PR rtl-optimization/88018
[official-gcc.git] / gcc / lra-constraints.c
blob88546d2138ae814f5f86f80a51c8e5227c550709
1 /* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2018 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
24 split.
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
37 allocations;
38 o some heuristics to choose insn alternative to improve the
39 inheritance;
40 o early clobbers etc.
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
45 changed.
47 There is special code for preventing all LRA and this pass cycling
48 in case of bugs.
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
57 traversal of EBBs.
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
65 ... => ...
66 reload_p2 <- p reload_p2 <- new_p
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
70 pseudo*.
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
82 insns.
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
89 ... =>
90 ... r <- s (new insn -- restore)
91 ... <- r ... <- r
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
96 Splitting is done:
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
107 #undef REG_OK_STRICT
109 #include "config.h"
110 #include "system.h"
111 #include "coretypes.h"
112 #include "backend.h"
113 #include "target.h"
114 #include "rtl.h"
115 #include "tree.h"
116 #include "predict.h"
117 #include "df.h"
118 #include "memmodel.h"
119 #include "tm_p.h"
120 #include "expmed.h"
121 #include "optabs.h"
122 #include "regs.h"
123 #include "ira.h"
124 #include "recog.h"
125 #include "output.h"
126 #include "addresses.h"
127 #include "expr.h"
128 #include "cfgrtl.h"
129 #include "rtl-error.h"
130 #include "params.h"
131 #include "lra.h"
132 #include "lra-int.h"
133 #include "print-rtl.h"
135 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
136 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
137 reload insns. */
138 static int bb_reload_num;
140 /* The current insn being processed and corresponding its single set
141 (NULL otherwise), its data (basic block, the insn data, the insn
142 static data, and the mode of each operand). */
143 static rtx_insn *curr_insn;
144 static rtx curr_insn_set;
145 static basic_block curr_bb;
146 static lra_insn_recog_data_t curr_id;
147 static struct lra_static_insn_data *curr_static_id;
148 static machine_mode curr_operand_mode[MAX_RECOG_OPERANDS];
149 /* Mode of the register substituted by its equivalence with VOIDmode
150 (e.g. constant) and whose subreg is given operand of the current
151 insn. VOIDmode in all other cases. */
152 static machine_mode original_subreg_reg_mode[MAX_RECOG_OPERANDS];
156 /* Start numbers for new registers and insns at the current constraints
157 pass start. */
158 static int new_regno_start;
159 static int new_insn_uid_start;
161 /* If LOC is nonnull, strip any outer subreg from it. */
162 static inline rtx *
163 strip_subreg (rtx *loc)
165 return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc;
168 /* Return hard regno of REGNO or if it is was not assigned to a hard
169 register, use a hard register from its allocno class. */
170 static int
171 get_try_hard_regno (int regno)
173 int hard_regno;
174 enum reg_class rclass;
176 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
177 hard_regno = lra_get_regno_hard_regno (regno);
178 if (hard_regno >= 0)
179 return hard_regno;
180 rclass = lra_get_allocno_class (regno);
181 if (rclass == NO_REGS)
182 return -1;
183 return ira_class_hard_regs[rclass][0];
186 /* Return the hard regno of X after removing its subreg. If X is not
187 a register or a subreg of a register, return -1. If X is a pseudo,
188 use its assignment. If FINAL_P return the final hard regno which will
189 be after elimination. */
190 static int
191 get_hard_regno (rtx x, bool final_p)
193 rtx reg;
194 int hard_regno;
196 reg = x;
197 if (SUBREG_P (x))
198 reg = SUBREG_REG (x);
199 if (! REG_P (reg))
200 return -1;
201 if (! HARD_REGISTER_NUM_P (hard_regno = REGNO (reg)))
202 hard_regno = lra_get_regno_hard_regno (hard_regno);
203 if (hard_regno < 0)
204 return -1;
205 if (final_p)
206 hard_regno = lra_get_elimination_hard_regno (hard_regno);
207 if (SUBREG_P (x))
208 hard_regno += subreg_regno_offset (hard_regno, GET_MODE (reg),
209 SUBREG_BYTE (x), GET_MODE (x));
210 return hard_regno;
213 /* If REGNO is a hard register or has been allocated a hard register,
214 return the class of that register. If REGNO is a reload pseudo
215 created by the current constraints pass, return its allocno class.
216 Return NO_REGS otherwise. */
217 static enum reg_class
218 get_reg_class (int regno)
220 int hard_regno;
222 if (! HARD_REGISTER_NUM_P (hard_regno = regno))
223 hard_regno = lra_get_regno_hard_regno (regno);
224 if (hard_regno >= 0)
226 hard_regno = lra_get_elimination_hard_regno (hard_regno);
227 return REGNO_REG_CLASS (hard_regno);
229 if (regno >= new_regno_start)
230 return lra_get_allocno_class (regno);
231 return NO_REGS;
234 /* Return true if REG satisfies (or will satisfy) reg class constraint
235 CL. Use elimination first if REG is a hard register. If REG is a
236 reload pseudo created by this constraints pass, assume that it will
237 be allocated a hard register from its allocno class, but allow that
238 class to be narrowed to CL if it is currently a superset of CL.
240 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
241 REGNO (reg), or NO_REGS if no change in its class was needed. */
242 static bool
243 in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class)
245 enum reg_class rclass, common_class;
246 machine_mode reg_mode;
247 int class_size, hard_regno, nregs, i, j;
248 int regno = REGNO (reg);
250 if (new_class != NULL)
251 *new_class = NO_REGS;
252 if (regno < FIRST_PSEUDO_REGISTER)
254 rtx final_reg = reg;
255 rtx *final_loc = &final_reg;
257 lra_eliminate_reg_if_possible (final_loc);
258 return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc));
260 reg_mode = GET_MODE (reg);
261 rclass = get_reg_class (regno);
262 if (regno < new_regno_start
263 /* Do not allow the constraints for reload instructions to
264 influence the classes of new pseudos. These reloads are
265 typically moves that have many alternatives, and restricting
266 reload pseudos for one alternative may lead to situations
267 where other reload pseudos are no longer allocatable. */
268 || (INSN_UID (curr_insn) >= new_insn_uid_start
269 && curr_insn_set != NULL
270 && ((OBJECT_P (SET_SRC (curr_insn_set))
271 && ! CONSTANT_P (SET_SRC (curr_insn_set)))
272 || (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
273 && OBJECT_P (SUBREG_REG (SET_SRC (curr_insn_set)))
274 && ! CONSTANT_P (SUBREG_REG (SET_SRC (curr_insn_set)))))))
275 /* When we don't know what class will be used finally for reload
276 pseudos, we use ALL_REGS. */
277 return ((regno >= new_regno_start && rclass == ALL_REGS)
278 || (rclass != NO_REGS && ira_class_subset_p[rclass][cl]
279 && ! hard_reg_set_subset_p (reg_class_contents[cl],
280 lra_no_alloc_regs)));
281 else
283 common_class = ira_reg_class_subset[rclass][cl];
284 if (new_class != NULL)
285 *new_class = common_class;
286 if (hard_reg_set_subset_p (reg_class_contents[common_class],
287 lra_no_alloc_regs))
288 return false;
289 /* Check that there are enough allocatable regs. */
290 class_size = ira_class_hard_regs_num[common_class];
291 for (i = 0; i < class_size; i++)
293 hard_regno = ira_class_hard_regs[common_class][i];
294 nregs = hard_regno_nregs (hard_regno, reg_mode);
295 if (nregs == 1)
296 return true;
297 for (j = 0; j < nregs; j++)
298 if (TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno + j)
299 || ! TEST_HARD_REG_BIT (reg_class_contents[common_class],
300 hard_regno + j))
301 break;
302 if (j >= nregs)
303 return true;
305 return false;
309 /* Return true if REGNO satisfies a memory constraint. */
310 static bool
311 in_mem_p (int regno)
313 return get_reg_class (regno) == NO_REGS;
316 /* Return 1 if ADDR is a valid memory address for mode MODE in address
317 space AS, and check that each pseudo has the proper kind of hard
318 reg. */
319 static int
320 valid_address_p (machine_mode mode ATTRIBUTE_UNUSED,
321 rtx addr, addr_space_t as)
323 #ifdef GO_IF_LEGITIMATE_ADDRESS
324 lra_assert (ADDR_SPACE_GENERIC_P (as));
325 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
326 return 0;
328 win:
329 return 1;
330 #else
331 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
332 #endif
335 namespace {
336 /* Temporarily eliminates registers in an address (for the lifetime of
337 the object). */
338 class address_eliminator {
339 public:
340 address_eliminator (struct address_info *ad);
341 ~address_eliminator ();
343 private:
344 struct address_info *m_ad;
345 rtx *m_base_loc;
346 rtx m_base_reg;
347 rtx *m_index_loc;
348 rtx m_index_reg;
352 address_eliminator::address_eliminator (struct address_info *ad)
353 : m_ad (ad),
354 m_base_loc (strip_subreg (ad->base_term)),
355 m_base_reg (NULL_RTX),
356 m_index_loc (strip_subreg (ad->index_term)),
357 m_index_reg (NULL_RTX)
359 if (m_base_loc != NULL)
361 m_base_reg = *m_base_loc;
362 lra_eliminate_reg_if_possible (m_base_loc);
363 if (m_ad->base_term2 != NULL)
364 *m_ad->base_term2 = *m_ad->base_term;
366 if (m_index_loc != NULL)
368 m_index_reg = *m_index_loc;
369 lra_eliminate_reg_if_possible (m_index_loc);
373 address_eliminator::~address_eliminator ()
375 if (m_base_loc && *m_base_loc != m_base_reg)
377 *m_base_loc = m_base_reg;
378 if (m_ad->base_term2 != NULL)
379 *m_ad->base_term2 = *m_ad->base_term;
381 if (m_index_loc && *m_index_loc != m_index_reg)
382 *m_index_loc = m_index_reg;
385 /* Return true if the eliminated form of AD is a legitimate target address. */
386 static bool
387 valid_address_p (struct address_info *ad)
389 address_eliminator eliminator (ad);
390 return valid_address_p (ad->mode, *ad->outer, ad->as);
393 /* Return true if the eliminated form of memory reference OP satisfies
394 extra (special) memory constraint CONSTRAINT. */
395 static bool
396 satisfies_memory_constraint_p (rtx op, enum constraint_num constraint)
398 struct address_info ad;
400 decompose_mem_address (&ad, op);
401 address_eliminator eliminator (&ad);
402 return constraint_satisfied_p (op, constraint);
405 /* Return true if the eliminated form of address AD satisfies extra
406 address constraint CONSTRAINT. */
407 static bool
408 satisfies_address_constraint_p (struct address_info *ad,
409 enum constraint_num constraint)
411 address_eliminator eliminator (ad);
412 return constraint_satisfied_p (*ad->outer, constraint);
415 /* Return true if the eliminated form of address OP satisfies extra
416 address constraint CONSTRAINT. */
417 static bool
418 satisfies_address_constraint_p (rtx op, enum constraint_num constraint)
420 struct address_info ad;
422 decompose_lea_address (&ad, &op);
423 return satisfies_address_constraint_p (&ad, constraint);
426 /* Initiate equivalences for LRA. As we keep original equivalences
427 before any elimination, we need to make copies otherwise any change
428 in insns might change the equivalences. */
429 void
430 lra_init_equiv (void)
432 ira_expand_reg_equiv ();
433 for (int i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
435 rtx res;
437 if ((res = ira_reg_equiv[i].memory) != NULL_RTX)
438 ira_reg_equiv[i].memory = copy_rtx (res);
439 if ((res = ira_reg_equiv[i].invariant) != NULL_RTX)
440 ira_reg_equiv[i].invariant = copy_rtx (res);
444 static rtx loc_equivalence_callback (rtx, const_rtx, void *);
446 /* Update equivalence for REGNO. We need to this as the equivalence
447 might contain other pseudos which are changed by their
448 equivalences. */
449 static void
450 update_equiv (int regno)
452 rtx x;
454 if ((x = ira_reg_equiv[regno].memory) != NULL_RTX)
455 ira_reg_equiv[regno].memory
456 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
457 NULL_RTX);
458 if ((x = ira_reg_equiv[regno].invariant) != NULL_RTX)
459 ira_reg_equiv[regno].invariant
460 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
461 NULL_RTX);
464 /* If we have decided to substitute X with another value, return that
465 value, otherwise return X. */
466 static rtx
467 get_equiv (rtx x)
469 int regno;
470 rtx res;
472 if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER
473 || ! ira_reg_equiv[regno].defined_p
474 || ! ira_reg_equiv[regno].profitable_p
475 || lra_get_regno_hard_regno (regno) >= 0)
476 return x;
477 if ((res = ira_reg_equiv[regno].memory) != NULL_RTX)
479 if (targetm.cannot_substitute_mem_equiv_p (res))
480 return x;
481 return res;
483 if ((res = ira_reg_equiv[regno].constant) != NULL_RTX)
484 return res;
485 if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX)
486 return res;
487 gcc_unreachable ();
490 /* If we have decided to substitute X with the equivalent value,
491 return that value after elimination for INSN, otherwise return
492 X. */
493 static rtx
494 get_equiv_with_elimination (rtx x, rtx_insn *insn)
496 rtx res = get_equiv (x);
498 if (x == res || CONSTANT_P (res))
499 return res;
500 return lra_eliminate_regs_1 (insn, res, GET_MODE (res),
501 false, false, 0, true);
504 /* Set up curr_operand_mode. */
505 static void
506 init_curr_operand_mode (void)
508 int nop = curr_static_id->n_operands;
509 for (int i = 0; i < nop; i++)
511 machine_mode mode = GET_MODE (*curr_id->operand_loc[i]);
512 if (mode == VOIDmode)
514 /* The .md mode for address operands is the mode of the
515 addressed value rather than the mode of the address itself. */
516 if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address)
517 mode = Pmode;
518 else
519 mode = curr_static_id->operand[i].mode;
521 curr_operand_mode[i] = mode;
527 /* The page contains code to reuse input reloads. */
529 /* Structure describes input reload of the current insns. */
530 struct input_reload
532 /* True for input reload of matched operands. */
533 bool match_p;
534 /* Reloaded value. */
535 rtx input;
536 /* Reload pseudo used. */
537 rtx reg;
540 /* The number of elements in the following array. */
541 static int curr_insn_input_reloads_num;
542 /* Array containing info about input reloads. It is used to find the
543 same input reload and reuse the reload pseudo in this case. */
544 static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS];
546 /* Initiate data concerning reuse of input reloads for the current
547 insn. */
548 static void
549 init_curr_insn_input_reloads (void)
551 curr_insn_input_reloads_num = 0;
554 /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
555 created input reload pseudo (only if TYPE is not OP_OUT). Don't
556 reuse pseudo if IN_SUBREG_P is true and the reused pseudo should be
557 wrapped up in SUBREG. The result pseudo is returned through
558 RESULT_REG. Return TRUE if we created a new pseudo, FALSE if we
559 reused the already created input reload pseudo. Use TITLE to
560 describe new registers for debug purposes. */
561 static bool
562 get_reload_reg (enum op_type type, machine_mode mode, rtx original,
563 enum reg_class rclass, bool in_subreg_p,
564 const char *title, rtx *result_reg)
566 int i, regno;
567 enum reg_class new_class;
568 bool unique_p = false;
570 if (type == OP_OUT)
572 *result_reg
573 = lra_create_new_reg_with_unique_value (mode, original, rclass, title);
574 return true;
576 /* Prevent reuse value of expression with side effects,
577 e.g. volatile memory. */
578 if (! side_effects_p (original))
579 for (i = 0; i < curr_insn_input_reloads_num; i++)
581 if (! curr_insn_input_reloads[i].match_p
582 && rtx_equal_p (curr_insn_input_reloads[i].input, original)
583 && in_class_p (curr_insn_input_reloads[i].reg, rclass, &new_class))
585 rtx reg = curr_insn_input_reloads[i].reg;
586 regno = REGNO (reg);
587 /* If input is equal to original and both are VOIDmode,
588 GET_MODE (reg) might be still different from mode.
589 Ensure we don't return *result_reg with wrong mode. */
590 if (GET_MODE (reg) != mode)
592 if (in_subreg_p)
593 continue;
594 if (maybe_lt (GET_MODE_SIZE (GET_MODE (reg)),
595 GET_MODE_SIZE (mode)))
596 continue;
597 reg = lowpart_subreg (mode, reg, GET_MODE (reg));
598 if (reg == NULL_RTX || GET_CODE (reg) != SUBREG)
599 continue;
601 *result_reg = reg;
602 if (lra_dump_file != NULL)
604 fprintf (lra_dump_file, " Reuse r%d for reload ", regno);
605 dump_value_slim (lra_dump_file, original, 1);
607 if (new_class != lra_get_allocno_class (regno))
608 lra_change_class (regno, new_class, ", change to", false);
609 if (lra_dump_file != NULL)
610 fprintf (lra_dump_file, "\n");
611 return false;
613 /* If we have an input reload with a different mode, make sure it
614 will get a different hard reg. */
615 else if (REG_P (original)
616 && REG_P (curr_insn_input_reloads[i].input)
617 && REGNO (original) == REGNO (curr_insn_input_reloads[i].input)
618 && (GET_MODE (original)
619 != GET_MODE (curr_insn_input_reloads[i].input)))
620 unique_p = true;
622 *result_reg = (unique_p
623 ? lra_create_new_reg_with_unique_value
624 : lra_create_new_reg) (mode, original, rclass, title);
625 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
626 curr_insn_input_reloads[curr_insn_input_reloads_num].input = original;
627 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = false;
628 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg;
629 return true;
633 /* The page contains major code to choose the current insn alternative
634 and generate reloads for it. */
636 /* Return the offset from REGNO of the least significant register
637 in (reg:MODE REGNO).
639 This function is used to tell whether two registers satisfy
640 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
642 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
643 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
645 lra_constraint_offset (int regno, machine_mode mode)
647 lra_assert (regno < FIRST_PSEUDO_REGISTER);
649 scalar_int_mode int_mode;
650 if (WORDS_BIG_ENDIAN
651 && is_a <scalar_int_mode> (mode, &int_mode)
652 && GET_MODE_SIZE (int_mode) > UNITS_PER_WORD)
653 return hard_regno_nregs (regno, mode) - 1;
654 return 0;
657 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
658 if they are the same hard reg, and has special hacks for
659 auto-increment and auto-decrement. This is specifically intended for
660 process_alt_operands to use in determining whether two operands
661 match. X is the operand whose number is the lower of the two.
663 It is supposed that X is the output operand and Y is the input
664 operand. Y_HARD_REGNO is the final hard regno of register Y or
665 register in subreg Y as we know it now. Otherwise, it is a
666 negative value. */
667 static bool
668 operands_match_p (rtx x, rtx y, int y_hard_regno)
670 int i;
671 RTX_CODE code = GET_CODE (x);
672 const char *fmt;
674 if (x == y)
675 return true;
676 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
677 && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))))
679 int j;
681 i = get_hard_regno (x, false);
682 if (i < 0)
683 goto slow;
685 if ((j = y_hard_regno) < 0)
686 goto slow;
688 i += lra_constraint_offset (i, GET_MODE (x));
689 j += lra_constraint_offset (j, GET_MODE (y));
691 return i == j;
694 /* If two operands must match, because they are really a single
695 operand of an assembler insn, then two post-increments are invalid
696 because the assembler insn would increment only once. On the
697 other hand, a post-increment matches ordinary indexing if the
698 post-increment is the output operand. */
699 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
700 return operands_match_p (XEXP (x, 0), y, y_hard_regno);
702 /* Two pre-increments are invalid because the assembler insn would
703 increment only once. On the other hand, a pre-increment matches
704 ordinary indexing if the pre-increment is the input operand. */
705 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
706 || GET_CODE (y) == PRE_MODIFY)
707 return operands_match_p (x, XEXP (y, 0), -1);
709 slow:
711 if (code == REG && REG_P (y))
712 return REGNO (x) == REGNO (y);
714 if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))
715 && x == SUBREG_REG (y))
716 return true;
717 if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x))
718 && SUBREG_REG (x) == y)
719 return true;
721 /* Now we have disposed of all the cases in which different rtx
722 codes can match. */
723 if (code != GET_CODE (y))
724 return false;
726 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
727 if (GET_MODE (x) != GET_MODE (y))
728 return false;
730 switch (code)
732 CASE_CONST_UNIQUE:
733 return false;
735 case LABEL_REF:
736 return label_ref_label (x) == label_ref_label (y);
737 case SYMBOL_REF:
738 return XSTR (x, 0) == XSTR (y, 0);
740 default:
741 break;
744 /* Compare the elements. If any pair of corresponding elements fail
745 to match, return false for the whole things. */
747 fmt = GET_RTX_FORMAT (code);
748 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
750 int val, j;
751 switch (fmt[i])
753 case 'w':
754 if (XWINT (x, i) != XWINT (y, i))
755 return false;
756 break;
758 case 'i':
759 if (XINT (x, i) != XINT (y, i))
760 return false;
761 break;
763 case 'p':
764 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
765 return false;
766 break;
768 case 'e':
769 val = operands_match_p (XEXP (x, i), XEXP (y, i), -1);
770 if (val == 0)
771 return false;
772 break;
774 case '0':
775 break;
777 case 'E':
778 if (XVECLEN (x, i) != XVECLEN (y, i))
779 return false;
780 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
782 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), -1);
783 if (val == 0)
784 return false;
786 break;
788 /* It is believed that rtx's at this level will never
789 contain anything but integers and other rtx's, except for
790 within LABEL_REFs and SYMBOL_REFs. */
791 default:
792 gcc_unreachable ();
795 return true;
798 /* True if X is a constant that can be forced into the constant pool.
799 MODE is the mode of the operand, or VOIDmode if not known. */
800 #define CONST_POOL_OK_P(MODE, X) \
801 ((MODE) != VOIDmode \
802 && CONSTANT_P (X) \
803 && GET_CODE (X) != HIGH \
804 && GET_MODE_SIZE (MODE).is_constant () \
805 && !targetm.cannot_force_const_mem (MODE, X))
807 /* True if C is a non-empty register class that has too few registers
808 to be safely used as a reload target class. */
809 #define SMALL_REGISTER_CLASS_P(C) \
810 (ira_class_hard_regs_num [(C)] == 1 \
811 || (ira_class_hard_regs_num [(C)] >= 1 \
812 && targetm.class_likely_spilled_p (C)))
814 /* If REG is a reload pseudo, try to make its class satisfying CL. */
815 static void
816 narrow_reload_pseudo_class (rtx reg, enum reg_class cl)
818 enum reg_class rclass;
820 /* Do not make more accurate class from reloads generated. They are
821 mostly moves with a lot of constraints. Making more accurate
822 class may results in very narrow class and impossibility of find
823 registers for several reloads of one insn. */
824 if (INSN_UID (curr_insn) >= new_insn_uid_start)
825 return;
826 if (GET_CODE (reg) == SUBREG)
827 reg = SUBREG_REG (reg);
828 if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start)
829 return;
830 if (in_class_p (reg, cl, &rclass) && rclass != cl)
831 lra_change_class (REGNO (reg), rclass, " Change to", true);
834 /* Searches X for any reference to a reg with the same value as REGNO,
835 returning the rtx of the reference found if any. Otherwise,
836 returns NULL_RTX. */
837 static rtx
838 regno_val_use_in (unsigned int regno, rtx x)
840 const char *fmt;
841 int i, j;
842 rtx tem;
844 if (REG_P (x) && lra_reg_info[REGNO (x)].val == lra_reg_info[regno].val)
845 return x;
847 fmt = GET_RTX_FORMAT (GET_CODE (x));
848 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
850 if (fmt[i] == 'e')
852 if ((tem = regno_val_use_in (regno, XEXP (x, i))))
853 return tem;
855 else if (fmt[i] == 'E')
856 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
857 if ((tem = regno_val_use_in (regno , XVECEXP (x, i, j))))
858 return tem;
861 return NULL_RTX;
864 /* Return true if all current insn non-output operands except INS (it
865 has a negaitve end marker) do not use pseudos with the same value
866 as REGNO. */
867 static bool
868 check_conflict_input_operands (int regno, signed char *ins)
870 int in;
871 int n_operands = curr_static_id->n_operands;
873 for (int nop = 0; nop < n_operands; nop++)
874 if (! curr_static_id->operand[nop].is_operator
875 && curr_static_id->operand[nop].type != OP_OUT)
877 for (int i = 0; (in = ins[i]) >= 0; i++)
878 if (in == nop)
879 break;
880 if (in < 0
881 && regno_val_use_in (regno, *curr_id->operand_loc[nop]) != NULL_RTX)
882 return false;
884 return true;
887 /* Generate reloads for matching OUT and INS (array of input operand
888 numbers with end marker -1) with reg class GOAL_CLASS, considering
889 output operands OUTS (similar array to INS) needing to be in different
890 registers. Add input and output reloads correspondingly to the lists
891 *BEFORE and *AFTER. OUT might be negative. In this case we generate
892 input reloads for matched input operands INS. EARLY_CLOBBER_P is a flag
893 that the output operand is early clobbered for chosen alternative. */
894 static void
895 match_reload (signed char out, signed char *ins, signed char *outs,
896 enum reg_class goal_class, rtx_insn **before,
897 rtx_insn **after, bool early_clobber_p)
899 bool out_conflict;
900 int i, in;
901 rtx new_in_reg, new_out_reg, reg;
902 machine_mode inmode, outmode;
903 rtx in_rtx = *curr_id->operand_loc[ins[0]];
904 rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out];
906 inmode = curr_operand_mode[ins[0]];
907 outmode = out < 0 ? inmode : curr_operand_mode[out];
908 push_to_sequence (*before);
909 if (inmode != outmode)
911 /* process_alt_operands has already checked that the mode sizes
912 are ordered. */
913 if (partial_subreg_p (outmode, inmode))
915 reg = new_in_reg
916 = lra_create_new_reg_with_unique_value (inmode, in_rtx,
917 goal_class, "");
918 new_out_reg = gen_lowpart_SUBREG (outmode, reg);
919 LRA_SUBREG_P (new_out_reg) = 1;
920 /* If the input reg is dying here, we can use the same hard
921 register for REG and IN_RTX. We do it only for original
922 pseudos as reload pseudos can die although original
923 pseudos still live where reload pseudos dies. */
924 if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start
925 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
926 && (!early_clobber_p
927 || check_conflict_input_operands(REGNO (in_rtx), ins)))
928 lra_assign_reg_val (REGNO (in_rtx), REGNO (reg));
930 else
932 reg = new_out_reg
933 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
934 goal_class, "");
935 new_in_reg = gen_lowpart_SUBREG (inmode, reg);
936 /* NEW_IN_REG is non-paradoxical subreg. We don't want
937 NEW_OUT_REG living above. We add clobber clause for
938 this. This is just a temporary clobber. We can remove
939 it at the end of LRA work. */
940 rtx_insn *clobber = emit_clobber (new_out_reg);
941 LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1;
942 LRA_SUBREG_P (new_in_reg) = 1;
943 if (GET_CODE (in_rtx) == SUBREG)
945 rtx subreg_reg = SUBREG_REG (in_rtx);
947 /* If SUBREG_REG is dying here and sub-registers IN_RTX
948 and NEW_IN_REG are similar, we can use the same hard
949 register for REG and SUBREG_REG. */
950 if (REG_P (subreg_reg)
951 && (int) REGNO (subreg_reg) < lra_new_regno_start
952 && GET_MODE (subreg_reg) == outmode
953 && known_eq (SUBREG_BYTE (in_rtx), SUBREG_BYTE (new_in_reg))
954 && find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg))
955 && (! early_clobber_p
956 || check_conflict_input_operands (REGNO (subreg_reg),
957 ins)))
958 lra_assign_reg_val (REGNO (subreg_reg), REGNO (reg));
962 else
964 /* Pseudos have values -- see comments for lra_reg_info.
965 Different pseudos with the same value do not conflict even if
966 they live in the same place. When we create a pseudo we
967 assign value of original pseudo (if any) from which we
968 created the new pseudo. If we create the pseudo from the
969 input pseudo, the new pseudo will have no conflict with the
970 input pseudo which is wrong when the input pseudo lives after
971 the insn and as the new pseudo value is changed by the insn
972 output. Therefore we create the new pseudo from the output
973 except the case when we have single matched dying input
974 pseudo.
976 We cannot reuse the current output register because we might
977 have a situation like "a <- a op b", where the constraints
978 force the second input operand ("b") to match the output
979 operand ("a"). "b" must then be copied into a new register
980 so that it doesn't clobber the current value of "a".
982 We can not use the same value if the output pseudo is
983 early clobbered or the input pseudo is mentioned in the
984 output, e.g. as an address part in memory, because
985 output reload will actually extend the pseudo liveness.
