Daily bump.
[official-gcc.git] / libsanitizer / tsan / tsan_rtl_thread.cc
blob385af7e1fa6703a81932233d7abc2ab1cb98d4be
1 //===-- tsan_rtl_thread.cc ------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 //===----------------------------------------------------------------------===//
12 #include "sanitizer_common/sanitizer_placement_new.h"
13 #include "tsan_rtl.h"
14 #include "tsan_mman.h"
15 #include "tsan_platform.h"
16 #include "tsan_report.h"
17 #include "tsan_sync.h"
19 namespace __tsan {
21 // ThreadContext implementation.
23 ThreadContext::ThreadContext(int tid)
24 : ThreadContextBase(tid)
25 , thr()
26 , sync()
27 , epoch0()
28 , epoch1() {
31 #ifndef TSAN_GO
32 ThreadContext::~ThreadContext() {
34 #endif
36 void ThreadContext::OnDead() {
37 sync.Reset();
40 void ThreadContext::OnJoined(void *arg) {
41 ThreadState *caller_thr = static_cast<ThreadState *>(arg);
42 AcquireImpl(caller_thr, 0, &sync);
43 sync.Reset();
46 struct OnCreatedArgs {
47 ThreadState *thr;
48 uptr pc;
51 void ThreadContext::OnCreated(void *arg) {
52 thr = 0;
53 if (tid == 0)
54 return;
55 OnCreatedArgs *args = static_cast<OnCreatedArgs *>(arg);
56 args->thr->fast_state.IncrementEpoch();
57 // Can't increment epoch w/o writing to the trace as well.
58 TraceAddEvent(args->thr, args->thr->fast_state, EventTypeMop, 0);
59 ReleaseImpl(args->thr, 0, &sync);
60 creation_stack_id = CurrentStackId(args->thr, args->pc);
61 if (reuse_count == 0)
62 StatInc(args->thr, StatThreadMaxTid);
65 void ThreadContext::OnReset() {
66 sync.Reset();
67 FlushUnneededShadowMemory(GetThreadTrace(tid), TraceSize() * sizeof(Event));
68 //!!! FlushUnneededShadowMemory(GetThreadTraceHeader(tid), sizeof(Trace));
71 struct OnStartedArgs {
72 ThreadState *thr;
73 uptr stk_addr;
74 uptr stk_size;
75 uptr tls_addr;
76 uptr tls_size;
79 void ThreadContext::OnStarted(void *arg) {
80 OnStartedArgs *args = static_cast<OnStartedArgs*>(arg);
81 thr = args->thr;
82 // RoundUp so that one trace part does not contain events
83 // from different threads.
84 epoch0 = RoundUp(epoch1 + 1, kTracePartSize);
85 epoch1 = (u64)-1;
86 new(thr) ThreadState(ctx, tid, unique_id, epoch0, reuse_count,
87 args->stk_addr, args->stk_size, args->tls_addr, args->tls_size);
88 #ifndef TSAN_GO
89 thr->shadow_stack = &ThreadTrace(thr->tid)->shadow_stack[0];
90 thr->shadow_stack_pos = thr->shadow_stack;
91 thr->shadow_stack_end = thr->shadow_stack + kShadowStackSize;
92 #else
93 // Setup dynamic shadow stack.
94 const int kInitStackSize = 8;
95 thr->shadow_stack = (uptr*)internal_alloc(MBlockShadowStack,
96 kInitStackSize * sizeof(uptr));
97 thr->shadow_stack_pos = thr->shadow_stack;
98 thr->shadow_stack_end = thr->shadow_stack + kInitStackSize;
99 #endif
100 #ifndef TSAN_GO
101 AllocatorThreadStart(thr);
102 #endif
103 if (flags()->detect_deadlocks) {
104 thr->dd_pt = ctx->dd->CreatePhysicalThread();
105 thr->dd_lt = ctx->dd->CreateLogicalThread(unique_id);
107 thr->fast_synch_epoch = epoch0;
108 AcquireImpl(thr, 0, &sync);
109 thr->fast_state.SetHistorySize(flags()->history_size);
110 const uptr trace = (epoch0 / kTracePartSize) % TraceParts();
111 Trace *thr_trace = ThreadTrace(thr->tid);
112 thr_trace->headers[trace].epoch0 = epoch0;
113 StatInc(thr, StatSyncAcquire);
114 sync.Reset();
115 DPrintf("#%d: ThreadStart epoch=%zu stk_addr=%zx stk_size=%zx "
116 "tls_addr=%zx tls_size=%zx\n",
117 tid, (uptr)epoch0, args->stk_addr, args->stk_size,
118 args->tls_addr, args->tls_size);
119 thr->is_alive = true;
122 void ThreadContext::OnFinished() {
123 if (!detached) {
124 thr->fast_state.IncrementEpoch();
125 // Can't increment epoch w/o writing to the trace as well.
