1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* This program is used to produce insn-recog.c, which contains a
22 function called `recog' plus its subroutines. These functions
23 contain a decision tree that recognizes whether an rtx, the
24 argument given to recog, is a valid instruction.
26 recog returns -1 if the rtx is not valid. If the rtx is valid,
27 recog returns a nonnegative number which is the insn code number
28 for the pattern that matched. This is the same as the order in the
29 machine description of the entry that matched. This number can be
30 used as an index into various insn_* tables, such as insn_template,
31 insn_outfun, and insn_n_operands (found in insn-output.c).
33 The third argument to recog is an optional pointer to an int. If
34 present, recog will accept a pattern if it matches except for
35 missing CLOBBER expressions at the end. In that case, the value
36 pointed to by the optional pointer will be set to the number of
37 CLOBBERs that need to be added (it should be initialized to zero by
38 the caller). If it is set nonzero, the caller should allocate a
39 PARALLEL of the appropriate size, copy the initial entries, and
40 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
42 This program also generates the function `split_insns', which
43 returns 0 if the rtl could not be split, or it returns the split
46 This program also generates the function `peephole2_insns', which
47 returns 0 if the rtl could not be matched. If there was a match,
48 the new rtl is returned in an INSN list, and LAST_INSN will point
49 to the last recognized insn in the old sequence. */
53 #include "coretypes.h"
58 #include "gensupport.h"
60 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
61 printf ("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
63 /* Ways of obtaining an rtx to be tested. */
65 /* PATTERN (peep2_next_insn (ARG)). */
68 /* XEXP (BASE, ARG). */
71 /* XVECEXP (BASE, 0, ARG). */
75 /* The position of an rtx relative to X0. Each useful position is
76 represented by exactly one instance of this structure. */
79 /* The parent rtx. This is the root position for POS_PEEP2_INSNs. */
80 struct position
*base
;
82 /* A position with the same BASE and TYPE, but with the next value
84 struct position
*next
;
86 /* A list of all POS_XEXP positions that use this one as their base,
87 chained by NEXT fields. The first entry represents XEXP (this, 0),
88 the second represents XEXP (this, 1), and so on. */
89 struct position
*xexps
;
91 /* A list of POS_XVECEXP0 positions that use this one as their base,
92 chained by NEXT fields. The first entry represents XVECEXP (this, 0, 0),
93 the second represents XVECEXP (this, 0, 1), and so on. */
94 struct position
*xvecexp0s
;
96 /* The type of position. */
97 enum position_type type
;
99 /* The argument to TYPE (shown as ARG in the position_type comments). */
102 /* The depth of this position, with 0 as the root. */
106 /* A listhead of decision trees. The alternatives to a node are kept
107 in a doubly-linked list so we can easily add nodes to the proper
108 place when merging. */
112 struct decision
*first
;
113 struct decision
*last
;
116 /* These types are roughly in the order in which we'd like to test them. */
120 DT_mode
, DT_code
, DT_veclen
,
121 DT_elt_zero_int
, DT_elt_one_int
, DT_elt_zero_wide
, DT_elt_zero_wide_safe
,
123 DT_veclen_ge
, DT_dup
, DT_pred
, DT_c_test
,
124 DT_accept_op
, DT_accept_insn
127 /* A single test. The two accept types aren't tests per-se, but
128 their equality (or lack thereof) does affect tree merging so
129 it is convenient to keep them here. */
133 /* A linked list through the tests attached to a node. */
134 struct decision_test
*next
;
136 enum decision_type type
;
140 int num_insns
; /* Number if insn in a define_peephole2. */
141 machine_mode mode
; /* Machine mode of node. */
142 RTX_CODE code
; /* Code to test. */
146 const char *name
; /* Predicate to call. */
147 const struct pred_data
*data
;
148 /* Optimization hints for this predicate. */
149 machine_mode mode
; /* Machine mode for node. */
152 const char *c_test
; /* Additional test to perform. */
153 int veclen
; /* Length of vector. */
154 int dup
; /* Number of operand to compare against. */
155 HOST_WIDE_INT intval
; /* Value for XINT for XWINT. */
156 int opno
; /* Operand number matched. */
159 int code_number
; /* Insn number matched. */
160 int lineno
; /* Line number of the insn. */
161 int num_clobbers_to_add
; /* Number of CLOBBERs to be added. */
166 /* Data structure for decision tree for recognizing legitimate insns. */
170 struct decision_head success
; /* Nodes to test on success. */
171 struct decision
*next
; /* Node to test on failure. */
172 struct decision
*prev
; /* Node whose failure tests us. */
173 struct decision
*afterward
; /* Node to test on success,
174 but failure of successor nodes. */
176 struct position
*position
; /* Position in pattern. */
178 struct decision_test
*tests
; /* The tests for this node. */
180 int number
; /* Node number, used for labels */
181 int subroutine_number
; /* Number of subroutine this node starts */
182 int need_label
; /* Label needs to be output. */
185 #define SUBROUTINE_THRESHOLD 100
187 static int next_subroutine_number
;
189 /* We can write three types of subroutines: One for insn recognition,
190 one to split insns, and one for peephole-type optimizations. This
191 defines which type is being written. */
194 RECOG
, SPLIT
, PEEPHOLE2
197 #define IS_SPLIT(X) ((X) != RECOG)
199 /* Next available node number for tree nodes. */
201 static int next_number
;
203 /* Next number to use as an insn_code. */
205 static int next_insn_code
;
207 /* Record the highest depth we ever have so we know how many variables to
208 allocate in each subroutine we make. */
210 static int max_depth
;
212 /* The line number of the start of the pattern currently being processed. */
213 static int pattern_lineno
;
215 /* The root position (x0). */
216 static struct position root_pos
;
218 /* A list of all POS_PEEP2_INSNs. The entry for insn 0 is the root position,
219 since we are given that instruction's pattern as x0. */
220 static struct position
*peep2_insn_pos_list
= &root_pos
;
222 extern void debug_decision
224 extern void debug_decision_list
227 /* Return a position with the given BASE, TYPE and ARG. NEXT_PTR
228 points to where the unique object that represents the position
229 should be stored. Create the object if it doesn't already exist,
230 otherwise reuse the object that is already there. */
232 static struct position
*
233 next_position (struct position
**next_ptr
, struct position
*base
,
234 enum position_type type
, int arg
)
236 struct position
*pos
;
241 pos
= XCNEW (struct position
);
245 pos
->depth
= base
->depth
+ 1;
251 /* Compare positions POS1 and POS2 lexicographically. */
254 compare_positions (struct position
*pos1
, struct position
*pos2
)
258 diff
= pos1
->depth
- pos2
->depth
;
262 while (pos1
->depth
!= pos2
->depth
);
266 while (pos1
->depth
!= pos2
->depth
);
269 diff
= (int) pos1
->type
- (int) pos2
->type
;
271 diff
= pos1
->arg
- pos2
->arg
;
278 /* Create a new node in sequence after LAST. */
280 static struct decision
*
281 new_decision (struct position
*pos
, struct decision_head
*last
)
283 struct decision
*new_decision
= XCNEW (struct decision
);
285 new_decision
->success
= *last
;
286 new_decision
->position
= pos
;
287 new_decision
->number
= next_number
++;
289 last
->first
= last
->last
= new_decision
;
293 /* Create a new test and link it in at PLACE. */
295 static struct decision_test
*
296 new_decision_test (enum decision_type type
, struct decision_test
***pplace
)
298 struct decision_test
**place
= *pplace
;
299 struct decision_test
*test
;
301 test
= XNEW (struct decision_test
);
312 /* Search for and return operand N, stop when reaching node STOP. */
315 find_operand (rtx pattern
, int n
, rtx stop
)
325 code
= GET_CODE (pattern
);
326 if ((code
== MATCH_SCRATCH
327 || code
== MATCH_OPERAND
328 || code
== MATCH_OPERATOR
329 || code
== MATCH_PARALLEL
)
330 && XINT (pattern
, 0) == n
)
333 fmt
= GET_RTX_FORMAT (code
);
334 len
= GET_RTX_LENGTH (code
);
335 for (i
= 0; i
< len
; i
++)
340 if ((r
= find_operand (XEXP (pattern
, i
), n
, stop
)) != NULL_RTX
)
345 if (! XVEC (pattern
, i
))
350 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
351 if ((r
= find_operand (XVECEXP (pattern
, i
, j
), n
, stop
))
356 case 'i': case 'w': case '0': case 's':
367 /* Search for and return operand M, such that it has a matching
368 constraint for operand N. */
371 find_matching_operand (rtx pattern
, int n
)
378 code
= GET_CODE (pattern
);
379 if (code
== MATCH_OPERAND
380 && (XSTR (pattern
, 2)[0] == '0' + n
381 || (XSTR (pattern
, 2)[0] == '%'
382 && XSTR (pattern
, 2)[1] == '0' + n
)))
385 fmt
= GET_RTX_FORMAT (code
);
386 len
= GET_RTX_LENGTH (code
);
387 for (i
= 0; i
< len
; i
++)
392 if ((r
= find_matching_operand (XEXP (pattern
, i
), n
)))
397 if (! XVEC (pattern
, i
))
402 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
403 if ((r
= find_matching_operand (XVECEXP (pattern
, i
, j
), n
)))
407 case 'i': case 'w': case '0': case 's':
418 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
419 don't use the MATCH_OPERAND constraint, only the predicate.
