(distribute_notes, case REG_DEAD): If a call uses a
[official-gcc.git] / gcc / reg-stack.c
blobdd30344db83cdfc50853058848c86c88fd7c64c9
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20 /* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
23 * The form of the input:
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
33 numbers are virtual, and afterward they are all hard.
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
43 * The form of the output:
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
68 stack.
70 * Methodology:
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
76 Before life analysis, the mode of each insn is set based on whether
77 or not any stack registers are mentioned within that insn. VOIDmode
78 means that no regs are mentioned anyway, and QImode means that at
79 least one pattern within the insn mentions stack registers. This
80 information is valid until after reg_to_stack returns, and is used
81 from jump_optimize.
83 * asm_operands:
85 There are several rules on the usage of stack-like regs in
86 asm_operands insns. These rules apply only to the operands that are
87 stack-like regs:
89 1. Given a set of input regs that die in an asm_operands, it is
90 necessary to know which are implicitly popped by the asm, and
91 which must be explicitly popped by gcc.
93 An input reg that is implicitly popped by the asm must be
94 explicitly clobbered, unless it is constrained to match an
95 output operand.
97 2. For any input reg that is implicitly popped by an asm, it is
98 necessary to know how to adjust the stack to compensate for the pop.
99 If any non-popped input is closer to the top of the reg-stack than
100 the implicitly popped reg, it would not be possible to know what the
101 stack looked like - it's not clear how the rest of the stack "slides
102 up".
104 All implicitly popped input regs must be closer to the top of
105 the reg-stack than any input that is not implicitly popped.
107 3. It is possible that if an input dies in an insn, reload might
108 use the input reg for an output reload. Consider this example:
110 asm ("foo" : "=t" (a) : "f" (b));
112 This asm says that input B is not popped by the asm, and that
113 the asm pushes a result onto the reg-stack, ie, the stack is one
114 deeper after the asm than it was before. But, it is possible that
115 reload will think that it can use the same reg for both the input and
116 the output, if input B dies in this insn.
118 If any input operand uses the "f" constraint, all output reg
119 constraints must use the "&" earlyclobber.
121 The asm above would be written as
123 asm ("foo" : "=&t" (a) : "f" (b));
125 4. Some operands need to be in particular places on the stack. All
126 output operands fall in this category - there is no other way to
127 know which regs the outputs appear in unless the user indicates
128 this in the constraints.
130 Output operands must specifically indicate which reg an output
131 appears in after an asm. "=f" is not allowed: the operand
132 constraints must select a class with a single reg.
134 5. Output operands may not be "inserted" between existing stack regs.
135 Since no 387 opcode uses a read/write operand, all output operands
136 are dead before the asm_operands, and are pushed by the asm_operands.
137 It makes no sense to push anywhere but the top of the reg-stack.
139 Output operands must start at the top of the reg-stack: output
140 operands may not "skip" a reg.
142 6. Some asm statements may need extra stack space for internal
143 calculations. This can be guaranteed by clobbering stack registers
144 unrelated to the inputs and outputs.
146 Here are a couple of reasonable asms to want to write. This asm
147 takes one input, which is internally popped, and produces two outputs.
149 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
151 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
152 and replaces them with one output. The user must code the "st(1)"
153 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
155 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
159 #include <stdio.h>
160 #include "config.h"
161 #include "tree.h"
162 #include "rtl.h"
163 #include "insn-config.h"
164 #include "regs.h"
165 #include "hard-reg-set.h"
166 #include "flags.h"
168 #ifdef STACK_REGS
170 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
172 /* True if the current function returns a real value. */
173 static int current_function_returns_real;
175 /* This is the basic stack record. TOP is an index into REG[] such
176 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
178 If TOP is -2, REG[] is not yet initialized. Stack initialization
179 consists of placing each live reg in array `reg' and setting `top'
180 appropriately.
182 REG_SET indicates which registers are live. */
184 typedef struct stack_def
186 int top; /* index to top stack element */
187 HARD_REG_SET reg_set; /* set of live registers */
188 char reg[REG_STACK_SIZE]; /* register - stack mapping */
189 } *stack;
191 /* highest instruction uid */
192 static int max_uid = 0;
194 /* Number of basic blocks in the current function. */
195 static int blocks;
197 /* Element N is first insn in basic block N.
198 This info lasts until we finish compiling the function. */
199 static rtx *block_begin;
201 /* Element N is last insn in basic block N.
202 This info lasts until we finish compiling the function. */
203 static rtx *block_end;
205 /* Element N is nonzero if control can drop into basic block N */
206 static char *block_drops_in;
208 /* Element N says all about the stack at entry block N */
209 static stack block_stack_in;
211 /* Element N says all about the stack life at the end of block N */
212 static HARD_REG_SET *block_out_reg_set;
214 /* This is where the BLOCK_NUM values are really stored. This is set
215 up by find_blocks and used there and in life_analysis. It can be used
216 later, but only to look up an insn that is the head or tail of some
217 block. life_analysis and the stack register conversion process can
218 add insns within a block. */
219 static int *block_number;
221 /* This is the register file for all register after conversion */
222 static rtx FP_mode_reg[FIRST_PSEUDO_REGISTER][(int) MAX_MACHINE_MODE];
224 /* Get the basic block number of an insn. See note at block_number
225 definition are validity of this information. */
227 #define BLOCK_NUM(INSN) \
228 (((INSN_UID (INSN) > max_uid) \
229 ? (int *)(abort() , 0) \
230 : block_number)[INSN_UID (INSN)])
232 extern rtx forced_labels;
233 extern rtx gen_jump ();
234 extern rtx gen_movdf (), gen_movxf ();
235 extern rtx find_regno_note ();
236 extern rtx emit_jump_insn_before ();
237 extern rtx emit_label_after ();
239 /* Forward declarations */
241 static void find_blocks ();
242 static uses_reg_or_mem ();
243 static void stack_reg_life_analysis ();
244 static void change_stack ();
245 static void convert_regs ();
246 static void dump_stack_info ();
248 /* Return non-zero if any stack register is mentioned somewhere within PAT. */
251 stack_regs_mentioned_p (pat)
252 rtx pat;
254 register char *fmt;
255 register int i;
257 if (STACK_REG_P (pat))
258 return 1;
260 fmt = GET_RTX_FORMAT (GET_CODE (pat));
261 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
263 if (fmt[i] == 'E')
265 register int j;
267 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
268 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
269 return 1;
271 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
272 return 1;
275 return 0;
278 /* Convert register usage from "flat" register file usage to a "stack
279 register file. FIRST is the first insn in the function, FILE is the
280 dump file, if used.
282 First compute the beginning and end of each basic block. Do a
283 register life analysis on the stack registers, recording the result
284 for the head and tail of each basic block. The convert each insn one
285 by one. Run a last jump_optimize() pass, if optimizing, to eliminate
286 any cross-jumping created when the converter inserts pop insns.*/
288 void
289 reg_to_stack (first, file)
290 rtx first;
291 FILE *file;
293 register rtx insn;
294 register int i;
295 int stack_reg_seen = 0;
296 enum machine_mode mode;
298 current_function_returns_real
299 = TREE_CODE (TREE_TYPE (DECL_RESULT (current_function_decl))) == REAL_TYPE;
301 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
302 mode = GET_MODE_WIDER_MODE (mode))
303 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
304 FP_mode_reg[i][(int) mode] = gen_rtx (REG, mode, i);
306 /* Count the basic blocks. Also find maximum insn uid. */
308 register RTX_CODE prev_code = BARRIER;
309 register RTX_CODE code;
311 max_uid = 0;
312 blocks = 0;
313 for (insn = first; insn; insn = NEXT_INSN (insn))
315 /* Note that this loop must select the same block boundaries
316 as code in find_blocks. Also note that this code is not the
317 same as that used in flow.c. */
319 if (INSN_UID (insn) > max_uid)
320 max_uid = INSN_UID (insn);
322 code = GET_CODE (insn);
324 if (code == CODE_LABEL
325 || (prev_code != INSN
326 && prev_code != CALL_INSN
327 && prev_code != CODE_LABEL
328 && GET_RTX_CLASS (code) == 'i'))
329 blocks++;
331 /* Remember whether or not this insn mentions an FP regs.
332 Check JUMP_INSNs too, in case someone creates a funny PARALLEL. */
334 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
335 && stack_regs_mentioned_p (PATTERN (insn)))
337 stack_reg_seen = 1;
338 PUT_MODE (insn, QImode);
340 else
341 PUT_MODE (insn, VOIDmode);
343 if (code == CODE_LABEL)
344 LABEL_REFS (insn) = insn; /* delete old chain */
346 if (code != NOTE)
347 prev_code = code;
351 /* If no stack register reference exists in this insn, there isn't
352 anything to convert. */
354 if (! stack_reg_seen)
355 return;
357 /* If there are stack registers, there must be at least one block. */
359 if (! blocks)
360 abort ();
362 /* Allocate some tables that last till end of compiling this function
363 and some needed only in find_blocks and life_analysis. */
365 block_begin = (rtx *) alloca (blocks * sizeof (rtx));
366 block_end = (rtx *) alloca (blocks * sizeof (rtx));
367 block_drops_in = (char *) alloca (blocks);
369 block_stack_in = (stack) alloca (blocks * sizeof (struct stack_def));
370 block_out_reg_set = (HARD_REG_SET *) alloca (blocks * sizeof (HARD_REG_SET));
371 bzero (block_stack_in, blocks * sizeof (struct stack_def));
372 bzero (block_out_reg_set, blocks * sizeof (HARD_REG_SET));
374 block_number = (int *) alloca ((max_uid + 1) * sizeof (int));
376 find_blocks (first);
377 stack_reg_life_analysis (first);
379 /* Dump the life analysis debug information before jump
380 optimization, as that will destroy the LABEL_REFS we keep the
381 information in. */
383 if (file)
384 dump_stack_info (file);
386 convert_regs ();
388 if (optimize)
389 jump_optimize (first, 2, 0, 0);
392 /* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
393 label's chain of references, and note which insn contains each
394 reference. */
396 static void
397 record_label_references (insn, pat)
398 rtx insn, pat;
400 register enum rtx_code code = GET_CODE (pat);
401 register int i;
402 register char *fmt;
404 if (code == LABEL_REF)
406 register rtx label = XEXP (pat, 0);
407 register rtx ref;
409 if (GET_CODE (label) != CODE_LABEL)
410 abort ();
412 /* Don't make a duplicate in the code_label's chain. */
414 for (ref = LABEL_REFS (label);
415 ref && ref != label;
416 ref = LABEL_NEXTREF (ref))
417 if (CONTAINING_INSN (ref) == insn)
418 return;
420 CONTAINING_INSN (pat) = insn;
421 LABEL_NEXTREF (pat) = LABEL_REFS (label);
422 LABEL_REFS (label) = pat;
424 return;
427 fmt = GET_RTX_FORMAT (code);
428 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
430 if (fmt[i] == 'e')
431 record_label_references (insn, XEXP (pat, i));
432 if (fmt[i] == 'E')
434 register int j;
435 for (j = 0; j < XVECLEN (pat, i); j++)
436 record_label_references (insn, XVECEXP (pat, i, j));
441 /* Return a pointer to the REG expression within PAT. If PAT is not a
442 REG, possible enclosed by a conversion rtx, return the inner part of
443 PAT that stopped the search. */
445 static rtx *
446 get_true_reg (pat)
447 rtx *pat;
449 while (GET_CODE (*pat) == SUBREG
450 || GET_CODE (*pat) == FLOAT
451 || GET_CODE (*pat) == FIX
452 || GET_CODE (*pat) == FLOAT_EXTEND)
453 pat = & XEXP (*pat, 0);
455 return pat;
458 /* Scan the OPERANDS and OPERAND_CONSTRAINTS of an asm_operands.
