c++: using from enclosing class template [PR105006]
[official-gcc.git] / gcc / ggc-common.cc
blob755d166417afa758ad752b07534c0d08f021721c
1 /* Simple garbage collection for the GNU compiler.
2 Copyright (C) 1999-2022 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* Generic garbage collection (GC) functions and data, not specific to
21 any particular GC implementation. */
23 #include "config.h"
24 #define INCLUDE_MALLOC_H
25 #include "system.h"
26 #include "coretypes.h"
27 #include "timevar.h"
28 #include "diagnostic-core.h"
29 #include "ggc-internal.h"
30 #include "hosthooks.h"
31 #include "plugin.h"
32 #include "options.h"
34 /* When true, protect the contents of the identifier hash table. */
35 bool ggc_protect_identifiers = true;
37 /* Statistics about the allocation. */
38 static ggc_statistics *ggc_stats;
40 struct traversal_state;
42 static int compare_ptr_data (const void *, const void *);
43 static void relocate_ptrs (void *, void *, void *);
44 static void write_pch_globals (const struct ggc_root_tab * const *tab,
45 struct traversal_state *state);
47 /* Maintain global roots that are preserved during GC. */
49 /* This extra vector of dynamically registered root_tab-s is used by
50 ggc_mark_roots and gives the ability to dynamically add new GGC root
51 tables, for instance from some plugins; this vector is on the heap
52 since it is used by GGC internally. */
53 typedef const struct ggc_root_tab *const_ggc_root_tab_t;
54 static vec<const_ggc_root_tab_t> extra_root_vec;
56 /* Dynamically register a new GGC root table RT. This is useful for
57 plugins. */
59 void
60 ggc_register_root_tab (const struct ggc_root_tab* rt)
62 if (rt)
63 extra_root_vec.safe_push (rt);
66 /* Mark all the roots in the table RT. */
68 static void
69 ggc_mark_root_tab (const_ggc_root_tab_t rt)
71 size_t i;
73 for ( ; rt->base != NULL; rt++)
74 for (i = 0; i < rt->nelt; i++)
75 (*rt->cb) (*(void **) ((char *)rt->base + rt->stride * i));
78 /* Iterate through all registered roots and mark each element. */
80 void
81 ggc_mark_roots (void)
83 const struct ggc_root_tab *const *rt;
84 const_ggc_root_tab_t rtp, rti;
85 size_t i;
87 for (rt = gt_ggc_deletable_rtab; *rt; rt++)
88 for (rti = *rt; rti->base != NULL; rti++)
89 memset (rti->base, 0, rti->stride);
91 for (rt = gt_ggc_rtab; *rt; rt++)
92 ggc_mark_root_tab (*rt);
94 FOR_EACH_VEC_ELT (extra_root_vec, i, rtp)
95 ggc_mark_root_tab (rtp);
97 if (ggc_protect_identifiers)
98 ggc_mark_stringpool ();
100 gt_clear_caches ();
102 if (! ggc_protect_identifiers)
103 ggc_purge_stringpool ();
105 /* Some plugins may call ggc_set_mark from here. */
106 invoke_plugin_callbacks (PLUGIN_GGC_MARKING, NULL);
109 /* Allocate a block of memory, then clear it. */
110 void *
111 ggc_internal_cleared_alloc (size_t size, void (*f)(void *), size_t s, size_t n
112 MEM_STAT_DECL)
114 void *buf = ggc_internal_alloc (size, f, s, n PASS_MEM_STAT);
115 memset (buf, 0, size);
116 return buf;
119 /* Resize a block of memory, possibly re-allocating it. */
120 void *
121 ggc_realloc (void *x, size_t size MEM_STAT_DECL)
123 void *r;
124 size_t old_size;
126 if (x == NULL)
127 return ggc_internal_alloc (size PASS_MEM_STAT);
129 old_size = ggc_get_size (x);
131 if (size <= old_size)
133 /* Mark the unwanted memory as unaccessible. We also need to make
134 the "new" size accessible, since ggc_get_size returns the size of
135 the pool, not the size of the individually allocated object, the
136 size which was previously made accessible. Unfortunately, we
137 don't know that previously allocated size. Without that
138 knowledge we have to lose some initialization-tracking for the
139 old parts of the object. An alternative is to mark the whole
140 old_size as reachable, but that would lose tracking of writes
141 after the end of the object (by small offsets). Discard the
142 handle to avoid handle leak. */
143 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) x + size,
144 old_size - size));
145 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, size));
146 return x;
149 r = ggc_internal_alloc (size PASS_MEM_STAT);
151 /* Since ggc_get_size returns the size of the pool, not the size of the
152 individually allocated object, we'd access parts of the old object
153 that were marked invalid with the memcpy below. We lose a bit of the
154 initialization-tracking since some of it may be uninitialized. */
155 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, old_size));