126 TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
127 ReleaseImpl(thr, 0, &sync);
129 epoch1 = thr->fast_state.epoch();
131 if (flags()->detect_deadlocks) {
132 ctx->dd->DestroyPhysicalThread(thr->dd_pt);
133 ctx->dd->DestroyLogicalThread(thr->dd_lt);
135 #ifndef TSAN_GO
136 AllocatorThreadFinish(thr);
137 #endif
138 thr->~ThreadState();
139 StatAggregate(ctx->stat, thr->stat);
140 thr = 0;
143 #ifndef TSAN_GO
144 struct ThreadLeak {
145 ThreadContext *tctx;
146 int count;
149 static void MaybeReportThreadLeak(ThreadContextBase *tctx_base, void *arg) {
150 Vector<ThreadLeak> &leaks = *(Vector<ThreadLeak>*)arg;
151 ThreadContext *tctx = static_cast<ThreadContext*>(tctx_base);
152 if (tctx->detached || tctx->status != ThreadStatusFinished)
153 return;
154 for (uptr i = 0; i < leaks.Size(); i++) {
155 if (leaks[i].tctx->creation_stack_id == tctx->creation_stack_id) {
156 leaks[i].count++;
157 return;
160 ThreadLeak leak = {tctx, 1};
161 leaks.PushBack(leak);
163 #endif
165 #ifndef TSAN_GO
166 static void ReportIgnoresEnabled(ThreadContext *tctx, IgnoreSet *set) {
167 if (tctx->tid == 0) {
168 Printf("ThreadSanitizer: main thread finished with ignores enabled\n");
169 } else {
170 Printf("ThreadSanitizer: thread T%d %s finished with ignores enabled,"
171 " created at:\n", tctx->tid, tctx->name);
172 PrintStack(SymbolizeStackId(tctx->creation_stack_id));
174 Printf(" One of the following ignores was not ended"
175 " (in order of probability)\n");
176 for (uptr i = 0; i < set->Size(); i++) {
177 Printf(" Ignore was enabled at:\n");
178 PrintStack(SymbolizeStackId(set->At(i)));
180 Die();
183 static void ThreadCheckIgnore(ThreadState *thr) {
184 if (ctx->after_multithreaded_fork)
185 return;
186 if (thr->ignore_reads_and_writes)
187 ReportIgnoresEnabled(thr->tctx, &thr->mop_ignore_set);
188 if (thr->ignore_sync)
189 ReportIgnoresEnabled(thr->tctx, &thr->sync_ignore_set);
191 #else
192 static void ThreadCheckIgnore(ThreadState *thr) {}
193 #endif
195 void ThreadFinalize(ThreadState *thr) {
196 ThreadCheckIgnore(thr);
197 #ifndef TSAN_GO
198 if (!flags()->report_thread_leaks)
199 return;
200 ThreadRegistryLock l(ctx->thread_registry);
201 Vector<ThreadLeak> leaks(MBlockScopedBuf);
202 ctx->thread_registry->RunCallbackForEachThreadLocked(
203 MaybeReportThreadLeak, &leaks);
204 for (uptr i = 0; i < leaks.Size(); i++) {
205 ScopedReport rep(ReportTypeThreadLeak);
206 rep.AddThread(leaks[i].tctx);
207 rep.SetCount(leaks[i].count);
208 OutputReport(ctx, rep, rep.GetReport()->threads[0]->stack);
210 #endif
213 int ThreadCount(ThreadState *thr) {
214 uptr result;
215 ctx->thread_registry->GetNumberOfThreads(0, 0, &result);
216 return (int)result;
219 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached) {
220 StatInc(thr, StatThreadCreate);
221 OnCreatedArgs args = { thr, pc };
222 int tid = ctx->thread_registry->CreateThread(uid, detached, thr->tid, &args);
223 DPrintf("#%d: ThreadCreate tid=%d uid=%zu\n", thr->tid, tid, uid);
224 StatSet(thr, StatThreadMaxAlive, ctx->thread_registry->GetMaxAliveThreads());
225 return tid;
228 void ThreadStart(ThreadState *thr, int tid, uptr os_id) {
229 uptr stk_addr = 0;
230 uptr stk_size = 0;
231 uptr tls_addr = 0;
232 uptr tls_size = 0;
233 GetThreadStackAndTls(tid == 0, &stk_addr, &stk_size, &tls_addr, &tls_size);
235 if (tid) {
236 if (stk_addr && stk_size)
237 MemoryRangeImitateWrite(thr, /*pc=*/ 1, stk_addr, stk_size);
239 if (tls_addr && tls_size) {
240 // Check that the thr object is in tls;
241 const uptr thr_beg = (uptr)thr;
242 const uptr thr_end = (uptr)thr + sizeof(*thr);
243 CHECK_GE(thr_beg, tls_addr);
244 CHECK_LE(thr_beg, tls_addr + tls_size);
245 CHECK_GE(thr_end, tls_addr);
246 CHECK_LE(thr_end, tls_addr + tls_size);
247 // Since the thr object is huge, skip it.
