PR rtl-optimization/88018
[official-gcc.git] / gcc / emit-rtl.c
blob9a735fab5bfaeda4a4b8ad7baa547713c3d5bac7
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "memmodel.h"
38 #include "backend.h"
39 #include "target.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "df.h"
43 #include "tm_p.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
46 #include "regs.h"
47 #include "emit-rtl.h"
48 #include "recog.h"
49 #include "diagnostic-core.h"
50 #include "alias.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "cfgrtl.h"
54 #include "tree-eh.h"
55 #include "explow.h"
56 #include "expr.h"
57 #include "params.h"
58 #include "builtins.h"
59 #include "rtl-iter.h"
60 #include "stor-layout.h"
61 #include "opts.h"
62 #include "predict.h"
63 #include "rtx-vector-builder.h"
65 struct target_rtl default_target_rtl;
66 #if SWITCHABLE_TARGET
67 struct target_rtl *this_target_rtl = &default_target_rtl;
68 #endif
70 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
72 /* Commonly used modes. */
74 scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
75 scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
76 scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
78 /* Datastructures maintained for currently processed function in RTL form. */
80 struct rtl_data x_rtl;
82 /* Indexed by pseudo register number, gives the rtx for that pseudo.
83 Allocated in parallel with regno_pointer_align.
84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85 with length attribute nested in top level structures. */
87 rtx * regno_reg_rtx;
89 /* This is *not* reset after each function. It gives each CODE_LABEL
90 in the entire compilation a unique label number. */
92 static GTY(()) int label_num = 1;
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
97 is set only for MODE_INT and MODE_VECTOR_INT modes. */
99 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
101 rtx const_true_rtx;
103 REAL_VALUE_TYPE dconst0;
104 REAL_VALUE_TYPE dconst1;
105 REAL_VALUE_TYPE dconst2;
106 REAL_VALUE_TYPE dconstm1;
107 REAL_VALUE_TYPE dconsthalf;
109 /* Record fixed-point constant 0 and 1. */
110 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
111 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
113 /* We make one copy of (const_int C) where C is in
114 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
115 to save space during the compilation and simplify comparisons of
116 integers. */
118 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
120 /* Standard pieces of rtx, to be substituted directly into things. */
121 rtx pc_rtx;
122 rtx ret_rtx;
123 rtx simple_return_rtx;
124 rtx cc0_rtx;
126 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
127 this pointer should normally never be dereferenced), but is required to be
128 distinct from NULL_RTX. Currently used by peephole2 pass. */
129 rtx_insn *invalid_insn_rtx;
131 /* A hash table storing CONST_INTs whose absolute value is greater
132 than MAX_SAVED_CONST_INT. */
134 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
136 typedef HOST_WIDE_INT compare_type;
138 static hashval_t hash (rtx i);
139 static bool equal (rtx i, HOST_WIDE_INT h);
142 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
144 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
146 static hashval_t hash (rtx x);
147 static bool equal (rtx x, rtx y);
150 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
152 struct const_poly_int_hasher : ggc_cache_ptr_hash<rtx_def>
154 typedef std::pair<machine_mode, poly_wide_int_ref> compare_type;
156 static hashval_t hash (rtx x);
157 static bool equal (rtx x, const compare_type &y);
160 static GTY ((cache)) hash_table<const_poly_int_hasher> *const_poly_int_htab;
162 /* A hash table storing register attribute structures. */
163 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
165 static hashval_t hash (reg_attrs *x);
166 static bool equal (reg_attrs *a, reg_attrs *b);
169 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
171 /* A hash table storing all CONST_DOUBLEs. */
172 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
174 static hashval_t hash (rtx x);
175 static bool equal (rtx x, rtx y);
178 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
180 /* A hash table storing all CONST_FIXEDs. */
181 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
183 static hashval_t hash (rtx x);
184 static bool equal (rtx x, rtx y);
187 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
189 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
190 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
191 #define first_label_num (crtl->emit.x_first_label_num)
193 static void set_used_decls (tree);
194 static void mark_label_nuses (rtx);
195 #if TARGET_SUPPORTS_WIDE_INT
196 static rtx lookup_const_wide_int (rtx);
197 #endif
198 static rtx lookup_const_double (rtx);
199 static rtx lookup_const_fixed (rtx);
200 static rtx gen_const_vector (machine_mode, int);
201 static void copy_rtx_if_shared_1 (rtx *orig);
203 /* Probability of the conditional branch currently proceeded by try_split. */
204 profile_probability split_branch_probability;
206 /* Returns a hash code for X (which is a really a CONST_INT). */
208 hashval_t
209 const_int_hasher::hash (rtx x)
211 return (hashval_t) INTVAL (x);
214 /* Returns nonzero if the value represented by X (which is really a
215 CONST_INT) is the same as that given by Y (which is really a
216 HOST_WIDE_INT *). */
218 bool
219 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
221 return (INTVAL (x) == y);
224 #if TARGET_SUPPORTS_WIDE_INT
225 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
227 hashval_t
228 const_wide_int_hasher::hash (rtx x)
230 int i;
231 unsigned HOST_WIDE_INT hash = 0;
232 const_rtx xr = x;
234 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
235 hash += CONST_WIDE_INT_ELT (xr, i);
237 return (hashval_t) hash;
240 /* Returns nonzero if the value represented by X (which is really a
241 CONST_WIDE_INT) is the same as that given by Y (which is really a
242 CONST_WIDE_INT). */
244 bool
245 const_wide_int_hasher::equal (rtx x, rtx y)
247 int i;
248 const_rtx xr = x;
249 const_rtx yr = y;
250 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
251 return false;
253 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
254 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
255 return false;
257 return true;
259 #endif
261 /* Returns a hash code for CONST_POLY_INT X. */
263 hashval_t
264 const_poly_int_hasher::hash (rtx x)
266 inchash::hash h;
267 h.add_int (GET_MODE (x));
268 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
269 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
270 return h.end ();
273 /* Returns nonzero if CONST_POLY_INT X is an rtx representation of Y. */
275 bool
276 const_poly_int_hasher::equal (rtx x, const compare_type &y)
278 if (GET_MODE (x) != y.first)
279 return false;
280 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
281 if (CONST_POLY_INT_COEFFS (x)[i] != y.second.coeffs[i])
282 return false;
283 return true;
286 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
287 hashval_t
288 const_double_hasher::hash (rtx x)
290 const_rtx const value = x;
291 hashval_t h;
293 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
294 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
295 else
297 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
298 /* MODE is used in the comparison, so it should be in the hash. */
299 h ^= GET_MODE (value);
301 return h;
304 /* Returns nonzero if the value represented by X (really a ...)