986 We don't care about eliminable hard regs here as we are
987 interesting only in pseudos. */
989 /* Matching input's register value is the same as one of the other
990 output operand. Output operands in a parallel insn must be in
991 different registers. */
992 out_conflict = false;
993 if (REG_P (in_rtx))
995 for (i = 0; outs[i] >= 0; i++)
997 rtx other_out_rtx = *curr_id->operand_loc[outs[i]];
998 if (REG_P (other_out_rtx)
999 && (regno_val_use_in (REGNO (in_rtx), other_out_rtx)
1000 != NULL_RTX))
1002 out_conflict = true;
1003 break;
1008 new_in_reg = new_out_reg
1009 = (! early_clobber_p && ins[1] < 0 && REG_P (in_rtx)
1010 && (int) REGNO (in_rtx) < lra_new_regno_start
1011 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
1012 && (! early_clobber_p
1013 || check_conflict_input_operands (REGNO (in_rtx), ins))
1014 && (out < 0
1015 || regno_val_use_in (REGNO (in_rtx), out_rtx) == NULL_RTX)
1016 && !out_conflict
1017 ? lra_create_new_reg (inmode, in_rtx, goal_class, "")
1018 : lra_create_new_reg_with_unique_value (outmode, out_rtx,
1019 goal_class, ""));
1021 /* In operand can be got from transformations before processing insn
1022 constraints. One example of such transformations is subreg
1023 reloading (see function simplify_operand_subreg). The new
1024 pseudos created by the transformations might have inaccurate
1025 class (ALL_REGS) and we should make their classes more
1026 accurate. */
1027 narrow_reload_pseudo_class (in_rtx, goal_class);
1028 lra_emit_move (copy_rtx (new_in_reg), in_rtx);
1029 *before = get_insns ();
1030 end_sequence ();
1031 /* Add the new pseudo to consider values of subsequent input reload
1032 pseudos. */
1033 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
1034 curr_insn_input_reloads[curr_insn_input_reloads_num].input = in_rtx;
1035 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = true;
1036 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = new_in_reg;
1037 for (i = 0; (in = ins[i]) >= 0; i++)
1039 lra_assert
1040 (GET_MODE (*curr_id->operand_loc[in]) == VOIDmode
1041 || GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in]));
1042 *curr_id->operand_loc[in] = new_in_reg;
1044 lra_update_dups (curr_id, ins);
1045 if (out < 0)
1046 return;
1047 /* See a comment for the input operand above. */
1048 narrow_reload_pseudo_class (out_rtx, goal_class);
1049 if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX)
1051 start_sequence ();
1052 lra_emit_move (out_rtx, copy_rtx (new_out_reg));
1053 emit_insn (*after);
1054 *after = get_insns ();
1055 end_sequence ();
1057 *curr_id->operand_loc[out] = new_out_reg;
1058 lra_update_dup (curr_id, out);
1061 /* Return register class which is union of all reg classes in insn
1062 constraint alternative string starting with P. */
1063 static enum reg_class
1064 reg_class_from_constraints (const char *p)
1066 int c, len;
1067 enum reg_class op_class = NO_REGS;
1070 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
1072 case '#':
1073 case ',':
1074 return op_class;
1076 case 'g':
1077 op_class = reg_class_subunion[op_class][GENERAL_REGS];
1078 break;
1080 default:
1081 enum constraint_num cn = lookup_constraint (p);
1082 enum reg_class cl = reg_class_for_constraint (cn);
1083 if (cl == NO_REGS)
1085 if (insn_extra_address_constraint (cn))
1086 op_class
1087 = (reg_class_subunion
1088 [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1089 ADDRESS, SCRATCH)]);
1090 break;
1093 op_class = reg_class_subunion[op_class][cl];
1094 break;
1096 while ((p += len), c);
1097 return op_class;
1100 /* If OP is a register, return the class of the register as per
1101 get_reg_class, otherwise return NO_REGS. */
1102 static inline enum reg_class
1103 get_op_class (rtx op)
1105 return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS;
1108 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1109 otherwise. If modes of MEM_PSEUDO and VAL are different, use
1110 SUBREG for VAL to make them equal. */
1111 static rtx_insn *
1112 emit_spill_move (bool to_p, rtx mem_pseudo, rtx val)
1114 if (GET_MODE (mem_pseudo) != GET_MODE (val))
1116 /* Usually size of mem_pseudo is greater than val size but in
1117 rare cases it can be less as it can be defined by target
1118 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
1119 if (! MEM_P (val))
1121 val = gen_lowpart_SUBREG (GET_MODE (mem_pseudo),
1122 GET_CODE (val) == SUBREG
1123 ? SUBREG_REG (val) : val);
1124 LRA_SUBREG_P (val) = 1;
1126 else
1128 mem_pseudo = gen_lowpart_SUBREG (GET_MODE (val), mem_pseudo);
1129 LRA_SUBREG_P (mem_pseudo) = 1;
1132 return to_p ? gen_move_insn (mem_pseudo, val)
1133 : gen_move_insn (val, mem_pseudo);
1136 /* Process a special case insn (register move), return true if we
1137 don't need to process it anymore. INSN should be a single set
1138 insn. Set up that RTL was changed through CHANGE_P and that hook
1139 TARGET_SECONDARY_MEMORY_NEEDED says to use secondary memory through
1140 SEC_MEM_P. */
1141 static bool
1142 check_and_process_move (bool *change_p, bool *sec_mem_p ATTRIBUTE_UNUSED)
1144 int sregno, dregno;
1145 rtx dest, src, dreg, sreg, new_reg, scratch_reg;
1146 rtx_insn *before;
1147 enum reg_class dclass, sclass, secondary_class;
1148 secondary_reload_info sri;
1150 lra_assert (curr_insn_set != NULL_RTX);
1151 dreg = dest = SET_DEST (curr_insn_set);
1152 sreg = src = SET_SRC (curr_insn_set);
1153 if (GET_CODE (dest) == SUBREG)
1154 dreg = SUBREG_REG (dest);
1155 if (GET_CODE (src) == SUBREG)
1156 sreg = SUBREG_REG (src);
1157 if (! (REG_P (dreg) || MEM_P (dreg)) || ! (REG_P (sreg) || MEM_P (sreg)))
1158 return false;
1159 sclass = dclass = NO_REGS;
1160 if (REG_P (dreg))
1161 dclass = get_reg_class (REGNO (dreg));
1162 gcc_assert (dclass < LIM_REG_CLASSES);
1163 if (dclass == ALL_REGS)
1164 /* ALL_REGS is used for new pseudos created by transformations
1165 like reload of SUBREG_REG (see function
1166 simplify_operand_subreg). We don't know their class yet. We
1167 should figure out the class from processing the insn
1168 constraints not in this fast path function. Even if ALL_REGS
1169 were a right class for the pseudo, secondary_... hooks usually
1170 are not define for ALL_REGS. */
1171 return false;
1172 if (REG_P (sreg))
1173 sclass = get_reg_class (REGNO (sreg));
1174 gcc_assert (sclass < LIM_REG_CLASSES);
1175 if (sclass == ALL_REGS)
1176 /* See comments above. */
1177 return false;
1178 if (sclass == NO_REGS && dclass == NO_REGS)
1179 return false;
1180 if (targetm.secondary_memory_needed (GET_MODE (src), sclass, dclass)
1181 && ((sclass != NO_REGS && dclass != NO_REGS)
1182 || (GET_MODE (src)
1183 != targetm.secondary_memory_needed_mode (GET_MODE (src)))))
1185 *sec_mem_p = true;
1186 return false;
1188 if (! REG_P (dreg) || ! REG_P (sreg))
1189 return false;
1190 sri.prev_sri = NULL;
1191 sri.icode = CODE_FOR_nothing;
1192 sri.extra_cost = 0;
1193 secondary_class = NO_REGS;
1194 /* Set up hard register for a reload pseudo for hook
1195 secondary_reload because some targets just ignore unassigned
1196 pseudos in the hook. */
1197 if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0)
1199 dregno = REGNO (dreg);
1200 reg_renumber[dregno] = ira_class_hard_regs[dclass][0];
1202 else
1203 dregno = -1;
1204 if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0)
1206 sregno = REGNO (sreg);
1207 reg_renumber[sregno] = ira_class_hard_regs[sclass][0];
1209 else
1210 sregno = -1;
1211 if (sclass != NO_REGS)
1212 secondary_class
1213 = (enum reg_class) targetm.secondary_reload (false, dest,
1214 (reg_class_t) sclass,
1215 GET_MODE (src), &sri);
1216 if (sclass == NO_REGS
1217 || ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing)
1218 && dclass != NO_REGS))
1220 enum reg_class old_sclass = secondary_class;
1221 secondary_reload_info old_sri = sri;
1223 sri.prev_sri = NULL;
1224 sri.icode = CODE_FOR_nothing;
1225 sri.extra_cost = 0;
1226 secondary_class
1227 = (enum reg_class) targetm.secondary_reload (true, src,
1228 (reg_class_t) dclass,
1229 GET_MODE (src), &sri);
1230 /* Check the target hook consistency. */
1231 lra_assert
1232 ((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1233 || (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing)
1234 || (secondary_class == old_sclass && sri.icode == old_sri.icode));
1236 if (sregno >= 0)
1237 reg_renumber [sregno] = -1;
1238 if (dregno >= 0)
1239 reg_renumber [dregno] = -1;
1240 if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1241 return false;
1242 *change_p = true;
1243 new_reg = NULL_RTX;
1244 if (secondary_class != NO_REGS)
1245 new_reg = lra_create_new_reg_with_unique_value (GET_MODE (src), NULL_RTX,
1246 secondary_class,
1247 "secondary");
1248 start_sequence ();
1249 if (sri.icode == CODE_FOR_nothing)
1250 lra_emit_move (new_reg, src);
1251 else
1253 enum reg_class scratch_class;
1255 scratch_class = (reg_class_from_constraints
1256 (insn_data[sri.icode].operand[2].constraint));
1257 scratch_reg = (lra_create_new_reg_with_unique_value
1258 (insn_data[sri.icode].operand[2].mode, NULL_RTX,
1259 scratch_class, "scratch"));
1260 emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest,
1261 src, scratch_reg));
1263 before = get_insns ();
1264 end_sequence ();
1265 lra_process_new_insns (curr_insn, before, NULL, "Inserting the move");
1266 if (new_reg != NULL_RTX)
1267 SET_SRC (curr_insn_set) = new_reg;
1268 else
1270 if (lra_dump_file != NULL)
1272 fprintf (lra_dump_file, "Deleting move %u\n", INSN_UID (curr_insn));
1273 dump_insn_slim (lra_dump_file, curr_insn);
1275 lra_set_insn_deleted (curr_insn);
1276 return true;
1278 return false;
1281 /* The following data describe the result of process_alt_operands.
1282 The data are used in curr_insn_transform to generate reloads. */
1284 /* The chosen reg classes which should be used for the corresponding
1285 operands. */
1286 static enum reg_class goal_alt[MAX_RECOG_OPERANDS];
1287 /* True if the operand should be the same as another operand and that
1288 other operand does not need a reload. */
1289 static bool goal_alt_match_win[MAX_RECOG_OPERANDS];
1290 /* True if the operand does not need a reload. */
1291 static bool goal_alt_win[MAX_RECOG_OPERANDS];
1292 /* True if the operand can be offsetable memory. */
1293 static bool goal_alt_offmemok[MAX_RECOG_OPERANDS];
1294 /* The number of an operand to which given operand can be matched to. */
1295 static int goal_alt_matches[MAX_RECOG_OPERANDS];
1296 /* The number of elements in the following array. */
1297 static int goal_alt_dont_inherit_ops_num;
1298 /* Numbers of operands whose reload pseudos should not be inherited. */
1299 static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1300 /* True if the insn commutative operands should be swapped. */
1301 static bool goal_alt_swapped;
1302 /* The chosen insn alternative. */
1303 static int goal_alt_number;
1305 /* True if the corresponding operand is the result of an equivalence
1306 substitution. */
1307 static bool equiv_substition_p[MAX_RECOG_OPERANDS];
1309 /* The following five variables are used to choose the best insn
1310 alternative. They reflect final characteristics of the best
1311 alternative. */
1313 /* Number of necessary reloads and overall cost reflecting the
1314 previous value and other unpleasantness of the best alternative. */
1315 static int best_losers, best_overall;
1316 /* Overall number hard registers used for reloads. For example, on
1317 some targets we need 2 general registers to reload DFmode and only
1318 one floating point register. */
1319 static int best_reload_nregs;
1320 /* Overall number reflecting distances of previous reloading the same
1321 value. The distances are counted from the current BB start. It is
1322 used to improve inheritance chances. */
1323 static int best_reload_sum;
1325 /* True if the current insn should have no correspondingly input or
1326 output reloads. */
1327 static bool no_input_reloads_p, no_output_reloads_p;
1329 /* True if we swapped the commutative operands in the current
1330 insn. */
1331 static int curr_swapped;
1333 /* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1334 register of class CL. Add any input reloads to list BEFORE. AFTER
1335 is nonnull if *LOC is an automodified value; handle that case by
1336 adding the required output reloads to list AFTER. Return true if
1337 the RTL was changed.
1339 if CHECK_ONLY_P is true, check that the *LOC is a correct address
1340 register. Return false if the address register is correct. */
1341 static bool
1342 process_addr_reg (rtx *loc, bool check_only_p, rtx_insn **before, rtx_insn **after,
1343 enum reg_class cl)
1345 int regno;
1346 enum reg_class rclass, new_class;
1347 rtx reg;
1348 rtx new_reg;
1349 machine_mode mode;
1350 bool subreg_p, before_p = false;
1352 subreg_p = GET_CODE (*loc) == SUBREG;
1353 if (subreg_p)
1355 reg = SUBREG_REG (*loc);
1356 mode = GET_MODE (reg);
1358 /* For mode with size bigger than ptr_mode, there unlikely to be "mov"
1359 between two registers with different classes, but there normally will
1360 be "mov" which transfers element of vector register into the general
1361 register, and this normally will be a subreg which should be reloaded
1362 as a whole. This is particularly likely to be triggered when
1363 -fno-split-wide-types specified. */
1364 if (!REG_P (reg)
1365 || in_class_p (reg, cl, &new_class)
1366 || known_le (GET_MODE_SIZE (mode), GET_MODE_SIZE (ptr_mode)))
1367 loc = &SUBREG_REG (*loc);
1370 reg = *loc;
1371 mode = GET_MODE (reg);
1372 if (! REG_P (reg))
1374 if (check_only_p)
1375 return true;
1376 /* Always reload memory in an address even if the target supports
1377 such addresses. */
1378 new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, "address");
1379 before_p = true;
1381 else
1383 regno = REGNO (reg);
1384 rclass = get_reg_class (regno);
1385 if (! check_only_p
1386 && (*loc = get_equiv_with_elimination (reg, curr_insn)) != reg)
1388 if (lra_dump_file != NULL)
1390 fprintf (lra_dump_file,
1391 "Changing pseudo %d in address of insn %u on equiv ",
1392 REGNO (reg), INSN_UID (curr_insn));
1393 dump_value_slim (lra_dump_file, *loc, 1);
1394 fprintf (lra_dump_file, "\n");
1396 *loc = copy_rtx (*loc);
1398 if (*loc != reg || ! in_class_p (reg, cl, &new_class))
1400 if (check_only_p)
1401 return true;
1402 reg = *loc;
1403 if (get_reload_reg (after == NULL ? OP_IN : OP_INOUT,
1404 mode, reg, cl, subreg_p, "address", &new_reg))
1405 before_p = true;
1407 else if (new_class != NO_REGS && rclass != new_class)
1409 if (check_only_p)
1410 return true;
1411 lra_change_class (regno, new_class, " Change to", true);
1412 return false;
1414 else
1415 return false;
1417 if (before_p)
1419 push_to_sequence (*before);
1420 lra_emit_move (new_reg, reg);
1421 *before = get_insns ();
1422 end_sequence ();
1424 *loc = new_reg;
1425 if (after != NULL)
1427 start_sequence ();
1428 lra_emit_move (before_p ? copy_rtx (reg) : reg, new_reg);
1429 emit_insn (*after);
1430 *after = get_insns ();
1431 end_sequence ();
1433 return true;
1436 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1437 the insn to be inserted before curr insn. AFTER returns the
1438 the insn to be inserted after curr insn. ORIGREG and NEWREG
1439 are the original reg and new reg for reload. */
1440 static void
1441 insert_move_for_subreg (rtx_insn **before, rtx_insn **after, rtx origreg,
1442 rtx newreg)
1444 if (before)
1446 push_to_sequence (*before);
1447 lra_emit_move (newreg, origreg);
1448 *before = get_insns ();
1449 end_sequence ();
1451 if (after)
1453 start_sequence ();
1454 lra_emit_move (origreg, newreg);
1455 emit_insn (*after);
1456 *after = get_insns ();
1457 end_sequence ();
1461 static int valid_address_p (machine_mode mode, rtx addr, addr_space_t as);
1462 static bool process_address (int, bool, rtx_insn **, rtx_insn **);
1464 /* Make reloads for subreg in operand NOP with internal subreg mode
1465 REG_MODE, add new reloads for further processing. Return true if
1466 any change was done. */
1467 static bool
1468 simplify_operand_subreg (int nop, machine_mode reg_mode)
1470 int hard_regno;
1471 rtx_insn *before, *after;
1472 machine_mode mode, innermode;
1473 rtx reg, new_reg;
1474 rtx operand = *curr_id->operand_loc[nop];
1475 enum reg_class regclass;
1476 enum op_type type;
1478 before = after = NULL;
1480 if (GET_CODE (operand) != SUBREG)
1481 return false;
1483 mode = GET_MODE (operand);
1484 reg = SUBREG_REG (operand);
1485 innermode = GET_MODE (reg);
1486 type = curr_static_id->operand[nop].type;
1487 if (MEM_P (reg))
1489 const bool addr_was_valid
1490 = valid_address_p (innermode, XEXP (reg, 0), MEM_ADDR_SPACE (reg));
1491 alter_subreg (curr_id->operand_loc[nop], false);
1492 rtx subst = *curr_id->operand_loc[nop];
1493 lra_assert (MEM_P (subst));
1495 if (!addr_was_valid
1496 || valid_address_p (GET_MODE (subst), XEXP (subst, 0),
1497 MEM_ADDR_SPACE (subst))
1498 || ((get_constraint_type (lookup_constraint
1499 (curr_static_id->operand[nop].constraint))
1500 != CT_SPECIAL_MEMORY)
1501 /* We still can reload address and if the address is
1502 valid, we can remove subreg without reloading its
1503 inner memory. */
1504 && valid_address_p (GET_MODE (subst),
1505 regno_reg_rtx
1506 [ira_class_hard_regs
1507 [base_reg_class (GET_MODE (subst),
1508 MEM_ADDR_SPACE (subst),
1509 ADDRESS, SCRATCH)][0]],
1510 MEM_ADDR_SPACE (subst))))
1512 /* If we change the address for a paradoxical subreg of memory, the
1513 new address might violate the necessary alignment or the access
1514 might be slow; take this into consideration. We need not worry
1515 about accesses beyond allocated memory for paradoxical memory
1516 subregs as we don't substitute such equiv memory (see processing
1517 equivalences in function lra_constraints) and because for spilled
1518 pseudos we allocate stack memory enough for the biggest
1519 corresponding paradoxical subreg.
1521 However, do not blindly simplify a (subreg (mem ...)) for
1522 WORD_REGISTER_OPERATIONS targets as this may lead to loading junk
1523 data into a register when the inner is narrower than outer or
1524 missing important data from memory when the inner is wider than
1525 outer. This rule only applies to modes that are no wider than
1526 a word. */
1527 if (!(maybe_ne (GET_MODE_PRECISION (mode),
1528 GET_MODE_PRECISION (innermode))
1529 && known_le (GET_MODE_SIZE (mode), UNITS_PER_WORD)
1530 && known_le (GET_MODE_SIZE (innermode), UNITS_PER_WORD)
1531 && WORD_REGISTER_OPERATIONS)
1532 && (!(MEM_ALIGN (subst) < GET_MODE_ALIGNMENT (mode)
1533 && targetm.slow_unaligned_access (mode, MEM_ALIGN (subst)))
1534 || (MEM_ALIGN (reg) < GET_MODE_ALIGNMENT (innermode)
1535 && targetm.slow_unaligned_access (innermode,
1536 MEM_ALIGN (reg)))))
1537 return true;
1539 *curr_id->operand_loc[nop] = operand;
1541 /* But if the address was not valid, we cannot reload the MEM without
1542 reloading the address first. */
1543 if (!addr_was_valid)
1544 process_address (nop, false, &before, &after);
1546 /* INNERMODE is fast, MODE slow. Reload the mem in INNERMODE. */
1547 enum reg_class rclass
1548 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1549 if (get_reload_reg (curr_static_id->operand[nop].type, innermode,
1550 reg, rclass, TRUE, "slow mem", &new_reg))
1552 bool insert_before, insert_after;
1553 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1555 insert_before = (type != OP_OUT
1556 || partial_subreg_p (mode, innermode));
1557 insert_after = type != OP_IN;
1558 insert_move_for_subreg (insert_before ? &before : NULL,
1559 insert_after ? &after : NULL,
1560 reg, new_reg);
1562 SUBREG_REG (operand) = new_reg;
1564 /* Convert to MODE. */
1565 reg = operand;
1566 rclass
1567 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1568 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1569 rclass, TRUE, "slow mem", &new_reg))
1571 bool insert_before, insert_after;
1572 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1574 insert_before = type != OP_OUT;
1575 insert_after = type != OP_IN;
1576 insert_move_for_subreg (insert_before ? &before : NULL,
1577 insert_after ? &after : NULL,
1578 reg, new_reg);
1580 *curr_id->operand_loc[nop] = new_reg;
1581 lra_process_new_insns (curr_insn, before, after,
1582 "Inserting slow mem reload");
1583 return true;
1586 /* If the address was valid and became invalid, prefer to reload
1587 the memory. Typical case is when the index scale should
1588 correspond the memory. */
1589 *curr_id->operand_loc[nop] = operand;
1590 /* Do not return false here as the MEM_P (reg) will be processed
1591 later in this function. */
1593 else if (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)
1595 alter_subreg (curr_id->operand_loc[nop], false);
1596 return true;
1598 else if (CONSTANT_P (reg))
1600 /* Try to simplify subreg of constant. It is usually result of
1601 equivalence substitution. */
1602 if (innermode == VOIDmode
1603 && (innermode = original_subreg_reg_mode[nop]) == VOIDmode)
1604 innermode = curr_static_id->operand[nop].mode;
1605 if ((new_reg = simplify_subreg (mode, reg, innermode,
1606 SUBREG_BYTE (operand))) != NULL_RTX)
1608 *curr_id->operand_loc[nop] = new_reg;
1609 return true;
1612 /* Put constant into memory when we have mixed modes. It generates
1613 a better code in most cases as it does not need a secondary
1614 reload memory. It also prevents LRA looping when LRA is using
1615 secondary reload memory again and again. */
1616 if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg)
1617 && SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode))
1619 SUBREG_REG (operand) = force_const_mem (reg_mode, reg);
1620 alter_subreg (curr_id->operand_loc[nop], false);
1621 return true;
1623 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1624 if there may be a problem accessing OPERAND in the outer
1625 mode. */
1626 if ((REG_P (reg)
1627 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1628 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1629 /* Don't reload paradoxical subregs because we could be looping
1630 having repeatedly final regno out of hard regs range. */
1631 && (hard_regno_nregs (hard_regno, innermode)
1632 >= hard_regno_nregs (hard_regno, mode))
1633 && simplify_subreg_regno (hard_regno, innermode,
1634 SUBREG_BYTE (operand), mode) < 0
1635 /* Don't reload subreg for matching reload. It is actually
1636 valid subreg in LRA. */
1637 && ! LRA_SUBREG_P (operand))
1638 || CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg))
1640 enum reg_class rclass;
1642 if (REG_P (reg))
1643 /* There is a big probability that we will get the same class
1644 for the new pseudo and we will get the same insn which
1645 means infinite looping. So spill the new pseudo. */
1646 rclass = NO_REGS;
1647 else
1648 /* The class will be defined later in curr_insn_transform. */
1649 rclass
1650 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1652 if (get_reload_reg (curr_static_id->operand[nop].type, reg_mode, reg,
1653 rclass, TRUE, "subreg reg", &new_reg))
1655 bool insert_before, insert_after;
1656 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1658 insert_before = (type != OP_OUT
1659 || read_modify_subreg_p (operand));
1660 insert_after = (type != OP_IN);
1661 insert_move_for_subreg (insert_before ? &before : NULL,
1662 insert_after ? &after : NULL,
1663 reg, new_reg);
1665 SUBREG_REG (operand) = new_reg;
1666 lra_process_new_insns (curr_insn, before, after,
1667 "Inserting subreg reload");
1668 return true;
1670 /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1671 IRA allocates hardreg to the inner pseudo reg according to its mode
1672 instead of the outermode, so the size of the hardreg may not be enough
1673 to contain the outermode operand, in that case we may need to insert
1674 reload for the reg. For the following two types of paradoxical subreg,
1675 we need to insert reload:
1676 1. If the op_type is OP_IN, and the hardreg could not be paired with
1677 other hardreg to contain the outermode operand
1678 (checked by in_hard_reg_set_p), we need to insert the reload.
1679 2. If the op_type is OP_OUT or OP_INOUT.
1681 Here is a paradoxical subreg example showing how the reload is generated:
1683 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1684 (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1686 In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1687 here, if reg107 is assigned to hardreg R15, because R15 is the last
1688 hardreg, compiler cannot find another hardreg to pair with R15 to
1689 contain TImode data. So we insert a TImode reload reg180 for it.
1690 After reload is inserted:
1692 (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1693 (reg:DI 107 [ __comp ])) -1
1694 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1695 (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1697 Two reload hard registers will be allocated to reg180 to save TImode data
1698 in LRA_assign.
1700 For LRA pseudos this should normally be handled by the biggest_mode
1701 mechanism. However, it's possible for new uses of an LRA pseudo
1702 to be introduced after we've allocated it, such as when undoing
1703 inheritance, and the allocated register might not then be appropriate
1704 for the new uses. */
1705 else if (REG_P (reg)
1706 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1707 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1708 && (hard_regno_nregs (hard_regno, innermode)
1709 < hard_regno_nregs (hard_regno, mode))
1710 && (regclass = lra_get_allocno_class (REGNO (reg)))
1711 && (type != OP_IN
1712 || !in_hard_reg_set_p (reg_class_contents[regclass],
1713 mode, hard_regno)
1714 || overlaps_hard_reg_set_p (lra_no_alloc_regs,
1715 mode, hard_regno)))
1717 /* The class will be defined later in curr_insn_transform. */
1718 enum reg_class rclass
1719 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1721 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1722 rclass, TRUE, "paradoxical subreg", &new_reg))
1724 rtx subreg;
1725 bool insert_before, insert_after;
1727 PUT_MODE (new_reg, mode);
1728 subreg = gen_lowpart_SUBREG (innermode, new_reg);
1729 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1731 insert_before = (type != OP_OUT);
1732 insert_after = (type != OP_IN);
1733 insert_move_for_subreg (insert_before ? &before : NULL,
1734 insert_after ? &after : NULL,
1735 reg, subreg);
1737 SUBREG_REG (operand) = new_reg;
1738 lra_process_new_insns (curr_insn, before, after,
1739 "Inserting paradoxical subreg reload");
1740 return true;
1742 return false;
1745 /* Return TRUE if X refers for a hard register from SET. */
1746 static bool
1747 uses_hard_regs_p (rtx x, HARD_REG_SET set)
1749 int i, j, x_hard_regno;
1750 machine_mode mode;
1751 const char *fmt;
1752 enum rtx_code code;
1754 if (x == NULL_RTX)
1755 return false;
1756 code = GET_CODE (x);
1757 mode = GET_MODE (x);
1758 if (code == SUBREG)
1760 mode = wider_subreg_mode (x);
1761 x = SUBREG_REG (x);
1762 code = GET_CODE (x);
1765 if (REG_P (x))
1767 x_hard_regno = get_hard_regno (x, true);
1768 return (x_hard_regno >= 0
1769 && overlaps_hard_reg_set_p (set, mode, x_hard_regno));
1771 if (MEM_P (x))
1773 struct address_info ad;
1775 decompose_mem_address (&ad, x);
1776 if (ad.base_term != NULL && uses_hard_regs_p (*ad.base_term, set))
1777 return true;
1778 if (ad.index_term != NULL && uses_hard_regs_p (*ad.index_term, set))
1779 return true;
1781 fmt = GET_RTX_FORMAT (code);
1782 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1784 if (fmt[i] == 'e')
1786 if (uses_hard_regs_p (XEXP (x, i), set))
1787 return true;
1789 else if (fmt[i] == 'E')
1791 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1792 if (uses_hard_regs_p (XVECEXP (x, i, j), set))
1793 return true;
1796 return false;
1799 /* Return true if OP is a spilled pseudo. */
1800 static inline bool
1801 spilled_pseudo_p (rtx op)
1803 return (REG_P (op)
1804 && REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op)));
1807 /* Return true if X is a general constant. */
1808 static inline bool
1809 general_constant_p (rtx x)
1811 return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x));
1814 static bool
1815 reg_in_class_p (rtx reg, enum reg_class cl)
1817 if (cl == NO_REGS)
1818 return get_reg_class (REGNO (reg)) == NO_REGS;
1819 return in_class_p (reg, cl, NULL);
1822 /* Return true if SET of RCLASS contains no hard regs which can be
1823 used in MODE. */
1824 static bool
1825 prohibited_class_reg_set_mode_p (enum reg_class rclass,
1826 HARD_REG_SET &set,
1827 machine_mode mode)
1829 HARD_REG_SET temp;
1831 lra_assert (hard_reg_set_subset_p (reg_class_contents[rclass], set));
1832 COPY_HARD_REG_SET (temp, set);
1833 AND_COMPL_HARD_REG_SET (temp, lra_no_alloc_regs);
1834 return (hard_reg_set_subset_p
1835 (temp, ira_prohibited_class_mode_regs[rclass][mode]));
1839 /* Used to check validity info about small class input operands. It
1840 should be incremented at start of processing an insn
1841 alternative. */
1842 static unsigned int curr_small_class_check = 0;
1844 /* Update number of used inputs of class OP_CLASS for operand NOP.
1845 Return true if we have more such class operands than the number of
1846 available regs. */
1847 static bool
1848 update_and_check_small_class_inputs (int nop, enum reg_class op_class)
1850 static unsigned int small_class_check[LIM_REG_CLASSES];
1851 static int small_class_input_nums[LIM_REG_CLASSES];
1853 if (SMALL_REGISTER_CLASS_P (op_class)
1854 /* We are interesting in classes became small because of fixing
1855 some hard regs, e.g. by an user through GCC options. */
1856 && hard_reg_set_intersect_p (reg_class_contents[op_class],
1857 ira_no_alloc_regs)
1858 && (curr_static_id->operand[nop].type != OP_OUT
1859 || curr_static_id->operand[nop].early_clobber))
1861 if (small_class_check[op_class] == curr_small_class_check)
1862 small_class_input_nums[op_class]++;
1863 else
1865 small_class_check[op_class] = curr_small_class_check;
1866 small_class_input_nums[op_class] = 1;
1868 if (small_class_input_nums[op_class] > ira_class_hard_regs_num[op_class])
1869 return true;
1871 return false;
1874 /* Major function to choose the current insn alternative and what
1875 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
1876 negative we should consider only this alternative. Return false if
1877 we can not choose the alternative or find how to reload the
1878 operands. */
1879 static bool
1880 process_alt_operands (int only_alternative)
1882 bool ok_p = false;
1883 int nop, overall, nalt;
1884 int n_alternatives = curr_static_id->n_alternatives;
1885 int n_operands = curr_static_id->n_operands;
1886 /* LOSERS counts the operands that don't fit this alternative and
1887 would require loading. */
1888 int losers;
1889 int addr_losers;
1890 /* REJECT is a count of how undesirable this alternative says it is
1891 if any reloading is required. If the alternative matches exactly
1892 then REJECT is ignored, but otherwise it gets this much counted
1893 against it in addition to the reloading needed. */
1894 int reject;
1895 /* This is defined by '!' or '?' alternative constraint and added to
1896 reject. But in some cases it can be ignored. */
1897 int static_reject;
1898 int op_reject;
1899 /* The number of elements in the following array. */
1900 int early_clobbered_regs_num;
1901 /* Numbers of operands which are early clobber registers. */
1902 int early_clobbered_nops[MAX_RECOG_OPERANDS];
1903 enum reg_class curr_alt[MAX_RECOG_OPERANDS];
1904 HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS];
1905 bool curr_alt_match_win[MAX_RECOG_OPERANDS];
1906 bool curr_alt_win[MAX_RECOG_OPERANDS];
1907 bool curr_alt_offmemok[MAX_RECOG_OPERANDS];
1908 int curr_alt_matches[MAX_RECOG_OPERANDS];
1909 /* The number of elements in the following array. */
1910 int curr_alt_dont_inherit_ops_num;
1911 /* Numbers of operands whose reload pseudos should not be inherited. */
1912 int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1913 rtx op;
1914 /* The register when the operand is a subreg of register, otherwise the
1915 operand itself. */
1916 rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS];
1917 /* The register if the operand is a register or subreg of register,
1918 otherwise NULL. */
1919 rtx operand_reg[MAX_RECOG_OPERANDS];
1920 int hard_regno[MAX_RECOG_OPERANDS];
1921 machine_mode biggest_mode[MAX_RECOG_OPERANDS];
1922 int reload_nregs, reload_sum;
1923 bool costly_p;
1924 enum reg_class cl;
1926 /* Calculate some data common for all alternatives to speed up the
1927 function. */
1928 for (nop = 0; nop < n_operands; nop++)
1930 rtx reg;
1932 op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop];
1933 /* The real hard regno of the operand after the allocation. */
1934 hard_regno[nop] = get_hard_regno (op, true);
1936 operand_reg[nop] = reg = op;
1937 biggest_mode[nop] = GET_MODE (op);
1938 if (GET_CODE (op) == SUBREG)
1940 biggest_mode[nop] = wider_subreg_mode (op);
1941 operand_reg[nop] = reg = SUBREG_REG (op);
1943 if (! REG_P (reg))
1944 operand_reg[nop] = NULL_RTX;
1945 else if (REGNO (reg) >= FIRST_PSEUDO_REGISTER
1946 || ((int) REGNO (reg)
1947 == lra_get_elimination_hard_regno (REGNO (reg))))
1948 no_subreg_reg_operand[nop] = reg;
1949 else
1950 operand_reg[nop] = no_subreg_reg_operand[nop]
1951 /* Just use natural mode for elimination result. It should
1952 be enough for extra constraints hooks. */
1953 = regno_reg_rtx[hard_regno[nop]];
1956 /* The constraints are made of several alternatives. Each operand's
1957 constraint looks like foo,bar,... with commas separating the
1958 alternatives. The first alternatives for all operands go
1959 together, the second alternatives go together, etc.
