Daily bump.
[official-gcc.git] / libsanitizer / tsan / tsan_rtl.h
blobe6bc8b285955da70d9f3e401011646253e13476d
1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 // Main internal TSan header file.
12 // Ground rules:
13 // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
14 // function-scope locals)
15 // - All functions/classes/etc reside in namespace __tsan, except for those
16 // declared in tsan_interface.h.
17 // - Platform-specific files should be used instead of ifdefs (*).
18 // - No system headers included in header files (*).
19 // - Platform specific headres included only into platform-specific files (*).
21 // (*) Except when inlining is critical for performance.
22 //===----------------------------------------------------------------------===//
24 #ifndef TSAN_RTL_H
25 #define TSAN_RTL_H
27 #include "sanitizer_common/sanitizer_allocator.h"
28 #include "sanitizer_common/sanitizer_allocator_internal.h"
29 #include "sanitizer_common/sanitizer_asm.h"
30 #include "sanitizer_common/sanitizer_common.h"
31 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
32 #include "sanitizer_common/sanitizer_libignore.h"
33 #include "sanitizer_common/sanitizer_suppressions.h"
34 #include "sanitizer_common/sanitizer_thread_registry.h"
35 #include "tsan_clock.h"
36 #include "tsan_defs.h"
37 #include "tsan_flags.h"
38 #include "tsan_sync.h"
39 #include "tsan_trace.h"
40 #include "tsan_vector.h"
41 #include "tsan_report.h"
42 #include "tsan_platform.h"
43 #include "tsan_mutexset.h"
44 #include "tsan_ignoreset.h"
46 #if SANITIZER_WORDSIZE != 64
47 # error "ThreadSanitizer is supported only on 64-bit platforms"
48 #endif
50 namespace __tsan {
52 // Descriptor of user's memory block.
53 struct MBlock {
55 u64 mtx : 1; // must be first
56 u64 lst : 44;
57 u64 stk : 31; // on word boundary
58 u64 tid : kTidBits;
59 u64 siz : 128 - 1 - 31 - 44 - kTidBits; // 39
61 u64 raw[2];
63 void Init(uptr siz, u32 tid, u32 stk) {
64 raw[0] = raw[1] = 0;
65 raw[1] |= (u64)siz << ((1 + 44 + 31 + kTidBits) % 64);
66 raw[1] |= (u64)tid << ((1 + 44 + 31) % 64);
67 raw[0] |= (u64)stk << (1 + 44);
68 raw[1] |= (u64)stk >> (64 - 44 - 1);
69 DCHECK_EQ(Size(), siz);
70 DCHECK_EQ(Tid(), tid);
71 DCHECK_EQ(StackId(), stk);
74 u32 Tid() const {
75 return GetLsb(raw[1] >> ((1 + 44 + 31) % 64), kTidBits);
78 uptr Size() const {
79 return raw[1] >> ((1 + 31 + 44 + kTidBits) % 64);
82 u32 StackId() const {
83 return (raw[0] >> (1 + 44)) | GetLsb(raw[1] << (64 - 44 - 1), 31);
86 SyncVar *ListHead() const {
87 return (SyncVar*)(GetLsb(raw[0] >> 1, 44) << 3);
90 void ListPush(SyncVar *v) {
91 SyncVar *lst = ListHead();
92 v->next = lst;
93 u64 x = (u64)v ^ (u64)lst;
94 x = (x >> 3) << 1;
95 raw[0] ^= x;
96 DCHECK_EQ(ListHead(), v);
99 SyncVar *ListPop() {
100 SyncVar *lst = ListHead();
101 SyncVar *nxt = lst->next;
102 lst->next = 0;
103 u64 x = (u64)lst ^ (u64)nxt;
104 x = (x >> 3) << 1;
105 raw[0] ^= x;
106 DCHECK_EQ(ListHead(), nxt);
107 return lst;
110 void ListReset() {
111 SyncVar *lst = ListHead();
112 u64 x = (u64)lst;
113 x = (x >> 3) << 1;
114 raw[0] ^= x;
115 DCHECK_EQ(ListHead(), 0);
118 void Lock();
119 void Unlock();
120 typedef GenericScopedLock<MBlock> ScopedLock;
123 #ifndef TSAN_GO
124 #if defined(TSAN_COMPAT_SHADOW) && TSAN_COMPAT_SHADOW
125 const uptr kAllocatorSpace = 0x7d0000000000ULL;
126 #else
127 const uptr kAllocatorSpace = 0x7d0000000000ULL;
128 #endif
129 const uptr kAllocatorSize = 0x10000000000ULL; // 1T.