305 is the same as that represented by Y (really a ...) */
306 bool
307 const_double_hasher::equal (rtx x, rtx y)
309 const_rtx const a = x, b = y;
311 if (GET_MODE (a) != GET_MODE (b))
312 return 0;
313 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
314 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
315 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
316 else
317 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
318 CONST_DOUBLE_REAL_VALUE (b));
321 /* Returns a hash code for X (which is really a CONST_FIXED). */
323 hashval_t
324 const_fixed_hasher::hash (rtx x)
326 const_rtx const value = x;
327 hashval_t h;
329 h = fixed_hash (CONST_FIXED_VALUE (value));
330 /* MODE is used in the comparison, so it should be in the hash. */
331 h ^= GET_MODE (value);
332 return h;
335 /* Returns nonzero if the value represented by X is the same as that
336 represented by Y. */
338 bool
339 const_fixed_hasher::equal (rtx x, rtx y)
341 const_rtx const a = x, b = y;
343 if (GET_MODE (a) != GET_MODE (b))
344 return 0;
345 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
348 /* Return true if the given memory attributes are equal. */
350 bool
351 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
353 if (p == q)
354 return true;
355 if (!p || !q)
356 return false;
357 return (p->alias == q->alias
358 && p->offset_known_p == q->offset_known_p
359 && (!p->offset_known_p || known_eq (p->offset, q->offset))
360 && p->size_known_p == q->size_known_p
361 && (!p->size_known_p || known_eq (p->size, q->size))
362 && p->align == q->align
363 && p->addrspace == q->addrspace
364 && (p->expr == q->expr
365 || (p->expr != NULL_TREE && q->expr != NULL_TREE
366 && operand_equal_p (p->expr, q->expr, 0))));
369 /* Set MEM's memory attributes so that they are the same as ATTRS. */
371 static void
372 set_mem_attrs (rtx mem, mem_attrs *attrs)
374 /* If everything is the default, we can just clear the attributes. */
375 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
377 MEM_ATTRS (mem) = 0;
378 return;
381 if (!MEM_ATTRS (mem)
382 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
384 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
385 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
389 /* Returns a hash code for X (which is a really a reg_attrs *). */
391 hashval_t
392 reg_attr_hasher::hash (reg_attrs *x)
394 const reg_attrs *const p = x;
396 inchash::hash h;
397 h.add_ptr (p->decl);
398 h.add_poly_hwi (p->offset);
399 return h.end ();
402 /* Returns nonzero if the value represented by X is the same as that given by
403 Y. */
405 bool
406 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
408 const reg_attrs *const p = x;
409 const reg_attrs *const q = y;
411 return (p->decl == q->decl && known_eq (p->offset, q->offset));
413 /* Allocate a new reg_attrs structure and insert it into the hash table if
414 one identical to it is not already in the table. We are doing this for
415 MEM of mode MODE. */
417 static reg_attrs *
418 get_reg_attrs (tree decl, poly_int64 offset)
420 reg_attrs attrs;
422 /* If everything is the default, we can just return zero. */
423 if (decl == 0 && known_eq (offset, 0))
424 return 0;
426 attrs.decl = decl;
427 attrs.offset = offset;
429 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
430 if (*slot == 0)
432 *slot = ggc_alloc<reg_attrs> ();
433 memcpy (*slot, &attrs, sizeof (reg_attrs));
436 return *slot;
440 #if !HAVE_blockage
441 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
442 and to block register equivalences to be seen across this insn. */
445 gen_blockage (void)
447 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
448 MEM_VOLATILE_P (x) = true;
449 return x;
451 #endif
454 /* Set the mode and register number of X to MODE and REGNO. */
456 void
457 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
459 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
460 ? hard_regno_nregs (regno, mode)
461 : 1);
462 PUT_MODE_RAW (x, mode);
463 set_regno_raw (x, regno, nregs);
466 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
467 don't attempt to share with the various global pieces of rtl (such as
468 frame_pointer_rtx). */
471 gen_raw_REG (machine_mode mode, unsigned int regno)
473 rtx x = rtx_alloc (REG MEM_STAT_INFO);
474 set_mode_and_regno (x, mode, regno);
475 REG_ATTRS (x) = NULL;
476 ORIGINAL_REGNO (x) = regno;
477 return x;
480 /* There are some RTL codes that require special attention; the generation
481 functions do the raw handling. If you add to this list, modify
482 special_rtx in gengenrtl.c as well. */
484 rtx_expr_list *
485 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
487 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
488 expr_list));
491 rtx_insn_list *
492 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
494 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
495 insn_list));
498 rtx_insn *
499 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
500 basic_block bb, rtx pattern, int location, int code,
501 rtx reg_notes)
503 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
504 prev_insn, next_insn,
505 bb, pattern, location, code,
506 reg_notes));
510 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
512 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
513 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
515 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
516 if (const_true_rtx && arg == STORE_FLAG_VALUE)
517 return const_true_rtx;
518 #endif
520 /* Look up the CONST_INT in the hash table. */
521 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
522 INSERT);
523 if (*slot == 0)
524 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
526 return *slot;
530 gen_int_mode (poly_int64 c, machine_mode mode)
532 c = trunc_int_for_mode (c, mode);
533 if (c.is_constant ())
534 return GEN_INT (c.coeffs[0]);
535 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
536 return immed_wide_int_const (poly_wide_int::from (c, prec, SIGNED), mode);
539 /* CONST_DOUBLEs might be created from pairs of integers, or from
540 REAL_VALUE_TYPEs. Also, their length is known only at run time,
541 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
543 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
544 hash table. If so, return its counterpart; otherwise add it
545 to the hash table and return it. */
546 static rtx
547 lookup_const_double (rtx real)
549 rtx *slot = const_double_htab->find_slot (real, INSERT);
550 if (*slot == 0)
551 *slot = real;
553 return *slot;
556 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
557 VALUE in mode MODE. */
559 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
561 rtx real = rtx_alloc (CONST_DOUBLE);
562 PUT_MODE (real, mode);
564 real->u.rv = value;
566 return lookup_const_double (real);
569 /* Determine whether FIXED, a CONST_FIXED, already exists in the
570 hash table. If so, return its counterpart; otherwise add it
571 to the hash table and return it. */
573 static rtx
574 lookup_const_fixed (rtx fixed)
576 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
577 if (*slot == 0)
578 *slot = fixed;
580 return *slot;
583 /* Return a CONST_FIXED rtx for a fixed-point value specified by
584 VALUE in mode MODE. */
587 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
589 rtx fixed = rtx_alloc (CONST_FIXED);
590 PUT_MODE (fixed, mode);
592 fixed->u.fv = value;
594 return lookup_const_fixed (fixed);
597 #if TARGET_SUPPORTS_WIDE_INT == 0
598 /* Constructs double_int from rtx CST. */
600 double_int
601 rtx_to_double_int (const_rtx cst)
603 double_int r;
605 if (CONST_INT_P (cst))
606 r = double_int::from_shwi (INTVAL (cst));
607 else if (CONST_DOUBLE_AS_INT_P (cst))
609 r.low = CONST_DOUBLE_LOW (cst);
610 r.high = CONST_DOUBLE_HIGH (cst);
612 else
613 gcc_unreachable ();
615 return r;
617 #endif
619 #if TARGET_SUPPORTS_WIDE_INT
620 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
621 If so, return its counterpart; otherwise add it to the hash table and
622 return it. */
624 static rtx
625 lookup_const_wide_int (rtx wint)
627 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
628 if (*slot == 0)
629 *slot = wint;
631 return *slot;
633 #endif
635 /* Return an rtx constant for V, given that the constant has mode MODE.
636 The returned rtx will be a CONST_INT if V fits, otherwise it will be
637 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
638 (if TARGET_SUPPORTS_WIDE_INT). */
640 static rtx
641 immed_wide_int_const_1 (const wide_int_ref &v, machine_mode mode)
643 unsigned int len = v.get_len ();
644 /* Not scalar_int_mode because we also allow pointer bound modes. */
645 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
647 /* Allow truncation but not extension since we do not know if the
648 number is signed or unsigned. */
649 gcc_assert (prec <= v.get_precision ());
651 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
652 return gen_int_mode (v.elt (0), mode);
654 #if TARGET_SUPPORTS_WIDE_INT
656 unsigned int i;
657 rtx value;
658 unsigned int blocks_needed
659 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
661 if (len > blocks_needed)
662 len = blocks_needed;
664 value = const_wide_int_alloc (len);
666 /* It is so tempting to just put the mode in here. Must control
667 myself ... */
668 PUT_MODE (value, VOIDmode);
669 CWI_PUT_NUM_ELEM (value, len);
671 for (i = 0; i < len; i++)
672 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
674 return lookup_const_wide_int (value);
676 #else
677 return immed_double_const (v.elt (0), v.elt (1), mode);
678 #endif
681 #if TARGET_SUPPORTS_WIDE_INT == 0
682 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
683 of ints: I0 is the low-order word and I1 is the high-order word.
684 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
685 implied upper bits are copies of the high bit of i1. The value
686 itself is neither signed nor unsigned. Do not use this routine for
687 non-integer modes; convert to REAL_VALUE_TYPE and use
688 const_double_from_real_value. */
691 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
693 rtx value;
694 unsigned int i;
696 /* There are the following cases (note that there are no modes with
697 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
699 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
700 gen_int_mode.
701 2) If the value of the integer fits into HOST_WIDE_INT anyway
702 (i.e., i1 consists only from copies of the sign bit, and sign
703 of i0 and i1 are the same), then we return a CONST_INT for i0.
704 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
705 scalar_mode smode;
706 if (is_a <scalar_mode> (mode, &smode)
707 && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT)
708 return gen_int_mode (i0, mode);
710 /* If this integer fits in one word, return a CONST_INT. */
711 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
712 return GEN_INT (i0);
714 /* We use VOIDmode for integers. */
715 value = rtx_alloc (CONST_DOUBLE);
716 PUT_MODE (value, VOIDmode);
718 CONST_DOUBLE_LOW (value) = i0;
719 CONST_DOUBLE_HIGH (value) = i1;
721 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
722 XWINT (value, i) = 0;
724 return lookup_const_double (value);
726 #endif
728 /* Return an rtx representation of C in mode MODE. */
731 immed_wide_int_const (const poly_wide_int_ref &c, machine_mode mode)
733 if (c.is_constant ())
734 return immed_wide_int_const_1 (c.coeffs[0], mode);
736 /* Not scalar_int_mode because we also allow pointer bound modes. */
737 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
739 /* Allow truncation but not extension since we do not know if the
740 number is signed or unsigned. */
741 gcc_assert (prec <= c.coeffs[0].get_precision ());
742 poly_wide_int newc = poly_wide_int::from (c, prec, SIGNED);
744 /* See whether we already have an rtx for this constant. */
745 inchash::hash h;
746 h.add_int (mode);
747 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
748 h.add_wide_int (newc.coeffs[i]);
749 const_poly_int_hasher::compare_type typed_value (mode, newc);
750 rtx *slot = const_poly_int_htab->find_slot_with_hash (typed_value,
751 h.end (), INSERT);
752 rtx x = *slot;
753 if (x)
754 return x;
756 /* Create a new rtx. There's a choice to be made here between installing
757 the actual mode of the rtx or leaving it as VOIDmode (for consistency
758 with CONST_INT). In practice the handling of the codes is different
759 enough that we get no benefit from using VOIDmode, and various places
760 assume that VOIDmode implies CONST_INT. Using the real mode seems like
761 the right long-term direction anyway. */
762 typedef trailing_wide_ints<NUM_POLY_INT_COEFFS> twi;
763 size_t extra_size = twi::extra_size (prec);
764 x = rtx_alloc_v (CONST_POLY_INT,
765 sizeof (struct const_poly_int_def) + extra_size);
766 PUT_MODE (x, mode);
767 CONST_POLY_INT_COEFFS (x).set_precision (prec);
768 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
769 CONST_POLY_INT_COEFFS (x)[i] = newc.coeffs[i];
771 *slot = x;
772 return x;
776 gen_rtx_REG (machine_mode mode, unsigned int regno)
778 /* In case the MD file explicitly references the frame pointer, have
779 all such references point to the same frame pointer. This is
780 used during frame pointer elimination to distinguish the explicit
781 references to these registers from pseudos that happened to be
782 assigned to them.