157 memcpy (r, x, old_size);
159 /* The old object is not supposed to be used anymore. */
160 ggc_free (x);
162 return r;
165 void *
166 ggc_cleared_alloc_htab_ignore_args (size_t c ATTRIBUTE_UNUSED,
167 size_t n ATTRIBUTE_UNUSED)
169 gcc_assert (c * n == sizeof (struct htab));
170 return ggc_cleared_alloc<htab> ();
173 /* TODO: once we actually use type information in GGC, create a new tag
174 gt_gcc_ptr_array and use it for pointer arrays. */
175 void *
176 ggc_cleared_alloc_ptr_array_two_args (size_t c, size_t n)
178 gcc_assert (sizeof (PTR *) == n);
179 return ggc_cleared_vec_alloc<PTR *> (c);
182 /* These are for splay_tree_new_ggc. */
183 void *
184 ggc_splay_alloc (int sz, void *nl)
186 gcc_assert (!nl);
187 return ggc_internal_alloc (sz);
190 void
191 ggc_splay_dont_free (void * x ATTRIBUTE_UNUSED, void *nl)
193 gcc_assert (!nl);
196 void
197 ggc_print_common_statistics (FILE *stream ATTRIBUTE_UNUSED,
198 ggc_statistics *stats)
200 /* Set the pointer so that during collection we will actually gather
201 the statistics. */
202 ggc_stats = stats;
204 /* Then do one collection to fill in the statistics. */
205 ggc_collect ();
207 /* At present, we don't really gather any interesting statistics. */
209 /* Don't gather statistics any more. */
210 ggc_stats = NULL;
213 /* Functions for saving and restoring GCable memory to disk. */
215 struct ptr_data
217 void *obj;
218 void *note_ptr_cookie;
219 gt_note_pointers note_ptr_fn;
220 gt_handle_reorder reorder_fn;
221 size_t size;
222 void *new_addr;
225 #define POINTER_HASH(x) (hashval_t)((intptr_t)x >> 3)
227 /* Helper for hashing saving_htab. */
229 struct saving_hasher : free_ptr_hash <ptr_data>
231 typedef void *compare_type;
232 static inline hashval_t hash (const ptr_data *);
233 static inline bool equal (const ptr_data *, const void *);
236 inline hashval_t
237 saving_hasher::hash (const ptr_data *p)
239 return POINTER_HASH (p->obj);
242 inline bool
243 saving_hasher::equal (const ptr_data *p1, const void *p2)
245 return p1->obj == p2;
248 static hash_table<saving_hasher> *saving_htab;
249 static vec<void *> callback_vec;
250 static vec<void *> reloc_addrs_vec;
252 /* Register an object in the hash table. */
255 gt_pch_note_object (void *obj, void *note_ptr_cookie,
256 gt_note_pointers note_ptr_fn)
258 struct ptr_data **slot;
260 if (obj == NULL || obj == (void *) 1)
261 return 0;
263 slot = (struct ptr_data **)
264 saving_htab->find_slot_with_hash (obj, POINTER_HASH (obj), INSERT);
265 if (*slot != NULL)
267 gcc_assert ((*slot)->note_ptr_fn == note_ptr_fn
268 && (*slot)->note_ptr_cookie == note_ptr_cookie);
269 return 0;
272 *slot = XCNEW (struct ptr_data);
273 (*slot)->obj = obj;
274 (*slot)->note_ptr_fn = note_ptr_fn;
275 (*slot)->note_ptr_cookie = note_ptr_cookie;
276 if (note_ptr_fn == gt_pch_p_S)
277 (*slot)->size = strlen ((const char *)obj) + 1;
278 else
279 (*slot)->size = ggc_get_size (obj);
280 return 1;
283 /* Register address of a callback pointer. */
284 void
285 gt_pch_note_callback (void *obj, void *base)
287 void *ptr;
288 memcpy (&ptr, obj, sizeof (void *));
289 if (ptr != NULL)
291 struct ptr_data *data
292 = (struct ptr_data *)
293 saving_htab->find_with_hash (base, POINTER_HASH (base));
294 gcc_assert (data);
295 callback_vec.safe_push ((char *) data->new_addr
296 + ((char *) obj - (char *) base));
300 /* Register an object in the hash table. */
302 void
303 gt_pch_note_reorder (void *obj, void *note_ptr_cookie,
304 gt_handle_reorder reorder_fn)
306 struct ptr_data *data;
308 if (obj == NULL || obj == (void *) 1)
309 return;
311 data = (struct ptr_data *)
312 saving_htab->find_with_hash (obj, POINTER_HASH (obj));
313 gcc_assert (data && data->note_ptr_cookie == note_ptr_cookie);
315 data->reorder_fn = reorder_fn;
318 /* Handy state for the traversal functions. */
320 struct traversal_state
322 FILE *f;
323 struct ggc_pch_data *d;
324 size_t count;
325 struct ptr_data **ptrs;
326 size_t ptrs_i;
329 /* Callbacks for htab_traverse. */
332 ggc_call_count (ptr_data **slot, traversal_state *state)
334 struct ptr_data *d = *slot;
336 ggc_pch_count_object (state->d, d->obj, d->size,
337 d->note_ptr_fn == gt_pch_p_S);
338 state->count++;
339 return 1;
343 ggc_call_alloc (ptr_data **slot, traversal_state *state)
345 struct ptr_data *d = *slot;
347 d->new_addr = ggc_pch_alloc_object (state->d, d->obj, d->size,
348 d->note_ptr_fn == gt_pch_p_S);
349 state->ptrs[state->ptrs_i++] = d;
350 return 1;
353 /* Callback for qsort. */