131 struct MapUnmapCallback;
132 typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, sizeof(MBlock),
133 DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator;
134 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
135 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
136 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
137 SecondaryAllocator> Allocator;
138 Allocator *allocator();
139 #endif
141 void TsanCheckFailed(const char *file, int line, const char *cond,
142 u64 v1, u64 v2);
144 const u64 kShadowRodata = (u64)-1; // .rodata shadow marker
146 // FastState (from most significant bit):
147 // ignore : 1
148 // tid : kTidBits
149 // epoch : kClkBits
150 // unused : -
151 // history_size : 3
152 class FastState {
153 public:
154 FastState(u64 tid, u64 epoch) {
155 x_ = tid << kTidShift;
156 x_ |= epoch << kClkShift;
157 DCHECK_EQ(tid, this->tid());
158 DCHECK_EQ(epoch, this->epoch());
159 DCHECK_EQ(GetIgnoreBit(), false);
162 explicit FastState(u64 x)
163 : x_(x) {
166 u64 raw() const {
167 return x_;
170 u64 tid() const {
171 u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
172 return res;
175 u64 TidWithIgnore() const {
176 u64 res = x_ >> kTidShift;
177 return res;
180 u64 epoch() const {
181 u64 res = (x_ << (kTidBits + 1)) >> (64 - kClkBits);
182 return res;
185 void IncrementEpoch() {
186 u64 old_epoch = epoch();
187 x_ += 1 << kClkShift;
188 DCHECK_EQ(old_epoch + 1, epoch());
189 (void)old_epoch;
192 void SetIgnoreBit() { x_ |= kIgnoreBit; }
193 void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
194 bool GetIgnoreBit() const { return (s64)x_ < 0; }
196 void SetHistorySize(int hs) {
197 CHECK_GE(hs, 0);
198 CHECK_LE(hs, 7);
199 x_ = (x_ & ~7) | hs;
202 int GetHistorySize() const {
203 return (int)(x_ & 7);
206 void ClearHistorySize() {
207 x_ &= ~7;
210 u64 GetTracePos() const {
211 const int hs = GetHistorySize();
212 // When hs == 0, the trace consists of 2 parts.
213 const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
214 return epoch() & mask;
217 private:
218 friend class Shadow;
219 static const int kTidShift = 64 - kTidBits - 1;
220 static const int kClkShift = kTidShift - kClkBits;
221 static const u64 kIgnoreBit = 1ull << 63;
222 static const u64 kFreedBit = 1ull << 63;
223 u64 x_;
226 // Shadow (from most significant bit):
227 // freed : 1
228 // tid : kTidBits
229 // epoch : kClkBits
230 // is_atomic : 1
231 // is_read : 1
232 // size_log : 2
233 // addr0 : 3
234 class Shadow : public FastState {
235 public:
236 explicit Shadow(u64 x)
237 : FastState(x) {
240 explicit Shadow(const FastState &s)
241 : FastState(s.x_) {
242 ClearHistorySize();
245 void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
246 DCHECK_EQ(x_ & 31, 0);
247 DCHECK_LE(addr0, 7);
248 DCHECK_LE(kAccessSizeLog, 3);
249 x_ |= (kAccessSizeLog << 3) | addr0;
250 DCHECK_EQ(kAccessSizeLog, size_log());
251 DCHECK_EQ(addr0, this->addr0());
254 void SetWrite(unsigned kAccessIsWrite) {
255 DCHECK_EQ(x_ & kReadBit, 0);
256 if (!kAccessIsWrite)
257 x_ |= kReadBit;
258 DCHECK_EQ(kAccessIsWrite, IsWrite());
261 void SetAtomic(bool kIsAtomic) {
262 DCHECK(!IsAtomic());
263 if (kIsAtomic)
264 x_ |= kAtomicBit;
265 DCHECK_EQ(IsAtomic(), kIsAtomic);
268 bool IsAtomic() const {
269 return x_ & kAtomicBit;
272 bool IsZero() const {
273 return x_ == 0;
276 static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
277 u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
278 DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
279 return shifted_xor == 0;
282 static inline bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
283 u64 masked_xor = (s1.x_ ^ s2.x_) & 31;
284 return masked_xor == 0;
287 static inline bool TwoRangesIntersect(Shadow s1, Shadow s2,
288 unsigned kS2AccessSize) {
289 bool res = false;
290 u64 diff = s1.addr0() - s2.addr0();
291 if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT
292 // if (s1.addr0() + size1) > s2.addr0()) return true;
293 if (s1.size() > -diff) res = true;
294 } else {
295 // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
296 if (kS2AccessSize > diff) res = true;
298 DCHECK_EQ(res, TwoRangesIntersectSLOW(s1, s2));
299 DCHECK_EQ(res, TwoRangesIntersectSLOW(s2, s1));
300 return res;
303 // The idea behind the offset is as follows.