1961 First loop over alternatives. */
1962 alternative_mask preferred = curr_id->preferred_alternatives;
1963 if (only_alternative >= 0)
1964 preferred &= ALTERNATIVE_BIT (only_alternative);
1966 for (nalt = 0; nalt < n_alternatives; nalt++)
1968 /* Loop over operands for one constraint alternative. */
1969 if (!TEST_BIT (preferred, nalt))
1970 continue;
1972 bool matching_early_clobber[MAX_RECOG_OPERANDS];
1973 curr_small_class_check++;
1974 overall = losers = addr_losers = 0;
1975 static_reject = reject = reload_nregs = reload_sum = 0;
1976 for (nop = 0; nop < n_operands; nop++)
1978 int inc = (curr_static_id
1979 ->operand_alternative[nalt * n_operands + nop].reject);
1980 if (lra_dump_file != NULL && inc != 0)
1981 fprintf (lra_dump_file,
1982 " Staticly defined alt reject+=%d\n", inc);
1983 static_reject += inc;
1984 matching_early_clobber[nop] = 0;
1986 reject += static_reject;
1987 early_clobbered_regs_num = 0;
1989 for (nop = 0; nop < n_operands; nop++)
1991 const char *p;
1992 char *end;
1993 int len, c, m, i, opalt_num, this_alternative_matches;
1994 bool win, did_match, offmemok, early_clobber_p;
1995 /* false => this operand can be reloaded somehow for this
1996 alternative. */
1997 bool badop;
1998 /* true => this operand can be reloaded if the alternative
1999 allows regs. */
2000 bool winreg;
2001 /* True if a constant forced into memory would be OK for
2002 this operand. */
2003 bool constmemok;
2004 enum reg_class this_alternative, this_costly_alternative;
2005 HARD_REG_SET this_alternative_set, this_costly_alternative_set;
2006 bool this_alternative_match_win, this_alternative_win;
2007 bool this_alternative_offmemok;
2008 bool scratch_p;
2009 machine_mode mode;
2010 enum constraint_num cn;
2012 opalt_num = nalt * n_operands + nop;
2013 if (curr_static_id->operand_alternative[opalt_num].anything_ok)
2015 /* Fast track for no constraints at all. */
2016 curr_alt[nop] = NO_REGS;
2017 CLEAR_HARD_REG_SET (curr_alt_set[nop]);
2018 curr_alt_win[nop] = true;
2019 curr_alt_match_win[nop] = false;
2020 curr_alt_offmemok[nop] = false;
2021 curr_alt_matches[nop] = -1;
2022 continue;
2025 op = no_subreg_reg_operand[nop];
2026 mode = curr_operand_mode[nop];
2028 win = did_match = winreg = offmemok = constmemok = false;
2029 badop = true;
2031 early_clobber_p = false;
2032 p = curr_static_id->operand_alternative[opalt_num].constraint;
2034 this_costly_alternative = this_alternative = NO_REGS;
2035 /* We update set of possible hard regs besides its class
2036 because reg class might be inaccurate. For example,
2037 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
2038 is translated in HI_REGS because classes are merged by
2039 pairs and there is no accurate intermediate class. */
2040 CLEAR_HARD_REG_SET (this_alternative_set);
2041 CLEAR_HARD_REG_SET (this_costly_alternative_set);
2042 this_alternative_win = false;
2043 this_alternative_match_win = false;
2044 this_alternative_offmemok = false;
2045 this_alternative_matches = -1;
2047 /* An empty constraint should be excluded by the fast
2048 track. */
2049 lra_assert (*p != 0 && *p != ',');
2051 op_reject = 0;
2052 /* Scan this alternative's specs for this operand; set WIN
2053 if the operand fits any letter in this alternative.
2054 Otherwise, clear BADOP if this operand could fit some
2055 letter after reloads, or set WINREG if this operand could
2056 fit after reloads provided the constraint allows some
2057 registers. */
2058 costly_p = false;
2061 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2063 case '\0':
2064 len = 0;
2065 break;
2066 case ',':
2067 c = '\0';
2068 break;
2070 case '&':
2071 early_clobber_p = true;
2072 break;
2074 case '$':
2075 op_reject += LRA_MAX_REJECT;
2076 break;
2077 case '^':
2078 op_reject += LRA_LOSER_COST_FACTOR;
2079 break;
2081 case '#':
2082 /* Ignore rest of this alternative. */
2083 c = '\0';
2084 break;
2086 case '0': case '1': case '2': case '3': case '4':
2087 case '5': case '6': case '7': case '8': case '9':
2089 int m_hregno;
2090 bool match_p;
2092 m = strtoul (p, &end, 10);
2093 p = end;
2094 len = 0;
2095 lra_assert (nop > m);
2097 /* Reject matches if we don't know which operand is
2098 bigger. This situation would arguably be a bug in
2099 an .md pattern, but could also occur in a user asm. */
2100 if (!ordered_p (GET_MODE_SIZE (biggest_mode[m]),
2101 GET_MODE_SIZE (biggest_mode[nop])))
2102 break;
2104 /* Don't match wrong asm insn operands for proper
2105 diagnostic later. */
2106 if (INSN_CODE (curr_insn) < 0
2107 && (curr_operand_mode[m] == BLKmode
2108 || curr_operand_mode[nop] == BLKmode)
2109 && curr_operand_mode[m] != curr_operand_mode[nop])
2110 break;
2112 m_hregno = get_hard_regno (*curr_id->operand_loc[m], false);
2113 /* We are supposed to match a previous operand.
2114 If we do, we win if that one did. If we do
2115 not, count both of the operands as losers.
2116 (This is too conservative, since most of the
2117 time only a single reload insn will be needed
2118 to make the two operands win. As a result,
2119 this alternative may be rejected when it is
2120 actually desirable.) */
2121 match_p = false;
2122 if (operands_match_p (*curr_id->operand_loc[nop],
2123 *curr_id->operand_loc[m], m_hregno))
2125 /* We should reject matching of an early
2126 clobber operand if the matching operand is
2127 not dying in the insn. */
2128 if (! curr_static_id->operand[m].early_clobber
2129 || operand_reg[nop] == NULL_RTX
2130 || (find_regno_note (curr_insn, REG_DEAD,
2131 REGNO (op))
2132 || REGNO (op) == REGNO (operand_reg[m])))
2133 match_p = true;
2135 if (match_p)
2137 /* If we are matching a non-offsettable
2138 address where an offsettable address was
2139 expected, then we must reject this
2140 combination, because we can't reload
2141 it. */
2142 if (curr_alt_offmemok[m]
2143 && MEM_P (*curr_id->operand_loc[m])
2144 && curr_alt[m] == NO_REGS && ! curr_alt_win[m])
2145 continue;
2147 else
2149 /* Operands don't match. If the operands are
2150 different user defined explicit hard registers,
2151 then we cannot make them match. */
2152 if ((REG_P (*curr_id->operand_loc[nop])
2153 || SUBREG_P (*curr_id->operand_loc[nop]))
2154 && (REG_P (*curr_id->operand_loc[m])
2155 || SUBREG_P (*curr_id->operand_loc[m])))
2157 rtx nop_reg = *curr_id->operand_loc[nop];
2158 if (SUBREG_P (nop_reg))
2159 nop_reg = SUBREG_REG (nop_reg);
2160 rtx m_reg = *curr_id->operand_loc[m];
2161 if (SUBREG_P (m_reg))
2162 m_reg = SUBREG_REG (m_reg);
2164 if (REG_P (nop_reg)
2165 && HARD_REGISTER_P (nop_reg)
2166 && REG_USERVAR_P (nop_reg)
2167 && REG_P (m_reg)
2168 && HARD_REGISTER_P (m_reg)
2169 && REG_USERVAR_P (m_reg))
2170 break;
2173 /* Both operands must allow a reload register,
2174 otherwise we cannot make them match. */
2175 if (curr_alt[m] == NO_REGS)
2176 break;
2177 /* Retroactively mark the operand we had to
2178 match as a loser, if it wasn't already and
2179 it wasn't matched to a register constraint
2180 (e.g it might be matched by memory). */
2181 if (curr_alt_win[m]
2182 && (operand_reg[m] == NULL_RTX
2183 || hard_regno[m] < 0))
2185 losers++;
2186 reload_nregs
2187 += (ira_reg_class_max_nregs[curr_alt[m]]
2188 [GET_MODE (*curr_id->operand_loc[m])]);
2191 /* Prefer matching earlyclobber alternative as
2192 it results in less hard regs required for
2193 the insn than a non-matching earlyclobber
2194 alternative. */
2195 if (curr_static_id->operand[m].early_clobber)
2197 if (lra_dump_file != NULL)
2198 fprintf
2199 (lra_dump_file,
2200 " %d Matching earlyclobber alt:"
2201 " reject--\n",
2202 nop);
2203 if (!matching_early_clobber[m])
2205 reject--;
2206 matching_early_clobber[m] = 1;
2209 /* Otherwise we prefer no matching
2210 alternatives because it gives more freedom
2211 in RA. */
2212 else if (operand_reg[nop] == NULL_RTX
2213 || (find_regno_note (curr_insn, REG_DEAD,
2214 REGNO (operand_reg[nop]))
2215 == NULL_RTX))
2217 if (lra_dump_file != NULL)
2218 fprintf
2219 (lra_dump_file,
2220 " %d Matching alt: reject+=2\n",
2221 nop);
2222 reject += 2;
2225 /* If we have to reload this operand and some
2226 previous operand also had to match the same
2227 thing as this operand, we don't know how to do
2228 that. */
2229 if (!match_p || !curr_alt_win[m])
2231 for (i = 0; i < nop; i++)
2232 if (curr_alt_matches[i] == m)
2233 break;
2234 if (i < nop)
2235 break;
2237 else
2238 did_match = true;
2240 this_alternative_matches = m;
2241 /* This can be fixed with reloads if the operand
2242 we are supposed to match can be fixed with
2243 reloads. */
2244 badop = false;
2245 this_alternative = curr_alt[m];
2246 COPY_HARD_REG_SET (this_alternative_set, curr_alt_set[m]);
2247 winreg = this_alternative != NO_REGS;
2248 break;
2251 case 'g':
2252 if (MEM_P (op)
2253 || general_constant_p (op)
2254 || spilled_pseudo_p (op))
2255 win = true;
2256 cl = GENERAL_REGS;
2257 goto reg;
2259 default:
2260 cn = lookup_constraint (p);
2261 switch (get_constraint_type (cn))
2263 case CT_REGISTER:
2264 cl = reg_class_for_constraint (cn);
2265 if (cl != NO_REGS)
2266 goto reg;
2267 break;
2269 case CT_CONST_INT:
2270 if (CONST_INT_P (op)
2271 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
2272 win = true;
2273 break;
2275 case CT_MEMORY:
2276 if (MEM_P (op)
2277 && satisfies_memory_constraint_p (op, cn))
2278 win = true;
2279 else if (spilled_pseudo_p (op))
2280 win = true;
2282 /* If we didn't already win, we can reload constants
2283 via force_const_mem or put the pseudo value into
2284 memory, or make other memory by reloading the
2285 address like for 'o'. */
2286 if (CONST_POOL_OK_P (mode, op)
2287 || MEM_P (op) || REG_P (op)
2288 /* We can restore the equiv insn by a
2289 reload. */
2290 || equiv_substition_p[nop])
2291 badop = false;
2292 constmemok = true;
2293 offmemok = true;
2294 break;
2296 case CT_ADDRESS:
2297 /* An asm operand with an address constraint
2298 that doesn't satisfy address_operand has
2299 is_address cleared, so that we don't try to
2300 make a non-address fit. */
2301 if (!curr_static_id->operand[nop].is_address)
2302 break;
2303 /* If we didn't already win, we can reload the address
2304 into a base register. */
2305 if (satisfies_address_constraint_p (op, cn))
2306 win = true;
2307 cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2308 ADDRESS, SCRATCH);
2309 badop = false;
2310 goto reg;
2312 case CT_FIXED_FORM:
2313 if (constraint_satisfied_p (op, cn))
2314 win = true;
2315 break;
2317 case CT_SPECIAL_MEMORY:
2318 if (MEM_P (op)
2319 && satisfies_memory_constraint_p (op, cn))
2320 win = true;
2321 else if (spilled_pseudo_p (op))
2322 win = true;
2323 break;
2325 break;
2327 reg:
2328 this_alternative = reg_class_subunion[this_alternative][cl];
2329 IOR_HARD_REG_SET (this_alternative_set,
2330 reg_class_contents[cl]);
2331 if (costly_p)
2333 this_costly_alternative
2334 = reg_class_subunion[this_costly_alternative][cl];
2335 IOR_HARD_REG_SET (this_costly_alternative_set,
2336 reg_class_contents[cl]);
2338 if (mode == BLKmode)
2339 break;
2340 winreg = true;
2341 if (REG_P (op))
2343 if (hard_regno[nop] >= 0
2344 && in_hard_reg_set_p (this_alternative_set,
2345 mode, hard_regno[nop]))
2346 win = true;
2347 else if (hard_regno[nop] < 0
2348 && in_class_p (op, this_alternative, NULL))
2349 win = true;
2351 break;
2353 if (c != ' ' && c != '\t')
2354 costly_p = c == '*';
2356 while ((p += len), c);
2358 scratch_p = (operand_reg[nop] != NULL_RTX
2359 && lra_former_scratch_p (REGNO (operand_reg[nop])));
2360 /* Record which operands fit this alternative. */
2361 if (win)
2363 this_alternative_win = true;
2364 if (operand_reg[nop] != NULL_RTX)
2366 if (hard_regno[nop] >= 0)
2368 if (in_hard_reg_set_p (this_costly_alternative_set,
2369 mode, hard_regno[nop]))
2371 if (lra_dump_file != NULL)
2372 fprintf (lra_dump_file,
2373 " %d Costly set: reject++\n",
2374 nop);
2375 reject++;
2378 else
2380 /* Prefer won reg to spilled pseudo under other
2381 equal conditions for possibe inheritance. */
2382 if (! scratch_p)
2384 if (lra_dump_file != NULL)
2385 fprintf
2386 (lra_dump_file,
2387 " %d Non pseudo reload: reject++\n",
2388 nop);
2389 reject++;
2391 if (in_class_p (operand_reg[nop],
2392 this_costly_alternative, NULL))
2394 if (lra_dump_file != NULL)
2395 fprintf
2396 (lra_dump_file,
2397 " %d Non pseudo costly reload:"
2398 " reject++\n",
2399 nop);
2400 reject++;
2403 /* We simulate the behavior of old reload here.
2404 Although scratches need hard registers and it
2405 might result in spilling other pseudos, no reload
2406 insns are generated for the scratches. So it
2407 might cost something but probably less than old
2408 reload pass believes. */
2409 if (scratch_p)
2411 if (lra_dump_file != NULL)
2412 fprintf (lra_dump_file,
2413 " %d Scratch win: reject+=2\n",
2414 nop);
2415 reject += 2;
2419 else if (did_match)
2420 this_alternative_match_win = true;
2421 else
2423 int const_to_mem = 0;
2424 bool no_regs_p;
2426 reject += op_reject;
2427 /* Never do output reload of stack pointer. It makes
2428 impossible to do elimination when SP is changed in
2429 RTL. */
2430 if (op == stack_pointer_rtx && ! frame_pointer_needed
2431 && curr_static_id->operand[nop].type != OP_IN)
2432 goto fail;
2434 /* If this alternative asks for a specific reg class, see if there
2435 is at least one allocatable register in that class. */
2436 no_regs_p
2437 = (this_alternative == NO_REGS
2438 || (hard_reg_set_subset_p
2439 (reg_class_contents[this_alternative],
2440 lra_no_alloc_regs)));
2442 /* For asms, verify that the class for this alternative is possible
2443 for the mode that is specified. */
2444 if (!no_regs_p && INSN_CODE (curr_insn) < 0)
2446 int i;
2447 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2448 if (targetm.hard_regno_mode_ok (i, mode)
2449 && in_hard_reg_set_p (reg_class_contents[this_alternative],
2450 mode, i))
2451 break;
2452 if (i == FIRST_PSEUDO_REGISTER)
2453 winreg = false;
2456 /* If this operand accepts a register, and if the
2457 register class has at least one allocatable register,
2458 then this operand can be reloaded. */
2459 if (winreg && !no_regs_p)
2460 badop = false;
2462 if (badop)
2464 if (lra_dump_file != NULL)
2465 fprintf (lra_dump_file,
2466 " alt=%d: Bad operand -- refuse\n",
2467 nalt);
2468 goto fail;
2471 if (this_alternative != NO_REGS)
2473 HARD_REG_SET available_regs;
2475 COPY_HARD_REG_SET (available_regs,
2476 reg_class_contents[this_alternative]);
2477 AND_COMPL_HARD_REG_SET
2478 (available_regs,
2479 ira_prohibited_class_mode_regs[this_alternative][mode]);
2480 AND_COMPL_HARD_REG_SET (available_regs, lra_no_alloc_regs);
2481 if (hard_reg_set_empty_p (available_regs))
2483 /* There are no hard regs holding a value of given
2484 mode. */
2485 if (offmemok)
2487 this_alternative = NO_REGS;
2488 if (lra_dump_file != NULL)
2489 fprintf (lra_dump_file,
2490 " %d Using memory because of"
2491 " a bad mode: reject+=2\n",
2492 nop);
2493 reject += 2;
2495 else
2497 if (lra_dump_file != NULL)
2498 fprintf (lra_dump_file,
2499 " alt=%d: Wrong mode -- refuse\n",
2500 nalt);
2501 goto fail;
2506 /* If not assigned pseudo has a class which a subset of
2507 required reg class, it is a less costly alternative
2508 as the pseudo still can get a hard reg of necessary
2509 class. */
2510 if (! no_regs_p && REG_P (op) && hard_regno[nop] < 0
2511 && (cl = get_reg_class (REGNO (op))) != NO_REGS
2512 && ira_class_subset_p[this_alternative][cl])
2514 if (lra_dump_file != NULL)
2515 fprintf
2516 (lra_dump_file,
2517 " %d Super set class reg: reject-=3\n", nop);
2518 reject -= 3;
2521 this_alternative_offmemok = offmemok;
2522 if (this_costly_alternative != NO_REGS)
2524 if (lra_dump_file != NULL)
2525 fprintf (lra_dump_file,
2526 " %d Costly loser: reject++\n", nop);
2527 reject++;
2529 /* If the operand is dying, has a matching constraint,
2530 and satisfies constraints of the matched operand
2531 which failed to satisfy the own constraints, most probably
2532 the reload for this operand will be gone. */
2533 if (this_alternative_matches >= 0
2534 && !curr_alt_win[this_alternative_matches]
2535 && REG_P (op)
2536 && find_regno_note (curr_insn, REG_DEAD, REGNO (op))
2537 && (hard_regno[nop] >= 0
2538 ? in_hard_reg_set_p (this_alternative_set,
2539 mode, hard_regno[nop])
2540 : in_class_p (op, this_alternative, NULL)))
2542 if (lra_dump_file != NULL)
2543 fprintf
2544 (lra_dump_file,
2545 " %d Dying matched operand reload: reject++\n",
2546 nop);
2547 reject++;
2549 else
2551 /* Strict_low_part requires to reload the register
2552 not the sub-register. In this case we should
2553 check that a final reload hard reg can hold the
2554 value mode. */
2555 if (curr_static_id->operand[nop].strict_low
2556 && REG_P (op)
2557 && hard_regno[nop] < 0
2558 && GET_CODE (*curr_id->operand_loc[nop]) == SUBREG
2559 && ira_class_hard_regs_num[this_alternative] > 0
2560 && (!targetm.hard_regno_mode_ok
2561 (ira_class_hard_regs[this_alternative][0],
2562 GET_MODE (*curr_id->operand_loc[nop]))))
2564 if (lra_dump_file != NULL)
2565 fprintf
2566 (lra_dump_file,
2567 " alt=%d: Strict low subreg reload -- refuse\n",
2568 nalt);
2569 goto fail;
2571 losers++;
2573 if (operand_reg[nop] != NULL_RTX
2574 /* Output operands and matched input operands are
2575 not inherited. The following conditions do not
2576 exactly describe the previous statement but they
2577 are pretty close. */
2578 && curr_static_id->operand[nop].type != OP_OUT
2579 && (this_alternative_matches < 0
2580 || curr_static_id->operand[nop].type != OP_IN))
2582 int last_reload = (lra_reg_info[ORIGINAL_REGNO
2583 (operand_reg[nop])]
2584 .last_reload);
2586 /* The value of reload_sum has sense only if we
2587 process insns in their order. It happens only on
2588 the first constraints sub-pass when we do most of
2589 reload work. */
2590 if (lra_constraint_iter == 1 && last_reload > bb_reload_num)
2591 reload_sum += last_reload - bb_reload_num;
2593 /* If this is a constant that is reloaded into the
2594 desired class by copying it to memory first, count
2595 that as another reload. This is consistent with
2596 other code and is required to avoid choosing another
2597 alternative when the constant is moved into memory.
2598 Note that the test here is precisely the same as in
2599 the code below that calls force_const_mem. */
2600 if (CONST_POOL_OK_P (mode, op)
2601 && ((targetm.preferred_reload_class
2602 (op, this_alternative) == NO_REGS)
2603 || no_input_reloads_p))
2605 const_to_mem = 1;
2606 if (! no_regs_p)
2607 losers++;
2610 /* Alternative loses if it requires a type of reload not
2611 permitted for this insn. We can always reload
2612 objects with a REG_UNUSED note. */
2613 if ((curr_static_id->operand[nop].type != OP_IN
2614 && no_output_reloads_p
2615 && ! find_reg_note (curr_insn, REG_UNUSED, op))
2616 || (curr_static_id->operand[nop].type != OP_OUT
2617 && no_input_reloads_p && ! const_to_mem)
2618 || (this_alternative_matches >= 0
2619 && (no_input_reloads_p
2620 || (no_output_reloads_p
2621 && (curr_static_id->operand
2622 [this_alternative_matches].type != OP_IN)
2623 && ! find_reg_note (curr_insn, REG_UNUSED,
2624 no_subreg_reg_operand
2625 [this_alternative_matches])))))
2627 if (lra_dump_file != NULL)
2628 fprintf
2629 (lra_dump_file,
2630 " alt=%d: No input/otput reload -- refuse\n",
2631 nalt);
2632 goto fail;
2635 /* Alternative loses if it required class pseudo can not
2636 hold value of required mode. Such insns can be
2637 described by insn definitions with mode iterators. */
2638 if (GET_MODE (*curr_id->operand_loc[nop]) != VOIDmode
2639 && ! hard_reg_set_empty_p (this_alternative_set)
2640 /* It is common practice for constraints to use a
2641 class which does not have actually enough regs to
2642 hold the value (e.g. x86 AREG for mode requiring
2643 more one general reg). Therefore we have 2
2644 conditions to check that the reload pseudo can
2645 not hold the mode value. */
2646 && (!targetm.hard_regno_mode_ok
2647 (ira_class_hard_regs[this_alternative][0],
2648 GET_MODE (*curr_id->operand_loc[nop])))
2649 /* The above condition is not enough as the first
2650 reg in ira_class_hard_regs can be not aligned for
2651 multi-words mode values. */
2652 && (prohibited_class_reg_set_mode_p
2653 (this_alternative, this_alternative_set,
2654 GET_MODE (*curr_id->operand_loc[nop]))))
2656 if (lra_dump_file != NULL)
2657 fprintf (lra_dump_file,
2658 " alt=%d: reload pseudo for op %d "
2659 " can not hold the mode value -- refuse\n",
2660 nalt, nop);
2661 goto fail;
2664 /* Check strong discouragement of reload of non-constant
2665 into class THIS_ALTERNATIVE. */
2666 if (! CONSTANT_P (op) && ! no_regs_p
2667 && (targetm.preferred_reload_class
2668 (op, this_alternative) == NO_REGS
2669 || (curr_static_id->operand[nop].type == OP_OUT
2670 && (targetm.preferred_output_reload_class
2671 (op, this_alternative) == NO_REGS))))
2673 if (lra_dump_file != NULL)
2674 fprintf (lra_dump_file,
2675 " %d Non-prefered reload: reject+=%d\n",
2676 nop, LRA_MAX_REJECT);
2677 reject += LRA_MAX_REJECT;
2680 if (! (MEM_P (op) && offmemok)
2681 && ! (const_to_mem && constmemok))
2683 /* We prefer to reload pseudos over reloading other
2684 things, since such reloads may be able to be
2685 eliminated later. So bump REJECT in other cases.
2686 Don't do this in the case where we are forcing a
2687 constant into memory and it will then win since
2688 we don't want to have a different alternative
2689 match then. */
2690 if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2692 if (lra_dump_file != NULL)
2693 fprintf
2694 (lra_dump_file,
2695 " %d Non-pseudo reload: reject+=2\n",
2696 nop);
2697 reject += 2;
2700 if (! no_regs_p)
2701 reload_nregs
2702 += ira_reg_class_max_nregs[this_alternative][mode];
2704 if (SMALL_REGISTER_CLASS_P (this_alternative))
2706 if (lra_dump_file != NULL)
2707 fprintf
2708 (lra_dump_file,
2709 " %d Small class reload: reject+=%d\n",
2710 nop, LRA_LOSER_COST_FACTOR / 2);
2711 reject += LRA_LOSER_COST_FACTOR / 2;
2715 /* We are trying to spill pseudo into memory. It is
2716 usually more costly than moving to a hard register
2717 although it might takes the same number of
2718 reloads.
2720 Non-pseudo spill may happen also. Suppose a target allows both
2721 register and memory in the operand constraint alternatives,
2722 then it's typical that an eliminable register has a substition
2723 of "base + offset" which can either be reloaded by a simple
2724 "new_reg <= base + offset" which will match the register
2725 constraint, or a similar reg addition followed by further spill
2726 to and reload from memory which will match the memory
2727 constraint, but this memory spill will be much more costly
2728 usually.
2730 Code below increases the reject for both pseudo and non-pseudo
2731 spill. */
2732 if (no_regs_p
2733 && !(MEM_P (op) && offmemok)
2734 && !(REG_P (op) && hard_regno[nop] < 0))
2736 if (lra_dump_file != NULL)
2737 fprintf
2738 (lra_dump_file,
2739 " %d Spill %spseudo into memory: reject+=3\n",
2740 nop, REG_P (op) ? "" : "Non-");
2741 reject += 3;
2742 if (VECTOR_MODE_P (mode))
2744 /* Spilling vectors into memory is usually more
2745 costly as they contain big values. */
2746 if (lra_dump_file != NULL)
2747 fprintf
2748 (lra_dump_file,
2749 " %d Spill vector pseudo: reject+=2\n",
2750 nop);
2751 reject += 2;
2755 /* When we use an operand requiring memory in given
2756 alternative, the insn should write *and* read the
2757 value to/from memory it is costly in comparison with
2758 an insn alternative which does not use memory
2759 (e.g. register or immediate operand). We exclude
2760 memory operand for such case as we can satisfy the
2761 memory constraints by reloading address. */
2762 if (no_regs_p && offmemok && !MEM_P (op))
2764 if (lra_dump_file != NULL)
2765 fprintf
2766 (lra_dump_file,
2767 " Using memory insn operand %d: reject+=3\n",
2768 nop);
2769 reject += 3;
2772 /* If reload requires moving value through secondary
2773 memory, it will need one more insn at least. */
2774 if (this_alternative != NO_REGS
2775 && REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS
2776 && ((curr_static_id->operand[nop].type != OP_OUT
2777 && targetm.secondary_memory_needed (GET_MODE (op), cl,
2778 this_alternative))
2779 || (curr_static_id->operand[nop].type != OP_IN
2780 && (targetm.secondary_memory_needed
2781 (GET_MODE (op), this_alternative, cl)))))
2782 losers++;
2784 /* Input reloads can be inherited more often than output
2785 reloads can be removed, so penalize output
2786 reloads. */
2787 if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN)
2789 if (lra_dump_file != NULL)
2790 fprintf
2791 (lra_dump_file,
2792 " %d Non input pseudo reload: reject++\n",
2793 nop);
2794 reject++;
2797 if (MEM_P (op) && offmemok)
2798 addr_losers++;
2799 else if (curr_static_id->operand[nop].type == OP_INOUT)
2801 if (lra_dump_file != NULL)
2802 fprintf
2803 (lra_dump_file,
2804 " %d Input/Output reload: reject+=%d\n",
2805 nop, LRA_LOSER_COST_FACTOR);
2806 reject += LRA_LOSER_COST_FACTOR;
2810 if (early_clobber_p && ! scratch_p)
2812 if (lra_dump_file != NULL)
2813 fprintf (lra_dump_file,
2814 " %d Early clobber: reject++\n", nop);
2815 reject++;
2817 /* ??? We check early clobbers after processing all operands
2818 (see loop below) and there we update the costs more.