355 static int
356 compare_ptr_data (const void *p1_p, const void *p2_p)
358 const struct ptr_data *const p1 = *(const struct ptr_data *const *)p1_p;
359 const struct ptr_data *const p2 = *(const struct ptr_data *const *)p2_p;
360 return (((size_t)p1->new_addr > (size_t)p2->new_addr)
361 - ((size_t)p1->new_addr < (size_t)p2->new_addr));
364 /* Callbacks for note_ptr_fn. */
366 static void
367 relocate_ptrs (void *ptr_p, void *real_ptr_p, void *state_p)
369 void **ptr = (void **)ptr_p;
370 struct traversal_state *state
371 = (struct traversal_state *)state_p;
372 struct ptr_data *result;
374 if (*ptr == NULL || *ptr == (void *)1)
375 return;
377 result = (struct ptr_data *)
378 saving_htab->find_with_hash (*ptr, POINTER_HASH (*ptr));
379 gcc_assert (result);
380 *ptr = result->new_addr;
381 if (ptr_p == real_ptr_p)
382 return;
383 if (real_ptr_p == NULL)
384 real_ptr_p = ptr_p;
385 gcc_assert (real_ptr_p >= state->ptrs[state->ptrs_i]->obj
386 && ((char *) real_ptr_p + sizeof (void *)
387 <= ((char *) state->ptrs[state->ptrs_i]->obj
388 + state->ptrs[state->ptrs_i]->size)));
389 void *addr
390 = (void *) ((char *) state->ptrs[state->ptrs_i]->new_addr
391 + ((char *) real_ptr_p
392 - (char *) state->ptrs[state->ptrs_i]->obj));
393 reloc_addrs_vec.safe_push (addr);
396 /* Write out, after relocation, the pointers in TAB. */
397 static void
398 write_pch_globals (const struct ggc_root_tab * const *tab,
399 struct traversal_state *state)
401 const struct ggc_root_tab *const *rt;
402 const struct ggc_root_tab *rti;
403 size_t i;
405 for (rt = tab; *rt; rt++)
406 for (rti = *rt; rti->base != NULL; rti++)
407 for (i = 0; i < rti->nelt; i++)
409 void *ptr = *(void **)((char *)rti->base + rti->stride * i);
410 struct ptr_data *new_ptr;
411 if (ptr == NULL || ptr == (void *)1)
413 if (fwrite (&ptr, sizeof (void *), 1, state->f)
414 != 1)
415 fatal_error (input_location, "cannot write PCH file: %m");
417 else
419 new_ptr = (struct ptr_data *)
420 saving_htab->find_with_hash (ptr, POINTER_HASH (ptr));
421 if (fwrite (&new_ptr->new_addr, sizeof (void *), 1, state->f)
422 != 1)
423 fatal_error (input_location, "cannot write PCH file: %m");
428 /* Callback for qsort. */
430 static int
431 compare_ptr (const void *p1_p, const void *p2_p)
433 void *p1 = *(void *const *)p1_p;
434 void *p2 = *(void *const *)p2_p;
435 return (((uintptr_t)p1 > (uintptr_t)p2)
436 - ((uintptr_t)p1 < (uintptr_t)p2));
439 /* Decode one uleb128 from P, return first byte after it, store
440 decoded value into *VAL. */
442 static unsigned char *
443 read_uleb128 (unsigned char *p, size_t *val)
445 unsigned int shift = 0;
446 unsigned char byte;
447 size_t result;
449 result = 0;
452 byte = *p++;
453 result |= ((size_t) byte & 0x7f) << shift;
454 shift += 7;
456 while (byte & 0x80);
458 *val = result;
459 return p;
462 /* Store VAL as uleb128 at P, return length in bytes. */
464 static size_t
465 write_uleb128 (unsigned char *p, size_t val)
467 size_t len = 0;
470 unsigned char byte = (val & 0x7f);
471 val >>= 7;
472 if (val != 0)
473 /* More bytes to follow. */
474 byte |= 0x80;
476 *p++ = byte;
477 ++len;
479 while (val != 0);
480 return len;
483 /* Hold the information we need to mmap the file back in. */
485 struct mmap_info
487 size_t offset;
488 size_t size;
489 void *preferred_base;
492 /* Write out the state of the compiler to F. */
494 void
495 gt_pch_save (FILE *f)
497 const struct ggc_root_tab *const *rt;
498 const struct ggc_root_tab *rti;
499 size_t i;
500 struct traversal_state state;
501 char *this_object = NULL;
502 size_t this_object_size = 0;
503 struct mmap_info mmi;
504 const size_t mmap_offset_alignment = host_hooks.gt_pch_alloc_granularity ();
506 gt_pch_save_stringpool ();
508 timevar_push (TV_PCH_PTR_REALLOC);
509 saving_htab = new hash_table<saving_hasher> (50000);
511 for (rt = gt_ggc_rtab; *rt; rt++)
512 for (rti = *rt; rti->base != NULL; rti++)
513 for (i = 0; i < rti->nelt; i++)
514 (*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i));
516 /* Prepare the objects for writing, determine addresses and such. */
517 state.f = f;
518 state.d = init_ggc_pch ();
519 state.count = 0;
520 saving_htab->traverse <traversal_state *, ggc_call_count> (&state);
522 mmi.size = ggc_pch_total_size (state.d);
524 /* Try to arrange things so that no relocation is necessary, but
525 don't try very hard. On most platforms, this will always work,
526 and on the rest it's a lot of work to do better.