304 // Consider that we have 8 bool's contained within a single 8-byte block
305 // (mapped to a single shadow "cell"). Now consider that we write to the bools
306 // from a single thread (which we consider the common case).
307 // W/o offsetting each access will have to scan 4 shadow values at average
308 // to find the corresponding shadow value for the bool.
309 // With offsetting we start scanning shadow with the offset so that
310 // each access hits necessary shadow straight off (at least in an expected
311 // optimistic case).
312 // This logic works seamlessly for any layout of user data. For example,
313 // if user data is {int, short, char, char}, then accesses to the int are
314 // offsetted to 0, short - 4, 1st char - 6, 2nd char - 7. Hopefully, accesses
315 // from a single thread won't need to scan all 8 shadow values.
316 unsigned ComputeSearchOffset() {
317 return x_ & 7;
319 u64 addr0() const { return x_ & 7; }
320 u64 size() const { return 1ull << size_log(); }
321 bool IsWrite() const { return !IsRead(); }
322 bool IsRead() const { return x_ & kReadBit; }
324 // The idea behind the freed bit is as follows.
325 // When the memory is freed (or otherwise unaccessible) we write to the shadow
326 // values with tid/epoch related to the free and the freed bit set.
327 // During memory accesses processing the freed bit is considered
328 // as msb of tid. So any access races with shadow with freed bit set
329 // (it is as if write from a thread with which we never synchronized before).
330 // This allows us to detect accesses to freed memory w/o additional
331 // overheads in memory access processing and at the same time restore
332 // tid/epoch of free.
333 void MarkAsFreed() {
334 x_ |= kFreedBit;
337 bool IsFreed() const {
338 return x_ & kFreedBit;
341 bool GetFreedAndReset() {
342 bool res = x_ & kFreedBit;
343 x_ &= ~kFreedBit;
344 return res;
347 bool IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
348 // analyzes 5-th bit (is_read) and 6-th bit (is_atomic)
349 bool v = x_ & u64(((kIsWrite ^ 1) << kReadShift)
350 | (kIsAtomic << kAtomicShift));
351 DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
352 return v;
355 bool IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
356 bool v = ((x_ >> kReadShift) & 3)
357 <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
358 DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
359 (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
360 return v;
363 bool IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
364 bool v = ((x_ >> kReadShift) & 3)
365 >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
366 DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
367 (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
368 return v;
371 private:
372 static const u64 kReadShift = 5;
373 static const u64 kReadBit = 1ull << kReadShift;
374 static const u64 kAtomicShift = 6;
375 static const u64 kAtomicBit = 1ull << kAtomicShift;
377 u64 size_log() const { return (x_ >> 3) & 3; }
379 static bool TwoRangesIntersectSLOW(const Shadow s1, const Shadow s2) {
380 if (s1.addr0() == s2.addr0()) return true;
381 if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
382 return true;
383 if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
384 return true;
385 return false;
389 struct SignalContext;
391 struct JmpBuf {
392 uptr sp;
393 uptr mangled_sp;
394 uptr *shadow_stack_pos;
397 // This struct is stored in TLS.
398 struct ThreadState {
399 FastState fast_state;
400 // Synch epoch represents the threads's epoch before the last synchronization
401 // action. It allows to reduce number of shadow state updates.
402 // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
403 // if we are processing write to X from the same thread at epoch=200,
404 // we do nothing, because both writes happen in the same 'synch epoch'.
