head[i] + 1
3485 Last position:
3486 RGN_BLOCKS (nr_regions) - 1
3487 Number of elements to copy: (last_position) - (source_position) + 1
3490 memmove (rgn_bb_table + pos + 1,
3491 rgn_bb_table + pos,
3492 ((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
3493 * sizeof (*rgn_bb_table));
3495 rgn_bb_table[pos] = bb->index;
3497 for (; i <= current_nr_blocks; i++)
3498 ebb_head [i]++;
3500 i = CONTAINING_RGN (after->index);
3501 CONTAINING_RGN (bb->index) = i;
3503 RGN_HAS_REAL_EBB (i) = 1;
3505 for (++i; i <= nr_regions; i++)
3506 RGN_BLOCKS (i)++;
3510 /* Fix internal data after interblock movement of jump instruction.
3511 For parameter meaning please refer to
3512 sched-int.h: struct sched_info: fix_recovery_cfg. */
3513 static void
3514 rgn_fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
3516 int old_pos, new_pos, i;
3518 BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
3520 for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
3521 rgn_bb_table[old_pos] != check_bb_nexti;
3522 old_pos--)
3524 gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
3526 for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
3527 rgn_bb_table[new_pos] != bbi;
3528 new_pos--)
3530 new_pos++;
3531 gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
3533 gcc_assert (new_pos < old_pos);
3535 memmove (rgn_bb_table + new_pos + 1,
3536 rgn_bb_table + new_pos,
3537 (old_pos - new_pos) * sizeof (*rgn_bb_table));
3539 rgn_bb_table[new_pos] = check_bb_nexti;
3541 for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
3542 ebb_head[i]++;
3545 /* Return next block in ebb chain. For parameter meaning please refer to
3546 sched-int.h: struct sched_info: advance_target_bb. */
3547 static basic_block
3548 advance_target_bb (basic_block bb, rtx insn)
3550 if (insn)
3551 return 0;
3553 gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
3554 && BLOCK_TO_BB (bb->next_bb->index) == target_bb);
3555 return bb->next_bb;
3558 #endif
3560 static bool
3561 gate_handle_sched (void)
3563 #ifdef INSN_SCHEDULING
3564 return optimize > 0 && flag_schedule_insns && dbg_cnt (sched_func);
3565 #else
3566 return 0;
3567 #endif
3570 /* Run instruction scheduler. */
3571 static unsigned int
3572 rest_of_handle_sched (void)
3574 #ifdef INSN_SCHEDULING
3575 if (flag_selective_scheduling
3576 && ! maybe_skip_selective_scheduling ())
3577 run_selective_scheduling ();
3578 else
3579 schedule_insns ();
3580 #endif
3581 return 0;
3584 static bool
3585 gate_handle_sched2 (void)
3587 #ifdef INSN_SCHEDULING
3588 return optimize > 0 && flag_schedule_insns_after_reload
3589 && !targetm.delay_sched2 && dbg_cnt (sched2_func);
3590 #else
3591 return 0;
3592 #endif
3595 /* Run second scheduling pass after reload. */
3596 static unsigned int
3597 rest_of_handle_sched2 (void)
3599 #ifdef INSN_SCHEDULING
3600 if (flag_selective_scheduling2
3601 && ! maybe_skip_selective_scheduling ())
3602 run_selective_scheduling ();
3603 else
3605 /* Do control and data sched analysis again,
3606 and write some more of the results to dump file. */
3607 if (flag_sched2_use_superblocks)
3608 schedule_ebbs ();
3609 else
3610 schedule_insns ();
3612 #endif
3613 return 0;
3616 struct rtl_opt_pass pass_sched =
3619 RTL_PASS,
3620 "sched1", /* name */
3621 OPTGROUP_NONE, /* optinfo_flags */
3622 gate_handle_sched, /* gate */
3623 rest_of_handle_sched, /* execute */
3624 NULL, /* sub */
3625 NULL, /* next */
3626 0, /* static_pass_number */
3627 TV_SCHED, /* tv_id */
3628 0, /* properties_required */
3629 0, /* properties_provided */
3630 0, /* properties_destroyed */
3631 0, /* todo_flags_start */
3632 TODO_df_finish | TODO_verify_rtl_sharing |
3633 TODO_verify_flow /* todo_flags_finish */
3637 struct rtl_opt_pass pass_sched2 =
3640 RTL_PASS,
3641 "sched2", /* name */
3642 OPTGROUP_NONE, /* optinfo_flags */
3643 gate_handle_sched2, /* gate */
3644 rest_of_handle_sched2, /* execute */
3645 NULL, /* sub */
3646 NULL, /* next */
3647 0, /* static_pass_number */
3648 TV_SCHED2, /* tv_id */
3649 0, /* properties_required */
3650 0, /* properties_provided */
3651 0, /* properties_destroyed */
3652 0, /* todo_flags_start */
3653 TODO_df_finish | TODO_verify_rtl_sharing |
3654 TODO_verify_flow /* todo_flags_finish */