527 (The extra work goes in HOST_HOOKS_GT_PCH_GET_ADDRESS and
528 HOST_HOOKS_GT_PCH_USE_ADDRESS.) */
529 mmi.preferred_base = host_hooks.gt_pch_get_address (mmi.size, fileno (f));
530 /* If the host cannot supply any suitable address for this, we are stuck. */
531 if (mmi.preferred_base == NULL)
532 fatal_error (input_location,
533 "cannot write PCH file: required memory segment unavailable");
535 ggc_pch_this_base (state.d, mmi.preferred_base);
537 state.ptrs = XNEWVEC (struct ptr_data *, state.count);
538 state.ptrs_i = 0;
540 saving_htab->traverse <traversal_state *, ggc_call_alloc> (&state);
541 timevar_pop (TV_PCH_PTR_REALLOC);
543 timevar_push (TV_PCH_PTR_SORT);
544 qsort (state.ptrs, state.count, sizeof (*state.ptrs), compare_ptr_data);
545 timevar_pop (TV_PCH_PTR_SORT);
547 /* Write out all the scalar variables. */
548 for (rt = gt_pch_scalar_rtab; *rt; rt++)
549 for (rti = *rt; rti->base != NULL; rti++)
550 if (fwrite (rti->base, rti->stride, 1, f) != 1)
551 fatal_error (input_location, "cannot write PCH file: %m");
553 /* Write out all the global pointers, after translation. */
554 write_pch_globals (gt_ggc_rtab, &state);
556 /* Pad the PCH file so that the mmapped area starts on an allocation
557 granularity (usually page) boundary. */
559 long o;
560 o = ftell (state.f) + sizeof (mmi);
561 if (o == -1)
562 fatal_error (input_location, "cannot get position in PCH file: %m");
563 mmi.offset = mmap_offset_alignment - o % mmap_offset_alignment;
564 if (mmi.offset == mmap_offset_alignment)
565 mmi.offset = 0;
566 mmi.offset += o;
568 if (fwrite (&mmi, sizeof (mmi), 1, state.f) != 1)
569 fatal_error (input_location, "cannot write PCH file: %m");
570 if (mmi.offset != 0
571 && fseek (state.f, mmi.offset, SEEK_SET) != 0)
572 fatal_error (input_location, "cannot write padding to PCH file: %m");
574 ggc_pch_prepare_write (state.d, state.f);
576 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
577 vec<char> vbits = vNULL;
578 #endif
580 /* Actually write out the objects. */
581 for (i = 0; i < state.count; i++)
583 state.ptrs_i = i;
584 if (this_object_size < state.ptrs[i]->size)
586 this_object_size = state.ptrs[i]->size;
587 this_object = XRESIZEVAR (char, this_object, this_object_size);
589 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
590 /* obj might contain uninitialized bytes, e.g. in the trailing
591 padding of the object. Avoid warnings by making the memory
592 temporarily defined and then restoring previous state. */
593 int get_vbits = 0;
594 size_t valid_size = state.ptrs[i]->size;
595 if (__builtin_expect (RUNNING_ON_VALGRIND, 0))
597 if (vbits.length () < valid_size)
598 vbits.safe_grow (valid_size, true);
599 get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj,
600 vbits.address (), valid_size);
601 if (get_vbits == 3)
603 /* We assume that first part of obj is addressable, and
604 the rest is unaddressable. Find out where the boundary is
605 using binary search. */
606 size_t lo = 0, hi = valid_size;
607 while (hi > lo)
609 size_t mid = (lo + hi) / 2;
610 get_vbits = VALGRIND_GET_VBITS ((char *) state.ptrs[i]->obj
611 + mid, vbits.address (),
613 if (get_vbits == 3)
614 hi = mid;
615 else if (get_vbits == 1)
616 lo = mid + 1;
617 else
618 break;
620 if (get_vbits == 1 || get_vbits == 3)
622 valid_size = lo;
623 get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj,
624 vbits.address (),
625 valid_size);
628 if (get_vbits == 1)
629 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (state.ptrs[i]->obj,
630 state.ptrs[i]->size));
632 #endif
633 memcpy (this_object, state.ptrs[i]->obj, state.ptrs[i]->size);
634 if (state.ptrs[i]->reorder_fn != NULL)
635 state.ptrs[i]->reorder_fn (state.ptrs[i]->obj,
636 state.ptrs[i]->note_ptr_cookie,
637 relocate_ptrs, &state);
638 state.ptrs[i]->note_ptr_fn (state.ptrs[i]->obj,
639 state.ptrs[i]->note_ptr_cookie,
640 relocate_ptrs, &state);
641 ggc_pch_write_object (state.d, state.f, state.ptrs[i]->obj,
642 state.ptrs[i]->new_addr, state.ptrs[i]->size,
643 state.ptrs[i]->note_ptr_fn == gt_pch_p_S);
644 if (state.ptrs[i]->note_ptr_fn != gt_pch_p_S)
645 memcpy (state.ptrs[i]->obj, this_object, state.ptrs[i]->size);
646 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
647 if (__builtin_expect (get_vbits == 1, 0))
649 (void) VALGRIND_SET_VBITS (state.ptrs[i]->obj, vbits.address (),
650 valid_size);
651 if (valid_size != state.ptrs[i]->size)
652 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *)
653 state.ptrs[i]->obj
654 + valid_size,
655 state.ptrs[i]->size
656 - valid_size));
658 #endif
660 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
661 vbits.release ();
662 #endif
664 reloc_addrs_vec.qsort (compare_ptr);
666 size_t reloc_addrs_size = 0;
667 void *last_addr = NULL;
668 unsigned char uleb128_buf[sizeof (size_t) * 2];
669 for (void *addr : reloc_addrs_vec)
671 gcc_assert ((uintptr_t) addr >= (uintptr_t) mmi.preferred_base