459 N_OPERANDS is the total number of operands. Return which alternative
460 matched, or -1 is no alternative matches.
462 OPERAND_MATCHES is an array which indicates which operand this
463 operand matches due to the constraints, or -1 if no match is required.
464 If two operands match by coincidence, but are not required to match by
465 the constraints, -1 is returned.
467 OPERAND_CLASS is an array which indicates the smallest class
468 required by the constraints. If the alternative that matches calls
469 for some class `class', and the operand matches a subclass of `class',
470 OPERAND_CLASS is set to `class' as required by the constraints, not to
471 the subclass. If an alternative allows more than one class,
472 OPERAND_CLASS is set to the smallest class that is a union of the
473 allowed classes. */
475 static int
476 constrain_asm_operands (n_operands, operands, operand_constraints,
477 operand_matches, operand_class)
478 int n_operands;
479 rtx *operands;
480 char **operand_constraints;
481 int *operand_matches;
482 enum reg_class *operand_class;
484 char **constraints = (char **) alloca (n_operands * sizeof (char *));
485 char *q;
486 int this_alternative, this_operand;
487 int n_alternatives;
488 int j;
490 for (j = 0; j < n_operands; j++)
491 constraints[j] = operand_constraints[j];
493 /* Compute the number of alternatives in the operands. reload has
494 already guaranteed that all operands have the same number of
495 alternatives. */
497 n_alternatives = 1;
498 for (q = constraints[0]; *q; q++)
499 n_alternatives += (*q == ',');
501 this_alternative = 0;
502 while (this_alternative < n_alternatives)
504 int lose = 0;
505 int i;
507 /* No operands match, no narrow class requirements yet. */
508 for (i = 0; i < n_operands; i++)
510 operand_matches[i] = -1;
511 operand_class[i] = NO_REGS;
514 for (this_operand = 0; this_operand < n_operands; this_operand++)
516 rtx op = operands[this_operand];
517 enum machine_mode mode = GET_MODE (op);
518 char *p = constraints[this_operand];
519 int offset = 0;
520 int win = 0;
521 int c;
523 if (GET_CODE (op) == SUBREG)
525 if (GET_CODE (SUBREG_REG (op)) == REG
526 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
527 offset = SUBREG_WORD (op);
528 op = SUBREG_REG (op);
531 /* An empty constraint or empty alternative
532 allows anything which matched the pattern. */
533 if (*p == 0 || *p == ',')
534 win = 1;
536 while (*p && (c = *p++) != ',')
537 switch (c)
539 case '=':
540 case '+':
541 case '?':
542 case '&':
543 case '!':
544 case '*':
545 case '%':
546 /* Ignore these. */
547 break;
549 case '#':
550 /* Ignore rest of this alternative. */
551 while (*p && *p != ',') p++;
552 break;
554 case '0':
555 case '1':
556 case '2':
557 case '3':
558 case '4':
559 case '5':
560 /* This operand must be the same as a previous one.
561 This kind of constraint is used for instructions such
562 as add when they take only two operands.
564 Note that the lower-numbered operand is passed first. */
566 if (operands_match_p (operands[c - '0'],
567 operands[this_operand]))
569 operand_matches[this_operand] = c - '0';
570 win = 1;
572 break;
574 case 'p':
575 /* p is used for address_operands. Since this is an asm,
576 just to make sure that the operand is valid for Pmode. */
578 if (strict_memory_address_p (Pmode, op))
579 win = 1;
580 break;
582 case 'g':
583 /* Anything goes unless it is a REG and really has a hard reg
584 but the hard reg is not in the class GENERAL_REGS. */
585 if (GENERAL_REGS == ALL_REGS
586 || GET_CODE (op) != REG
587 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
589 if (GET_CODE (op) == REG)
590 operand_class[this_operand]
591 = reg_class_subunion[(int) operand_class[this_operand]][(int) GENERAL_REGS];
592 win = 1;
594 break;
596 case 'r':
597 if (GET_CODE (op) == REG
598 && (GENERAL_REGS == ALL_REGS
599 || reg_fits_class_p (op, GENERAL_REGS, offset, mode)))
601 operand_class[this_operand]
602 = reg_class_subunion[(int) operand_class[this_operand]][(int) GENERAL_REGS];
603 win = 1;
605 break;
607 case 'X':
608 /* This is used for a MATCH_SCRATCH in the cases when we
609 don't actually need anything. So anything goes any time. */
610 win = 1;
611 break;
613 case 'm':
614 if (GET_CODE (op) == MEM)
615 win = 1;
616 break;
618 case '<':
619 if (GET_CODE (op) == MEM
620 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
621 || GET_CODE (XEXP (op, 0)) == POST_DEC))
622 win = 1;
623 break;
625 case '>':
626 if (GET_CODE (op) == MEM
627 && (GET_CODE (XEXP (op, 0)) == PRE_INC
628 || GET_CODE (XEXP (op, 0)) == POST_INC))
629 win = 1;
630 break;
632 case 'E':
633 /* Match any CONST_DOUBLE, but only if
634 we can examine the bits of it reliably. */
635 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
636 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
637 && GET_CODE (op) != VOIDmode && ! flag_pretend_float)
638 break;
639 if (GET_CODE (op) == CONST_DOUBLE)
640 win = 1;
641 break;
643 case 'F':
644 if (GET_CODE (op) == CONST_DOUBLE)
645 win = 1;
646 break;
648 case 'G':
649 case 'H':
650 if (GET_CODE (op) == CONST_DOUBLE
651 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
652 win = 1;
653 break;
655 case 's':
656 if (GET_CODE (op) == CONST_INT
657 || (GET_CODE (op) == CONST_DOUBLE
658 && GET_MODE (op) == VOIDmode))
659 break;
660 /* Fall through */
661 case 'i':
662 if (CONSTANT_P (op))
663 win = 1;
664 break;
666 case 'n':
667 if (GET_CODE (op) == CONST_INT
668 || (GET_CODE (op) == CONST_DOUBLE
669 && GET_MODE (op) == VOIDmode))
670 win = 1;
671 break;
673 case 'I':
674 case 'J':
675 case 'K':
676 case 'L':
677 case 'M':
678 case 'N':
679 case 'O':
680 case 'P':
681 if (GET_CODE (op) == CONST_INT
682 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
683 win = 1;
684 break;
686 #ifdef EXTRA_CONSTRAINT
687 case 'Q':
688 case 'R':
689 case 'S':
690 case 'T':
691 case 'U':
692 if (EXTRA_CONSTRAINT (op, c))
693 win = 1;
694 break;
695 #endif
697 case 'V':
698 if (GET_CODE (op) == MEM && ! offsettable_memref_p (op))
699 win = 1;
700 break;
702 case 'o':
703 if (offsettable_memref_p (op))
704 win = 1;
705 break;
707 default:
708 if (GET_CODE (op) == REG
709 && reg_fits_class_p (op, REG_CLASS_FROM_LETTER (c),
710 offset, mode))
712 operand_class[this_operand]
713 = reg_class_subunion[(int)operand_class[this_operand]][(int) REG_CLASS_FROM_LETTER (c)];
714 win = 1;
718 constraints[this_operand] = p;
719 /* If this operand did not win somehow,
720 this alternative loses. */
721 if (! win)
722 lose = 1;
724 /* This alternative won; the operands are ok.
725 Change whichever operands this alternative says to change. */
726 if (! lose)
727 break;
729 this_alternative++;
732 /* For operands constrained to match another operand, copy the other
733 operand's class to this operand's class. */
734 for (j = 0; j < n_operands; j++)
735 if (operand_matches[j] >= 0)
736 operand_class[j] = operand_class[operand_matches[j]];
738 return this_alternative == n_alternatives ? -1 : this_alternative;
741 /* Record the life info of each stack reg in INSN, updating REGSTACK.
742 N_INPUTS is the number of inputs; N_OUTPUTS the outputs. CONSTRAINTS
743 is an array of the constraint strings used in the asm statement.
744 OPERANDS is an array of all operands for the insn, and is assumed to
745 contain all output operands, then all inputs operands.
747 There are many rules that an asm statement for stack-like regs must
748 follow. Those rules are explained at the top of this file: the rule
749 numbers below refer to that explanation. */
751 static void
752 record_asm_reg_life (insn, regstack, operands, constraints,
753 n_inputs, n_outputs)
754 rtx insn;
755 stack regstack;
756 rtx *operands;
757 char **constraints;
758 int n_inputs, n_outputs;
760 int i;
761 int n_operands = n_inputs + n_outputs;
762 int first_input = n_outputs;
763 int n_clobbers;
764 int malformed_asm = 0;
765 rtx body = PATTERN (insn);
767 int *operand_matches = (int *) alloca (n_operands * sizeof (int *));
769 enum reg_class *operand_class
770 = (enum reg_class *) alloca (n_operands * sizeof (enum reg_class *));
772 int reg_used_as_output[FIRST_PSEUDO_REGISTER];
773 int implicitly_dies[FIRST_PSEUDO_REGISTER];
775 rtx *clobber_reg;
777 /* Find out what the constraints require. If no constraint
778 alternative matches, this asm is malformed. */
779 i = constrain_asm_operands (n_operands, operands, constraints,
780 operand_matches, operand_class);
781 if (i < 0)
782 malformed_asm = 1;
784 /* Strip SUBREGs here to make the following code simpler. */
785 for (i = 0; i < n_operands; i++)
786 if (GET_CODE (operands[i]) == SUBREG
787 && GET_CODE (SUBREG_REG (operands[i])) == REG)
788 operands[i] = SUBREG_REG (operands[i]);
790 /* Set up CLOBBER_REG. */
792 n_clobbers = 0;
794 if (GET_CODE (body) == PARALLEL)
796 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx *));
798 for (i = 0; i < XVECLEN (body, 0); i++)
799 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
801 rtx clobber = XVECEXP (body, 0, i);
802 rtx reg = XEXP (clobber, 0);
804 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
805 reg = SUBREG_REG (reg);
807 if (STACK_REG_P (reg))
809 clobber_reg[n_clobbers] = reg;
810 n_clobbers++;
815 /* Enforce rule #4: Output operands must specifically indicate which
816 reg an output appears in after an asm. "=f" is not allowed: the
817 operand constraints must select a class with a single reg.