405 // That is, if another memory access does not race with the former write,
406 // it does not race with the latter as well.
407 // QUESTION: can we can squeeze this into ThreadState::Fast?
408 // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
409 // taken by epoch between synchs.
410 // This way we can save one load from tls.
411 u64 fast_synch_epoch;
412 // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
413 // We do not distinguish beteween ignoring reads and writes
414 // for better performance.
415 int ignore_reads_and_writes;
416 int ignore_sync;
417 // Go does not support ignores.
418 #ifndef TSAN_GO
419 IgnoreSet mop_ignore_set;
420 IgnoreSet sync_ignore_set;
421 #endif
422 // C/C++ uses fixed size shadow stack embed into Trace.
423 // Go uses malloc-allocated shadow stack with dynamic size.
424 uptr *shadow_stack;
425 uptr *shadow_stack_end;
426 uptr *shadow_stack_pos;
427 u64 *racy_shadow_addr;
428 u64 racy_state[2];
429 MutexSet mset;
430 ThreadClock clock;
431 #ifndef TSAN_GO
432 AllocatorCache alloc_cache;
433 InternalAllocatorCache internal_alloc_cache;
434 Vector<JmpBuf> jmp_bufs;
435 int ignore_interceptors;
436 #endif
437 u64 stat[StatCnt];
438 const int tid;
439 const int unique_id;
440 bool in_symbolizer;
441 bool in_ignored_lib;
442 bool is_alive;
443 bool is_freeing;
444 bool is_vptr_access;
445 const uptr stk_addr;
446 const uptr stk_size;
447 const uptr tls_addr;
448 const uptr tls_size;
449 ThreadContext *tctx;
451 InternalDeadlockDetector internal_deadlock_detector;
452 DDPhysicalThread *dd_pt;
453 DDLogicalThread *dd_lt;
455 bool in_signal_handler;
456 SignalContext *signal_ctx;
458 #ifndef TSAN_GO
459 u32 last_sleep_stack_id;
460 ThreadClock last_sleep_clock;
461 #endif
463 // Set in regions of runtime that must be signal-safe and fork-safe.
464 // If set, malloc must not be called.
465 int nomalloc;
467 explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
468 unsigned reuse_count,
469 uptr stk_addr, uptr stk_size,
470 uptr tls_addr, uptr tls_size);
473 #ifndef TSAN_GO
474 __attribute__((tls_model("initial-exec")))
475 extern THREADLOCAL char cur_thread_placeholder[];
476 INLINE ThreadState *cur_thread() {
477 return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
479 #endif
481 class ThreadContext : public ThreadContextBase {
482 public:
483 explicit ThreadContext(int tid);
484 ~ThreadContext();
485 ThreadState *thr;
486 u32 creation_stack_id;
487 SyncClock sync;
488 // Epoch at which the thread had started.
489 // If we see an event from the thread stamped by an older epoch,
490 // the event is from a dead thread that shared tid with this thread.
491 u64 epoch0;
492 u64 epoch1;
494 // Override superclass callbacks.
495 void OnDead();
496 void OnJoined(void *arg);
497 void OnFinished();
498 void OnStarted(void *arg);
499 void OnCreated(void *arg);
500 void OnReset();
503 struct RacyStacks {
504 MD5Hash hash[2];
505 bool operator==(const RacyStacks &other) const {
506 if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
507 return true;
508 if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
509 return true;
510 return false;
514 struct RacyAddress {
515 uptr addr_min;
516 uptr addr_max;
519 struct FiredSuppression {
520 ReportType type;
521 uptr pc;
522 Suppression *supp;
525 struct Context {
526 Context();
528 bool initialized;
529 bool after_multithreaded_fork;
531 SyncTab synctab;
533 Mutex report_mtx;
534 int nreported;
535 int nmissed_expected;
536 atomic_uint64_t last_symbolize_time_ns;
538 void *background_thread;
539 atomic_uint32_t stop_background_thread;
541 ThreadRegistry *thread_registry;
543 Vector<RacyStacks> racy_stacks;
544 Vector<RacyAddress> racy_addresses;
545 // Number of fired suppressions may be large enough.