784 If we have eliminated the frame pointer or arg pointer, we will
785 be using it as a normal register, for example as a spill
786 register. In such cases, we might be accessing it in a mode that
787 is not Pmode and therefore cannot use the pre-allocated rtx.
789 Also don't do this when we are making new REGs in reload, since
790 we don't want to get confused with the real pointers. */
792 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
794 if (regno == FRAME_POINTER_REGNUM
795 && (!reload_completed || frame_pointer_needed))
796 return frame_pointer_rtx;
798 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
799 && regno == HARD_FRAME_POINTER_REGNUM
800 && (!reload_completed || frame_pointer_needed))
801 return hard_frame_pointer_rtx;
802 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
803 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
804 && regno == ARG_POINTER_REGNUM)
805 return arg_pointer_rtx;
806 #endif
807 #ifdef RETURN_ADDRESS_POINTER_REGNUM
808 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
809 return return_address_pointer_rtx;
810 #endif
811 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
812 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
813 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
814 return pic_offset_table_rtx;
815 if (regno == STACK_POINTER_REGNUM)
816 return stack_pointer_rtx;
819 #if 0
820 /* If the per-function register table has been set up, try to re-use
821 an existing entry in that table to avoid useless generation of RTL.
823 This code is disabled for now until we can fix the various backends
824 which depend on having non-shared hard registers in some cases. Long
825 term we want to re-enable this code as it can significantly cut down
826 on the amount of useless RTL that gets generated.
828 We'll also need to fix some code that runs after reload that wants to
829 set ORIGINAL_REGNO. */
831 if (cfun
832 && cfun->emit
833 && regno_reg_rtx
834 && regno < FIRST_PSEUDO_REGISTER
835 && reg_raw_mode[regno] == mode)
836 return regno_reg_rtx[regno];
837 #endif
839 return gen_raw_REG (mode, regno);
843 gen_rtx_MEM (machine_mode mode, rtx addr)
845 rtx rt = gen_rtx_raw_MEM (mode, addr);
847 /* This field is not cleared by the mere allocation of the rtx, so
848 we clear it here. */
849 MEM_ATTRS (rt) = 0;
851 return rt;
854 /* Generate a memory referring to non-trapping constant memory. */
857 gen_const_mem (machine_mode mode, rtx addr)
859 rtx mem = gen_rtx_MEM (mode, addr);
860 MEM_READONLY_P (mem) = 1;
861 MEM_NOTRAP_P (mem) = 1;
862 return mem;
865 /* Generate a MEM referring to fixed portions of the frame, e.g., register
866 save areas. */
869 gen_frame_mem (machine_mode mode, rtx addr)
871 rtx mem = gen_rtx_MEM (mode, addr);
872 MEM_NOTRAP_P (mem) = 1;
873 set_mem_alias_set (mem, get_frame_alias_set ());
874 return mem;
877 /* Generate a MEM referring to a temporary use of the stack, not part
878 of the fixed stack frame. For example, something which is pushed
879 by a target splitter. */
881 gen_tmp_stack_mem (machine_mode mode, rtx addr)
883 rtx mem = gen_rtx_MEM (mode, addr);
884 MEM_NOTRAP_P (mem) = 1;
885 if (!cfun->calls_alloca)
886 set_mem_alias_set (mem, get_frame_alias_set ());
887 return mem;
890 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
891 this construct would be valid, and false otherwise. */
893 bool
894 validate_subreg (machine_mode omode, machine_mode imode,
895 const_rtx reg, poly_uint64 offset)
897 poly_uint64 isize = GET_MODE_SIZE (imode);
898 poly_uint64 osize = GET_MODE_SIZE (omode);
900 /* The sizes must be ordered, so that we know whether the subreg
901 is partial, paradoxical or complete. */
902 if (!ordered_p (isize, osize))
903 return false;
905 /* All subregs must be aligned. */
906 if (!multiple_p (offset, osize))
907 return false;
909 /* The subreg offset cannot be outside the inner object. */
910 if (maybe_ge (offset, isize))
911 return false;
913 poly_uint64 regsize = REGMODE_NATURAL_SIZE (imode);
915 /* ??? This should not be here. Temporarily continue to allow word_mode
916 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
917 Generally, backends are doing something sketchy but it'll take time to
918 fix them all. */
919 if (omode == word_mode)
921 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
922 is the culprit here, and not the backends. */
923 else if (known_ge (osize, regsize) && known_ge (isize, osize))
925 /* Allow component subregs of complex and vector. Though given the below
926 extraction rules, it's not always clear what that means. */
927 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
928 && GET_MODE_INNER (imode) == omode)
930 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
931 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
932 represent this. It's questionable if this ought to be represented at
933 all -- why can't this all be hidden in post-reload splitters that make
934 arbitrarily mode changes to the registers themselves. */
935 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
937 /* Subregs involving floating point modes are not allowed to
938 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
939 (subreg:SI (reg:DF) 0) isn't. */
940 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
942 if (! (known_eq (isize, osize)
943 /* LRA can use subreg to store a floating point value in
944 an integer mode. Although the floating point and the
945 integer modes need the same number of hard registers,
946 the size of floating point mode can be less than the
947 integer mode. LRA also uses subregs for a register
948 should be used in different mode in on insn. */
949 || lra_in_progress))
950 return false;
953 /* Paradoxical subregs must have offset zero. */
954 if (maybe_gt (osize, isize))
955 return known_eq (offset, 0U);
957 /* This is a normal subreg. Verify that the offset is representable. */
959 /* For hard registers, we already have most of these rules collected in
960 subreg_offset_representable_p. */
961 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
963 unsigned int regno = REGNO (reg);
965 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
966 && GET_MODE_INNER (imode) == omode)
968 else if (!REG_CAN_CHANGE_MODE_P (regno, imode, omode))
969 return false;
971 return subreg_offset_representable_p (regno, imode, offset, omode);
974 /* The outer size must be ordered wrt the register size, otherwise
975 we wouldn't know at compile time how many registers the outer
976 mode occupies. */
977 if (!ordered_p (osize, regsize))
978 return false;
980 /* For pseudo registers, we want most of the same checks. Namely:
982 Assume that the pseudo register will be allocated to hard registers
983 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE,
984 the remainder must correspond to the lowpart of the containing hard
985 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset,
986 otherwise it is at the lowest offset.
988 Given that we've already checked the mode and offset alignment,
989 we only have to check subblock subregs here. */
990 if (maybe_lt (osize, regsize)
991 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
993 /* It is invalid for the target to pick a register size for a mode
994 that isn't ordered wrt to the size of that mode. */
995 poly_uint64 block_size = ordered_min (isize, regsize);
996 unsigned int start_reg;
997 poly_uint64 offset_within_reg;
998 if (!can_div_trunc_p (offset, block_size, &start_reg, &offset_within_reg)
999 || (BYTES_BIG_ENDIAN
1000 ? maybe_ne (offset_within_reg, block_size - osize)
1001 : maybe_ne (offset_within_reg, 0U)))
1002 return false;
1004 return true;
1008 gen_rtx_SUBREG (machine_mode mode, rtx reg, poly_uint64 offset)
1010 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
1011 return gen_rtx_raw_SUBREG (mode, reg, offset);
1014 /* Generate a SUBREG representing the least-significant part of REG if MODE
1015 is smaller than mode of REG, otherwise paradoxical SUBREG. */
1018 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
1020 machine_mode inmode;
1022 inmode = GET_MODE (reg);
1023 if (inmode == VOIDmode)
1024 inmode = mode;
1025 return gen_rtx_SUBREG (mode, reg,
1026 subreg_lowpart_offset (mode, inmode));
1030 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
1031 enum var_init_status status)
1033 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
1034 PAT_VAR_LOCATION_STATUS (x) = status;
1035 return x;
1039 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
1041 rtvec
1042 gen_rtvec (int n, ...)
