Daily bump.
[official-gcc.git] / gcc / mode-switching.c
blob2bcb154d22b8e27fb5a0481908819f658a8452d7
1 /* CPU mode switching
2 Copyright (C) 1998-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "regs.h"
27 #include "hard-reg-set.h"
28 #include "flags.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "basic-block.h"
32 #include "tm_p.h"
33 #include "function.h"
34 #include "tree-pass.h"
35 #include "df.h"
36 #include "emit-rtl.h"
38 /* We want target macros for the mode switching code to be able to refer
39 to instruction attribute values. */
40 #include "insn-attr.h"
42 #ifdef OPTIMIZE_MODE_SWITCHING
44 /* The algorithm for setting the modes consists of scanning the insn list
45 and finding all the insns which require a specific mode. Each insn gets
46 a unique struct seginfo element. These structures are inserted into a list
47 for each basic block. For each entity, there is an array of bb_info over
48 the flow graph basic blocks (local var 'bb_info'), and contains a list
49 of all insns within that basic block, in the order they are encountered.
51 For each entity, any basic block WITHOUT any insns requiring a specific
52 mode are given a single entry, without a mode. (Each basic block
53 in the flow graph must have at least one entry in the segment table.)
55 The LCM algorithm is then run over the flow graph to determine where to
56 place the sets to the highest-priority value in respect of first the first
57 insn in any one block. Any adjustments required to the transparency
58 vectors are made, then the next iteration starts for the next-lower
59 priority mode, till for each entity all modes are exhausted.
61 More details are located in the code for optimize_mode_switching(). */
63 /* This structure contains the information for each insn which requires
64 either single or double mode to be set.
65 MODE is the mode this insn must be executed in.
66 INSN_PTR is the insn to be executed (may be the note that marks the
67 beginning of a basic block).
68 BBNUM is the flow graph basic block this insn occurs in.
69 NEXT is the next insn in the same basic block. */
70 struct seginfo
72 int mode;
73 rtx insn_ptr;
74 int bbnum;
75 struct seginfo *next;
76 HARD_REG_SET regs_live;
79 struct bb_info
81 struct seginfo *seginfo;
82 int computing;
85 /* These bitmaps are used for the LCM algorithm. */
87 static sbitmap *antic;
88 static sbitmap *transp;
89 static sbitmap *comp;
91 static struct seginfo * new_seginfo (int, rtx, int, HARD_REG_SET);
92 static void add_seginfo (struct bb_info *, struct seginfo *);
93 static void reg_dies (rtx, HARD_REG_SET *);
94 static void reg_becomes_live (rtx, const_rtx, void *);
95 static void make_preds_opaque (basic_block, int);
98 /* This function will allocate a new BBINFO structure, initialized
99 with the MODE, INSN, and basic block BB parameters. */
101 static struct seginfo *
102 new_seginfo (int mode, rtx insn, int bb, HARD_REG_SET regs_live)
104 struct seginfo *ptr;
105 ptr = XNEW (struct seginfo);
106 ptr->mode = mode;
107 ptr->insn_ptr = insn;
108 ptr->bbnum = bb;
109 ptr->next = NULL;
110 COPY_HARD_REG_SET (ptr->regs_live, regs_live);
111 return ptr;
114 /* Add a seginfo element to the end of a list.
115 HEAD is a pointer to the list beginning.
116 INFO is the structure to be linked in. */
118 static void
119 add_seginfo (struct bb_info *head, struct seginfo *info)
121 struct seginfo *ptr;
123 if (head->seginfo == NULL)
124 head->seginfo = info;
125 else
127 ptr = head->seginfo;
128 while (ptr->next != NULL)
129 ptr = ptr->next;
130 ptr->next = info;
134 /* Make all predecessors of basic block B opaque, recursively, till we hit
135 some that are already non-transparent, or an edge where aux is set; that
136 denotes that a mode set is to be done on that edge.