672 && ((uintptr_t) addr + sizeof (void *)
673 < (uintptr_t) mmi.preferred_base + mmi.size));
674 if (addr == last_addr)
675 continue;
676 if (last_addr == NULL)
677 last_addr = mmi.preferred_base;
678 size_t diff = (uintptr_t) addr - (uintptr_t) last_addr;
679 reloc_addrs_size += write_uleb128 (uleb128_buf, diff);
680 last_addr = addr;
682 if (fwrite (&reloc_addrs_size, sizeof (reloc_addrs_size), 1, f) != 1)
683 fatal_error (input_location, "cannot write PCH file: %m");
684 last_addr = NULL;
685 for (void *addr : reloc_addrs_vec)
687 if (addr == last_addr)
688 continue;
689 if (last_addr == NULL)
690 last_addr = mmi.preferred_base;
691 size_t diff = (uintptr_t) addr - (uintptr_t) last_addr;
692 reloc_addrs_size = write_uleb128 (uleb128_buf, diff);
693 if (fwrite (uleb128_buf, 1, reloc_addrs_size, f) != reloc_addrs_size)
694 fatal_error (input_location, "cannot write PCH file: %m");
695 last_addr = addr;
698 ggc_pch_finish (state.d, state.f);
700 gt_pch_fixup_stringpool ();
702 unsigned num_callbacks = callback_vec.length ();
703 void (*pch_save) (FILE *) = &gt_pch_save;
704 if (fwrite (&pch_save, sizeof (pch_save), 1, f) != 1
705 || fwrite (&num_callbacks, sizeof (num_callbacks), 1, f) != 1
706 || (num_callbacks
707 && fwrite (callback_vec.address (), sizeof (void *), num_callbacks,
708 f) != num_callbacks))
709 fatal_error (input_location, "cannot write PCH file: %m");
711 XDELETE (state.ptrs);
712 XDELETE (this_object);
713 delete saving_htab;
714 saving_htab = NULL;
715 callback_vec.release ();
716 reloc_addrs_vec.release ();
719 /* Read the state of the compiler back in from F. */
721 void
722 gt_pch_restore (FILE *f)
724 const struct ggc_root_tab *const *rt;
725 const struct ggc_root_tab *rti;
726 size_t i;
727 struct mmap_info mmi;
728 int result;
730 /* We are about to reload the line maps along with the rest of the PCH
731 data, which means that the (loaded) ones cannot be guaranteed to be
732 in any valid state for reporting diagnostics that happen during the
733 load. Save the current table (and use it during the loading process
734 below). */
735 class line_maps *save_line_table = line_table;
737 /* Delete any deletable objects. This makes ggc_pch_read much
738 faster, as it can be sure that no GCable objects remain other
739 than the ones just read in. */
740 for (rt = gt_ggc_deletable_rtab; *rt; rt++)
741 for (rti = *rt; rti->base != NULL; rti++)
742 memset (rti->base, 0, rti->stride);
744 /* Read in all the scalar variables. */
745 for (rt = gt_pch_scalar_rtab; *rt; rt++)
746 for (rti = *rt; rti->base != NULL; rti++)
747 if (fread (rti->base, rti->stride, 1, f) != 1)
748 fatal_error (input_location, "cannot read PCH file: %m");
750 /* Read in all the global pointers, in 6 easy loops. */
751 bool error_reading_pointers = false;
752 for (rt = gt_ggc_rtab; *rt; rt++)
753 for (rti = *rt; rti->base != NULL; rti++)
754 for (i = 0; i < rti->nelt; i++)
755 if (fread ((char *)rti->base + rti->stride * i,
756 sizeof (void *), 1, f) != 1)
757 error_reading_pointers = true;
759 /* Stash the newly read-in line table pointer - it does not point to
760 anything meaningful yet, so swap the old one back in. */
761 class line_maps *new_line_table = line_table;
762 line_table = save_line_table;
763 if (error_reading_pointers)
764 fatal_error (input_location, "cannot read PCH file: %m");
766 if (fread (&mmi, sizeof (mmi), 1, f) != 1)
767 fatal_error (input_location, "cannot read PCH file: %m");
769 void *orig_preferred_base = mmi.preferred_base;
770 result = host_hooks.gt_pch_use_address (mmi.preferred_base, mmi.size,
771 fileno (f), mmi.offset);
773 /* We could not mmap or otherwise allocate the required memory at the
774 address needed. */
775 if (result < 0)
777 sorry_at (input_location, "PCH allocation failure");
778 /* There is no point in continuing from here, we will only end up
779 with a crashed (most likely hanging) compiler. */
780 exit (-1);
783 /* (0) We allocated memory, but did not mmap the file, so we need to read
784 the data in manually. (>0) Otherwise the mmap succeed for the address
785 we wanted. */
786 if (result == 0)
788 if (fseek (f, mmi.offset, SEEK_SET) != 0
789 || fread (mmi.preferred_base, mmi.size, 1, f) != 1)
790 fatal_error (input_location, "cannot read PCH file: %m");
792 else if (fseek (f, mmi.offset + mmi.size, SEEK_SET) != 0)
793 fatal_error (input_location, "cannot read PCH file: %m");
795 size_t reloc_addrs_size;
796 if (fread (&reloc_addrs_size, sizeof (reloc_addrs_size), 1, f) != 1)
797 fatal_error (input_location, "cannot read PCH file: %m");
799 if (orig_preferred_base != mmi.preferred_base)
801 uintptr_t bias
802 = (uintptr_t) mmi.preferred_base - (uintptr_t) orig_preferred_base;
804 /* Adjust all the global pointers by bias. */
805 line_table = new_line_table;
806 for (rt = gt_ggc_rtab; *rt; rt++)
807 for (rti = *rt; rti->base != NULL; rti++)
