1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2022 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
24 #include "basic-block.h"
28 #include "dominance.h"
33 #include "tree-pass.h"
35 #include "gimple-pretty-print.h"
36 #include "fold-const.h"
38 #include "gimple-iterator.h"
40 #include "tree-ssa-loop-manip.h"
41 #include "tree-ssa-loop-niter.h"
42 #include "tree-into-ssa.h"
44 #include "tree-scalar-evolution.h"
45 #include "tree-ssa-propagate.h"
47 #include "vr-values.h"
48 #include "gimple-array-bounds.h"
49 #include "gimple-range.h"
50 #include "gimple-range-path.h"
51 #include "value-pointer-equiv.h"
52 #include "gimple-fold.h"
54 /* Set of SSA names found live during the RPO traversal of the function
55 for still active basic-blocks. */
61 void set (tree
, basic_block
);
62 void clear (tree
, basic_block
);
63 void merge (basic_block dest
, basic_block src
);
64 bool live_on_block_p (tree
, basic_block
);
65 bool live_on_edge_p (tree
, edge
);
66 bool block_has_live_names_p (basic_block
);
67 void clear_block (basic_block
);
72 void init_bitmap_if_needed (basic_block
);
76 live_names::init_bitmap_if_needed (basic_block bb
)
78 unsigned i
= bb
->index
;
81 live
[i
] = sbitmap_alloc (num_ssa_names
);
82 bitmap_clear (live
[i
]);
87 live_names::block_has_live_names_p (basic_block bb
)
89 unsigned i
= bb
->index
;
90 return live
[i
] && bitmap_empty_p (live
[i
]);
94 live_names::clear_block (basic_block bb
)
96 unsigned i
= bb
->index
;
99 sbitmap_free (live
[i
]);
105 live_names::merge (basic_block dest
, basic_block src
)
107 init_bitmap_if_needed (dest
);
108 init_bitmap_if_needed (src
);
109 bitmap_ior (live
[dest
->index
], live
[dest
->index
], live
[src
->index
]);
113 live_names::set (tree name
, basic_block bb
)
115 init_bitmap_if_needed (bb
);
116 bitmap_set_bit (live
[bb
->index
], SSA_NAME_VERSION (name
));
120 live_names::clear (tree name
, basic_block bb
)
122 unsigned i
= bb
->index
;
124 bitmap_clear_bit (live
[i
], SSA_NAME_VERSION (name
));
127 live_names::live_names ()
129 num_blocks
= last_basic_block_for_fn (cfun
);
130 live
= XCNEWVEC (sbitmap
, num_blocks
);
133 live_names::~live_names ()
135 for (unsigned i
= 0; i
< num_blocks
; ++i
)
137 sbitmap_free (live
[i
]);
142 live_names::live_on_block_p (tree name
, basic_block bb
)
144 return (live
[bb
->index
]
145 && bitmap_bit_p (live
[bb
->index
], SSA_NAME_VERSION (name
)));
148 /* Return true if the SSA name NAME is live on the edge E. */
151 live_names::live_on_edge_p (tree name
, edge e
)
153 return live_on_block_p (name
, e
->dest
);
157 /* VR_TYPE describes a range with mininum value *MIN and maximum
158 value *MAX. Restrict the range to the set of values that have
159 no bits set outside NONZERO_BITS. Update *MIN and *MAX and
160 return the new range type.
162 SGN gives the sign of the values described by the range. */
164 enum value_range_kind
165 intersect_range_with_nonzero_bits (enum value_range_kind vr_type
,
166 wide_int
*min
, wide_int
*max
,
167 const wide_int
&nonzero_bits
,
170 if (vr_type
== VR_ANTI_RANGE
)
172 /* The VR_ANTI_RANGE is equivalent to the union of the ranges
173 A: [-INF, *MIN) and B: (*MAX, +INF]. First use NONZERO_BITS
174 to create an inclusive upper bound for A and an inclusive lower
176 wide_int a_max
= wi::round_down_for_mask (*min
- 1, nonzero_bits
);
177 wide_int b_min
= wi::round_up_for_mask (*max
+ 1, nonzero_bits
);
179 /* If the calculation of A_MAX wrapped, A is effectively empty
180 and A_MAX is the highest value that satisfies NONZERO_BITS.
181 Likewise if the calculation of B_MIN wrapped, B is effectively
182 empty and B_MIN is the lowest value that satisfies NONZERO_BITS. */
183 bool a_empty
= wi::ge_p (a_max
, *min
, sgn
);
184 bool b_empty
= wi::le_p (b_min
, *max
, sgn
);
186 /* If both A and B are empty, there are no valid values. */
187 if (a_empty
&& b_empty
)
190 /* If exactly one of A or B is empty, return a VR_RANGE for the
192 if (a_empty
|| b_empty
)
196 gcc_checking_assert (wi::le_p (*min
, *max
, sgn
));
200 /* Update the VR_ANTI_RANGE bounds. */
203 gcc_checking_assert (wi::le_p (*min
, *max
, sgn
));
205 /* Now check whether the excluded range includes any values that
206 satisfy NONZERO_BITS. If not, switch to a full VR_RANGE. */
207 if (wi::round_up_for_mask (*min
, nonzero_bits
) == b_min
)
209 unsigned int precision
= min
->get_precision ();
210 *min
= wi::min_value (precision
, sgn
);
211 *max
= wi::max_value (precision
, sgn
);
215 if (vr_type
== VR_RANGE
|| vr_type
== VR_VARYING
)
217 *max
= wi::round_down_for_mask (*max
, nonzero_bits
);
219 /* Check that the range contains at least one valid value. */
220 if (wi::gt_p (*min
, *max
, sgn
))
223 *min
= wi::round_up_for_mask (*min
, nonzero_bits
);
224 gcc_checking_assert (wi::le_p (*min
, *max
, sgn
));
229 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
233 range_int_cst_p (const value_range
*vr
)
235 return (vr
->kind () == VR_RANGE
&& range_has_numeric_bounds_p (vr
));
238 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
239 otherwise. We only handle additive operations and set NEG to true if the
240 symbol is negated and INV to the invariant part, if any. */
243 get_single_symbol (tree t
, bool *neg
, tree
*inv
)
251 if (TREE_CODE (t
) == PLUS_EXPR
252 || TREE_CODE (t
) == POINTER_PLUS_EXPR
253 || TREE_CODE (t
) == MINUS_EXPR
)
255 if (is_gimple_min_invariant (TREE_OPERAND (t
, 0)))
257 neg_
= (TREE_CODE (t
) == MINUS_EXPR
);
258 inv_
= TREE_OPERAND (t
, 0);
259 t
= TREE_OPERAND (t
, 1);
261 else if (is_gimple_min_invariant (TREE_OPERAND (t
, 1)))
264 inv_
= TREE_OPERAND (t
, 1);
265 t
= TREE_OPERAND (t
, 0);
276 if (TREE_CODE (t
) == NEGATE_EXPR
)
278 t
= TREE_OPERAND (t
, 0);
282 if (TREE_CODE (t
) != SSA_NAME
)
285 if (inv_
&& TREE_OVERFLOW_P (inv_
))
286 inv_
= drop_tree_overflow (inv_
);
293 /* The reverse operation: build a symbolic expression with TYPE
294 from symbol SYM, negated according to NEG, and invariant INV. */
297 build_symbolic_expr (tree type
, tree sym
, bool neg
, tree inv
)
299 const bool pointer_p
= POINTER_TYPE_P (type
);
303 t
= build1 (NEGATE_EXPR
, type
, t
);
305 if (integer_zerop (inv
))
308 return build2 (pointer_p
? POINTER_PLUS_EXPR
: PLUS_EXPR
, type
, t
, inv
);
314 -2 if those are incomparable. */
316 operand_less_p (tree val
, tree val2
)
318 /* LT is folded faster than GE and others. Inline the common case. */
319 if (TREE_CODE (val
) == INTEGER_CST
&& TREE_CODE (val2
) == INTEGER_CST
)
320 return tree_int_cst_lt (val
, val2
);
321 else if (TREE_CODE (val
) == SSA_NAME
&& TREE_CODE (val2
) == SSA_NAME
)
322 return val
== val2
? 0 : -2;
325 int cmp
= compare_values (val
, val2
);
328 else if (cmp
== 0 || cmp
== 1)
335 /* Compare two values VAL1 and VAL2. Return
337 -2 if VAL1 and VAL2 cannot be compared at compile-time,
340 +1 if VAL1 > VAL2, and
343 This is similar to tree_int_cst_compare but supports pointer values
344 and values that cannot be compared at compile time.
346 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
347 true if the return value is only valid if we assume that signed
348 overflow is undefined. */
351 compare_values_warnv (tree val1
, tree val2
, bool *strict_overflow_p
)
356 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
358 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
359 == POINTER_TYPE_P (TREE_TYPE (val2
)));
361 /* Convert the two values into the same type. This is needed because
362 sizetype causes sign extension even for unsigned types. */
363 if (!useless_type_conversion_p (TREE_TYPE (val1
), TREE_TYPE (val2
)))
364 val2
= fold_convert (TREE_TYPE (val1
), val2
);
366 const bool overflow_undefined
367 = INTEGRAL_TYPE_P (TREE_TYPE (val1
))
368 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1
));
371 tree sym1
= get_single_symbol (val1
, &neg1
, &inv1
);
372 tree sym2
= get_single_symbol (val2
, &neg2
, &inv2
);
374 /* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
375 accordingly. If VAL1 and VAL2 don't use the same name, return -2. */
378 /* Both values must use the same name with the same sign. */
379 if (sym1
!= sym2
|| neg1
!= neg2
)
382 /* [-]NAME + CST == [-]NAME + CST. */
386 /* If overflow is defined we cannot simplify more. */
387 if (!overflow_undefined
)
390 if (strict_overflow_p
!= NULL
391 /* Symbolic range building sets the no-warning bit to declare
392 that overflow doesn't happen. */
393 && (!inv1
|| !warning_suppressed_p (val1
, OPT_Woverflow
))
394 && (!inv2
|| !warning_suppressed_p (val2
, OPT_Woverflow
)))
395 *strict_overflow_p
= true;
398 inv1
= build_int_cst (TREE_TYPE (val1
), 0);
400 inv2
= build_int_cst (TREE_TYPE (val2
), 0);
402 return wi::cmp (wi::to_wide (inv1
), wi::to_wide (inv2
),
403 TYPE_SIGN (TREE_TYPE (val1
)));
406 const bool cst1
= is_gimple_min_invariant (val1
);
407 const bool cst2
= is_gimple_min_invariant (val2
);
409 /* If one is of the form '[-]NAME + CST' and the other is constant, then
410 it might be possible to say something depending on the constants. */
411 if ((sym1
&& inv1
&& cst2
) || (sym2
&& inv2
&& cst1
))
413 if (!overflow_undefined
)
416 if (strict_overflow_p
!= NULL
417 /* Symbolic range building sets the no-warning bit to declare
418 that overflow doesn't happen. */
419 && (!sym1
|| !warning_suppressed_p (val1
, OPT_Woverflow
))
420 && (!sym2
|| !warning_suppressed_p (val2
, OPT_Woverflow
)))
421 *strict_overflow_p
= true;
423 const signop sgn
= TYPE_SIGN (TREE_TYPE (val1
));
424 tree cst
= cst1
? val1
: val2
;
425 tree inv
= cst1
? inv2
: inv1
;
427 /* Compute the difference between the constants. If it overflows or
428 underflows, this means that we can trivially compare the NAME with
429 it and, consequently, the two values with each other. */
430 wide_int diff
= wi::to_wide (cst
) - wi::to_wide (inv
);
431 if (wi::cmp (0, wi::to_wide (inv
), sgn
)
432 != wi::cmp (diff
, wi::to_wide (cst
), sgn
))
434 const int res
= wi::cmp (wi::to_wide (cst
), wi::to_wide (inv
), sgn
);
435 return cst1
? res
: -res
;
441 /* We cannot say anything more for non-constants. */
445 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
447 /* We cannot compare overflowed values. */
448 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
451 if (TREE_CODE (val1
) == INTEGER_CST
452 && TREE_CODE (val2
) == INTEGER_CST
)
453 return tree_int_cst_compare (val1
, val2
);
455 if (poly_int_tree_p (val1
) && poly_int_tree_p (val2
))
457 if (known_eq (wi::to_poly_widest (val1
),
458 wi::to_poly_widest (val2
)))
460 if (known_lt (wi::to_poly_widest (val1
),
461 wi::to_poly_widest (val2
)))
463 if (known_gt (wi::to_poly_widest (val1
),
464 wi::to_poly_widest (val2
)))
472 if (TREE_CODE (val1
) == INTEGER_CST
&& TREE_CODE (val2
) == INTEGER_CST
)
474 /* We cannot compare overflowed values. */
475 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
478 return tree_int_cst_compare (val1
, val2
);
481 /* First see if VAL1 and VAL2 are not the same. */
482 if (operand_equal_p (val1
, val2
, 0))
485 fold_defer_overflow_warnings ();
487 /* If VAL1 is a lower address than VAL2, return -1. */
488 tree t
= fold_binary_to_constant (LT_EXPR
, boolean_type_node
, val1
, val2
);
489 if (t
&& integer_onep (t
))
491 fold_undefer_and_ignore_overflow_warnings ();
495 /* If VAL1 is a higher address than VAL2, return +1. */
496 t
= fold_binary_to_constant (LT_EXPR
, boolean_type_node
, val2
, val1
);
497 if (t
&& integer_onep (t
))
499 fold_undefer_and_ignore_overflow_warnings ();
503 /* If VAL1 is different than VAL2, return +2. */
504 t
= fold_binary_to_constant (NE_EXPR
, boolean_type_node
, val1
, val2
);
505 fold_undefer_and_ignore_overflow_warnings ();
506 if (t
&& integer_onep (t
))
513 /* Compare values like compare_values_warnv. */
516 compare_values (tree val1
, tree val2
)
519 return compare_values_warnv (val1
, val2
, &sop
);
522 /* If BOUND will include a symbolic bound, adjust it accordingly,
523 otherwise leave it as is.
525 CODE is the original operation that combined the bounds (PLUS_EXPR
528 TYPE is the type of the original operation.
530 SYM_OPn is the symbolic for OPn if it has a symbolic.
532 NEG_OPn is TRUE if the OPn was negated. */
535 adjust_symbolic_bound (tree
&bound
, enum tree_code code
, tree type
,
536 tree sym_op0
, tree sym_op1
,
537 bool neg_op0
, bool neg_op1
)
539 bool minus_p
= (code
== MINUS_EXPR
);
540 /* If the result bound is constant, we're done; otherwise, build the
541 symbolic lower bound. */
542 if (sym_op0
== sym_op1
)
545 bound
= build_symbolic_expr (type
, sym_op0
,
549 /* We may not negate if that might introduce
550 undefined overflow. */
553 || TYPE_OVERFLOW_WRAPS (type
))
554 bound
= build_symbolic_expr (type
, sym_op1
,
555 neg_op1
^ minus_p
, bound
);
561 /* Combine OP1 and OP1, which are two parts of a bound, into one wide
562 int bound according to CODE. CODE is the operation combining the
563 bound (either a PLUS_EXPR or a MINUS_EXPR).
565 TYPE is the type of the combine operation.
567 WI is the wide int to store the result.
569 OVF is -1 if an underflow occurred, +1 if an overflow occurred or 0
570 if over/underflow occurred. */
573 combine_bound (enum tree_code code
, wide_int
&wi
, wi::overflow_type
&ovf
,
574 tree type
, tree op0
, tree op1
)
576 bool minus_p
= (code
== MINUS_EXPR
);
577 const signop sgn
= TYPE_SIGN (type
);
578 const unsigned int prec
= TYPE_PRECISION (type
);
580 /* Combine the bounds, if any. */
584 wi
= wi::sub (wi::to_wide (op0
), wi::to_wide (op1
), sgn
, &ovf
);
586 wi
= wi::add (wi::to_wide (op0
), wi::to_wide (op1
), sgn
, &ovf
);
589 wi
= wi::to_wide (op0
);
593 wi
= wi::neg (wi::to_wide (op1
), &ovf
);
595 wi
= wi::to_wide (op1
);
598 wi
= wi::shwi (0, prec
);
601 /* Given a range in [WMIN, WMAX], adjust it for possible overflow and
602 put the result in VR.