137 J is the bit number in the bitmaps that corresponds to the entity that
138 we are currently handling mode-switching for. */
140 static void
141 make_preds_opaque (basic_block b, int j)
143 edge e;
144 edge_iterator ei;
146 FOR_EACH_EDGE (e, ei, b->preds)
148 basic_block pb = e->src;
150 if (e->aux || ! bitmap_bit_p (transp[pb->index], j))
151 continue;
153 bitmap_clear_bit (transp[pb->index], j);
154 make_preds_opaque (pb, j);
158 /* Record in LIVE that register REG died. */
160 static void
161 reg_dies (rtx reg, HARD_REG_SET *live)
163 int regno;
165 if (!REG_P (reg))
166 return;
168 regno = REGNO (reg);
169 if (regno < FIRST_PSEUDO_REGISTER)
170 remove_from_hard_reg_set (live, GET_MODE (reg), regno);
173 /* Record in LIVE that register REG became live.
174 This is called via note_stores. */
176 static void
177 reg_becomes_live (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *live)
179 int regno;
181 if (GET_CODE (reg) == SUBREG)
182 reg = SUBREG_REG (reg);
184 if (!REG_P (reg))
185 return;
187 regno = REGNO (reg);
188 if (regno < FIRST_PSEUDO_REGISTER)
189 add_to_hard_reg_set ((HARD_REG_SET *) live, GET_MODE (reg), regno);
192 /* Make sure if MODE_ENTRY is defined the MODE_EXIT is defined
193 and vice versa. */
194 #if defined (MODE_ENTRY) != defined (MODE_EXIT)
195 #error "Both MODE_ENTRY and MODE_EXIT must be defined"
196 #endif
198 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
199 /* Split the fallthrough edge to the exit block, so that we can note
200 that there NORMAL_MODE is required. Return the new block if it's
201 inserted before the exit block. Otherwise return null. */
203 static basic_block
204 create_pre_exit (int n_entities, int *entity_map, const int *num_modes)
206 edge eg;
207 edge_iterator ei;
208 basic_block pre_exit;
210 /* The only non-call predecessor at this stage is a block with a
211 fallthrough edge; there can be at most one, but there could be
212 none at all, e.g. when exit is called. */
213 pre_exit = 0;
214 FOR_EACH_EDGE (eg, ei, EXIT_BLOCK_PTR->preds)
215 if (eg->flags & EDGE_FALLTHRU)
217 basic_block src_bb = eg->src;
218 rtx last_insn, ret_reg;
220 gcc_assert (!pre_exit);
221 /* If this function returns a value at the end, we have to
222 insert the final mode switch before the return value copy
223 to its hard register. */
224 if (EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 1
225 && NONJUMP_INSN_P ((last_insn = BB_END (src_bb)))
226 && GET_CODE (PATTERN (last_insn)) == USE
227 && GET_CODE ((ret_reg = XEXP (PATTERN (last_insn), 0))) == REG)
229 int ret_start = REGNO (ret_reg);
230 int nregs = hard_regno_nregs[ret_start][GET_MODE (ret_reg)];
231 int ret_end = ret_start + nregs;
232 int short_block = 0;
233 int maybe_builtin_apply = 0;
234 int forced_late_switch = 0;
235 rtx before_return_copy;
239 rtx return_copy = PREV_INSN (last_insn);
240 rtx return_copy_pat, copy_reg;
241 int copy_start, copy_num;
242 int j;
244 if (NONDEBUG_INSN_P (return_copy))
246 /* When using SJLJ exceptions, the call to the
247 unregister function is inserted between the
248 clobber of the return value and the copy.