2819 Should we update the cost (may be approximately) here
2820 because of early clobber register reloads or it is a rare
2821 or non-important thing to be worth to do it. */
2822 overall = (losers * LRA_LOSER_COST_FACTOR + reject
2823 - (addr_losers == losers ? static_reject : 0));
2824 if ((best_losers == 0 || losers != 0) && best_overall < overall)
2826 if (lra_dump_file != NULL)
2827 fprintf (lra_dump_file,
2828 " alt=%d,overall=%d,losers=%d -- refuse\n",
2829 nalt, overall, losers);
2830 goto fail;
2833 if (update_and_check_small_class_inputs (nop, this_alternative))
2835 if (lra_dump_file != NULL)
2836 fprintf (lra_dump_file,
2837 " alt=%d, not enough small class regs -- refuse\n",
2838 nalt);
2839 goto fail;
2841 curr_alt[nop] = this_alternative;
2842 COPY_HARD_REG_SET (curr_alt_set[nop], this_alternative_set);
2843 curr_alt_win[nop] = this_alternative_win;
2844 curr_alt_match_win[nop] = this_alternative_match_win;
2845 curr_alt_offmemok[nop] = this_alternative_offmemok;
2846 curr_alt_matches[nop] = this_alternative_matches;
2848 if (this_alternative_matches >= 0
2849 && !did_match && !this_alternative_win)
2850 curr_alt_win[this_alternative_matches] = false;
2852 if (early_clobber_p && operand_reg[nop] != NULL_RTX)
2853 early_clobbered_nops[early_clobbered_regs_num++] = nop;
2856 if (curr_insn_set != NULL_RTX && n_operands == 2
2857 /* Prevent processing non-move insns. */
2858 && (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
2859 || SET_SRC (curr_insn_set) == no_subreg_reg_operand[1])
2860 && ((! curr_alt_win[0] && ! curr_alt_win[1]
2861 && REG_P (no_subreg_reg_operand[0])
2862 && REG_P (no_subreg_reg_operand[1])
2863 && (reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2864 || reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0])))
2865 || (! curr_alt_win[0] && curr_alt_win[1]
2866 && REG_P (no_subreg_reg_operand[1])
2867 /* Check that we reload memory not the memory
2868 address. */
2869 && ! (curr_alt_offmemok[0]
2870 && MEM_P (no_subreg_reg_operand[0]))
2871 && reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0]))
2872 || (curr_alt_win[0] && ! curr_alt_win[1]
2873 && REG_P (no_subreg_reg_operand[0])
2874 /* Check that we reload memory not the memory
2875 address. */
2876 && ! (curr_alt_offmemok[1]
2877 && MEM_P (no_subreg_reg_operand[1]))
2878 && reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2879 && (! CONST_POOL_OK_P (curr_operand_mode[1],
2880 no_subreg_reg_operand[1])
2881 || (targetm.preferred_reload_class
2882 (no_subreg_reg_operand[1],
2883 (enum reg_class) curr_alt[1]) != NO_REGS))
2884 /* If it is a result of recent elimination in move
2885 insn we can transform it into an add still by
2886 using this alternative. */
2887 && GET_CODE (no_subreg_reg_operand[1]) != PLUS
2888 /* Likewise if the source has been replaced with an
2889 equivalent value. This only happens once -- the reload
2890 will use the equivalent value instead of the register it
2891 replaces -- so there should be no danger of cycling. */
2892 && !equiv_substition_p[1])))
2894 /* We have a move insn and a new reload insn will be similar
2895 to the current insn. We should avoid such situation as
2896 it results in LRA cycling. */
2897 if (lra_dump_file != NULL)
2898 fprintf (lra_dump_file,
2899 " Cycle danger: overall += LRA_MAX_REJECT\n");
2900 overall += LRA_MAX_REJECT;
2902 ok_p = true;
2903 curr_alt_dont_inherit_ops_num = 0;
2904 for (nop = 0; nop < early_clobbered_regs_num; nop++)
2906 int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j;
2907 HARD_REG_SET temp_set;
2909 i = early_clobbered_nops[nop];
2910 if ((! curr_alt_win[i] && ! curr_alt_match_win[i])
2911 || hard_regno[i] < 0)
2912 continue;
2913 lra_assert (operand_reg[i] != NULL_RTX);
2914 clobbered_hard_regno = hard_regno[i];
2915 CLEAR_HARD_REG_SET (temp_set);
2916 add_to_hard_reg_set (&temp_set, biggest_mode[i], clobbered_hard_regno);
2917 first_conflict_j = last_conflict_j = -1;
2918 for (j = 0; j < n_operands; j++)
2919 if (j == i
2920 /* We don't want process insides of match_operator and
2921 match_parallel because otherwise we would process
2922 their operands once again generating a wrong
2923 code. */
2924 || curr_static_id->operand[j].is_operator)
2925 continue;
2926 else if ((curr_alt_matches[j] == i && curr_alt_match_win[j])
2927 || (curr_alt_matches[i] == j && curr_alt_match_win[i]))
2928 continue;
2929 /* If we don't reload j-th operand, check conflicts. */
2930 else if ((curr_alt_win[j] || curr_alt_match_win[j])
2931 && uses_hard_regs_p (*curr_id->operand_loc[j], temp_set))
2933 if (first_conflict_j < 0)
2934 first_conflict_j = j;
2935 last_conflict_j = j;
2936 /* Both the earlyclobber operand and conflicting operand
2937 cannot both be user defined hard registers. */
2938 if (HARD_REGISTER_P (operand_reg[i])
2939 && REG_USERVAR_P (operand_reg[i])
2940 && operand_reg[j] != NULL_RTX
2941 && HARD_REGISTER_P (operand_reg[j])
2942 && REG_USERVAR_P (operand_reg[j]))
2943 fatal_insn ("unable to generate reloads for "
2944 "impossible constraints:", curr_insn);
2946 if (last_conflict_j < 0)
2947 continue;
2949 /* If an earlyclobber operand conflicts with another non-matching
2950 operand (ie, they have been assigned the same hard register),
2951 then it is better to reload the other operand, as there may
2952 exist yet another operand with a matching constraint associated
2953 with the earlyclobber operand. However, if one of the operands
2954 is an explicit use of a hard register, then we must reload the
2955 other non-hard register operand. */
2956 if (HARD_REGISTER_P (operand_reg[i])
2957 || (first_conflict_j == last_conflict_j
2958 && operand_reg[last_conflict_j] != NULL_RTX
2959 && !curr_alt_match_win[last_conflict_j]
2960 && !HARD_REGISTER_P (operand_reg[last_conflict_j])))
2962 curr_alt_win[last_conflict_j] = false;
2963 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++]
2964 = last_conflict_j;
2965 losers++;
2966 if (lra_dump_file != NULL)
2967 fprintf
2968 (lra_dump_file,
2969 " %d Conflict early clobber reload: reject--\n",
2972 else
2974 /* We need to reload early clobbered register and the
2975 matched registers. */
2976 for (j = 0; j < n_operands; j++)
2977 if (curr_alt_matches[j] == i)
2979 curr_alt_match_win[j] = false;
2980 losers++;
2981 overall += LRA_LOSER_COST_FACTOR;
2983 if (! curr_alt_match_win[i])
2984 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i;
2985 else
2987 /* Remember pseudos used for match reloads are never
2988 inherited. */
2989 lra_assert (curr_alt_matches[i] >= 0);
2990 curr_alt_win[curr_alt_matches[i]] = false;
2992 curr_alt_win[i] = curr_alt_match_win[i] = false;
2993 losers++;
2994 if (lra_dump_file != NULL)
2995 fprintf
2996 (lra_dump_file,
2997 " %d Matched conflict early clobber reloads: "
2998 "reject--\n",
3001 /* Early clobber was already reflected in REJECT. */
3002 if (!matching_early_clobber[i])
3004 lra_assert (reject > 0);
3005 reject--;
3006 matching_early_clobber[i] = 1;
3008 overall += LRA_LOSER_COST_FACTOR - 1;
3010 if (lra_dump_file != NULL)
3011 fprintf (lra_dump_file, " alt=%d,overall=%d,losers=%d,rld_nregs=%d\n",
3012 nalt, overall, losers, reload_nregs);
3014 /* If this alternative can be made to work by reloading, and it
3015 needs less reloading than the others checked so far, record
3016 it as the chosen goal for reloading. */
3017 if ((best_losers != 0 && losers == 0)
3018 || (((best_losers == 0 && losers == 0)
3019 || (best_losers != 0 && losers != 0))
3020 && (best_overall > overall
3021 || (best_overall == overall
3022 /* If the cost of the reloads is the same,
3023 prefer alternative which requires minimal
3024 number of reload regs. */
3025 && (reload_nregs < best_reload_nregs
3026 || (reload_nregs == best_reload_nregs
3027 && (best_reload_sum < reload_sum
3028 || (best_reload_sum == reload_sum
3029 && nalt < goal_alt_number))))))))
3031 for (nop = 0; nop < n_operands; nop++)
3033 goal_alt_win[nop] = curr_alt_win[nop];
3034 goal_alt_match_win[nop] = curr_alt_match_win[nop];
3035 goal_alt_matches[nop] = curr_alt_matches[nop];
3036 goal_alt[nop] = curr_alt[nop];
3037 goal_alt_offmemok[nop] = curr_alt_offmemok[nop];
3039 goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num;
3040 for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++)
3041 goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop];
3042 goal_alt_swapped = curr_swapped;
3043 best_overall = overall;
3044 best_losers = losers;
3045 best_reload_nregs = reload_nregs;
3046 best_reload_sum = reload_sum;
3047 goal_alt_number = nalt;
3049 if (losers == 0)
3050 /* Everything is satisfied. Do not process alternatives
3051 anymore. */
3052 break;
3053 fail:
3056 return ok_p;
3059 /* Make reload base reg from address AD. */
3060 static rtx
3061 base_to_reg (struct address_info *ad)
3063 enum reg_class cl;
3064 int code = -1;
3065 rtx new_inner = NULL_RTX;
3066 rtx new_reg = NULL_RTX;
3067 rtx_insn *insn;
3068 rtx_insn *last_insn = get_last_insn();
3070 lra_assert (ad->disp == ad->disp_term);
3071 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3072 get_index_code (ad));
3073 new_reg = lra_create_new_reg (GET_MODE (*ad->base), NULL_RTX,
3074 cl, "base");
3075 new_inner = simplify_gen_binary (PLUS, GET_MODE (new_reg), new_reg,
3076 ad->disp_term == NULL
3077 ? const0_rtx
3078 : *ad->disp_term);
3079 if (!valid_address_p (ad->mode, new_inner, ad->as))
3080 return NULL_RTX;
3081 insn = emit_insn (gen_rtx_SET (new_reg, *ad->base));
3082 code = recog_memoized (insn);
3083 if (code < 0)
3085 delete_insns_since (last_insn);
3086 return NULL_RTX;
3089 return new_inner;
3092 /* Make reload base reg + DISP from address AD. Return the new pseudo. */
3093 static rtx
3094 base_plus_disp_to_reg (struct address_info *ad, rtx disp)
3096 enum reg_class cl;
3097 rtx new_reg;
3099 lra_assert (ad->base == ad->base_term);
3100 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3101 get_index_code (ad));
3102 new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX,
3103 cl, "base + disp");
3104 lra_emit_add (new_reg, *ad->base_term, disp);
3105 return new_reg;
3108 /* Make reload of index part of address AD. Return the new
3109 pseudo. */
3110 static rtx
3111 index_part_to_reg (struct address_info *ad)
3113 rtx new_reg;
3115 new_reg = lra_create_new_reg (GET_MODE (*ad->index), NULL_RTX,
3116 INDEX_REG_CLASS, "index term");
3117 expand_mult (GET_MODE (*ad->index), *ad->index_term,
3118 GEN_INT (get_index_scale (ad)), new_reg, 1);
3119 return new_reg;
3122 /* Return true if we can add a displacement to address AD, even if that
3123 makes the address invalid. The fix-up code requires any new address
3124 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
3125 static bool
3126 can_add_disp_p (struct address_info *ad)
3128 return (!ad->autoinc_p
3129 && ad->segment == NULL
3130 && ad->base == ad->base_term
3131 && ad->disp == ad->disp_term);
3134 /* Make equiv substitution in address AD. Return true if a substitution
3135 was made. */
3136 static bool
3137 equiv_address_substitution (struct address_info *ad)
3139 rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term;
3140 poly_int64 disp;
3141 HOST_WIDE_INT scale;
3142 bool change_p;
3144 base_term = strip_subreg (ad->base_term);
3145 if (base_term == NULL)
3146 base_reg = new_base_reg = NULL_RTX;
3147 else
3149 base_reg = *base_term;
3150 new_base_reg = get_equiv_with_elimination (base_reg, curr_insn);
3152 index_term = strip_subreg (ad->index_term);
3153 if (index_term == NULL)
3154 index_reg = new_index_reg = NULL_RTX;
3155 else
3157 index_reg = *index_term;
3158 new_index_reg = get_equiv_with_elimination (index_reg, curr_insn);
3160 if (base_reg == new_base_reg && index_reg == new_index_reg)
3161 return false;
3162 disp = 0;
3163 change_p = false;
3164 if (lra_dump_file != NULL)
3166 fprintf (lra_dump_file, "Changing address in insn %d ",
3167 INSN_UID (curr_insn));
3168 dump_value_slim (lra_dump_file, *ad->outer, 1);
3170 if (base_reg != new_base_reg)
3172 poly_int64 offset;
3173 if (REG_P (new_base_reg))
3175 *base_term = new_base_reg;
3176 change_p = true;
3178 else if (GET_CODE (new_base_reg) == PLUS
3179 && REG_P (XEXP (new_base_reg, 0))
3180 && poly_int_rtx_p (XEXP (new_base_reg, 1), &offset)
3181 && can_add_disp_p (ad))
3183 disp += offset;
3184 *base_term = XEXP (new_base_reg, 0);
3185 change_p = true;
3187 if (ad->base_term2 != NULL)
3188 *ad->base_term2 = *ad->base_term;
3190 if (index_reg != new_index_reg)
3192 poly_int64 offset;
3193 if (REG_P (new_index_reg))
3195 *index_term = new_index_reg;
3196 change_p = true;
3198 else if (GET_CODE (new_index_reg) == PLUS
3199 && REG_P (XEXP (new_index_reg, 0))
3200 && poly_int_rtx_p (XEXP (new_index_reg, 1), &offset)
3201 && can_add_disp_p (ad)
3202 && (scale = get_index_scale (ad)))
3204 disp += offset * scale;
3205 *index_term = XEXP (new_index_reg, 0);
3206 change_p = true;
3209 if (maybe_ne (disp, 0))
3211 if (ad->disp != NULL)
3212 *ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp);
3213 else
3215 *ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp);
3216 update_address (ad);
3218 change_p = true;
3220 if (lra_dump_file != NULL)
3222 if (! change_p)
3223 fprintf (lra_dump_file, " -- no change\n");
3224 else
3226 fprintf (lra_dump_file, " on equiv ");
3227 dump_value_slim (lra_dump_file, *ad->outer, 1);
3228 fprintf (lra_dump_file, "\n");
3231 return change_p;
3234 /* Major function to make reloads for an address in operand NOP or
3235 check its correctness (If CHECK_ONLY_P is true). The supported
3236 cases are:
3238 1) an address that existed before LRA started, at which point it
3239 must have been valid. These addresses are subject to elimination
3240 and may have become invalid due to the elimination offset being out
3241 of range.
3243 2) an address created by forcing a constant to memory
3244 (force_const_to_mem). The initial form of these addresses might
3245 not be valid, and it is this function's job to make them valid.
3247 3) a frame address formed from a register and a (possibly zero)
3248 constant offset. As above, these addresses might not be valid and
3249 this function must make them so.
3251 Add reloads to the lists *BEFORE and *AFTER. We might need to add
3252 reloads to *AFTER because of inc/dec, {pre, post} modify in the
3253 address. Return true for any RTL change.
3255 The function is a helper function which does not produce all
3256 transformations (when CHECK_ONLY_P is false) which can be
3257 necessary. It does just basic steps. To do all necessary
3258 transformations use function process_address. */
3259 static bool
3260 process_address_1 (int nop, bool check_only_p,
3261 rtx_insn **before, rtx_insn **after)
3263 struct address_info ad;
3264 rtx new_reg;
3265 HOST_WIDE_INT scale;
3266 rtx op = *curr_id->operand_loc[nop];
3267 const char *constraint = curr_static_id->operand[nop].constraint;
3268 enum constraint_num cn = lookup_constraint (constraint);
3269 bool change_p = false;
3271 if (MEM_P (op)
3272 && GET_MODE (op) == BLKmode
3273 && GET_CODE (XEXP (op, 0)) == SCRATCH)
3274 return false;
3276 if (insn_extra_address_constraint (cn)
3277 /* When we find an asm operand with an address constraint that
3278 doesn't satisfy address_operand to begin with, we clear
3279 is_address, so that we don't try to make a non-address fit.
3280 If the asm statement got this far, it's because other
3281 constraints are available, and we'll use them, disregarding
3282 the unsatisfiable address ones. */
3283 && curr_static_id->operand[nop].is_address)
3284 decompose_lea_address (&ad, curr_id->operand_loc[nop]);
3285 /* Do not attempt to decompose arbitrary addresses generated by combine
3286 for asm operands with loose constraints, e.g 'X'. */
3287 else if (MEM_P (op)
3288 && !(INSN_CODE (curr_insn) < 0
3289 && get_constraint_type (cn) == CT_FIXED_FORM
3290 && constraint_satisfied_p (op, cn)))
3291 decompose_mem_address (&ad, op);
3292 else if (GET_CODE (op) == SUBREG
3293 && MEM_P (SUBREG_REG (op)))
3294 decompose_mem_address (&ad, SUBREG_REG (op));
3295 else
3296 return false;
3297 /* If INDEX_REG_CLASS is assigned to base_term already and isn't to
3298 index_term, swap them so to avoid assigning INDEX_REG_CLASS to both
3299 when INDEX_REG_CLASS is a single register class. */
3300 if (ad.base_term != NULL
3301 && ad.index_term != NULL
3302 && ira_class_hard_regs_num[INDEX_REG_CLASS] == 1
3303 && REG_P (*ad.base_term)
3304 && REG_P (*ad.index_term)
3305 && in_class_p (*ad.base_term, INDEX_REG_CLASS, NULL)
3306 && ! in_class_p (*ad.index_term, INDEX_REG_CLASS, NULL))
3308 std::swap (ad.base, ad.index);
3309 std::swap (ad.base_term, ad.index_term);
3311 if (! check_only_p)
3312 change_p = equiv_address_substitution (&ad);
3313 if (ad.base_term != NULL
3314 && (process_addr_reg
3315 (ad.base_term, check_only_p, before,
3316 (ad.autoinc_p
3317 && !(REG_P (*ad.base_term)
3318 && find_regno_note (curr_insn, REG_DEAD,
3319 REGNO (*ad.base_term)) != NULL_RTX)
3320 ? after : NULL),
3321 base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3322 get_index_code (&ad)))))
3324 change_p = true;
3325 if (ad.base_term2 != NULL)
3326 *ad.base_term2 = *ad.base_term;
3328 if (ad.index_term != NULL
3329 && process_addr_reg (ad.index_term, check_only_p,
3330 before, NULL, INDEX_REG_CLASS))
3331 change_p = true;
3333 /* Target hooks sometimes don't treat extra-constraint addresses as
3334 legitimate address_operands, so handle them specially. */
3335 if (insn_extra_address_constraint (cn)
3336 && satisfies_address_constraint_p (&ad, cn))
3337 return change_p;
3339 if (check_only_p)
3340 return change_p;
3342 /* There are three cases where the shape of *AD.INNER may now be invalid:
3344 1) the original address was valid, but either elimination or
3345 equiv_address_substitution was applied and that made
3346 the address invalid.
3348 2) the address is an invalid symbolic address created by
3349 force_const_to_mem.
3351 3) the address is a frame address with an invalid offset.
3353 4) the address is a frame address with an invalid base.
3355 All these cases involve a non-autoinc address, so there is no
3356 point revalidating other types. */
3357 if (ad.autoinc_p || valid_address_p (&ad))
3358 return change_p;
3360 /* Any index existed before LRA started, so we can assume that the
3361 presence and shape of the index is valid. */
3362 push_to_sequence (*before);
3363 lra_assert (ad.disp == ad.disp_term);
3364 if (ad.base == NULL)
3366 if (ad.index == NULL)
3368 rtx_insn *insn;
3369 rtx_insn *last = get_last_insn ();
3370 int code = -1;
3371 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3372 SCRATCH, SCRATCH);
3373 rtx addr = *ad.inner;
3375 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3376 if (HAVE_lo_sum)
3378 /* addr => lo_sum (new_base, addr), case (2) above. */
3379 insn = emit_insn (gen_rtx_SET
3380 (new_reg,
3381 gen_rtx_HIGH (Pmode, copy_rtx (addr))));
3382 code = recog_memoized (insn);
3383 if (code >= 0)
3385 *ad.inner = gen_rtx_LO_SUM (Pmode, new_reg, addr);
3386 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3388 /* Try to put lo_sum into register. */
3389 insn = emit_insn (gen_rtx_SET
3390 (new_reg,
3391 gen_rtx_LO_SUM (Pmode, new_reg, addr)));
3392 code = recog_memoized (insn);
3393 if (code >= 0)
3395 *ad.inner = new_reg;
3396 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3398 *ad.inner = addr;
3399 code = -1;
3405 if (code < 0)
3406 delete_insns_since (last);
3409 if (code < 0)
3411 /* addr => new_base, case (2) above. */
3412 lra_emit_move (new_reg, addr);
3414 for (insn = last == NULL_RTX ? get_insns () : NEXT_INSN (last);
3415 insn != NULL_RTX;
3416 insn = NEXT_INSN (insn))
3417 if (recog_memoized (insn) < 0)
3418 break;
3419 if (insn != NULL_RTX)
3421 /* Do nothing if we cannot generate right insns.
3422 This is analogous to reload pass behavior. */
3423 delete_insns_since (last);
3424 end_sequence ();
3425 return false;
3427 *ad.inner = new_reg;
3430 else
3432 /* index * scale + disp => new base + index * scale,
3433 case (1) above. */
3434 enum reg_class cl = base_reg_class (ad.mode, ad.as, PLUS,
3435 GET_CODE (*ad.index));
3437 lra_assert (INDEX_REG_CLASS != NO_REGS);
3438 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "disp");
3439 lra_emit_move (new_reg, *ad.disp);
3440 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3441 new_reg, *ad.index);
3444 else if (ad.index == NULL)
3446 int regno;
3447 enum reg_class cl;
3448 rtx set;
3449 rtx_insn *insns, *last_insn;
3450 /* Try to reload base into register only if the base is invalid
3451 for the address but with valid offset, case (4) above. */
3452 start_sequence ();
3453 new_reg = base_to_reg (&ad);
3455 /* base + disp => new base, cases (1) and (3) above. */
3456 /* Another option would be to reload the displacement into an
3457 index register. However, postreload has code to optimize
3458 address reloads that have the same base and different
3459 displacements, so reloading into an index register would
3460 not necessarily be a win. */
3461 if (new_reg == NULL_RTX)
3463 /* See if the target can split the displacement into a
3464 legitimate new displacement from a local anchor. */
3465 gcc_assert (ad.disp == ad.disp_term);
3466 poly_int64 orig_offset;
3467 rtx offset1, offset2;
3468 if (poly_int_rtx_p (*ad.disp, &orig_offset)
3469 && targetm.legitimize_address_displacement (&offset1, &offset2,
3470 orig_offset,
3471 ad.mode))
3473 new_reg = base_plus_disp_to_reg (&ad, offset1);
3474 new_reg = gen_rtx_PLUS (GET_MODE (new_reg), new_reg, offset2);
3476 else
3477 new_reg = base_plus_disp_to_reg (&ad, *ad.disp);
3479 insns = get_insns ();
3480 last_insn = get_last_insn ();
3481 /* If we generated at least two insns, try last insn source as
3482 an address. If we succeed, we generate one less insn. */
3483 if (REG_P (new_reg)
3484 && last_insn != insns
3485 && (set = single_set (last_insn)) != NULL_RTX
3486 && GET_CODE (SET_SRC (set)) == PLUS
3487 && REG_P (XEXP (SET_SRC (set), 0))
3488 && CONSTANT_P (XEXP (SET_SRC (set), 1)))
3490 *ad.inner = SET_SRC (set);
3491 if (valid_address_p (ad.mode, *ad.outer, ad.as))
3493 *ad.base_term = XEXP (SET_SRC (set), 0);
3494 *ad.disp_term = XEXP (SET_SRC (set), 1);
3495 cl = base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3496 get_index_code (&ad));
3497 regno = REGNO (*ad.base_term);
3498 if (regno >= FIRST_PSEUDO_REGISTER
3499 && cl != lra_get_allocno_class (regno))
3500 lra_change_class (regno, cl, " Change to", true);
3501 new_reg = SET_SRC (set);
3502 delete_insns_since (PREV_INSN (last_insn));
3505 end_sequence ();
3506 emit_insn (insns);
3507 *ad.inner = new_reg;
3509 else if (ad.disp_term != NULL)
3511 /* base + scale * index + disp => new base + scale * index,
3512 case (1) above. */
3513 gcc_assert (ad.disp == ad.disp_term);
3514 new_reg = base_plus_disp_to_reg (&ad, *ad.disp);
3515 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3516 new_reg, *ad.index);
3518 else if ((scale = get_index_scale (&ad)) == 1)
3520 /* The last transformation to one reg will be made in
3521 curr_insn_transform function. */
3522 end_sequence ();
3523 return false;
3525 else if (scale != 0)
3527 /* base + scale * index => base + new_reg,
3528 case (1) above.
3529 Index part of address may become invalid. For example, we
3530 changed pseudo on the equivalent memory and a subreg of the
3531 pseudo onto the memory of different mode for which the scale is
3532 prohibitted. */
3533 new_reg = index_part_to_reg (&ad);
3534 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3535 *ad.base_term, new_reg);
3537 else
3539 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3540 SCRATCH, SCRATCH);
3541 rtx addr = *ad.inner;
3543 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3544 /* addr => new_base. */
3545 lra_emit_move (new_reg, addr);
3546 *ad.inner = new_reg;
3548 *before = get_insns ();
3549 end_sequence ();
3550 return true;
3553 /* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3554 Use process_address_1 as a helper function. Return true for any
3555 RTL changes.
3557 If CHECK_ONLY_P is true, just check address correctness. Return
3558 false if the address correct. */
3559 static bool
3560 process_address (int nop, bool check_only_p,
3561 rtx_insn **before, rtx_insn **after)
3563 bool res = false;
3565 while (process_address_1 (nop, check_only_p, before, after))
3567 if (check_only_p)
3568 return true;
3569 res = true;
3571 return res;
3574 /* Emit insns to reload VALUE into a new register. VALUE is an
3575 auto-increment or auto-decrement RTX whose operand is a register or
3576 memory location; so reloading involves incrementing that location.
3577 IN is either identical to VALUE, or some cheaper place to reload
3578 value being incremented/decremented from.
3580 INC_AMOUNT is the number to increment or decrement by (always
3581 positive and ignored for POST_MODIFY/PRE_MODIFY).
3583 Return pseudo containing the result. */
3584 static rtx
3585 emit_inc (enum reg_class new_rclass, rtx in, rtx value, poly_int64 inc_amount)
3587 /* REG or MEM to be copied and incremented. */
3588 rtx incloc = XEXP (value, 0);
3589 /* Nonzero if increment after copying. */
3590 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
3591 || GET_CODE (value) == POST_MODIFY);
3592 rtx_insn *last;
3593 rtx inc;
3594 rtx_insn *add_insn;
3595 int code;
3596 rtx real_in = in == value ? incloc : in;
3597 rtx result;
3598 bool plus_p = true;
3600 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
3602 lra_assert (GET_CODE (XEXP (value, 1)) == PLUS
3603 || GET_CODE (XEXP (value, 1)) == MINUS);
3604 lra_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0)));
3605 plus_p = GET_CODE (XEXP (value, 1)) == PLUS;
3606 inc = XEXP (XEXP (value, 1), 1);
3608 else
3610 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
3611 inc_amount = -inc_amount;
3613 inc = gen_int_mode (inc_amount, GET_MODE (value));
3616 if (! post && REG_P (incloc))
3617 result = incloc;
3618 else
3619 result = lra_create_new_reg (GET_MODE (value), value, new_rclass,
3620 "INC/DEC result");
3622 if (real_in != result)
3624 /* First copy the location to the result register. */
3625 lra_assert (REG_P (result));
3626 emit_insn (gen_move_insn (result, real_in));
3629 /* We suppose that there are insns to add/sub with the constant
3630 increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
3631 old reload worked with this assumption. If the assumption
3632 becomes wrong, we should use approach in function
3633 base_plus_disp_to_reg. */
3634 if (in == value)
3636 /* See if we can directly increment INCLOC. */
3637 last = get_last_insn ();
3638 add_insn = emit_insn (plus_p
3639 ? gen_add2_insn (incloc, inc)
3640 : gen_sub2_insn (incloc, inc));
3642 code = recog_memoized (add_insn);
3643 if (code >= 0)
3645 if (! post && result != incloc)
3646 emit_insn (gen_move_insn (result, incloc));
3647 return result;
3649 delete_insns_since (last);
3652 /* If couldn't do the increment directly, must increment in RESULT.
3653 The way we do this depends on whether this is pre- or
3654 post-increment. For pre-increment, copy INCLOC to the reload
3655 register, increment it there, then save back. */
3656 if (! post)
3658 if (real_in != result)
3659 emit_insn (gen_move_insn (result, real_in));
3660 if (plus_p)
3661 emit_insn (gen_add2_insn (result, inc));
3662 else
3663 emit_insn (gen_sub2_insn (result, inc));
3664 if (result != incloc)
3665 emit_insn (gen_move_insn (incloc, result));
3667 else
3669 /* Post-increment.
3671 Because this might be a jump insn or a compare, and because
3672 RESULT may not be available after the insn in an input
3673 reload, we must do the incrementing before the insn being
3674 reloaded for.
3676 We have already copied IN to RESULT. Increment the copy in
3677 RESULT, save that back, then decrement RESULT so it has
3678 the original value. */
3679 if (plus_p)
3680 emit_insn (gen_add2_insn (result, inc));
3681 else
3682 emit_insn (gen_sub2_insn (result, inc));
3683 emit_insn (gen_move_insn (incloc, result));
3684 /* Restore non-modified value for the result. We prefer this
3685 way because it does not require an additional hard
3686 register. */
3687 if (plus_p)
3689 poly_int64 offset;
3690 if (poly_int_rtx_p (inc, &offset))
3691 emit_insn (gen_add2_insn (result,
3692 gen_int_mode (-offset,
3693 GET_MODE (result))));
3694 else
3695 emit_insn (gen_sub2_insn (result, inc));
3697 else
3698 emit_insn (gen_add2_insn (result, inc));
3700 return result;
3703 /* Return true if the current move insn does not need processing as we
3704 already know that it satisfies its constraints. */
3705 static bool
3706 simple_move_p (void)
3708 rtx dest, src;
3709 enum reg_class dclass, sclass;
3711 lra_assert (curr_insn_set != NULL_RTX);
3712 dest = SET_DEST (curr_insn_set);
3713 src = SET_SRC (curr_insn_set);
3715 /* If the instruction has multiple sets we need to process it even if it
3716 is single_set. This can happen if one or more of the SETs are dead.