546 InternalMmapVector<FiredSuppression> fired_suppressions;
547 DDetector *dd;
549 Flags flags;
551 u64 stat[StatCnt];
552 u64 int_alloc_cnt[MBlockTypeCount];
553 u64 int_alloc_siz[MBlockTypeCount];
556 extern Context *ctx; // The one and the only global runtime context.
558 struct ScopedIgnoreInterceptors {
559 ScopedIgnoreInterceptors() {
560 #ifndef TSAN_GO
561 cur_thread()->ignore_interceptors++;
562 #endif
565 ~ScopedIgnoreInterceptors() {
566 #ifndef TSAN_GO
567 cur_thread()->ignore_interceptors--;
568 #endif
572 class ScopedReport {
573 public:
574 explicit ScopedReport(ReportType typ);
575 ~ScopedReport();
577 void AddStack(const StackTrace *stack);
578 void AddMemoryAccess(uptr addr, Shadow s, const StackTrace *stack,
579 const MutexSet *mset);
580 void AddThread(const ThreadContext *tctx);
581 void AddThread(int unique_tid);
582 void AddUniqueTid(int unique_tid);
583 void AddMutex(const SyncVar *s);
584 u64 AddMutex(u64 id);
585 void AddLocation(uptr addr, uptr size);
586 void AddSleep(u32 stack_id);
587 void SetCount(int count);
589 const ReportDesc *GetReport() const;
591 private:
592 ReportDesc *rep_;
593 // Symbolizer makes lots of intercepted calls. If we try to process them,
594 // at best it will cause deadlocks on internal mutexes.
595 ScopedIgnoreInterceptors ignore_interceptors_;
597 void AddDeadMutex(u64 id);
599 ScopedReport(const ScopedReport&);
600 void operator = (const ScopedReport&);
603 void RestoreStack(int tid, const u64 epoch, StackTrace *stk, MutexSet *mset);
605 void StatAggregate(u64 *dst, u64 *src);
606 void StatOutput(u64 *stat);
607 void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
608 if (kCollectStats)
609 thr->stat[typ] += n;
611 void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
612 if (kCollectStats)
613 thr->stat[typ] = n;
616 void MapShadow(uptr addr, uptr size);
617 void MapThreadTrace(uptr addr, uptr size);
618 void DontNeedShadowFor(uptr addr, uptr size);
619 void InitializeShadowMemory();
620 void InitializeInterceptors();
621 void InitializeLibIgnore();
622 void InitializeDynamicAnnotations();
624 void ForkBefore(ThreadState *thr, uptr pc);
625 void ForkParentAfter(ThreadState *thr, uptr pc);
626 void ForkChildAfter(ThreadState *thr, uptr pc);
628 void ReportRace(ThreadState *thr);
629 bool OutputReport(Context *ctx,
630 const ScopedReport &srep,
631 const ReportStack *suppress_stack1,
632 const ReportStack *suppress_stack2 = 0,
633 const ReportLocation *suppress_loc = 0);
634 bool IsFiredSuppression(Context *ctx,
635 const ScopedReport &srep,
636 const StackTrace &trace);
637 bool IsExpectedReport(uptr addr, uptr size);
638 void PrintMatchedBenignRaces();
639 bool FrameIsInternal(const ReportStack *frame);
640 ReportStack *SkipTsanInternalFrames(ReportStack *ent);
642 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
643 # define DPrintf Printf
644 #else
645 # define DPrintf(...)
646 #endif
648 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
649 # define DPrintf2 Printf
650 #else
651 # define DPrintf2(...)