420 This is confusing to folks doing new ports, so help them
421 not make the mistake. */
424 constraints_supported_in_insn_p (rtx insn
)
426 return !(GET_CODE (insn
) == DEFINE_EXPAND
427 || GET_CODE (insn
) == DEFINE_SPLIT
428 || GET_CODE (insn
) == DEFINE_PEEPHOLE2
);
431 /* Check for various errors in patterns. SET is nonnull for a destination,
432 and is the complete set pattern. SET_CODE is '=' for normal sets, and
433 '+' within a context that requires in-out constraints. */
436 validate_pattern (rtx pattern
, rtx insn
, rtx set
, int set_code
)
443 code
= GET_CODE (pattern
);
448 const char constraints0
= XSTR (pattern
, 1)[0];
450 if (!constraints_supported_in_insn_p (insn
))
454 error_with_line (pattern_lineno
,
455 "constraints not supported in %s",
456 rtx_name
[GET_CODE (insn
)]);
461 /* If a MATCH_SCRATCH is used in a context requiring an write-only
462 or read/write register, validate that. */
465 && constraints0
!= '='
466 && constraints0
!= '+')
468 error_with_line (pattern_lineno
,
469 "operand %d missing output reload",
477 if (find_operand (insn
, XINT (pattern
, 0), pattern
) == pattern
)
478 error_with_line (pattern_lineno
,
479 "operand %i duplicated before defined",
485 const char *pred_name
= XSTR (pattern
, 1);
486 const struct pred_data
*pred
;
489 if (GET_CODE (insn
) == DEFINE_INSN
)
490 c_test
= XSTR (insn
, 2);
492 c_test
= XSTR (insn
, 1);
494 if (pred_name
[0] != 0)
496 pred
= lookup_predicate (pred_name
);
498 error_with_line (pattern_lineno
, "unknown predicate '%s'",
504 if (code
== MATCH_OPERAND
)
506 const char constraints0
= XSTR (pattern
, 2)[0];
508 if (!constraints_supported_in_insn_p (insn
))
512 error_with_line (pattern_lineno
,
513 "constraints not supported in %s",
514 rtx_name
[GET_CODE (insn
)]);
518 /* A MATCH_OPERAND that is a SET should have an output reload. */
519 else if (set
&& constraints0
)
523 if (constraints0
== '+')
525 /* If we've only got an output reload for this operand,
526 we'd better have a matching input operand. */
527 else if (constraints0
== '='
528 && find_matching_operand (insn
, XINT (pattern
, 0)))
531 error_with_line (pattern_lineno
,
532 "operand %d missing in-out reload",
535 else if (constraints0
!= '=' && constraints0
!= '+')
536 error_with_line (pattern_lineno
,
537 "operand %d missing output reload",
542 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
543 while not likely to occur at runtime, results in less efficient
544 code from insn-recog.c. */
545 if (set
&& pred
&& pred
->allows_non_lvalue
)
546 error_with_line (pattern_lineno
,
547 "destination operand %d allows non-lvalue",
550 /* A modeless MATCH_OPERAND can be handy when we can check for
551 multiple modes in the c_test. In most other cases, it is a
552 mistake. Only DEFINE_INSN is eligible, since SPLIT and
553 PEEP2 can FAIL within the output pattern. Exclude special
554 predicates, which check the mode themselves. Also exclude
555 predicates that allow only constants. Exclude the SET_DEST
556 of a call instruction, as that is a common idiom. */
558 if (GET_MODE (pattern
) == VOIDmode
559 && code
== MATCH_OPERAND
560 && GET_CODE (insn
) == DEFINE_INSN
563 && pred
->allows_non_const
564 && strstr (c_test
, "operands") == NULL
566 && GET_CODE (set
) == SET
567 && GET_CODE (SET_SRC (set
)) == CALL
))
568 message_with_line (pattern_lineno
,
569 "warning: operand %d missing mode?",
576 machine_mode dmode
, smode
;
579 dest
= SET_DEST (pattern
);
580 src
= SET_SRC (pattern
);
582 /* STRICT_LOW_PART is a wrapper. Its argument is the real
583 destination, and it's mode should match the source. */
584 if (GET_CODE (dest
) == STRICT_LOW_PART
)
585 dest
= XEXP (dest
, 0);
587 /* Find the referent for a DUP. */
589 if (GET_CODE (dest
) == MATCH_DUP
590 || GET_CODE (dest
) == MATCH_OP_DUP
591 || GET_CODE (dest
) == MATCH_PAR_DUP
)
592 dest
= find_operand (insn
, XINT (dest
, 0), NULL
);
594 if (GET_CODE (src
) == MATCH_DUP
595 || GET_CODE (src
) == MATCH_OP_DUP
596 || GET_CODE (src
) == MATCH_PAR_DUP
)
597 src
= find_operand (insn
, XINT (src
, 0), NULL
);
599 dmode
= GET_MODE (dest
);
600 smode
= GET_MODE (src
);
602 /* The mode of an ADDRESS_OPERAND is the mode of the memory
603 reference, not the mode of the address. */
604 if (GET_CODE (src
) == MATCH_OPERAND
605 && ! strcmp (XSTR (src
, 1), "address_operand"))
608 /* The operands of a SET must have the same mode unless one
610 else if (dmode
!= VOIDmode
&& smode
!= VOIDmode
&& dmode
!= smode
)
611 error_with_line (pattern_lineno
,
612 "mode mismatch in set: %smode vs %smode",
613 GET_MODE_NAME (dmode
), GET_MODE_NAME (smode
));
615 /* If only one of the operands is VOIDmode, and PC or CC0 is
616 not involved, it's probably a mistake. */
617 else if (dmode
!= smode
618 && GET_CODE (dest
) != PC
619 && GET_CODE (dest
) != CC0
620 && GET_CODE (src
) != PC
621 && GET_CODE (src
) != CC0
622 && !CONST_INT_P (src
)
623 && !CONST_WIDE_INT_P (src
)
624 && GET_CODE (src
) != CALL
)
627 which
= (dmode
== VOIDmode
? "destination" : "source");
628 message_with_line (pattern_lineno
,
629 "warning: %s missing a mode?", which
);
632 if (dest
!= SET_DEST (pattern
))
633 validate_pattern (dest
, insn
, pattern
, '=');
634 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
635 validate_pattern (SET_SRC (pattern
), insn
, NULL_RTX
, 0);
640 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
644 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
645 validate_pattern (XEXP (pattern
, 1), insn
, NULL_RTX
, 0);
646 validate_pattern (XEXP (pattern
, 2), insn
, NULL_RTX
, 0);
649 case STRICT_LOW_PART
:
650 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
654 if (GET_MODE (LABEL_REF_LABEL (pattern
)) != VOIDmode
)
655 error_with_line (pattern_lineno
,
656 "operand to label_ref %smode not VOIDmode",
657 GET_MODE_NAME (GET_MODE (LABEL_REF_LABEL (pattern
))));
664 fmt
= GET_RTX_FORMAT (code
);
665 len
= GET_RTX_LENGTH (code
);
666 for (i
= 0; i
< len
; i
++)
671 validate_pattern (XEXP (pattern
, i
), insn
, NULL_RTX
, 0);
675 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
676 validate_pattern (XVECEXP (pattern
, i
, j
), insn
, NULL_RTX
, 0);
679 case 'i': case 'w': case '0': case 's':
688 /* Create a chain of nodes to verify that an rtl expression matches
691 LAST is a pointer to the listhead in the previous node in the chain (or
692 in the calling function, for the first node).