249 We do not want to split the block before this
250 or any other call; if we have not found the
251 copy yet, the copy must have been deleted. */
252 if (CALL_P (return_copy))
254 short_block = 1;
255 break;
257 return_copy_pat = PATTERN (return_copy);
258 switch (GET_CODE (return_copy_pat))
260 case USE:
261 /* Skip __builtin_apply pattern. */
262 if (GET_CODE (XEXP (return_copy_pat, 0)) == REG
263 && (targetm.calls.function_value_regno_p
264 (REGNO (XEXP (return_copy_pat, 0)))))
266 maybe_builtin_apply = 1;
267 last_insn = return_copy;
268 continue;
270 break;
272 case ASM_OPERANDS:
273 /* Skip barrier insns. */
274 if (!MEM_VOLATILE_P (return_copy_pat))
275 break;
277 /* Fall through. */
279 case ASM_INPUT:
280 case UNSPEC_VOLATILE:
281 last_insn = return_copy;
282 continue;
284 default:
285 break;
288 /* If the return register is not (in its entirety)
289 likely spilled, the return copy might be
290 partially or completely optimized away. */
291 return_copy_pat = single_set (return_copy);
292 if (!return_copy_pat)
294 return_copy_pat = PATTERN (return_copy);
295 if (GET_CODE (return_copy_pat) != CLOBBER)
296 break;
297 else if (!optimize)
299 /* This might be (clobber (reg [<result>]))
300 when not optimizing. Then check if
301 the previous insn is the clobber for
302 the return register. */
303 copy_reg = SET_DEST (return_copy_pat);
304 if (GET_CODE (copy_reg) == REG
305 && !HARD_REGISTER_NUM_P (REGNO (copy_reg)))
307 if (INSN_P (PREV_INSN (return_copy)))
309 return_copy = PREV_INSN (return_copy);
310 return_copy_pat = PATTERN (return_copy);
311 if (GET_CODE (return_copy_pat) != CLOBBER)
312 break;
317 copy_reg = SET_DEST (return_copy_pat);
318 if (GET_CODE (copy_reg) == REG)
319 copy_start = REGNO (copy_reg);
320 else if (GET_CODE (copy_reg) == SUBREG
321 && GET_CODE (SUBREG_REG (copy_reg)) == REG)
322 copy_start = REGNO (SUBREG_REG (copy_reg));
323 else
325 /* When control reaches end of non-void function,
326 there are no return copy insns at all. This
327 avoids an ice on that invalid function. */
328 if (ret_start + nregs == ret_end)
329 short_block = 1;
330 break;
332 if (!targetm.calls.function_value_regno_p (copy_start))
334 last_insn = return_copy;
335 continue;
337 copy_num
338 = hard_regno_nregs[copy_start][GET_MODE (copy_reg)];
340 /* If the return register is not likely spilled, - as is
341 the case for floating point on SH4 - then it might
342 be set by an arithmetic operation that needs a
343 different mode than the exit block. */
344 for (j = n_entities - 1; j >= 0; j--)
346 int e = entity_map[j];
347 int mode = MODE_NEEDED (e, return_copy);
349 if (mode != num_modes[e] && mode != MODE_EXIT (e))
350 break;
352 if (j >= 0)
354 /* __builtin_return emits a sequence of loads to all
355 return registers. One of them might require
356 another mode than MODE_EXIT, even if it is
357 unrelated to the return value, so we want to put
358 the final mode switch after it. */
359 if (maybe_builtin_apply
360 && targetm.calls.function_value_regno_p
361 (copy_start))
362 forced_late_switch = 1;
364 /* For the SH4, floating point loads depend on fpscr,
365 thus we might need to put the final mode switch
366 after the return value copy. That is still OK,
367 because a floating point return value does not
368 conflict with address reloads. */
369 if (copy_start >= ret_start
370 && copy_start + copy_num <= ret_end
371 && OBJECT_P (SET_SRC (return_copy_pat)))
372 forced_late_switch = 1;
373 break;
376 if (copy_start >= ret_start
377 && copy_start + copy_num <= ret_end)
378 nregs -= copy_num;
379 else if (!maybe_builtin_apply
380 || !targetm.calls.function_value_regno_p
381 (copy_start))
382 break;
383 last_insn = return_copy;
385 /* ??? Exception handling can lead to the return value
386 copy being already separated from the return value use,
387 as in unwind-dw2.c .
388 Similarly, conditionally returning without a value,
389 and conditionally using builtin_return can lead to an
390 isolated use. */
391 if (return_copy == BB_HEAD (src_bb))
393 short_block = 1;
394 break;
396 last_insn = return_copy;
398 while (nregs);
400 /* If we didn't see a full return value copy, verify that there
401 is a plausible reason for this. If some, but not all of the
402 return register is likely spilled, we can expect that there
403 is a copy for the likely spilled part. */
404 gcc_assert (!nregs
405 || forced_late_switch
406 || short_block
407 || !(targetm.class_likely_spilled_p
408 (REGNO_REG_CLASS (ret_start)))
409 || (nregs
410 != hard_regno_nregs[ret_start][GET_MODE (ret_reg)])
411 /* For multi-hard-register floating point
412 values, sometimes the likely-spilled part
413 is ordinarily copied first, then the other
414 part is set with an arithmetic operation.