652 #endif
654 u32 CurrentStackId(ThreadState *thr, uptr pc);
655 ReportStack *SymbolizeStackId(u32 stack_id);
656 void PrintCurrentStack(ThreadState *thr, uptr pc);
657 void PrintCurrentStackSlow(); // uses libunwind
659 void Initialize(ThreadState *thr);
660 int Finalize(ThreadState *thr);
662 SyncVar* GetJavaSync(ThreadState *thr, uptr pc, uptr addr,
663 bool write_lock, bool create);
664 SyncVar* GetAndRemoveJavaSync(ThreadState *thr, uptr pc, uptr addr);
666 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
667 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
668 void MemoryAccessImpl(ThreadState *thr, uptr addr,
669 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
670 u64 *shadow_mem, Shadow cur);
671 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
672 uptr size, bool is_write);
673 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
674 uptr size, uptr step, bool is_write);
675 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
676 int size, bool kAccessIsWrite, bool kIsAtomic);
678 const int kSizeLog1 = 0;
679 const int kSizeLog2 = 1;
680 const int kSizeLog4 = 2;
681 const int kSizeLog8 = 3;
683 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
684 uptr addr, int kAccessSizeLog) {
685 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
688 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
689 uptr addr, int kAccessSizeLog) {
690 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
693 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
694 uptr addr, int kAccessSizeLog) {
695 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
698 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
699 uptr addr, int kAccessSizeLog) {
700 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
703 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
704 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
705 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
707 void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
708 void ThreadIgnoreEnd(ThreadState *thr, uptr pc);
709 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
710 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc);
712 void FuncEntry(ThreadState *thr, uptr pc);
713 void FuncExit(ThreadState *thr);
715 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
716 void ThreadStart(ThreadState *thr, int tid, uptr os_id);
717 void ThreadFinish(ThreadState *thr);
718 int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
719 void ThreadJoin(ThreadState *thr, uptr pc, int tid);
720 void ThreadDetach(ThreadState *thr, uptr pc, int tid);
721 void ThreadFinalize(ThreadState *thr);
722 void ThreadSetName(ThreadState *thr, const char *name);
723 int ThreadCount(ThreadState *thr);
724 void ProcessPendingSignals(ThreadState *thr);
726 void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
727 bool rw, bool recursive, bool linker_init);
728 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr);
729 void MutexLock(ThreadState *thr, uptr pc, uptr addr, int rec = 1,
730 bool try_lock = false);
731 int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, bool all = false);
732 void MutexReadLock(ThreadState *thr, uptr pc, uptr addr, bool try_lock = false);
733 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
734 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
735 void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD
737 void Acquire(ThreadState *thr, uptr pc, uptr addr);
738 void AcquireGlobal(ThreadState *thr, uptr pc);
739 void Release(ThreadState *thr, uptr pc, uptr addr);
740 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
741 void AfterSleep(ThreadState *thr, uptr pc);
742 void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
743 void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
744 void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c);
745 void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
747 // The hacky call uses custom calling convention and an assembly thunk.
748 // It is considerably faster that a normal call for the caller
749 // if it is not executed (it is intended for slow paths from hot functions).
750 // The trick is that the call preserves all registers and the compiler
751 // does not treat it as a call.
752 // If it does not work for you, use normal call.
753 #if TSAN_DEBUG == 0
754 // The caller may not create the stack frame for itself at all,
755 // so we create a reserve stack frame for it (1024b must be enough).
756 #define HACKY_CALL(f) \
757 __asm__ __volatile__("sub $1024, %%rsp;" \
758 CFI_INL_ADJUST_CFA_OFFSET(1024) \
759 ".hidden " #f "_thunk;" \
760 "call " #f "_thunk;" \
761 "add $1024, %%rsp;" \
762 CFI_INL_ADJUST_CFA_OFFSET(-1024) \
763 ::: "memory", "cc");
764 #else
765 #define HACKY_CALL(f) f()
766 #endif
768 void TraceSwitch(ThreadState *thr);
769 uptr TraceTopPC(ThreadState *thr);
770 uptr TraceSize();
771 uptr TraceParts();
772 Trace *ThreadTrace(int tid);
774 extern "C" void __tsan_trace_switch();
775 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
776 EventType typ, u64 addr) {
777 if (!kCollectHistory)
778 return;
779 DCHECK_GE((int)typ, 0);
780 DCHECK_LE((int)typ, 7);
781 DCHECK_EQ(GetLsb(addr, 61), addr);
782 StatInc(thr, StatEvents);
783 u64 pos = fs.GetTracePos();
784 if (UNLIKELY((pos % kTracePartSize) == 0)) {
785 #ifndef TSAN_GO
786 HACKY_CALL(__tsan_trace_switch);
787 #else
788 TraceSwitch(thr);
789 #endif
791 Event *trace = (Event*)GetThreadTrace(fs.tid());
792 Event *evp = &trace[pos];
793 Event ev = (u64)addr | ((u64)typ << 61);
794 *evp = ev;
797 } // namespace __tsan
799 #endif // TSAN_RTL_H