808 for (i = 0; i < rti->nelt; i++)
810 char *addr = (char *)rti->base + rti->stride * i;
811 char *p;
812 memcpy (&p, addr, sizeof (void *));
813 if ((uintptr_t) p >= (uintptr_t) orig_preferred_base
814 && (uintptr_t) p < (uintptr_t) orig_preferred_base + mmi.size)
816 p = (char *) ((uintptr_t) p + bias);
817 memcpy (addr, &p, sizeof (void *));
820 new_line_table = line_table;
821 line_table = save_line_table;
823 /* And adjust all the pointers in the image by bias too. */
824 char *addr = (char *) mmi.preferred_base;
825 unsigned char uleb128_buf[4096], *uleb128_ptr = uleb128_buf;
826 while (reloc_addrs_size != 0)
828 size_t this_size
829 = MIN (reloc_addrs_size,
830 (size_t) (4096 - (uleb128_ptr - uleb128_buf)));
831 if (fread (uleb128_ptr, 1, this_size, f) != this_size)
832 fatal_error (input_location, "cannot read PCH file: %m");
833 unsigned char *uleb128_end = uleb128_ptr + this_size;
834 if (this_size != reloc_addrs_size)
835 uleb128_end -= 2 * sizeof (size_t);
836 uleb128_ptr = uleb128_buf;
837 while (uleb128_ptr < uleb128_end)
839 size_t diff;
840 uleb128_ptr = read_uleb128 (uleb128_ptr, &diff);
841 addr = (char *) ((uintptr_t) addr + diff);
843 char *p;
844 memcpy (&p, addr, sizeof (void *));
845 gcc_assert ((uintptr_t) p >= (uintptr_t) orig_preferred_base
846 && ((uintptr_t) p
847 < (uintptr_t) orig_preferred_base + mmi.size));
848 p = (char *) ((uintptr_t) p + bias);
849 memcpy (addr, &p, sizeof (void *));
851 reloc_addrs_size -= this_size;
852 if (reloc_addrs_size == 0)
853 break;
854 this_size = uleb128_end + 2 * sizeof (size_t) - uleb128_ptr;
855 memcpy (uleb128_buf, uleb128_ptr, this_size);
856 uleb128_ptr = uleb128_buf + this_size;
859 else if (fseek (f, (mmi.offset + mmi.size + sizeof (reloc_addrs_size)
860 + reloc_addrs_size), SEEK_SET) != 0)
861 fatal_error (input_location, "cannot read PCH file: %m");
863 ggc_pch_read (f, mmi.preferred_base);
865 void (*pch_save) (FILE *);
866 unsigned num_callbacks;
867 if (fread (&pch_save, sizeof (pch_save), 1, f) != 1
868 || fread (&num_callbacks, sizeof (num_callbacks), 1, f) != 1)
869 fatal_error (input_location, "cannot read PCH file: %m");
870 if (pch_save != &gt_pch_save)
872 uintptr_t binbias = (uintptr_t) &gt_pch_save - (uintptr_t) pch_save;
873 void **ptrs = XNEWVEC (void *, num_callbacks);
874 unsigned i;
875 uintptr_t bias
876 = (uintptr_t) mmi.preferred_base - (uintptr_t) orig_preferred_base;
878 if (fread (ptrs, sizeof (void *), num_callbacks, f) != num_callbacks)
879 fatal_error (input_location, "cannot read PCH file: %m");
880 for (i = 0; i < num_callbacks; ++i)
882 void *ptr = (void *) ((uintptr_t) ptrs[i] + bias);
883 memcpy (&pch_save, ptr, sizeof (pch_save));
884 pch_save = (void (*) (FILE *)) ((uintptr_t) pch_save + binbias);
885 memcpy (ptr, &pch_save, sizeof (pch_save));
887 XDELETE (ptrs);
889 else if (fseek (f, num_callbacks * sizeof (void *), SEEK_CUR) != 0)
890 fatal_error (input_location, "cannot read PCH file: %m");
892 gt_pch_restore_stringpool ();
894 /* Barring corruption of the PCH file, the restored line table should be
895 complete and usable. */
896 line_table = new_line_table;
899 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is not present.
900 Select no address whatsoever, and let gt_pch_save choose what it will with
901 malloc, presumably. */
903 void *
904 default_gt_pch_get_address (size_t size ATTRIBUTE_UNUSED,
905 int fd ATTRIBUTE_UNUSED)
907 return NULL;
910 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is not present.
911 Allocate SIZE bytes with malloc. Return 0 if the address we got is the
912 same as base, indicating that the memory has been allocated but needs to
913 be read in from the file. Return -1 if the address differs, to relocation
914 of the PCH file would be required. */
917 default_gt_pch_use_address (void *&base, size_t size, int fd ATTRIBUTE_UNUSED,
918 size_t offset ATTRIBUTE_UNUSED)
920 void *addr = xmalloc (size);
921 return (addr == base) - 1;
924 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS. Return the
925 alignment required for allocating virtual memory. Usually this is the
926 same as pagesize. */
928 size_t
929 default_gt_pch_alloc_granularity (void)
931 return getpagesize ();
934 #if HAVE_MMAP_FILE
935 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is present.
936 We temporarily allocate SIZE bytes, and let the kernel place the data
937 wherever it will. If it worked, that's our spot, if not we're likely
938 to be in trouble. */
940 void *
941 mmap_gt_pch_get_address (size_t size, int fd)
943 void *ret;
945 ret = mmap (NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
946 if (ret == (void *) MAP_FAILED)
947 ret = NULL;
948 else
949 munmap ((caddr_t) ret, size);
951 return ret;
954 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is present.
955 Map SIZE bytes of FD+OFFSET at BASE. Return 1 if we succeeded at
956 mapping the data at BASE, -1 if we couldn't.