604 TYPE is the type of the range.
606 MIN_OVF and MAX_OVF indicate what type of overflow, if any,
607 occurred while originally calculating WMIN or WMAX. -1 indicates
608 underflow. +1 indicates overflow. 0 indicates neither. */
611 set_value_range_with_overflow (value_range_kind
&kind
, tree
&min
, tree
&max
,
613 const wide_int
&wmin
, const wide_int
&wmax
,
614 wi::overflow_type min_ovf
,
615 wi::overflow_type max_ovf
)
617 const signop sgn
= TYPE_SIGN (type
);
618 const unsigned int prec
= TYPE_PRECISION (type
);
620 /* For one bit precision if max < min, then the swapped
621 range covers all values. */
622 if (prec
== 1 && wi::lt_p (wmax
, wmin
, sgn
))
628 if (TYPE_OVERFLOW_WRAPS (type
))
630 /* If overflow wraps, truncate the values and adjust the
631 range kind and bounds appropriately. */
632 wide_int tmin
= wide_int::from (wmin
, prec
, sgn
);
633 wide_int tmax
= wide_int::from (wmax
, prec
, sgn
);
634 if ((min_ovf
!= wi::OVF_NONE
) == (max_ovf
!= wi::OVF_NONE
))
636 /* If the limits are swapped, we wrapped around and cover
638 if (wi::gt_p (tmin
, tmax
, sgn
))
643 /* No overflow or both overflow or underflow. The
644 range kind stays VR_RANGE. */
645 min
= wide_int_to_tree (type
, tmin
);
646 max
= wide_int_to_tree (type
, tmax
);
650 else if ((min_ovf
== wi::OVF_UNDERFLOW
&& max_ovf
== wi::OVF_NONE
)
651 || (max_ovf
== wi::OVF_OVERFLOW
&& min_ovf
== wi::OVF_NONE
))
653 /* Min underflow or max overflow. The range kind
654 changes to VR_ANTI_RANGE. */
658 if (wi::cmp (tmin
, tmax
, sgn
) < 0)
661 if (wi::cmp (tmax
, tem
, sgn
) > 0)
663 /* If the anti-range would cover nothing, drop to varying.
664 Likewise if the anti-range bounds are outside of the
666 if (covers
|| wi::cmp (tmin
, tmax
, sgn
) > 0)
671 kind
= VR_ANTI_RANGE
;
672 min
= wide_int_to_tree (type
, tmin
);
673 max
= wide_int_to_tree (type
, tmax
);
678 /* Other underflow and/or overflow, drop to VR_VARYING. */
685 /* If overflow does not wrap, saturate to the types min/max
687 wide_int type_min
= wi::min_value (prec
, sgn
);
688 wide_int type_max
= wi::max_value (prec
, sgn
);
690 if (min_ovf
== wi::OVF_UNDERFLOW
)
691 min
= wide_int_to_tree (type
, type_min
);
692 else if (min_ovf
== wi::OVF_OVERFLOW
)
693 min
= wide_int_to_tree (type
, type_max
);
695 min
= wide_int_to_tree (type
, wmin
);
697 if (max_ovf
== wi::OVF_UNDERFLOW
)
698 max
= wide_int_to_tree (type
, type_min
);
699 else if (max_ovf
== wi::OVF_OVERFLOW
)
700 max
= wide_int_to_tree (type
, type_max
);
702 max
= wide_int_to_tree (type
, wmax
);
706 /* Fold two value range's of a POINTER_PLUS_EXPR into VR. */
709 extract_range_from_pointer_plus_expr (value_range
*vr
,
712 const value_range
*vr0
,
713 const value_range
*vr1
)
715 gcc_checking_assert (POINTER_TYPE_P (expr_type
)
716 && code
== POINTER_PLUS_EXPR
);
717 /* For pointer types, we are really only interested in asserting
718 whether the expression evaluates to non-NULL.
719 With -fno-delete-null-pointer-checks we need to be more
720 conservative. As some object might reside at address 0,
721 then some offset could be added to it and the same offset
722 subtracted again and the result would be NULL.
724 static int a[12]; where &a[0] is NULL and
727 ptr will be NULL here, even when there is POINTER_PLUS_EXPR
728 where the first range doesn't include zero and the second one
729 doesn't either. As the second operand is sizetype (unsigned),
730 consider all ranges where the MSB could be set as possible
731 subtractions where the result might be NULL. */
732 if ((!range_includes_zero_p (vr0
)
733 || !range_includes_zero_p (vr1
))
734 && !TYPE_OVERFLOW_WRAPS (expr_type
)
735 && (flag_delete_null_pointer_checks
736 || (range_int_cst_p (vr1
)
737 && !tree_int_cst_sign_bit (vr1
->max ()))))
738 vr
->set_nonzero (expr_type
);
739 else if (vr0
->zero_p () && vr1
->zero_p ())
740 vr
->set_zero (expr_type
);
742 vr
->set_varying (expr_type
);
745 /* Extract range information from a PLUS/MINUS_EXPR and store the
749 extract_range_from_plus_minus_expr (value_range
*vr
,
752 const value_range
*vr0_
,
753 const value_range
*vr1_
)
755 gcc_checking_assert (code
== PLUS_EXPR
|| code
== MINUS_EXPR
);
757 value_range vr0
= *vr0_
, vr1
= *vr1_
;
758 value_range vrtem0
, vrtem1
;
760 /* Now canonicalize anti-ranges to ranges when they are not symbolic
761 and express ~[] op X as ([]' op X) U ([]'' op X). */
762 if (vr0
.kind () == VR_ANTI_RANGE
763 && ranges_from_anti_range (&vr0
, &vrtem0
, &vrtem1
))
765 extract_range_from_plus_minus_expr (vr
, code
, expr_type
, &vrtem0
, vr1_
);
766 if (!vrtem1
.undefined_p ())
769 extract_range_from_plus_minus_expr (&vrres
, code
, expr_type
,
775 /* Likewise for X op ~[]. */
776 if (vr1
.kind () == VR_ANTI_RANGE
777 && ranges_from_anti_range (&vr1
, &vrtem0
, &vrtem1
))
779 extract_range_from_plus_minus_expr (vr
, code
, expr_type
, vr0_
, &vrtem0
);
780 if (!vrtem1
.undefined_p ())
783 extract_range_from_plus_minus_expr (&vrres
, code
, expr_type
,
790 value_range_kind kind
;
791 value_range_kind vr0_kind
= vr0
.kind (), vr1_kind
= vr1
.kind ();
792 tree vr0_min
= vr0
.min (), vr0_max
= vr0
.max ();
793 tree vr1_min
= vr1
.min (), vr1_max
= vr1
.max ();
794 tree min
= NULL_TREE
, max
= NULL_TREE
;
796 /* This will normalize things such that calculating
797 [0,0] - VR_VARYING is not dropped to varying, but is
798 calculated as [MIN+1, MAX]. */
799 if (vr0
.varying_p ())
802 vr0_min
= vrp_val_min (expr_type
);
803 vr0_max
= vrp_val_max (expr_type
);
805 if (vr1
.varying_p ())
808 vr1_min
= vrp_val_min (expr_type
);
809 vr1_max
= vrp_val_max (expr_type
);
812 const bool minus_p
= (code
== MINUS_EXPR
);
813 tree min_op0
= vr0_min
;
814 tree min_op1
= minus_p
? vr1_max
: vr1_min
;
815 tree max_op0
= vr0_max
;
816 tree max_op1
= minus_p
? vr1_min
: vr1_max
;
817 tree sym_min_op0
= NULL_TREE
;
818 tree sym_min_op1
= NULL_TREE
;
819 tree sym_max_op0
= NULL_TREE
;
820 tree sym_max_op1
= NULL_TREE
;
821 bool neg_min_op0
, neg_min_op1
, neg_max_op0
, neg_max_op1
;
823 neg_min_op0
= neg_min_op1
= neg_max_op0
= neg_max_op1
= false;
825 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
826 single-symbolic ranges, try to compute the precise resulting range,
827 but only if we know that this resulting range will also be constant
828 or single-symbolic. */
829 if (vr0_kind
== VR_RANGE
&& vr1_kind
== VR_RANGE
830 && (TREE_CODE (min_op0
) == INTEGER_CST
832 = get_single_symbol (min_op0
, &neg_min_op0
, &min_op0
)))
833 && (TREE_CODE (min_op1
) == INTEGER_CST
835 = get_single_symbol (min_op1
, &neg_min_op1
, &min_op1
)))
836 && (!(sym_min_op0
&& sym_min_op1
)
837 || (sym_min_op0
== sym_min_op1
838 && neg_min_op0
== (minus_p
? neg_min_op1
: !neg_min_op1
)))
839 && (TREE_CODE (max_op0
) == INTEGER_CST
841 = get_single_symbol (max_op0
, &neg_max_op0
, &max_op0
)))
842 && (TREE_CODE (max_op1
) == INTEGER_CST
844 = get_single_symbol (max_op1
, &neg_max_op1
, &max_op1
)))
845 && (!(sym_max_op0
&& sym_max_op1
)
846 || (sym_max_op0
== sym_max_op1
847 && neg_max_op0
== (minus_p
? neg_max_op1
: !neg_max_op1
))))
850 wi::overflow_type min_ovf
= wi::OVF_NONE
;
851 wi::overflow_type max_ovf
= wi::OVF_NONE
;
853 /* Build the bounds. */
854 combine_bound (code
, wmin
, min_ovf
, expr_type
, min_op0
, min_op1
);
855 combine_bound (code
, wmax
, max_ovf
, expr_type
, max_op0
, max_op1
);
857 /* If the resulting range will be symbolic, we need to eliminate any
858 explicit or implicit overflow introduced in the above computation
859 because compare_values could make an incorrect use of it. That's
860 why we require one of the ranges to be a singleton. */
861 if ((sym_min_op0
!= sym_min_op1
|| sym_max_op0
!= sym_max_op1
)
862 && ((bool)min_ovf
|| (bool)max_ovf
863 || (min_op0
!= max_op0
&& min_op1
!= max_op1
)))
865 vr
->set_varying (expr_type
);
869 /* Adjust the range for possible overflow. */
870 set_value_range_with_overflow (kind
, min
, max
, expr_type
,
871 wmin
, wmax
, min_ovf
, max_ovf
);
872 if (kind
== VR_VARYING
)
874 vr
->set_varying (expr_type
);
878 /* Build the symbolic bounds if needed. */
879 adjust_symbolic_bound (min
, code
, expr_type
,
880 sym_min_op0
, sym_min_op1
,
881 neg_min_op0
, neg_min_op1
);
882 adjust_symbolic_bound (max
, code
, expr_type
,
883 sym_max_op0
, sym_max_op1
,
884 neg_max_op0
, neg_max_op1
);
888 /* For other cases, for example if we have a PLUS_EXPR with two
889 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
890 to compute a precise range for such a case.
891 ??? General even mixed range kind operations can be expressed
892 by for example transforming ~[3, 5] + [1, 2] to range-only
893 operations and a union primitive:
894 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
895 [-INF+1, 4] U [6, +INF(OVF)]
896 though usually the union is not exactly representable with
897 a single range or anti-range as the above is
898 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
899 but one could use a scheme similar to equivalences for this. */
900 vr
->set_varying (expr_type
);
904 /* If either MIN or MAX overflowed, then set the resulting range to
907 || TREE_OVERFLOW_P (min
)
909 || TREE_OVERFLOW_P (max
))
911 vr
->set_varying (expr_type
);
915 int cmp
= compare_values (min
, max
);
916 if (cmp
== -2 || cmp
== 1)
918 /* If the new range has its limits swapped around (MIN > MAX),
919 then the operation caused one of them to wrap around, mark
920 the new range VARYING. */
921 vr
->set_varying (expr_type
);
924 vr
->set (min
, max
, kind
);
927 /* Return the range-ops handler for CODE and EXPR_TYPE. If no
928 suitable operator is found, return NULL and set VR to VARYING. */
930 static const range_operator
*
931 get_range_op_handler (value_range
*vr
,
935 const range_operator
*op
= range_op_handler (code
, expr_type
);
937 vr
->set_varying (expr_type
);
941 /* If the types passed are supported, return TRUE, otherwise set VR to
942 VARYING and return FALSE. */
945 supported_types_p (value_range
*vr
,
949 if (!value_range::supports_type_p (type0
)
950 || (type1
&& !value_range::supports_type_p (type1
)))
952 vr
->set_varying (type0
);
958 /* If any of the ranges passed are defined, return TRUE, otherwise set
959 VR to UNDEFINED and return FALSE. */
962 defined_ranges_p (value_range
*vr
,
963 const value_range
*vr0
, const value_range
*vr1
= NULL
)
965 if (vr0
->undefined_p () && (!vr1
|| vr1
->undefined_p ()))
967 vr
->set_undefined ();
974 drop_undefines_to_varying (const value_range
*vr
, tree expr_type
)
976 if (vr
->undefined_p ())
977 return value_range (expr_type
);
982 /* If any operand is symbolic, perform a binary operation on them and
983 return TRUE, otherwise return FALSE. */
986 range_fold_binary_symbolics_p (value_range
*vr
,
989 const value_range
*vr0_
,
990 const value_range
*vr1_
)
992 if (vr0_
->symbolic_p () || vr1_
->symbolic_p ())
994 value_range vr0
= drop_undefines_to_varying (vr0_
, expr_type
);
995 value_range vr1
= drop_undefines_to_varying (vr1_
, expr_type
);
996 if ((code
== PLUS_EXPR
|| code
== MINUS_EXPR
))
998 extract_range_from_plus_minus_expr (vr
, code
, expr_type
,
1002 if (POINTER_TYPE_P (expr_type
) && code
== POINTER_PLUS_EXPR
)
1004 extract_range_from_pointer_plus_expr (vr
, code
, expr_type
,
1008 const range_operator
*op
= get_range_op_handler (vr
, code
, expr_type
);
1009 vr0
.normalize_symbolics ();
1010 vr1
.normalize_symbolics ();
1011 return op
->fold_range (*vr
, expr_type
, vr0
, vr1
);
1016 /* If operand is symbolic, perform a unary operation on it and return
1017 TRUE, otherwise return FALSE. */
1020 range_fold_unary_symbolics_p (value_range
*vr
,
1023 const value_range
*vr0
)
1025 if (vr0
->symbolic_p ())
1027 if (code
== NEGATE_EXPR
)
1029 /* -X is simply 0 - X. */
1031 zero
.set_zero (vr0
->type ());
1032 range_fold_binary_expr (vr
, MINUS_EXPR
, expr_type
, &zero
, vr0
);
1035 if (code
== BIT_NOT_EXPR
)
1037 /* ~X is simply -1 - X. */
1038 value_range minusone
;
1039 minusone
.set (build_int_cst (vr0
->type (), -1));
1040 range_fold_binary_expr (vr
, MINUS_EXPR
, expr_type
, &minusone
, vr0
);
1043 const range_operator
*op
= get_range_op_handler (vr
, code
, expr_type
);
1044 value_range
vr0_cst (*vr0
);
1045 vr0_cst
.normalize_symbolics ();
1046 return op
->fold_range (*vr
, expr_type
, vr0_cst
, value_range (expr_type
));
1051 /* Perform a binary operation on a pair of ranges. */
1054 range_fold_binary_expr (value_range
*vr
,
1055 enum tree_code code
,
1057 const value_range
*vr0_
,
1058 const value_range
*vr1_
)
1060 if (!supported_types_p (vr
, expr_type
)
1061 || !defined_ranges_p (vr
, vr0_
, vr1_
))
1063 const range_operator
*op
= get_range_op_handler (vr
, code
, expr_type
);
1067 if (range_fold_binary_symbolics_p (vr
, code
, expr_type
, vr0_
, vr1_
))
1070 value_range
vr0 (*vr0_
);
1071 value_range
vr1 (*vr1_
);
1072 if (vr0
.undefined_p ())
1073 vr0
.set_varying (expr_type
);
1074 if (vr1
.undefined_p ())
1075 vr1
.set_varying (expr_type
);
1076 vr0
.normalize_addresses ();
1077 vr1
.normalize_addresses ();
1078 op
->fold_range (*vr
, expr_type
, vr0
, vr1
);
1081 /* Perform a unary operation on a range. */
1084 range_fold_unary_expr (value_range
*vr
,
1085 enum tree_code code
, tree expr_type
,
1086 const value_range
*vr0
,
1089 if (!supported_types_p (vr
, expr_type
, vr0_type
)
1090 || !defined_ranges_p (vr
, vr0
))
1092 const range_operator
*op
= get_range_op_handler (vr
, code
, expr_type
);
1096 if (range_fold_unary_symbolics_p (vr
, code
, expr_type
, vr0
))
1099 value_range
vr0_cst (*vr0
);
1100 vr0_cst
.normalize_addresses ();
1101 op
->fold_range (*vr
, expr_type
, vr0_cst
, value_range (expr_type
));
1104 /* If the range of values taken by OP can be inferred after STMT executes,
1105 return the comparison code (COMP_CODE_P) and value (VAL_P) that
1106 describes the inferred range. Return true if a range could be
1110 infer_value_range (gimple
*stmt
, tree op
, tree_code
*comp_code_p
, tree
*val_p
)
1113 *comp_code_p
= ERROR_MARK
;
1115 /* Do not attempt to infer anything in names that flow through
1117 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
1120 /* If STMT is the last statement of a basic block with no normal
1121 successors, there is no point inferring anything about any of its
1122 operands. We would not be able to find a proper insertion point
1123 for the assertion, anyway. */
1124 if (stmt_ends_bb_p (stmt
))
1129 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
1130 if (!(e
->flags
& (EDGE_ABNORMAL
|EDGE_EH
)))
1136 if (infer_nonnull_range (stmt
, op
))
1138 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
1139 *comp_code_p
= NE_EXPR
;
1146 /* Dump assert_info structure. */
1149 dump_assert_info (FILE *file
, const assert_info
&assert)
1151 fprintf (file
, "Assert for: ");
1152 print_generic_expr (file
, assert.name
);
1153 fprintf (file
, "\n\tPREDICATE: expr=[");
1154 print_generic_expr (file
, assert.expr
);
1155 fprintf (file
, "] %s ", get_tree_code_name (assert.comp_code
));
1156 fprintf (file
, "val=[");
1157 print_generic_expr (file
, assert.val
);
1158 fprintf (file
, "]\n\n");
1162 debug (const assert_info
&assert)
1164 dump_assert_info (stderr
, assert);
1167 /* Dump a vector of assert_info's. */
1170 dump_asserts_info (FILE *file
, const vec
<assert_info
> &asserts
)
1172 for (unsigned i
= 0; i
< asserts
.length (); ++i
)
1174 dump_assert_info (file
, asserts
[i
]);
1175 fprintf (file
, "\n");
1180 debug (const vec
<assert_info
> &asserts
)
1182 dump_asserts_info (stderr
, asserts
);
1185 /* Push the assert info for NAME, EXPR, COMP_CODE and VAL to ASSERTS. */
1188 add_assert_info (vec
<assert_info
> &asserts
,
1189 tree name
, tree expr
, enum tree_code comp_code
, tree val
)
1192 info
.comp_code
= comp_code
;
1194 if (TREE_OVERFLOW_P (val
))
1195 val
= drop_tree_overflow (val
);
1198 asserts
.safe_push (info
);
1199 if (dump_enabled_p ())
1200 dump_printf (MSG_NOTE
| MSG_PRIORITY_INTERNALS
,
1201 "Adding assert for %T from %T %s %T\n",
1202 name
, expr
, op_symbol_code (comp_code
), val
);