819 Also enforce rule #5: Output operands must start at the top of
820 the reg-stack: output operands may not "skip" a reg. */
822 bzero (reg_used_as_output, sizeof (reg_used_as_output));
823 for (i = 0; i < n_outputs; i++)
824 if (STACK_REG_P (operands[i]))
825 if (reg_class_size[(int) operand_class[i]] != 1)
827 error_for_asm
828 (insn, "Output constraint %d must specify a single register", i);
829 malformed_asm = 1;
831 else
832 reg_used_as_output[REGNO (operands[i])] = 1;
835 /* Search for first non-popped reg. */
836 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
837 if (! reg_used_as_output[i])
838 break;
840 /* If there are any other popped regs, that's an error. */
841 for (; i < LAST_STACK_REG + 1; i++)
842 if (reg_used_as_output[i])
843 break;
845 if (i != LAST_STACK_REG + 1)
847 error_for_asm (insn, "Output regs must be grouped at top of stack");
848 malformed_asm = 1;
851 /* Enforce rule #2: All implicitly popped input regs must be closer
852 to the top of the reg-stack than any input that is not implicitly
853 popped. */
855 bzero (implicitly_dies, sizeof (implicitly_dies));
856 for (i = first_input; i < first_input + n_inputs; i++)
857 if (STACK_REG_P (operands[i]))
859 /* An input reg is implicitly popped if it is tied to an
860 output, or if there is a CLOBBER for it. */
861 int j;
863 for (j = 0; j < n_clobbers; j++)
864 if (operands_match_p (clobber_reg[j], operands[i]))
865 break;
867 if (j < n_clobbers || operand_matches[i] >= 0)
868 implicitly_dies[REGNO (operands[i])] = 1;
871 /* Search for first non-popped reg. */
872 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
873 if (! implicitly_dies[i])
874 break;
876 /* If there are any other popped regs, that's an error. */
877 for (; i < LAST_STACK_REG + 1; i++)
878 if (implicitly_dies[i])
879 break;
881 if (i != LAST_STACK_REG + 1)
883 error_for_asm (insn,
884 "Implicitly popped regs must be grouped at top of stack");
885 malformed_asm = 1;
888 /* Enfore rule #3: If any input operand uses the "f" constraint, all
889 output constraints must use the "&" earlyclobber.
891 ??? Detect this more deterministically by having constraint_asm_operands
892 record any earlyclobber. */
894 for (i = first_input; i < first_input + n_inputs; i++)
895 if (operand_matches[i] == -1)
897 int j;
899 for (j = 0; j < n_outputs; j++)
900 if (operands_match_p (operands[j], operands[i]))
902 error_for_asm (insn,
903 "Output operand %d must use `&' constraint", j);
904 malformed_asm = 1;
908 if (malformed_asm)
910 /* Avoid further trouble with this insn. */
911 PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
912 PUT_MODE (insn, VOIDmode);
913 return;
916 /* Process all outputs */
917 for (i = 0; i < n_outputs; i++)
919 rtx op = operands[i];
921 if (! STACK_REG_P (op))
922 if (stack_regs_mentioned_p (op))
923 abort ();
924 else
925 continue;
927 /* Each destination is dead before this insn. If the
928 destination is not used after this insn, record this with
929 REG_UNUSED. */
931 if (! TEST_HARD_REG_BIT (regstack->reg_set, REGNO (op)))
932 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_UNUSED, op,
933 REG_NOTES (insn));
935 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (op));
938 /* Process all inputs */
939 for (i = first_input; i < first_input + n_inputs; i++)
941 if (! STACK_REG_P (operands[i]))
942 if (stack_regs_mentioned_p (operands[i]))
943 abort ();
944 else
945 continue;
947 /* If an input is dead after the insn, record a death note.
948 But don't record a death note if there is already a death note,
949 or if the input is also an output. */
951 if (! TEST_HARD_REG_BIT (regstack->reg_set, REGNO (operands[i]))
952 && operand_matches[i] == -1
953 && find_regno_note (insn, REG_DEAD, REGNO (operands[i])) == NULL_RTX)
954 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_DEAD, operands[i],
955 REG_NOTES (insn));
957 SET_HARD_REG_BIT (regstack->reg_set, REGNO (operands[i]));
961 /* Scan PAT, which is part of INSN, and record registers appearing in
962 a SET_DEST in DEST, and other registers in SRC.
964 This function does not know about SET_DESTs that are both input and
965 output (such as ZERO_EXTRACT) - this cannot happen on a 387. */
967 void
968 record_reg_life_pat (pat, src, dest)
969 rtx pat;
970 HARD_REG_SET *src, *dest;
972 register char *fmt;
973 register int i;
975 if (STACK_REG_P (pat))
977 if (src)
978 SET_HARD_REG_BIT (*src, REGNO (pat));
980 if (dest)
981 SET_HARD_REG_BIT (*dest, REGNO (pat));
983 return;
986 if (GET_CODE (pat) == SET)
988 record_reg_life_pat (XEXP (pat, 0), NULL_PTR, dest);
989 record_reg_life_pat (XEXP (pat, 1), src, NULL_PTR);
990 return;
993 /* We don't need to consider either of these cases. */
994 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
995 return;
997 fmt = GET_RTX_FORMAT (GET_CODE (pat));
998 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1000 if (fmt[i] == 'E')
1002 register int j;
1004 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1005 record_reg_life_pat (XVECEXP (pat, i, j), src, dest);
1007 else if (fmt[i] == 'e')
1008 record_reg_life_pat (XEXP (pat, i), src, dest);
1012 /* Calculate the number of inputs and outputs in BODY, an
1013 asm_operands. N_OPERANDS is the total number of operands, and
1014 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
1015 placed. */
1017 static void
1018 get_asm_operand_lengths (body, n_operands, n_inputs, n_outputs)
1019 rtx body;
1020 int n_operands;
1021 int *n_inputs, *n_outputs;
1023 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1024 *n_inputs = ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
1026 else if (GET_CODE (body) == ASM_OPERANDS)
1027 *n_inputs = ASM_OPERANDS_INPUT_LENGTH (body);
1029 else if (GET_CODE (body) == PARALLEL
1030 && GET_CODE (XVECEXP (body, 0, 0)) == SET)
1031 *n_inputs = ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
1033 else if (GET_CODE (body) == PARALLEL
1034 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
1035 *n_inputs = ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
1036 else
1037 abort ();
1039 *n_outputs = n_operands - *n_inputs;
1042 /* Scan INSN, which is in BLOCK, and record the life & death of stack
1043 registers in REGSTACK. This function is called to process insns from
1044 the last insn in a block to the first. The actual scanning is done in
1045 record_reg_life_pat.
1047 If a register is live after a CALL_INSN, but is not a value return
1048 register for that CALL_INSN, then code is emitted to initialize that
1049 register. The block_end[] data is kept accurate.
1051 Existing death and unset notes for stack registers are deleted
1052 before processing the insn. */
1054 static void
1055 record_reg_life (insn, block, regstack)
1056 rtx insn;
1057 int block;
1058 stack regstack;
1060 rtx note, *note_link;
1061 int n_operands;
1063 if ((GET_CODE (insn) != INSN && GET_CODE (insn) != CALL_INSN)
1064 || INSN_DELETED_P (insn))
1065 return;
1067 /* Strip death notes for stack regs from this insn */
1069 note_link = &REG_NOTES(insn);
1070 for (note = *note_link; note; note = XEXP (note, 1))
1071 if (STACK_REG_P (XEXP (note, 0))
1072 && (REG_NOTE_KIND (note) == REG_DEAD
1073 || REG_NOTE_KIND (note) == REG_UNUSED))
1074 *note_link = XEXP (note, 1);
1075 else
1076 note_link = &XEXP (note, 1);
1078 /* Process all patterns in the insn. */
1080 n_operands = asm_noperands (PATTERN (insn));
1081 if (n_operands >= 0)
1083 /* This insn is an `asm' with operands. Decode the operands,
1084 decide how many are inputs, and record the life information. */
1086 rtx operands[MAX_RECOG_OPERANDS];
1087 rtx body = PATTERN (insn);
1088 int n_inputs, n_outputs;
1089 char **constraints = (char **) alloca (n_operands * sizeof (char *));
1091 decode_asm_operands (body, operands, NULL_PTR, constraints, NULL_PTR);
1092 get_asm_operand_lengths (body, n_operands, &n_inputs, &n_outputs);
1093 record_asm_reg_life (insn, regstack, operands, constraints,
1094 n_inputs, n_outputs);
1095 return;
1098 /* An insn referencing a stack reg has a mode of QImode. */
1099 if (GET_MODE (insn) == QImode)
1101 HARD_REG_SET src, dest;
1102 int regno;
1104 CLEAR_HARD_REG_SET (src);
1105 CLEAR_HARD_REG_SET (dest);
1106 record_reg_life_pat (PATTERN (insn), &src, &dest);
1108 for (regno = FIRST_STACK_REG; regno <= LAST_STACK_REG; regno++)
1109 if (! TEST_HARD_REG_BIT (regstack->reg_set, regno))
1111 if (TEST_HARD_REG_BIT (src, regno)
1112 && ! TEST_HARD_REG_BIT (dest, regno))
1113 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_DEAD,
1114 FP_mode_reg[regno][(int) DFmode],
1115 REG_NOTES (insn));
1116 else if (TEST_HARD_REG_BIT (dest, regno))
1117 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_UNUSED,
1118 FP_mode_reg[regno][(int) DFmode],
1119 REG_NOTES (insn));
1122 AND_COMPL_HARD_REG_SET (regstack->reg_set, dest);
1123 IOR_HARD_REG_SET (regstack->reg_set, src);
1126 /* There might be a reg that is live after a function call.
1127 Initialize it to zero so that the program does not crash. See comment
1128 towards the end of stack_reg_life_analysis(). */
1130 if (GET_CODE (insn) == CALL_INSN)
1132 int reg = FIRST_FLOAT_REG;
1134 /* If a stack reg is mentioned in a CALL_INSN, it must be as the
1135 return value. */
1137 if (stack_regs_mentioned_p (PATTERN (insn)))
1138 reg++;
1140 for (; reg <= LAST_STACK_REG; reg++)
1141 if (TEST_HARD_REG_BIT (regstack->reg_set, reg))
1143 rtx init, pat;
1145 /* The insn will use virtual register numbers, and so
1146 convert_regs is expected to process these. But BLOCK_NUM
1147 cannot be used on these insns, because they do not appear in
1148 block_number[]. */
1150 pat = gen_rtx (SET, VOIDmode, FP_mode_reg[reg][(int) DFmode],
1151 CONST0_RTX (DFmode));
1152 init = emit_insn_after (pat, insn);
1153 PUT_MODE (init, QImode);
1155 CLEAR_HARD_REG_BIT (regstack->reg_set, reg);
1157 /* If the CALL_INSN was the end of a block, move the
1158 block_end to point to the new insn. */
1160 if (block_end[block] == insn)
1161 block_end[block] = init;
1164 /* Some regs do not survive a CALL */
1166 AND_COMPL_HARD_REG_SET (regstack->reg_set, call_used_reg_set);
1170 /* Find all basic blocks of the function, which starts with FIRST.