694 POSITION is the current position in the insn.
696 INSN_TYPE is the type of insn for which we are emitting code.
698 A pointer to the final node in the chain is returned. */
700 static struct decision
*
701 add_to_sequence (rtx pattern
, struct decision_head
*last
,
702 struct position
*pos
, enum routine_type insn_type
, int top
)
705 struct decision
*this_decision
, *sub
;
706 struct decision_test
*test
;
707 struct decision_test
**place
;
708 struct position
*subpos
, **subpos_ptr
;
713 enum position_type pos_type
;
715 if (pos
->depth
> max_depth
)
716 max_depth
= pos
->depth
;
718 sub
= this_decision
= new_decision (pos
, last
);
719 place
= &this_decision
->tests
;
721 mode
= GET_MODE (pattern
);
722 code
= GET_CODE (pattern
);
727 /* Toplevel peephole pattern. */
728 if (insn_type
== PEEPHOLE2
&& top
)
732 /* Check we have sufficient insns. This avoids complications
733 because we then know peep2_next_insn never fails. */
734 num_insns
= XVECLEN (pattern
, 0);
737 test
= new_decision_test (DT_num_insns
, &place
);
738 test
->u
.num_insns
= num_insns
;
739 last
= &sub
->success
;
743 /* We don't need the node we just created -- unlink it. */
744 last
->first
= last
->last
= NULL
;
747 subpos_ptr
= &peep2_insn_pos_list
;
748 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 0); i
++)
750 subpos
= next_position (subpos_ptr
, &root_pos
,
752 sub
= add_to_sequence (XVECEXP (pattern
, 0, i
),
753 last
, subpos
, insn_type
, 0);
754 last
= &sub
->success
;
755 subpos_ptr
= &subpos
->next
;
760 /* Else nothing special. */
764 /* The explicit patterns within a match_parallel enforce a minimum
765 length on the vector. The match_parallel predicate may allow
766 for more elements. We do need to check for this minimum here
767 or the code generated to match the internals may reference data
768 beyond the end of the vector. */
769 test
= new_decision_test (DT_veclen_ge
, &place
);
770 test
->u
.veclen
= XVECLEN (pattern
, 2);
777 RTX_CODE was_code
= code
;
778 const char *pred_name
;
779 bool allows_const_int
= true;
781 if (code
== MATCH_SCRATCH
)
783 pred_name
= "scratch_operand";
788 pred_name
= XSTR (pattern
, 1);
789 if (code
== MATCH_PARALLEL
)
795 if (pred_name
[0] != 0)
797 const struct pred_data
*pred
;
799 test
= new_decision_test (DT_pred
, &place
);
800 test
->u
.pred
.name
= pred_name
;
801 test
->u
.pred
.mode
= mode
;
803 /* See if we know about this predicate.
804 If we do, remember it for use below.
806 We can optimize the generated code a little if either
807 (a) the predicate only accepts one code, or (b) the
808 predicate does not allow CONST_INT or CONST_WIDE_INT,
809 in which case it can match only if the modes match. */
810 pred
= lookup_predicate (pred_name
);
813 test
->u
.pred
.data
= pred
;
814 allows_const_int
= (pred
->codes
[CONST_INT
]
815 || pred
->codes
[CONST_WIDE_INT
]);
816 if (was_code
== MATCH_PARALLEL
817 && pred
->singleton
!= PARALLEL
)
818 error_with_line (pattern_lineno
,
819 "predicate '%s' used in match_parallel "
820 "does not allow only PARALLEL", pred
->name
);
822 code
= pred
->singleton
;
825 error_with_line (pattern_lineno
,
826 "unknown predicate '%s' in '%s' expression",
827 pred_name
, GET_RTX_NAME (was_code
));
830 /* Can't enforce a mode if we allow const_int. */
831 if (allows_const_int
)
834 /* Accept the operand, i.e. record it in `operands'. */
835 test
= new_decision_test (DT_accept_op
, &place
);
836 test
->u
.opno
= XINT (pattern
, 0);
838 if (was_code
== MATCH_OPERATOR
|| was_code
== MATCH_PARALLEL
)
840 if (was_code
== MATCH_OPERATOR
)
843 subpos_ptr
= &pos
->xexps
;
847 pos_type
= POS_XVECEXP0
;
848 subpos_ptr
= &pos
->xvecexp0s
;
850 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 2); i
++)
852 subpos
= next_position (subpos_ptr
, pos
, pos_type
, i
);
853 sub
= add_to_sequence (XVECEXP (pattern
, 2, i
),
854 &sub
->success
, subpos
, insn_type
, 0);
855 subpos_ptr
= &subpos
->next
;
864 test
= new_decision_test (DT_dup
, &place
);
865 test
->u
.dup
= XINT (pattern
, 0);
867 test
= new_decision_test (DT_accept_op
, &place
);
868 test
->u
.opno
= XINT (pattern
, 0);
870 subpos_ptr
= &pos
->xexps
;
871 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 1); i
++)
873 subpos
= next_position (subpos_ptr
, pos
, POS_XEXP
, i
);
874 sub
= add_to_sequence (XVECEXP (pattern
, 1, i
),
875 &sub
->success
, subpos
, insn_type
, 0);
876 subpos_ptr
= &subpos
->next
;
884 test
= new_decision_test (DT_dup
, &place
);
885 test
->u
.dup
= XINT (pattern
, 0);
892 fmt
= GET_RTX_FORMAT (code
);
893 len
= GET_RTX_LENGTH (code
);
895 /* Do tests against the current node first. */
896 for (i
= 0; i
< (size_t) len
; i
++)
904 test
= new_decision_test (DT_elt_zero_int
, &place
);
905 test
->u
.intval
= XINT (pattern
, i
);
909 test
= new_decision_test (DT_elt_one_int
, &place
);
910 test
->u
.intval
= XINT (pattern
, i
);
913 else if (fmt
[i
] == 'w')
915 /* If this value actually fits in an int, we can use a switch
916 statement here, so indicate that. */
917 enum decision_type type
918 = ((int) XWINT (pattern
, i
) == XWINT (pattern
, i
))
919 ? DT_elt_zero_wide_safe
: DT_elt_zero_wide
;
923 test
= new_decision_test (type
, &place
);
924 test
->u
.intval
= XWINT (pattern
, i
);
926 else if (fmt
[i
] == 'E')
930 test
= new_decision_test (DT_veclen
, &place
);
931 test
->u
.veclen
= XVECLEN (pattern
, i
);
935 /* Now test our sub-patterns. */
936 subpos_ptr
= &pos
->xexps
;
937 for (i
= 0; i
< (size_t) len
; i
++)
939 subpos
= next_position (subpos_ptr
, pos
, POS_XEXP
, i
);
943 sub
= add_to_sequence (XEXP (pattern
, i
), &sub
->success
,
944 subpos
, insn_type
, 0);
949 struct position
*subpos2
, **subpos2_ptr
;
952 subpos2_ptr
= &pos
->xvecexp0s
;
953 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
955 subpos2
= next_position (subpos2_ptr
, pos
, POS_XVECEXP0
, j
);
956 sub
= add_to_sequence (XVECEXP (pattern
, i
, j
),
957 &sub
->success
, subpos2
, insn_type
, 0);
958 subpos2_ptr
= &subpos2
->next
;
972 subpos_ptr
= &subpos
->next
;
976 /* Insert nodes testing mode and code, if they're still relevant,
977 before any of the nodes we may have added above. */
980 place
= &this_decision
->tests
;
981 test
= new_decision_test (DT_code
, &place
);
985 if (mode
!= VOIDmode
)
987 place
= &this_decision
->tests
;
988 test
= new_decision_test (DT_mode
, &place
);
992 /* If we didn't insert any tests or accept nodes, hork. */
993 gcc_assert (this_decision
->tests
);
999 /* A subroutine of maybe_both_true; examines only one test.
1000 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1003 maybe_both_true_2 (struct decision_test
*d1
, struct decision_test
*d2
)
1005 if (d1
->type
== d2
->type
)
1010 if (d1
->u
.num_insns
== d2
->u
.num_insns
)
1016 return d1
->u
.mode
== d2
->u
.mode
;
1019 return d1
->u
.code
== d2
->u
.code
;
1022 return d1
->u
.veclen
== d2
->u
.veclen
;
1024 case DT_elt_zero_int
:
1025 case DT_elt_one_int
:
1026 case DT_elt_zero_wide
:
1027 case DT_elt_zero_wide_safe
:
1028 return d1
->u
.intval
== d2
->u
.intval
;
1035 /* If either has a predicate that we know something about, set
1036 things up so that D1 is the one that always has a known
1037 predicate. Then see if they have any codes in common. */
1039 if (d1
->type
== DT_pred
|| d2
->type
== DT_pred
)
1041 if (d2
->type
== DT_pred
)
1043 struct decision_test
*tmp
;
1044 tmp
= d1
, d1
= d2
, d2
= tmp
;
1047 /* If D2 tests a mode, see if it matches D1. */
1048 if (d1
->u
.pred
.mode
!= VOIDmode
)
1050 if (d2
->type
== DT_mode
)
1052 if (d1
->u
.pred
.mode
!= d2
->u
.mode
1053 /* The mode of an address_operand predicate is the
1054 mode of the memory, not the operand. It can only
1055 be used for testing the predicate, so we must
1057 && strcmp (d1
->u
.pred
.name
, "address_operand") != 0)
1060 /* Don't check two predicate modes here, because if both predicates
1061 accept CONST_INT, then both can still be true even if the modes
1062 are different. If they don't accept CONST_INT, there will be a
1063 separate DT_mode that will make maybe_both_true_1 return 0. */
1066 if (d1
->u
.pred
.data
)
1068 /* If D2 tests a code, see if it is in the list of valid
1069 codes for D1's predicate. */
1070 if (d2
->type
== DT_code
)
1072 if (!d1
->u
.pred
.data
->codes
[d2
->u
.code
])
1076 /* Otherwise see if the predicates have any codes in common. */
1077 else if (d2
->type
== DT_pred
&& d2
->u
.pred
.data
)
1079 bool common
= false;
1082 for (c
= 0; c
< NUM_RTX_CODE
; c
++)
1083 if (d1
->u
.pred
.data
->codes
[c
] && d2
->u
.pred
.data
->codes
[c
])
1095 /* Tests vs veclen may be known when strict equality is involved. */
1096 if (d1
->type
== DT_veclen
&& d2
->type
== DT_veclen_ge
)
1097 return d1
->u
.veclen
>= d2
->u
.veclen
;
1098 if (d1
->type
== DT_veclen_ge
&& d2
->type
== DT_veclen
)
1099 return d2
->u
.veclen
>= d1
->u
.veclen
;
1104 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1105 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1108 maybe_both_true_1 (struct decision_test
*d1
, struct decision_test
*d2
)
1110 struct decision_test
*t1
, *t2
;
1112 /* A match_operand with no predicate can match anything. Recognize
1113 this by the existence of a lone DT_accept_op test. */
1114 if (d1
->type
== DT_accept_op
|| d2
->type
== DT_accept_op
)
1117 /* Eliminate pairs of tests while they can exactly match. */
1118 while (d1
&& d2
&& d1
->type
== d2
->type
)
1120 if (maybe_both_true_2 (d1
, d2
) == 0)
1122 d1
= d1
->next
, d2
= d2
->next
;
1125 /* After that, consider all pairs. */
1126 for (t1
= d1
; t1
; t1
= t1
->next
)
1127 for (t2
= d2
; t2
; t2
= t2
->next
)
1128 if (maybe_both_true_2 (t1
, t2
) == 0)
1134 /* Return 0 if we can prove that there is no RTL that can match both
1135 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1136 can match both or just that we couldn't prove there wasn't such an RTL).