415 This doesn't actually cause reload
416 failures, so let it pass. */
417 || (GET_MODE_CLASS (GET_MODE (ret_reg)) != MODE_INT
418 && nregs != 1));
420 if (INSN_P (last_insn))
422 before_return_copy
423 = emit_note_before (NOTE_INSN_DELETED, last_insn);
424 /* Instructions preceding LAST_INSN in the same block might
425 require a different mode than MODE_EXIT, so if we might
426 have such instructions, keep them in a separate block
427 from pre_exit. */
428 if (last_insn != BB_HEAD (src_bb))
429 src_bb = split_block (src_bb,
430 PREV_INSN (before_return_copy))->dest;
432 else
433 before_return_copy = last_insn;
434 pre_exit = split_block (src_bb, before_return_copy)->src;
436 else
438 pre_exit = split_edge (eg);
442 return pre_exit;
444 #endif
446 /* Find all insns that need a particular mode setting, and insert the
447 necessary mode switches. Return true if we did work. */
449 static int
450 optimize_mode_switching (void)
452 rtx insn;
453 int e;
454 basic_block bb;
455 int need_commit = 0;
456 sbitmap *kill;
457 struct edge_list *edge_list;
458 static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
459 #define N_ENTITIES ARRAY_SIZE (num_modes)
460 int entity_map[N_ENTITIES];
461 struct bb_info *bb_info[N_ENTITIES];
462 int i, j;
463 int n_entities;
464 int max_num_modes = 0;
465 bool emitted ATTRIBUTE_UNUSED = false;
466 basic_block post_entry ATTRIBUTE_UNUSED, pre_exit ATTRIBUTE_UNUSED;
468 for (e = N_ENTITIES - 1, n_entities = 0; e >= 0; e--)
469 if (OPTIMIZE_MODE_SWITCHING (e))
471 int entry_exit_extra = 0;
473 /* Create the list of segments within each basic block.
474 If NORMAL_MODE is defined, allow for two extra
475 blocks split from the entry and exit block. */
476 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
477 entry_exit_extra = 3;
478 #endif
479 bb_info[n_entities]
480 = XCNEWVEC (struct bb_info, last_basic_block + entry_exit_extra);
481 entity_map[n_entities++] = e;
482 if (num_modes[e] > max_num_modes)
483 max_num_modes = num_modes[e];
486 if (! n_entities)
487 return 0;
489 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
490 /* Split the edge from the entry block, so that we can note that
491 there NORMAL_MODE is supplied. */
492 post_entry = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
493 pre_exit = create_pre_exit (n_entities, entity_map, num_modes);
494 #endif
496 df_analyze ();
498 /* Create the bitmap vectors. */
500 antic = sbitmap_vector_alloc (last_basic_block, n_entities);
501 transp = sbitmap_vector_alloc (last_basic_block, n_entities);
502 comp = sbitmap_vector_alloc (last_basic_block, n_entities);
504 bitmap_vector_ones (transp, last_basic_block);
506 for (j = n_entities - 1; j >= 0; j--)
508 int e = entity_map[j];
509 int no_mode = num_modes[e];
510 struct bb_info *info = bb_info[j];
512 /* Determine what the first use (if any) need for a mode of entity E is.