1205 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
1206 Extract a suitable test code and value and store them into *CODE_P and
1207 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
1209 If no extraction was possible, return FALSE, otherwise return TRUE.
1211 If INVERT is true, then we invert the result stored into *CODE_P. */
1214 extract_code_and_val_from_cond_with_ops (tree name
, enum tree_code cond_code
,
1215 tree cond_op0
, tree cond_op1
,
1216 bool invert
, enum tree_code
*code_p
,
1219 enum tree_code comp_code
;
1222 /* Otherwise, we have a comparison of the form NAME COMP VAL
1223 or VAL COMP NAME. */
1224 if (name
== cond_op1
)
1226 /* If the predicate is of the form VAL COMP NAME, flip
1227 COMP around because we need to register NAME as the
1228 first operand in the predicate. */
1229 comp_code
= swap_tree_comparison (cond_code
);
1232 else if (name
== cond_op0
)
1234 /* The comparison is of the form NAME COMP VAL, so the
1235 comparison code remains unchanged. */
1236 comp_code
= cond_code
;
1242 /* Invert the comparison code as necessary. */
1244 comp_code
= invert_tree_comparison (comp_code
, 0);
1246 /* VRP only handles integral and pointer types. */
1247 if (! INTEGRAL_TYPE_P (TREE_TYPE (val
))
1248 && ! POINTER_TYPE_P (TREE_TYPE (val
)))
1251 /* Do not register always-false predicates.
1252 FIXME: this works around a limitation in fold() when dealing with
1253 enumerations. Given 'enum { N1, N2 } x;', fold will not
1254 fold 'if (x > N2)' to 'if (0)'. */
1255 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
1256 && INTEGRAL_TYPE_P (TREE_TYPE (val
)))
1258 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
1259 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
1261 if (comp_code
== GT_EXPR
1263 || compare_values (val
, max
) == 0))
1266 if (comp_code
== LT_EXPR
1268 || compare_values (val
, min
) == 0))
1271 *code_p
= comp_code
;
1276 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
1277 (otherwise return VAL). VAL and MASK must be zero-extended for
1278 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
1279 (to transform signed values into unsigned) and at the end xor
1283 masked_increment (const wide_int
&val_in
, const wide_int
&mask
,
1284 const wide_int
&sgnbit
, unsigned int prec
)
1286 wide_int bit
= wi::one (prec
), res
;
1289 wide_int val
= val_in
^ sgnbit
;
1290 for (i
= 0; i
< prec
; i
++, bit
+= bit
)
1293 if ((res
& bit
) == 0)
1296 res
= wi::bit_and_not (val
+ bit
, res
);
1298 if (wi::gtu_p (res
, val
))
1299 return res
^ sgnbit
;
1301 return val
^ sgnbit
;
1304 /* Helper for overflow_comparison_p
1306 OP0 CODE OP1 is a comparison. Examine the comparison and potentially
1307 OP1's defining statement to see if it ultimately has the form
1308 OP0 CODE (OP0 PLUS INTEGER_CST)
1310 If so, return TRUE indicating this is an overflow test and store into
1311 *NEW_CST an updated constant that can be used in a narrowed range test.
1313 REVERSED indicates if the comparison was originally:
1317 This affects how we build the updated constant. */
1320 overflow_comparison_p_1 (enum tree_code code
, tree op0
, tree op1
,
1321 bool follow_assert_exprs
, bool reversed
, tree
*new_cst
)
1323 /* See if this is a relational operation between two SSA_NAMES with
1324 unsigned, overflow wrapping values. If so, check it more deeply. */
1325 if ((code
== LT_EXPR
|| code
== LE_EXPR
1326 || code
== GE_EXPR
|| code
== GT_EXPR
)
1327 && TREE_CODE (op0
) == SSA_NAME
1328 && TREE_CODE (op1
) == SSA_NAME
1329 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
1330 && TYPE_UNSIGNED (TREE_TYPE (op0
))
1331 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0
)))
1333 gimple
*op1_def
= SSA_NAME_DEF_STMT (op1
);
1335 /* If requested, follow any ASSERT_EXPRs backwards for OP1. */
1336 if (follow_assert_exprs
)
1338 while (gimple_assign_single_p (op1_def
)
1339 && TREE_CODE (gimple_assign_rhs1 (op1_def
)) == ASSERT_EXPR
)
1341 op1
= TREE_OPERAND (gimple_assign_rhs1 (op1_def
), 0);
1342 if (TREE_CODE (op1
) != SSA_NAME
)
1344 op1_def
= SSA_NAME_DEF_STMT (op1
);
1348 /* Now look at the defining statement of OP1 to see if it adds
1349 or subtracts a nonzero constant from another operand. */
1351 && is_gimple_assign (op1_def
)
1352 && gimple_assign_rhs_code (op1_def
) == PLUS_EXPR
1353 && TREE_CODE (gimple_assign_rhs2 (op1_def
)) == INTEGER_CST
1354 && !integer_zerop (gimple_assign_rhs2 (op1_def
)))
1356 tree target
= gimple_assign_rhs1 (op1_def
);
1358 /* If requested, follow ASSERT_EXPRs backwards for op0 looking
1359 for one where TARGET appears on the RHS. */
1360 if (follow_assert_exprs
)
1362 /* Now see if that "other operand" is op0, following the chain
1363 of ASSERT_EXPRs if necessary. */
1364 gimple
*op0_def
= SSA_NAME_DEF_STMT (op0
);
1365 while (op0
!= target
1366 && gimple_assign_single_p (op0_def
)
1367 && TREE_CODE (gimple_assign_rhs1 (op0_def
)) == ASSERT_EXPR
)
1369 op0
= TREE_OPERAND (gimple_assign_rhs1 (op0_def
), 0);
1370 if (TREE_CODE (op0
) != SSA_NAME
)
1372 op0_def
= SSA_NAME_DEF_STMT (op0
);
1376 /* If we did not find our target SSA_NAME, then this is not
1377 an overflow test. */
1381 tree type
= TREE_TYPE (op0
);
1382 wide_int max
= wi::max_value (TYPE_PRECISION (type
), UNSIGNED
);
1383 tree inc
= gimple_assign_rhs2 (op1_def
);
1385 *new_cst
= wide_int_to_tree (type
, max
+ wi::to_wide (inc
));
1387 *new_cst
= wide_int_to_tree (type
, max
- wi::to_wide (inc
));
1394 /* OP0 CODE OP1 is a comparison. Examine the comparison and potentially
1395 OP1's defining statement to see if it ultimately has the form
1396 OP0 CODE (OP0 PLUS INTEGER_CST)
1398 If so, return TRUE indicating this is an overflow test and store into
1399 *NEW_CST an updated constant that can be used in a narrowed range test.
1401 These statements are left as-is in the IL to facilitate discovery of
1402 {ADD,SUB}_OVERFLOW sequences later in the optimizer pipeline. But
1403 the alternate range representation is often useful within VRP. */
1406 overflow_comparison_p (tree_code code
, tree name
, tree val
,
1407 bool use_equiv_p
, tree
*new_cst
)
1409 if (overflow_comparison_p_1 (code
, name
, val
, use_equiv_p
, false, new_cst
))
1411 return overflow_comparison_p_1 (swap_tree_comparison (code
), val
, name
,
1412 use_equiv_p
, true, new_cst
);
1416 /* Try to register an edge assertion for SSA name NAME on edge E for
1417 the condition COND contributing to the conditional jump pointed to by BSI.
1418 Invert the condition COND if INVERT is true. */
1421 register_edge_assert_for_2 (tree name
, edge e
,
1422 enum tree_code cond_code
,
1423 tree cond_op0
, tree cond_op1
, bool invert
,
1424 vec
<assert_info
> &asserts
)
1427 enum tree_code comp_code
;
1429 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
1432 invert
, &comp_code
, &val
))
1435 /* Queue the assert. */
1437 if (overflow_comparison_p (comp_code
, name
, val
, false, &x
))
1439 enum tree_code new_code
= ((comp_code
== GT_EXPR
|| comp_code
== GE_EXPR
)
1440 ? GT_EXPR
: LE_EXPR
);
1441 add_assert_info (asserts
, name
, name
, new_code
, x
);
1443 add_assert_info (asserts
, name
, name
, comp_code
, val
);
1445 /* In the case of NAME <= CST and NAME being defined as
1446 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
1447 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
1448 This catches range and anti-range tests. */
1449 if ((comp_code
== LE_EXPR
1450 || comp_code
== GT_EXPR
)
1451 && TREE_CODE (val
) == INTEGER_CST
1452 && TYPE_UNSIGNED (TREE_TYPE (val
)))
1454 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
1455 tree cst2
= NULL_TREE
, name2
= NULL_TREE
, name3
= NULL_TREE
;
1457 /* Extract CST2 from the (optional) addition. */
1458 if (is_gimple_assign (def_stmt
)
1459 && gimple_assign_rhs_code (def_stmt
) == PLUS_EXPR
)
1461 name2
= gimple_assign_rhs1 (def_stmt
);
1462 cst2
= gimple_assign_rhs2 (def_stmt
);
1463 if (TREE_CODE (name2
) == SSA_NAME
1464 && TREE_CODE (cst2
) == INTEGER_CST
)
1465 def_stmt
= SSA_NAME_DEF_STMT (name2
);
1468 /* Extract NAME2 from the (optional) sign-changing cast. */
1469 if (gassign
*ass
= dyn_cast
<gassign
*> (def_stmt
))
1471 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (ass
))
1472 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (ass
)))
1473 && (TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (ass
)))
1474 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (ass
)))))
1475 name3
= gimple_assign_rhs1 (ass
);
1478 /* If name3 is used later, create an ASSERT_EXPR for it. */
1479 if (name3
!= NULL_TREE
1480 && TREE_CODE (name3
) == SSA_NAME
1481 && (cst2
== NULL_TREE
1482 || TREE_CODE (cst2
) == INTEGER_CST
)
1483 && INTEGRAL_TYPE_P (TREE_TYPE (name3
)))
1487 /* Build an expression for the range test. */
1488 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), name3
);
1489 if (cst2
!= NULL_TREE
)
1490 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
1491 add_assert_info (asserts
, name3
, tmp
, comp_code
, val
);
1494 /* If name2 is used later, create an ASSERT_EXPR for it. */
1495 if (name2
!= NULL_TREE
1496 && TREE_CODE (name2
) == SSA_NAME
1497 && TREE_CODE (cst2
) == INTEGER_CST
1498 && INTEGRAL_TYPE_P (TREE_TYPE (name2
)))
1502 /* Build an expression for the range test. */
1504 if (TREE_TYPE (name
) != TREE_TYPE (name2
))
1505 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), tmp
);
1506 if (cst2
!= NULL_TREE
)
1507 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
1508 add_assert_info (asserts
, name2
, tmp
, comp_code
, val
);
1512 /* In the case of post-in/decrement tests like if (i++) ... and uses
1513 of the in/decremented value on the edge the extra name we want to
1514 assert for is not on the def chain of the name compared. Instead
1515 it is in the set of use stmts.
1516 Similar cases happen for conversions that were simplified through
1517 fold_{sign_changed,widened}_comparison. */
1518 if ((comp_code
== NE_EXPR
1519 || comp_code
== EQ_EXPR
)
1520 && TREE_CODE (val
) == INTEGER_CST
)
1522 imm_use_iterator ui
;
1524 FOR_EACH_IMM_USE_STMT (use_stmt
, ui
, name
)
1526 if (!is_gimple_assign (use_stmt
))
1529 /* Cut off to use-stmts that are dominating the predecessor. */
1530 if (!dominated_by_p (CDI_DOMINATORS
, e
->src
, gimple_bb (use_stmt
)))
1533 tree name2
= gimple_assign_lhs (use_stmt
);
1534 if (TREE_CODE (name2
) != SSA_NAME
)
1537 enum tree_code code
= gimple_assign_rhs_code (use_stmt
);
1539 if (code
== PLUS_EXPR
1540 || code
== MINUS_EXPR
)
1542 cst
= gimple_assign_rhs2 (use_stmt
);
1543 if (TREE_CODE (cst
) != INTEGER_CST
)
1545 cst
= int_const_binop (code
, val
, cst
);
1547 else if (CONVERT_EXPR_CODE_P (code
))
1549 /* For truncating conversions we cannot record
1551 if (comp_code
== NE_EXPR
1552 && (TYPE_PRECISION (TREE_TYPE (name2
))
1553 < TYPE_PRECISION (TREE_TYPE (name
))))
1555 cst
= fold_convert (TREE_TYPE (name2
), val
);
1560 if (TREE_OVERFLOW_P (cst
))
1561 cst
= drop_tree_overflow (cst
);
1562 add_assert_info (asserts
, name2
, name2
, comp_code
, cst
);
1566 if (TREE_CODE_CLASS (comp_code
) == tcc_comparison
1567 && TREE_CODE (val
) == INTEGER_CST
)
1569 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
1570 tree name2
= NULL_TREE
, names
[2], cst2
= NULL_TREE
;
1571 tree val2
= NULL_TREE
;
1572 unsigned int prec
= TYPE_PRECISION (TREE_TYPE (val
));
1573 wide_int mask
= wi::zero (prec
);
1574 unsigned int nprec
= prec
;
1575 enum tree_code rhs_code
= ERROR_MARK
;
1577 if (is_gimple_assign (def_stmt
))
1578 rhs_code
= gimple_assign_rhs_code (def_stmt
);
1580 /* In the case of NAME != CST1 where NAME = A +- CST2 we can
1581 assert that A != CST1 -+ CST2. */
1582 if ((comp_code
== EQ_EXPR
|| comp_code
== NE_EXPR
)
1583 && (rhs_code
== PLUS_EXPR
|| rhs_code
== MINUS_EXPR
))
1585 tree op0
= gimple_assign_rhs1 (def_stmt
);
1586 tree op1
= gimple_assign_rhs2 (def_stmt
);
1587 if (TREE_CODE (op0
) == SSA_NAME
1588 && TREE_CODE (op1
) == INTEGER_CST
)
1590 enum tree_code reverse_op
= (rhs_code
== PLUS_EXPR
1591 ? MINUS_EXPR
: PLUS_EXPR
);
1592 op1
= int_const_binop (reverse_op
, val
, op1
);
1593 if (TREE_OVERFLOW (op1
))
1594 op1
= drop_tree_overflow (op1
);
1595 add_assert_info (asserts
, op0
, op0
, comp_code
, op1
);
1599 /* Add asserts for NAME cmp CST and NAME being defined
1600 as NAME = (int) NAME2. */
1601 if (!TYPE_UNSIGNED (TREE_TYPE (val
))
1602 && (comp_code
== LE_EXPR
|| comp_code
== LT_EXPR
1603 || comp_code
== GT_EXPR
|| comp_code
== GE_EXPR
)
1604 && gimple_assign_cast_p (def_stmt
))
1606 name2
= gimple_assign_rhs1 (def_stmt
);
1607 if (CONVERT_EXPR_CODE_P (rhs_code
)
1608 && TREE_CODE (name2
) == SSA_NAME
1609 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
1610 && TYPE_UNSIGNED (TREE_TYPE (name2
))
1611 && prec
== TYPE_PRECISION (TREE_TYPE (name2
))
1612 && (comp_code
== LE_EXPR
|| comp_code
== GT_EXPR
1613 || !tree_int_cst_equal (val
,
1614 TYPE_MIN_VALUE (TREE_TYPE (val
)))))
1617 enum tree_code new_comp_code
= comp_code
;
1619 cst
= fold_convert (TREE_TYPE (name2
),
1620 TYPE_MIN_VALUE (TREE_TYPE (val
)));
1621 /* Build an expression for the range test. */
1622 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name2
), name2
, cst
);
1623 cst
= fold_build2 (PLUS_EXPR
, TREE_TYPE (name2
), cst
,
1624 fold_convert (TREE_TYPE (name2
), val
));
1625 if (comp_code
== LT_EXPR
|| comp_code
== GE_EXPR
)
1627 new_comp_code
= comp_code
== LT_EXPR
? LE_EXPR
: GT_EXPR
;
1628 cst
= fold_build2 (MINUS_EXPR
, TREE_TYPE (name2
), cst
,
1629 build_int_cst (TREE_TYPE (name2
), 1));
1631 add_assert_info (asserts
, name2
, tmp
, new_comp_code
, cst
);