1044 int i;
1045 rtvec rt_val;
1046 va_list p;
1048 va_start (p, n);
1050 /* Don't allocate an empty rtvec... */
1051 if (n == 0)
1053 va_end (p);
1054 return NULL_RTVEC;
1057 rt_val = rtvec_alloc (n);
1059 for (i = 0; i < n; i++)
1060 rt_val->elem[i] = va_arg (p, rtx);
1062 va_end (p);
1063 return rt_val;
1066 rtvec
1067 gen_rtvec_v (int n, rtx *argp)
1069 int i;
1070 rtvec rt_val;
1072 /* Don't allocate an empty rtvec... */
1073 if (n == 0)
1074 return NULL_RTVEC;
1076 rt_val = rtvec_alloc (n);
1078 for (i = 0; i < n; i++)
1079 rt_val->elem[i] = *argp++;
1081 return rt_val;
1084 rtvec
1085 gen_rtvec_v (int n, rtx_insn **argp)
1087 int i;
1088 rtvec rt_val;
1090 /* Don't allocate an empty rtvec... */
1091 if (n == 0)
1092 return NULL_RTVEC;
1094 rt_val = rtvec_alloc (n);
1096 for (i = 0; i < n; i++)
1097 rt_val->elem[i] = *argp++;
1099 return rt_val;
1103 /* Return the number of bytes between the start of an OUTER_MODE
1104 in-memory value and the start of an INNER_MODE in-memory value,
1105 given that the former is a lowpart of the latter. It may be a
1106 paradoxical lowpart, in which case the offset will be negative
1107 on big-endian targets. */
1109 poly_int64
1110 byte_lowpart_offset (machine_mode outer_mode,
1111 machine_mode inner_mode)
1113 if (paradoxical_subreg_p (outer_mode, inner_mode))
1114 return -subreg_lowpart_offset (inner_mode, outer_mode);
1115 else
1116 return subreg_lowpart_offset (outer_mode, inner_mode);
1119 /* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1120 from address X. For paradoxical big-endian subregs this is a
1121 negative value, otherwise it's the same as OFFSET. */
1123 poly_int64
1124 subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode,
1125 poly_uint64 offset)
1127 if (paradoxical_subreg_p (outer_mode, inner_mode))
1129 gcc_assert (known_eq (offset, 0U));
1130 return -subreg_lowpart_offset (inner_mode, outer_mode);
1132 return offset;
1135 /* As above, but return the offset that existing subreg X would have
1136 if SUBREG_REG (X) were stored in memory. The only significant thing
1137 about the current SUBREG_REG is its mode. */
1139 poly_int64
1140 subreg_memory_offset (const_rtx x)
1142 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
1143 SUBREG_BYTE (x));
1146 /* Generate a REG rtx for a new pseudo register of mode MODE.
1147 This pseudo is assigned the next sequential register number. */
1150 gen_reg_rtx (machine_mode mode)
1152 rtx val;
1153 unsigned int align = GET_MODE_ALIGNMENT (mode);
1155 gcc_assert (can_create_pseudo_p ());
1157 /* If a virtual register with bigger mode alignment is generated,
1158 increase stack alignment estimation because it might be spilled
1159 to stack later. */
1160 if (SUPPORTS_STACK_ALIGNMENT
1161 && crtl->stack_alignment_estimated < align
1162 && !crtl->stack_realign_processed)
1164 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1165 if (crtl->stack_alignment_estimated < min_align)
1166 crtl->stack_alignment_estimated = min_align;
1169 if (generating_concat_p
1170 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1171 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1173 /* For complex modes, don't make a single pseudo.
1174 Instead, make a CONCAT of two pseudos.
1175 This allows noncontiguous allocation of the real and imaginary parts,
1176 which makes much better code. Besides, allocating DCmode
1177 pseudos overstrains reload on some machines like the 386. */
1178 rtx realpart, imagpart;
1179 machine_mode partmode = GET_MODE_INNER (mode);
1181 realpart = gen_reg_rtx (partmode);
1182 imagpart = gen_reg_rtx (partmode);
1183 return gen_rtx_CONCAT (mode, realpart, imagpart);
1186 /* Do not call gen_reg_rtx with uninitialized crtl. */
1187 gcc_assert (crtl->emit.regno_pointer_align_length);
1189 crtl->emit.ensure_regno_capacity ();
1190 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
1192 val = gen_raw_REG (mode, reg_rtx_no);
1193 regno_reg_rtx[reg_rtx_no++] = val;
1194 return val;
1197 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1198 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
1200 void
1201 emit_status::ensure_regno_capacity ()
1203 int old_size = regno_pointer_align_length;
1205 if (reg_rtx_no < old_size)
1206 return;
1208 int new_size = old_size * 2;
1209 while (reg_rtx_no >= new_size)
1210 new_size *= 2;
1212 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1213 memset (tmp + old_size, 0, new_size - old_size);
1214 regno_pointer_align = (unsigned char *) tmp;
1216 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1217 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1218 regno_reg_rtx = new1;
1220 crtl->emit.regno_pointer_align_length = new_size;
1223 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1225 bool
1226 reg_is_parm_p (rtx reg)
1228 tree decl;
1230 gcc_assert (REG_P (reg));
1231 decl = REG_EXPR (reg);
1232 return (decl && TREE_CODE (decl) == PARM_DECL);
1235 /* Update NEW with the same attributes as REG, but with OFFSET added
1236 to the REG_OFFSET. */
1238 static void
1239 update_reg_offset (rtx new_rtx, rtx reg, poly_int64 offset)
1241 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1242 REG_OFFSET (reg) + offset);
1245 /* Generate a register with same attributes as REG, but with OFFSET
1246 added to the REG_OFFSET. */
1249 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1250 poly_int64 offset)
1252 rtx new_rtx = gen_rtx_REG (mode, regno);
1254 update_reg_offset (new_rtx, reg, offset);
1255 return new_rtx;
1258 /* Generate a new pseudo-register with the same attributes as REG, but
1259 with OFFSET added to the REG_OFFSET. */
1262 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1264 rtx new_rtx = gen_reg_rtx (mode);
1266 update_reg_offset (new_rtx, reg, offset);
1267 return new_rtx;
1270 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1271 new register is a (possibly paradoxical) lowpart of the old one. */
1273 void
1274 adjust_reg_mode (rtx reg, machine_mode mode)
1276 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1277 PUT_MODE (reg, mode);
1280 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1281 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1283 void
1284 set_reg_attrs_from_value (rtx reg, rtx x)
1286 poly_int64 offset;
1287 bool can_be_reg_pointer = true;
1289 /* Don't call mark_reg_pointer for incompatible pointer sign
1290 extension. */
1291 while (GET_CODE (x) == SIGN_EXTEND
1292 || GET_CODE (x) == ZERO_EXTEND
1293 || GET_CODE (x) == TRUNCATE
1294 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1296 #if defined(POINTERS_EXTEND_UNSIGNED)
1297 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1298 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1299 || (paradoxical_subreg_p (x)
1300 && ! (SUBREG_PROMOTED_VAR_P (x)
1301 && SUBREG_CHECK_PROMOTED_SIGN (x,
1302 POINTERS_EXTEND_UNSIGNED))))
1303 && !targetm.have_ptr_extend ())
1304 can_be_reg_pointer = false;
1305 #endif
1306 x = XEXP (x, 0);
1309 /* Hard registers can be reused for multiple purposes within the same
1310 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1311 on them is wrong. */
1312 if (HARD_REGISTER_P (reg))
1313 return;
1315 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1316 if (MEM_P (x))
1318 if (MEM_OFFSET_KNOWN_P (x))
1319 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1320 MEM_OFFSET (x) + offset);
1321 if (can_be_reg_pointer && MEM_POINTER (x))
1322 mark_reg_pointer (reg, 0);
1324 else if (REG_P (x))
1326 if (REG_ATTRS (x))
1327 update_reg_offset (reg, x, offset);
1328 if (can_be_reg_pointer && REG_POINTER (x))
1329 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1333 /* Generate a REG rtx for a new pseudo register, copying the mode
1334 and attributes from X. */
1337 gen_reg_rtx_and_attrs (rtx x)
1339 rtx reg = gen_reg_rtx (GET_MODE (x));
1340 set_reg_attrs_from_value (reg, x);
1341 return reg;
1344 /* Set the register attributes for registers contained in PARM_RTX.