513 This will be the mode that is anticipatable for this block.
514 Also compute the initial transparency settings. */
515 FOR_EACH_BB (bb)
517 struct seginfo *ptr;
518 int last_mode = no_mode;
519 bool any_set_required = false;
520 HARD_REG_SET live_now;
522 REG_SET_TO_HARD_REG_SET (live_now, df_get_live_in (bb));
524 /* Pretend the mode is clobbered across abnormal edges. */
526 edge_iterator ei;
527 edge e;
528 FOR_EACH_EDGE (e, ei, bb->preds)
529 if (e->flags & EDGE_COMPLEX)
530 break;
531 if (e)
533 ptr = new_seginfo (no_mode, BB_HEAD (bb), bb->index, live_now);
534 add_seginfo (info + bb->index, ptr);
535 bitmap_clear_bit (transp[bb->index], j);
539 FOR_BB_INSNS (bb, insn)
541 if (INSN_P (insn))
543 int mode = MODE_NEEDED (e, insn);
544 rtx link;
546 if (mode != no_mode && mode != last_mode)
548 any_set_required = true;
549 last_mode = mode;
550 ptr = new_seginfo (mode, insn, bb->index, live_now);
551 add_seginfo (info + bb->index, ptr);
552 bitmap_clear_bit (transp[bb->index], j);
554 #ifdef MODE_AFTER
555 last_mode = MODE_AFTER (e, last_mode, insn);
556 #endif
557 /* Update LIVE_NOW. */
558 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
559 if (REG_NOTE_KIND (link) == REG_DEAD)
560 reg_dies (XEXP (link, 0), &live_now);
562 note_stores (PATTERN (insn), reg_becomes_live, &live_now);
563 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
564 if (REG_NOTE_KIND (link) == REG_UNUSED)
565 reg_dies (XEXP (link, 0), &live_now);
569 info[bb->index].computing = last_mode;
570 /* Check for blocks without ANY mode requirements.
571 N.B. because of MODE_AFTER, last_mode might still be different
572 from no_mode. */
573 if (!any_set_required)
575 ptr = new_seginfo (no_mode, BB_END (bb), bb->index, live_now);
576 add_seginfo (info + bb->index, ptr);
579 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
581 int mode = MODE_ENTRY (e);
583 if (mode != no_mode)
585 bb = post_entry;
587 /* By always making this nontransparent, we save
588 an extra check in make_preds_opaque. We also
589 need this to avoid confusing pre_edge_lcm when
590 antic is cleared but transp and comp are set. */
591 bitmap_clear_bit (transp[bb->index], j);
593 /* Insert a fake computing definition of MODE into entry
594 blocks which compute no mode. This represents the mode on
595 entry. */
596 info[bb->index].computing = mode;
598 if (pre_exit)
599 info[pre_exit->index].seginfo->mode = MODE_EXIT (e);
602 #endif /* NORMAL_MODE */
605 kill = sbitmap_vector_alloc (last_basic_block, n_entities);
606 for (i = 0; i < max_num_modes; i++)
608 int current_mode[N_ENTITIES];
609 sbitmap *del;
610 sbitmap *insert;
612 /* Set the anticipatable and computing arrays. */
613 bitmap_vector_clear (antic, last_basic_block);
614 bitmap_vector_clear (comp, last_basic_block);
615 for (j = n_entities - 1; j >= 0; j--)
617 int m = current_mode[j] = MODE_PRIORITY_TO_MODE (entity_map[j], i);
618 struct bb_info *info = bb_info[j];
620 FOR_EACH_BB (bb)
622 if (info[bb->index].seginfo->mode == m)
623 bitmap_set_bit (antic[bb->index], j);
625 if (info[bb->index].computing == m)
626 bitmap_set_bit (comp[bb->index], j);
630 /* Calculate the optimal locations for the
631 placement mode switches to modes with priority I. */
633 FOR_EACH_BB (bb)
634 bitmap_not (kill[bb->index], transp[bb->index]);
635 edge_list = pre_edge_lcm (n_entities, transp, comp, antic,
636 kill, &insert, &del);
638 for (j = n_entities - 1; j >= 0; j--)
640 /* Insert all mode sets that have been inserted by lcm. */
641 int no_mode = num_modes[entity_map[j]];
643 /* Wherever we have moved a mode setting upwards in the flow graph,