1171 For each JUMP_INSN, build the chain of LABEL_REFS on each CODE_LABEL. */
1173 static void
1174 find_blocks (first)
1175 rtx first;
1177 register rtx insn;
1178 register int block;
1179 register RTX_CODE prev_code = BARRIER;
1180 register RTX_CODE code;
1181 rtx label_value_list = 0;
1183 /* Record where all the blocks start and end.
1184 Record which basic blocks control can drop in to. */
1186 block = -1;
1187 for (insn = first; insn; insn = NEXT_INSN (insn))
1189 /* Note that this loop must select the same block boundaries
1190 as code in reg_to_stack, but that these are not the same
1191 as those selected in flow.c. */
1193 code = GET_CODE (insn);
1195 if (code == CODE_LABEL
1196 || (prev_code != INSN
1197 && prev_code != CALL_INSN
1198 && prev_code != CODE_LABEL
1199 && GET_RTX_CLASS (code) == 'i'))
1201 block_begin[++block] = insn;
1202 block_end[block] = insn;
1203 block_drops_in[block] = prev_code != BARRIER;
1205 else if (GET_RTX_CLASS (code) == 'i')
1206 block_end[block] = insn;
1208 if (GET_RTX_CLASS (code) == 'i')
1210 rtx note;
1212 /* Make a list of all labels referred to other than by jumps. */
1213 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1214 if (REG_NOTE_KIND (note) == REG_LABEL)
1215 label_value_list = gen_rtx (EXPR_LIST, VOIDmode, XEXP (note, 0),
1216 label_value_list);
1219 BLOCK_NUM (insn) = block;
1221 if (code != NOTE)
1222 prev_code = code;
1225 if (block + 1 != blocks)
1226 abort ();
1228 /* generate all label references to the corresponding jump insn */
1229 for (block = 0; block < blocks; block++)
1231 insn = block_end[block];
1233 if (GET_CODE (insn) == JUMP_INSN)
1235 rtx pat = PATTERN (insn);
1236 int computed_jump = 0;
1237 rtx x;
1239 if (GET_CODE (pat) == PARALLEL)
1241 int len = XVECLEN (pat, 0);
1242 int has_use_labelref = 0;
1243 int i;
1245 for (i = len - 1; i >= 0; i--)
1246 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
1247 && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == LABEL_REF)
1248 has_use_labelref = 1;
1250 if (! has_use_labelref)
1251 for (i = len - 1; i >= 0; i--)
1252 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
1253 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
1254 && uses_reg_or_mem (SET_SRC (XVECEXP (pat, 0, i))))
1255 computed_jump = 1;
1257 else if (GET_CODE (pat) == SET
1258 && SET_DEST (pat) == pc_rtx
1259 && uses_reg_or_mem (SET_SRC (pat)))
1260 computed_jump = 1;
1262 if (computed_jump)
1264 for (x = label_value_list; x; x = XEXP (x, 1))
1265 record_label_references (insn,
1266 gen_rtx (LABEL_REF, VOIDmode,
1267 XEXP (x, 0)));
1269 for (x = forced_labels; x; x = XEXP (x, 1))
1270 record_label_references (insn,
1271 gen_rtx (LABEL_REF, VOIDmode,
1272 XEXP (x, 0)));
1275 record_label_references (insn, pat);
1280 /* Return 1 if X contain a REG or MEM that is not in the constant pool. */
1282 static int
1283 uses_reg_or_mem (x)
1284 rtx x;
1286 enum rtx_code code = GET_CODE (x);
1287 int i, j;
1288 char *fmt;
1290 if (code == REG
1291 || (code == MEM
1292 && ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
1293 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))))
1294 return 1;
1296 fmt = GET_RTX_FORMAT (code);
1297 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1299 if (fmt[i] == 'e'
1300 && uses_reg_or_mem (XEXP (x, i)))
1301 return 1;
1303 if (fmt[i] == 'E')
1304 for (j = 0; j < XVECLEN (x, i); j++)
1305 if (uses_reg_or_mem (XVECEXP (x, i, j)))
1306 return 1;
1309 return 0;
1312 /* If current function returns its result in an fp stack register,
1313 return the register number. Otherwise return -1. */
1315 static int
1316 stack_result_p (decl)
1317 tree decl;
1319 rtx result = DECL_RTL (DECL_RESULT (decl));
1321 if (result != 0
1322 && !(GET_CODE (result) == REG
1323 && REGNO (result) < FIRST_PSEUDO_REGISTER))
1325 #ifdef FUNCTION_OUTGOING_VALUE
1326 result
1327 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
1328 #else
1329 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
1330 #endif
1333 return STACK_REG_P (result) ? REGNO (result) : -1;
1336 /* Determine the which registers are live at the start of each basic
1337 block of the function whose first insn is FIRST.
1339 First, if the function returns a real_type, mark the function
1340 return type as live at each return point, as the RTL may not give any
1341 hint that the register is live.
1343 Then, start with the last block and work back to the first block.
1344 Similarly, work backwards within each block, insn by insn, recording
1345 which regs are die and which are used (and therefore live) in the
1346 hard reg set of block_stack_in[].
1348 After processing each basic block, if there is a label at the start
1349 of the block, propagate the live registers to all jumps to this block.
1351 As a special case, if there are regs live in this block, that are
1352 not live in a block containing a jump to this label, and the block
1353 containing the jump has already been processed, we must propagate this
1354 block's entry register life back to the block containing the jump, and
1355 restart life analysis from there.
1357 In the worst case, this function may traverse the insns
1358 REG_STACK_SIZE times. This is necessary, since a jump towards the end
1359 of the insns may not know that a reg is live at a target that is early
1360 in the insns. So we back up and start over with the new reg live.
1362 If there are registers that are live at the start of the function,
1363 insns are emitted to initialize these registers. Something similar is
1364 done after CALL_INSNs in record_reg_life. */
1366 static void
1367 stack_reg_life_analysis (first)
1368 rtx first;
1370 int reg, block;
1371 struct stack_def regstack;
1373 if (current_function_returns_real
1374 && stack_result_p (current_function_decl) >= 0)
1376 /* Find all RETURN insns and mark them. */
1378 int value_regno = stack_result_p (current_function_decl);
1380 for (block = blocks - 1; block >= 0; block--)
1381 if (GET_CODE (block_end[block]) == JUMP_INSN
1382 && GET_CODE (PATTERN (block_end[block])) == RETURN)
1383 SET_HARD_REG_BIT (block_out_reg_set[block], value_regno);
1385 /* Mark of the end of last block if we "fall off" the end of the
1386 function into the epilogue. */
1388 if (GET_CODE (block_end[blocks-1]) != JUMP_INSN
1389 || GET_CODE (PATTERN (block_end[blocks-1])) == RETURN)
1390 SET_HARD_REG_BIT (block_out_reg_set[blocks-1], value_regno);
1393 /* now scan all blocks backward for stack register use */
1395 block = blocks - 1;
1396 while (block >= 0)
1398 register rtx insn, prev;
1400 /* current register status at last instruction */
1402 COPY_HARD_REG_SET (regstack.reg_set, block_out_reg_set[block]);
1404 prev = block_end[block];
1407 insn = prev;
1408 prev = PREV_INSN (insn);
1410 /* If the insn is a CALL_INSN, we need to ensure that
1411 everything dies. But otherwise don't process unless there
1412 are some stack regs present. */
1414 if (GET_MODE (insn) == QImode || GET_CODE (insn) == CALL_INSN)
1415 record_reg_life (insn, block, &regstack);
1417 } while (insn != block_begin[block]);
1419 /* Set the state at the start of the block. Mark that no
1420 register mapping information known yet. */
1422 COPY_HARD_REG_SET (block_stack_in[block].reg_set, regstack.reg_set);
1423 block_stack_in[block].top = -2;
1425 /* If there is a label, propagate our register life to all jumps
1426 to this label. */
1428 if (GET_CODE (insn) == CODE_LABEL)
1430 register rtx label;
1431 int must_restart = 0;
1433 for (label = LABEL_REFS (insn); label != insn;
1434 label = LABEL_NEXTREF (label))
1436 int jump_block = BLOCK_NUM (CONTAINING_INSN (label));
1438 if (jump_block < block)
1439 IOR_HARD_REG_SET (block_out_reg_set[jump_block],
1440 block_stack_in[block].reg_set);
1441 else
1443 /* The block containing the jump has already been
1444 processed. If there are registers that were not known
1445 to be live then, but are live now, we must back up
1446 and restart life analysis from that point with the new
1447 life information. */
1449 GO_IF_HARD_REG_SUBSET (block_stack_in[block].reg_set,
1450 block_out_reg_set[jump_block],
1451 win);
1453 IOR_HARD_REG_SET (block_out_reg_set[jump_block],
1454 block_stack_in[block].reg_set);
1456 block = jump_block;
1457 must_restart = 1;
1459 win:
1463 if (must_restart)
1464 continue;
1467 if (block_drops_in[block])
1468 IOR_HARD_REG_SET (block_out_reg_set[block-1],
1469 block_stack_in[block].reg_set);
1471 block -= 1;
1475 /* If any reg is live at the start of the first block of a
1476 function, then we must guarantee that the reg holds some value by
1477 generating our own "load" of that register. Otherwise a 387 would
1478 fault trying to access an empty register. */
1480 HARD_REG_SET empty_regs;
1481 CLEAR_HARD_REG_SET (empty_regs);
1482 GO_IF_HARD_REG_SUBSET (block_stack_in[0].reg_set, empty_regs,
1483 no_live_regs);
1486 /* Load zero into each live register. The fact that a register
1487 appears live at the function start does not necessarily imply an error
1488 in the user program: it merely means that we could not determine that
1489 there wasn't such an error, just as -Wunused sometimes gives
1490 "incorrect" warnings. In those cases, these initializations will do
1491 no harm.
1493 Note that we are inserting virtual register references here:
1494 these insns must be processed by convert_regs later. Also, these
1495 insns will not be in block_number, so BLOCK_NUM() will fail for them. */
1497 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; reg--)
1498 if (TEST_HARD_REG_BIT (block_stack_in[0].reg_set, reg))
1500 rtx init_rtx;
1502 init_rtx = gen_rtx (SET, VOIDmode, FP_mode_reg[reg][(int) DFmode],
1503 CONST0_RTX (DFmode));
1504 block_begin[0] = emit_insn_after (init_rtx, first);
1505 PUT_MODE (block_begin[0], QImode);
1507 CLEAR_HARD_REG_BIT (block_stack_in[0].reg_set, reg);
1510 no_live_regs:
1514 /*****************************************************************************
1515 This section deals with stack register substitution, and forms the second
1516 pass over the RTL.
1517 *****************************************************************************/
1519 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
1520 the desired hard REGNO. */
1522 static void
1523 replace_reg (reg, regno)
1524 rtx *reg;
1525 int regno;
1527 if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
1528 || ! STACK_REG_P (*reg))
1529 abort ();
1531 if (GET_MODE_CLASS (GET_MODE (*reg)) != MODE_FLOAT)
1532 abort ();
1534 *reg = FP_mode_reg[regno][(int) GET_MODE (*reg)];
1537 /* Remove a note of type NOTE, which must be found, for register
1538 number REGNO from INSN. Remove only one such note. */
1540 static void
1541 remove_regno_note (insn, note, regno)
1542 rtx insn;
1543 enum reg_note note;
1544 int regno;
1546 register rtx *note_link, this;
1548 note_link = &REG_NOTES(insn);
1549 for (this = *note_link; this; this = XEXP (this, 1))
1550 if (REG_NOTE_KIND (this) == note
1551 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
1553 *note_link = XEXP (this, 1);
1554 return;
1556 else
1557 note_link = &XEXP (this, 1);
1559 abort ();
1562 /* Find the hard register number of virtual register REG in REGSTACK.