958 This version assumes that the kernel honors the START operand of mmap
959 even without MAP_FIXED if START through START+SIZE are not currently
960 mapped with something. */
963 mmap_gt_pch_use_address (void *&base, size_t size, int fd, size_t offset)
965 void *addr;
967 /* We're called with size == 0 if we're not planning to load a PCH
968 file at all. This allows the hook to free any static space that
969 we might have allocated at link time. */
970 if (size == 0)
971 return -1;
973 addr = mmap ((caddr_t) base, size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
974 fd, offset);
976 return addr == base ? 1 : -1;
978 #endif /* HAVE_MMAP_FILE */
980 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
982 /* Modify the bound based on rlimits. */
983 static double
984 ggc_rlimit_bound (double limit)
986 #if defined(HAVE_GETRLIMIT)
987 struct rlimit rlim;
988 # if defined (RLIMIT_AS)
989 /* RLIMIT_AS is what POSIX says is the limit on mmap. Presumably
990 any OS which has RLIMIT_AS also has a working mmap that GCC will use. */
991 if (getrlimit (RLIMIT_AS, &rlim) == 0
992 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
993 && rlim.rlim_cur < limit)
994 limit = rlim.rlim_cur;
995 # elif defined (RLIMIT_DATA)
996 /* ... but some older OSs bound mmap based on RLIMIT_DATA, or we
997 might be on an OS that has a broken mmap. (Others don't bound
998 mmap at all, apparently.) */
999 if (getrlimit (RLIMIT_DATA, &rlim) == 0
1000 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
1001 && rlim.rlim_cur < limit
1002 /* Darwin has this horribly bogus default setting of
1003 RLIMIT_DATA, to 6144Kb. No-one notices because RLIMIT_DATA
1004 appears to be ignored. Ignore such silliness. If a limit
1005 this small was actually effective for mmap, GCC wouldn't even
1006 start up. */
1007 && rlim.rlim_cur >= 8 * ONE_M)
1008 limit = rlim.rlim_cur;
1009 # endif /* RLIMIT_AS or RLIMIT_DATA */
1010 #endif /* HAVE_GETRLIMIT */
1012 return limit;
1015 /* Heuristic to set a default for GGC_MIN_EXPAND. */
1016 static int
1017 ggc_min_expand_heuristic (void)
1019 double min_expand = physmem_total ();
1021 /* Adjust for rlimits. */
1022 min_expand = ggc_rlimit_bound (min_expand);
1024 /* The heuristic is a percentage equal to 30% + 70%*(RAM/1GB), yielding
1025 a lower bound of 30% and an upper bound of 100% (when RAM >= 1GB). */
1026 min_expand /= ONE_G;
1027 min_expand *= 70;
1028 min_expand = MIN (min_expand, 70);
1029 min_expand += 30;
1031 return min_expand;
1034 /* Heuristic to set a default for GGC_MIN_HEAPSIZE. */
1035 static int
1036 ggc_min_heapsize_heuristic (void)
1038 double phys_kbytes = physmem_total ();
1039 double limit_kbytes = ggc_rlimit_bound (phys_kbytes * 2);
1041 phys_kbytes /= ONE_K; /* Convert to Kbytes. */
1042 limit_kbytes /= ONE_K;
1044 /* The heuristic is RAM/8, with a lower bound of 4M and an upper
1045 bound of 128M (when RAM >= 1GB). */
1046 phys_kbytes /= 8;
1048 #if defined(HAVE_GETRLIMIT) && defined (RLIMIT_RSS)
1049 /* Try not to overrun the RSS limit while doing garbage collection.
1050 The RSS limit is only advisory, so no margin is subtracted. */
1052 struct rlimit rlim;
1053 if (getrlimit (RLIMIT_RSS, &rlim) == 0
1054 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY)
1055 phys_kbytes = MIN (phys_kbytes, rlim.rlim_cur / ONE_K);
1057 # endif
1059 /* Don't blindly run over our data limit; do GC at least when the
1060 *next* GC would be within 20Mb of the limit or within a quarter of
1061 the limit, whichever is larger. If GCC does hit the data limit,
1062 compilation will fail, so this tries to be conservative. */
1063 limit_kbytes = MAX (0, limit_kbytes - MAX (limit_kbytes / 4, 20 * ONE_K));
1064 limit_kbytes = (limit_kbytes * 100) / (110 + ggc_min_expand_heuristic ());
1065 phys_kbytes = MIN (phys_kbytes, limit_kbytes);
1067 phys_kbytes = MAX (phys_kbytes, 4 * ONE_K);
1068 phys_kbytes = MIN (phys_kbytes, 128 * ONE_K);
1070 return phys_kbytes;
1072 #endif
1074 void
1075 init_ggc_heuristics (void)
1077 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
1078 param_ggc_min_expand = ggc_min_expand_heuristic ();
1079 param_ggc_min_heapsize = ggc_min_heapsize_heuristic ();
1080 #endif
1083 /* GGC memory usage. */
1084 class ggc_usage: public mem_usage
1086 public:
1087 /* Default constructor. */
1088 ggc_usage (): m_freed (0), m_collected (0), m_overhead (0) {}
1089 /* Constructor. */
1090 ggc_usage (size_t allocated, size_t times, size_t peak,
1091 size_t freed, size_t collected, size_t overhead)
1092 : mem_usage (allocated, times, peak),
1093 m_freed (freed), m_collected (collected), m_overhead (overhead) {}
1095 /* Equality operator. */
1096 inline bool
1097 operator== (const ggc_usage &second) const
1099 return (get_balance () == second.get_balance ()
1100 && m_peak == second.m_peak
1101 && m_times == second.m_times);
1104 /* Comparison operator. */
1105 inline bool
1106 operator< (const ggc_usage &second) const
1108 if (*this == second)
1109 return false;
1111 return (get_balance () == second.get_balance () ?