1635 /* Add asserts for NAME cmp CST and NAME being defined as
1636 NAME = NAME2 >> CST2.
1638 Extract CST2 from the right shift. */
1639 if (rhs_code
== RSHIFT_EXPR
)
1641 name2
= gimple_assign_rhs1 (def_stmt
);
1642 cst2
= gimple_assign_rhs2 (def_stmt
);
1643 if (TREE_CODE (name2
) == SSA_NAME
1644 && tree_fits_uhwi_p (cst2
)
1645 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
1646 && IN_RANGE (tree_to_uhwi (cst2
), 1, prec
- 1)
1647 && type_has_mode_precision_p (TREE_TYPE (val
)))
1649 mask
= wi::mask (tree_to_uhwi (cst2
), false, prec
);
1650 val2
= fold_binary (LSHIFT_EXPR
, TREE_TYPE (val
), val
, cst2
);
1653 if (val2
!= NULL_TREE
1654 && TREE_CODE (val2
) == INTEGER_CST
1655 && simple_cst_equal (fold_build2 (RSHIFT_EXPR
,
1659 enum tree_code new_comp_code
= comp_code
;
1663 if (comp_code
== EQ_EXPR
|| comp_code
== NE_EXPR
)
1665 if (!TYPE_UNSIGNED (TREE_TYPE (val
)))
1667 tree type
= build_nonstandard_integer_type (prec
, 1);
1668 tmp
= build1 (NOP_EXPR
, type
, name2
);
1669 val2
= fold_convert (type
, val2
);
1671 tmp
= fold_build2 (MINUS_EXPR
, TREE_TYPE (tmp
), tmp
, val2
);
1672 new_val
= wide_int_to_tree (TREE_TYPE (tmp
), mask
);
1673 new_comp_code
= comp_code
== EQ_EXPR
? LE_EXPR
: GT_EXPR
;
1675 else if (comp_code
== LT_EXPR
|| comp_code
== GE_EXPR
)
1678 = wi::min_value (prec
, TYPE_SIGN (TREE_TYPE (val
)));
1680 if (minval
== wi::to_wide (new_val
))
1681 new_val
= NULL_TREE
;
1686 = wi::max_value (prec
, TYPE_SIGN (TREE_TYPE (val
)));
1687 mask
|= wi::to_wide (val2
);
1688 if (wi::eq_p (mask
, maxval
))
1689 new_val
= NULL_TREE
;
1691 new_val
= wide_int_to_tree (TREE_TYPE (val2
), mask
);
1695 add_assert_info (asserts
, name2
, tmp
, new_comp_code
, new_val
);
1698 /* If we have a conversion that doesn't change the value of the source
1699 simply register the same assert for it. */
1700 if (CONVERT_EXPR_CODE_P (rhs_code
))
1703 tree rhs1
= gimple_assign_rhs1 (def_stmt
);
1704 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1705 && TREE_CODE (rhs1
) == SSA_NAME
1706 /* Make sure the relation preserves the upper/lower boundary of
1707 the range conservatively. */
1708 && (comp_code
== NE_EXPR
1709 || comp_code
== EQ_EXPR
1710 || (TYPE_SIGN (TREE_TYPE (name
))
1711 == TYPE_SIGN (TREE_TYPE (rhs1
)))
1712 || ((comp_code
== LE_EXPR
1713 || comp_code
== LT_EXPR
)
1714 && !TYPE_UNSIGNED (TREE_TYPE (rhs1
)))
1715 || ((comp_code
== GE_EXPR
1716 || comp_code
== GT_EXPR
)
1717 && TYPE_UNSIGNED (TREE_TYPE (rhs1
))))
1718 /* And the conversion does not alter the value we compare
1719 against and all values in rhs1 can be represented in
1720 the converted to type. */
1721 && int_fits_type_p (val
, TREE_TYPE (rhs1
))
1722 && ((TYPE_PRECISION (TREE_TYPE (name
))
1723 > TYPE_PRECISION (TREE_TYPE (rhs1
)))
1724 || ((get_range_query (cfun
)->range_of_expr (vr
, rhs1
)
1725 && vr
.kind () == VR_RANGE
)
1726 && wi::fits_to_tree_p
1727 (widest_int::from (vr
.lower_bound (),
1728 TYPE_SIGN (TREE_TYPE (rhs1
))),
1730 && wi::fits_to_tree_p
1731 (widest_int::from (vr
.upper_bound (),
1732 TYPE_SIGN (TREE_TYPE (rhs1
))),
1733 TREE_TYPE (name
)))))
1734 add_assert_info (asserts
, rhs1
, rhs1
,
1735 comp_code
, fold_convert (TREE_TYPE (rhs1
), val
));
1738 /* Add asserts for NAME cmp CST and NAME being defined as
1739 NAME = NAME2 & CST2.
1741 Extract CST2 from the and.
1744 NAME = (unsigned) NAME2;
1745 casts where NAME's type is unsigned and has smaller precision
1746 than NAME2's type as if it was NAME = NAME2 & MASK. */
1747 names
[0] = NULL_TREE
;
1748 names
[1] = NULL_TREE
;
1750 if (rhs_code
== BIT_AND_EXPR
1751 || (CONVERT_EXPR_CODE_P (rhs_code
)
1752 && INTEGRAL_TYPE_P (TREE_TYPE (val
))
1753 && TYPE_UNSIGNED (TREE_TYPE (val
))
1754 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
1757 name2
= gimple_assign_rhs1 (def_stmt
);
1758 if (rhs_code
== BIT_AND_EXPR
)
1759 cst2
= gimple_assign_rhs2 (def_stmt
);
1762 cst2
= TYPE_MAX_VALUE (TREE_TYPE (val
));
1763 nprec
= TYPE_PRECISION (TREE_TYPE (name2
));
1765 if (TREE_CODE (name2
) == SSA_NAME
1766 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
1767 && TREE_CODE (cst2
) == INTEGER_CST
1768 && !integer_zerop (cst2
)
1770 || TYPE_UNSIGNED (TREE_TYPE (val
))))
1772 gimple
*def_stmt2
= SSA_NAME_DEF_STMT (name2
);
1773 if (gimple_assign_cast_p (def_stmt2
))
1775 names
[1] = gimple_assign_rhs1 (def_stmt2
);
1776 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2
))
1777 || TREE_CODE (names
[1]) != SSA_NAME
1778 || !INTEGRAL_TYPE_P (TREE_TYPE (names
[1]))
1779 || (TYPE_PRECISION (TREE_TYPE (name2
))
1780 != TYPE_PRECISION (TREE_TYPE (names
[1]))))
1781 names
[1] = NULL_TREE
;
1786 if (names
[0] || names
[1])
1788 wide_int minv
, maxv
, valv
, cst2v
;
1789 wide_int tem
, sgnbit
;
1790 bool valid_p
= false, valn
, cst2n
;
1791 enum tree_code ccode
= comp_code
;
1793 valv
= wide_int::from (wi::to_wide (val
), nprec
, UNSIGNED
);
1794 cst2v
= wide_int::from (wi::to_wide (cst2
), nprec
, UNSIGNED
);
1795 valn
= wi::neg_p (valv
, TYPE_SIGN (TREE_TYPE (val
)));
1796 cst2n
= wi::neg_p (cst2v
, TYPE_SIGN (TREE_TYPE (val
)));
1797 /* If CST2 doesn't have most significant bit set,
1798 but VAL is negative, we have comparison like
1799 if ((x & 0x123) > -4) (always true). Just give up. */
1803 sgnbit
= wi::set_bit_in_zero (nprec
- 1, nprec
);
1805 sgnbit
= wi::zero (nprec
);
1806 minv
= valv
& cst2v
;
1810 /* Minimum unsigned value for equality is VAL & CST2
1811 (should be equal to VAL, otherwise we probably should
1812 have folded the comparison into false) and
1813 maximum unsigned value is VAL | ~CST2. */
1814 maxv
= valv
| ~cst2v
;
1819 tem
= valv
| ~cst2v
;
1820 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
1824 sgnbit
= wi::zero (nprec
);
1827 /* If (VAL | ~CST2) is all ones, handle it as
1828 (X & CST2) < VAL. */
1833 sgnbit
= wi::zero (nprec
);
1836 if (!cst2n
&& wi::neg_p (cst2v
))
1837 sgnbit
= wi::set_bit_in_zero (nprec
- 1, nprec
);
1846 if (tem
== wi::mask (nprec
- 1, false, nprec
))
1852 sgnbit
= wi::zero (nprec
);
1857 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
1858 is VAL and maximum unsigned value is ~0. For signed
1859 comparison, if CST2 doesn't have most significant bit
1860 set, handle it similarly. If CST2 has MSB set,
1861 the minimum is the same, and maximum is ~0U/2. */
1864 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
1866 minv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
1870 maxv
= wi::mask (nprec
- (cst2n
? 1 : 0), false, nprec
);
1876 /* Find out smallest MINV where MINV > VAL
1877 && (MINV & CST2) == MINV, if any. If VAL is signed and
1878 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
1879 minv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
1882 maxv
= wi::mask (nprec
- (cst2n
? 1 : 0), false, nprec
);
1887 /* Minimum unsigned value for <= is 0 and maximum
1888 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
1889 Otherwise, find smallest VAL2 where VAL2 > VAL
1890 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
1892 For signed comparison, if CST2 doesn't have most
1893 significant bit set, handle it similarly. If CST2 has
1894 MSB set, the maximum is the same and minimum is INT_MIN. */
1899 maxv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
1911 /* Minimum unsigned value for < is 0 and maximum
1912 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
1913 Otherwise, find smallest VAL2 where VAL2 > VAL
1914 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
1916 For signed comparison, if CST2 doesn't have most
1917 significant bit set, handle it similarly. If CST2 has
1918 MSB set, the maximum is the same and minimum is INT_MIN. */
1927 maxv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
1941 && (maxv
- minv
) != -1)
1943 tree tmp
, new_val
, type
;
1946 for (i
= 0; i
< 2; i
++)
1949 wide_int maxv2
= maxv
;
1951 type
= TREE_TYPE (names
[i
]);
1952 if (!TYPE_UNSIGNED (type
))
1954 type
= build_nonstandard_integer_type (nprec
, 1);
1955 tmp
= build1 (NOP_EXPR
, type
, names
[i
]);
1959 tmp
= build2 (PLUS_EXPR
, type
, tmp
,
1960 wide_int_to_tree (type
, -minv
));
1961 maxv2
= maxv
- minv
;
1963 new_val
= wide_int_to_tree (type
, maxv2
);
1964 add_assert_info (asserts
, names
[i
], tmp
, LE_EXPR
, new_val
);
1971 /* OP is an operand of a truth value expression which is known to have
1972 a particular value. Register any asserts for OP and for any
1973 operands in OP's defining statement.
1975 If CODE is EQ_EXPR, then we want to register OP is zero (false),
1976 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
1979 register_edge_assert_for_1 (tree op
, enum tree_code code
,
1980 edge e
, vec
<assert_info
> &asserts
)
1984 enum tree_code rhs_code
;
1986 /* We only care about SSA_NAMEs. */
1987 if (TREE_CODE (op
) != SSA_NAME
)
1990 /* We know that OP will have a zero or nonzero value. */
1991 val
= build_int_cst (TREE_TYPE (op
), 0);
1992 add_assert_info (asserts
, op
, op
, code
, val
);
1994 /* Now look at how OP is set. If it's set from a comparison,
1995 a truth operation or some bit operations, then we may be able
1996 to register information about the operands of that assignment. */
1997 op_def
= SSA_NAME_DEF_STMT (op
);
1998 if (gimple_code (op_def
) != GIMPLE_ASSIGN
)
2001 rhs_code
= gimple_assign_rhs_code (op_def
);
2003 if (TREE_CODE_CLASS (rhs_code
) == tcc_comparison
)
2005 bool invert
= (code
== EQ_EXPR
? true : false);
2006 tree op0
= gimple_assign_rhs1 (op_def
);
2007 tree op1
= gimple_assign_rhs2 (op_def
);
2009 if (TREE_CODE (op0
) == SSA_NAME
)
2010 register_edge_assert_for_2 (op0
, e
, rhs_code
, op0
, op1
, invert
, asserts
);
2011 if (TREE_CODE (op1
) == SSA_NAME
)
2012 register_edge_assert_for_2 (op1
, e
, rhs_code
, op0
, op1
, invert
, asserts
);
2014 else if ((code
== NE_EXPR
2015 && gimple_assign_rhs_code (op_def
) == BIT_AND_EXPR
)
2017 && gimple_assign_rhs_code (op_def
) == BIT_IOR_EXPR
))
2019 /* Recurse on each operand. */
2020 tree op0
= gimple_assign_rhs1 (op_def
);
2021 tree op1
= gimple_assign_rhs2 (op_def
);
2022 if (TREE_CODE (op0
) == SSA_NAME
2023 && has_single_use (op0
))
2024 register_edge_assert_for_1 (op0
, code
, e
, asserts
);
2025 if (TREE_CODE (op1
) == SSA_NAME
2026 && has_single_use (op1
))
2027 register_edge_assert_for_1 (op1
, code
, e
, asserts
);
2029 else if (gimple_assign_rhs_code (op_def
) == BIT_NOT_EXPR
2030 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def
))) == 1)
2032 /* Recurse, flipping CODE. */
2033 code
= invert_tree_comparison (code
, false);
2034 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
), code
, e
, asserts
);
2036 else if (gimple_assign_rhs_code (op_def
) == SSA_NAME
)
2038 /* Recurse through the copy. */
2039 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
), code
, e
, asserts
);
2041 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def
)))
2043 /* Recurse through the type conversion, unless it is a narrowing
2044 conversion or conversion from non-integral type. */
2045 tree rhs
= gimple_assign_rhs1 (op_def
);
2046 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs
))
2047 && (TYPE_PRECISION (TREE_TYPE (rhs
))
2048 <= TYPE_PRECISION (TREE_TYPE (op
))))
2049 register_edge_assert_for_1 (rhs
, code
, e
, asserts
);
2053 /* Check if comparison
2054 NAME COND_OP INTEGER_CST
2056 (X & 11...100..0) COND_OP XX...X00...0
2057 Such comparison can yield assertions like
2060 in case of COND_OP being EQ_EXPR or
2063 in case of NE_EXPR. */
2066 is_masked_range_test (tree name
, tree valt
, enum tree_code cond_code
,
2067 tree
*new_name
, tree
*low
, enum tree_code
*low_code
,
2068 tree
*high
, enum tree_code
*high_code
)
2070 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
2072 if (!is_gimple_assign (def_stmt
)
2073 || gimple_assign_rhs_code (def_stmt
) != BIT_AND_EXPR
)
2076 tree t
= gimple_assign_rhs1 (def_stmt
);
2077 tree maskt
= gimple_assign_rhs2 (def_stmt
);
2078 if (TREE_CODE (t
) != SSA_NAME
|| TREE_CODE (maskt
) != INTEGER_CST
)
2081 wi::tree_to_wide_ref mask
= wi::to_wide (maskt
);
2082 wide_int inv_mask
= ~mask
;
2083 /* Must have been removed by now so don't bother optimizing. */
2084 if (mask
== 0 || inv_mask
== 0)
2087 /* Assume VALT is INTEGER_CST. */
2088 wi::tree_to_wide_ref val
= wi::to_wide (valt
);
2090 if ((inv_mask
& (inv_mask
+ 1)) != 0
2091 || (val
& mask
) != val
)
2094 bool is_range
= cond_code
== EQ_EXPR
;
2096 tree type
= TREE_TYPE (t
);
2097 wide_int min
= wi::min_value (type
),
2098 max
= wi::max_value (type
);
2102 *low_code
= val
== min
? ERROR_MARK
: GE_EXPR
;
2103 *high_code
= val
== max
? ERROR_MARK
: LE_EXPR
;
2107 /* We can still generate assertion if one of alternatives
2108 is known to always be false. */
2111 *low_code
= (enum tree_code
) 0;
2112 *high_code
= GT_EXPR
;
2114 else if ((val
| inv_mask
) == max
)
2116 *low_code
= LT_EXPR
;
2117 *high_code
= (enum tree_code
) 0;
2124 *low
= wide_int_to_tree (type
, val
);
2125 *high
= wide_int_to_tree (type
, val
| inv_mask
);
2130 /* Try to register an edge assertion for SSA name NAME on edge E for
2131 the condition COND contributing to the conditional jump pointed to by
2135 register_edge_assert_for (tree name
, edge e
,
2136 enum tree_code cond_code
, tree cond_op0
,
2137 tree cond_op1
, vec
<assert_info
> &asserts
)
2140 enum tree_code comp_code
;
2141 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
2143 /* Do not attempt to infer anything in names that flow through
2145 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
2148 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
2154 /* Register ASSERT_EXPRs for name. */
2155 register_edge_assert_for_2 (name
, e
, cond_code
, cond_op0
,
2156 cond_op1
, is_else_edge
, asserts
);
2159 /* If COND is effectively an equality test of an SSA_NAME against
2160 the value zero or one, then we may be able to assert values
2161 for SSA_NAMEs which flow into COND. */
2163 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
2164 statement of NAME we can assert both operands of the BIT_AND_EXPR
2165 have nonzero value. */
2166 if ((comp_code
== EQ_EXPR
&& integer_onep (val
))
2167 || (comp_code
== NE_EXPR
&& integer_zerop (val
)))
2169 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
2171 if (is_gimple_assign (def_stmt
)
2172 && gimple_assign_rhs_code (def_stmt
) == BIT_AND_EXPR
)
2174 tree op0
= gimple_assign_rhs1 (def_stmt
);
2175 tree op1
= gimple_assign_rhs2 (def_stmt
);
2176 register_edge_assert_for_1 (op0
, NE_EXPR
, e
, asserts
);
2177 register_edge_assert_for_1 (op1
, NE_EXPR
, e
, asserts
);
2179 else if (is_gimple_assign (def_stmt
)
2180 && (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
))
2182 register_edge_assert_for_1 (name
, NE_EXPR
, e
, asserts
);
2185 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
2186 statement of NAME we can assert both operands of the BIT_IOR_EXPR
2188 if ((comp_code
== EQ_EXPR
&& integer_zerop (val
))
2189 || (comp_code
== NE_EXPR
2190 && integer_onep (val
)
2191 && TYPE_PRECISION (TREE_TYPE (name
)) == 1))
2193 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
2195 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
2196 necessarily zero value, or if type-precision is one. */
2197 if (is_gimple_assign (def_stmt
)
2198 && gimple_assign_rhs_code (def_stmt
) == BIT_IOR_EXPR
)
2200 tree op0
= gimple_assign_rhs1 (def_stmt
);
2201 tree op1
= gimple_assign_rhs2 (def_stmt
);
2202 register_edge_assert_for_1 (op0
, EQ_EXPR
, e
, asserts
);
2203 register_edge_assert_for_1 (op1
, EQ_EXPR
, e
, asserts
);
2205 else if (is_gimple_assign (def_stmt
)
2206 && (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
))
2208 register_edge_assert_for_1 (name
, EQ_EXPR
, e
, asserts
);
2211 /* Sometimes we can infer ranges from (NAME & MASK) == VALUE. */
2212 if ((comp_code
== EQ_EXPR
|| comp_code
== NE_EXPR
)
2213 && TREE_CODE (val
) == INTEGER_CST
)
2215 enum tree_code low_code
, high_code
;
2217 if (is_masked_range_test (name
, val
, comp_code
, &name
, &low
,
2218 &low_code
, &high
, &high_code
))
2220 if (low_code
!= ERROR_MARK
)
2221 register_edge_assert_for_2 (name
, e
, low_code
, name
,
2222 low
, /*invert*/false, asserts
);
2223 if (high_code
!= ERROR_MARK
)
2224 register_edge_assert_for_2 (name
, e
, high_code
, name
,
2225 high
, /*invert*/false, asserts
);
2237 __builtin_unreachable ();
2239 x_5 = ASSERT_EXPR <x_3, ...>;
2240 If x_3 has no other immediate uses (checked by caller),
2241 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
2242 from the non-zero bitmask. */
2245 maybe_set_nonzero_bits (edge e
, tree var
)
2247 basic_block cond_bb
= e
->src
;
2248 gimple
*stmt
= last_stmt (cond_bb
);
2252 || gimple_code (stmt
) != GIMPLE_COND
2253 || gimple_cond_code (stmt
) != ((e
->flags
& EDGE_TRUE_VALUE
)
2254 ? EQ_EXPR
: NE_EXPR
)
2255 || TREE_CODE (gimple_cond_lhs (stmt
)) != SSA_NAME