1563 The hard register number is relative to the top of the stack. -1 is
1564 returned if the register is not found. */
1566 static int
1567 get_hard_regnum (regstack, reg)
1568 stack regstack;
1569 rtx reg;
1571 int i;
1573 if (! STACK_REG_P (reg))
1574 abort ();
1576 for (i = regstack->top; i >= 0; i--)
1577 if (regstack->reg[i] == REGNO (reg))
1578 break;
1580 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
1583 /* Delete INSN from the RTL. Mark the insn, but don't remove it from
1584 the chain of insns. Doing so could confuse block_begin and block_end
1585 if this were the only insn in the block. */
1587 static void
1588 delete_insn_for_stacker (insn)
1589 rtx insn;
1591 PUT_CODE (insn, NOTE);
1592 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1593 NOTE_SOURCE_FILE (insn) = 0;
1594 INSN_DELETED_P (insn) = 1;
1597 /* Emit an insn to pop virtual register REG before or after INSN.
1598 REGSTACK is the stack state after INSN and is updated to reflect this
1599 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
1600 is represented as a SET whose destination is the register to be popped
1601 and source is the top of stack. A death note for the top of stack
1602 cases the movdf pattern to pop. */
1604 static rtx
1605 emit_pop_insn (insn, regstack, reg, when)
1606 rtx insn;
1607 stack regstack;
1608 rtx reg;
1609 rtx (*when)();
1611 rtx pop_insn, pop_rtx;
1612 int hard_regno;
1614 hard_regno = get_hard_regnum (regstack, reg);
1616 if (hard_regno < FIRST_STACK_REG)
1617 abort ();
1619 pop_rtx = gen_rtx (SET, VOIDmode, FP_mode_reg[hard_regno][(int) DFmode],
1620 FP_mode_reg[FIRST_STACK_REG][(int) DFmode]);
1622 pop_insn = (*when) (pop_rtx, insn);
1623 /* ??? This used to be VOIDmode, but that seems wrong. */
1624 PUT_MODE (pop_insn, QImode);
1626 REG_NOTES (pop_insn) = gen_rtx (EXPR_LIST, REG_DEAD,
1627 FP_mode_reg[FIRST_STACK_REG][(int) DFmode],
1628 REG_NOTES (pop_insn));
1630 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
1631 = regstack->reg[regstack->top];
1632 regstack->top -= 1;
1633 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
1635 return pop_insn;
1638 /* Emit an insn before or after INSN to swap virtual register REG with the
1639 top of stack. WHEN should be `emit_insn_before' or `emit_insn_before'
1640 REGSTACK is the stack state before the swap, and is updated to reflect
1641 the swap. A swap insn is represented as a PARALLEL of two patterns:
1642 each pattern moves one reg to the other.
1644 If REG is already at the top of the stack, no insn is emitted. */
1646 static void
1647 emit_swap_insn (insn, regstack, reg)
1648 rtx insn;
1649 stack regstack;
1650 rtx reg;
1652 int hard_regno;
1653 rtx gen_swapdf();
1654 rtx swap_rtx, swap_insn;
1655 int tmp, other_reg; /* swap regno temps */
1656 rtx i1; /* the stack-reg insn prior to INSN */
1657 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
1659 hard_regno = get_hard_regnum (regstack, reg);
1661 if (hard_regno < FIRST_STACK_REG)
1662 abort ();
1663 if (hard_regno == FIRST_STACK_REG)
1664 return;
1666 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
1668 tmp = regstack->reg[other_reg];
1669 regstack->reg[other_reg] = regstack->reg[regstack->top];
1670 regstack->reg[regstack->top] = tmp;
1672 /* Find the previous insn involving stack regs, but don't go past
1673 any labels, calls or jumps. */
1674 i1 = prev_nonnote_insn (insn);
1675 while (i1 && GET_CODE (i1) == INSN && GET_MODE (i1) != QImode)
1676 i1 = prev_nonnote_insn (i1);
1678 if (i1)
1679 i1set = single_set (i1);
1681 if (i1set)
1683 rtx i2; /* the stack-reg insn prior to I1 */
1684 rtx i1src = *get_true_reg (&SET_SRC (i1set));
1685 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
1687 /* If the previous register stack push was from the reg we are to
1688 swap with, omit the swap. */
1690 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == FIRST_STACK_REG
1691 && GET_CODE (i1src) == REG && REGNO (i1src) == hard_regno - 1
1692 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1693 return;
1695 /* If the previous insn wrote to the reg we are to swap with,
1696 omit the swap. */
1698 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == hard_regno
1699 && GET_CODE (i1src) == REG && REGNO (i1src) == FIRST_STACK_REG
1700 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1701 return;
1704 if (GET_RTX_CLASS (GET_CODE (i1)) == 'i' && sets_cc0_p (PATTERN (i1)))
1706 i1 = next_nonnote_insn (i1);
1707 if (i1 == insn)
1708 abort ();
1711 swap_rtx = gen_swapdf (FP_mode_reg[hard_regno][(int) DFmode],
1712 FP_mode_reg[FIRST_STACK_REG][(int) DFmode]);
1713 swap_insn = emit_insn_after (swap_rtx, i1);
1714 /* ??? This used to be VOIDmode, but that seems wrong. */
1715 PUT_MODE (swap_insn, QImode);
1718 /* Handle a move to or from a stack register in PAT, which is in INSN.
1719 REGSTACK is the current stack. */
1721 static void
1722 move_for_stack_reg (insn, regstack, pat)
1723 rtx insn;
1724 stack regstack;
1725 rtx pat;
1727 rtx *src = get_true_reg (&SET_SRC (pat));
1728 rtx *dest = get_true_reg (&SET_DEST (pat));
1729 rtx note;
1731 if (STACK_REG_P (*src) && STACK_REG_P (*dest))
1733 /* Write from one stack reg to another. If SRC dies here, then
1734 just change the register mapping and delete the insn. */
1736 note = find_regno_note (insn, REG_DEAD, REGNO (*src));
1737 if (note)
1739 int i;
1741 /* If this is a no-op move, there must not be a REG_DEAD note. */
1742 if (REGNO (*src) == REGNO (*dest))
1743 abort ();
1745 for (i = regstack->top; i >= 0; i--)
1746 if (regstack->reg[i] == REGNO (*src))
1747 break;
1749 /* The source must be live, and the dest must be dead. */
1750 if (i < 0 || get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG)
1751 abort ();
1753 /* It is possible that the dest is unused after this insn.
1754 If so, just pop the src. */
1756 if (find_regno_note (insn, REG_UNUSED, REGNO (*dest)))
1758 emit_pop_insn (insn, regstack, *src, emit_insn_after);
1760 delete_insn_for_stacker (insn);
1761 return;
1764 regstack->reg[i] = REGNO (*dest);
1766 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1767 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src));
1769 delete_insn_for_stacker (insn);
1771 return;
1774 /* The source reg does not die. */
1776 /* If this appears to be a no-op move, delete it, or else it
1777 will confuse the machine description output patterns. But if
1778 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1779 for REG_UNUSED will not work for deleted insns. */
1781 if (REGNO (*src) == REGNO (*dest))
1783 if (find_regno_note (insn, REG_UNUSED, REGNO (*dest)))
1784 emit_pop_insn (insn, regstack, *dest, emit_insn_after);
1786 delete_insn_for_stacker (insn);
1787 return;
1790 /* The destination ought to be dead */
1791 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG)
1792 abort ();
1794 replace_reg (src, get_hard_regnum (regstack, *src));
1796 regstack->reg[++regstack->top] = REGNO (*dest);
1797 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1798 replace_reg (dest, FIRST_STACK_REG);
1800 else if (STACK_REG_P (*src))
1802 /* Save from a stack reg to MEM, or possibly integer reg. Since
1803 only top of stack may be saved, emit an exchange first if
1804 needs be. */
1806 emit_swap_insn (insn, regstack, *src);
1808 note = find_regno_note (insn, REG_DEAD, REGNO (*src));
1809 if (note)
1811 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1812 regstack->top--;
1813 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src));
1815 else if (GET_MODE (*src) == XFmode && regstack->top != REG_STACK_SIZE)
1817 /* A 387 cannot write an XFmode value to a MEM without
1818 clobbering the source reg. The output code can handle
1819 this by reading back the value from the MEM.
1820 But it is more efficient to use a temp register if one is
1821 available. Push the source value here if the register
1822 stack is not full, and then write the value to memory via
1823 a pop. */
1824 rtx push_rtx, push_insn;
1825 rtx top_stack_reg = FP_mode_reg[FIRST_STACK_REG][(int) XFmode];
1827 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1828 push_insn = emit_insn_before (push_rtx, insn);
1829 PUT_MODE (push_insn, QImode);
1830 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_DEAD, top_stack_reg,
1831 REG_NOTES (insn));
1834 replace_reg (src, FIRST_STACK_REG);
1836 else if (STACK_REG_P (*dest))
1838 /* Load from MEM, or possibly integer REG or constant, into the
1839 stack regs. The actual target is always the top of the
1840 stack. The stack mapping is changed to reflect that DEST is
1841 now at top of stack. */
1843 /* The destination ought to be dead */
1844 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG)
1845 abort ();
1847 if (regstack->top >= REG_STACK_SIZE)
1848 abort ();
1850 regstack->reg[++regstack->top] = REGNO (*dest);
1851 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1852 replace_reg (dest, FIRST_STACK_REG);
1854 else
1855 abort ();
1858 void
1859 swap_rtx_condition (pat)
1860 rtx pat;
1862 register char *fmt;
1863 register int i;
1865 if (GET_RTX_CLASS (GET_CODE (pat)) == '<')
1867 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1868 return;
1871 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1872 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1874 if (fmt[i] == 'E')
1876 register int j;
1878 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1879 swap_rtx_condition (XVECEXP (pat, i, j));
1881 else if (fmt[i] == 'e')
1882 swap_rtx_condition (XEXP (pat, i));
1886 /* Handle a comparison. Special care needs to be taken to avoid
1887 causing comparisons that a 387 cannot do correctly, such as EQ.