3717 See PR73650. */
3718 if (multiple_sets (curr_insn))
3719 return false;
3721 return ((dclass = get_op_class (dest)) != NO_REGS
3722 && (sclass = get_op_class (src)) != NO_REGS
3723 /* The backend guarantees that register moves of cost 2
3724 never need reloads. */
3725 && targetm.register_move_cost (GET_MODE (src), sclass, dclass) == 2);
3728 /* Swap operands NOP and NOP + 1. */
3729 static inline void
3730 swap_operands (int nop)
3732 std::swap (curr_operand_mode[nop], curr_operand_mode[nop + 1]);
3733 std::swap (original_subreg_reg_mode[nop], original_subreg_reg_mode[nop + 1]);
3734 std::swap (*curr_id->operand_loc[nop], *curr_id->operand_loc[nop + 1]);
3735 std::swap (equiv_substition_p[nop], equiv_substition_p[nop + 1]);
3736 /* Swap the duplicates too. */
3737 lra_update_dup (curr_id, nop);
3738 lra_update_dup (curr_id, nop + 1);
3741 /* Main entry point of the constraint code: search the body of the
3742 current insn to choose the best alternative. It is mimicking insn
3743 alternative cost calculation model of former reload pass. That is
3744 because machine descriptions were written to use this model. This
3745 model can be changed in future. Make commutative operand exchange
3746 if it is chosen.
3748 if CHECK_ONLY_P is false, do RTL changes to satisfy the
3749 constraints. Return true if any change happened during function
3750 call.
3752 If CHECK_ONLY_P is true then don't do any transformation. Just
3753 check that the insn satisfies all constraints. If the insn does
3754 not satisfy any constraint, return true. */
3755 static bool
3756 curr_insn_transform (bool check_only_p)
3758 int i, j, k;
3759 int n_operands;
3760 int n_alternatives;
3761 int n_outputs;
3762 int commutative;
3763 signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
3764 signed char match_inputs[MAX_RECOG_OPERANDS + 1];
3765 signed char outputs[MAX_RECOG_OPERANDS + 1];
3766 rtx_insn *before, *after;
3767 bool alt_p = false;
3768 /* Flag that the insn has been changed through a transformation. */
3769 bool change_p;
3770 bool sec_mem_p;
3771 bool use_sec_mem_p;
3772 int max_regno_before;
3773 int reused_alternative_num;
3775 curr_insn_set = single_set (curr_insn);
3776 if (curr_insn_set != NULL_RTX && simple_move_p ())
3778 /* We assume that the corresponding insn alternative has no
3779 earlier clobbers. If it is not the case, don't define move
3780 cost equal to 2 for the corresponding register classes. */
3781 lra_set_used_insn_alternative (curr_insn, LRA_NON_CLOBBERED_ALT);
3782 return false;
3785 no_input_reloads_p = no_output_reloads_p = false;
3786 goal_alt_number = -1;
3787 change_p = sec_mem_p = false;
3788 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output
3789 reloads; neither are insns that SET cc0. Insns that use CC0 are
3790 not allowed to have any input reloads. */
3791 if (JUMP_P (curr_insn) || CALL_P (curr_insn))
3792 no_output_reloads_p = true;
3794 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (curr_insn)))
3795 no_input_reloads_p = true;
3796 if (HAVE_cc0 && reg_set_p (cc0_rtx, PATTERN (curr_insn)))
3797 no_output_reloads_p = true;
3799 n_operands = curr_static_id->n_operands;
3800 n_alternatives = curr_static_id->n_alternatives;
3802 /* Just return "no reloads" if insn has no operands with
3803 constraints. */
3804 if (n_operands == 0 || n_alternatives == 0)
3805 return false;
3807 max_regno_before = max_reg_num ();
3809 for (i = 0; i < n_operands; i++)
3811 goal_alt_matched[i][0] = -1;
3812 goal_alt_matches[i] = -1;
3815 commutative = curr_static_id->commutative;
3817 /* Now see what we need for pseudos that didn't get hard regs or got
3818 the wrong kind of hard reg. For this, we must consider all the
3819 operands together against the register constraints. */
3821 best_losers = best_overall = INT_MAX;
3822 best_reload_sum = 0;
3824 curr_swapped = false;
3825 goal_alt_swapped = false;
3827 if (! check_only_p)
3828 /* Make equivalence substitution and memory subreg elimination
3829 before address processing because an address legitimacy can
3830 depend on memory mode. */
3831 for (i = 0; i < n_operands; i++)
3833 rtx op, subst, old;
3834 bool op_change_p = false;
3836 if (curr_static_id->operand[i].is_operator)
3837 continue;
3839 old = op = *curr_id->operand_loc[i];
3840 if (GET_CODE (old) == SUBREG)
3841 old = SUBREG_REG (old);
3842 subst = get_equiv_with_elimination (old, curr_insn);
3843 original_subreg_reg_mode[i] = VOIDmode;
3844 equiv_substition_p[i] = false;
3845 if (subst != old)
3847 equiv_substition_p[i] = true;
3848 subst = copy_rtx (subst);
3849 lra_assert (REG_P (old));
3850 if (GET_CODE (op) != SUBREG)
3851 *curr_id->operand_loc[i] = subst;
3852 else
3854 SUBREG_REG (op) = subst;
3855 if (GET_MODE (subst) == VOIDmode)
3856 original_subreg_reg_mode[i] = GET_MODE (old);
3858 if (lra_dump_file != NULL)
3860 fprintf (lra_dump_file,
3861 "Changing pseudo %d in operand %i of insn %u on equiv ",
3862 REGNO (old), i, INSN_UID (curr_insn));
3863 dump_value_slim (lra_dump_file, subst, 1);
3864 fprintf (lra_dump_file, "\n");
3866 op_change_p = change_p = true;
3868 if (simplify_operand_subreg (i, GET_MODE (old)) || op_change_p)
3870 change_p = true;
3871 lra_update_dup (curr_id, i);
3875 /* Reload address registers and displacements. We do it before
3876 finding an alternative because of memory constraints. */
3877 before = after = NULL;
3878 for (i = 0; i < n_operands; i++)
3879 if (! curr_static_id->operand[i].is_operator
3880 && process_address (i, check_only_p, &before, &after))
3882 if (check_only_p)
3883 return true;
3884 change_p = true;
3885 lra_update_dup (curr_id, i);
3888 if (change_p)
3889 /* If we've changed the instruction then any alternative that
3890 we chose previously may no longer be valid. */
3891 lra_set_used_insn_alternative (curr_insn, LRA_UNKNOWN_ALT);
3893 if (! check_only_p && curr_insn_set != NULL_RTX
3894 && check_and_process_move (&change_p, &sec_mem_p))
3895 return change_p;
3897 try_swapped:
3899 reused_alternative_num = check_only_p ? LRA_UNKNOWN_ALT : curr_id->used_insn_alternative;
3900 if (lra_dump_file != NULL && reused_alternative_num >= 0)
3901 fprintf (lra_dump_file, "Reusing alternative %d for insn #%u\n",
3902 reused_alternative_num, INSN_UID (curr_insn));
3904 if (process_alt_operands (reused_alternative_num))
3905 alt_p = true;
3907 if (check_only_p)
3908 return ! alt_p || best_losers != 0;
3910 /* If insn is commutative (it's safe to exchange a certain pair of
3911 operands) then we need to try each alternative twice, the second
3912 time matching those two operands as if we had exchanged them. To
3913 do this, really exchange them in operands.
3915 If we have just tried the alternatives the second time, return
3916 operands to normal and drop through. */
3918 if (reused_alternative_num < 0 && commutative >= 0)
3920 curr_swapped = !curr_swapped;
3921 if (curr_swapped)
3923 swap_operands (commutative);
3924 goto try_swapped;
3926 else
3927 swap_operands (commutative);
3930 if (! alt_p && ! sec_mem_p)
3932 /* No alternative works with reloads?? */
3933 if (INSN_CODE (curr_insn) >= 0)
3934 fatal_insn ("unable to generate reloads for:", curr_insn);
3935 error_for_asm (curr_insn,
3936 "inconsistent operand constraints in an %<asm%>");
3937 /* Avoid further trouble with this insn. Don't generate use
3938 pattern here as we could use the insn SP offset. */
3939 lra_set_insn_deleted (curr_insn);
3940 return true;
3943 /* If the best alternative is with operands 1 and 2 swapped, swap
3944 them. Update the operand numbers of any reloads already
3945 pushed. */
3947 if (goal_alt_swapped)
3949 if (lra_dump_file != NULL)
3950 fprintf (lra_dump_file, " Commutative operand exchange in insn %u\n",
3951 INSN_UID (curr_insn));
3953 /* Swap the duplicates too. */
3954 swap_operands (commutative);
3955 change_p = true;
3958 /* Some targets' TARGET_SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
3959 too conservatively. So we use the secondary memory only if there
3960 is no any alternative without reloads. */
3961 use_sec_mem_p = false;
3962 if (! alt_p)
3963 use_sec_mem_p = true;
3964 else if (sec_mem_p)
3966 for (i = 0; i < n_operands; i++)
3967 if (! goal_alt_win[i] && ! goal_alt_match_win[i])
3968 break;
3969 use_sec_mem_p = i < n_operands;
3972 if (use_sec_mem_p)
3974 int in = -1, out = -1;
3975 rtx new_reg, src, dest, rld;
3976 machine_mode sec_mode, rld_mode;
3978 lra_assert (curr_insn_set != NULL_RTX && sec_mem_p);
3979 dest = SET_DEST (curr_insn_set);
3980 src = SET_SRC (curr_insn_set);
3981 for (i = 0; i < n_operands; i++)
3982 if (*curr_id->operand_loc[i] == dest)
3983 out = i;
3984 else if (*curr_id->operand_loc[i] == src)
3985 in = i;
3986 for (i = 0; i < curr_static_id->n_dups; i++)
3987 if (out < 0 && *curr_id->dup_loc[i] == dest)
3988 out = curr_static_id->dup_num[i];
3989 else if (in < 0 && *curr_id->dup_loc[i] == src)
3990 in = curr_static_id->dup_num[i];
3991 lra_assert (out >= 0 && in >= 0
3992 && curr_static_id->operand[out].type == OP_OUT
3993 && curr_static_id->operand[in].type == OP_IN);
3994 rld = partial_subreg_p (GET_MODE (src), GET_MODE (dest)) ? src : dest;
3995 rld_mode = GET_MODE (rld);
3996 sec_mode = targetm.secondary_memory_needed_mode (rld_mode);
3997 new_reg = lra_create_new_reg (sec_mode, NULL_RTX,
3998 NO_REGS, "secondary");
3999 /* If the mode is changed, it should be wider. */
4000 lra_assert (!partial_subreg_p (sec_mode, rld_mode));
4001 if (sec_mode != rld_mode)
4003 /* If the target says specifically to use another mode for
4004 secondary memory moves we can not reuse the original
4005 insn. */
4006 after = emit_spill_move (false, new_reg, dest);
4007 lra_process_new_insns (curr_insn, NULL, after,
4008 "Inserting the sec. move");
4009 /* We may have non null BEFORE here (e.g. after address
4010 processing. */
4011 push_to_sequence (before);
4012 before = emit_spill_move (true, new_reg, src);
4013 emit_insn (before);
4014 before = get_insns ();
4015 end_sequence ();
4016 lra_process_new_insns (curr_insn, before, NULL, "Changing on");
4017 lra_set_insn_deleted (curr_insn);
4019 else if (dest == rld)
4021 *curr_id->operand_loc[out] = new_reg;
4022 lra_update_dup (curr_id, out);
4023 after = emit_spill_move (false, new_reg, dest);
4024 lra_process_new_insns (curr_insn, NULL, after,
4025 "Inserting the sec. move");
4027 else
4029 *curr_id->operand_loc[in] = new_reg;
4030 lra_update_dup (curr_id, in);
4031 /* See comments above. */
4032 push_to_sequence (before);
4033 before = emit_spill_move (true, new_reg, src);
4034 emit_insn (before);
4035 before = get_insns ();
4036 end_sequence ();
4037 lra_process_new_insns (curr_insn, before, NULL,
4038 "Inserting the sec. move");
4040 lra_update_insn_regno_info (curr_insn);
4041 return true;
4044 lra_assert (goal_alt_number >= 0);
4045 lra_set_used_insn_alternative (curr_insn, goal_alt_number);
4047 if (lra_dump_file != NULL)
4049 const char *p;
4051 fprintf (lra_dump_file, " Choosing alt %d in insn %u:",
4052 goal_alt_number, INSN_UID (curr_insn));
4053 for (i = 0; i < n_operands; i++)
4055 p = (curr_static_id->operand_alternative
4056 [goal_alt_number * n_operands + i].constraint);
4057 if (*p == '\0')
4058 continue;
4059 fprintf (lra_dump_file, " (%d) ", i);
4060 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
4061 fputc (*p, lra_dump_file);
4063 if (INSN_CODE (curr_insn) >= 0
4064 && (p = get_insn_name (INSN_CODE (curr_insn))) != NULL)
4065 fprintf (lra_dump_file, " {%s}", p);
4066 if (maybe_ne (curr_id->sp_offset, 0))
4068 fprintf (lra_dump_file, " (sp_off=");
4069 print_dec (curr_id->sp_offset, lra_dump_file);
4070 fprintf (lra_dump_file, ")");
4072 fprintf (lra_dump_file, "\n");
4075 /* Right now, for any pair of operands I and J that are required to
4076 match, with J < I, goal_alt_matches[I] is J. Add I to
4077 goal_alt_matched[J]. */
4079 for (i = 0; i < n_operands; i++)
4080 if ((j = goal_alt_matches[i]) >= 0)
4082 for (k = 0; goal_alt_matched[j][k] >= 0; k++)
4084 /* We allow matching one output operand and several input
4085 operands. */
4086 lra_assert (k == 0
4087 || (curr_static_id->operand[j].type == OP_OUT
4088 && curr_static_id->operand[i].type == OP_IN
4089 && (curr_static_id->operand
4090 [goal_alt_matched[j][0]].type == OP_IN)));
4091 goal_alt_matched[j][k] = i;
4092 goal_alt_matched[j][k + 1] = -1;
4095 for (i = 0; i < n_operands; i++)
4096 goal_alt_win[i] |= goal_alt_match_win[i];
4098 /* Any constants that aren't allowed and can't be reloaded into
4099 registers are here changed into memory references. */
4100 for (i = 0; i < n_operands; i++)
4101 if (goal_alt_win[i])
4103 int regno;
4104 enum reg_class new_class;
4105 rtx reg = *curr_id->operand_loc[i];
4107 if (GET_CODE (reg) == SUBREG)
4108 reg = SUBREG_REG (reg);
4110 if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
4112 bool ok_p = in_class_p (reg, goal_alt[i], &new_class);
4114 if (new_class != NO_REGS && get_reg_class (regno) != new_class)
4116 lra_assert (ok_p);
4117 lra_change_class (regno, new_class, " Change to", true);
4121 else
4123 const char *constraint;
4124 char c;
4125 rtx op = *curr_id->operand_loc[i];
4126 rtx subreg = NULL_RTX;
4127 machine_mode mode = curr_operand_mode[i];
4129 if (GET_CODE (op) == SUBREG)
4131 subreg = op;
4132 op = SUBREG_REG (op);
4133 mode = GET_MODE (op);
4136 if (CONST_POOL_OK_P (mode, op)
4137 && ((targetm.preferred_reload_class
4138 (op, (enum reg_class) goal_alt[i]) == NO_REGS)
4139 || no_input_reloads_p))
4141 rtx tem = force_const_mem (mode, op);
4143 change_p = true;
4144 if (subreg != NULL_RTX)
4145 tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg));
4147 *curr_id->operand_loc[i] = tem;
4148 lra_update_dup (curr_id, i);
4149 process_address (i, false, &before, &after);
4151 /* If the alternative accepts constant pool refs directly
4152 there will be no reload needed at all. */
4153 if (subreg != NULL_RTX)
4154 continue;
4155 /* Skip alternatives before the one requested. */
4156 constraint = (curr_static_id->operand_alternative
4157 [goal_alt_number * n_operands + i].constraint);
4158 for (;
4159 (c = *constraint) && c != ',' && c != '#';
4160 constraint += CONSTRAINT_LEN (c, constraint))
4162 enum constraint_num cn = lookup_constraint (constraint);
4163 if ((insn_extra_memory_constraint (cn)
4164 || insn_extra_special_memory_constraint (cn))
4165 && satisfies_memory_constraint_p (tem, cn))
4166 break;
4168 if (c == '\0' || c == ',' || c == '#')
4169 continue;
4171 goal_alt_win[i] = true;
4175 n_outputs = 0;
4176 outputs[0] = -1;
4177 for (i = 0; i < n_operands; i++)
4179 int regno;
4180 bool optional_p = false;
4181 rtx old, new_reg;
4182 rtx op = *curr_id->operand_loc[i];
4184 if (goal_alt_win[i])
4186 if (goal_alt[i] == NO_REGS
4187 && REG_P (op)
4188 /* When we assign NO_REGS it means that we will not
4189 assign a hard register to the scratch pseudo by
4190 assigment pass and the scratch pseudo will be
4191 spilled. Spilled scratch pseudos are transformed
4192 back to scratches at the LRA end. */
4193 && lra_former_scratch_operand_p (curr_insn, i)
4194 && lra_former_scratch_p (REGNO (op)))
4196 int regno = REGNO (op);
4197 lra_change_class (regno, NO_REGS, " Change to", true);
4198 if (lra_get_regno_hard_regno (regno) >= 0)
4199 /* We don't have to mark all insn affected by the
4200 spilled pseudo as there is only one such insn, the
4201 current one. */
4202 reg_renumber[regno] = -1;
4203 lra_assert (bitmap_single_bit_set_p
4204 (&lra_reg_info[REGNO (op)].insn_bitmap));
4206 /* We can do an optional reload. If the pseudo got a hard
4207 reg, we might improve the code through inheritance. If
4208 it does not get a hard register we coalesce memory/memory
4209 moves later. Ignore move insns to avoid cycling. */
4210 if (! lra_simple_p
4211 && lra_undo_inheritance_iter < LRA_MAX_INHERITANCE_PASSES
4212 && goal_alt[i] != NO_REGS && REG_P (op)
4213 && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER
4214 && regno < new_regno_start
4215 && ! lra_former_scratch_p (regno)
4216 && reg_renumber[regno] < 0
4217 /* Check that the optional reload pseudo will be able to
4218 hold given mode value. */
4219 && ! (prohibited_class_reg_set_mode_p
4220 (goal_alt[i], reg_class_contents[goal_alt[i]],
4221 PSEUDO_REGNO_MODE (regno)))
4222 && (curr_insn_set == NULL_RTX
4223 || !((REG_P (SET_SRC (curr_insn_set))
4224 || MEM_P (SET_SRC (curr_insn_set))
4225 || GET_CODE (SET_SRC (curr_insn_set)) == SUBREG)
4226 && (REG_P (SET_DEST (curr_insn_set))
4227 || MEM_P (SET_DEST (curr_insn_set))
4228 || GET_CODE (SET_DEST (curr_insn_set)) == SUBREG))))
4229 optional_p = true;
4230 else
4231 continue;
4234 /* Operands that match previous ones have already been handled. */
4235 if (goal_alt_matches[i] >= 0)
4236 continue;
4238 /* We should not have an operand with a non-offsettable address
4239 appearing where an offsettable address will do. It also may
4240 be a case when the address should be special in other words
4241 not a general one (e.g. it needs no index reg). */
4242 if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op))
4244 enum reg_class rclass;
4245 rtx *loc = &XEXP (op, 0);
4246 enum rtx_code code = GET_CODE (*loc);
4248 push_to_sequence (before);
4249 rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op),
4250 MEM, SCRATCH);
4251 if (GET_RTX_CLASS (code) == RTX_AUTOINC)
4252 new_reg = emit_inc (rclass, *loc, *loc,
4253 /* This value does not matter for MODIFY. */
4254 GET_MODE_SIZE (GET_MODE (op)));
4255 else if (get_reload_reg (OP_IN, Pmode, *loc, rclass, FALSE,
4256 "offsetable address", &new_reg))
4258 rtx addr = *loc;
4259 enum rtx_code code = GET_CODE (addr);
4261 if (code == AND && CONST_INT_P (XEXP (addr, 1)))
4262 /* (and ... (const_int -X)) is used to align to X bytes. */
4263 addr = XEXP (*loc, 0);
4264 lra_emit_move (new_reg, addr);
4265 if (addr != *loc)
4266 emit_move_insn (new_reg, gen_rtx_AND (GET_MODE (new_reg), new_reg, XEXP (*loc, 1)));
4268 before = get_insns ();
4269 end_sequence ();
4270 *loc = new_reg;
4271 lra_update_dup (curr_id, i);
4273 else if (goal_alt_matched[i][0] == -1)
4275 machine_mode mode;
4276 rtx reg, *loc;
4277 int hard_regno;
4278 enum op_type type = curr_static_id->operand[i].type;
4280 loc = curr_id->operand_loc[i];
4281 mode = curr_operand_mode[i];
4282 if (GET_CODE (*loc) == SUBREG)
4284 reg = SUBREG_REG (*loc);
4285 poly_int64 byte = SUBREG_BYTE (*loc);
4286 if (REG_P (reg)
4287 /* Strict_low_part requires reloading the register and not
4288 just the subreg. Likewise for a strict subreg no wider
4289 than a word for WORD_REGISTER_OPERATIONS targets. */
4290 && (curr_static_id->operand[i].strict_low
4291 || (!paradoxical_subreg_p (mode, GET_MODE (reg))
4292 && (hard_regno
4293 = get_try_hard_regno (REGNO (reg))) >= 0
4294 && (simplify_subreg_regno
4295 (hard_regno,
4296 GET_MODE (reg), byte, mode) < 0)
4297 && (goal_alt[i] == NO_REGS
4298 || (simplify_subreg_regno
4299 (ira_class_hard_regs[goal_alt[i]][0],
4300 GET_MODE (reg), byte, mode) >= 0)))
4301 || (partial_subreg_p (mode, GET_MODE (reg))
4302 && known_le (GET_MODE_SIZE (GET_MODE (reg)),
4303 UNITS_PER_WORD)
4304 && WORD_REGISTER_OPERATIONS)))
4306 /* An OP_INOUT is required when reloading a subreg of a
4307 mode wider than a word to ensure that data beyond the
4308 word being reloaded is preserved. Also automatically
4309 ensure that strict_low_part reloads are made into
4310 OP_INOUT which should already be true from the backend
4311 constraints. */
4312 if (type == OP_OUT
4313 && (curr_static_id->operand[i].strict_low
4314 || read_modify_subreg_p (*loc)))
4315 type = OP_INOUT;
4316 loc = &SUBREG_REG (*loc);
4317 mode = GET_MODE (*loc);
4320 old = *loc;
4321 if (get_reload_reg (type, mode, old, goal_alt[i],
4322 loc != curr_id->operand_loc[i], "", &new_reg)
4323 && type != OP_OUT)
4325 push_to_sequence (before);
4326 lra_emit_move (new_reg, old);
4327 before = get_insns ();
4328 end_sequence ();
4330 *loc = new_reg;
4331 if (type != OP_IN
4332 && find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX)
4334 start_sequence ();
4335 lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg);
4336 emit_insn (after);
4337 after = get_insns ();
4338 end_sequence ();
4339 *loc = new_reg;
4341 for (j = 0; j < goal_alt_dont_inherit_ops_num; j++)
4342 if (goal_alt_dont_inherit_ops[j] == i)
4344 lra_set_regno_unique_value (REGNO (new_reg));
4345 break;
4347 lra_update_dup (curr_id, i);
4349 else if (curr_static_id->operand[i].type == OP_IN
4350 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4351 == OP_OUT
4352 || (curr_static_id->operand[goal_alt_matched[i][0]].type
4353 == OP_INOUT
4354 && (operands_match_p
4355 (*curr_id->operand_loc[i],
4356 *curr_id->operand_loc[goal_alt_matched[i][0]],
4357 -1)))))
4359 /* generate reloads for input and matched outputs. */
4360 match_inputs[0] = i;
4361 match_inputs[1] = -1;
4362 match_reload (goal_alt_matched[i][0], match_inputs, outputs,
4363 goal_alt[i], &before, &after,
4364 curr_static_id->operand_alternative
4365 [goal_alt_number * n_operands + goal_alt_matched[i][0]]
4366 .earlyclobber);
4368 else if ((curr_static_id->operand[i].type == OP_OUT
4369 || (curr_static_id->operand[i].type == OP_INOUT
4370 && (operands_match_p
4371 (*curr_id->operand_loc[i],
4372 *curr_id->operand_loc[goal_alt_matched[i][0]],
4373 -1))))
4374 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4375 == OP_IN))
4376 /* Generate reloads for output and matched inputs. */
4377 match_reload (i, goal_alt_matched[i], outputs, goal_alt[i], &before,
4378 &after, curr_static_id->operand_alternative
4379 [goal_alt_number * n_operands + i].earlyclobber);
4380 else if (curr_static_id->operand[i].type == OP_IN
4381 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4382 == OP_IN))
4384 /* Generate reloads for matched inputs. */
4385 match_inputs[0] = i;
4386 for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++)
4387 match_inputs[j + 1] = k;
4388 match_inputs[j + 1] = -1;
4389 match_reload (-1, match_inputs, outputs, goal_alt[i], &before,
4390 &after, false);
4392 else
4393 /* We must generate code in any case when function
4394 process_alt_operands decides that it is possible. */
4395 gcc_unreachable ();
4397 /* Memorise processed outputs so that output remaining to be processed
4398 can avoid using the same register value (see match_reload). */
4399 if (curr_static_id->operand[i].type == OP_OUT)
4401 outputs[n_outputs++] = i;
4402 outputs[n_outputs] = -1;
4405 if (optional_p)
4407 rtx reg = op;
4409 lra_assert (REG_P (reg));
4410 regno = REGNO (reg);
4411 op = *curr_id->operand_loc[i]; /* Substitution. */
4412 if (GET_CODE (op) == SUBREG)
4413 op = SUBREG_REG (op);
4414 gcc_assert (REG_P (op) && (int) REGNO (op) >= new_regno_start);
4415 bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (op));
4416 lra_reg_info[REGNO (op)].restore_rtx = reg;
4417 if (lra_dump_file != NULL)
4418 fprintf (lra_dump_file,
4419 " Making reload reg %d for reg %d optional\n",
4420 REGNO (op), regno);
4423 if (before != NULL_RTX || after != NULL_RTX
4424 || max_regno_before != max_reg_num ())
4425 change_p = true;
4426 if (change_p)
4428 lra_update_operator_dups (curr_id);
4429 /* Something changes -- process the insn. */
4430 lra_update_insn_regno_info (curr_insn);
4432 lra_process_new_insns (curr_insn, before, after, "Inserting insn reload");
4433 return change_p;
4436 /* Return true if INSN satisfies all constraints. In other words, no
4437 reload insns are needed. */
4438 bool
4439 lra_constrain_insn (rtx_insn *insn)
4441 int saved_new_regno_start = new_regno_start;
4442 int saved_new_insn_uid_start = new_insn_uid_start;
4443 bool change_p;
4445 curr_insn = insn;
4446 curr_id = lra_get_insn_recog_data (curr_insn);
4447 curr_static_id = curr_id->insn_static_data;
4448 new_insn_uid_start = get_max_uid ();
4449 new_regno_start = max_reg_num ();
4450 change_p = curr_insn_transform (true);
4451 new_regno_start = saved_new_regno_start;
4452 new_insn_uid_start = saved_new_insn_uid_start;
4453 return ! change_p;
4456 /* Return true if X is in LIST. */
4457 static bool
4458 in_list_p (rtx x, rtx list)
4460 for (; list != NULL_RTX; list = XEXP (list, 1))
4461 if (XEXP (list, 0) == x)
4462 return true;
4463 return false;
4466 /* Return true if X contains an allocatable hard register (if
4467 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
4468 static bool
4469 contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p)
4471 int i, j;
4472 const char *fmt;
4473 enum rtx_code code;
4475 code = GET_CODE (x);
4476 if (REG_P (x))
4478 int regno = REGNO (x);
4479 HARD_REG_SET alloc_regs;
4481 if (hard_reg_p)
4483 if (regno >= FIRST_PSEUDO_REGISTER)
4484 regno = lra_get_regno_hard_regno (regno);
4485 if (regno < 0)
4486 return false;
4487 COMPL_HARD_REG_SET (alloc_regs, lra_no_alloc_regs);
4488 return overlaps_hard_reg_set_p (alloc_regs, GET_MODE (x), regno);
4490 else
4492 if (regno < FIRST_PSEUDO_REGISTER)
4493 return false;
4494 if (! spilled_p)
4495 return true;
4496 return lra_get_regno_hard_regno (regno) < 0;
4499 fmt = GET_RTX_FORMAT (code);
4500 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4502 if (fmt[i] == 'e')
4504 if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p))
4505 return true;
4507 else if (fmt[i] == 'E')
4509 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4510 if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p))
4511 return true;
4514 return false;
4517 /* Process all regs in location *LOC and change them on equivalent
4518 substitution. Return true if any change was done. */
4519 static bool
4520 loc_equivalence_change_p (rtx *loc)
4522 rtx subst, reg, x = *loc;
4523 bool result = false;
4524 enum rtx_code code = GET_CODE (x);
4525 const char *fmt;
4526 int i, j;
4528 if (code == SUBREG)
4530 reg = SUBREG_REG (x);
4531 if ((subst = get_equiv_with_elimination (reg, curr_insn)) != reg
4532 && GET_MODE (subst) == VOIDmode)
4534 /* We cannot reload debug location. Simplify subreg here
4535 while we know the inner mode. */
4536 *loc = simplify_gen_subreg (GET_MODE (x), subst,
4537 GET_MODE (reg), SUBREG_BYTE (x));
4538 return true;
4541 if (code == REG && (subst = get_equiv_with_elimination (x, curr_insn)) != x)
4543 *loc = subst;
4544 return true;
4547 /* Scan all the operand sub-expressions. */
4548 fmt = GET_RTX_FORMAT (code);
4549 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4551 if (fmt[i] == 'e')
4552 result = loc_equivalence_change_p (&XEXP (x, i)) || result;
4553 else if (fmt[i] == 'E')
4554 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4555 result
4556 = loc_equivalence_change_p (&XVECEXP (x, i, j)) || result;
4558 return result;
4561 /* Similar to loc_equivalence_change_p, but for use as
4562 simplify_replace_fn_rtx callback. DATA is insn for which the
4563 elimination is done. If it null we don't do the elimination. */
4564 static rtx
4565 loc_equivalence_callback (rtx loc, const_rtx, void *data)
4567 if (!REG_P (loc))
4568 return NULL_RTX;
4570 rtx subst = (data == NULL
4571 ? get_equiv (loc) : get_equiv_with_elimination (loc, (rtx_insn *) data));
4572 if (subst != loc)
4573 return subst;
4575 return NULL_RTX;
4578 /* Maximum number of generated reload insns per an insn. It is for
4579 preventing this pass cycling in a bug case. */
4580 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
4582 /* The current iteration number of this LRA pass. */
4583 int lra_constraint_iter;
4585 /* True if we substituted equiv which needs checking register
4586 allocation correctness because the equivalent value contains
4587 allocatable hard registers or when we restore multi-register
4588 pseudo. */
4589 bool lra_risky_transformations_p;
4591 /* Return true if REGNO is referenced in more than one block. */
4592 static bool
4593 multi_block_pseudo_p (int regno)
4595 basic_block bb = NULL;
4596 unsigned int uid;
4597 bitmap_iterator bi;
4599 if (regno < FIRST_PSEUDO_REGISTER)
4600 return false;
4602 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
4603 if (bb == NULL)
4604 bb = BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn);
4605 else if (BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn) != bb)
4606 return true;
4607 return false;
4610 /* Return true if LIST contains a deleted insn. */
4611 static bool
4612 contains_deleted_insn_p (rtx_insn_list *list)
4614 for (; list != NULL_RTX; list = list->next ())
4615 if (NOTE_P (list->insn ())
4616 && NOTE_KIND (list->insn ()) == NOTE_INSN_DELETED)
4617 return true;
4618 return false;
4621 /* Return true if X contains a pseudo dying in INSN. */
4622 static bool
4623 dead_pseudo_p (rtx x, rtx_insn *insn)
4625 int i, j;
4626 const char *fmt;
4627 enum rtx_code code;
4629 if (REG_P (x))
4630 return (insn != NULL_RTX
4631 && find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX);
4632 code = GET_CODE (x);
4633 fmt = GET_RTX_FORMAT (code);
4634 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4636 if (fmt[i] == 'e')
4638 if (dead_pseudo_p (XEXP (x, i), insn))
4639 return true;
4641 else if (fmt[i] == 'E')
4643 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4644 if (dead_pseudo_p (XVECEXP (x, i, j), insn))
4645 return true;
4648 return false;
4651 /* Return true if INSN contains a dying pseudo in INSN right hand
4652 side. */
4653 static bool
4654 insn_rhs_dead_pseudo_p (rtx_insn *insn)
4656 rtx set = single_set (insn);
4658 gcc_assert (set != NULL);
4659 return dead_pseudo_p (SET_SRC (set), insn);
4662 /* Return true if any init insn of REGNO contains a dying pseudo in
4663 insn right hand side. */
4664 static bool
4665 init_insn_rhs_dead_pseudo_p (int regno)
4667 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4669 if (insns == NULL)
4670 return false;
4671 for (; insns != NULL_RTX; insns = insns->next ())
4672 if (insn_rhs_dead_pseudo_p (insns->insn ()))
4673 return true;
4674 return false;
4677 /* Return TRUE if REGNO has a reverse equivalence. The equivalence is
4678 reverse only if we have one init insn with given REGNO as a
4679 source. */
4680 static bool
4681 reverse_equiv_p (int regno)
4683 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4684 rtx set;
4686 if (insns == NULL)
4687 return false;
4688 if (! INSN_P (insns->insn ())
4689 || insns->next () != NULL)
4690 return false;
4691 if ((set = single_set (insns->insn ())) == NULL_RTX)
4692 return false;
4693 return REG_P (SET_SRC (set)) && (int) REGNO (SET_SRC (set)) == regno;
4696 /* Return TRUE if REGNO was reloaded in an equivalence init insn. We
4697 call this function only for non-reverse equivalence. */
4698 static bool
4699 contains_reloaded_insn_p (int regno)
4701 rtx set;
4702 rtx_insn_list *list = ira_reg_equiv[regno].init_insns;
4704 for (; list != NULL; list = list->next ())
4705 if ((set = single_set (list->insn ())) == NULL_RTX
4706 || ! REG_P (SET_DEST (set))
4707 || (int) REGNO (SET_DEST (set)) != regno)
4708 return true;
4709 return false;
4712 /* Entry function of LRA constraint pass. Return true if the
4713 constraint pass did change the code. */
4714 bool
4715 lra_constraints (bool first_p)
4717 bool changed_p;
4718 int i, hard_regno, new_insns_num;
4719 unsigned int min_len, new_min_len, uid;
4720 rtx set, x, reg, dest_reg;
4721 basic_block last_bb;
4722 bitmap_iterator bi;
4724 lra_constraint_iter++;
4725 if (lra_dump_file != NULL)
4726 fprintf (lra_dump_file, "\n********** Local #%d: **********\n\n",
4727 lra_constraint_iter);
4728 changed_p = false;
4729 if (pic_offset_table_rtx
4730 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
4731 lra_risky_transformations_p = true;
4732 else
4733 /* On the first iteration we should check IRA assignment
4734 correctness. In rare cases, the assignments can be wrong as
4735 early clobbers operands are ignored in IRA. */
4736 lra_risky_transformations_p = first_p;
4737 new_insn_uid_start = get_max_uid ();
4738 new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num ();
4739 /* Mark used hard regs for target stack size calulations. */
4740 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4741 if (lra_reg_info[i].nrefs != 0
4742 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4744 int j, nregs;
4746 nregs = hard_regno_nregs (hard_regno, lra_reg_info[i].biggest_mode);
4747 for (j = 0; j < nregs; j++)
4748 df_set_regs_ever_live (hard_regno + j, true);
4750 /* Do elimination before the equivalence processing as we can spill
4751 some pseudos during elimination. */
4752 lra_eliminate (false, first_p);
4753 auto_bitmap equiv_insn_bitmap (&reg_obstack);
4754 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4755 if (lra_reg_info[i].nrefs != 0)
4757 ira_reg_equiv[i].profitable_p = true;
4758 reg = regno_reg_rtx[i];
4759 if (lra_get_regno_hard_regno (i) < 0 && (x = get_equiv (reg)) != reg)
4761 bool pseudo_p = contains_reg_p (x, false, false);
4763 /* After RTL transformation, we can not guarantee that
4764 pseudo in the substitution was not reloaded which might
4765 make equivalence invalid. For example, in reverse
4766 equiv of p0
4768 p0 <- ...