1138 TOPLEVEL is nonzero if we are to only look at the top level and not
1139 recursively descend. */
1142 maybe_both_true (struct decision
*d1
, struct decision
*d2
,
1145 struct decision
*p1
, *p2
;
1148 /* Don't compare strings on the different positions in insn. Doing so
1149 is incorrect and results in false matches from constructs like
1151 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1152 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1154 [(set (match_operand:HI "register_operand" "r")
1155 (match_operand:HI "register_operand" "r"))]
1157 If we are presented with such, we are recursing through the remainder
1158 of a node's success nodes (from the loop at the end of this function).
1159 Skip forward until we come to a position that matches.
1161 Due to the way positions are constructed, we know that iterating
1162 forward from the lexically lower position will run into the lexically
1163 higher position and not the other way around. This saves a bit
1166 cmp
= compare_positions (d1
->position
, d2
->position
);
1169 gcc_assert (!toplevel
);
1171 /* If the d2->position was lexically lower, swap. */
1173 p1
= d1
, d1
= d2
, d2
= p1
;
1175 if (d1
->success
.first
== 0)
1177 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1178 if (maybe_both_true (p1
, d2
, 0))
1184 /* Test the current level. */
1185 cmp
= maybe_both_true_1 (d1
->tests
, d2
->tests
);
1189 /* We can't prove that D1 and D2 cannot both be true. If we are only
1190 to check the top level, return 1. Otherwise, see if we can prove
1191 that all choices in both successors are mutually exclusive. If
1192 either does not have any successors, we can't prove they can't both
1195 if (toplevel
|| d1
->success
.first
== 0 || d2
->success
.first
== 0)
1198 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1199 for (p2
= d2
->success
.first
; p2
; p2
= p2
->next
)
1200 if (maybe_both_true (p1
, p2
, 0))
1206 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1209 nodes_identical_1 (struct decision_test
*d1
, struct decision_test
*d2
)
1214 return d1
->u
.num_insns
== d2
->u
.num_insns
;
1217 return d1
->u
.mode
== d2
->u
.mode
;
1220 return d1
->u
.code
== d2
->u
.code
;
1223 return (d1
->u
.pred
.mode
== d2
->u
.pred
.mode
1224 && strcmp (d1
->u
.pred
.name
, d2
->u
.pred
.name
) == 0);
1227 return strcmp (d1
->u
.c_test
, d2
->u
.c_test
) == 0;
1231 return d1
->u
.veclen
== d2
->u
.veclen
;
1234 return d1
->u
.dup
== d2
->u
.dup
;
1236 case DT_elt_zero_int
:
1237 case DT_elt_one_int
:
1238 case DT_elt_zero_wide
:
1239 case DT_elt_zero_wide_safe
:
1240 return d1
->u
.intval
== d2
->u
.intval
;
1243 return d1
->u
.opno
== d2
->u
.opno
;
1245 case DT_accept_insn
:
1246 /* Differences will be handled in merge_accept_insn. */
1254 /* True iff the two nodes are identical (on one level only). Due
1255 to the way these lists are constructed, we shouldn't have to
1256 consider different orderings on the tests. */
1259 nodes_identical (struct decision
*d1
, struct decision
*d2
)
1261 struct decision_test
*t1
, *t2
;
1263 for (t1
= d1
->tests
, t2
= d2
->tests
; t1
&& t2
; t1
= t1
->next
, t2
= t2
->next
)
1265 if (t1
->type
!= t2
->type
)
1267 if (! nodes_identical_1 (t1
, t2
))
1271 /* For success, they should now both be null. */
1275 /* Check that their subnodes are at the same position, as any one set
1276 of sibling decisions must be at the same position. Allowing this
1277 requires complications to find_afterward and when change_state is
1279 if (d1
->success
.first
1280 && d2
->success
.first
1281 && d1
->success
.first
->position
!= d2
->success
.first
->position
)
1287 /* A subroutine of merge_trees; given two nodes that have been declared
1288 identical, cope with two insn accept states. If they differ in the
1289 number of clobbers, then the conflict was created by make_insn_sequence
1290 and we can drop the with-clobbers version on the floor. If both
1291 nodes have no additional clobbers, we have found an ambiguity in the
1292 source machine description. */
1295 merge_accept_insn (struct decision
*oldd
, struct decision
*addd
)
1297 struct decision_test
*old
, *add
;
1299 for (old
= oldd
->tests
; old
; old
= old
->next
)
1300 if (old
->type
== DT_accept_insn
)
1305 for (add
= addd
->tests
; add
; add
= add
->next
)
1306 if (add
->type
== DT_accept_insn
)
1311 /* If one node is for a normal insn and the second is for the base
1312 insn with clobbers stripped off, the second node should be ignored. */
1314 if (old
->u
.insn
.num_clobbers_to_add
== 0
1315 && add
->u
.insn
.num_clobbers_to_add
> 0)
1317 /* Nothing to do here. */
1319 else if (old
->u
.insn
.num_clobbers_to_add
> 0
1320 && add
->u
.insn
.num_clobbers_to_add
== 0)
1322 /* In this case, replace OLD with ADD. */
1323 old
->u
.insn
= add
->u
.insn
;
1327 error_with_line (add
->u
.insn
.lineno
, "`%s' matches `%s'",
1328 get_insn_name (add
->u
.insn
.code_number
),
1329 get_insn_name (old
->u
.insn
.code_number
));
1330 message_with_line (old
->u
.insn
.lineno
, "previous definition of `%s'",
1331 get_insn_name (old
->u
.insn
.code_number
));
1335 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1338 merge_trees (struct decision_head
*oldh
, struct decision_head
*addh
)
1340 struct decision
*next
, *add
;
1342 if (addh
->first
== 0)
1344 if (oldh
->first
== 0)
1350 /* Trying to merge bits at different positions isn't possible. */
1351 gcc_assert (oldh
->first
->position
== addh
->first
->position
);
1353 for (add
= addh
->first
; add
; add
= next
)
1355 struct decision
*old
, *insert_before
= NULL
;
1359 /* The semantics of pattern matching state that the tests are
1360 done in the order given in the MD file so that if an insn
1361 matches two patterns, the first one will be used. However,
1362 in practice, most, if not all, patterns are unambiguous so
1363 that their order is independent. In that case, we can merge
1364 identical tests and group all similar modes and codes together.
1366 Scan starting from the end of OLDH until we reach a point
1367 where we reach the head of the list or where we pass a
1368 pattern that could also be true if NEW is true. If we find
1369 an identical pattern, we can merge them. Also, record the
1370 last node that tests the same code and mode and the last one
1371 that tests just the same mode.