1112 (m_peak == second.m_peak ? m_times < second.m_times
1113 : m_peak < second.m_peak)
1114 : get_balance () < second.get_balance ());
1117 /* Register overhead of ALLOCATED and OVERHEAD bytes. */
1118 inline void
1119 register_overhead (size_t allocated, size_t overhead)
1121 m_allocated += allocated;
1122 m_overhead += overhead;
1123 m_times++;
1126 /* Release overhead of SIZE bytes. */
1127 inline void
1128 release_overhead (size_t size)
1130 m_freed += size;
1133 /* Sum the usage with SECOND usage. */
1134 ggc_usage
1135 operator+ (const ggc_usage &second)
1137 return ggc_usage (m_allocated + second.m_allocated,
1138 m_times + second.m_times,
1139 m_peak + second.m_peak,
1140 m_freed + second.m_freed,
1141 m_collected + second.m_collected,
1142 m_overhead + second.m_overhead);
1145 /* Dump usage with PREFIX, where TOTAL is sum of all rows. */
1146 inline void
1147 dump (const char *prefix, ggc_usage &total) const
1149 size_t balance = get_balance ();
1150 fprintf (stderr,
1151 "%-48s " PRsa (9) ":%5.1f%%" PRsa (9) ":%5.1f%%"
1152 PRsa (9) ":%5.1f%%" PRsa (9) ":%5.1f%%" PRsa (9) "\n",
1153 prefix,
1154 SIZE_AMOUNT (balance), get_percent (balance, total.get_balance ()),
1155 SIZE_AMOUNT (m_collected),
1156 get_percent (m_collected, total.m_collected),
1157 SIZE_AMOUNT (m_freed), get_percent (m_freed, total.m_freed),
1158 SIZE_AMOUNT (m_overhead),
1159 get_percent (m_overhead, total.m_overhead),
1160 SIZE_AMOUNT (m_times));
1163 /* Dump usage coupled to LOC location, where TOTAL is sum of all rows. */
1164 inline void
1165 dump (mem_location *loc, ggc_usage &total) const
1167 char *location_string = loc->to_string ();
1169 dump (location_string, total);
1171 free (location_string);
1174 /* Dump footer. */
1175 inline void
1176 dump_footer ()
1178 dump ("Total", *this);
1181 /* Get balance which is GGC allocation leak. */
1182 inline size_t
1183 get_balance () const
1185 return m_allocated + m_overhead - m_collected - m_freed;
1188 typedef std::pair<mem_location *, ggc_usage *> mem_pair_t;
1190 /* Compare wrapper used by qsort method. */
1191 static int
1192 compare (const void *first, const void *second)
1194 const mem_pair_t mem1 = *(const mem_pair_t *) first;
1195 const mem_pair_t mem2 = *(const mem_pair_t *) second;
1197 size_t balance1 = mem1.second->get_balance ();
1198 size_t balance2 = mem2.second->get_balance ();
1200 return balance1 == balance2 ? 0 : (balance1 < balance2 ? 1 : -1);
1203 /* Dump header with NAME. */
1204 static inline void
1205 dump_header (const char *name)
1207 fprintf (stderr, "%-48s %11s%17s%17s%16s%17s\n", name, "Leak", "Garbage",
1208 "Freed", "Overhead", "Times");
1211 /* Freed memory in bytes. */
1212 size_t m_freed;
1213 /* Collected memory in bytes. */
1214 size_t m_collected;
1215 /* Overhead memory in bytes. */
1216 size_t m_overhead;
1219 /* GCC memory description. */
1220 static mem_alloc_description<ggc_usage> ggc_mem_desc;
1222 /* Dump per-site memory statistics. */
1224 void
1225 dump_ggc_loc_statistics ()
1227 if (! GATHER_STATISTICS)
1228 return;
1230 ggc_collect (GGC_COLLECT_FORCE);
1232 ggc_mem_desc.dump (GGC_ORIGIN);
1235 /* Record ALLOCATED and OVERHEAD bytes to descriptor NAME:LINE (FUNCTION). */
1236 void
1237 ggc_record_overhead (size_t allocated, size_t overhead, void *ptr MEM_STAT_DECL)
1239 ggc_usage *usage = ggc_mem_desc.register_descriptor (ptr, GGC_ORIGIN, false
1240 FINAL_PASS_MEM_STAT);
1242 ggc_mem_desc.register_object_overhead (usage, allocated + overhead, ptr);
1243 usage->register_overhead (allocated, overhead);
1246 /* Notice that the pointer has been freed. */
1247 void
1248 ggc_free_overhead (void *ptr)
1250 ggc_mem_desc.release_object_overhead (ptr);
1253 /* After live values has been marked, walk all recorded pointers and see if
1254 they are still live. */
1255 void
1256 ggc_prune_overhead_list (void)
1258 typedef hash_map<const void *, std::pair<ggc_usage *, size_t > > map_t;
1260 map_t::iterator it = ggc_mem_desc.m_reverse_object_map->begin ();
1262 for (; it != ggc_mem_desc.m_reverse_object_map->end (); ++it)
1263 if (!ggc_marked_p ((*it).first))
1265 (*it).second.first->m_collected += (*it).second.second;
1266 ggc_mem_desc.m_reverse_object_map->remove ((*it).first);
1270 /* Print memory used by heap if this info is available. */
1272 void
1273 report_heap_memory_use ()
1275 #if defined(HAVE_MALLINFO) || defined(HAVE_MALLINFO2)
1276 #ifdef HAVE_MALLINFO2
1277 #define MALLINFO_FN mallinfo2
1278 #else
1279 #define MALLINFO_FN mallinfo
1280 #endif
1281 if (!quiet_flag)
1282 fprintf (stderr, " {heap " PRsa (0) "}",
1283 SIZE_AMOUNT (MALLINFO_FN ().arena));
1284 #endif