1889 Also, a pop insn may need to be emitted. The 387 does have an
1890 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1891 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1892 set up. */
1894 static void
1895 compare_for_stack_reg (insn, regstack, pat)
1896 rtx insn;
1897 stack regstack;
1898 rtx pat;
1900 rtx *src1, *src2;
1901 rtx src1_note, src2_note;
1903 src1 = get_true_reg (&XEXP (SET_SRC (pat), 0));
1904 src2 = get_true_reg (&XEXP (SET_SRC (pat), 1));
1906 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1907 registers that die in this insn - move those to stack top first. */
1908 if (! STACK_REG_P (*src1)
1909 || (STACK_REG_P (*src2)
1910 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1912 rtx temp, next;
1914 temp = XEXP (SET_SRC (pat), 0);
1915 XEXP (SET_SRC (pat), 0) = XEXP (SET_SRC (pat), 1);
1916 XEXP (SET_SRC (pat), 1) = temp;
1918 src1 = get_true_reg (&XEXP (SET_SRC (pat), 0));
1919 src2 = get_true_reg (&XEXP (SET_SRC (pat), 1));
1921 next = next_cc0_user (insn);
1922 if (next == NULL_RTX)
1923 abort ();
1925 swap_rtx_condition (PATTERN (next));
1926 INSN_CODE (next) = -1;
1927 INSN_CODE (insn) = -1;
1930 /* We will fix any death note later. */
1932 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1934 if (STACK_REG_P (*src2))
1935 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1936 else
1937 src2_note = NULL_RTX;
1939 emit_swap_insn (insn, regstack, *src1);
1941 replace_reg (src1, FIRST_STACK_REG);
1943 if (STACK_REG_P (*src2))
1944 replace_reg (src2, get_hard_regnum (regstack, *src2));
1946 if (src1_note)
1948 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (XEXP (src1_note, 0)));
1949 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1950 regstack->top--;
1953 /* If the second operand dies, handle that. But if the operands are
1954 the same stack register, don't bother, because only one death is
1955 needed, and it was just handled. */
1957 if (src2_note
1958 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1959 && REGNO (*src1) == REGNO (*src2)))
1961 /* As a special case, two regs may die in this insn if src2 is
1962 next to top of stack and the top of stack also dies. Since
1963 we have already popped src1, "next to top of stack" is really
1964 at top (FIRST_STACK_REG) now. */
1966 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1967 && src1_note)
1969 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (XEXP (src2_note, 0)));
1970 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1971 regstack->top--;
1973 else
1975 /* The 386 can only represent death of the first operand in
1976 the case handled above. In all other cases, emit a separate
1977 pop and remove the death note from here. */
1979 link_cc0_insns (insn);
1981 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1983 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1984 emit_insn_after);
1989 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1990 is the current register layout. */
1992 static void
1993 subst_stack_regs_pat (insn, regstack, pat)
1994 rtx insn;
1995 stack regstack;
1996 rtx pat;
1998 rtx *dest, *src;
1999 rtx *src1 = (rtx *) NULL_PTR, *src2;
2000 rtx src1_note, src2_note;
2002 if (GET_CODE (pat) != SET)
2003 return;
2005 dest = get_true_reg (&SET_DEST (pat));
2006 src = get_true_reg (&SET_SRC (pat));
2008 /* See if this is a `movM' pattern, and handle elsewhere if so. */
2010 if (*dest != cc0_rtx
2011 && (STACK_REG_P (*src)
2012 || (STACK_REG_P (*dest)
2013 && (GET_CODE (*src) == REG || GET_CODE (*src) == MEM
2014 || GET_CODE (*src) == CONST_DOUBLE))))
2015 move_for_stack_reg (insn, regstack, pat);
2016 else
2017 switch (GET_CODE (SET_SRC (pat)))
2019 case COMPARE:
2020 compare_for_stack_reg (insn, regstack, pat);
2021 break;
2023 case CALL:
2024 regstack->reg[++regstack->top] = REGNO (*dest);
2025 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2026 replace_reg (dest, FIRST_STACK_REG);
2027 break;
2029 case REG:
2030 /* This is a `tstM2' case. */
2031 if (*dest != cc0_rtx)
2032 abort ();
2034 src1 = src;
2036 /* Fall through. */
2038 case FLOAT_TRUNCATE:
2039 case SQRT:
2040 case ABS:
2041 case NEG:
2042 /* These insns only operate on the top of the stack. DEST might
2043 be cc0_rtx if we're processing a tstM pattern. Also, it's
2044 possible that the tstM case results in a REG_DEAD note on the
2045 source. */
2047 if (src1 == 0)
2048 src1 = get_true_reg (&XEXP (SET_SRC (pat), 0));
2050 emit_swap_insn (insn, regstack, *src1);
2052 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
2054 if (STACK_REG_P (*dest))
2055 replace_reg (dest, FIRST_STACK_REG);
2057 if (src1_note)
2059 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
2060 regstack->top--;
2061 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
2064 replace_reg (src1, FIRST_STACK_REG);
2066 break;
2068 case MINUS:
2069 case DIV:
2070 /* On i386, reversed forms of subM3 and divM3 exist for
2071 MODE_FLOAT, so the same code that works for addM3 and mulM3
2072 can be used. */
2073 case MULT:
2074 case PLUS:
2075 /* These insns can accept the top of stack as a destination
2076 from a stack reg or mem, or can use the top of stack as a
2077 source and some other stack register (possibly top of stack)
2078 as a destination. */
2080 src1 = get_true_reg (&XEXP (SET_SRC (pat), 0));
2081 src2 = get_true_reg (&XEXP (SET_SRC (pat), 1));
2083 /* We will fix any death note later. */
2085 if (STACK_REG_P (*src1))
2086 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
2087 else
2088 src1_note = NULL_RTX;
2089 if (STACK_REG_P (*src2))
2090 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
2091 else
2092 src2_note = NULL_RTX;
2094 /* If either operand is not a stack register, then the dest
2095 must be top of stack. */
2097 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
2098 emit_swap_insn (insn, regstack, *dest);
2099 else
2101 /* Both operands are REG. If neither operand is already
2102 at the top of stack, choose to make the one that is the dest
2103 the new top of stack. */
2105 int src1_hard_regnum, src2_hard_regnum;
2107 src1_hard_regnum = get_hard_regnum (regstack, *src1);
2108 src2_hard_regnum = get_hard_regnum (regstack, *src2);
2109 if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
2110 abort ();
2112 if (src1_hard_regnum != FIRST_STACK_REG
2113 && src2_hard_regnum != FIRST_STACK_REG)
2114 emit_swap_insn (insn, regstack, *dest);
2117 if (STACK_REG_P (*src1))
2118 replace_reg (src1, get_hard_regnum (regstack, *src1));
2119 if (STACK_REG_P (*src2))
2120 replace_reg (src2, get_hard_regnum (regstack, *src2));
2122 if (src1_note)
2124 /* If the register that dies is at the top of stack, then
2125 the destination is somewhere else - merely substitute it.
2126 But if the reg that dies is not at top of stack, then
2127 move the top of stack to the dead reg, as though we had
2128 done the insn and then a store-with-pop. */
2130 if (REGNO (XEXP (src1_note, 0)) == regstack->reg[regstack->top])
2132 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2133 replace_reg (dest, get_hard_regnum (regstack, *dest));
2135 else
2137 int regno = get_hard_regnum (regstack, XEXP (src1_note, 0));
2139 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2140 replace_reg (dest, regno);
2142 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
2143 = regstack->reg[regstack->top];
2146 CLEAR_HARD_REG_BIT (regstack->reg_set,
2147 REGNO (XEXP (src1_note, 0)));
2148 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
2149 regstack->top--;
2151 else if (src2_note)
2153 if (REGNO (XEXP (src2_note, 0)) == regstack->reg[regstack->top])
2155 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2156 replace_reg (dest, get_hard_regnum (regstack, *dest));
2158 else
2160 int regno = get_hard_regnum (regstack, XEXP (src2_note, 0));
2162 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2163 replace_reg (dest, regno);
2165 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
2166 = regstack->reg[regstack->top];
2169 CLEAR_HARD_REG_BIT (regstack->reg_set,
2170 REGNO (XEXP (src2_note, 0)));
2171 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
2172 regstack->top--;
2174 else
2176 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2177 replace_reg (dest, get_hard_regnum (regstack, *dest));
2180 break;
2182 case UNSPEC:
2183 switch (XINT (SET_SRC (pat), 1))
2185 case 1: /* sin */
2186 case 2: /* cos */
2187 /* These insns only operate on the top of the stack. */
2189 src1 = get_true_reg (&XVECEXP (SET_SRC (pat), 0, 0));
2191 emit_swap_insn (insn, regstack, *src1);
2193 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
2195 if (STACK_REG_P (*dest))
2196 replace_reg (dest, FIRST_STACK_REG);
2198 if (src1_note)
2200 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
2201 regstack->top--;
2202 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
2205 replace_reg (src1, FIRST_STACK_REG);
2207 break;
2209 default:
2210 abort ();
2212 break;
2214 default:
2215 abort ();
2219 /* Substitute hard regnums for any stack regs in INSN, which has
2220 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
2221 before the insn, and is updated with changes made here. CONSTRAINTS is
2222 an array of the constraint strings used in the asm statement.
2224 OPERANDS is an array of the operands, and OPERANDS_LOC is a
2225 parallel array of where the operands were found. The output operands
2226 all precede the input operands.