1373 If we have no match, place NEW after the closest match we found. */
1375 for (old
= oldh
->last
; old
; old
= old
->prev
)
1377 if (nodes_identical (old
, add
))
1379 merge_accept_insn (old
, add
);
1380 merge_trees (&old
->success
, &add
->success
);
1384 if (maybe_both_true (old
, add
, 0))
1387 /* Insert the nodes in DT test type order, which is roughly
1388 how expensive/important the test is. Given that the tests
1389 are also ordered within the list, examining the first is
1391 if ((int) add
->tests
->type
< (int) old
->tests
->type
)
1392 insert_before
= old
;
1395 if (insert_before
== NULL
)
1398 add
->prev
= oldh
->last
;
1399 oldh
->last
->next
= add
;
1404 if ((add
->prev
= insert_before
->prev
) != NULL
)
1405 add
->prev
->next
= add
;
1408 add
->next
= insert_before
;
1409 insert_before
->prev
= add
;
1416 /* Walk the tree looking for sub-nodes that perform common tests.
1417 Factor out the common test into a new node. This enables us
1418 (depending on the test type) to emit switch statements later. */
1421 factor_tests (struct decision_head
*head
)
1423 struct decision
*first
, *next
;
1425 for (first
= head
->first
; first
&& first
->next
; first
= next
)
1427 enum decision_type type
;
1428 struct decision
*new_dec
, *old_last
;
1430 type
= first
->tests
->type
;
1433 /* Want at least two compatible sequential nodes. */
1434 if (next
->tests
->type
!= type
)
1437 /* Don't want all node types, just those we can turn into
1438 switch statements. */
1441 && type
!= DT_veclen
1442 && type
!= DT_elt_zero_int
1443 && type
!= DT_elt_one_int
1444 && type
!= DT_elt_zero_wide_safe
)
1447 /* If we'd been performing more than one test, create a new node
1448 below our first test. */
1449 if (first
->tests
->next
!= NULL
)
1451 new_dec
= new_decision (first
->position
, &first
->success
);
1452 new_dec
->tests
= first
->tests
->next
;
1453 first
->tests
->next
= NULL
;
1456 /* Crop the node tree off after our first test. */
1458 old_last
= head
->last
;
1461 /* For each compatible test, adjust to perform only one test in
1462 the top level node, then merge the node back into the tree. */
1465 struct decision_head h
;
1467 if (next
->tests
->next
!= NULL
)
1469 new_dec
= new_decision (next
->position
, &next
->success
);
1470 new_dec
->tests
= next
->tests
->next
;
1471 next
->tests
->next
= NULL
;
1475 new_dec
->next
= NULL
;
1476 h
.first
= h
.last
= new_dec
;
1478 merge_trees (head
, &h
);
1480 while (next
&& next
->tests
->type
== type
);
1482 /* After we run out of compatible tests, graft the remaining nodes
1483 back onto the tree. */
1486 next
->prev
= head
->last
;
1487 head
->last
->next
= next
;
1488 head
->last
= old_last
;
1493 for (first
= head
->first
; first
; first
= first
->next
)
1494 factor_tests (&first
->success
);
1497 /* After factoring, try to simplify the tests on any one node.
1498 Tests that are useful for switch statements are recognizable
1499 by having only a single test on a node -- we'll be manipulating
1500 nodes with multiple tests:
1502 If we have mode tests or code tests that are redundant with
1503 predicates, remove them. */
1506 simplify_tests (struct decision_head
*head
)
1508 struct decision
*tree
;
1510 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1512 struct decision_test
*a
, *b
;
1519 /* Find a predicate node. */
1520 while (b
&& b
->type
!= DT_pred
)
1524 /* Due to how these tests are constructed, we don't even need
1525 to check that the mode and code are compatible -- they were
1526 generated from the predicate in the first place. */
1527 while (a
->type
== DT_mode
|| a
->type
== DT_code
)
1534 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1535 simplify_tests (&tree
->success
);
1538 /* Count the number of subnodes of HEAD. If the number is high enough,
1539 make the first node in HEAD start a separate subroutine in the C code
1540 that is generated. */
1543 break_out_subroutines (struct decision_head
*head
, int initial
)
1546 struct decision
*sub
;
1548 for (sub
= head
->first
; sub
; sub
= sub
->next
)
1549 size
+= 1 + break_out_subroutines (&sub
->success
, 0);
1551 if (size
> SUBROUTINE_THRESHOLD
&& ! initial
)
1553 head
->first
->subroutine_number
= ++next_subroutine_number
;
1559 /* For each node p, find the next alternative that might be true
1563 find_afterward (struct decision_head
*head
, struct decision
*real_afterward
)
1565 struct decision
*p
, *q
, *afterward
;
1567 /* We can't propagate alternatives across subroutine boundaries.
1568 This is not incorrect, merely a minor optimization loss. */
1571 afterward
= (p
->subroutine_number
> 0 ? NULL
: real_afterward
);
1573 for ( ; p
; p
= p
->next
)
1575 /* Find the next node that might be true if this one fails. */
1576 for (q
= p
->next
; q
; q
= q
->next
)
1577 if (maybe_both_true (p
, q
, 1))
1580 /* If we reached the end of the list without finding one,
1581 use the incoming afterward position. */
1590 for (p
= head
->first
; p
; p
= p
->next
)
1591 if (p
->success
.first
)
1592 find_afterward (&p
->success
, p
->afterward
);
1594 /* When we are generating a subroutine, record the real afterward
1595 position in the first node where write_tree can find it, and we
1596 can do the right thing at the subroutine call site. */
1598 if (p
->subroutine_number
> 0)
1599 p
->afterward
= real_afterward
;
1602 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1603 actions are necessary to move to NEWPOS. If we fail to move to the
1604 new state, branch to node AFTERWARD if nonzero, otherwise return.
1606 Failure to move to the new state can only occur if we are trying to
1607 match multiple insns and we try to step past the end of the stream. */
1610 change_state (struct position
*oldpos
, struct position
*newpos
,
1613 while (oldpos
->depth
> newpos
->depth
)
1614 oldpos
= oldpos
->base
;
1616 if (oldpos
!= newpos
)
1617 switch (newpos
->type
)
1619 case POS_PEEP2_INSN
:
1620 printf ("%stem = peep2_next_insn (%d);\n", indent
, newpos
->arg
);
1621 printf ("%sx%d = PATTERN (tem);\n", indent
, newpos
->depth
);
1625 change_state (oldpos
, newpos
->base
, indent
);
1626 printf ("%sx%d = XEXP (x%d, %d);\n",
1627 indent
, newpos
->depth
, newpos
->depth
- 1, newpos
->arg
);
1631 change_state (oldpos
, newpos
->base
, indent
);
1632 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1633 indent
, newpos
->depth
, newpos
->depth
- 1, newpos
->arg
);
1638 /* Print the enumerator constant for CODE -- the upcase version of
1642 print_code (enum rtx_code code
)
1645 for (p
= GET_RTX_NAME (code
); *p
; p
++)
1646 putchar (TOUPPER (*p
));
1649 /* Emit code to cross an afterward link -- change state and branch. */
1652 write_afterward (struct decision
*start
, struct decision
*afterward
,
1655 if (!afterward
|| start
->subroutine_number
> 0)
1656 printf ("%sgoto ret0;\n", indent
);
1659 change_state (start
->position
, afterward
->position
, indent
);
1660 printf ("%sgoto L%d;\n", indent
, afterward
->number
);
1664 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1665 special care to avoid "decimal constant is so large that it is unsigned"
1666 warnings in the resulting code. */
1669 print_host_wide_int (HOST_WIDE_INT val
)
1671 HOST_WIDE_INT min
= (unsigned HOST_WIDE_INT
)1 << (HOST_BITS_PER_WIDE_INT
-1);
1673 printf ("(" HOST_WIDE_INT_PRINT_DEC_C
"-1)", val
+ 1);
1675 printf (HOST_WIDE_INT_PRINT_DEC_C
, val
);
1678 /* Emit a switch statement, if possible, for an initial sequence of
1679 nodes at START. Return the first node yet untested. */
1681 static struct decision
*
1682 write_switch (struct decision
*start
, int depth
)
1684 struct decision
*p
= start
;
1685 enum decision_type type
= p
->tests
->type
;
1686 struct decision
*needs_label
= NULL
;
1688 /* If we have two or more nodes in sequence that test the same one
1689 thing, we may be able to use a switch statement. */
1693 || p
->next
->tests
->type
!= type
1694 || p
->next
->tests
->next
1695 || nodes_identical_1 (p
->tests
, p
->next
->tests
))
1698 /* DT_code is special in that we can do interesting things with
1699 known predicates at the same time. */
1700 if (type
== DT_code
)
1702 char codemap
[NUM_RTX_CODE
];
1703 struct decision
*ret
;
1706 memset (codemap
, 0, sizeof (codemap
));
1708 printf (" switch (GET_CODE (x%d))\n {\n", depth
);
1709 code
= p
->tests
->u
.code
;
1712 if (p
!= start
&& p
->need_label
&& needs_label
== NULL
)
1717 printf (":\n goto L%d;\n", p
->success
.first
->number
);
1718 p
->success
.first
->need_label
= 1;
1725 && p
->tests
->type
== DT_code
1726 && ! codemap
[code
= p
->tests
->u
.code
]);
1728 /* If P is testing a predicate that we know about and we haven't
1729 seen any of the codes that are valid for the predicate, we can
1730 write a series of "case" statement, one for each possible code.