2256 || !integer_zerop (gimple_cond_rhs (stmt
)))
2259 stmt
= SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt
));
2260 if (!is_gimple_assign (stmt
)
2261 || gimple_assign_rhs_code (stmt
) != BIT_AND_EXPR
2262 || TREE_CODE (gimple_assign_rhs2 (stmt
)) != INTEGER_CST
)
2264 if (gimple_assign_rhs1 (stmt
) != var
)
2268 if (TREE_CODE (gimple_assign_rhs1 (stmt
)) != SSA_NAME
)
2270 stmt2
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
2271 if (!gimple_assign_cast_p (stmt2
)
2272 || gimple_assign_rhs1 (stmt2
) != var
2273 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2
))
2274 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt
)))
2275 != TYPE_PRECISION (TREE_TYPE (var
))))
2278 cst
= gimple_assign_rhs2 (stmt
);
2279 set_nonzero_bits (var
, wi::bit_and_not (get_nonzero_bits (var
),
2280 wi::to_wide (cst
)));
2283 /* Return true if STMT is interesting for VRP. */
2286 stmt_interesting_for_vrp (gimple
*stmt
)
2288 if (gimple_code (stmt
) == GIMPLE_PHI
)
2290 tree res
= gimple_phi_result (stmt
);
2291 return (!virtual_operand_p (res
)
2292 && (INTEGRAL_TYPE_P (TREE_TYPE (res
))
2293 || POINTER_TYPE_P (TREE_TYPE (res
))));
2295 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
2297 tree lhs
= gimple_get_lhs (stmt
);
2299 /* In general, assignments with virtual operands are not useful
2300 for deriving ranges, with the obvious exception of calls to
2301 builtin functions. */
2302 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
2303 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
2304 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
2305 && (is_gimple_call (stmt
)
2306 || !gimple_vuse (stmt
)))
2308 else if (is_gimple_call (stmt
) && gimple_call_internal_p (stmt
))
2309 switch (gimple_call_internal_fn (stmt
))
2311 case IFN_ADD_OVERFLOW
:
2312 case IFN_SUB_OVERFLOW
:
2313 case IFN_MUL_OVERFLOW
:
2314 case IFN_ATOMIC_COMPARE_EXCHANGE
:
2315 /* These internal calls return _Complex integer type,
2316 but are interesting to VRP nevertheless. */
2317 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
)
2324 else if (gimple_code (stmt
) == GIMPLE_COND
2325 || gimple_code (stmt
) == GIMPLE_SWITCH
)
2331 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
2332 that includes the value VAL. The search is restricted to the range
2333 [START_IDX, n - 1] where n is the size of VEC.
2335 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
2338 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
2339 it is placed in IDX and false is returned.
2341 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
2345 find_case_label_index (gswitch
*stmt
, size_t start_idx
, tree val
, size_t *idx
)
2347 size_t n
= gimple_switch_num_labels (stmt
);
2350 /* Find case label for minimum of the value range or the next one.
2351 At each iteration we are searching in [low, high - 1]. */
2353 for (low
= start_idx
, high
= n
; high
!= low
; )
2357 /* Note that i != high, so we never ask for n. */
2358 size_t i
= (high
+ low
) / 2;
2359 t
= gimple_switch_label (stmt
, i
);
2361 /* Cache the result of comparing CASE_LOW and val. */
2362 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2366 /* Ranges cannot be empty. */
2375 if (CASE_HIGH (t
) != NULL
2376 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2388 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
2389 for values between MIN and MAX. The first index is placed in MIN_IDX. The
2390 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
2391 then MAX_IDX < MIN_IDX.
2392 Returns true if the default label is not needed. */
2395 find_case_label_range (gswitch
*stmt
, tree min
, tree max
, size_t *min_idx
,
2399 bool min_take_default
= !find_case_label_index (stmt
, 1, min
, &i
);
2400 bool max_take_default
= !find_case_label_index (stmt
, i
, max
, &j
);
2404 && max_take_default
)
2406 /* Only the default case label reached.
2407 Return an empty range. */
2414 bool take_default
= min_take_default
|| max_take_default
;
2418 if (max_take_default
)
2421 /* If the case label range is continuous, we do not need
2422 the default case label. Verify that. */
2423 high
= CASE_LOW (gimple_switch_label (stmt
, i
));
2424 if (CASE_HIGH (gimple_switch_label (stmt
, i
)))
2425 high
= CASE_HIGH (gimple_switch_label (stmt
, i
));
2426 for (k
= i
+ 1; k
<= j
; ++k
)
2428 low
= CASE_LOW (gimple_switch_label (stmt
, k
));
2429 if (!integer_onep (int_const_binop (MINUS_EXPR
, low
, high
)))
2431 take_default
= true;
2435 if (CASE_HIGH (gimple_switch_label (stmt
, k
)))
2436 high
= CASE_HIGH (gimple_switch_label (stmt
, k
));
2441 return !take_default
;
2445 /* Given a SWITCH_STMT, return the case label that encompasses the
2446 known possible values for the switch operand. RANGE_OF_OP is a
2447 range for the known values of the switch operand. */
2450 find_case_label_range (gswitch
*switch_stmt
, const irange
*range_of_op
)
2452 if (range_of_op
->undefined_p ()
2453 || range_of_op
->varying_p ()
2454 || range_of_op
->symbolic_p ())
2458 tree op
= gimple_switch_index (switch_stmt
);
2459 tree type
= TREE_TYPE (op
);
2460 tree tmin
= wide_int_to_tree (type
, range_of_op
->lower_bound ());
2461 tree tmax
= wide_int_to_tree (type
, range_of_op
->upper_bound ());
2462 find_case_label_range (switch_stmt
, tmin
, tmax
, &i
, &j
);
2465 /* Look for exactly one label that encompasses the range of
2467 tree label
= gimple_switch_label (switch_stmt
, i
);
2469 = CASE_HIGH (label
) ? CASE_HIGH (label
) : CASE_LOW (label
);
2470 int_range_max
label_range (CASE_LOW (label
), case_high
);
2471 if (!types_compatible_p (label_range
.type (), range_of_op
->type ()))
2472 range_cast (label_range
, range_of_op
->type ());
2473 label_range
.intersect (range_of_op
);
2474 if (label_range
== *range_of_op
)
2479 /* If there are no labels at all, take the default. */
2480 return gimple_switch_label (switch_stmt
, 0);
2484 /* Otherwise, there are various labels that can encompass
2485 the range of operand. In which case, see if the range of
2486 the operand is entirely *outside* the bounds of all the
2487 (non-default) case labels. If so, take the default. */
2488 unsigned n
= gimple_switch_num_labels (switch_stmt
);
2489 tree min_label
= gimple_switch_label (switch_stmt
, 1);
2490 tree max_label
= gimple_switch_label (switch_stmt
, n
- 1);
2491 tree case_high
= CASE_HIGH (max_label
);
2493 case_high
= CASE_LOW (max_label
);
2494 int_range_max
label_range (CASE_LOW (min_label
), case_high
);
2495 if (!types_compatible_p (label_range
.type (), range_of_op
->type ()))
2496 range_cast (label_range
, range_of_op
->type ());
2497 label_range
.intersect (range_of_op
);
2498 if (label_range
.undefined_p ())
2499 return gimple_switch_label (switch_stmt
, 0);
2510 /* Location information for ASSERT_EXPRs. Each instance of this
2511 structure describes an ASSERT_EXPR for an SSA name. Since a single
2512 SSA name may have more than one assertion associated with it, these
2513 locations are kept in a linked list attached to the corresponding
2517 /* Basic block where the assertion would be inserted. */
2520 /* Some assertions need to be inserted on an edge (e.g., assertions
2521 generated by COND_EXPRs). In those cases, BB will be NULL. */
2524 /* Pointer to the statement that generated this assertion. */
2525 gimple_stmt_iterator si
;
2527 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
2528 enum tree_code comp_code
;
2530 /* Value being compared against. */
2533 /* Expression to compare. */
2536 /* Next node in the linked list. */
2540 /* Class to traverse the flowgraph looking for conditional jumps to
2541 insert ASSERT_EXPR range expressions. These range expressions are
2542 meant to provide information to optimizations that need to reason
2543 in terms of value ranges. They will not be expanded into RTL. */
2548 vrp_asserts (struct function
*fn
) : fun (fn
) { }
2550 void insert_range_assertions ();
2552 /* Convert range assertion expressions into the implied copies and
2553 copy propagate away the copies. */
2554 void remove_range_assertions ();
2556 /* Dump all the registered assertions for all the names to FILE. */
2559 /* Dump all the registered assertions for NAME to FILE. */
2560 void dump (FILE *file
, tree name
);
2562 /* Dump all the registered assertions for NAME to stderr. */
2563 void debug (tree name
)
2565 dump (stderr
, name
);
2568 /* Dump all the registered assertions for all the names to stderr. */
2575 /* Set of SSA names found live during the RPO traversal of the function
2576 for still active basic-blocks. */
2579 /* Function to work on. */
2580 struct function
*fun
;
2582 /* If bit I is present, it means that SSA name N_i has a list of
2583 assertions that should be inserted in the IL. */
2584 bitmap need_assert_for
;
2586 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
2587 holds a list of ASSERT_LOCUS_T nodes that describe where
2588 ASSERT_EXPRs for SSA name N_I should be inserted. */
2589 assert_locus
**asserts_for
;
2591 /* Finish found ASSERTS for E and register them at GSI. */
2592 void finish_register_edge_assert_for (edge e
, gimple_stmt_iterator gsi
,
2593 vec
<assert_info
> &asserts
);
2595 /* Determine whether the outgoing edges of BB should receive an
2596 ASSERT_EXPR for each of the operands of BB's LAST statement. The
2597 last statement of BB must be a SWITCH_EXPR.
2599 If any of the sub-graphs rooted at BB have an interesting use of
2600 the predicate operands, an assert location node is added to the
2601 list of assertions for the corresponding operands. */
2602 void find_switch_asserts (basic_block bb
, gswitch
*last
);
2604 /* Do an RPO walk over the function computing SSA name liveness
2605 on-the-fly and deciding on assert expressions to insert. */
2606 void find_assert_locations ();
2608 /* Traverse all the statements in block BB looking for statements that
2609 may generate useful assertions for the SSA names in their operand.
2610 See method implementation comentary for more information. */
2611 void find_assert_locations_in_bb (basic_block bb
);
2613 /* Determine whether the outgoing edges of BB should receive an
2614 ASSERT_EXPR for each of the operands of BB's LAST statement.
2615 The last statement of BB must be a COND_EXPR.
2617 If any of the sub-graphs rooted at BB have an interesting use of
2618 the predicate operands, an assert location node is added to the
2619 list of assertions for the corresponding operands. */
2620 void find_conditional_asserts (basic_block bb
, gcond
*last
);
2622 /* Process all the insertions registered for every name N_i registered
2623 in NEED_ASSERT_FOR. The list of assertions to be inserted are
2624 found in ASSERTS_FOR[i]. */
2625 void process_assert_insertions ();
2627 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2628 'EXPR COMP_CODE VAL' at a location that dominates block BB or
2629 E->DEST, then register this location as a possible insertion point
2630 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
2632 BB, E and SI provide the exact insertion point for the new
2633 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2634 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2635 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2636 must not be NULL. */
2637 void register_new_assert_for (tree name
, tree expr
,
2638 enum tree_code comp_code
,
2639 tree val
, basic_block bb
,
2640 edge e
, gimple_stmt_iterator si
);
2642 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2643 create a new SSA name N and return the assertion assignment
2644 'N = ASSERT_EXPR <V, V OP W>'. */
2645 gimple
*build_assert_expr_for (tree cond
, tree v
);
2647 /* Create an ASSERT_EXPR for NAME and insert it in the location
2648 indicated by LOC. Return true if we made any edge insertions. */
2649 bool process_assert_insertions_for (tree name
, assert_locus
*loc
);
2651 /* Qsort callback for sorting assert locations. */
2652 template <bool stable
> static int compare_assert_loc (const void *,
2655 /* Return false if EXPR is a predicate expression involving floating
2657 bool fp_predicate (gimple
*stmt
)
2659 GIMPLE_CHECK (stmt
, GIMPLE_COND
);
2660 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt
)));
2663 bool all_imm_uses_in_stmt_or_feed_cond (tree var
, gimple
*stmt
,
2664 basic_block cond_bb
);
2666 static int compare_case_labels (const void *, const void *);
2669 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2670 create a new SSA name N and return the assertion assignment
2671 'N = ASSERT_EXPR <V, V OP W>'. */
2674 vrp_asserts::build_assert_expr_for (tree cond
, tree v
)
2679 gcc_assert (TREE_CODE (v
) == SSA_NAME
2680 && COMPARISON_CLASS_P (cond
));
2682 a
= build2 (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
2683 assertion
= gimple_build_assign (NULL_TREE
, a
);
2685 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2686 operand of the ASSERT_EXPR. Create it so the new name and the old one
2687 are registered in the replacement table so that we can fix the SSA web
2688 after adding all the ASSERT_EXPRs. */
2689 tree new_def
= create_new_def_for (v
, assertion
, NULL
);
2690 /* Make sure we preserve abnormalness throughout an ASSERT_EXPR chain
2691 given we have to be able to fully propagate those out to re-create
2692 valid SSA when removing the asserts. */
2693 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (v
))
2694 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_def
) = 1;
2699 /* Dump all the registered assertions for NAME to FILE. */
2702 vrp_asserts::dump (FILE *file
, tree name
)
2706 fprintf (file
, "Assertions to be inserted for ");
2707 print_generic_expr (file
, name
);
2708 fprintf (file
, "\n");
2710 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
2713 fprintf (file
, "\t");
2714 print_gimple_stmt (file
, gsi_stmt (loc
->si
), 0);
2715 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
2718 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
2719 loc
->e
->dest
->index
);
2720 dump_edge_info (file
, loc
->e
, dump_flags
, 0);
2722 fprintf (file
, "\n\tPREDICATE: ");
2723 print_generic_expr (file
, loc
->expr
);
2724 fprintf (file
, " %s ", get_tree_code_name (loc
->comp_code
));
2725 print_generic_expr (file
, loc
->val
);
2726 fprintf (file
, "\n\n");
2730 fprintf (file
, "\n");
2733 /* Dump all the registered assertions for all the names to FILE. */
2736 vrp_asserts::dump (FILE *file
)
2741 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
2742 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
2743 dump (file
, ssa_name (i
));
2744 fprintf (file
, "\n");
2747 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2748 'EXPR COMP_CODE VAL' at a location that dominates block BB or
2749 E->DEST, then register this location as a possible insertion point
2750 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
2752 BB, E and SI provide the exact insertion point for the new
2753 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2754 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2755 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2756 must not be NULL. */
2759 vrp_asserts::register_new_assert_for (tree name
, tree expr
,
2760 enum tree_code comp_code
,
2764 gimple_stmt_iterator si
)
2766 assert_locus
*n
, *loc
, *last_loc
;
2767 basic_block dest_bb
;
2769 gcc_checking_assert (bb
== NULL
|| e
== NULL
);
2772 gcc_checking_assert (gimple_code (gsi_stmt (si
)) != GIMPLE_COND
2773 && gimple_code (gsi_stmt (si
)) != GIMPLE_SWITCH
);
2775 /* Never build an assert comparing against an integer constant with
2776 TREE_OVERFLOW set. This confuses our undefined overflow warning
2778 if (TREE_OVERFLOW_P (val
))
2779 val
= drop_tree_overflow (val
);
2781 /* The new assertion A will be inserted at BB or E. We need to
2782 determine if the new location is dominated by a previously
2783 registered location for A. If we are doing an edge insertion,
2784 assume that A will be inserted at E->DEST. Note that this is not
2787 If E is a critical edge, it will be split. But even if E is
2788 split, the new block will dominate the same set of blocks that
2791 The reverse, however, is not true, blocks dominated by E->DEST
2792 will not be dominated by the new block created to split E. So,
2793 if the insertion location is on a critical edge, we will not use
2794 the new location to move another assertion previously registered
2795 at a block dominated by E->DEST. */
2796 dest_bb
= (bb
) ? bb
: e
->dest
;
2798 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2799 VAL at a block dominating DEST_BB, then we don't need to insert a new
2800 one. Similarly, if the same assertion already exists at a block
2801 dominated by DEST_BB and the new location is not on a critical
2802 edge, then update the existing location for the assertion (i.e.,
2803 move the assertion up in the dominance tree).