2228 There are several requirements and assumptions about the use of
2229 stack-like regs in asm statements. These rules are enforced by
2230 record_asm_stack_regs; see comments there for details. Any
2231 asm_operands left in the RTL at this point may be assume to meet the
2232 requirements, since record_asm_stack_regs removes any problem asm. */
2234 static void
2235 subst_asm_stack_regs (insn, regstack, operands, operands_loc, constraints,
2236 n_inputs, n_outputs)
2237 rtx insn;
2238 stack regstack;
2239 rtx *operands, **operands_loc;
2240 char **constraints;
2241 int n_inputs, n_outputs;
2243 int n_operands = n_inputs + n_outputs;
2244 int first_input = n_outputs;
2245 rtx body = PATTERN (insn);
2247 int *operand_matches = (int *) alloca (n_operands * sizeof (int *));
2248 enum reg_class *operand_class
2249 = (enum reg_class *) alloca (n_operands * sizeof (enum reg_class *));
2251 rtx *note_reg; /* Array of note contents */
2252 rtx **note_loc; /* Address of REG field of each note */
2253 enum reg_note *note_kind; /* The type of each note */
2255 rtx *clobber_reg;
2256 rtx **clobber_loc;
2258 struct stack_def temp_stack;
2259 int n_notes;
2260 int n_clobbers;
2261 rtx note;
2262 int i;
2264 /* Find out what the constraints required. If no constraint
2265 alternative matches, that is a compiler bug: we should have caught
2266 such an insn during the life analysis pass (and reload should have
2267 caught it regardless). */
2269 i = constrain_asm_operands (n_operands, operands, constraints,
2270 operand_matches, operand_class);
2271 if (i < 0)
2272 abort ();
2274 /* Strip SUBREGs here to make the following code simpler. */
2275 for (i = 0; i < n_operands; i++)
2276 if (GET_CODE (operands[i]) == SUBREG
2277 && GET_CODE (SUBREG_REG (operands[i])) == REG)
2279 operands_loc[i] = & SUBREG_REG (operands[i]);
2280 operands[i] = SUBREG_REG (operands[i]);
2283 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2285 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2286 i++;
2288 note_reg = (rtx *) alloca (i * sizeof (rtx));
2289 note_loc = (rtx **) alloca (i * sizeof (rtx *));
2290 note_kind = (enum reg_note *) alloca (i * sizeof (enum reg_note));
2292 n_notes = 0;
2293 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2295 rtx reg = XEXP (note, 0);
2296 rtx *loc = & XEXP (note, 0);
2298 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
2300 loc = & SUBREG_REG (reg);
2301 reg = SUBREG_REG (reg);
2304 if (STACK_REG_P (reg)
2305 && (REG_NOTE_KIND (note) == REG_DEAD
2306 || REG_NOTE_KIND (note) == REG_UNUSED))
2308 note_reg[n_notes] = reg;
2309 note_loc[n_notes] = loc;
2310 note_kind[n_notes] = REG_NOTE_KIND (note);
2311 n_notes++;
2315 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2317 n_clobbers = 0;
2319 if (GET_CODE (body) == PARALLEL)
2321 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx *));
2322 clobber_loc = (rtx **) alloca (XVECLEN (body, 0) * sizeof (rtx **));
2324 for (i = 0; i < XVECLEN (body, 0); i++)
2325 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2327 rtx clobber = XVECEXP (body, 0, i);
2328 rtx reg = XEXP (clobber, 0);
2329 rtx *loc = & XEXP (clobber, 0);
2331 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
2333 loc = & SUBREG_REG (reg);
2334 reg = SUBREG_REG (reg);
2337 if (STACK_REG_P (reg))
2339 clobber_reg[n_clobbers] = reg;
2340 clobber_loc[n_clobbers] = loc;
2341 n_clobbers++;
2346 bcopy (regstack, &temp_stack, sizeof (temp_stack));
2348 /* Put the input regs into the desired place in TEMP_STACK. */
2350 for (i = first_input; i < first_input + n_inputs; i++)
2351 if (STACK_REG_P (operands[i])
2352 && reg_class_subset_p (operand_class[i], FLOAT_REGS)
2353 && operand_class[i] != FLOAT_REGS)
2355 /* If an operand needs to be in a particular reg in
2356 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2357 these constraints are for single register classes, and reload
2358 guaranteed that operand[i] is already in that class, we can
2359 just use REGNO (operands[i]) to know which actual reg this
2360 operand needs to be in. */
2362 int regno = get_hard_regnum (&temp_stack, operands[i]);
2364 if (regno < 0)
2365 abort ();
2367 if (regno != REGNO (operands[i]))
2369 /* operands[i] is not in the right place. Find it
2370 and swap it with whatever is already in I's place.
2371 K is where operands[i] is now. J is where it should
2372 be. */
2373 int j, k, temp;
2375 k = temp_stack.top - (regno - FIRST_STACK_REG);
2376 j = (temp_stack.top
2377 - (REGNO (operands[i]) - FIRST_STACK_REG));
2379 temp = temp_stack.reg[k];
2380 temp_stack.reg[k] = temp_stack.reg[j];
2381 temp_stack.reg[j] = temp;
2385 /* emit insns before INSN to make sure the reg-stack is in the right
2386 order. */
2388 change_stack (insn, regstack, &temp_stack, emit_insn_before);
2390 /* Make the needed input register substitutions. Do death notes and
2391 clobbers too, because these are for inputs, not outputs. */
2393 for (i = first_input; i < first_input + n_inputs; i++)
2394 if (STACK_REG_P (operands[i]))
2396 int regnum = get_hard_regnum (regstack, operands[i]);
2398 if (regnum < 0)
2399 abort ();
2401 replace_reg (operands_loc[i], regnum);
2404 for (i = 0; i < n_notes; i++)
2405 if (note_kind[i] == REG_DEAD)
2407 int regnum = get_hard_regnum (regstack, note_reg[i]);
2409 if (regnum < 0)
2410 abort ();
2412 replace_reg (note_loc[i], regnum);
2415 for (i = 0; i < n_clobbers; i++)
2417 /* It's OK for a CLOBBER to reference a reg that is not live.
2418 Don't try to replace it in that case. */
2419 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2421 if (regnum >= 0)
2423 /* Sigh - clobbers always have QImode. But replace_reg knows
2424 that these regs can't be MODE_INT and will abort. Just put
2425 the right reg there without calling replace_reg. */
2427 *clobber_loc[i] = FP_mode_reg[regnum][(int) DFmode];
2431 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2433 for (i = first_input; i < first_input + n_inputs; i++)
2434 if (STACK_REG_P (operands[i]))
2436 /* An input reg is implicitly popped if it is tied to an
2437 output, or if there is a CLOBBER for it. */
2438 int j;
2440 for (j = 0; j < n_clobbers; j++)
2441 if (operands_match_p (clobber_reg[j], operands[i]))
2442 break;
2444 if (j < n_clobbers || operand_matches[i] >= 0)
2446 /* operands[i] might not be at the top of stack. But that's OK,
2447 because all we need to do is pop the right number of regs
2448 off of the top of the reg-stack. record_asm_stack_regs
2449 guaranteed that all implicitly popped regs were grouped
2450 at the top of the reg-stack. */
2452 CLEAR_HARD_REG_BIT (regstack->reg_set,
2453 regstack->reg[regstack->top]);
2454 regstack->top--;
2458 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2459 Note that there isn't any need to substitute register numbers.
2460 ??? Explain why this is true. */
2462 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2464 /* See if there is an output for this hard reg. */
2465 int j;
2467 for (j = 0; j < n_outputs; j++)
2468 if (STACK_REG_P (operands[j]) && REGNO (operands[j]) == i)
2470 regstack->reg[++regstack->top] = i;
2471 SET_HARD_REG_BIT (regstack->reg_set, i);
2472 break;
2476 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2477 input that the asm didn't implicitly pop. If the asm didn't
2478 implicitly pop an input reg, that reg will still be live.
2480 Note that we can't use find_regno_note here: the register numbers
2481 in the death notes have already been substituted. */
2483 for (i = 0; i < n_outputs; i++)
2484 if (STACK_REG_P (operands[i]))
2486 int j;
2488 for (j = 0; j < n_notes; j++)
2489 if (REGNO (operands[i]) == REGNO (note_reg[j])
2490 && note_kind[j] == REG_UNUSED)
2492 insn = emit_pop_insn (insn, regstack, operands[i],
2493 emit_insn_after);
2494 break;
2498 for (i = first_input; i < first_input + n_inputs; i++)
2499 if (STACK_REG_P (operands[i]))
2501 int j;
2503 for (j = 0; j < n_notes; j++)
2504 if (REGNO (operands[i]) == REGNO (note_reg[j])
2505 && note_kind[j] == REG_DEAD
2506 && TEST_HARD_REG_BIT (regstack->reg_set, REGNO (operands[i])))
2508 insn = emit_pop_insn (insn, regstack, operands[i],
2509 emit_insn_after);
2510 break;
2515 /* Substitute stack hard reg numbers for stack virtual registers in
2516 INSN. Non-stack register numbers are not changed. REGSTACK is the
2517 current stack content. Insns may be emitted as needed to arrange the
2518 stack for the 387 based on the contents of the insn. */
2520 static void
2521 subst_stack_regs (insn, regstack)
2522 rtx insn;
2523 stack regstack;
2525 register rtx *note_link, note;
2526 register int i;
2527 int n_operands;
2529 if ((GET_CODE (insn) != INSN && GET_CODE (insn) != CALL_INSN)
2530 || INSN_DELETED_P (insn))
2531 return;
2533 /* The stack should be empty at a call. */
2535 if (GET_CODE (insn) == CALL_INSN)
2536 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
2537 if (TEST_HARD_REG_BIT (regstack->reg_set, i))
2538 abort ();
2540 /* Do the actual substitution if any stack regs are mentioned.
2541 Since we only record whether entire insn mentions stack regs, and
2542 subst_stack_regs_pat only works for patterns that contain stack regs,
2543 we must check each pattern in a parallel here. A call_value_pop could
2544 fail otherwise. */
2546 if (GET_MODE (insn) == QImode)
2548 n_operands = asm_noperands (PATTERN (insn));
2549 if (n_operands >= 0)
2551 /* This insn is an `asm' with operands. Decode the operands,
2552 decide how many are inputs, and do register substitution.
2553 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2555 rtx operands[MAX_RECOG_OPERANDS];
2556 rtx *operands_loc[MAX_RECOG_OPERANDS];
2557 rtx body = PATTERN (insn);
2558 int n_inputs, n_outputs;
2559 char **constraints
2560 = (char **) alloca (n_operands * sizeof (char *));
2562 decode_asm_operands (body, operands, operands_loc,
2563 constraints, NULL_PTR);
2564 get_asm_operand_lengths (body, n_operands, &n_inputs, &n_outputs);
2565 subst_asm_stack_regs (insn, regstack, operands, operands_loc,
2566 constraints, n_inputs, n_outputs);
2567 return;
2570 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2571 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2573 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2574 subst_stack_regs_pat (insn, regstack,
2575 XVECEXP (PATTERN (insn), 0, i));
2577 else
2578 subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2581 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2582 REG_UNUSED will already have been dealt with, so just return. */
2584 if (INSN_DELETED_P (insn))
2585 return;
2587 /* If there is a REG_UNUSED note on a stack register on this insn,
2588 the indicated reg must be popped. The REG_UNUSED note is removed,
2589 since the form of the newly emitted pop insn references the reg,
2590 making it no longer `unset'. */
2592 note_link = &REG_NOTES(insn);
2593 for (note = *note_link; note; note = XEXP (note, 1))
2594 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2596 *note_link = XEXP (note, 1);
2597 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), emit_insn_after);
2599 else
2600 note_link = &XEXP (note, 1);
2603 /* Change the organization of the stack so that it fits a new basic
2604 block. Some registers might have to be popped, but there can never be
2605 a register live in the new block that is not now live.
2607 Insert any needed insns before or after INSN. WHEN is emit_insn_before
2608 or emit_insn_after. OLD is the original stack layout, and NEW is
2609 the desired form. OLD is updated to reflect the code emitted, ie, it
2610 will be the same as NEW upon return.
2612 This function will not preserve block_end[]. But that information
2613 is no longer needed once this has executed. */
2615 static void
2616 change_stack (insn, old, new, when)
2617 rtx insn;
2618 stack old;
2619 stack new;
2620 rtx (*when)();
2622 int reg;
2624 /* We will be inserting new insns "backwards", by calling emit_insn_before.