1731 Since we are already in a switch, these redundant tests are very
1732 cheap and will reduce the number of predicates called. */
1734 /* Note that while we write out cases for these predicates here,
1735 we don't actually write the test here, as it gets kinda messy.
1736 It is trivial to leave this to later by telling our caller that
1737 we only processed the CODE tests. */
1738 if (needs_label
!= NULL
)
1743 while (p
&& p
->tests
->type
== DT_pred
&& p
->tests
->u
.pred
.data
)
1745 const struct pred_data
*data
= p
->tests
->u
.pred
.data
;
1748 for (c
= 0; c
< NUM_RTX_CODE
; c
++)
1749 if (codemap
[c
] && data
->codes
[c
])
1752 for (c
= 0; c
< NUM_RTX_CODE
; c
++)
1755 fputs (" case ", stdout
);
1756 print_code ((enum rtx_code
) c
);
1757 fputs (":\n", stdout
);
1761 printf (" goto L%d;\n", p
->number
);
1767 /* Make the default case skip the predicates we managed to match. */
1769 printf (" default:\n");
1774 printf (" goto L%d;\n", p
->number
);
1778 write_afterward (start
, start
->afterward
, " ");
1781 printf (" break;\n");
1786 else if (type
== DT_mode
1787 || type
== DT_veclen
1788 || type
== DT_elt_zero_int
1789 || type
== DT_elt_one_int
1790 || type
== DT_elt_zero_wide_safe
)
1792 const char *indent
= "";
1794 /* We cast switch parameter to integer, so we must ensure that the value
1796 if (type
== DT_elt_zero_wide_safe
)
1799 printf (" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n",
1802 printf ("%s switch (", indent
);
1806 printf ("GET_MODE (x%d)", depth
);
1809 printf ("XVECLEN (x%d, 0)", depth
);
1811 case DT_elt_zero_int
:
1812 printf ("XINT (x%d, 0)", depth
);
1814 case DT_elt_one_int
:
1815 printf ("XINT (x%d, 1)", depth
);
1817 case DT_elt_zero_wide_safe
:
1818 /* Convert result of XWINT to int for portability since some C
1819 compilers won't do it and some will. */
1820 printf ("(int) XWINT (x%d, 0)", depth
);
1825 printf (")\n%s {\n", indent
);
1829 /* Merge trees will not unify identical nodes if their
1830 sub-nodes are at different levels. Thus we must check
1831 for duplicate cases. */
1833 for (q
= start
; q
!= p
; q
= q
->next
)
1834 if (nodes_identical_1 (p
->tests
, q
->tests
))
1837 if (p
!= start
&& p
->need_label
&& needs_label
== NULL
)
1840 printf ("%s case ", indent
);
1844 printf ("%smode", GET_MODE_NAME (p
->tests
->u
.mode
));
1847 printf ("%d", p
->tests
->u
.veclen
);
1849 case DT_elt_zero_int
:
1850 case DT_elt_one_int
:
1851 case DT_elt_zero_wide
:
1852 case DT_elt_zero_wide_safe
:
1853 print_host_wide_int (p
->tests
->u
.intval
);
1858 printf (":\n%s goto L%d;\n", indent
, p
->success
.first
->number
);
1859 p
->success
.first
->need_label
= 1;
1863 while (p
&& p
->tests
->type
== type
&& !p
->tests
->next
);
1866 printf ("%s default:\n%s break;\n%s }\n",
1867 indent
, indent
, indent
);
1869 return needs_label
!= NULL
? needs_label
: p
;
1873 /* None of the other tests are amenable. */
1878 /* Emit code for one test. */
1881 write_cond (struct decision_test
*p
, int depth
,
1882 enum routine_type subroutine_type
)
1887 printf ("peep2_current_count >= %d", p
->u
.num_insns
);
1891 printf ("GET_MODE (x%d) == %smode", depth
, GET_MODE_NAME (p
->u
.mode
));
1895 printf ("GET_CODE (x%d) == ", depth
);
1896 print_code (p
->u
.code
);
1900 printf ("XVECLEN (x%d, 0) == %d", depth
, p
->u
.veclen
);
1903 case DT_elt_zero_int
:
1904 printf ("XINT (x%d, 0) == %d", depth
, (int) p
->u
.intval
);
1907 case DT_elt_one_int
:
1908 printf ("XINT (x%d, 1) == %d", depth
, (int) p
->u
.intval
);
1911 case DT_elt_zero_wide
:
1912 case DT_elt_zero_wide_safe
:
1913 printf ("XWINT (x%d, 0) == ", depth
);
1914 print_host_wide_int (p
->u
.intval
);
1918 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
1919 depth
, (int) p
->u
.intval
);
1923 printf ("XVECLEN (x%d, 0) >= %d", depth
, p
->u
.veclen
);
1927 printf ("rtx_equal_p (x%d, operands[%d])", depth
, p
->u
.dup
);
1931 printf ("%s (x%d, %smode)", p
->u
.pred
.name
, depth
,
1932 GET_MODE_NAME (p
->u
.pred
.mode
));
1936 print_c_condition (p
->u
.c_test
);
1939 case DT_accept_insn
:
1940 gcc_assert (subroutine_type
== RECOG
);
1941 gcc_assert (p
->u
.insn
.num_clobbers_to_add
);
1942 printf ("pnum_clobbers != NULL");
1950 /* Emit code for one action. The previous tests have succeeded;
1951 TEST is the last of the chain. In the normal case we simply
1952 perform a state change. For the `accept' tests we must do more work. */
1955 write_action (struct decision
*p
, struct decision_test
*test
,
1956 int depth
, int uncond
, struct decision
*success
,
1957 enum routine_type subroutine_type
)
1964 else if (test
->type
== DT_accept_op
|| test
->type
== DT_accept_insn
)
1966 fputs (" {\n", stdout
);
1973 if (test
->type
== DT_accept_op
)
1975 printf ("%soperands[%d] = x%d;\n", indent
, test
->u
.opno
, depth
);
1977 /* Only allow DT_accept_insn to follow. */
1981 gcc_assert (test
->type
== DT_accept_insn
);
1985 /* Sanity check that we're now at the end of the list of tests. */
1986 gcc_assert (!test
->next
);
1988 if (test
->type
== DT_accept_insn
)
1990 switch (subroutine_type
)
1993 if (test
->u
.insn
.num_clobbers_to_add
!= 0)
1994 printf ("%s*pnum_clobbers = %d;\n",
1995 indent
, test
->u
.insn
.num_clobbers_to_add
);
1996 printf ("%sreturn %d; /* %s */\n", indent
,
1997 test
->u
.insn
.code_number
,
1998 get_insn_name (test
->u
.insn
.code_number
));
2002 printf ("%sreturn gen_split_%d (insn, operands);\n",
2003 indent
, test
->u
.insn
.code_number
);
2009 struct position
*pos
;
2011 for (pos
= p
->position
; pos
; pos
= pos
->base
)
2012 if (pos
->type
== POS_PEEP2_INSN
)
2014 match_len
= pos
->arg
;
2017 printf ("%s*_pmatch_len = %d;\n", indent
, match_len
);
2018 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2019 indent
, test
->u
.insn
.code_number
);
2020 printf ("%sif (tem != 0)\n%s return tem;\n", indent
, indent
);
2030 printf ("%sgoto L%d;\n", indent
, success
->number
);
2031 success
->need_label
= 1;
2035 fputs (" }\n", stdout
);
2038 /* Return 1 if the test is always true and has no fallthru path. Return -1
2039 if the test does have a fallthru path, but requires that the condition be
2040 terminated. Otherwise return 0 for a normal test. */
2041 /* ??? is_unconditional is a stupid name for a tri-state function. */
2044 is_unconditional (struct decision_test
*t
, enum routine_type subroutine_type
)
2046 if (t
->type
== DT_accept_op
)
2049 if (t
->type
== DT_accept_insn
)
2051 switch (subroutine_type
)
2054 return (t
->u
.insn
.num_clobbers_to_add
== 0);
2067 /* Emit code for one node -- the conditional and the accompanying action.