2805 Note, this is implemented as a simple linked list because there
2806 should not be more than a handful of assertions registered per
2807 name. If this becomes a performance problem, a table hashed by
2808 COMP_CODE and VAL could be implemented. */
2809 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
2813 if (loc
->comp_code
== comp_code
2815 || operand_equal_p (loc
->val
, val
, 0))
2816 && (loc
->expr
== expr
2817 || operand_equal_p (loc
->expr
, expr
, 0)))
2819 /* If E is not a critical edge and DEST_BB
2820 dominates the existing location for the assertion, move
2821 the assertion up in the dominance tree by updating its
2822 location information. */
2823 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
2824 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
2833 /* Update the last node of the list and move to the next one. */
2838 /* If we didn't find an assertion already registered for
2839 NAME COMP_CODE VAL, add a new one at the end of the list of
2840 assertions associated with NAME. */
2841 n
= XNEW (struct assert_locus
);
2845 n
->comp_code
= comp_code
;
2853 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
2855 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
2858 /* Finish found ASSERTS for E and register them at GSI. */
2861 vrp_asserts::finish_register_edge_assert_for (edge e
,
2862 gimple_stmt_iterator gsi
,
2863 vec
<assert_info
> &asserts
)
2865 for (unsigned i
= 0; i
< asserts
.length (); ++i
)
2866 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
2867 reachable from E. */
2868 if (live
.live_on_edge_p (asserts
[i
].name
, e
))
2869 register_new_assert_for (asserts
[i
].name
, asserts
[i
].expr
,
2870 asserts
[i
].comp_code
, asserts
[i
].val
,
2874 /* Determine whether the outgoing edges of BB should receive an
2875 ASSERT_EXPR for each of the operands of BB's LAST statement.
2876 The last statement of BB must be a COND_EXPR.
2878 If any of the sub-graphs rooted at BB have an interesting use of
2879 the predicate operands, an assert location node is added to the
2880 list of assertions for the corresponding operands. */
2883 vrp_asserts::find_conditional_asserts (basic_block bb
, gcond
*last
)
2885 gimple_stmt_iterator bsi
;
2891 bsi
= gsi_for_stmt (last
);
2893 /* Look for uses of the operands in each of the sub-graphs
2894 rooted at BB. We need to check each of the outgoing edges
2895 separately, so that we know what kind of ASSERT_EXPR to
2897 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2902 /* Register the necessary assertions for each operand in the
2903 conditional predicate. */
2904 auto_vec
<assert_info
, 8> asserts
;
2905 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
2906 register_edge_assert_for (op
, e
,
2907 gimple_cond_code (last
),
2908 gimple_cond_lhs (last
),
2909 gimple_cond_rhs (last
), asserts
);
2910 finish_register_edge_assert_for (e
, bsi
, asserts
);
2914 /* Compare two case labels sorting first by the destination bb index
2915 and then by the case value. */
2918 vrp_asserts::compare_case_labels (const void *p1
, const void *p2
)
2920 const struct case_info
*ci1
= (const struct case_info
*) p1
;
2921 const struct case_info
*ci2
= (const struct case_info
*) p2
;
2922 int idx1
= ci1
->bb
->index
;
2923 int idx2
= ci2
->bb
->index
;
2927 else if (idx1
== idx2
)
2929 /* Make sure the default label is first in a group. */
2930 if (!CASE_LOW (ci1
->expr
))
2932 else if (!CASE_LOW (ci2
->expr
))
2935 return tree_int_cst_compare (CASE_LOW (ci1
->expr
),
2936 CASE_LOW (ci2
->expr
));
2942 /* Determine whether the outgoing edges of BB should receive an
2943 ASSERT_EXPR for each of the operands of BB's LAST statement.
2944 The last statement of BB must be a SWITCH_EXPR.
2946 If any of the sub-graphs rooted at BB have an interesting use of
2947 the predicate operands, an assert location node is added to the
2948 list of assertions for the corresponding operands. */
2951 vrp_asserts::find_switch_asserts (basic_block bb
, gswitch
*last
)
2953 gimple_stmt_iterator bsi
;
2956 struct case_info
*ci
;
2957 size_t n
= gimple_switch_num_labels (last
);
2958 #if GCC_VERSION >= 4000
2961 /* Work around GCC 3.4 bug (PR 37086). */
2962 volatile unsigned int idx
;
2965 bsi
= gsi_for_stmt (last
);
2966 op
= gimple_switch_index (last
);
2967 if (TREE_CODE (op
) != SSA_NAME
)
2970 /* Build a vector of case labels sorted by destination label. */
2971 ci
= XNEWVEC (struct case_info
, n
);
2972 for (idx
= 0; idx
< n
; ++idx
)
2974 ci
[idx
].expr
= gimple_switch_label (last
, idx
);
2975 ci
[idx
].bb
= label_to_block (fun
, CASE_LABEL (ci
[idx
].expr
));
2977 edge default_edge
= find_edge (bb
, ci
[0].bb
);
2978 qsort (ci
, n
, sizeof (struct case_info
), compare_case_labels
);
2980 for (idx
= 0; idx
< n
; ++idx
)
2983 tree cl
= ci
[idx
].expr
;
2984 basic_block cbb
= ci
[idx
].bb
;
2986 min
= CASE_LOW (cl
);
2987 max
= CASE_HIGH (cl
);
2989 /* If there are multiple case labels with the same destination
2990 we need to combine them to a single value range for the edge. */
2991 if (idx
+ 1 < n
&& cbb
== ci
[idx
+ 1].bb
)
2993 /* Skip labels until the last of the group. */
2996 } while (idx
< n
&& cbb
== ci
[idx
].bb
);
2999 /* Pick up the maximum of the case label range. */
3000 if (CASE_HIGH (ci
[idx
].expr
))
3001 max
= CASE_HIGH (ci
[idx
].expr
);
3003 max
= CASE_LOW (ci
[idx
].expr
);
3006 /* Can't extract a useful assertion out of a range that includes the
3008 if (min
== NULL_TREE
)
3011 /* Find the edge to register the assert expr on. */
3012 e
= find_edge (bb
, cbb
);
3014 /* Register the necessary assertions for the operand in the
3016 auto_vec
<assert_info
, 8> asserts
;
3017 register_edge_assert_for (op
, e
,
3018 max
? GE_EXPR
: EQ_EXPR
,
3019 op
, fold_convert (TREE_TYPE (op
), min
),
3022 register_edge_assert_for (op
, e
, LE_EXPR
, op
,
3023 fold_convert (TREE_TYPE (op
), max
),
3025 finish_register_edge_assert_for (e
, bsi
, asserts
);
3030 if (!live
.live_on_edge_p (op
, default_edge
))
3033 /* Now register along the default label assertions that correspond to the
3034 anti-range of each label. */
3035 int insertion_limit
= param_max_vrp_switch_assertions
;
3036 if (insertion_limit
== 0)
3039 /* We can't do this if the default case shares a label with another case. */
3040 tree default_cl
= gimple_switch_default_label (last
);
3041 for (idx
= 1; idx
< n
; idx
++)
3044 tree cl
= gimple_switch_label (last
, idx
);
3045 if (CASE_LABEL (cl
) == CASE_LABEL (default_cl
))
3048 min
= CASE_LOW (cl
);
3049 max
= CASE_HIGH (cl
);
3051 /* Combine contiguous case ranges to reduce the number of assertions
3053 for (idx
= idx
+ 1; idx
< n
; idx
++)
3055 tree next_min
, next_max
;
3056 tree next_cl
= gimple_switch_label (last
, idx
);
3057 if (CASE_LABEL (next_cl
) == CASE_LABEL (default_cl
))
3060 next_min
= CASE_LOW (next_cl
);
3061 next_max
= CASE_HIGH (next_cl
);
3063 wide_int difference
= (wi::to_wide (next_min
)
3064 - wi::to_wide (max
? max
: min
));
3065 if (wi::eq_p (difference
, 1))
3066 max
= next_max
? next_max
: next_min
;
3072 if (max
== NULL_TREE
)
3074 /* Register the assertion OP != MIN. */
3075 auto_vec
<assert_info
, 8> asserts
;
3076 min
= fold_convert (TREE_TYPE (op
), min
);
3077 register_edge_assert_for (op
, default_edge
, NE_EXPR
, op
, min
,
3079 finish_register_edge_assert_for (default_edge
, bsi
, asserts
);
3083 /* Register the assertion (unsigned)OP - MIN > (MAX - MIN),
3084 which will give OP the anti-range ~[MIN,MAX]. */
3085 tree uop
= fold_convert (unsigned_type_for (TREE_TYPE (op
)), op
);
3086 min
= fold_convert (TREE_TYPE (uop
), min
);
3087 max
= fold_convert (TREE_TYPE (uop
), max
);
3089 tree lhs
= fold_build2 (MINUS_EXPR
, TREE_TYPE (uop
), uop
, min
);
3090 tree rhs
= int_const_binop (MINUS_EXPR
, max
, min
);
3091 register_new_assert_for (op
, lhs
, GT_EXPR
, rhs
,
3092 NULL
, default_edge
, bsi
);
3095 if (--insertion_limit
== 0)
3100 /* Traverse all the statements in block BB looking for statements that
3101 may generate useful assertions for the SSA names in their operand.
3102 If a statement produces a useful assertion A for name N_i, then the
3103 list of assertions already generated for N_i is scanned to
3104 determine if A is actually needed.
3106 If N_i already had the assertion A at a location dominating the
3107 current location, then nothing needs to be done. Otherwise, the
3108 new location for A is recorded instead.
3110 1- For every statement S in BB, all the variables used by S are
3111 added to bitmap FOUND_IN_SUBGRAPH.
3113 2- If statement S uses an operand N in a way that exposes a known
3114 value range for N, then if N was not already generated by an
3115 ASSERT_EXPR, create a new assert location for N. For instance,
3116 if N is a pointer and the statement dereferences it, we can
3117 assume that N is not NULL.
3119 3- COND_EXPRs are a special case of #2. We can derive range
3120 information from the predicate but need to insert different
3121 ASSERT_EXPRs for each of the sub-graphs rooted at the
3122 conditional block. If the last statement of BB is a conditional
3123 expression of the form 'X op Y', then
3125 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3127 b) If the conditional is the only entry point to the sub-graph
3128 corresponding to the THEN_CLAUSE, recurse into it. On
3129 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3130 an ASSERT_EXPR is added for the corresponding variable.
3132 c) Repeat step (b) on the ELSE_CLAUSE.
3134 d) Mark X and Y in FOUND_IN_SUBGRAPH.
3143 In this case, an assertion on the THEN clause is useful to
3144 determine that 'a' is always 9 on that edge. However, an assertion
3145 on the ELSE clause would be unnecessary.
3147 4- If BB does not end in a conditional expression, then we recurse
3148 into BB's dominator children.
3150 At the end of the recursive traversal, every SSA name will have a
3151 list of locations where ASSERT_EXPRs should be added. When a new
3152 location for name N is found, it is registered by calling
3153 register_new_assert_for. That function keeps track of all the
3154 registered assertions to prevent adding unnecessary assertions.
3155 For instance, if a pointer P_4 is dereferenced more than once in a
3156 dominator tree, only the location dominating all the dereference of
3157 P_4 will receive an ASSERT_EXPR. */
3160 vrp_asserts::find_assert_locations_in_bb (basic_block bb
)
3164 last
= last_stmt (bb
);
3166 /* If BB's last statement is a conditional statement involving integer
3167 operands, determine if we need to add ASSERT_EXPRs. */
3169 && gimple_code (last
) == GIMPLE_COND
3170 && !fp_predicate (last
)
3171 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
3172 find_conditional_asserts (bb
, as_a
<gcond
*> (last
));
3174 /* If BB's last statement is a switch statement involving integer
3175 operands, determine if we need to add ASSERT_EXPRs. */
3177 && gimple_code (last
) == GIMPLE_SWITCH
3178 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
3179 find_switch_asserts (bb
, as_a
<gswitch
*> (last
));
3181 /* Traverse all the statements in BB marking used names and looking
3182 for statements that may infer assertions for their used operands. */
3183 for (gimple_stmt_iterator si
= gsi_last_bb (bb
); !gsi_end_p (si
);
3190 stmt
= gsi_stmt (si
);
3192 if (is_gimple_debug (stmt
))
3195 /* See if we can derive an assertion for any of STMT's operands. */
3196 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
3199 enum tree_code comp_code
;
3201 /* If op is not live beyond this stmt, do not bother to insert
3203 if (!live
.live_on_block_p (op
, bb
))
3206 /* If OP is used in such a way that we can infer a value
3207 range for it, and we don't find a previous assertion for
3208 it, create a new assertion location node for OP. */
3209 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
3211 /* If we are able to infer a nonzero value range for OP,
3212 then walk backwards through the use-def chain to see if OP
3213 was set via a typecast.