1345 Use needed values from memory attributes of MEM. */
1347 void
1348 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1350 if (REG_P (parm_rtx))
1351 set_reg_attrs_from_value (parm_rtx, mem);
1352 else if (GET_CODE (parm_rtx) == PARALLEL)
1354 /* Check for a NULL entry in the first slot, used to indicate that the
1355 parameter goes both on the stack and in registers. */
1356 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1357 for (; i < XVECLEN (parm_rtx, 0); i++)
1359 rtx x = XVECEXP (parm_rtx, 0, i);
1360 if (REG_P (XEXP (x, 0)))
1361 REG_ATTRS (XEXP (x, 0))
1362 = get_reg_attrs (MEM_EXPR (mem),
1363 INTVAL (XEXP (x, 1)));
1368 /* Set the REG_ATTRS for registers in value X, given that X represents
1369 decl T. */
1371 void
1372 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1374 if (!t)
1375 return;
1376 tree tdecl = t;
1377 if (GET_CODE (x) == SUBREG)
1379 gcc_assert (subreg_lowpart_p (x));
1380 x = SUBREG_REG (x);
1382 if (REG_P (x))
1383 REG_ATTRS (x)
1384 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1385 DECL_P (tdecl)
1386 ? DECL_MODE (tdecl)
1387 : TYPE_MODE (TREE_TYPE (tdecl))));
1388 if (GET_CODE (x) == CONCAT)
1390 if (REG_P (XEXP (x, 0)))
1391 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1392 if (REG_P (XEXP (x, 1)))
1393 REG_ATTRS (XEXP (x, 1))
1394 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1396 if (GET_CODE (x) == PARALLEL)
1398 int i, start;
1400 /* Check for a NULL entry, used to indicate that the parameter goes
1401 both on the stack and in registers. */
1402 if (XEXP (XVECEXP (x, 0, 0), 0))
1403 start = 0;
1404 else
1405 start = 1;
1407 for (i = start; i < XVECLEN (x, 0); i++)
1409 rtx y = XVECEXP (x, 0, i);
1410 if (REG_P (XEXP (y, 0)))
1411 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1416 /* Assign the RTX X to declaration T. */
1418 void
1419 set_decl_rtl (tree t, rtx x)
1421 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1422 if (x)
1423 set_reg_attrs_for_decl_rtl (t, x);
1426 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1427 if the ABI requires the parameter to be passed by reference. */
1429 void
1430 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1432 DECL_INCOMING_RTL (t) = x;
1433 if (x && !by_reference_p)
1434 set_reg_attrs_for_decl_rtl (t, x);
1437 /* Identify REG (which may be a CONCAT) as a user register. */
1439 void
1440 mark_user_reg (rtx reg)
1442 if (GET_CODE (reg) == CONCAT)
1444 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1445 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1447 else
1449 gcc_assert (REG_P (reg));
1450 REG_USERVAR_P (reg) = 1;
1454 /* Identify REG as a probable pointer register and show its alignment
1455 as ALIGN, if nonzero. */
1457 void
1458 mark_reg_pointer (rtx reg, int align)
1460 if (! REG_POINTER (reg))
1462 REG_POINTER (reg) = 1;
1464 if (align)
1465 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1467 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1468 /* We can no-longer be sure just how aligned this pointer is. */
1469 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1472 /* Return 1 plus largest pseudo reg number used in the current function. */
1475 max_reg_num (void)
1477 return reg_rtx_no;
1480 /* Return 1 + the largest label number used so far in the current function. */
1483 max_label_num (void)
1485 return label_num;
1488 /* Return first label number used in this function (if any were used). */
1491 get_first_label_num (void)
1493 return first_label_num;
1496 /* If the rtx for label was created during the expansion of a nested
1497 function, then first_label_num won't include this label number.
1498 Fix this now so that array indices work later. */
1500 void
1501 maybe_set_first_label_num (rtx_code_label *x)
1503 if (CODE_LABEL_NUMBER (x) < first_label_num)
1504 first_label_num = CODE_LABEL_NUMBER (x);
1507 /* For use by the RTL function loader, when mingling with normal
1508 functions.
1509 Ensure that label_num is greater than the label num of X, to avoid
1510 duplicate labels in the generated assembler. */
1512 void
1513 maybe_set_max_label_num (rtx_code_label *x)
1515 if (CODE_LABEL_NUMBER (x) >= label_num)
1516 label_num = CODE_LABEL_NUMBER (x) + 1;
1520 /* Return a value representing some low-order bits of X, where the number
1521 of low-order bits is given by MODE. Note that no conversion is done
1522 between floating-point and fixed-point values, rather, the bit
1523 representation is returned.
1525 This function handles the cases in common between gen_lowpart, below,
1526 and two variants in cse.c and combine.c. These are the cases that can
1527 be safely handled at all points in the compilation.
1529 If this is not a case we can handle, return 0. */
1532 gen_lowpart_common (machine_mode mode, rtx x)
1534 poly_uint64 msize = GET_MODE_SIZE (mode);
1535 machine_mode innermode;
1537 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1538 so we have to make one up. Yuk. */
1539 innermode = GET_MODE (x);
1540 if (CONST_INT_P (x)
1541 && known_le (msize * BITS_PER_UNIT,
1542 (unsigned HOST_WIDE_INT) HOST_BITS_PER_WIDE_INT))
1543 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1544 else if (innermode == VOIDmode)
1545 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require ();
1547 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1549 if (innermode == mode)
1550 return x;
1552 /* The size of the outer and inner modes must be ordered. */
1553 poly_uint64 xsize = GET_MODE_SIZE (innermode);
1554 if (!ordered_p (msize, xsize))
1555 return 0;
1557 if (SCALAR_FLOAT_MODE_P (mode))
1559 /* Don't allow paradoxical FLOAT_MODE subregs. */
1560 if (maybe_gt (msize, xsize))
1561 return 0;
1563 else
1565 /* MODE must occupy no more of the underlying registers than X. */
1566 poly_uint64 regsize = REGMODE_NATURAL_SIZE (innermode);
1567 unsigned int mregs, xregs;
1568 if (!can_div_away_from_zero_p (msize, regsize, &mregs)
1569 || !can_div_away_from_zero_p (xsize, regsize, &xregs)
1570 || mregs > xregs)
1571 return 0;
1574 scalar_int_mode int_mode, int_innermode, from_mode;
1575 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1576 && is_a <scalar_int_mode> (mode, &int_mode)
1577 && is_a <scalar_int_mode> (innermode, &int_innermode)
1578 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode))
1580 /* If we are getting the low-order part of something that has been
1581 sign- or zero-extended, we can either just use the object being
1582 extended or make a narrower extension. If we want an even smaller
1583 piece than the size of the object being extended, call ourselves
1584 recursively.
1586 This case is used mostly by combine and cse. */
1588 if (from_mode == int_mode)
1589 return XEXP (x, 0);
1590 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode))
1591 return gen_lowpart_common (int_mode, XEXP (x, 0));
1592 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode))
1593 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
1595 else if (GET_CODE (x) == SUBREG || REG_P (x)
1596 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1597 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x)
1598 || CONST_POLY_INT_P (x))
1599 return lowpart_subreg (mode, x, innermode);
1601 /* Otherwise, we can't do this. */
1602 return 0;
1606 gen_highpart (machine_mode mode, rtx x)
1608 poly_uint64 msize = GET_MODE_SIZE (mode);
1609 rtx result;
1611 /* This case loses if X is a subreg. To catch bugs early,
1612 complain if an invalid MODE is used even in other cases. */
1613 gcc_assert (known_le (msize, (unsigned int) UNITS_PER_WORD)
1614 || known_eq (msize, GET_MODE_UNIT_SIZE (GET_MODE (x))));
1616 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1617 subreg_highpart_offset (mode, GET_MODE (x)));
1618 gcc_assert (result);
1620 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1621 the target if we have a MEM. gen_highpart must return a valid operand,
1622 emitting code if necessary to do so. */
1623 if (MEM_P (result))
1625 result = validize_mem (result);
1626 gcc_assert (result);
1629 return result;
1632 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1633 be VOIDmode constant. */
1635 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1637 if (GET_MODE (exp) != VOIDmode)
1639 gcc_assert (GET_MODE (exp) == innermode);
1640 return gen_highpart (outermode, exp);
1642 return simplify_gen_subreg (outermode, exp, innermode,
1643 subreg_highpart_offset (outermode, innermode));
1646 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1647 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1649 poly_uint64
1650 subreg_size_lowpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
1652 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
1653 if (maybe_gt (outer_bytes, inner_bytes))
1654 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1655 return 0;
1657 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1658 return inner_bytes - outer_bytes;
1659 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1660 return 0;
1661 else
1662 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
1665 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1666 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1668 poly_uint64
1669 subreg_size_highpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
1671 gcc_assert (known_ge (inner_bytes, outer_bytes));
1673 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1674 return 0;
1675 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1676 return inner_bytes - outer_bytes;
1677 else
1678 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1679 (inner_bytes - outer_bytes)
1680 * BITS_PER_UNIT);
1683 /* Return 1 iff X, assumed to be a SUBREG,
1684 refers to the least significant part of its containing reg.
1685 If X is not a SUBREG, always return 1 (it is its own low part!). */
1688 subreg_lowpart_p (const_rtx x)
1690 if (GET_CODE (x) != SUBREG)
1691 return 1;
1692 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1693 return 0;
1695 return known_eq (subreg_lowpart_offset (GET_MODE (x),
1696 GET_MODE (SUBREG_REG (x))),
1697 SUBREG_BYTE (x));
1700 /* Return subword OFFSET of operand OP.
1701 The word number, OFFSET, is interpreted as the word number starting
1702 at the low-order address. OFFSET 0 is the low-order word if not
1703 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1705 If we cannot extract the required word, we return zero. Otherwise,
1706 an rtx corresponding to the requested word will be returned.
1708 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1709 reload has completed, a valid address will always be returned. After
1710 reload, if a valid address cannot be returned, we return zero.
1712 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1713 it is the responsibility of the caller.
1715 MODE is the mode of OP in case it is a CONST_INT.
1717 ??? This is still rather broken for some cases. The problem for the
1718 moment is that all callers of this thing provide no 'goal mode' to
1719 tell us to work with. This exists because all callers were written
1720 in a word based SUBREG world.
1721 Now use of this function can be deprecated by simplify_subreg in most
1722 cases.