4770 equiv_mem <- p0
4772 the memory address register was reloaded before the 2nd
4773 insn. */
4774 if ((! first_p && pseudo_p)
4775 /* We don't use DF for compilation speed sake. So it
4776 is problematic to update live info when we use an
4777 equivalence containing pseudos in more than one
4778 BB. */
4779 || (pseudo_p && multi_block_pseudo_p (i))
4780 /* If an init insn was deleted for some reason, cancel
4781 the equiv. We could update the equiv insns after
4782 transformations including an equiv insn deletion
4783 but it is not worthy as such cases are extremely
4784 rare. */
4785 || contains_deleted_insn_p (ira_reg_equiv[i].init_insns)
4786 /* If it is not a reverse equivalence, we check that a
4787 pseudo in rhs of the init insn is not dying in the
4788 insn. Otherwise, the live info at the beginning of
4789 the corresponding BB might be wrong after we
4790 removed the insn. When the equiv can be a
4791 constant, the right hand side of the init insn can
4792 be a pseudo. */
4793 || (! reverse_equiv_p (i)
4794 && (init_insn_rhs_dead_pseudo_p (i)
4795 /* If we reloaded the pseudo in an equivalence
4796 init insn, we can not remove the equiv init
4797 insns and the init insns might write into
4798 const memory in this case. */
4799 || contains_reloaded_insn_p (i)))
4800 /* Prevent access beyond equivalent memory for
4801 paradoxical subregs. */
4802 || (MEM_P (x)
4803 && maybe_gt (GET_MODE_SIZE (lra_reg_info[i].biggest_mode),
4804 GET_MODE_SIZE (GET_MODE (x))))
4805 || (pic_offset_table_rtx
4806 && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i), x)
4807 && (targetm.preferred_reload_class
4808 (x, lra_get_allocno_class (i)) == NO_REGS))
4809 || contains_symbol_ref_p (x))))
4810 ira_reg_equiv[i].defined_p = false;
4811 if (contains_reg_p (x, false, true))
4812 ira_reg_equiv[i].profitable_p = false;
4813 if (get_equiv (reg) != reg)
4814 bitmap_ior_into (equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap);
4817 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4818 update_equiv (i);
4819 /* We should add all insns containing pseudos which should be
4820 substituted by their equivalences. */
4821 EXECUTE_IF_SET_IN_BITMAP (equiv_insn_bitmap, 0, uid, bi)
4822 lra_push_insn_by_uid (uid);
4823 min_len = lra_insn_stack_length ();
4824 new_insns_num = 0;
4825 last_bb = NULL;
4826 changed_p = false;
4827 while ((new_min_len = lra_insn_stack_length ()) != 0)
4829 curr_insn = lra_pop_insn ();
4830 --new_min_len;
4831 curr_bb = BLOCK_FOR_INSN (curr_insn);
4832 if (curr_bb != last_bb)
4834 last_bb = curr_bb;
4835 bb_reload_num = lra_curr_reload_num;
4837 if (min_len > new_min_len)
4839 min_len = new_min_len;
4840 new_insns_num = 0;
4842 if (new_insns_num > MAX_RELOAD_INSNS_NUMBER)
4843 internal_error
4844 ("Max. number of generated reload insns per insn is achieved (%d)\n",
4845 MAX_RELOAD_INSNS_NUMBER);
4846 new_insns_num++;
4847 if (DEBUG_INSN_P (curr_insn))
4849 /* We need to check equivalence in debug insn and change
4850 pseudo to the equivalent value if necessary. */
4851 curr_id = lra_get_insn_recog_data (curr_insn);
4852 if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn)))
4854 rtx old = *curr_id->operand_loc[0];
4855 *curr_id->operand_loc[0]
4856 = simplify_replace_fn_rtx (old, NULL_RTX,
4857 loc_equivalence_callback, curr_insn);
4858 if (old != *curr_id->operand_loc[0])
4860 lra_update_insn_regno_info (curr_insn);
4861 changed_p = true;
4865 else if (INSN_P (curr_insn))
4867 if ((set = single_set (curr_insn)) != NULL_RTX)
4869 dest_reg = SET_DEST (set);
4870 /* The equivalence pseudo could be set up as SUBREG in a
4871 case when it is a call restore insn in a mode
4872 different from the pseudo mode. */
4873 if (GET_CODE (dest_reg) == SUBREG)
4874 dest_reg = SUBREG_REG (dest_reg);
4875 if ((REG_P (dest_reg)
4876 && (x = get_equiv (dest_reg)) != dest_reg
4877 /* Remove insns which set up a pseudo whose value
4878 can not be changed. Such insns might be not in
4879 init_insns because we don't update equiv data
4880 during insn transformations.
4882 As an example, let suppose that a pseudo got
4883 hard register and on the 1st pass was not
4884 changed to equivalent constant. We generate an
4885 additional insn setting up the pseudo because of
4886 secondary memory movement. Then the pseudo is
4887 spilled and we use the equiv constant. In this
4888 case we should remove the additional insn and
4889 this insn is not init_insns list. */
4890 && (! MEM_P (x) || MEM_READONLY_P (x)
4891 /* Check that this is actually an insn setting
4892 up the equivalence. */
4893 || in_list_p (curr_insn,
4894 ira_reg_equiv
4895 [REGNO (dest_reg)].init_insns)))
4896 || (((x = get_equiv (SET_SRC (set))) != SET_SRC (set))
4897 && in_list_p (curr_insn,
4898 ira_reg_equiv
4899 [REGNO (SET_SRC (set))].init_insns)))
4901 /* This is equiv init insn of pseudo which did not get a
4902 hard register -- remove the insn. */
4903 if (lra_dump_file != NULL)
4905 fprintf (lra_dump_file,
4906 " Removing equiv init insn %i (freq=%d)\n",
4907 INSN_UID (curr_insn),
4908 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn)));
4909 dump_insn_slim (lra_dump_file, curr_insn);
4911 if (contains_reg_p (x, true, false))
4912 lra_risky_transformations_p = true;
4913 lra_set_insn_deleted (curr_insn);
4914 continue;
4917 curr_id = lra_get_insn_recog_data (curr_insn);
4918 curr_static_id = curr_id->insn_static_data;
4919 init_curr_insn_input_reloads ();
4920 init_curr_operand_mode ();
4921 if (curr_insn_transform (false))
4922 changed_p = true;
4923 /* Check non-transformed insns too for equiv change as USE
4924 or CLOBBER don't need reloads but can contain pseudos
4925 being changed on their equivalences. */
4926 else if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn))
4927 && loc_equivalence_change_p (&PATTERN (curr_insn)))
4929 lra_update_insn_regno_info (curr_insn);
4930 changed_p = true;
4935 /* If we used a new hard regno, changed_p should be true because the
4936 hard reg is assigned to a new pseudo. */
4937 if (flag_checking && !changed_p)
4939 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4940 if (lra_reg_info[i].nrefs != 0
4941 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4943 int j, nregs = hard_regno_nregs (hard_regno,
4944 PSEUDO_REGNO_MODE (i));
4946 for (j = 0; j < nregs; j++)
4947 lra_assert (df_regs_ever_live_p (hard_regno + j));
4950 return changed_p;
4953 static void initiate_invariants (void);
4954 static void finish_invariants (void);
4956 /* Initiate the LRA constraint pass. It is done once per
4957 function. */
4958 void
4959 lra_constraints_init (void)
4961 initiate_invariants ();
4964 /* Finalize the LRA constraint pass. It is done once per
4965 function. */
4966 void
4967 lra_constraints_finish (void)
4969 finish_invariants ();
4974 /* Structure describes invariants for ineheritance. */
4975 struct lra_invariant
4977 /* The order number of the invariant. */
4978 int num;
4979 /* The invariant RTX. */
4980 rtx invariant_rtx;
4981 /* The origin insn of the invariant. */
4982 rtx_insn *insn;
4985 typedef lra_invariant invariant_t;
4986 typedef invariant_t *invariant_ptr_t;
4987 typedef const invariant_t *const_invariant_ptr_t;
4989 /* Pointer to the inheritance invariants. */
4990 static vec<invariant_ptr_t> invariants;
4992 /* Allocation pool for the invariants. */
4993 static object_allocator<lra_invariant> *invariants_pool;
4995 /* Hash table for the invariants. */
4996 static htab_t invariant_table;
4998 /* Hash function for INVARIANT. */
4999 static hashval_t
5000 invariant_hash (const void *invariant)
5002 rtx inv = ((const_invariant_ptr_t) invariant)->invariant_rtx;
5003 return lra_rtx_hash (inv);
5006 /* Equal function for invariants INVARIANT1 and INVARIANT2. */
5007 static int
5008 invariant_eq_p (const void *invariant1, const void *invariant2)
5010 rtx inv1 = ((const_invariant_ptr_t) invariant1)->invariant_rtx;
5011 rtx inv2 = ((const_invariant_ptr_t) invariant2)->invariant_rtx;
5013 return rtx_equal_p (inv1, inv2);
5016 /* Insert INVARIANT_RTX into the table if it is not there yet. Return
5017 invariant which is in the table. */
5018 static invariant_ptr_t
5019 insert_invariant (rtx invariant_rtx)
5021 void **entry_ptr;
5022 invariant_t invariant;
5023 invariant_ptr_t invariant_ptr;
5025 invariant.invariant_rtx = invariant_rtx;
5026 entry_ptr = htab_find_slot (invariant_table, &invariant, INSERT);
5027 if (*entry_ptr == NULL)
5029 invariant_ptr = invariants_pool->allocate ();
5030 invariant_ptr->invariant_rtx = invariant_rtx;
5031 invariant_ptr->insn = NULL;
5032 invariants.safe_push (invariant_ptr);
5033 *entry_ptr = (void *) invariant_ptr;
5035 return (invariant_ptr_t) *entry_ptr;
5038 /* Initiate the invariant table. */
5039 static void
5040 initiate_invariants (void)
5042 invariants.create (100);
5043 invariants_pool
5044 = new object_allocator<lra_invariant> ("Inheritance invariants");
5045 invariant_table = htab_create (100, invariant_hash, invariant_eq_p, NULL);
5048 /* Finish the invariant table. */
5049 static void
5050 finish_invariants (void)
5052 htab_delete (invariant_table);
5053 delete invariants_pool;
5054 invariants.release ();
5057 /* Make the invariant table empty. */
5058 static void
5059 clear_invariants (void)
5061 htab_empty (invariant_table);
5062 invariants_pool->release ();
5063 invariants.truncate (0);
5068 /* This page contains code to do inheritance/split
5069 transformations. */
5071 /* Number of reloads passed so far in current EBB. */
5072 static int reloads_num;
5074 /* Number of calls passed so far in current EBB. */
5075 static int calls_num;
5077 /* Current reload pseudo check for validity of elements in
5078 USAGE_INSNS. */
5079 static int curr_usage_insns_check;
5081 /* Info about last usage of registers in EBB to do inheritance/split
5082 transformation. Inheritance transformation is done from a spilled
5083 pseudo and split transformations from a hard register or a pseudo
5084 assigned to a hard register. */
5085 struct usage_insns
5087 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
5088 value INSNS is valid. The insns is chain of optional debug insns
5089 and a finishing non-debug insn using the corresponding reg. The
5090 value is also used to mark the registers which are set up in the
5091 current insn. The negated insn uid is used for this. */
5092 int check;
5093 /* Value of global reloads_num at the last insn in INSNS. */
5094 int reloads_num;
5095 /* Value of global reloads_nums at the last insn in INSNS. */
5096 int calls_num;
5097 /* It can be true only for splitting. And it means that the restore
5098 insn should be put after insn given by the following member. */
5099 bool after_p;
5100 /* Next insns in the current EBB which use the original reg and the
5101 original reg value is not changed between the current insn and
5102 the next insns. In order words, e.g. for inheritance, if we need
5103 to use the original reg value again in the next insns we can try
5104 to use the value in a hard register from a reload insn of the
5105 current insn. */
5106 rtx insns;
5109 /* Map: regno -> corresponding pseudo usage insns. */
5110 static struct usage_insns *usage_insns;
5112 static void
5113 setup_next_usage_insn (int regno, rtx insn, int reloads_num, bool after_p)
5115 usage_insns[regno].check = curr_usage_insns_check;
5116 usage_insns[regno].insns = insn;
5117 usage_insns[regno].reloads_num = reloads_num;
5118 usage_insns[regno].calls_num = calls_num;
5119 usage_insns[regno].after_p = after_p;
5122 /* The function is used to form list REGNO usages which consists of
5123 optional debug insns finished by a non-debug insn using REGNO.
5124 RELOADS_NUM is current number of reload insns processed so far. */
5125 static void
5126 add_next_usage_insn (int regno, rtx_insn *insn, int reloads_num)
5128 rtx next_usage_insns;
5130 if (usage_insns[regno].check == curr_usage_insns_check
5131 && (next_usage_insns = usage_insns[regno].insns) != NULL_RTX
5132 && DEBUG_INSN_P (insn))
5134 /* Check that we did not add the debug insn yet. */
5135 if (next_usage_insns != insn
5136 && (GET_CODE (next_usage_insns) != INSN_LIST
5137 || XEXP (next_usage_insns, 0) != insn))
5138 usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn,
5139 next_usage_insns);
5141 else if (NONDEBUG_INSN_P (insn))
5142 setup_next_usage_insn (regno, insn, reloads_num, false);
5143 else
5144 usage_insns[regno].check = 0;
5147 /* Return first non-debug insn in list USAGE_INSNS. */
5148 static rtx_insn *
5149 skip_usage_debug_insns (rtx usage_insns)
5151 rtx insn;
5153 /* Skip debug insns. */
5154 for (insn = usage_insns;
5155 insn != NULL_RTX && GET_CODE (insn) == INSN_LIST;
5156 insn = XEXP (insn, 1))
5158 return safe_as_a <rtx_insn *> (insn);
5161 /* Return true if we need secondary memory moves for insn in
5162 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
5163 into the insn. */
5164 static bool
5165 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED,
5166 rtx usage_insns ATTRIBUTE_UNUSED)
5168 rtx_insn *insn;
5169 rtx set, dest;
5170 enum reg_class cl;
5172 if (inher_cl == ALL_REGS
5173 || (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX)
5174 return false;
5175 lra_assert (INSN_P (insn));
5176 if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set)))
5177 return false;
5178 dest = SET_DEST (set);
5179 if (! REG_P (dest))
5180 return false;
5181 lra_assert (inher_cl != NO_REGS);
5182 cl = get_reg_class (REGNO (dest));
5183 return (cl != NO_REGS && cl != ALL_REGS
5184 && targetm.secondary_memory_needed (GET_MODE (dest), inher_cl, cl));
5187 /* Registers involved in inheritance/split in the current EBB
5188 (inheritance/split pseudos and original registers). */
5189 static bitmap_head check_only_regs;
5191 /* Reload pseudos can not be involded in invariant inheritance in the
5192 current EBB. */
5193 static bitmap_head invalid_invariant_regs;
5195 /* Do inheritance transformations for insn INSN, which defines (if
5196 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
5197 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
5198 form as the "insns" field of usage_insns. Return true if we
5199 succeed in such transformation.
5201 The transformations look like:
5203 p <- ... i <- ...
5204 ... p <- i (new insn)
5205 ... =>
5206 <- ... p ... <- ... i ...
5208 ... i <- p (new insn)
5209 <- ... p ... <- ... i ...
5210 ... =>
5211 <- ... p ... <- ... i ...
5212 where p is a spilled original pseudo and i is a new inheritance pseudo.
5215 The inheritance pseudo has the smallest class of two classes CL and
5216 class of ORIGINAL REGNO. */
5217 static bool
5218 inherit_reload_reg (bool def_p, int original_regno,
5219 enum reg_class cl, rtx_insn *insn, rtx next_usage_insns)
5221 if (optimize_function_for_size_p (cfun))
5222 return false;
5224 enum reg_class rclass = lra_get_allocno_class (original_regno);
5225 rtx original_reg = regno_reg_rtx[original_regno];
5226 rtx new_reg, usage_insn;
5227 rtx_insn *new_insns;
5229 lra_assert (! usage_insns[original_regno].after_p);
5230 if (lra_dump_file != NULL)
5231 fprintf (lra_dump_file,
5232 " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
5233 if (! ira_reg_classes_intersect_p[cl][rclass])
5235 if (lra_dump_file != NULL)
5237 fprintf (lra_dump_file,
5238 " Rejecting inheritance for %d "
5239 "because of disjoint classes %s and %s\n",
5240 original_regno, reg_class_names[cl],
5241 reg_class_names[rclass]);
5242 fprintf (lra_dump_file,
5243 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5245 return false;
5247 if ((ira_class_subset_p[cl][rclass] && cl != rclass)
5248 /* We don't use a subset of two classes because it can be
5249 NO_REGS. This transformation is still profitable in most
5250 cases even if the classes are not intersected as register
5251 move is probably cheaper than a memory load. */
5252 || ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass])
5254 if (lra_dump_file != NULL)
5255 fprintf (lra_dump_file, " Use smallest class of %s and %s\n",
5256 reg_class_names[cl], reg_class_names[rclass]);
5258 rclass = cl;
5260 if (check_secondary_memory_needed_p (rclass, next_usage_insns))
5262 /* Reject inheritance resulting in secondary memory moves.
5263 Otherwise, there is a danger in LRA cycling. Also such
5264 transformation will be unprofitable. */
5265 if (lra_dump_file != NULL)
5267 rtx_insn *insn = skip_usage_debug_insns (next_usage_insns);
5268 rtx set = single_set (insn);
5270 lra_assert (set != NULL_RTX);
5272 rtx dest = SET_DEST (set);
5274 lra_assert (REG_P (dest));
5275 fprintf (lra_dump_file,
5276 " Rejecting inheritance for insn %d(%s)<-%d(%s) "
5277 "as secondary mem is needed\n",
5278 REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))],
5279 original_regno, reg_class_names[rclass]);
5280 fprintf (lra_dump_file,
5281 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5283 return false;
5285 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
5286 rclass, "inheritance");
5287 start_sequence ();
5288 if (def_p)
5289 lra_emit_move (original_reg, new_reg);
5290 else
5291 lra_emit_move (new_reg, original_reg);
5292 new_insns = get_insns ();
5293 end_sequence ();
5294 if (NEXT_INSN (new_insns) != NULL_RTX)
5296 if (lra_dump_file != NULL)
5298 fprintf (lra_dump_file,
5299 " Rejecting inheritance %d->%d "
5300 "as it results in 2 or more insns:\n",
5301 original_regno, REGNO (new_reg));
5302 dump_rtl_slim (lra_dump_file, new_insns, NULL, -1, 0);
5303 fprintf (lra_dump_file,
5304 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5306 return false;
5308 lra_substitute_pseudo_within_insn (insn, original_regno, new_reg, false);
5309 lra_update_insn_regno_info (insn);
5310 if (! def_p)
5311 /* We now have a new usage insn for original regno. */
5312 setup_next_usage_insn (original_regno, new_insns, reloads_num, false);
5313 if (lra_dump_file != NULL)
5314 fprintf (lra_dump_file, " Original reg change %d->%d (bb%d):\n",
5315 original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5316 lra_reg_info[REGNO (new_reg)].restore_rtx = regno_reg_rtx[original_regno];
5317 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5318 bitmap_set_bit (&check_only_regs, original_regno);
5319 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5320 if (def_p)
5321 lra_process_new_insns (insn, NULL, new_insns,
5322 "Add original<-inheritance");
5323 else
5324 lra_process_new_insns (insn, new_insns, NULL,
5325 "Add inheritance<-original");
5326 while (next_usage_insns != NULL_RTX)
5328 if (GET_CODE (next_usage_insns) != INSN_LIST)
5330 usage_insn = next_usage_insns;
5331 lra_assert (NONDEBUG_INSN_P (usage_insn));
5332 next_usage_insns = NULL;
5334 else
5336 usage_insn = XEXP (next_usage_insns, 0);
5337 lra_assert (DEBUG_INSN_P (usage_insn));
5338 next_usage_insns = XEXP (next_usage_insns, 1);
5340 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
5341 DEBUG_INSN_P (usage_insn));
5342 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5343 if (lra_dump_file != NULL)
5345 basic_block bb = BLOCK_FOR_INSN (usage_insn);
5346 fprintf (lra_dump_file,
5347 " Inheritance reuse change %d->%d (bb%d):\n",
5348 original_regno, REGNO (new_reg),
5349 bb ? bb->index : -1);
5350 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5353 if (lra_dump_file != NULL)
5354 fprintf (lra_dump_file,
5355 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5356 return true;
5359 /* Return true if we need a caller save/restore for pseudo REGNO which
5360 was assigned to a hard register. */
5361 static inline bool
5362 need_for_call_save_p (int regno)
5364 lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0);
5365 return (usage_insns[regno].calls_num < calls_num
5366 && (overlaps_hard_reg_set_p
5367 ((flag_ipa_ra &&
5368 ! hard_reg_set_empty_p (lra_reg_info[regno].actual_call_used_reg_set))
5369 ? lra_reg_info[regno].actual_call_used_reg_set
5370 : call_used_reg_set,
5371 PSEUDO_REGNO_MODE (regno), reg_renumber[regno])
5372 || (targetm.hard_regno_call_part_clobbered
5373 (reg_renumber[regno], PSEUDO_REGNO_MODE (regno)))));
5376 /* Global registers occurring in the current EBB. */
5377 static bitmap_head ebb_global_regs;
5379 /* Return true if we need a split for hard register REGNO or pseudo
5380 REGNO which was assigned to a hard register.
5381 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
5382 used for reloads since the EBB end. It is an approximation of the
5383 used hard registers in the split range. The exact value would
5384 require expensive calculations. If we were aggressive with
5385 splitting because of the approximation, the split pseudo will save
5386 the same hard register assignment and will be removed in the undo
5387 pass. We still need the approximation because too aggressive
5388 splitting would result in too inaccurate cost calculation in the
5389 assignment pass because of too many generated moves which will be
5390 probably removed in the undo pass. */
5391 static inline bool
5392 need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno)
5394 int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];
5396 lra_assert (hard_regno >= 0);
5397 return ((TEST_HARD_REG_BIT (potential_reload_hard_regs, hard_regno)
5398 /* Don't split eliminable hard registers, otherwise we can
5399 split hard registers like hard frame pointer, which
5400 lives on BB start/end according to DF-infrastructure,
5401 when there is a pseudo assigned to the register and
5402 living in the same BB. */
5403 && (regno >= FIRST_PSEUDO_REGISTER
5404 || ! TEST_HARD_REG_BIT (eliminable_regset, hard_regno))
5405 && ! TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno)
5406 /* Don't split call clobbered hard regs living through
5407 calls, otherwise we might have a check problem in the
5408 assign sub-pass as in the most cases (exception is a
5409 situation when lra_risky_transformations_p value is
5410 true) the assign pass assumes that all pseudos living
5411 through calls are assigned to call saved hard regs. */
5412 && (regno >= FIRST_PSEUDO_REGISTER
5413 || ! TEST_HARD_REG_BIT (call_used_reg_set, regno)
5414 || usage_insns[regno].calls_num == calls_num)
5415 /* We need at least 2 reloads to make pseudo splitting
5416 profitable. We should provide hard regno splitting in
5417 any case to solve 1st insn scheduling problem when
5418 moving hard register definition up might result in
5419 impossibility to find hard register for reload pseudo of
5420 small register class. */
5421 && (usage_insns[regno].reloads_num
5422 + (regno < FIRST_PSEUDO_REGISTER ? 0 : 3) < reloads_num)
5423 && (regno < FIRST_PSEUDO_REGISTER
5424 /* For short living pseudos, spilling + inheritance can
5425 be considered a substitution for splitting.
5426 Therefore we do not splitting for local pseudos. It
5427 decreases also aggressiveness of splitting. The
5428 minimal number of references is chosen taking into
5429 account that for 2 references splitting has no sense
5430 as we can just spill the pseudo. */
5431 || (regno >= FIRST_PSEUDO_REGISTER
5432 && lra_reg_info[regno].nrefs > 3
5433 && bitmap_bit_p (&ebb_global_regs, regno))))
5434 || (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno)));
5437 /* Return class for the split pseudo created from original pseudo with
5438 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
5439 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
5440 results in no secondary memory movements. */
5441 static enum reg_class
5442 choose_split_class (enum reg_class allocno_class,
5443 int hard_regno ATTRIBUTE_UNUSED,
5444 machine_mode mode ATTRIBUTE_UNUSED)
5446 int i;
5447 enum reg_class cl, best_cl = NO_REGS;
5448 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
5449 = REGNO_REG_CLASS (hard_regno);
5451 if (! targetm.secondary_memory_needed (mode, allocno_class, allocno_class)
5452 && TEST_HARD_REG_BIT (reg_class_contents[allocno_class], hard_regno))
5453 return allocno_class;
5454 for (i = 0;
5455 (cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES;
5456 i++)
5457 if (! targetm.secondary_memory_needed (mode, cl, hard_reg_class)
5458 && ! targetm.secondary_memory_needed (mode, hard_reg_class, cl)
5459 && TEST_HARD_REG_BIT (reg_class_contents[cl], hard_regno)
5460 && (best_cl == NO_REGS
5461 || ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl]))
5462 best_cl = cl;
5463 return best_cl;
5466 /* Copy any equivalence information from ORIGINAL_REGNO to NEW_REGNO.