3215 If so, then we can also infer a nonzero value range
3216 for the operand of the NOP_EXPR. */
3217 if (comp_code
== NE_EXPR
&& integer_zerop (value
))
3220 gimple
*def_stmt
= SSA_NAME_DEF_STMT (t
);
3222 while (is_gimple_assign (def_stmt
)
3223 && CONVERT_EXPR_CODE_P
3224 (gimple_assign_rhs_code (def_stmt
))
3226 (gimple_assign_rhs1 (def_stmt
)) == SSA_NAME
3228 (TREE_TYPE (gimple_assign_rhs1 (def_stmt
))))
3230 t
= gimple_assign_rhs1 (def_stmt
);
3231 def_stmt
= SSA_NAME_DEF_STMT (t
);
3233 /* Note we want to register the assert for the
3234 operand of the NOP_EXPR after SI, not after the
3236 if (live
.live_on_block_p (t
, bb
))
3237 register_new_assert_for (t
, t
, comp_code
, value
,
3242 register_new_assert_for (op
, op
, comp_code
, value
, bb
, NULL
, si
);
3247 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
3249 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_DEF
)
3250 live
.clear (op
, bb
);
3253 /* Traverse all PHI nodes in BB, updating live. */
3254 for (gphi_iterator si
= gsi_start_phis (bb
); !gsi_end_p (si
);
3257 use_operand_p arg_p
;
3259 gphi
*phi
= si
.phi ();
3260 tree res
= gimple_phi_result (phi
);
3262 if (virtual_operand_p (res
))
3265 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
3267 tree arg
= USE_FROM_PTR (arg_p
);
3268 if (TREE_CODE (arg
) == SSA_NAME
)
3272 live
.clear (res
, bb
);
3276 /* Do an RPO walk over the function computing SSA name liveness
3277 on-the-fly and deciding on assert expressions to insert. */
3280 vrp_asserts::find_assert_locations (void)
3282 int *rpo
= XNEWVEC (int, last_basic_block_for_fn (fun
));
3283 int *bb_rpo
= XNEWVEC (int, last_basic_block_for_fn (fun
));
3284 int *last_rpo
= XCNEWVEC (int, last_basic_block_for_fn (fun
));
3287 rpo_cnt
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
3288 for (i
= 0; i
< rpo_cnt
; ++i
)
3291 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
3292 the order we compute liveness and insert asserts we otherwise
3293 fail to insert asserts into the loop latch. */
3294 for (auto loop
: loops_list (cfun
, 0))
3296 i
= loop
->latch
->index
;
3297 unsigned int j
= single_succ_edge (loop
->latch
)->dest_idx
;
3298 for (gphi_iterator gsi
= gsi_start_phis (loop
->header
);
3299 !gsi_end_p (gsi
); gsi_next (&gsi
))
3301 gphi
*phi
= gsi
.phi ();
3302 if (virtual_operand_p (gimple_phi_result (phi
)))
3304 tree arg
= gimple_phi_arg_def (phi
, j
);
3305 if (TREE_CODE (arg
) == SSA_NAME
)
3306 live
.set (arg
, loop
->latch
);
3310 for (i
= rpo_cnt
- 1; i
>= 0; --i
)
3312 basic_block bb
= BASIC_BLOCK_FOR_FN (fun
, rpo
[i
]);
3316 /* Process BB and update the live information with uses in
3318 find_assert_locations_in_bb (bb
);
3320 /* Merge liveness into the predecessor blocks and free it. */
3321 if (!live
.block_has_live_names_p (bb
))
3324 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3326 int pred
= e
->src
->index
;
3327 if ((e
->flags
& EDGE_DFS_BACK
) || pred
== ENTRY_BLOCK
)
3330 live
.merge (e
->src
, bb
);
3332 if (bb_rpo
[pred
] < pred_rpo
)
3333 pred_rpo
= bb_rpo
[pred
];
3336 /* Record the RPO number of the last visited block that needs
3337 live information from this block. */
3338 last_rpo
[rpo
[i
]] = pred_rpo
;
3341 live
.clear_block (bb
);
3343 /* We can free all successors live bitmaps if all their
3344 predecessors have been visited already. */
3345 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3346 if (last_rpo
[e
->dest
->index
] == i
)
3347 live
.clear_block (e
->dest
);
3351 XDELETEVEC (bb_rpo
);
3352 XDELETEVEC (last_rpo
);
3355 /* Create an ASSERT_EXPR for NAME and insert it in the location
3356 indicated by LOC. Return true if we made any edge insertions. */
3359 vrp_asserts::process_assert_insertions_for (tree name
, assert_locus
*loc
)
3361 /* Build the comparison expression NAME_i COMP_CODE VAL. */
3364 gimple
*assert_stmt
;
3368 /* If we have X <=> X do not insert an assert expr for that. */
3369 if (loc
->expr
== loc
->val
)
3372 cond
= build2 (loc
->comp_code
, boolean_type_node
, loc
->expr
, loc
->val
);
3373 assert_stmt
= build_assert_expr_for (cond
, name
);
3376 /* We have been asked to insert the assertion on an edge. This
3377 is used only by COND_EXPR and SWITCH_EXPR assertions. */
3378 gcc_checking_assert (gimple_code (gsi_stmt (loc
->si
)) == GIMPLE_COND
3379 || (gimple_code (gsi_stmt (loc
->si
))
3382 gsi_insert_on_edge (loc
->e
, assert_stmt
);
3386 /* If the stmt iterator points at the end then this is an insertion
3387 at the beginning of a block. */
3388 if (gsi_end_p (loc
->si
))
3390 gimple_stmt_iterator si
= gsi_after_labels (loc
->bb
);
3391 gsi_insert_before (&si
, assert_stmt
, GSI_SAME_STMT
);
3395 /* Otherwise, we can insert right after LOC->SI iff the
3396 statement must not be the last statement in the block. */
3397 stmt
= gsi_stmt (loc
->si
);
3398 if (!stmt_ends_bb_p (stmt
))
3400 gsi_insert_after (&loc
->si
, assert_stmt
, GSI_SAME_STMT
);
3404 /* If STMT must be the last statement in BB, we can only insert new
3405 assertions on the non-abnormal edge out of BB. Note that since
3406 STMT is not control flow, there may only be one non-abnormal/eh edge
3408 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
3409 if (!(e
->flags
& (EDGE_ABNORMAL
|EDGE_EH
)))
3411 gsi_insert_on_edge (e
, assert_stmt
);
3418 /* Qsort helper for sorting assert locations. If stable is true, don't
3419 use iterative_hash_expr because it can be unstable for -fcompare-debug,
3420 on the other side some pointers might be NULL. */
3422 template <bool stable
>
3424 vrp_asserts::compare_assert_loc (const void *pa
, const void *pb
)
3426 assert_locus
* const a
= *(assert_locus
* const *)pa
;
3427 assert_locus
* const b
= *(assert_locus
* const *)pb
;
3429 /* If stable, some asserts might be optimized away already, sort
3439 if (a
->e
== NULL
&& b
->e
!= NULL
)
3441 else if (a
->e
!= NULL
&& b
->e
== NULL
)
3444 /* After the above checks, we know that (a->e == NULL) == (b->e == NULL),
3445 no need to test both a->e and b->e. */
3447 /* Sort after destination index. */
3450 else if (a
->e
->dest
->index
> b
->e
->dest
->index
)
3452 else if (a
->e
->dest
->index
< b
->e
->dest
->index
)
3455 /* Sort after comp_code. */
3456 if (a
->comp_code
> b
->comp_code
)
3458 else if (a
->comp_code
< b
->comp_code
)
3463 /* E.g. if a->val is ADDR_EXPR of a VAR_DECL, iterative_hash_expr
3464 uses DECL_UID of the VAR_DECL, so sorting might differ between
3465 -g and -g0. When doing the removal of redundant assert exprs
3466 and commonization to successors, this does not matter, but for
3467 the final sort needs to be stable. */
3475 ha
= iterative_hash_expr (a
->expr
, iterative_hash_expr (a
->val
, 0));
3476 hb
= iterative_hash_expr (b
->expr
, iterative_hash_expr (b
->val
, 0));
3479 /* Break the tie using hashing and source/bb index. */
3481 return (a
->e
!= NULL
3482 ? a
->e
->src
->index
- b
->e
->src
->index
3483 : a
->bb
->index
- b
->bb
->index
);
3484 return ha
> hb
? 1 : -1;
3487 /* Process all the insertions registered for every name N_i registered
3488 in NEED_ASSERT_FOR. The list of assertions to be inserted are
3489 found in ASSERTS_FOR[i]. */
3492 vrp_asserts::process_assert_insertions ()
3496 bool update_edges_p
= false;
3497 int num_asserts
= 0;
3499 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3502 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
3504 assert_locus
*loc
= asserts_for
[i
];
3507 auto_vec
<assert_locus
*, 16> asserts
;
3508 for (; loc
; loc
= loc
->next
)
3509 asserts
.safe_push (loc
);
3510 asserts
.qsort (compare_assert_loc
<false>);
3512 /* Push down common asserts to successors and remove redundant ones. */
3514 assert_locus
*common
= NULL
;
3515 unsigned commonj
= 0;
3516 for (unsigned j
= 0; j
< asserts
.length (); ++j
)
3522 || loc
->e
->dest
!= common
->e
->dest
3523 || loc
->comp_code
!= common
->comp_code
3524 || ! operand_equal_p (loc
->val
, common
->val
, 0)
3525 || ! operand_equal_p (loc
->expr
, common
->expr
, 0))
3531 else if (loc
->e
== asserts
[j
-1]->e
)
3533 /* Remove duplicate asserts. */
3534 if (commonj
== j
- 1)
3539 free (asserts
[j
-1]);
3540 asserts
[j
-1] = NULL
;
3545 if (EDGE_COUNT (common
->e
->dest
->preds
) == ecnt
)
3547 /* We have the same assertion on all incoming edges of a BB.
3548 Insert it at the beginning of that block. */
3549 loc
->bb
= loc
->e
->dest
;
3551 loc
->si
= gsi_none ();
3553 /* Clear asserts commoned. */
3554 for (; commonj
!= j
; ++commonj
)
3555 if (asserts
[commonj
])
3557 free (asserts
[commonj
]);
3558 asserts
[commonj
] = NULL
;
3564 /* The asserts vector sorting above might be unstable for
3565 -fcompare-debug, sort again to ensure a stable sort. */
3566 asserts
.qsort (compare_assert_loc
<true>);
3567 for (unsigned j
= 0; j
< asserts
.length (); ++j
)
3572 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
3579 gsi_commit_edge_inserts ();
3581 statistics_counter_event (fun
, "Number of ASSERT_EXPR expressions inserted",
3585 /* Traverse the flowgraph looking for conditional jumps to insert range
3586 expressions. These range expressions are meant to provide information
3587 to optimizations that need to reason in terms of value ranges. They
3588 will not be expanded into RTL. For instance, given:
3597 this pass will transform the code into:
3603 x = ASSERT_EXPR <x, x < y>
3608 y = ASSERT_EXPR <y, x >= y>
3612 The idea is that once copy and constant propagation have run, other
3613 optimizations will be able to determine what ranges of values can 'x'
3614 take in different paths of the code, simply by checking the reaching
3615 definition of 'x'. */
3618 vrp_asserts::insert_range_assertions (void)
3620 need_assert_for
= BITMAP_ALLOC (NULL
);
3621 asserts_for
= XCNEWVEC (assert_locus
*, num_ssa_names
);
3623 calculate_dominance_info (CDI_DOMINATORS
);
3625 find_assert_locations ();
3626 if (!bitmap_empty_p (need_assert_for
))
3628 process_assert_insertions ();
3629 update_ssa (TODO_update_ssa_no_phi
);
3632 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3634 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
3635 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
3639 BITMAP_FREE (need_assert_for
);
3642 /* Return true if all imm uses of VAR are either in STMT, or
3643 feed (optionally through a chain of single imm uses) GIMPLE_COND
3644 in basic block COND_BB. */
3647 vrp_asserts::all_imm_uses_in_stmt_or_feed_cond (tree var
,
3649 basic_block cond_bb
)
3651 use_operand_p use_p
, use2_p
;
3652 imm_use_iterator iter
;
3654 FOR_EACH_IMM_USE_FAST (use_p
, iter
, var
)
3655 if (USE_STMT (use_p
) != stmt
)
3657 gimple
*use_stmt
= USE_STMT (use_p
), *use_stmt2
;
3658 if (is_gimple_debug (use_stmt
))
3660 while (is_gimple_assign (use_stmt
)
3661 && TREE_CODE (gimple_assign_lhs (use_stmt
)) == SSA_NAME
3662 && single_imm_use (gimple_assign_lhs (use_stmt
),
3663 &use2_p
, &use_stmt2
))
3664 use_stmt
= use_stmt2
;
3665 if (gimple_code (use_stmt
) != GIMPLE_COND
3666 || gimple_bb (use_stmt
) != cond_bb
)
3672 /* Convert range assertion expressions into the implied copies and
3673 copy propagate away the copies. Doing the trivial copy propagation
3674 here avoids the need to run the full copy propagation pass after
3677 FIXME, this will eventually lead to copy propagation removing the
3678 names that had useful range information attached to them. For
3679 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3680 then N_i will have the range [3, +INF].
3682 However, by converting the assertion into the implied copy
3683 operation N_i = N_j, we will then copy-propagate N_j into the uses
3684 of N_i and lose the range information.
3686 The problem with keeping ASSERT_EXPRs around is that passes after
3687 VRP need to handle them appropriately.
3689 Another approach would be to make the range information a first
3690 class property of the SSA_NAME so that it can be queried from
3691 any pass. This is made somewhat more complex by the need for
3692 multiple ranges to be associated with one SSA_NAME. */
3695 vrp_asserts::remove_range_assertions ()
3698 gimple_stmt_iterator si
;
3699 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
3700 a basic block preceeded by GIMPLE_COND branching to it and
3701 __builtin_trap, -1 if not yet checked, 0 otherwise. */
3704 /* Note that the BSI iterator bump happens at the bottom of the
3705 loop and no bump is necessary if we're removing the statement
3706 referenced by the current BSI. */
3707 FOR_EACH_BB_FN (bb
, fun
)
3708 for (si
= gsi_after_labels (bb
), is_unreachable
= -1; !gsi_end_p (si
);)
3710 gimple
*stmt
= gsi_stmt (si
);
3712 if (is_gimple_assign (stmt
)
3713 && gimple_assign_rhs_code (stmt
) == ASSERT_EXPR
)
3715 tree lhs
= gimple_assign_lhs (stmt
);
3716 tree rhs
= gimple_assign_rhs1 (stmt
);
3719 var
= ASSERT_EXPR_VAR (rhs
);
3721 if (TREE_CODE (var
) == SSA_NAME
3722 && !POINTER_TYPE_P (TREE_TYPE (lhs
))
3723 && SSA_NAME_RANGE_INFO (lhs
))
3725 if (is_unreachable
== -1)
3728 if (single_pred_p (bb
)
3729 && assert_unreachable_fallthru_edge_p
3730 (single_pred_edge (bb
)))
3734 if (x_7 >= 10 && x_7 < 20)
3735 __builtin_unreachable ();
3736 x_8 = ASSERT_EXPR <x_7, ...>;
3737 if the only uses of x_7 are in the ASSERT_EXPR and
3738 in the condition. In that case, we can copy the
3739 range info from x_8 computed in this pass also
3742 && all_imm_uses_in_stmt_or_feed_cond (var
, stmt
,
3745 set_range_info (var
, SSA_NAME_RANGE_TYPE (lhs
),
3746 SSA_NAME_RANGE_INFO (lhs
)->get_min (),
3747 SSA_NAME_RANGE_INFO (lhs
)->get_max ());
3748 maybe_set_nonzero_bits (single_pred_edge (bb
), var
);
3752 /* Propagate the RHS into every use of the LHS. For SSA names
3753 also propagate abnormals as it merely restores the original
3754 IL in this case (an replace_uses_by would assert). */
3755 if (TREE_CODE (var
) == SSA_NAME
)
3757 imm_use_iterator iter
;
3758 use_operand_p use_p
;
3760 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
3761 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
3762 SET_USE (use_p
, var
);
3765 replace_uses_by (lhs
, var
);
3767 /* And finally, remove the copy, it is not needed. */
3768 gsi_remove (&si
, true);
3769 release_defs (stmt
);
3773 if (!is_gimple_debug (gsi_stmt (si
)))
3780 class vrp_prop
: public ssa_propagation_engine
3783 vrp_prop (vr_values
*v
)
3784 : ssa_propagation_engine (),
3787 void initialize (struct function
*);
3791 enum ssa_prop_result
visit_stmt (gimple
*, edge
*, tree
*) FINAL OVERRIDE
;
3792 enum ssa_prop_result
visit_phi (gphi
*) FINAL OVERRIDE
;
3794 struct function
*fun
;
3795 vr_values
*m_vr_values
;
3798 /* Initialization required by ssa_propagate engine. */
3801 vrp_prop::initialize (struct function
*fn
)
3806 FOR_EACH_BB_FN (bb
, fun
)
3808 for (gphi_iterator si
= gsi_start_phis (bb
); !gsi_end_p (si
);
3811 gphi
*phi
= si
.phi ();
3812 if (!stmt_interesting_for_vrp (phi
))
3814 tree lhs
= PHI_RESULT (phi
);
3815 m_vr_values
->set_def_to_varying (lhs
);
3816 prop_set_simulate_again (phi
, false);
3819 prop_set_simulate_again (phi
, true);
3822 for (gimple_stmt_iterator si
= gsi_start_bb (bb
); !gsi_end_p (si
);
3825 gimple
*stmt
= gsi_stmt (si
);
3827 /* If the statement is a control insn, then we do not
3828 want to avoid simulating the statement once. Failure
3829 to do so means that those edges will never get added. */
3830 if (stmt_ends_bb_p (stmt
))
3831 prop_set_simulate_again (stmt
, true);
3832 else if (!stmt_interesting_for_vrp (stmt
))
3834 m_vr_values
->set_defs_to_varying (stmt
);
3835 prop_set_simulate_again (stmt
, false);
3838 prop_set_simulate_again (stmt
, true);
3843 /* Evaluate statement STMT. If the statement produces a useful range,
3844 return SSA_PROP_INTERESTING and record the SSA name with the
3845 interesting range into *OUTPUT_P.
3847 If STMT is a conditional branch and we can determine its truth
3848 value, the taken edge is recorded in *TAKEN_EDGE_P.