2625 If we are to insert after INSN, find the next insn, and insert before
2626 it. */
2628 if (when == emit_insn_after)
2629 insn = NEXT_INSN (insn);
2631 /* Pop any registers that are not needed in the new block. */
2633 for (reg = old->top; reg >= 0; reg--)
2634 if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2635 emit_pop_insn (insn, old, FP_mode_reg[old->reg[reg]][(int) DFmode],
2636 emit_insn_before);
2638 if (new->top == -2)
2640 /* If the new block has never been processed, then it can inherit
2641 the old stack order. */
2643 new->top = old->top;
2644 bcopy (old->reg, new->reg, sizeof (new->reg));
2646 else
2648 /* This block has been entered before, and we must match the
2649 previously selected stack order. */
2651 /* By now, the only difference should be the order of the stack,
2652 not their depth or liveliness. */
2654 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2656 abort ();
2658 win:
2660 if (old->top != new->top)
2661 abort ();
2663 /* Loop here emitting swaps until the stack is correct. The
2664 worst case number of swaps emitted is N + 2, where N is the
2665 depth of the stack. In some cases, the reg at the top of
2666 stack may be correct, but swapped anyway in order to fix
2667 other regs. But since we never swap any other reg away from
2668 its correct slot, this algorithm will converge. */
2672 /* Swap the reg at top of stack into the position it is
2673 supposed to be in, until the correct top of stack appears. */
2675 while (old->reg[old->top] != new->reg[new->top])
2677 for (reg = new->top; reg >= 0; reg--)
2678 if (new->reg[reg] == old->reg[old->top])
2679 break;
2681 if (reg == -1)
2682 abort ();
2684 emit_swap_insn (insn, old,
2685 FP_mode_reg[old->reg[reg]][(int) DFmode]);
2688 /* See if any regs remain incorrect. If so, bring an
2689 incorrect reg to the top of stack, and let the while loop
2690 above fix it. */
2692 for (reg = new->top; reg >= 0; reg--)
2693 if (new->reg[reg] != old->reg[reg])
2695 emit_swap_insn (insn, old,
2696 FP_mode_reg[old->reg[reg]][(int) DFmode]);
2697 break;
2699 } while (reg >= 0);
2701 /* At this point there must be no differences. */
2703 for (reg = old->top; reg >= 0; reg--)
2704 if (old->reg[reg] != new->reg[reg])
2705 abort ();
2709 /* Check PAT, which points to RTL in INSN, for a LABEL_REF. If it is
2710 found, ensure that a jump from INSN to the code_label to which the
2711 label_ref points ends up with the same stack as that at the
2712 code_label. Do this by inserting insns just before the code_label to
2713 pop and rotate the stack until it is in the correct order. REGSTACK
2714 is the order of the register stack in INSN.
2716 Any code that is emitted here must not be later processed as part
2717 of any block, as it will already contain hard register numbers. */
2719 static void
2720 goto_block_pat (insn, regstack, pat)
2721 rtx insn;
2722 stack regstack;
2723 rtx pat;
2725 rtx label;
2726 rtx new_jump, new_label, new_barrier;
2727 rtx *ref;
2728 stack label_stack;
2729 struct stack_def temp_stack;
2730 int reg;
2732 if (GET_CODE (pat) != LABEL_REF)
2734 int i, j;
2735 char *fmt = GET_RTX_FORMAT (GET_CODE (pat));
2737 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
2739 if (fmt[i] == 'e')
2740 goto_block_pat (insn, regstack, XEXP (pat, i));
2741 if (fmt[i] == 'E')
2742 for (j = 0; j < XVECLEN (pat, i); j++)
2743 goto_block_pat (insn, regstack, XVECEXP (pat, i, j));
2745 return;
2748 label = XEXP (pat, 0);
2749 if (GET_CODE (label) != CODE_LABEL)
2750 abort ();
2752 /* First, see if in fact anything needs to be done to the stack at all. */
2753 if (INSN_UID (label) <= 0)
2754 return;
2756 label_stack = &block_stack_in[BLOCK_NUM (label)];
2758 if (label_stack->top == -2)
2760 /* If the target block hasn't had a stack order selected, then
2761 we need merely ensure that no pops are needed. */
2763 for (reg = regstack->top; reg >= 0; reg--)
2764 if (! TEST_HARD_REG_BIT (label_stack->reg_set, regstack->reg[reg]))
2765 break;
2767 if (reg == -1)
2769 /* change_stack will not emit any code in this case. */
2771 change_stack (label, regstack, label_stack, emit_insn_after);
2772 return;
2775 else if (label_stack->top == regstack->top)
2777 for (reg = label_stack->top; reg >= 0; reg--)
2778 if (label_stack->reg[reg] != regstack->reg[reg])
2779 break;
2781 if (reg == -1)
2782 return;
2785 /* At least one insn will need to be inserted before label. Insert
2786 a jump around the code we are about to emit. Emit a label for the new
2787 code, and point the original insn at this new label. We can't use
2788 redirect_jump here, because we're using fld[4] of the code labels as
2789 LABEL_REF chains, no NUSES counters. */
2791 new_jump = emit_jump_insn_before (gen_jump (label), label);
2792 record_label_references (new_jump, PATTERN (new_jump));
2793 JUMP_LABEL (new_jump) = label;
2795 new_barrier = emit_barrier_after (new_jump);
2797 new_label = gen_label_rtx ();
2798 emit_label_after (new_label, new_barrier);
2799 LABEL_REFS (new_label) = new_label;
2801 /* The old label_ref will no longer point to the code_label if now uses,
2802 so strip the label_ref from the code_label's chain of references. */
2804 for (ref = &LABEL_REFS (label); *ref != label; ref = &LABEL_NEXTREF (*ref))
2805 if (*ref == pat)
2806 break;
2808 if (*ref == label)
2809 abort ();
2811 *ref = LABEL_NEXTREF (*ref);
2813 XEXP (pat, 0) = new_label;
2814 record_label_references (insn, PATTERN (insn));
2816 if (JUMP_LABEL (insn) == label)
2817 JUMP_LABEL (insn) = new_label;
2819 /* Now emit the needed code. */
2821 temp_stack = *regstack;
2823 change_stack (new_label, &temp_stack, label_stack, emit_insn_after);
2826 /* Traverse all basic blocks in a function, converting the register
2827 references in each insn from the "flat" register file that gcc uses, to
2828 the stack-like registers the 387 uses. */
2830 static void
2831 convert_regs ()
2833 register int block, reg;
2834 register rtx insn, next;
2835 struct stack_def regstack;
2837 for (block = 0; block < blocks; block++)
2839 if (block_stack_in[block].top == -2)
2841 /* This block has not been previously encountered. Choose a
2842 default mapping for any stack regs live on entry */
2844 block_stack_in[block].top = -1;
2846 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; reg--)
2847 if (TEST_HARD_REG_BIT (block_stack_in[block].reg_set, reg))
2848 block_stack_in[block].reg[++block_stack_in[block].top] = reg;
2851 /* Process all insns in this block. Keep track of `next' here,
2852 so that we don't process any insns emitted while making
2853 substitutions in INSN. */
2855 next = block_begin[block];
2856 regstack = block_stack_in[block];
2859 insn = next;
2860 next = NEXT_INSN (insn);
2862 /* Don't bother processing unless there is a stack reg
2863 mentioned.
2865 ??? For now, process CALL_INSNs too to make sure that the
2866 stack regs are dead after a call. Remove this eventually. */
2868 if (GET_MODE (insn) == QImode || GET_CODE (insn) == CALL_INSN)
2869 subst_stack_regs (insn, &regstack);
2871 } while (insn != block_end[block]);
2873 /* Something failed if the stack life doesn't match. */
2875 GO_IF_HARD_REG_EQUAL (regstack.reg_set, block_out_reg_set[block], win);
2877 abort ();
2879 win:
2881 /* Adjust the stack of this block on exit to match the stack of
2882 the target block, or copy stack information into stack of
2883 jump target if the target block's stack order hasn't been set
2884 yet. */
2886 if (GET_CODE (insn) == JUMP_INSN)
2887 goto_block_pat (insn, &regstack, PATTERN (insn));
2889 /* Likewise handle the case where we fall into the next block. */
2891 if ((block < blocks - 1) && block_drops_in[block+1])
2892 change_stack (insn, &regstack, &block_stack_in[block+1],
2893 emit_insn_after);
2896 /* If the last basic block is the end of a loop, and that loop has
2897 regs live at its start, then the last basic block will have regs live
2898 at its end that need to be popped before the function returns. */
2900 for (reg = regstack.top; reg >= 0; reg--)
2901 if (! current_function_returns_real
2902 || regstack.reg[reg] != FIRST_STACK_REG)
2903 insn = emit_pop_insn (insn, &regstack,
2904 FP_mode_reg[regstack.reg[reg]][(int) DFmode],
2905 emit_insn_after);
2908 /* Check expression PAT, which is in INSN, for label references. if
2909 one is found, print the block number of destination to FILE. */
2911 static void
2912 print_blocks (file, insn, pat)
2913 FILE *file;
2914 rtx insn, pat;
2916 register RTX_CODE code = GET_CODE (pat);
2917 register int i;
2918 register char *fmt;
2920 if (code == LABEL_REF)
2922 register rtx label = XEXP (pat, 0);
2924 if (GET_CODE (label) != CODE_LABEL)
2925 abort ();
2927 fprintf (file, " %d", BLOCK_NUM (label));
2929 return;
2932 fmt = GET_RTX_FORMAT (code);
2933 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2935 if (fmt[i] == 'e')
2936 print_blocks (file, insn, XEXP (pat, i));
2937 if (fmt[i] == 'E')
2939 register int j;
2940 for (j = 0; j < XVECLEN (pat, i); j++)
2941 print_blocks (file, insn, XVECEXP (pat, i, j));
2946 /* Write information about stack registers and stack blocks into FILE.
2947 This is part of making a debugging dump. */
2948 static void
2949 dump_stack_info (file)
2950 FILE *file;
2952 register int block;
2954 fprintf (file, "\n%d stack blocks.\n", blocks);
2955 for (block = 0; block < blocks; block++)
2957 register rtx head, jump, end;
2958 register int regno;
2960 fprintf (file, "\nStack block %d: first insn %d, last %d.\n",
2961 block, INSN_UID (block_begin[block]),
2962 INSN_UID (block_end[block]));
2964 head = block_begin[block];
2966 fprintf (file, "Reached from blocks: ");
2967 if (GET_CODE (head) == CODE_LABEL)
2968 for (jump = LABEL_REFS (head);
2969 jump != head;
2970 jump = LABEL_NEXTREF (jump))
2972 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
2973 fprintf (file, " %d", from_block);
2975 if (block_drops_in[block])
2976 fprintf (file, " previous");
2978 fprintf (file, "\nlive stack registers on block entry: ");
2979 for (regno = FIRST_STACK_REG; regno <= LAST_STACK_REG ; regno++)
2981 if (TEST_HARD_REG_BIT (block_stack_in[block].reg_set, regno))
2982 fprintf (file, "%d ", regno);
2985 fprintf (file, "\nlive stack registers on block exit: ");
2986 for (regno = FIRST_STACK_REG; regno <= LAST_STACK_REG ; regno++)
2988 if (TEST_HARD_REG_BIT (block_out_reg_set[block], regno))
2989 fprintf (file, "%d ", regno);
2992 end = block_end[block];
2994 fprintf (file, "\nJumps to blocks: ");
2995 if (GET_CODE (end) == JUMP_INSN)
2996 print_blocks (file, end, PATTERN (end));
2998 if (block + 1 < blocks && block_drops_in[block+1])
2999 fprintf (file, " next");
3000 else if (block + 1 == blocks
3001 || (GET_CODE (end) == JUMP_INSN
3002 && GET_CODE (PATTERN (end)) == RETURN))
3003 fprintf (file, " return");
3005 fprintf (file, "\n");
3008 #endif /* STACK_REGS */