2068 Return true if there is no fallthru path. */
2071 write_node (struct decision
*p
, int depth
,
2072 enum routine_type subroutine_type
)
2074 struct decision_test
*test
, *last_test
;
2077 /* Scan the tests and simplify comparisons against small
2079 for (test
= p
->tests
; test
; test
= test
->next
)
2081 if (test
->type
== DT_code
2082 && test
->u
.code
== CONST_INT
2084 && test
->next
->type
== DT_elt_zero_wide_safe
2085 && -MAX_SAVED_CONST_INT
<= test
->next
->u
.intval
2086 && test
->next
->u
.intval
<= MAX_SAVED_CONST_INT
)
2088 test
->type
= DT_const_int
;
2089 test
->u
.intval
= test
->next
->u
.intval
;
2090 test
->next
= test
->next
->next
;
2094 last_test
= test
= p
->tests
;
2095 uncond
= is_unconditional (test
, subroutine_type
);
2099 write_cond (test
, depth
, subroutine_type
);
2101 while ((test
= test
->next
) != NULL
)
2104 if (is_unconditional (test
, subroutine_type
))
2108 write_cond (test
, depth
, subroutine_type
);
2114 write_action (p
, last_test
, depth
, uncond
, p
->success
.first
, subroutine_type
);
2119 /* Emit code for all of the sibling nodes of HEAD. */
2122 write_tree_1 (struct decision_head
*head
, int depth
,
2123 enum routine_type subroutine_type
)
2125 struct decision
*p
, *next
;
2128 for (p
= head
->first
; p
; p
= next
)
2130 /* The label for the first element was printed in write_tree. */
2131 if (p
!= head
->first
&& p
->need_label
)
2132 OUTPUT_LABEL (" ", p
->number
);
2134 /* Attempt to write a switch statement for a whole sequence. */
2135 next
= write_switch (p
, depth
);
2140 /* Failed -- fall back and write one node. */
2141 uncond
= write_node (p
, depth
, subroutine_type
);
2146 /* Finished with this chain. Close a fallthru path by branching
2147 to the afterward node. */
2149 write_afterward (head
->last
, head
->last
->afterward
, " ");
2152 /* Write out the decision tree starting at HEAD. PREVPOS is the
2153 position at the node that branched to this node. */
2156 write_tree (struct decision_head
*head
, struct position
*prevpos
,
2157 enum routine_type type
, int initial
)
2159 struct decision
*p
= head
->first
;
2163 OUTPUT_LABEL (" ", p
->number
);
2165 if (! initial
&& p
->subroutine_number
> 0)
2167 static const char * const name_prefix
[] = {
2168 "recog", "split", "peephole2"
2171 static const char * const call_suffix
[] = {
2172 ", pnum_clobbers", "", ", _pmatch_len"
2175 /* This node has been broken out into a separate subroutine.
2176 Call it, test the result, and branch accordingly. */
2180 printf (" tem = %s_%d (x0, insn%s);\n",
2181 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2182 if (IS_SPLIT (type
))
2183 printf (" if (tem != 0)\n return tem;\n");
2185 printf (" if (tem >= 0)\n return tem;\n");
2187 change_state (p
->position
, p
->afterward
->position
, " ");
2188 printf (" goto L%d;\n", p
->afterward
->number
);
2192 printf (" return %s_%d (x0, insn%s);\n",
2193 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2198 change_state (prevpos
, p
->position
, " ");
2199 write_tree_1 (head
, p
->position
->depth
, type
);
2201 for (p
= head
->first
; p
; p
= p
->next
)
2202 if (p
->success
.first
)
2203 write_tree (&p
->success
, p
->position
, type
, 0);
2207 /* Write out a subroutine of type TYPE to do comparisons starting at
2211 write_subroutine (struct decision_head
*head
, enum routine_type type
)
2213 int subfunction
= head
->first
? head
->first
->subroutine_number
: 0;
2217 const char *insn_param
;
2219 s_or_e
= subfunction
? "static " : "";
2222 sprintf (extension
, "_%d", subfunction
);
2223 else if (type
== RECOG
)
2224 extension
[0] = '\0';
2226 strcpy (extension
, "_insns");
2228 /* For now, the top-level functions take a plain "rtx", and perform a
2229 checked cast to "rtx_insn *" for use throughout the rest of the
2230 function and the code it calls. */
2231 insn_param
= subfunction
? "rtx_insn *insn" : "rtx uncast_insn";
2237 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\t%s ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n",
2238 s_or_e
, extension
, insn_param
);
2242 split%s (rtx x0 ATTRIBUTE_UNUSED, %s ATTRIBUTE_UNUSED)\n",
2243 s_or_e
, extension
, insn_param
);
2247 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\t%s ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2248 s_or_e
, extension
, insn_param
);
2252 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2253 for (i
= 1; i
<= max_depth
; i
++)
2254 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i
);
2256 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type
) ? "rtx" : "int");
2259 printf (" recog_data.insn = NULL_RTX;\n");
2261 /* For now add the downcast to rtx_insn *, at the top of each top-level
2265 printf (" rtx_insn *insn ATTRIBUTE_UNUSED;\n");
2266 printf (" insn = safe_as_a <rtx_insn *> (uncast_insn);\n");
2270 write_tree (head
, &root_pos
, type
, 1);
2272 printf (" goto ret0;\n");
2274 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type
) ? 0 : -1);
2277 /* In break_out_subroutines, we discovered the boundaries for the
2278 subroutines, but did not write them out. Do so now. */
2281 write_subroutines (struct decision_head
*head
, enum routine_type type
)
2285 for (p
= head
->first
; p
; p
= p
->next
)
2286 if (p
->success
.first
)
2287 write_subroutines (&p
->success
, type
);
2289 if (head
->first
->subroutine_number
> 0)
2290 write_subroutine (head
, type
);
2293 /* Begin the output file. */
2299 /* Generated automatically by the program `genrecog' from the target\n\
2300 machine description file. */\n\
2302 #include \"config.h\"\n\
2303 #include \"system.h\"\n\
2304 #include \"coretypes.h\"\n\
2305 #include \"tm.h\"\n\
2306 #include \"rtl.h\"\n\
2307 #include \"tm_p.h\"\n\
2308 #include \"hashtab.h\"\n\
2309 #include \"hash-set.h\"\n\
2310 #include \"vec.h\"\n\
2311 #include \"machmode.h\"\n\
2312 #include \"hard-reg-set.h\"\n\
2313 #include \"input.h\"\n\
2314 #include \"function.h\"\n\
2315 #include \"insn-config.h\"\n\
2316 #include \"recog.h\"\n\
2317 #include \"output.h\"\n\
2318 #include \"flags.h\"\n\
2319 #include \"hard-reg-set.h\"\n\
2320 #include \"predict.h\"\n\
2321 #include \"basic-block.h\"\n\
2322 #include \"resource.h\"\n\
2323 #include \"diagnostic-core.h\"\n\
2324 #include \"reload.h\"\n\
2325 #include \"regs.h\"\n\
2326 #include \"tm-constrs.h\"\n\
2327 #include \"predict.h\"\n\
2331 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2332 X0 is a valid instruction.\n\
2334 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2335 returns a nonnegative number which is the insn code number for the\n\
2336 pattern that matched. This is the same as the order in the machine\n\
2337 description of the entry that matched. This number can be used as an\n\
2338 index into `insn_data' and other tables.\n");
2340 The third argument to recog is an optional pointer to an int. If\n\
2341 present, recog will accept a pattern if it matches except for missing\n\
2342 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2343 the optional pointer will be set to the number of CLOBBERs that need\n\
2344 to be added (it should be initialized to zero by the caller). If it");
2346 is set nonzero, the caller should allocate a PARALLEL of the\n\
2347 appropriate size, copy the initial entries, and call add_clobbers\n\
2348 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2352 The function split_insns returns 0 if the rtl could not\n\
2353 be split or the split rtl as an INSN list if it can be.\n\
2355 The function peephole2_insns returns 0 if the rtl could not\n\
2356 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2357 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2362 /* Construct and return a sequence of decisions
2363 that will recognize INSN.