1726 operand_subword (rtx op, poly_uint64 offset, int validate_address,
1727 machine_mode mode)
1729 if (mode == VOIDmode)
1730 mode = GET_MODE (op);
1732 gcc_assert (mode != VOIDmode);
1734 /* If OP is narrower than a word, fail. */
1735 if (mode != BLKmode
1736 && maybe_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD))
1737 return 0;
1739 /* If we want a word outside OP, return zero. */
1740 if (mode != BLKmode
1741 && maybe_gt ((offset + 1) * UNITS_PER_WORD, GET_MODE_SIZE (mode)))
1742 return const0_rtx;
1744 /* Form a new MEM at the requested address. */
1745 if (MEM_P (op))
1747 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1749 if (! validate_address)
1750 return new_rtx;
1752 else if (reload_completed)
1754 if (! strict_memory_address_addr_space_p (word_mode,
1755 XEXP (new_rtx, 0),
1756 MEM_ADDR_SPACE (op)))
1757 return 0;
1759 else
1760 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1763 /* Rest can be handled by simplify_subreg. */
1764 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1767 /* Similar to `operand_subword', but never return 0. If we can't
1768 extract the required subword, put OP into a register and try again.
1769 The second attempt must succeed. We always validate the address in
1770 this case.
1772 MODE is the mode of OP, in case it is CONST_INT. */
1775 operand_subword_force (rtx op, poly_uint64 offset, machine_mode mode)
1777 rtx result = operand_subword (op, offset, 1, mode);
1779 if (result)
1780 return result;
1782 if (mode != BLKmode && mode != VOIDmode)
1784 /* If this is a register which can not be accessed by words, copy it
1785 to a pseudo register. */
1786 if (REG_P (op))
1787 op = copy_to_reg (op);
1788 else
1789 op = force_reg (mode, op);
1792 result = operand_subword (op, offset, 1, mode);
1793 gcc_assert (result);
1795 return result;
1798 mem_attrs::mem_attrs ()
1799 : expr (NULL_TREE),
1800 offset (0),
1801 size (0),
1802 alias (0),
1803 align (0),
1804 addrspace (ADDR_SPACE_GENERIC),
1805 offset_known_p (false),
1806 size_known_p (false)
1809 /* Returns 1 if both MEM_EXPR can be considered equal
1810 and 0 otherwise. */
1813 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1815 if (expr1 == expr2)
1816 return 1;
1818 if (! expr1 || ! expr2)
1819 return 0;
1821 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1822 return 0;
1824 return operand_equal_p (expr1, expr2, 0);
1827 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1828 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1829 -1 if not known. */
1832 get_mem_align_offset (rtx mem, unsigned int align)
1834 tree expr;
1835 poly_uint64 offset;
1837 /* This function can't use
1838 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1839 || (MAX (MEM_ALIGN (mem),
1840 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1841 < align))
1842 return -1;
1843 else
1844 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1845 for two reasons:
1846 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1847 for <variable>. get_inner_reference doesn't handle it and
1848 even if it did, the alignment in that case needs to be determined
1849 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1850 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1851 isn't sufficiently aligned, the object it is in might be. */
1852 gcc_assert (MEM_P (mem));
1853 expr = MEM_EXPR (mem);
1854 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1855 return -1;
1857 offset = MEM_OFFSET (mem);
1858 if (DECL_P (expr))
1860 if (DECL_ALIGN (expr) < align)
1861 return -1;
1863 else if (INDIRECT_REF_P (expr))
1865 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1866 return -1;
1868 else if (TREE_CODE (expr) == COMPONENT_REF)
1870 while (1)
1872 tree inner = TREE_OPERAND (expr, 0);
1873 tree field = TREE_OPERAND (expr, 1);
1874 tree byte_offset = component_ref_field_offset (expr);
1875 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1877 poly_uint64 suboffset;
1878 if (!byte_offset
1879 || !poly_int_tree_p (byte_offset, &suboffset)
1880 || !tree_fits_uhwi_p (bit_offset))
1881 return -1;
1883 offset += suboffset;
1884 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1886 if (inner == NULL_TREE)
1888 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1889 < (unsigned int) align)
1890 return -1;
1891 break;
1893 else if (DECL_P (inner))
1895 if (DECL_ALIGN (inner) < align)
1896 return -1;
1897 break;
1899 else if (TREE_CODE (inner) != COMPONENT_REF)
1900 return -1;
1901 expr = inner;
1904 else
1905 return -1;
1907 HOST_WIDE_INT misalign;
1908 if (!known_misalignment (offset, align / BITS_PER_UNIT, &misalign))
1909 return -1;
1910 return misalign;
1913 /* Given REF (a MEM) and T, either the type of X or the expression
1914 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1915 if we are making a new object of this type. BITPOS is nonzero if
1916 there is an offset outstanding on T that will be applied later. */
1918 void
1919 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1920 poly_int64 bitpos)
1922 poly_int64 apply_bitpos = 0;
1923 tree type;
1924 struct mem_attrs attrs, *defattrs, *refattrs;
1925 addr_space_t as;
1927 /* It can happen that type_for_mode was given a mode for which there
1928 is no language-level type. In which case it returns NULL, which
1929 we can see here. */
1930 if (t == NULL_TREE)
1931 return;
1933 type = TYPE_P (t) ? t : TREE_TYPE (t);
1934 if (type == error_mark_node)
1935 return;
1937 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1938 wrong answer, as it assumes that DECL_RTL already has the right alias
1939 info. Callers should not set DECL_RTL until after the call to
1940 set_mem_attributes. */
1941 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1943 /* Get the alias set from the expression or type (perhaps using a
1944 front-end routine) and use it. */
1945 attrs.alias = get_alias_set (t);
1947 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1948 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1950 /* Default values from pre-existing memory attributes if present. */
1951 refattrs = MEM_ATTRS (ref);
1952 if (refattrs)
1954 /* ??? Can this ever happen? Calling this routine on a MEM that
1955 already carries memory attributes should probably be invalid. */
1956 attrs.expr = refattrs->expr;
1957 attrs.offset_known_p = refattrs->offset_known_p;
1958 attrs.offset = refattrs->offset;
1959 attrs.size_known_p = refattrs->size_known_p;
1960 attrs.size = refattrs->size;
1961 attrs.align = refattrs->align;
1964 /* Otherwise, default values from the mode of the MEM reference. */
1965 else
1967 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1968 gcc_assert (!defattrs->expr);
1969 gcc_assert (!defattrs->offset_known_p);
1971 /* Respect mode size. */
1972 attrs.size_known_p = defattrs->size_known_p;
1973 attrs.size = defattrs->size;
1974 /* ??? Is this really necessary? We probably should always get
1975 the size from the type below. */
1977 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1978 if T is an object, always compute the object alignment below. */
1979 if (TYPE_P (t))
1980 attrs.align = defattrs->align;
1981 else
1982 attrs.align = BITS_PER_UNIT;
1983 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1984 e.g. if the type carries an alignment attribute. Should we be
1985 able to simply always use TYPE_ALIGN? */
1988 /* We can set the alignment from the type if we are making an object or if
1989 this is an INDIRECT_REF. */
1990 if (objectp || TREE_CODE (t) == INDIRECT_REF)
1991 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1993 /* If the size is known, we can set that. */
1994 tree new_size = TYPE_SIZE_UNIT (type);
1996 /* The address-space is that of the type. */
1997 as = TYPE_ADDR_SPACE (type);
1999 /* If T is not a type, we may be able to deduce some more information about
2000 the expression. */
2001 if (! TYPE_P (t))
2003 tree base;
2005 if (TREE_THIS_VOLATILE (t))
2006 MEM_VOLATILE_P (ref) = 1;
2008 /* Now remove any conversions: they don't change what the underlying
2009 object is. Likewise for SAVE_EXPR. */
2010 while (CONVERT_EXPR_P (t)
2011 || TREE_CODE (t) == VIEW_CONVERT_EXPR
2012 || TREE_CODE (t) == SAVE_EXPR)
2013 t = TREE_OPERAND (t, 0);
2015 /* Note whether this expression can trap. */
2016 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
2018 base = get_base_address (t);
2019 if (base)
2021 if (DECL_P (base)
2022 && TREE_READONLY (base)
2023 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
2024 && !TREE_THIS_VOLATILE (base))
2025 MEM_READONLY_P (ref) = 1;
2027 /* Mark static const strings readonly as well. */
2028 if (TREE_CODE (base) == STRING_CST
2029 && TREE_READONLY (base)
2030 && TREE_STATIC (base))
2031 MEM_READONLY_P (ref) = 1;
2033 /* Address-space information is on the base object. */
2034 if (TREE_CODE (base) == MEM_REF
2035 || TREE_CODE (base) == TARGET_MEM_REF)
2036 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
2037 0))));
2038 else
2039 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
2042 /* If this expression uses it's parent's alias set, mark it such
2043 that we won't change it. */
2044 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
2045 MEM_KEEP_ALIAS_SET_P (ref) = 1;
2047 /* If this is a decl, set the attributes of the MEM from it. */
2048 if (DECL_P (t))
2050 attrs.expr = t;
2051 attrs.offset_known_p = true;
2052 attrs.offset = 0;
2053 apply_bitpos = bitpos;
2054 new_size = DECL_SIZE_UNIT (t);
2057 /* ??? If we end up with a constant here do record a MEM_EXPR. */
2058 else if (CONSTANT_CLASS_P (t))
2061 /* If this is a field reference, record it. */
2062 else if (TREE_CODE (t) == COMPONENT_REF)
2064 attrs.expr = t;
2065 attrs.offset_known_p = true;
2066 attrs.offset = 0;
2067 apply_bitpos = bitpos;
2068 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
2069 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
2072 /* If this is an array reference, look for an outer field reference. */
2073 else if (TREE_CODE (t) == ARRAY_REF)
2075 tree off_tree = size_zero_node;
2076 /* We can't modify t, because we use it at the end of the
2077 function. */
2078 tree t2 = t;
2082 tree index = TREE_OPERAND (t2, 1);
2083 tree low_bound = array_ref_low_bound (t2);
2084 tree unit_size = array_ref_element_size (t2);
2086 /* We assume all arrays have sizes that are a multiple of a byte.