5467 It only makes sense to call this function if NEW_REGNO is always
5468 equal to ORIGINAL_REGNO. */
5470 static void
5471 lra_copy_reg_equiv (unsigned int new_regno, unsigned int original_regno)
5473 if (!ira_reg_equiv[original_regno].defined_p)
5474 return;
5476 ira_expand_reg_equiv ();
5477 ira_reg_equiv[new_regno].defined_p = true;
5478 if (ira_reg_equiv[original_regno].memory)
5479 ira_reg_equiv[new_regno].memory
5480 = copy_rtx (ira_reg_equiv[original_regno].memory);
5481 if (ira_reg_equiv[original_regno].constant)
5482 ira_reg_equiv[new_regno].constant
5483 = copy_rtx (ira_reg_equiv[original_regno].constant);
5484 if (ira_reg_equiv[original_regno].invariant)
5485 ira_reg_equiv[new_regno].invariant
5486 = copy_rtx (ira_reg_equiv[original_regno].invariant);
5489 /* Do split transformations for insn INSN, which defines or uses
5490 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
5491 the EBB next uses ORIGINAL_REGNO; it has the same form as the
5492 "insns" field of usage_insns. If TO is not NULL, we don't use
5493 usage_insns, we put restore insns after TO insn.
5495 The transformations look like:
5497 p <- ... p <- ...
5498 ... s <- p (new insn -- save)
5499 ... =>
5500 ... p <- s (new insn -- restore)
5501 <- ... p ... <- ... p ...
5503 <- ... p ... <- ... p ...
5504 ... s <- p (new insn -- save)
5505 ... =>
5506 ... p <- s (new insn -- restore)
5507 <- ... p ... <- ... p ...
5509 where p is an original pseudo got a hard register or a hard
5510 register and s is a new split pseudo. The save is put before INSN
5511 if BEFORE_P is true. Return true if we succeed in such
5512 transformation. */
5513 static bool
5514 split_reg (bool before_p, int original_regno, rtx_insn *insn,
5515 rtx next_usage_insns, rtx_insn *to)
5517 enum reg_class rclass;
5518 rtx original_reg;
5519 int hard_regno, nregs;
5520 rtx new_reg, usage_insn;
5521 rtx_insn *restore, *save;
5522 bool after_p;
5523 bool call_save_p;
5524 machine_mode mode;
5526 if (original_regno < FIRST_PSEUDO_REGISTER)
5528 rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)];
5529 hard_regno = original_regno;
5530 call_save_p = false;
5531 nregs = 1;
5532 mode = lra_reg_info[hard_regno].biggest_mode;
5533 machine_mode reg_rtx_mode = GET_MODE (regno_reg_rtx[hard_regno]);
5534 /* A reg can have a biggest_mode of VOIDmode if it was only ever seen
5535 as part of a multi-word register. In that case, or if the biggest
5536 mode was larger than a register, just use the reg_rtx. Otherwise,
5537 limit the size to that of the biggest access in the function. */
5538 if (mode == VOIDmode
5539 || paradoxical_subreg_p (mode, reg_rtx_mode))
5541 original_reg = regno_reg_rtx[hard_regno];
5542 mode = reg_rtx_mode;
5544 else
5545 original_reg = gen_rtx_REG (mode, hard_regno);
5547 else
5549 mode = PSEUDO_REGNO_MODE (original_regno);
5550 hard_regno = reg_renumber[original_regno];
5551 nregs = hard_regno_nregs (hard_regno, mode);
5552 rclass = lra_get_allocno_class (original_regno);
5553 original_reg = regno_reg_rtx[original_regno];
5554 call_save_p = need_for_call_save_p (original_regno);
5556 lra_assert (hard_regno >= 0);
5557 if (lra_dump_file != NULL)
5558 fprintf (lra_dump_file,
5559 " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
5561 if (call_save_p)
5563 mode = HARD_REGNO_CALLER_SAVE_MODE (hard_regno,
5564 hard_regno_nregs (hard_regno, mode),
5565 mode);
5566 new_reg = lra_create_new_reg (mode, NULL_RTX, NO_REGS, "save");
5568 else
5570 rclass = choose_split_class (rclass, hard_regno, mode);
5571 if (rclass == NO_REGS)
5573 if (lra_dump_file != NULL)
5575 fprintf (lra_dump_file,
5576 " Rejecting split of %d(%s): "
5577 "no good reg class for %d(%s)\n",
5578 original_regno,
5579 reg_class_names[lra_get_allocno_class (original_regno)],
5580 hard_regno,
5581 reg_class_names[REGNO_REG_CLASS (hard_regno)]);
5582 fprintf
5583 (lra_dump_file,
5584 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5586 return false;
5588 /* Split_if_necessary can split hard registers used as part of a
5589 multi-register mode but splits each register individually. The
5590 mode used for each independent register may not be supported
5591 so reject the split. Splitting the wider mode should theoretically
5592 be possible but is not implemented. */
5593 if (!targetm.hard_regno_mode_ok (hard_regno, mode))
5595 if (lra_dump_file != NULL)
5597 fprintf (lra_dump_file,
5598 " Rejecting split of %d(%s): unsuitable mode %s\n",
5599 original_regno,
5600 reg_class_names[lra_get_allocno_class (original_regno)],
5601 GET_MODE_NAME (mode));
5602 fprintf
5603 (lra_dump_file,
5604 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5606 return false;
5608 new_reg = lra_create_new_reg (mode, original_reg, rclass, "split");
5609 reg_renumber[REGNO (new_reg)] = hard_regno;
5611 int new_regno = REGNO (new_reg);
5612 save = emit_spill_move (true, new_reg, original_reg);
5613 if (NEXT_INSN (save) != NULL_RTX && !call_save_p)
5615 if (lra_dump_file != NULL)
5617 fprintf
5618 (lra_dump_file,
5619 " Rejecting split %d->%d resulting in > 2 save insns:\n",
5620 original_regno, new_regno);
5621 dump_rtl_slim (lra_dump_file, save, NULL, -1, 0);
5622 fprintf (lra_dump_file,
5623 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5625 return false;
5627 restore = emit_spill_move (false, new_reg, original_reg);
5628 if (NEXT_INSN (restore) != NULL_RTX && !call_save_p)
5630 if (lra_dump_file != NULL)
5632 fprintf (lra_dump_file,
5633 " Rejecting split %d->%d "
5634 "resulting in > 2 restore insns:\n",
5635 original_regno, new_regno);
5636 dump_rtl_slim (lra_dump_file, restore, NULL, -1, 0);
5637 fprintf (lra_dump_file,
5638 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5640 return false;
5642 /* Transfer equivalence information to the spill register, so that
5643 if we fail to allocate the spill register, we have the option of
5644 rematerializing the original value instead of spilling to the stack. */
5645 if (!HARD_REGISTER_NUM_P (original_regno)
5646 && mode == PSEUDO_REGNO_MODE (original_regno))
5647 lra_copy_reg_equiv (new_regno, original_regno);
5648 lra_reg_info[new_regno].restore_rtx = regno_reg_rtx[original_regno];
5649 bitmap_set_bit (&check_only_regs, new_regno);
5650 bitmap_set_bit (&check_only_regs, original_regno);
5651 bitmap_set_bit (&lra_split_regs, new_regno);
5652 if (to != NULL)
5654 usage_insn = to;
5655 after_p = TRUE;
5657 else
5659 after_p = usage_insns[original_regno].after_p;
5660 for (;;)
5662 if (GET_CODE (next_usage_insns) != INSN_LIST)
5664 usage_insn = next_usage_insns;
5665 break;
5667 usage_insn = XEXP (next_usage_insns, 0);
5668 lra_assert (DEBUG_INSN_P (usage_insn));
5669 next_usage_insns = XEXP (next_usage_insns, 1);
5670 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
5671 true);
5672 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5673 if (lra_dump_file != NULL)
5675 fprintf (lra_dump_file, " Split reuse change %d->%d:\n",
5676 original_regno, new_regno);
5677 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5681 lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn));
5682 lra_assert (usage_insn != insn || (after_p && before_p));
5683 lra_process_new_insns (as_a <rtx_insn *> (usage_insn),
5684 after_p ? NULL : restore,
5685 after_p ? restore : NULL,
5686 call_save_p
5687 ? "Add reg<-save" : "Add reg<-split");
5688 lra_process_new_insns (insn, before_p ? save : NULL,
5689 before_p ? NULL : save,
5690 call_save_p
5691 ? "Add save<-reg" : "Add split<-reg");
5692 if (nregs > 1)
5693 /* If we are trying to split multi-register. We should check
5694 conflicts on the next assignment sub-pass. IRA can allocate on
5695 sub-register levels, LRA do this on pseudos level right now and
5696 this discrepancy may create allocation conflicts after
5697 splitting. */
5698 lra_risky_transformations_p = true;
5699 if (lra_dump_file != NULL)
5700 fprintf (lra_dump_file,
5701 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5702 return true;
5705 /* Split a hard reg for reload pseudo REGNO having RCLASS and living
5706 in the range [FROM, TO]. Return true if did a split. Otherwise,
5707 return false. */
5708 bool
5709 spill_hard_reg_in_range (int regno, enum reg_class rclass, rtx_insn *from, rtx_insn *to)
5711 int i, hard_regno;
5712 int rclass_size;
5713 rtx_insn *insn;
5714 unsigned int uid;
5715 bitmap_iterator bi;
5716 HARD_REG_SET ignore;
5718 lra_assert (from != NULL && to != NULL);
5719 CLEAR_HARD_REG_SET (ignore);
5720 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
5722 lra_insn_recog_data_t id = lra_insn_recog_data[uid];
5723 struct lra_static_insn_data *static_id = id->insn_static_data;
5724 struct lra_insn_reg *reg;
5726 for (reg = id->regs; reg != NULL; reg = reg->next)
5727 if (reg->regno < FIRST_PSEUDO_REGISTER)
5728 SET_HARD_REG_BIT (ignore, reg->regno);
5729 for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
5730 SET_HARD_REG_BIT (ignore, reg->regno);
5732 rclass_size = ira_class_hard_regs_num[rclass];
5733 for (i = 0; i < rclass_size; i++)
5735 hard_regno = ira_class_hard_regs[rclass][i];
5736 if (! TEST_HARD_REG_BIT (lra_reg_info[regno].conflict_hard_regs, hard_regno)
5737 || TEST_HARD_REG_BIT (ignore, hard_regno))
5738 continue;
5739 for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
5741 struct lra_static_insn_data *static_id;
5742 struct lra_insn_reg *reg;
5744 if (!INSN_P (insn))
5745 continue;
5746 if (bitmap_bit_p (&lra_reg_info[hard_regno].insn_bitmap,
5747 INSN_UID (insn)))
5748 break;
5749 static_id = lra_get_insn_recog_data (insn)->insn_static_data;
5750 for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
5751 if (reg->regno == hard_regno)
5752 break;
5753 if (reg != NULL)
5754 break;
5756 if (insn != NEXT_INSN (to))
5757 continue;
5758 if (split_reg (TRUE, hard_regno, from, NULL, to))
5759 return true;
5761 return false;
5764 /* Recognize that we need a split transformation for insn INSN, which
5765 defines or uses REGNO in its insn biggest MODE (we use it only if
5766 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
5767 hard registers which might be used for reloads since the EBB end.
5768 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
5769 uid before starting INSN processing. Return true if we succeed in
5770 such transformation. */
5771 static bool
5772 split_if_necessary (int regno, machine_mode mode,
5773 HARD_REG_SET potential_reload_hard_regs,
5774 bool before_p, rtx_insn *insn, int max_uid)
5776 bool res = false;
5777 int i, nregs = 1;
5778 rtx next_usage_insns;
5780 if (regno < FIRST_PSEUDO_REGISTER)
5781 nregs = hard_regno_nregs (regno, mode);
5782 for (i = 0; i < nregs; i++)
5783 if (usage_insns[regno + i].check == curr_usage_insns_check
5784 && (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX
5785 /* To avoid processing the register twice or more. */
5786 && ((GET_CODE (next_usage_insns) != INSN_LIST
5787 && INSN_UID (next_usage_insns) < max_uid)
5788 || (GET_CODE (next_usage_insns) == INSN_LIST
5789 && (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid)))
5790 && need_for_split_p (potential_reload_hard_regs, regno + i)
5791 && split_reg (before_p, regno + i, insn, next_usage_insns, NULL))
5792 res = true;
5793 return res;
5796 /* Return TRUE if rtx X is considered as an invariant for
5797 inheritance. */
5798 static bool
5799 invariant_p (const_rtx x)
5801 machine_mode mode;
5802 const char *fmt;
5803 enum rtx_code code;
5804 int i, j;
5806 code = GET_CODE (x);
5807 mode = GET_MODE (x);
5808 if (code == SUBREG)
5810 x = SUBREG_REG (x);
5811 code = GET_CODE (x);
5812 mode = wider_subreg_mode (mode, GET_MODE (x));
5815 if (MEM_P (x))
5816 return false;
5818 if (REG_P (x))
5820 int i, nregs, regno = REGNO (x);
5822 if (regno >= FIRST_PSEUDO_REGISTER || regno == STACK_POINTER_REGNUM
5823 || TEST_HARD_REG_BIT (eliminable_regset, regno)
5824 || GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
5825 return false;
5826 nregs = hard_regno_nregs (regno, mode);
5827 for (i = 0; i < nregs; i++)
5828 if (! fixed_regs[regno + i]
5829 /* A hard register may be clobbered in the current insn
5830 but we can ignore this case because if the hard
5831 register is used it should be set somewhere after the
5832 clobber. */
5833 || bitmap_bit_p (&invalid_invariant_regs, regno + i))
5834 return false;
5836 fmt = GET_RTX_FORMAT (code);
5837 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5839 if (fmt[i] == 'e')
5841 if (! invariant_p (XEXP (x, i)))
5842 return false;
5844 else if (fmt[i] == 'E')
5846 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5847 if (! invariant_p (XVECEXP (x, i, j)))
5848 return false;
5851 return true;
5854 /* We have 'dest_reg <- invariant'. Let us try to make an invariant
5855 inheritance transformation (using dest_reg instead invariant in a
5856 subsequent insn). */
5857 static bool
5858 process_invariant_for_inheritance (rtx dst_reg, rtx invariant_rtx)
5860 invariant_ptr_t invariant_ptr;
5861 rtx_insn *insn, *new_insns;
5862 rtx insn_set, insn_reg, new_reg;
5863 int insn_regno;
5864 bool succ_p = false;
5865 int dst_regno = REGNO (dst_reg);
5866 machine_mode dst_mode = GET_MODE (dst_reg);
5867 enum reg_class cl = lra_get_allocno_class (dst_regno), insn_reg_cl;
5869 invariant_ptr = insert_invariant (invariant_rtx);
5870 if ((insn = invariant_ptr->insn) != NULL_RTX)
5872 /* We have a subsequent insn using the invariant. */
5873 insn_set = single_set (insn);
5874 lra_assert (insn_set != NULL);
5875 insn_reg = SET_DEST (insn_set);
5876 lra_assert (REG_P (insn_reg));
5877 insn_regno = REGNO (insn_reg);
5878 insn_reg_cl = lra_get_allocno_class (insn_regno);
5880 if (dst_mode == GET_MODE (insn_reg)
5881 /* We should consider only result move reg insns which are
5882 cheap. */
5883 && targetm.register_move_cost (dst_mode, cl, insn_reg_cl) == 2
5884 && targetm.register_move_cost (dst_mode, cl, cl) == 2)
5886 if (lra_dump_file != NULL)
5887 fprintf (lra_dump_file,
5888 " [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\n");
5889 new_reg = lra_create_new_reg (dst_mode, dst_reg,
5890 cl, "invariant inheritance");
5891 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5892 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5893 lra_reg_info[REGNO (new_reg)].restore_rtx = PATTERN (insn);
5894 start_sequence ();
5895 lra_emit_move (new_reg, dst_reg);
5896 new_insns = get_insns ();
5897 end_sequence ();
5898 lra_process_new_insns (curr_insn, NULL, new_insns,
5899 "Add invariant inheritance<-original");
5900 start_sequence ();
5901 lra_emit_move (SET_DEST (insn_set), new_reg);
5902 new_insns = get_insns ();
5903 end_sequence ();
5904 lra_process_new_insns (insn, NULL, new_insns,
5905 "Changing reload<-inheritance");
5906 lra_set_insn_deleted (insn);
5907 succ_p = true;
5908 if (lra_dump_file != NULL)
5910 fprintf (lra_dump_file,
5911 " Invariant inheritance reuse change %d (bb%d):\n",
5912 REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5913 dump_insn_slim (lra_dump_file, insn);
5914 fprintf (lra_dump_file,
5915 " ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]\n");
5919 invariant_ptr->insn = curr_insn;
5920 return succ_p;
5923 /* Check only registers living at the current program point in the
5924 current EBB. */
5925 static bitmap_head live_regs;
5927 /* Update live info in EBB given by its HEAD and TAIL insns after
5928 inheritance/split transformation. The function removes dead moves
5929 too. */
5930 static void
5931 update_ebb_live_info (rtx_insn *head, rtx_insn *tail)
5933 unsigned int j;
5934 int i, regno;
5935 bool live_p;
5936 rtx_insn *prev_insn;
5937 rtx set;
5938 bool remove_p;
5939 basic_block last_bb, prev_bb, curr_bb;
5940 bitmap_iterator bi;
5941 struct lra_insn_reg *reg;
5942 edge e;
5943 edge_iterator ei;
5945 last_bb = BLOCK_FOR_INSN (tail);
5946 prev_bb = NULL;
5947 for (curr_insn = tail;
5948 curr_insn != PREV_INSN (head);
5949 curr_insn = prev_insn)
5951 prev_insn = PREV_INSN (curr_insn);
5952 /* We need to process empty blocks too. They contain
5953 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
5954 if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK)
5955 continue;
5956 curr_bb = BLOCK_FOR_INSN (curr_insn);
5957 if (curr_bb != prev_bb)
5959 if (prev_bb != NULL)
5961 /* Update df_get_live_in (prev_bb): */
5962 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
5963 if (bitmap_bit_p (&live_regs, j))
5964 bitmap_set_bit (df_get_live_in (prev_bb), j);
5965 else
5966 bitmap_clear_bit (df_get_live_in (prev_bb), j);
5968 if (curr_bb != last_bb)
5970 /* Update df_get_live_out (curr_bb): */
5971 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
5973 live_p = bitmap_bit_p (&live_regs, j);
5974 if (! live_p)
5975 FOR_EACH_EDGE (e, ei, curr_bb->succs)
5976 if (bitmap_bit_p (df_get_live_in (e->dest), j))
5978 live_p = true;
5979 break;
5981 if (live_p)
5982 bitmap_set_bit (df_get_live_out (curr_bb), j);
5983 else
5984 bitmap_clear_bit (df_get_live_out (curr_bb), j);
5987 prev_bb = curr_bb;
5988 bitmap_and (&live_regs, &check_only_regs, df_get_live_out (curr_bb));
5990 if (! NONDEBUG_INSN_P (curr_insn))
5991 continue;
5992 curr_id = lra_get_insn_recog_data (curr_insn);
5993 curr_static_id = curr_id->insn_static_data;
5994 remove_p = false;
5995 if ((set = single_set (curr_insn)) != NULL_RTX
5996 && REG_P (SET_DEST (set))
5997 && (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER
5998 && SET_DEST (set) != pic_offset_table_rtx
5999 && bitmap_bit_p (&check_only_regs, regno)
6000 && ! bitmap_bit_p (&live_regs, regno))
6001 remove_p = true;
6002 /* See which defined values die here. */
6003 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6004 if (reg->type == OP_OUT && ! reg->subreg_p)
6005 bitmap_clear_bit (&live_regs, reg->regno);
6006 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6007 if (reg->type == OP_OUT && ! reg->subreg_p)
6008 bitmap_clear_bit (&live_regs, reg->regno);
6009 if (curr_id->arg_hard_regs != NULL)
6010 /* Make clobbered argument hard registers die. */
6011 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6012 if (regno >= FIRST_PSEUDO_REGISTER)
6013 bitmap_clear_bit (&live_regs, regno - FIRST_PSEUDO_REGISTER);
6014 /* Mark each used value as live. */
6015 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6016 if (reg->type != OP_OUT
6017 && bitmap_bit_p (&check_only_regs, reg->regno))
6018 bitmap_set_bit (&live_regs, reg->regno);
6019 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6020 if (reg->type != OP_OUT
6021 && bitmap_bit_p (&check_only_regs, reg->regno))
6022 bitmap_set_bit (&live_regs, reg->regno);
6023 if (curr_id->arg_hard_regs != NULL)
6024 /* Make used argument hard registers live. */
6025 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6026 if (regno < FIRST_PSEUDO_REGISTER
6027 && bitmap_bit_p (&check_only_regs, regno))
6028 bitmap_set_bit (&live_regs, regno);
6029 /* It is quite important to remove dead move insns because it
6030 means removing dead store. We don't need to process them for
6031 constraints. */
6032 if (remove_p)
6034 if (lra_dump_file != NULL)
6036 fprintf (lra_dump_file, " Removing dead insn:\n ");
6037 dump_insn_slim (lra_dump_file, curr_insn);
6039 lra_set_insn_deleted (curr_insn);
6044 /* The structure describes info to do an inheritance for the current
6045 insn. We need to collect such info first before doing the
6046 transformations because the transformations change the insn
6047 internal representation. */
6048 struct to_inherit
6050 /* Original regno. */
6051 int regno;
6052 /* Subsequent insns which can inherit original reg value. */
6053 rtx insns;
6056 /* Array containing all info for doing inheritance from the current
6057 insn. */
6058 static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS];
6060 /* Number elements in the previous array. */
6061 static int to_inherit_num;
6063 /* Add inheritance info REGNO and INSNS. Their meaning is described in
6064 structure to_inherit. */
6065 static void
6066 add_to_inherit (int regno, rtx insns)
6068 int i;
6070 for (i = 0; i < to_inherit_num; i++)
6071 if (to_inherit[i].regno == regno)
6072 return;
6073 lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS);
6074 to_inherit[to_inherit_num].regno = regno;
6075 to_inherit[to_inherit_num++].insns = insns;
6078 /* Return the last non-debug insn in basic block BB, or the block begin
6079 note if none. */
6080 static rtx_insn *
6081 get_last_insertion_point (basic_block bb)
6083 rtx_insn *insn;
6085 FOR_BB_INSNS_REVERSE (bb, insn)
6086 if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
6087 return insn;
6088 gcc_unreachable ();
6091 /* Set up RES by registers living on edges FROM except the edge (FROM,
6092 TO) or by registers set up in a jump insn in BB FROM. */
6093 static void
6094 get_live_on_other_edges (basic_block from, basic_block to, bitmap res)
6096 rtx_insn *last;
6097 struct lra_insn_reg *reg;
6098 edge e;
6099 edge_iterator ei;
6101 lra_assert (to != NULL);
6102 bitmap_clear (res);
6103 FOR_EACH_EDGE (e, ei, from->succs)
6104 if (e->dest != to)
6105 bitmap_ior_into (res, df_get_live_in (e->dest));
6106 last = get_last_insertion_point (from);
6107 if (! JUMP_P (last))
6108 return;
6109 curr_id = lra_get_insn_recog_data (last);
6110 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6111 if (reg->type != OP_IN)
6112 bitmap_set_bit (res, reg->regno);
6115 /* Used as a temporary results of some bitmap calculations. */
6116 static bitmap_head temp_bitmap;
6118 /* We split for reloads of small class of hard regs. The following
6119 defines how many hard regs the class should have to be qualified as
6120 small. The code is mostly oriented to x86/x86-64 architecture
6121 where some insns need to use only specific register or pair of
6122 registers and these register can live in RTL explicitly, e.g. for
6123 parameter passing. */
6124 static const int max_small_class_regs_num = 2;
6126 /* Do inheritance/split transformations in EBB starting with HEAD and
6127 finishing on TAIL. We process EBB insns in the reverse order.
6128 Return true if we did any inheritance/split transformation in the
6129 EBB.
6131 We should avoid excessive splitting which results in worse code
6132 because of inaccurate cost calculations for spilling new split
6133 pseudos in such case. To achieve this we do splitting only if
6134 register pressure is high in given basic block and there are reload
6135 pseudos requiring hard registers. We could do more register
6136 pressure calculations at any given program point to avoid necessary
6137 splitting even more but it is to expensive and the current approach
6138 works well enough. */
6139 static bool
6140 inherit_in_ebb (rtx_insn *head, rtx_insn *tail)
6142 int i, src_regno, dst_regno, nregs;
6143 bool change_p, succ_p, update_reloads_num_p;
6144 rtx_insn *prev_insn, *last_insn;
6145 rtx next_usage_insns, curr_set;
6146 enum reg_class cl;
6147 struct lra_insn_reg *reg;
6148 basic_block last_processed_bb, curr_bb = NULL;
6149 HARD_REG_SET potential_reload_hard_regs, live_hard_regs;
6150 bitmap to_process;
6151 unsigned int j;
6152 bitmap_iterator bi;
6153 bool head_p, after_p;
6155 change_p = false;
6156 curr_usage_insns_check++;
6157 clear_invariants ();
6158 reloads_num = calls_num = 0;
6159 bitmap_clear (&check_only_regs);
6160 bitmap_clear (&invalid_invariant_regs);
6161 last_processed_bb = NULL;
6162 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6163 COPY_HARD_REG_SET (live_hard_regs, eliminable_regset);
6164 IOR_HARD_REG_SET (live_hard_regs, lra_no_alloc_regs);
6165 /* We don't process new insns generated in the loop. */
6166 for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn)
6168 prev_insn = PREV_INSN (curr_insn);
6169 if (BLOCK_FOR_INSN (curr_insn) != NULL)
6170 curr_bb = BLOCK_FOR_INSN (curr_insn);
6171 if (last_processed_bb != curr_bb)
6173 /* We are at the end of BB. Add qualified living
6174 pseudos for potential splitting. */
6175 to_process = df_get_live_out (curr_bb);
6176 if (last_processed_bb != NULL)
6178 /* We are somewhere in the middle of EBB. */
6179 get_live_on_other_edges (curr_bb, last_processed_bb,
6180 &temp_bitmap);
6181 to_process = &temp_bitmap;
6183 last_processed_bb = curr_bb;
6184 last_insn = get_last_insertion_point (curr_bb);
6185 after_p = (! JUMP_P (last_insn)
6186 && (! CALL_P (last_insn)
6187 || (find_reg_note (last_insn,
6188 REG_NORETURN, NULL_RTX) == NULL_RTX
6189 && ! SIBLING_CALL_P (last_insn))));
6190 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6191 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6193 if ((int) j >= lra_constraint_new_regno_start)
6194 break;
6195 if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6197 if (j < FIRST_PSEUDO_REGISTER)
6198 SET_HARD_REG_BIT (live_hard_regs, j);
6199 else
6200 add_to_hard_reg_set (&live_hard_regs,
6201 PSEUDO_REGNO_MODE (j),
6202 reg_renumber[j]);
6203 setup_next_usage_insn (j, last_insn, reloads_num, after_p);
6207 src_regno = dst_regno = -1;
6208 curr_set = single_set (curr_insn);
6209 if (curr_set != NULL_RTX && REG_P (SET_DEST (curr_set)))
6210 dst_regno = REGNO (SET_DEST (curr_set));
6211 if (curr_set != NULL_RTX && REG_P (SET_SRC (curr_set)))
6212 src_regno = REGNO (SET_SRC (curr_set));
6213 update_reloads_num_p = true;
6214 if (src_regno < lra_constraint_new_regno_start
6215 && src_regno >= FIRST_PSEUDO_REGISTER
6216 && reg_renumber[src_regno] < 0
6217 && dst_regno >= lra_constraint_new_regno_start
6218 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS)
6220 /* 'reload_pseudo <- original_pseudo'. */
6221 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6222 reloads_num++;
6223 update_reloads_num_p = false;
6224 succ_p = false;
6225 if (usage_insns[src_regno].check == curr_usage_insns_check
6226 && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX)
6227 succ_p = inherit_reload_reg (false, src_regno, cl,
6228 curr_insn, next_usage_insns);
6229 if (succ_p)
6230 change_p = true;
6231 else
6232 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6233 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6234 IOR_HARD_REG_SET (potential_reload_hard_regs,
6235 reg_class_contents[cl]);
6237 else if (src_regno < 0
6238 && dst_regno >= lra_constraint_new_regno_start
6239 && invariant_p (SET_SRC (curr_set))
6240 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS
6241 && ! bitmap_bit_p (&invalid_invariant_regs, dst_regno)
6242 && ! bitmap_bit_p (&invalid_invariant_regs,
6243 ORIGINAL_REGNO(regno_reg_rtx[dst_regno])))
6245 /* 'reload_pseudo <- invariant'. */
6246 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6247 reloads_num++;
6248 update_reloads_num_p = false;
6249 if (process_invariant_for_inheritance (SET_DEST (curr_set), SET_SRC (curr_set)))
6250 change_p = true;
6251 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6252 IOR_HARD_REG_SET (potential_reload_hard_regs,
6253 reg_class_contents[cl]);
6255 else if (src_regno >= lra_constraint_new_regno_start
6256 && dst_regno < lra_constraint_new_regno_start
6257 && dst_regno >= FIRST_PSEUDO_REGISTER
6258 && reg_renumber[dst_regno] < 0
6259 && (cl = lra_get_allocno_class (src_regno)) != NO_REGS
6260 && usage_insns[dst_regno].check == curr_usage_insns_check
6261 && (next_usage_insns
6262 = usage_insns[dst_regno].insns) != NULL_RTX)
6264 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6265 reloads_num++;
6266 update_reloads_num_p = false;
6267 /* 'original_pseudo <- reload_pseudo'. */
6268 if (! JUMP_P (curr_insn)
6269 && inherit_reload_reg (true, dst_regno, cl,
6270 curr_insn, next_usage_insns))
6271 change_p = true;
6272 /* Invalidate. */
6273 usage_insns[dst_regno].check = 0;
6274 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6275 IOR_HARD_REG_SET (potential_reload_hard_regs,
6276 reg_class_contents[cl]);
6278 else if (INSN_P (curr_insn))
6280 int iter;
6281 int max_uid = get_max_uid ();
6283 curr_id = lra_get_insn_recog_data (curr_insn);
6284 curr_static_id = curr_id->insn_static_data;
6285 to_inherit_num = 0;
6286 /* Process insn definitions. */
6287 for (iter = 0; iter < 2; iter++)
6288 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6289 reg != NULL;
6290 reg = reg->next)
6291 if (reg->type != OP_IN
6292 && (dst_regno = reg->regno) < lra_constraint_new_regno_start)
6294 if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT
6295 && reg_renumber[dst_regno] < 0 && ! reg->subreg_p
6296 && usage_insns[dst_regno].check == curr_usage_insns_check
6297 && (next_usage_insns
6298 = usage_insns[dst_regno].insns) != NULL_RTX)
6300 struct lra_insn_reg *r;
6302 for (r = curr_id->regs; r != NULL; r = r->next)
6303 if (r->type != OP_OUT && r->regno == dst_regno)
6304 break;
6305 /* Don't do inheritance if the pseudo is also
6306 used in the insn. */
6307 if (r == NULL)
6308 /* We can not do inheritance right now
6309 because the current insn reg info (chain
6310 regs) can change after that. */
6311 add_to_inherit (dst_regno, next_usage_insns);
6313 /* We can not process one reg twice here because of
6314 usage_insns invalidation. */
6315 if ((dst_regno < FIRST_PSEUDO_REGISTER
6316 || reg_renumber[dst_regno] >= 0)
6317 && ! reg->subreg_p && reg->type != OP_IN)
6319 HARD_REG_SET s;
6321 if (split_if_necessary (dst_regno, reg->biggest_mode,
6322 potential_reload_hard_regs,
6323 false, curr_insn, max_uid))
6324 change_p = true;
6325 CLEAR_HARD_REG_SET (s);
6326 if (dst_regno < FIRST_PSEUDO_REGISTER)
6327 add_to_hard_reg_set (&s, reg->biggest_mode, dst_regno);
6328 else
6329 add_to_hard_reg_set (&s, PSEUDO_REGNO_MODE (dst_regno),
6330 reg_renumber[dst_regno]);
6331 AND_COMPL_HARD_REG_SET (live_hard_regs, s);
6333 /* We should invalidate potential inheritance or
6334 splitting for the current insn usages to the next
6335 usage insns (see code below) as the output pseudo
6336 prevents this. */
6337 if ((dst_regno >= FIRST_PSEUDO_REGISTER
6338 && reg_renumber[dst_regno] < 0)
6339 || (reg->type == OP_OUT && ! reg->subreg_p
6340 && (dst_regno < FIRST_PSEUDO_REGISTER
6341 || reg_renumber[dst_regno] >= 0)))
6343 /* Invalidate and mark definitions. */
6344 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6345 usage_insns[dst_regno].check = -(int) INSN_UID (curr_insn);
6346 else
6348 nregs = hard_regno_nregs (dst_regno,
6349 reg->biggest_mode);
6350 for (i = 0; i < nregs; i++)
6351 usage_insns[dst_regno + i].check
6352 = -(int) INSN_UID (curr_insn);
6356 /* Process clobbered call regs. */
6357 if (curr_id->arg_hard_regs != NULL)
6358 for (i = 0; (dst_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6359 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6360 usage_insns[dst_regno - FIRST_PSEUDO_REGISTER].check
6361 = -(int) INSN_UID (curr_insn);
6362 if (! JUMP_P (curr_insn))
6363 for (i = 0; i < to_inherit_num; i++)
6364 if (inherit_reload_reg (true, to_inherit[i].regno,
6365 ALL_REGS, curr_insn,
6366 to_inherit[i].insns))
6367 change_p = true;
6368 if (CALL_P (curr_insn))
6370 rtx cheap, pat, dest;
6371 rtx_insn *restore;
6372 int regno, hard_regno;
6374 calls_num++;
6375 if ((cheap = find_reg_note (curr_insn,
6376 REG_RETURNED, NULL_RTX)) != NULL_RTX
6377 && ((cheap = XEXP (cheap, 0)), true)
6378 && (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER
6379 && (hard_regno = reg_renumber[regno]) >= 0
6380 && usage_insns[regno].check == curr_usage_insns_check
6381 /* If there are pending saves/restores, the
6382 optimization is not worth. */
6383 && usage_insns[regno].calls_num == calls_num - 1
6384 && TEST_HARD_REG_BIT (call_used_reg_set, hard_regno))
6386 /* Restore the pseudo from the call result as
6387 REG_RETURNED note says that the pseudo value is
6388 in the call result and the pseudo is an argument
6389 of the call. */
6390 pat = PATTERN (curr_insn);
6391 if (GET_CODE (pat) == PARALLEL)
6392 pat = XVECEXP (pat, 0, 0);
6393 dest = SET_DEST (pat);
6394 /* For multiple return values dest is PARALLEL.