3850 If STMT produces a varying value, return SSA_PROP_VARYING. */
3852 enum ssa_prop_result
3853 vrp_prop::visit_stmt (gimple
*stmt
, edge
*taken_edge_p
, tree
*output_p
)
3855 tree lhs
= gimple_get_lhs (stmt
);
3856 value_range_equiv vr
;
3857 m_vr_values
->extract_range_from_stmt (stmt
, taken_edge_p
, output_p
, &vr
);
3861 if (m_vr_values
->update_value_range (*output_p
, &vr
))
3863 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3865 fprintf (dump_file
, "Found new range for ");
3866 print_generic_expr (dump_file
, *output_p
);
3867 fprintf (dump_file
, ": ");
3868 dump_value_range (dump_file
, &vr
);
3869 fprintf (dump_file
, "\n");
3872 if (vr
.varying_p ())
3873 return SSA_PROP_VARYING
;
3875 return SSA_PROP_INTERESTING
;
3877 return SSA_PROP_NOT_INTERESTING
;
3880 if (is_gimple_call (stmt
) && gimple_call_internal_p (stmt
))
3881 switch (gimple_call_internal_fn (stmt
))
3883 case IFN_ADD_OVERFLOW
:
3884 case IFN_SUB_OVERFLOW
:
3885 case IFN_MUL_OVERFLOW
:
3886 case IFN_ATOMIC_COMPARE_EXCHANGE
:
3887 /* These internal calls return _Complex integer type,
3888 which VRP does not track, but the immediate uses
3889 thereof might be interesting. */
3890 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
)
3892 imm_use_iterator iter
;
3893 use_operand_p use_p
;
3894 enum ssa_prop_result res
= SSA_PROP_VARYING
;
3896 m_vr_values
->set_def_to_varying (lhs
);
3898 FOR_EACH_IMM_USE_FAST (use_p
, iter
, lhs
)
3900 gimple
*use_stmt
= USE_STMT (use_p
);
3901 if (!is_gimple_assign (use_stmt
))
3903 enum tree_code rhs_code
= gimple_assign_rhs_code (use_stmt
);
3904 if (rhs_code
!= REALPART_EXPR
&& rhs_code
!= IMAGPART_EXPR
)
3906 tree rhs1
= gimple_assign_rhs1 (use_stmt
);
3907 tree use_lhs
= gimple_assign_lhs (use_stmt
);
3908 if (TREE_CODE (rhs1
) != rhs_code
3909 || TREE_OPERAND (rhs1
, 0) != lhs
3910 || TREE_CODE (use_lhs
) != SSA_NAME
3911 || !stmt_interesting_for_vrp (use_stmt
)
3912 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs
))
3913 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs
))
3914 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs
))))
3917 /* If there is a change in the value range for any of the
3918 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
3919 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
3920 or IMAGPART_EXPR immediate uses, but none of them have
3921 a change in their value ranges, return
3922 SSA_PROP_NOT_INTERESTING. If there are no
3923 {REAL,IMAG}PART_EXPR uses at all,
3924 return SSA_PROP_VARYING. */
3925 value_range_equiv new_vr
;
3926 m_vr_values
->extract_range_basic (&new_vr
, use_stmt
);
3927 const value_range_equiv
*old_vr
3928 = m_vr_values
->get_value_range (use_lhs
);
3929 if (!old_vr
->equal_p (new_vr
, /*ignore_equivs=*/false))
3930 res
= SSA_PROP_INTERESTING
;
3932 res
= SSA_PROP_NOT_INTERESTING
;
3933 new_vr
.equiv_clear ();
3934 if (res
== SSA_PROP_INTERESTING
)
3948 /* All other statements produce nothing of interest for VRP, so mark
3949 their outputs varying and prevent further simulation. */
3950 m_vr_values
->set_defs_to_varying (stmt
);
3952 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
3955 /* Visit all arguments for PHI node PHI that flow through executable
3956 edges. If a valid value range can be derived from all the incoming
3957 value ranges, set a new range for the LHS of PHI. */
3959 enum ssa_prop_result
3960 vrp_prop::visit_phi (gphi
*phi
)
3962 tree lhs
= PHI_RESULT (phi
);
3963 value_range_equiv vr_result
;
3964 m_vr_values
->extract_range_from_phi_node (phi
, &vr_result
);
3965 if (m_vr_values
->update_value_range (lhs
, &vr_result
))
3967 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3969 fprintf (dump_file
, "Found new range for ");
3970 print_generic_expr (dump_file
, lhs
);
3971 fprintf (dump_file
, ": ");
3972 dump_value_range (dump_file
, &vr_result
);
3973 fprintf (dump_file
, "\n");
3976 if (vr_result
.varying_p ())
3977 return SSA_PROP_VARYING
;
3979 return SSA_PROP_INTERESTING
;
3982 /* Nothing changed, don't add outgoing edges. */
3983 return SSA_PROP_NOT_INTERESTING
;
3986 /* Traverse all the blocks folding conditionals with known ranges. */
3989 vrp_prop::finalize ()
3993 /* We have completed propagating through the lattice. */
3994 m_vr_values
->set_lattice_propagation_complete ();
3998 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
3999 m_vr_values
->dump (dump_file
);
4000 fprintf (dump_file
, "\n");
4003 /* Set value range to non pointer SSA_NAMEs. */
4004 for (i
= 0; i
< num_ssa_names
; i
++)
4006 tree name
= ssa_name (i
);
4010 const value_range_equiv
*vr
= m_vr_values
->get_value_range (name
);
4011 if (!name
|| vr
->varying_p () || !vr
->constant_p ())
4014 if (POINTER_TYPE_P (TREE_TYPE (name
))
4015 && range_includes_zero_p (vr
) == 0)
4016 set_ptr_nonnull (name
);
4017 else if (!POINTER_TYPE_P (TREE_TYPE (name
)))
4018 set_range_info (name
, *vr
);
4022 class vrp_folder
: public substitute_and_fold_engine
4025 vrp_folder (vr_values
*v
)
4026 : substitute_and_fold_engine (/* Fold all stmts. */ true),
4027 m_vr_values (v
), simplifier (v
)
4029 void simplify_casted_conds (function
*fun
);
4032 tree
value_of_expr (tree name
, gimple
*stmt
) OVERRIDE
4034 return m_vr_values
->value_of_expr (name
, stmt
);
4036 bool fold_stmt (gimple_stmt_iterator
*) FINAL OVERRIDE
;
4037 bool fold_predicate_in (gimple_stmt_iterator
*);
4039 vr_values
*m_vr_values
;
4040 simplify_using_ranges simplifier
;
4043 /* If the statement pointed by SI has a predicate whose value can be
4044 computed using the value range information computed by VRP, compute
4045 its value and return true. Otherwise, return false. */
4048 vrp_folder::fold_predicate_in (gimple_stmt_iterator
*si
)
4050 bool assignment_p
= false;
4052 gimple
*stmt
= gsi_stmt (*si
);
4054 if (is_gimple_assign (stmt
)
4055 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)) == tcc_comparison
)
4057 assignment_p
= true;
4058 val
= simplifier
.vrp_evaluate_conditional (gimple_assign_rhs_code (stmt
),
4059 gimple_assign_rhs1 (stmt
),
4060 gimple_assign_rhs2 (stmt
),
4063 else if (gcond
*cond_stmt
= dyn_cast
<gcond
*> (stmt
))
4064 val
= simplifier
.vrp_evaluate_conditional (gimple_cond_code (cond_stmt
),
4065 gimple_cond_lhs (cond_stmt
),
4066 gimple_cond_rhs (cond_stmt
),
4074 val
= fold_convert (TREE_TYPE (gimple_assign_lhs (stmt
)), val
);
4078 fprintf (dump_file
, "Folding predicate ");
4079 print_gimple_expr (dump_file
, stmt
, 0);
4080 fprintf (dump_file
, " to ");
4081 print_generic_expr (dump_file
, val
);
4082 fprintf (dump_file
, "\n");
4085 if (is_gimple_assign (stmt
))
4086 gimple_assign_set_rhs_from_tree (si
, val
);
4089 gcc_assert (gimple_code (stmt
) == GIMPLE_COND
);
4090 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
4091 if (integer_zerop (val
))
4092 gimple_cond_make_false (cond_stmt
);
4093 else if (integer_onep (val
))
4094 gimple_cond_make_true (cond_stmt
);
4105 /* Callback for substitute_and_fold folding the stmt at *SI. */
4108 vrp_folder::fold_stmt (gimple_stmt_iterator
*si
)
4110 if (fold_predicate_in (si
))
4113 return simplifier
.simplify (si
);
4116 /* A comparison of an SSA_NAME against a constant where the SSA_NAME
4117 was set by a type conversion can often be rewritten to use the RHS
4118 of the type conversion. Do this optimization for all conditionals
4122 vrp_folder::simplify_casted_conds (function
*fun
)
4125 FOR_EACH_BB_FN (bb
, fun
)
4127 gimple
*last
= last_stmt (bb
);
4128 if (last
&& gimple_code (last
) == GIMPLE_COND
)
4130 if (simplifier
.simplify_casted_cond (as_a
<gcond
*> (last
)))
4132 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4134 fprintf (dump_file
, "Folded into: ");
4135 print_gimple_stmt (dump_file
, last
, 0, TDF_SLIM
);
4136 fprintf (dump_file
, "\n");
4143 /* Main entry point to VRP (Value Range Propagation). This pass is
4144 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4145 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4146 Programming Language Design and Implementation, pp. 67-78, 1995.
4147 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4149 This is essentially an SSA-CCP pass modified to deal with ranges
4150 instead of constants.
4152 While propagating ranges, we may find that two or more SSA name
4153 have equivalent, though distinct ranges. For instance,
4156 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
4158 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
4162 In the code above, pointer p_5 has range [q_2, q_2], but from the
4163 code we can also determine that p_5 cannot be NULL and, if q_2 had
4164 a non-varying range, p_5's range should also be compatible with it.
4166 These equivalences are created by two expressions: ASSERT_EXPR and
4167 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4168 result of another assertion, then we can use the fact that p_5 and
4169 p_4 are equivalent when evaluating p_5's range.
4171 Together with value ranges, we also propagate these equivalences
4172 between names so that we can take advantage of information from
4173 multiple ranges when doing final replacement. Note that this
4174 equivalency relation is transitive but not symmetric.
4176 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4177 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4178 in contexts where that assertion does not hold (e.g., in line 6).
4180 TODO, the main difference between this pass and Patterson's is that
4181 we do not propagate edge probabilities. We only compute whether
4182 edges can be taken or not. That is, instead of having a spectrum
4183 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4184 DON'T KNOW. In the future, it may be worthwhile to propagate
4185 probabilities to aid branch prediction. */
4188 execute_vrp (struct function
*fun
, bool warn_array_bounds_p
)
4190 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
4191 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
4194 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
4195 Inserting assertions may split edges which will invalidate
4197 vrp_asserts
assert_engine (fun
);
4198 assert_engine
.insert_range_assertions ();
4200 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
4201 mark_dfs_back_edges ();
4203 vr_values vrp_vr_values
;
4205 class vrp_prop
vrp_prop (&vrp_vr_values
);
4206 vrp_prop
.initialize (fun
);
4207 vrp_prop
.ssa_propagate ();
4209 /* Instantiate the folder here, so that edge cleanups happen at the
4210 end of this function. */
4211 vrp_folder
folder (&vrp_vr_values
);
4212 vrp_prop
.finalize ();
4214 /* If we're checking array refs, we want to merge information on
4215 the executability of each edge between vrp_folder and the
4216 check_array_bounds_dom_walker: each can clear the
4217 EDGE_EXECUTABLE flag on edges, in different ways.
4219 Hence, if we're going to call check_all_array_refs, set
4220 the flag on every edge now, rather than in
4221 check_array_bounds_dom_walker's ctor; vrp_folder may clear
4222 it from some edges. */
4223 if (warn_array_bounds
&& warn_array_bounds_p
)
4224 set_all_edges_as_executable (fun
);
4226 folder
.substitute_and_fold ();
4228 if (warn_array_bounds
&& warn_array_bounds_p
)
4230 array_bounds_checker
array_checker (fun
, &vrp_vr_values
);
4231 array_checker
.check ();
4234 folder
.simplify_casted_conds (fun
);
4236 free_numbers_of_iterations_estimates (fun
);
4238 assert_engine
.remove_range_assertions ();
4241 loop_optimizer_finalize ();
4245 // This is a ranger based folder which continues to use the dominator
4246 // walk to access the substitute and fold machinery. Ranges are calculated
4249 class rvrp_folder
: public substitute_and_fold_engine
4253 rvrp_folder (gimple_ranger
*r
) : substitute_and_fold_engine (),
4254 m_simplifier (r
, r
->non_executable_edge_flag
)
4257 m_pta
= new pointer_equiv_analyzer (m_ranger
);
4265 tree
value_of_expr (tree name
, gimple
*s
= NULL
) OVERRIDE
4267 // Shortcircuit subst_and_fold callbacks for abnormal ssa_names.
4268 if (TREE_CODE (name
) == SSA_NAME
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
4270 tree ret
= m_ranger
->value_of_expr (name
, s
);
4271 if (!ret
&& supported_pointer_equiv_p (name
))
4272 ret
= m_pta
->get_equiv (name
);
4276 tree
value_on_edge (edge e
, tree name
) OVERRIDE
4278 // Shortcircuit subst_and_fold callbacks for abnormal ssa_names.
4279 if (TREE_CODE (name
) == SSA_NAME
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
4281 tree ret
= m_ranger
->value_on_edge (e
, name
);
4282 if (!ret
&& supported_pointer_equiv_p (name
))
4283 ret
= m_pta
->get_equiv (name
);
4287 tree
value_of_stmt (gimple
*s
, tree name
= NULL
) OVERRIDE
4289 // Shortcircuit subst_and_fold callbacks for abnormal ssa_names.
4290 if (TREE_CODE (name
) == SSA_NAME
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
4292 return m_ranger
->value_of_stmt (s
, name
);
4295 void pre_fold_bb (basic_block bb
) OVERRIDE
4300 void post_fold_bb (basic_block bb
) OVERRIDE
4305 void pre_fold_stmt (gimple
*stmt
) OVERRIDE
4307 m_pta
->visit_stmt (stmt
);
4310 bool fold_stmt (gimple_stmt_iterator
*gsi
) OVERRIDE
4312 bool ret
= m_simplifier
.simplify (gsi
);
4314 ret
= m_ranger
->fold_stmt (gsi
, follow_single_use_edges
);
4315 m_ranger
->register_side_effects (gsi_stmt (*gsi
));
4320 DISABLE_COPY_AND_ASSIGN (rvrp_folder
);
4321 gimple_ranger
*m_ranger
;
4322 simplify_using_ranges m_simplifier
;
4323 pointer_equiv_analyzer
*m_pta
;
4326 /* Main entry point for a VRP pass using just ranger. This can be called
4327 from anywhere to perform a VRP pass, including from EVRP. */
4330 execute_ranger_vrp (struct function
*fun
, bool warn_array_bounds_p
)
4332 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
4333 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
4335 calculate_dominance_info (CDI_DOMINATORS
);
4337 set_all_edges_as_executable (fun
);
4338 gimple_ranger
*ranger
= enable_ranger (fun
);
4339 rvrp_folder
folder (ranger
);
4340 folder
.substitute_and_fold ();
4341 ranger
->export_global_ranges ();
4342 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4343 ranger
->dump (dump_file
);
4345 if (warn_array_bounds
&& warn_array_bounds_p
)
4347 // Set all edges as executable, except those ranger says aren't.
4348 int non_exec_flag
= ranger
->non_executable_edge_flag
;
4350 FOR_ALL_BB_FN (bb
, fun
)
4354 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4355 if (e
->flags
& non_exec_flag
)
4356 e
->flags
&= ~EDGE_EXECUTABLE
;
4358 e
->flags
|= EDGE_EXECUTABLE
;
4361 array_bounds_checker
array_checker (fun
, ranger
);
4362 array_checker
.check ();
4365 disable_ranger (fun
);
4367 loop_optimizer_finalize ();
4373 const pass_data pass_data_vrp
=
4375 GIMPLE_PASS
, /* type */
4377 OPTGROUP_NONE
, /* optinfo_flags */
4378 TV_TREE_VRP
, /* tv_id */
4379 PROP_ssa
, /* properties_required */
4380 0, /* properties_provided */
4381 0, /* properties_destroyed */
4382 0, /* todo_flags_start */
4383 ( TODO_cleanup_cfg
| TODO_update_ssa
), /* todo_flags_finish */
4386 static int vrp_pass_num
= 0;
4387 class pass_vrp
: public gimple_opt_pass
4390 pass_vrp (gcc::context
*ctxt
)
4391 : gimple_opt_pass (pass_data_vrp
, ctxt
), warn_array_bounds_p (false),
4392 my_pass (++vrp_pass_num
)
4395 /* opt_pass methods: */
4396 opt_pass
* clone () { return new pass_vrp (m_ctxt
); }
4397 void set_pass_param (unsigned int n
, bool param
)
4399 gcc_assert (n
== 0);
4400 warn_array_bounds_p
= param
;
4402 virtual bool gate (function
*) { return flag_tree_vrp
!= 0; }
4403 virtual unsigned int execute (function
*fun
)
4405 if ((my_pass
== 1 && param_vrp1_mode
== VRP_MODE_RANGER
)
4406 || (my_pass
== 2 && param_vrp2_mode
== VRP_MODE_RANGER
))
4407 return execute_ranger_vrp (fun
, warn_array_bounds_p
);
4408 return execute_vrp (fun
, warn_array_bounds_p
);
4412 bool warn_array_bounds_p
;
4414 }; // class pass_vrp
4419 make_pass_vrp (gcc::context
*ctxt
)
4421 return new pass_vrp (ctxt
);