2087 First subtract the lower bound, if any, in the type of the
2088 index, then convert to sizetype and multiply by the size of
2089 the array element. */
2090 if (! integer_zerop (low_bound))
2091 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
2092 index, low_bound);
2094 off_tree = size_binop (PLUS_EXPR,
2095 size_binop (MULT_EXPR,
2096 fold_convert (sizetype,
2097 index),
2098 unit_size),
2099 off_tree);
2100 t2 = TREE_OPERAND (t2, 0);
2102 while (TREE_CODE (t2) == ARRAY_REF);
2104 if (DECL_P (t2)
2105 || (TREE_CODE (t2) == COMPONENT_REF
2106 /* For trailing arrays t2 doesn't have a size that
2107 covers all valid accesses. */
2108 && ! array_at_struct_end_p (t)))
2110 attrs.expr = t2;
2111 attrs.offset_known_p = false;
2112 if (poly_int_tree_p (off_tree, &attrs.offset))
2114 attrs.offset_known_p = true;
2115 apply_bitpos = bitpos;
2118 /* Else do not record a MEM_EXPR. */
2121 /* If this is an indirect reference, record it. */
2122 else if (TREE_CODE (t) == MEM_REF
2123 || TREE_CODE (t) == TARGET_MEM_REF)
2125 attrs.expr = t;
2126 attrs.offset_known_p = true;
2127 attrs.offset = 0;
2128 apply_bitpos = bitpos;
2131 /* Compute the alignment. */
2132 unsigned int obj_align;
2133 unsigned HOST_WIDE_INT obj_bitpos;
2134 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
2135 unsigned int diff_align = known_alignment (obj_bitpos - bitpos);
2136 if (diff_align != 0)
2137 obj_align = MIN (obj_align, diff_align);
2138 attrs.align = MAX (attrs.align, obj_align);
2141 poly_uint64 const_size;
2142 if (poly_int_tree_p (new_size, &const_size))
2144 attrs.size_known_p = true;
2145 attrs.size = const_size;
2148 /* If we modified OFFSET based on T, then subtract the outstanding
2149 bit position offset. Similarly, increase the size of the accessed
2150 object to contain the negative offset. */
2151 if (maybe_ne (apply_bitpos, 0))
2153 gcc_assert (attrs.offset_known_p);
2154 poly_int64 bytepos = bits_to_bytes_round_down (apply_bitpos);
2155 attrs.offset -= bytepos;
2156 if (attrs.size_known_p)
2157 attrs.size += bytepos;
2160 /* Now set the attributes we computed above. */
2161 attrs.addrspace = as;
2162 set_mem_attrs (ref, &attrs);
2165 void
2166 set_mem_attributes (rtx ref, tree t, int objectp)
2168 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2171 /* Set the alias set of MEM to SET. */
2173 void
2174 set_mem_alias_set (rtx mem, alias_set_type set)
2176 /* If the new and old alias sets don't conflict, something is wrong. */
2177 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2178 mem_attrs attrs (*get_mem_attrs (mem));
2179 attrs.alias = set;
2180 set_mem_attrs (mem, &attrs);
2183 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2185 void
2186 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2188 mem_attrs attrs (*get_mem_attrs (mem));
2189 attrs.addrspace = addrspace;
2190 set_mem_attrs (mem, &attrs);
2193 /* Set the alignment of MEM to ALIGN bits. */
2195 void
2196 set_mem_align (rtx mem, unsigned int align)
2198 mem_attrs attrs (*get_mem_attrs (mem));
2199 attrs.align = align;
2200 set_mem_attrs (mem, &attrs);
2203 /* Set the expr for MEM to EXPR. */
2205 void
2206 set_mem_expr (rtx mem, tree expr)
2208 mem_attrs attrs (*get_mem_attrs (mem));
2209 attrs.expr = expr;
2210 set_mem_attrs (mem, &attrs);
2213 /* Set the offset of MEM to OFFSET. */
2215 void
2216 set_mem_offset (rtx mem, poly_int64 offset)
2218 mem_attrs attrs (*get_mem_attrs (mem));
2219 attrs.offset_known_p = true;
2220 attrs.offset = offset;
2221 set_mem_attrs (mem, &attrs);
2224 /* Clear the offset of MEM. */
2226 void
2227 clear_mem_offset (rtx mem)
2229 mem_attrs attrs (*get_mem_attrs (mem));
2230 attrs.offset_known_p = false;
2231 set_mem_attrs (mem, &attrs);
2234 /* Set the size of MEM to SIZE. */
2236 void
2237 set_mem_size (rtx mem, poly_int64 size)
2239 mem_attrs attrs (*get_mem_attrs (mem));
2240 attrs.size_known_p = true;
2241 attrs.size = size;
2242 set_mem_attrs (mem, &attrs);
2245 /* Clear the size of MEM. */
2247 void
2248 clear_mem_size (rtx mem)
2250 mem_attrs attrs (*get_mem_attrs (mem));
2251 attrs.size_known_p = false;
2252 set_mem_attrs (mem, &attrs);
2255 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2256 and its address changed to ADDR. (VOIDmode means don't change the mode.
2257 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2258 returned memory location is required to be valid. INPLACE is true if any
2259 changes can be made directly to MEMREF or false if MEMREF must be treated
2260 as immutable.
2262 The memory attributes are not changed. */
2264 static rtx
2265 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2266 bool inplace)
2268 addr_space_t as;
2269 rtx new_rtx;
2271 gcc_assert (MEM_P (memref));
2272 as = MEM_ADDR_SPACE (memref);
2273 if (mode == VOIDmode)
2274 mode = GET_MODE (memref);
2275 if (addr == 0)
2276 addr = XEXP (memref, 0);
2277 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2278 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2279 return memref;
2281 /* Don't validate address for LRA. LRA can make the address valid
2282 by itself in most efficient way. */
2283 if (validate && !lra_in_progress)
2285 if (reload_in_progress || reload_completed)
2286 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2287 else
2288 addr = memory_address_addr_space (mode, addr, as);
2291 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2292 return memref;
2294 if (inplace)
2296 XEXP (memref, 0) = addr;
2297 return memref;
2300 new_rtx = gen_rtx_MEM (mode, addr);
2301 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2302 return new_rtx;
2305 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2306 way we are changing MEMREF, so we only preserve the alias set. */
2309 change_address (rtx memref, machine_mode mode, rtx addr)
2311 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2312 machine_mode mmode = GET_MODE (new_rtx);
2313 struct mem_attrs *defattrs;
2315 mem_attrs attrs (*get_mem_attrs (memref));
2316 defattrs = mode_mem_attrs[(int) mmode];
2317 attrs.expr = NULL_TREE;
2318 attrs.offset_known_p = false;
2319 attrs.size_known_p = defattrs->size_known_p;
2320 attrs.size = defattrs->size;
2321 attrs.align = defattrs->align;
2323 /* If there are no changes, just return the original memory reference. */
2324 if (new_rtx == memref)
2326 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2327 return new_rtx;
2329 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2330 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2333 set_mem_attrs (new_rtx, &attrs);
2334 return new_rtx;
2337 /* Return a memory reference like MEMREF, but with its mode changed
2338 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2339 nonzero, the memory address is forced to be valid.
2340 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2341 and the caller is responsible for adjusting MEMREF base register.
2342 If ADJUST_OBJECT is zero, the underlying object associated with the
2343 memory reference is left unchanged and the caller is responsible for
2344 dealing with it. Otherwise, if the new memory reference is outside
2345 the underlying object, even partially, then the object is dropped.
2346 SIZE, if nonzero, is the size of an access in cases where MODE
2347 has no inherent size. */
2350 adjust_address_1 (rtx memref, machine_mode mode, poly_int64 offset,
2351 int validate, int adjust_address, int adjust_object,
2352 poly_int64 size)
2354 rtx addr = XEXP (memref, 0);
2355 rtx new_rtx;
2356 scalar_int_mode address_mode;
2357 struct mem_attrs attrs (*get_mem_attrs (memref)), *defattrs;
2358 unsigned HOST_WIDE_INT max_align;
2359 #ifdef POINTERS_EXTEND_UNSIGNED
2360 scalar_int_mode pointer_mode
2361 = targetm.addr_space.pointer_mode (attrs.addrspace);
2362 #endif
2364 /* VOIDmode means no mode change for change_address_1. */
2365 if (mode == VOIDmode)
2366 mode = GET_MODE (memref);
2368 /* Take the size of non-BLKmode accesses from the mode. */
2369 defattrs = mode_mem_attrs[(int) mode];
2370 if (defattrs->size_known_p)
2371 size = defattrs->size;
2373 /* If there are no changes, just return the original memory reference. */
2374 if (mode == GET_MODE (memref)
2375 && known_eq (offset, 0)
2376 && (known_eq (size, 0)
2377 || (attrs.size_known_p && known_eq (attrs.size, size)))
2378 && (!validate || memory_address_addr_space_p (mode, addr,
2379 attrs.addrspace)))
2380 return memref;
2382 /* ??? Prefer to create garbage instead of creating shared rtl.