644 the blocks between the new setting site and the now redundant
645 computation ceases to be transparent for any lower-priority
646 mode of the same entity. First set the aux field of each
647 insertion site edge non-transparent, then propagate the new
648 non-transparency from the redundant computation upwards till
649 we hit an insertion site or an already non-transparent block. */
650 for (e = NUM_EDGES (edge_list) - 1; e >= 0; e--)
652 edge eg = INDEX_EDGE (edge_list, e);
653 int mode;
654 basic_block src_bb;
655 HARD_REG_SET live_at_edge;
656 rtx mode_set;
658 eg->aux = 0;
660 if (! bitmap_bit_p (insert[e], j))
661 continue;
663 eg->aux = (void *)1;
665 mode = current_mode[j];
666 src_bb = eg->src;
668 REG_SET_TO_HARD_REG_SET (live_at_edge, df_get_live_out (src_bb));
670 start_sequence ();
671 EMIT_MODE_SET (entity_map[j], mode, live_at_edge);
672 mode_set = get_insns ();
673 end_sequence ();
675 /* Do not bother to insert empty sequence. */
676 if (mode_set == NULL_RTX)
677 continue;
679 /* We should not get an abnormal edge here. */
680 gcc_assert (! (eg->flags & EDGE_ABNORMAL));
682 need_commit = 1;
683 insert_insn_on_edge (mode_set, eg);
686 FOR_EACH_BB_REVERSE (bb)
687 if (bitmap_bit_p (del[bb->index], j))
689 make_preds_opaque (bb, j);
690 /* Cancel the 'deleted' mode set. */
691 bb_info[j][bb->index].seginfo->mode = no_mode;
695 sbitmap_vector_free (del);
696 sbitmap_vector_free (insert);
697 clear_aux_for_edges ();
698 free_edge_list (edge_list);
701 /* Now output the remaining mode sets in all the segments. */
702 for (j = n_entities - 1; j >= 0; j--)
704 int no_mode = num_modes[entity_map[j]];
706 FOR_EACH_BB_REVERSE (bb)
708 struct seginfo *ptr, *next;
709 for (ptr = bb_info[j][bb->index].seginfo; ptr; ptr = next)
711 next = ptr->next;
712 if (ptr->mode != no_mode)
714 rtx mode_set;
716 start_sequence ();
717 EMIT_MODE_SET (entity_map[j], ptr->mode, ptr->regs_live);
718 mode_set = get_insns ();
719 end_sequence ();
721 /* Insert MODE_SET only if it is nonempty. */
722 if (mode_set != NULL_RTX)
724 emitted = true;
725 if (NOTE_INSN_BASIC_BLOCK_P (ptr->insn_ptr))
726 emit_insn_after (mode_set, ptr->insn_ptr);
727 else
728 emit_insn_before (mode_set, ptr->insn_ptr);
732 free (ptr);
736 free (bb_info[j]);
739 /* Finished. Free up all the things we've allocated. */
740 sbitmap_vector_free (kill);
741 sbitmap_vector_free (antic);
742 sbitmap_vector_free (transp);
743 sbitmap_vector_free (comp);
745 if (need_commit)
746 commit_edge_insertions ();
748 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
749 cleanup_cfg (CLEANUP_NO_INSN_DEL);
750 #else
751 if (!need_commit && !emitted)
752 return 0;
753 #endif
755 return 1;
758 #endif /* OPTIMIZE_MODE_SWITCHING */
760 static bool
761 gate_mode_switching (void)
763 #ifdef OPTIMIZE_MODE_SWITCHING
764 return true;
765 #else
766 return false;
767 #endif
770 static unsigned int
771 rest_of_handle_mode_switching (void)
773 #ifdef OPTIMIZE_MODE_SWITCHING
774 optimize_mode_switching ();
775 #endif /* OPTIMIZE_MODE_SWITCHING */
776 return 0;
780 struct rtl_opt_pass pass_mode_switching =
783 RTL_PASS,
784 "mode_sw", /* name */
785 OPTGROUP_NONE, /* optinfo_flags */
786 gate_mode_switching, /* gate */
787 rest_of_handle_mode_switching, /* execute */
788 NULL, /* sub */
789 NULL, /* next */
790 0, /* static_pass_number */
791 TV_MODE_SWITCH, /* tv_id */
792 0, /* properties_required */
793 0, /* properties_provided */
794 0, /* properties_destroyed */
795 0, /* todo_flags_start */
796 TODO_df_finish | TODO_verify_rtl_sharing |
797 0 /* todo_flags_finish */