248 MemoryRangeImitateWrite(thr, /*pc=*/ 2, tls_addr, thr_beg - tls_addr);
249 MemoryRangeImitateWrite(thr, /*pc=*/ 2,
250 thr_end, tls_addr + tls_size - thr_end);
254 ThreadRegistry *tr = ctx->thread_registry;
255 OnStartedArgs args = { thr, stk_addr, stk_size, tls_addr, tls_size };
256 tr->StartThread(tid, os_id, &args);
258 tr->Lock();
259 thr->tctx = (ThreadContext*)tr->GetThreadLocked(tid);
260 tr->Unlock();
262 #ifndef TSAN_GO
263 if (ctx->after_multithreaded_fork) {
264 thr->ignore_interceptors++;
265 ThreadIgnoreBegin(thr, 0);
266 ThreadIgnoreSyncBegin(thr, 0);
268 #endif
271 void ThreadFinish(ThreadState *thr) {
272 ThreadCheckIgnore(thr);
273 StatInc(thr, StatThreadFinish);
274 if (thr->stk_addr && thr->stk_size)
275 DontNeedShadowFor(thr->stk_addr, thr->stk_size);
276 if (thr->tls_addr && thr->tls_size)
277 DontNeedShadowFor(thr->tls_addr, thr->tls_size);
278 thr->is_alive = false;
279 ctx->thread_registry->FinishThread(thr->tid);
282 static bool FindThreadByUid(ThreadContextBase *tctx, void *arg) {
283 uptr uid = (uptr)arg;
284 if (tctx->user_id == uid && tctx->status != ThreadStatusInvalid) {
285 tctx->user_id = 0;
286 return true;
288 return false;
291 int ThreadTid(ThreadState *thr, uptr pc, uptr uid) {
292 int res = ctx->thread_registry->FindThread(FindThreadByUid, (void*)uid);
293 DPrintf("#%d: ThreadTid uid=%zu tid=%d\n", thr->tid, uid, res);
294 return res;
297 void ThreadJoin(ThreadState *thr, uptr pc, int tid) {
298 CHECK_GT(tid, 0);
299 CHECK_LT(tid, kMaxTid);
300 DPrintf("#%d: ThreadJoin tid=%d\n", thr->tid, tid);
301 ctx->thread_registry->JoinThread(tid, thr);
304 void ThreadDetach(ThreadState *thr, uptr pc, int tid) {
305 CHECK_GT(tid, 0);
306 CHECK_LT(tid, kMaxTid);
307 ctx->thread_registry->DetachThread(tid);
310 void ThreadSetName(ThreadState *thr, const char *name) {
311 ctx->thread_registry->SetThreadName(thr->tid, name);
314 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
315 uptr size, bool is_write) {
316 if (size == 0)
317 return;
319 u64 *shadow_mem = (u64*)MemToShadow(addr);
320 DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n",
321 thr->tid, (void*)pc, (void*)addr,
322 (int)size, is_write);
324 #if TSAN_DEBUG
325 if (!IsAppMem(addr)) {
326 Printf("Access to non app mem %zx\n", addr);
327 DCHECK(IsAppMem(addr));
329 if (!IsAppMem(addr + size - 1)) {
330 Printf("Access to non app mem %zx\n", addr + size - 1);
331 DCHECK(IsAppMem(addr + size - 1));
333 if (!IsShadowMem((uptr)shadow_mem)) {
334 Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
335 DCHECK(IsShadowMem((uptr)shadow_mem));
337 if (!IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))) {
338 Printf("Bad shadow addr %p (%zx)\n",
339 shadow_mem + size * kShadowCnt / 8 - 1, addr + size - 1);
340 DCHECK(IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1)));
342 #endif
344 StatInc(thr, StatMopRange);
346 if (*shadow_mem == kShadowRodata) {
347 // Access to .rodata section, no races here.
348 // Measurements show that it can be 10-20% of all memory accesses.
349 StatInc(thr, StatMopRangeRodata);
350 return;
353 FastState fast_state = thr->fast_state;
354 if (fast_state.GetIgnoreBit())
355 return;
357 fast_state.IncrementEpoch();
358 thr->fast_state = fast_state;
359 TraceAddEvent(thr, fast_state, EventTypeMop, pc);
361 bool unaligned = (addr % kShadowCell) != 0;
363 // Handle unaligned beginning, if any.
364 for (; addr % kShadowCell && size; addr++, size--) {
365 int const kAccessSizeLog = 0;
366 Shadow cur(fast_state);
367 cur.SetWrite(is_write);
368 cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
369 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
370 shadow_mem, cur);
372 if (unaligned)
373 shadow_mem += kShadowCnt;
374 // Handle middle part, if any.
375 for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
376 int const kAccessSizeLog = 3;
377 Shadow cur(fast_state);
378 cur.SetWrite(is_write);
379 cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
380 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
381 shadow_mem, cur);
382 shadow_mem += kShadowCnt;
384 // Handle ending, if any.
385 for (; size; addr++, size--) {
386 int const kAccessSizeLog = 0;
387 Shadow cur(fast_state);
388 cur.SetWrite(is_write);
389 cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
390 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
391 shadow_mem, cur);
395 } // namespace __tsan