6395 Currently we handle only single return value case. */
6396 if (REG_P (dest))
6398 start_sequence ();
6399 emit_move_insn (cheap, copy_rtx (dest));
6400 restore = get_insns ();
6401 end_sequence ();
6402 lra_process_new_insns (curr_insn, NULL, restore,
6403 "Inserting call parameter restore");
6404 /* We don't need to save/restore of the pseudo from
6405 this call. */
6406 usage_insns[regno].calls_num = calls_num;
6407 bitmap_set_bit (&check_only_regs, regno);
6411 to_inherit_num = 0;
6412 /* Process insn usages. */
6413 for (iter = 0; iter < 2; iter++)
6414 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6415 reg != NULL;
6416 reg = reg->next)
6417 if ((reg->type != OP_OUT
6418 || (reg->type == OP_OUT && reg->subreg_p))
6419 && (src_regno = reg->regno) < lra_constraint_new_regno_start)
6421 if (src_regno >= FIRST_PSEUDO_REGISTER
6422 && reg_renumber[src_regno] < 0 && reg->type == OP_IN)
6424 if (usage_insns[src_regno].check == curr_usage_insns_check
6425 && (next_usage_insns
6426 = usage_insns[src_regno].insns) != NULL_RTX
6427 && NONDEBUG_INSN_P (curr_insn))
6428 add_to_inherit (src_regno, next_usage_insns);
6429 else if (usage_insns[src_regno].check
6430 != -(int) INSN_UID (curr_insn))
6431 /* Add usages but only if the reg is not set up
6432 in the same insn. */
6433 add_next_usage_insn (src_regno, curr_insn, reloads_num);
6435 else if (src_regno < FIRST_PSEUDO_REGISTER
6436 || reg_renumber[src_regno] >= 0)
6438 bool before_p;
6439 rtx_insn *use_insn = curr_insn;
6441 before_p = (JUMP_P (curr_insn)
6442 || (CALL_P (curr_insn) && reg->type == OP_IN));
6443 if (NONDEBUG_INSN_P (curr_insn)
6444 && (! JUMP_P (curr_insn) || reg->type == OP_IN)
6445 && split_if_necessary (src_regno, reg->biggest_mode,
6446 potential_reload_hard_regs,
6447 before_p, curr_insn, max_uid))
6449 if (reg->subreg_p)
6450 lra_risky_transformations_p = true;
6451 change_p = true;
6452 /* Invalidate. */
6453 usage_insns[src_regno].check = 0;
6454 if (before_p)
6455 use_insn = PREV_INSN (curr_insn);
6457 if (NONDEBUG_INSN_P (curr_insn))
6459 if (src_regno < FIRST_PSEUDO_REGISTER)
6460 add_to_hard_reg_set (&live_hard_regs,
6461 reg->biggest_mode, src_regno);
6462 else
6463 add_to_hard_reg_set (&live_hard_regs,
6464 PSEUDO_REGNO_MODE (src_regno),
6465 reg_renumber[src_regno]);
6467 if (src_regno >= FIRST_PSEUDO_REGISTER)
6468 add_next_usage_insn (src_regno, use_insn, reloads_num);
6469 else
6471 for (i = 0; i < hard_regno_nregs (src_regno, reg->biggest_mode); i++)
6472 add_next_usage_insn (src_regno + i, use_insn, reloads_num);
6476 /* Process used call regs. */
6477 if (curr_id->arg_hard_regs != NULL)
6478 for (i = 0; (src_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6479 if (src_regno < FIRST_PSEUDO_REGISTER)
6481 SET_HARD_REG_BIT (live_hard_regs, src_regno);
6482 add_next_usage_insn (src_regno, curr_insn, reloads_num);
6484 for (i = 0; i < to_inherit_num; i++)
6486 src_regno = to_inherit[i].regno;
6487 if (inherit_reload_reg (false, src_regno, ALL_REGS,
6488 curr_insn, to_inherit[i].insns))
6489 change_p = true;
6490 else
6491 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6494 if (update_reloads_num_p
6495 && NONDEBUG_INSN_P (curr_insn) && curr_set != NULL_RTX)
6497 int regno = -1;
6498 if ((REG_P (SET_DEST (curr_set))
6499 && (regno = REGNO (SET_DEST (curr_set))) >= lra_constraint_new_regno_start
6500 && reg_renumber[regno] < 0
6501 && (cl = lra_get_allocno_class (regno)) != NO_REGS)
6502 || (REG_P (SET_SRC (curr_set))
6503 && (regno = REGNO (SET_SRC (curr_set))) >= lra_constraint_new_regno_start
6504 && reg_renumber[regno] < 0
6505 && (cl = lra_get_allocno_class (regno)) != NO_REGS))
6507 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6508 reloads_num++;
6509 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6510 IOR_HARD_REG_SET (potential_reload_hard_regs,
6511 reg_class_contents[cl]);
6514 if (NONDEBUG_INSN_P (curr_insn))
6516 int regno;
6518 /* Invalidate invariants with changed regs. */
6519 curr_id = lra_get_insn_recog_data (curr_insn);
6520 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6521 if (reg->type != OP_IN)
6523 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6524 bitmap_set_bit (&invalid_invariant_regs,
6525 ORIGINAL_REGNO (regno_reg_rtx[reg->regno]));
6527 curr_static_id = curr_id->insn_static_data;
6528 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6529 if (reg->type != OP_IN)
6530 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6531 if (curr_id->arg_hard_regs != NULL)
6532 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6533 if (regno >= FIRST_PSEUDO_REGISTER)
6534 bitmap_set_bit (&invalid_invariant_regs,
6535 regno - FIRST_PSEUDO_REGISTER);
6537 /* We reached the start of the current basic block. */
6538 if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (head)
6539 || BLOCK_FOR_INSN (prev_insn) != curr_bb)
6541 /* We reached the beginning of the current block -- do
6542 rest of spliting in the current BB. */
6543 to_process = df_get_live_in (curr_bb);
6544 if (BLOCK_FOR_INSN (head) != curr_bb)
6546 /* We are somewhere in the middle of EBB. */
6547 get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src,
6548 curr_bb, &temp_bitmap);
6549 to_process = &temp_bitmap;
6551 head_p = true;
6552 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6554 if ((int) j >= lra_constraint_new_regno_start)
6555 break;
6556 if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6557 && usage_insns[j].check == curr_usage_insns_check
6558 && (next_usage_insns = usage_insns[j].insns) != NULL_RTX)
6560 if (need_for_split_p (potential_reload_hard_regs, j))
6562 if (lra_dump_file != NULL && head_p)
6564 fprintf (lra_dump_file,
6565 " ----------------------------------\n");
6566 head_p = false;
6568 if (split_reg (false, j, bb_note (curr_bb),
6569 next_usage_insns, NULL))
6570 change_p = true;
6572 usage_insns[j].check = 0;
6577 return change_p;
6580 /* This value affects EBB forming. If probability of edge from EBB to
6581 a BB is not greater than the following value, we don't add the BB
6582 to EBB. */
6583 #define EBB_PROBABILITY_CUTOFF \
6584 ((REG_BR_PROB_BASE * LRA_INHERITANCE_EBB_PROBABILITY_CUTOFF) / 100)
6586 /* Current number of inheritance/split iteration. */
6587 int lra_inheritance_iter;
6589 /* Entry function for inheritance/split pass. */
6590 void
6591 lra_inheritance (void)
6593 int i;
6594 basic_block bb, start_bb;
6595 edge e;
6597 lra_inheritance_iter++;
6598 if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
6599 return;
6600 timevar_push (TV_LRA_INHERITANCE);
6601 if (lra_dump_file != NULL)
6602 fprintf (lra_dump_file, "\n********** Inheritance #%d: **********\n\n",
6603 lra_inheritance_iter);
6604 curr_usage_insns_check = 0;
6605 usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start);
6606 for (i = 0; i < lra_constraint_new_regno_start; i++)
6607 usage_insns[i].check = 0;
6608 bitmap_initialize (&check_only_regs, &reg_obstack);
6609 bitmap_initialize (&invalid_invariant_regs, &reg_obstack);
6610 bitmap_initialize (&live_regs, &reg_obstack);
6611 bitmap_initialize (&temp_bitmap, &reg_obstack);
6612 bitmap_initialize (&ebb_global_regs, &reg_obstack);
6613 FOR_EACH_BB_FN (bb, cfun)
6615 start_bb = bb;
6616 if (lra_dump_file != NULL)
6617 fprintf (lra_dump_file, "EBB");
6618 /* Form a EBB starting with BB. */
6619 bitmap_clear (&ebb_global_regs);
6620 bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb));
6621 for (;;)
6623 if (lra_dump_file != NULL)
6624 fprintf (lra_dump_file, " %d", bb->index);
6625 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
6626 || LABEL_P (BB_HEAD (bb->next_bb)))
6627 break;
6628 e = find_fallthru_edge (bb->succs);
6629 if (! e)
6630 break;
6631 if (e->probability.initialized_p ()
6632 && e->probability.to_reg_br_prob_base () < EBB_PROBABILITY_CUTOFF)
6633 break;
6634 bb = bb->next_bb;
6636 bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb));
6637 if (lra_dump_file != NULL)
6638 fprintf (lra_dump_file, "\n");
6639 if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb)))
6640 /* Remember that the EBB head and tail can change in
6641 inherit_in_ebb. */
6642 update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb));
6644 bitmap_clear (&ebb_global_regs);
6645 bitmap_clear (&temp_bitmap);
6646 bitmap_clear (&live_regs);
6647 bitmap_clear (&invalid_invariant_regs);
6648 bitmap_clear (&check_only_regs);
6649 free (usage_insns);
6651 timevar_pop (TV_LRA_INHERITANCE);
6656 /* This page contains code to undo failed inheritance/split
6657 transformations. */
6659 /* Current number of iteration undoing inheritance/split. */
6660 int lra_undo_inheritance_iter;
6662 /* Fix BB live info LIVE after removing pseudos created on pass doing
6663 inheritance/split which are REMOVED_PSEUDOS. */
6664 static void
6665 fix_bb_live_info (bitmap live, bitmap removed_pseudos)
6667 unsigned int regno;
6668 bitmap_iterator bi;
6670 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi)
6671 if (bitmap_clear_bit (live, regno)
6672 && REG_P (lra_reg_info[regno].restore_rtx))
6673 bitmap_set_bit (live, REGNO (lra_reg_info[regno].restore_rtx));
6676 /* Return regno of the (subreg of) REG. Otherwise, return a negative
6677 number. */
6678 static int
6679 get_regno (rtx reg)
6681 if (GET_CODE (reg) == SUBREG)
6682 reg = SUBREG_REG (reg);
6683 if (REG_P (reg))
6684 return REGNO (reg);
6685 return -1;
6688 /* Delete a move INSN with destination reg DREGNO and a previous
6689 clobber insn with the same regno. The inheritance/split code can
6690 generate moves with preceding clobber and when we delete such moves
6691 we should delete the clobber insn too to keep the correct life
6692 info. */
6693 static void
6694 delete_move_and_clobber (rtx_insn *insn, int dregno)
6696 rtx_insn *prev_insn = PREV_INSN (insn);
6698 lra_set_insn_deleted (insn);
6699 lra_assert (dregno >= 0);
6700 if (prev_insn != NULL && NONDEBUG_INSN_P (prev_insn)
6701 && GET_CODE (PATTERN (prev_insn)) == CLOBBER
6702 && dregno == get_regno (XEXP (PATTERN (prev_insn), 0)))
6703 lra_set_insn_deleted (prev_insn);
6706 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
6707 return true if we did any change. The undo transformations for
6708 inheritance looks like
6709 i <- i2
6710 p <- i => p <- i2
6711 or removing
6712 p <- i, i <- p, and i <- i3
6713 where p is original pseudo from which inheritance pseudo i was
6714 created, i and i3 are removed inheritance pseudos, i2 is another
6715 not removed inheritance pseudo. All split pseudos or other
6716 occurrences of removed inheritance pseudos are changed on the
6717 corresponding original pseudos.
6719 The function also schedules insns changed and created during
6720 inheritance/split pass for processing by the subsequent constraint
6721 pass. */
6722 static bool
6723 remove_inheritance_pseudos (bitmap remove_pseudos)
6725 basic_block bb;
6726 int regno, sregno, prev_sregno, dregno;
6727 rtx restore_rtx;
6728 rtx set, prev_set;
6729 rtx_insn *prev_insn;
6730 bool change_p, done_p;
6732 change_p = ! bitmap_empty_p (remove_pseudos);
6733 /* We can not finish the function right away if CHANGE_P is true
6734 because we need to marks insns affected by previous
6735 inheritance/split pass for processing by the subsequent
6736 constraint pass. */
6737 FOR_EACH_BB_FN (bb, cfun)
6739 fix_bb_live_info (df_get_live_in (bb), remove_pseudos);
6740 fix_bb_live_info (df_get_live_out (bb), remove_pseudos);
6741 FOR_BB_INSNS_REVERSE (bb, curr_insn)
6743 if (! INSN_P (curr_insn))
6744 continue;
6745 done_p = false;
6746 sregno = dregno = -1;
6747 if (change_p && NONDEBUG_INSN_P (curr_insn)
6748 && (set = single_set (curr_insn)) != NULL_RTX)
6750 dregno = get_regno (SET_DEST (set));
6751 sregno = get_regno (SET_SRC (set));
6754 if (sregno >= 0 && dregno >= 0)
6756 if (bitmap_bit_p (remove_pseudos, dregno)
6757 && ! REG_P (lra_reg_info[dregno].restore_rtx))
6759 /* invariant inheritance pseudo <- original pseudo */
6760 if (lra_dump_file != NULL)
6762 fprintf (lra_dump_file, " Removing invariant inheritance:\n");
6763 dump_insn_slim (lra_dump_file, curr_insn);
6764 fprintf (lra_dump_file, "\n");
6766 delete_move_and_clobber (curr_insn, dregno);
6767 done_p = true;
6769 else if (bitmap_bit_p (remove_pseudos, sregno)
6770 && ! REG_P (lra_reg_info[sregno].restore_rtx))
6772 /* reload pseudo <- invariant inheritance pseudo */
6773 start_sequence ();
6774 /* We can not just change the source. It might be
6775 an insn different from the move. */
6776 emit_insn (lra_reg_info[sregno].restore_rtx);
6777 rtx_insn *new_insns = get_insns ();
6778 end_sequence ();
6779 lra_assert (single_set (new_insns) != NULL
6780 && SET_DEST (set) == SET_DEST (single_set (new_insns)));
6781 lra_process_new_insns (curr_insn, NULL, new_insns,
6782 "Changing reload<-invariant inheritance");
6783 delete_move_and_clobber (curr_insn, dregno);
6784 done_p = true;
6786 else if ((bitmap_bit_p (remove_pseudos, sregno)
6787 && (get_regno (lra_reg_info[sregno].restore_rtx) == dregno
6788 || (bitmap_bit_p (remove_pseudos, dregno)
6789 && get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6790 && (get_regno (lra_reg_info[sregno].restore_rtx)
6791 == get_regno (lra_reg_info[dregno].restore_rtx)))))
6792 || (bitmap_bit_p (remove_pseudos, dregno)
6793 && get_regno (lra_reg_info[dregno].restore_rtx) == sregno))
6794 /* One of the following cases:
6795 original <- removed inheritance pseudo
6796 removed inherit pseudo <- another removed inherit pseudo
6797 removed inherit pseudo <- original pseudo
6799 removed_split_pseudo <- original_reg
6800 original_reg <- removed_split_pseudo */
6802 if (lra_dump_file != NULL)
6804 fprintf (lra_dump_file, " Removing %s:\n",
6805 bitmap_bit_p (&lra_split_regs, sregno)
6806 || bitmap_bit_p (&lra_split_regs, dregno)
6807 ? "split" : "inheritance");
6808 dump_insn_slim (lra_dump_file, curr_insn);
6810 delete_move_and_clobber (curr_insn, dregno);
6811 done_p = true;
6813 else if (bitmap_bit_p (remove_pseudos, sregno)
6814 && bitmap_bit_p (&lra_inheritance_pseudos, sregno))
6816 /* Search the following pattern:
6817 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
6818 original_pseudo <- inherit_or_split_pseudo1
6819 where the 2nd insn is the current insn and
6820 inherit_or_split_pseudo2 is not removed. If it is found,
6821 change the current insn onto:
6822 original_pseudo <- inherit_or_split_pseudo2. */
6823 for (prev_insn = PREV_INSN (curr_insn);
6824 prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn);
6825 prev_insn = PREV_INSN (prev_insn))
6827 if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (prev_insn) == bb
6828 && (prev_set = single_set (prev_insn)) != NULL_RTX
6829 /* There should be no subregs in insn we are
6830 searching because only the original reg might
6831 be in subreg when we changed the mode of
6832 load/store for splitting. */
6833 && REG_P (SET_DEST (prev_set))
6834 && REG_P (SET_SRC (prev_set))
6835 && (int) REGNO (SET_DEST (prev_set)) == sregno
6836 && ((prev_sregno = REGNO (SET_SRC (prev_set)))
6837 >= FIRST_PSEUDO_REGISTER)
6838 && (lra_reg_info[prev_sregno].restore_rtx == NULL_RTX
6840 /* As we consider chain of inheritance or
6841 splitting described in above comment we should
6842 check that sregno and prev_sregno were
6843 inheritance/split pseudos created from the
6844 same original regno. */
6845 (get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6846 && (get_regno (lra_reg_info[sregno].restore_rtx)
6847 == get_regno (lra_reg_info[prev_sregno].restore_rtx))))
6848 && ! bitmap_bit_p (remove_pseudos, prev_sregno))
6850 lra_assert (GET_MODE (SET_SRC (prev_set))
6851 == GET_MODE (regno_reg_rtx[sregno]));
6852 /* Although we have a single set, the insn can
6853 contain more one sregno register occurrence
6854 as a source. Change all occurrences. */
6855 lra_substitute_pseudo_within_insn (curr_insn, sregno,
6856 SET_SRC (prev_set),
6857 false);
6858 /* As we are finishing with processing the insn
6859 here, check the destination too as it might
6860 inheritance pseudo for another pseudo. */
6861 if (bitmap_bit_p (remove_pseudos, dregno)
6862 && bitmap_bit_p (&lra_inheritance_pseudos, dregno)
6863 && (restore_rtx
6864 = lra_reg_info[dregno].restore_rtx) != NULL_RTX)
6866 if (GET_CODE (SET_DEST (set)) == SUBREG)
6867 SUBREG_REG (SET_DEST (set)) = restore_rtx;
6868 else
6869 SET_DEST (set) = restore_rtx;
6871 lra_push_insn_and_update_insn_regno_info (curr_insn);
6872 lra_set_used_insn_alternative_by_uid
6873 (INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
6874 done_p = true;
6875 if (lra_dump_file != NULL)
6877 fprintf (lra_dump_file, " Change reload insn:\n");
6878 dump_insn_slim (lra_dump_file, curr_insn);
6883 if (! done_p)
6885 struct lra_insn_reg *reg;
6886 bool restored_regs_p = false;
6887 bool kept_regs_p = false;
6889 curr_id = lra_get_insn_recog_data (curr_insn);
6890 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6892 regno = reg->regno;
6893 restore_rtx = lra_reg_info[regno].restore_rtx;
6894 if (restore_rtx != NULL_RTX)
6896 if (change_p && bitmap_bit_p (remove_pseudos, regno))
6898 lra_substitute_pseudo_within_insn
6899 (curr_insn, regno, restore_rtx, false);
6900 restored_regs_p = true;
6902 else
6903 kept_regs_p = true;
6906 if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p)
6908 /* The instruction has changed since the previous
6909 constraints pass. */
6910 lra_push_insn_and_update_insn_regno_info (curr_insn);
6911 lra_set_used_insn_alternative_by_uid
6912 (INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
6914 else if (restored_regs_p)
6915 /* The instruction has been restored to the form that
6916 it had during the previous constraints pass. */
6917 lra_update_insn_regno_info (curr_insn);
6918 if (restored_regs_p && lra_dump_file != NULL)
6920 fprintf (lra_dump_file, " Insn after restoring regs:\n");
6921 dump_insn_slim (lra_dump_file, curr_insn);
6926 return change_p;
6929 /* If optional reload pseudos failed to get a hard register or was not
6930 inherited, it is better to remove optional reloads. We do this
6931 transformation after undoing inheritance to figure out necessity to
6932 remove optional reloads easier. Return true if we do any
6933 change. */
6934 static bool
6935 undo_optional_reloads (void)
6937 bool change_p, keep_p;
6938 unsigned int regno, uid;
6939 bitmap_iterator bi, bi2;
6940 rtx_insn *insn;
6941 rtx set, src, dest;
6942 auto_bitmap removed_optional_reload_pseudos (&reg_obstack);
6944 bitmap_copy (removed_optional_reload_pseudos, &lra_optional_reload_pseudos);
6945 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
6947 keep_p = false;
6948 /* Keep optional reloads from previous subpasses. */
6949 if (lra_reg_info[regno].restore_rtx == NULL_RTX
6950 /* If the original pseudo changed its allocation, just
6951 removing the optional pseudo is dangerous as the original
6952 pseudo will have longer live range. */
6953 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] >= 0)
6954 keep_p = true;
6955 else if (reg_renumber[regno] >= 0)
6956 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi2)
6958 insn = lra_insn_recog_data[uid]->insn;
6959 if ((set = single_set (insn)) == NULL_RTX)
6960 continue;
6961 src = SET_SRC (set);
6962 dest = SET_DEST (set);
6963 if (! REG_P (src) || ! REG_P (dest))
6964 continue;
6965 if (REGNO (dest) == regno
6966 /* Ignore insn for optional reloads itself. */
6967 && REGNO (lra_reg_info[regno].restore_rtx) != REGNO (src)
6968 /* Check only inheritance on last inheritance pass. */
6969 && (int) REGNO (src) >= new_regno_start
6970 /* Check that the optional reload was inherited. */
6971 && bitmap_bit_p (&lra_inheritance_pseudos, REGNO (src)))
6973 keep_p = true;
6974 break;
6977 if (keep_p)
6979 bitmap_clear_bit (removed_optional_reload_pseudos, regno);
6980 if (lra_dump_file != NULL)
6981 fprintf (lra_dump_file, "Keep optional reload reg %d\n", regno);
6984 change_p = ! bitmap_empty_p (removed_optional_reload_pseudos);
6985 auto_bitmap insn_bitmap (&reg_obstack);
6986 EXECUTE_IF_SET_IN_BITMAP (removed_optional_reload_pseudos, 0, regno, bi)
6988 if (lra_dump_file != NULL)
6989 fprintf (lra_dump_file, "Remove optional reload reg %d\n", regno);
6990 bitmap_copy (insn_bitmap, &lra_reg_info[regno].insn_bitmap);
6991 EXECUTE_IF_SET_IN_BITMAP (insn_bitmap, 0, uid, bi2)
6993 insn = lra_insn_recog_data[uid]->insn;
6994 if ((set = single_set (insn)) != NULL_RTX)
6996 src = SET_SRC (set);
6997 dest = SET_DEST (set);
6998 if (REG_P (src) && REG_P (dest)
6999 && ((REGNO (src) == regno
7000 && (REGNO (lra_reg_info[regno].restore_rtx)
7001 == REGNO (dest)))
7002 || (REGNO (dest) == regno
7003 && (REGNO (lra_reg_info[regno].restore_rtx)
7004 == REGNO (src)))))
7006 if (lra_dump_file != NULL)
7008 fprintf (lra_dump_file, " Deleting move %u\n",
7009 INSN_UID (insn));
7010 dump_insn_slim (lra_dump_file, insn);
7012 delete_move_and_clobber (insn, REGNO (dest));
7013 continue;
7015 /* We should not worry about generation memory-memory
7016 moves here as if the corresponding inheritance did
7017 not work (inheritance pseudo did not get a hard reg),
7018 we remove the inheritance pseudo and the optional
7019 reload. */
7021 lra_substitute_pseudo_within_insn
7022 (insn, regno, lra_reg_info[regno].restore_rtx, false);
7023 lra_update_insn_regno_info (insn);
7024 if (lra_dump_file != NULL)
7026 fprintf (lra_dump_file,
7027 " Restoring original insn:\n");
7028 dump_insn_slim (lra_dump_file, insn);
7032 /* Clear restore_regnos. */
7033 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
7034 lra_reg_info[regno].restore_rtx = NULL_RTX;
7035 return change_p;
7038 /* Entry function for undoing inheritance/split transformation. Return true
7039 if we did any RTL change in this pass. */
7040 bool
7041 lra_undo_inheritance (void)
7043 unsigned int regno;
7044 int hard_regno;
7045 int n_all_inherit, n_inherit, n_all_split, n_split;
7046 rtx restore_rtx;
7047 bitmap_iterator bi;
7048 bool change_p;
7050 lra_undo_inheritance_iter++;
7051 if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
7052 return false;
7053 if (lra_dump_file != NULL)
7054 fprintf (lra_dump_file,
7055 "\n********** Undoing inheritance #%d: **********\n\n",
7056 lra_undo_inheritance_iter);
7057 auto_bitmap remove_pseudos (&reg_obstack);
7058 n_inherit = n_all_inherit = 0;
7059 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
7060 if (lra_reg_info[regno].restore_rtx != NULL_RTX)
7062 n_all_inherit++;
7063 if (reg_renumber[regno] < 0
7064 /* If the original pseudo changed its allocation, just
7065 removing inheritance is dangerous as for changing
7066 allocation we used shorter live-ranges. */
7067 && (! REG_P (lra_reg_info[regno].restore_rtx)
7068 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] < 0))
7069 bitmap_set_bit (remove_pseudos, regno);
7070 else
7071 n_inherit++;
7073 if (lra_dump_file != NULL && n_all_inherit != 0)
7074 fprintf (lra_dump_file, "Inherit %d out of %d (%.2f%%)\n",
7075 n_inherit, n_all_inherit,
7076 (double) n_inherit / n_all_inherit * 100);
7077 n_split = n_all_split = 0;
7078 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
7079 if ((restore_rtx = lra_reg_info[regno].restore_rtx) != NULL_RTX)
7081 int restore_regno = REGNO (restore_rtx);
7083 n_all_split++;
7084 hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER
7085 ? reg_renumber[restore_regno] : restore_regno);
7086 if (hard_regno < 0 || reg_renumber[regno] == hard_regno)
7087 bitmap_set_bit (remove_pseudos, regno);
7088 else
7090 n_split++;
7091 if (lra_dump_file != NULL)
7092 fprintf (lra_dump_file, " Keep split r%d (orig=r%d)\n",
7093 regno, restore_regno);
7096 if (lra_dump_file != NULL && n_all_split != 0)
7097 fprintf (lra_dump_file, "Split %d out of %d (%.2f%%)\n",
7098 n_split, n_all_split,
7099 (double) n_split / n_all_split * 100);
7100 change_p = remove_inheritance_pseudos (remove_pseudos);
7101 /* Clear restore_regnos. */
7102 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
7103 lra_reg_info[regno].restore_rtx = NULL_RTX;
7104 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
7105 lra_reg_info[regno].restore_rtx = NULL_RTX;
7106 change_p = undo_optional_reloads () || change_p;
7107 return change_p;