2365 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2367 static struct decision_head
2368 make_insn_sequence (rtx insn
, enum routine_type type
)
2371 const char *c_test
= XSTR (insn
, type
== RECOG
? 2 : 1);
2372 int truth
= maybe_eval_c_test (c_test
);
2373 struct decision
*last
;
2374 struct decision_test
*test
, **place
;
2375 struct decision_head head
;
2376 struct position
*c_test_pos
, **pos_ptr
;
2378 /* We should never see an insn whose C test is false at compile time. */
2381 c_test_pos
= &root_pos
;
2382 if (type
== PEEPHOLE2
)
2386 /* peephole2 gets special treatment:
2387 - X always gets an outer parallel even if it's only one entry
2388 - we remove all traces of outer-level match_scratch and match_dup
2389 expressions here. */
2390 x
= rtx_alloc (PARALLEL
);
2391 PUT_MODE (x
, VOIDmode
);
2392 XVEC (x
, 0) = rtvec_alloc (XVECLEN (insn
, 0));
2393 pos_ptr
= &peep2_insn_pos_list
;
2394 for (i
= j
= 0; i
< XVECLEN (insn
, 0); i
++)
2396 rtx tmp
= XVECEXP (insn
, 0, i
);
2397 if (GET_CODE (tmp
) != MATCH_SCRATCH
&& GET_CODE (tmp
) != MATCH_DUP
)
2399 c_test_pos
= next_position (pos_ptr
, &root_pos
,
2401 XVECEXP (x
, 0, j
) = tmp
;
2403 pos_ptr
= &c_test_pos
->next
;
2408 else if (XVECLEN (insn
, type
== RECOG
) == 1)
2409 x
= XVECEXP (insn
, type
== RECOG
, 0);
2412 x
= rtx_alloc (PARALLEL
);
2413 XVEC (x
, 0) = XVEC (insn
, type
== RECOG
);
2414 PUT_MODE (x
, VOIDmode
);
2417 validate_pattern (x
, insn
, NULL_RTX
, 0);
2419 memset (&head
, 0, sizeof (head
));
2420 last
= add_to_sequence (x
, &head
, &root_pos
, type
, 1);
2422 /* Find the end of the test chain on the last node. */
2423 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2425 place
= &test
->next
;
2427 /* Skip the C test if it's known to be true at compile time. */
2430 /* Need a new node if we have another test to add. */
2431 if (test
->type
== DT_accept_op
)
2433 last
= new_decision (c_test_pos
, &last
->success
);
2434 place
= &last
->tests
;
2436 test
= new_decision_test (DT_c_test
, &place
);
2437 test
->u
.c_test
= c_test
;
2440 test
= new_decision_test (DT_accept_insn
, &place
);
2441 test
->u
.insn
.code_number
= next_insn_code
;
2442 test
->u
.insn
.lineno
= pattern_lineno
;
2443 test
->u
.insn
.num_clobbers_to_add
= 0;
2448 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2449 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2450 If so, set up to recognize the pattern without these CLOBBERs. */
2452 if (GET_CODE (x
) == PARALLEL
)
2456 /* Find the last non-clobber in the parallel. */
2457 for (i
= XVECLEN (x
, 0); i
> 0; i
--)
2459 rtx y
= XVECEXP (x
, 0, i
- 1);
2460 if (GET_CODE (y
) != CLOBBER
2461 || (!REG_P (XEXP (y
, 0))
2462 && GET_CODE (XEXP (y
, 0)) != MATCH_SCRATCH
))
2466 if (i
!= XVECLEN (x
, 0))
2469 struct decision_head clobber_head
;
2471 /* Build a similar insn without the clobbers. */
2473 new_rtx
= XVECEXP (x
, 0, 0);
2478 new_rtx
= rtx_alloc (PARALLEL
);
2479 XVEC (new_rtx
, 0) = rtvec_alloc (i
);
2480 for (j
= i
- 1; j
>= 0; j
--)
2481 XVECEXP (new_rtx
, 0, j
) = XVECEXP (x
, 0, j
);
2485 memset (&clobber_head
, 0, sizeof (clobber_head
));
2486 last
= add_to_sequence (new_rtx
, &clobber_head
, &root_pos
,
2489 /* Find the end of the test chain on the last node. */
2490 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2493 /* We definitely have a new test to add -- create a new
2495 place
= &test
->next
;
2496 if (test
->type
== DT_accept_op
)
2498 last
= new_decision (&root_pos
, &last
->success
);
2499 place
= &last
->tests
;
2502 /* Skip the C test if it's known to be true at compile
2506 test
= new_decision_test (DT_c_test
, &place
);
2507 test
->u
.c_test
= c_test
;
2510 test
= new_decision_test (DT_accept_insn
, &place
);
2511 test
->u
.insn
.code_number
= next_insn_code
;
2512 test
->u
.insn
.lineno
= pattern_lineno
;
2513 test
->u
.insn
.num_clobbers_to_add
= XVECLEN (x
, 0) - i
;
2515 merge_trees (&head
, &clobber_head
);
2521 /* Define the subroutine we will call below and emit in genemit. */
2522 printf ("extern rtx gen_split_%d (rtx_insn *, rtx *);\n", next_insn_code
);
2526 /* Define the subroutine we will call below and emit in genemit. */
2527 printf ("extern rtx gen_peephole2_%d (rtx_insn *, rtx *);\n",
2536 process_tree (struct decision_head
*head
, enum routine_type subroutine_type
)
2538 if (head
->first
== NULL
)
2540 /* We can elide peephole2_insns, but not recog or split_insns. */
2541 if (subroutine_type
== PEEPHOLE2
)
2546 factor_tests (head
);
2548 next_subroutine_number
= 0;
2549 break_out_subroutines (head
, 1);
2550 find_afterward (head
, NULL
);
2552 /* We run this after find_afterward, because find_afterward needs
2553 the redundant DT_mode tests on predicates to determine whether
2554 two tests can both be true or not. */
2555 simplify_tests (head
);
2557 write_subroutines (head
, subroutine_type
);
2560 write_subroutine (head
, subroutine_type
);
2563 extern int main (int, char **);
2566 main (int argc
, char **argv
)
2569 struct decision_head recog_tree
, split_tree
, peephole2_tree
, h
;
2571 progname
= "genrecog";
2573 memset (&recog_tree
, 0, sizeof recog_tree
);
2574 memset (&split_tree
, 0, sizeof split_tree
);
2575 memset (&peephole2_tree
, 0, sizeof peephole2_tree
);
2577 if (!init_rtx_reader_args (argc
, argv
))
2578 return (FATAL_EXIT_CODE
);
2584 /* Read the machine description. */
2588 desc
= read_md_rtx (&pattern_lineno
, &next_insn_code
);
2592 switch (GET_CODE (desc
))
2595 h
= make_insn_sequence (desc
, RECOG
);
2596 merge_trees (&recog_tree
, &h
);
2600 h
= make_insn_sequence (desc
, SPLIT
);
2601 merge_trees (&split_tree
, &h
);
2604 case DEFINE_PEEPHOLE2
:
2605 h
= make_insn_sequence (desc
, PEEPHOLE2
);
2606 merge_trees (&peephole2_tree
, &h
);
2614 return FATAL_EXIT_CODE
;
2618 process_tree (&recog_tree
, RECOG
);
2619 process_tree (&split_tree
, SPLIT
);
2620 process_tree (&peephole2_tree
, PEEPHOLE2
);
2623 return (ferror (stdout
) != 0 ? FATAL_EXIT_CODE
: SUCCESS_EXIT_CODE
);
2627 debug_decision_2 (struct decision_test
*test
)
2632 fprintf (stderr
, "num_insns=%d", test
->u
.num_insns
);
2635 fprintf (stderr
, "mode=%s", GET_MODE_NAME (test
->u
.mode
));
2638 fprintf (stderr
, "code=%s", GET_RTX_NAME (test
->u
.code
));
2641 fprintf (stderr
, "veclen=%d", test
->u
.veclen
);
2643 case DT_elt_zero_int
:
2644 fprintf (stderr
, "elt0_i=%d", (int) test
->u
.intval
);
2646 case DT_elt_one_int
:
2647 fprintf (stderr
, "elt1_i=%d", (int) test
->u
.intval
);
2649 case DT_elt_zero_wide
:
2650 fprintf (stderr
, "elt0_w=" HOST_WIDE_INT_PRINT_DEC
, test
->u
.intval
);
2652 case DT_elt_zero_wide_safe
:
2653 fprintf (stderr
, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC
, test
->u
.intval
);
2656 fprintf (stderr
, "veclen>=%d", test
->u
.veclen
);
2659 fprintf (stderr
, "dup=%d", test
->u
.dup
);
2662 fprintf (stderr
, "pred=(%s,%s)",
2663 test
->u
.pred
.name
, GET_MODE_NAME (test
->u
.pred
.mode
));
2668 strncpy (sub
, test
->u
.c_test
, sizeof (sub
));
2669 memcpy (sub
+16, "...", 4);
2670 fprintf (stderr
, "c_test=\"%s\"", sub
);
2674 fprintf (stderr
, "A_op=%d", test
->u
.opno
);
2676 case DT_accept_insn
:
2677 fprintf (stderr
, "A_insn=(%d,%d)",
2678 test
->u
.insn
.code_number
, test
->u
.insn
.num_clobbers_to_add
);
2687 debug_decision_1 (struct decision
*d
, int indent
)
2690 struct decision_test
*test
;
2694 for (i
= 0; i
< indent
; ++i
)
2696 fputs ("(nil)\n", stderr
);
2700 for (i
= 0; i
< indent
; ++i
)
2707 debug_decision_2 (test
);
2708 while ((test
= test
->next
) != NULL
)
2710 fputs (" + ", stderr
);
2711 debug_decision_2 (test
);
2714 fprintf (stderr
, "} %d n %d a %d\n", d
->number
,
2715 (d
->next
? d
->next
->number
: -1),
2716 (d
->afterward
? d
->afterward
->number
: -1));
2720 debug_decision_0 (struct decision
*d
, int indent
, int maxdepth
)
2729 for (i
= 0; i
< indent
; ++i
)
2731 fputs ("(nil)\n", stderr
);
2735 debug_decision_1 (d
, indent
);
2736 for (n
= d
->success
.first
; n
; n
= n
->next
)
2737 debug_decision_0 (n
, indent
+ 2, maxdepth
- 1);
2741 debug_decision (struct decision
*d
)
2743 debug_decision_0 (d
, 0, 1000000);
2747 debug_decision_list (struct decision
*d
)
2751 debug_decision_0 (d
, 0, 0);