2383 This may happen even if offset is nonzero -- consider
2384 (plus (plus reg reg) const_int) -- so do this always. */
2385 addr = copy_rtx (addr);
2387 /* Convert a possibly large offset to a signed value within the
2388 range of the target address space. */
2389 address_mode = get_address_mode (memref);
2390 offset = trunc_int_for_mode (offset, address_mode);
2392 if (adjust_address)
2394 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2395 object, we can merge it into the LO_SUM. */
2396 if (GET_MODE (memref) != BLKmode
2397 && GET_CODE (addr) == LO_SUM
2398 && known_in_range_p (offset,
2399 0, (GET_MODE_ALIGNMENT (GET_MODE (memref))
2400 / BITS_PER_UNIT)))
2401 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2402 plus_constant (address_mode,
2403 XEXP (addr, 1), offset));
2404 #ifdef POINTERS_EXTEND_UNSIGNED
2405 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2406 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2407 the fact that pointers are not allowed to overflow. */
2408 else if (POINTERS_EXTEND_UNSIGNED > 0
2409 && GET_CODE (addr) == ZERO_EXTEND
2410 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2411 && known_eq (trunc_int_for_mode (offset, pointer_mode), offset))
2412 addr = gen_rtx_ZERO_EXTEND (address_mode,
2413 plus_constant (pointer_mode,
2414 XEXP (addr, 0), offset));
2415 #endif
2416 else
2417 addr = plus_constant (address_mode, addr, offset);
2420 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2422 /* If the address is a REG, change_address_1 rightfully returns memref,
2423 but this would destroy memref's MEM_ATTRS. */
2424 if (new_rtx == memref && maybe_ne (offset, 0))
2425 new_rtx = copy_rtx (new_rtx);
2427 /* Conservatively drop the object if we don't know where we start from. */
2428 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2430 attrs.expr = NULL_TREE;
2431 attrs.alias = 0;
2434 /* Compute the new values of the memory attributes due to this adjustment.
2435 We add the offsets and update the alignment. */
2436 if (attrs.offset_known_p)
2438 attrs.offset += offset;
2440 /* Drop the object if the new left end is not within its bounds. */
2441 if (adjust_object && maybe_lt (attrs.offset, 0))
2443 attrs.expr = NULL_TREE;
2444 attrs.alias = 0;
2448 /* Compute the new alignment by taking the MIN of the alignment and the
2449 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2450 if zero. */
2451 if (maybe_ne (offset, 0))
2453 max_align = known_alignment (offset) * BITS_PER_UNIT;
2454 attrs.align = MIN (attrs.align, max_align);
2457 if (maybe_ne (size, 0))
2459 /* Drop the object if the new right end is not within its bounds. */
2460 if (adjust_object && maybe_gt (offset + size, attrs.size))
2462 attrs.expr = NULL_TREE;
2463 attrs.alias = 0;
2465 attrs.size_known_p = true;
2466 attrs.size = size;
2468 else if (attrs.size_known_p)
2470 gcc_assert (!adjust_object);
2471 attrs.size -= offset;
2472 /* ??? The store_by_pieces machinery generates negative sizes,
2473 so don't assert for that here. */
2476 set_mem_attrs (new_rtx, &attrs);
2478 return new_rtx;
2481 /* Return a memory reference like MEMREF, but with its mode changed
2482 to MODE and its address changed to ADDR, which is assumed to be
2483 MEMREF offset by OFFSET bytes. If VALIDATE is
2484 nonzero, the memory address is forced to be valid. */
2487 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2488 poly_int64 offset, int validate)
2490 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2491 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2494 /* Return a memory reference like MEMREF, but whose address is changed by
2495 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2496 known to be in OFFSET (possibly 1). */
2499 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2501 rtx new_rtx, addr = XEXP (memref, 0);
2502 machine_mode address_mode;
2503 struct mem_attrs *defattrs;
2505 mem_attrs attrs (*get_mem_attrs (memref));
2506 address_mode = get_address_mode (memref);
2507 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2509 /* At this point we don't know _why_ the address is invalid. It
2510 could have secondary memory references, multiplies or anything.
2512 However, if we did go and rearrange things, we can wind up not
2513 being able to recognize the magic around pic_offset_table_rtx.
2514 This stuff is fragile, and is yet another example of why it is
2515 bad to expose PIC machinery too early. */
2516 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2517 attrs.addrspace)
2518 && GET_CODE (addr) == PLUS
2519 && XEXP (addr, 0) == pic_offset_table_rtx)
2521 addr = force_reg (GET_MODE (addr), addr);
2522 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2525 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2526 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2528 /* If there are no changes, just return the original memory reference. */
2529 if (new_rtx == memref)
2530 return new_rtx;
2532 /* Update the alignment to reflect the offset. Reset the offset, which
2533 we don't know. */
2534 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2535 attrs.offset_known_p = false;
2536 attrs.size_known_p = defattrs->size_known_p;
2537 attrs.size = defattrs->size;
2538 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2539 set_mem_attrs (new_rtx, &attrs);
2540 return new_rtx;
2543 /* Return a memory reference like MEMREF, but with its address changed to
2544 ADDR. The caller is asserting that the actual piece of memory pointed
2545 to is the same, just the form of the address is being changed, such as
2546 by putting something into a register. INPLACE is true if any changes
2547 can be made directly to MEMREF or false if MEMREF must be treated as
2548 immutable. */
2551 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2553 /* change_address_1 copies the memory attribute structure without change
2554 and that's exactly what we want here. */
2555 update_temp_slot_address (XEXP (memref, 0), addr);
2556 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2559 /* Likewise, but the reference is not required to be valid. */
2562 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2564 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2567 /* Return a memory reference like MEMREF, but with its mode widened to
2568 MODE and offset by OFFSET. This would be used by targets that e.g.
2569 cannot issue QImode memory operations and have to use SImode memory
2570 operations plus masking logic. */
2573 widen_memory_access (rtx memref, machine_mode mode, poly_int64 offset)
2575 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2576 poly_uint64 size = GET_MODE_SIZE (mode);
2578 /* If there are no changes, just return the original memory reference. */
2579 if (new_rtx == memref)
2580 return new_rtx;
2582 mem_attrs attrs (*get_mem_attrs (new_rtx));
2584 /* If we don't know what offset we were at within the expression, then
2585 we can't know if we've overstepped the bounds. */
2586 if (! attrs.offset_known_p)
2587 attrs.expr = NULL_TREE;
2589 while (attrs.expr)
2591 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2593 tree field = TREE_OPERAND (attrs.expr, 1);
2594 tree offset = component_ref_field_offset (attrs.expr);
2596 if (! DECL_SIZE_UNIT (field))
2598 attrs.expr = NULL_TREE;
2599 break;
2602 /* Is the field at least as large as the access? If so, ok,
2603 otherwise strip back to the containing structure. */
2604 if (poly_int_tree_p (DECL_SIZE_UNIT (field))
2605 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (field)), size)
2606 && known_ge (attrs.offset, 0))
2607 break;
2609 poly_uint64 suboffset;
2610 if (!poly_int_tree_p (offset, &suboffset))
2612 attrs.expr = NULL_TREE;
2613 break;
2616 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2617 attrs.offset += suboffset;
2618 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2619 / BITS_PER_UNIT);
2621 /* Similarly for the decl. */
2622 else if (DECL_P (attrs.expr)
2623 && DECL_SIZE_UNIT (attrs.expr)
2624 && poly_int_tree_p (DECL_SIZE_UNIT (attrs.expr))
2625 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (attrs.expr)),
2626 size)
2627 && known_ge (attrs.offset, 0))
2628 break;
2629 else
2631 /* The widened memory access overflows the expression, which means
2632 that it could alias another expression. Zap it. */
2633 attrs.expr = NULL_TREE;
2634 break;
2638 if (! attrs.expr)
2639 attrs.offset_known_p = false;
2641 /* The widened memory may alias other stuff, so zap the alias set. */
2642 /* ??? Maybe use get_alias_set on any remaining expression. */
2643 attrs.alias = 0;
2644 attrs.size_known_p = true;
2645 attrs.size = size;
2646 set_mem_attrs (new_rtx, &attrs);
2647 return new_rtx;
2650 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2651 static GTY(()) tree spill_slot_decl;
2653 tree
2654 get_spill_slot_decl (bool force_build_p)
2656 tree d = spill_slot_decl;
2657 rtx rd;
2659 if (d || !force_build_p)
2660 return d;
2662 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2663 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2664 DECL_ARTIFICIAL (d) = 1;
2665 DECL_IGNORED_P (d) = 1;
2666 TREE_USED (d) = 1;
2667 spill_slot_decl = d;
2669 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2670 MEM_NOTRAP_P (rd) = 1;
2671 mem_attrs attrs (*mode_mem_attrs[(int) BLKmode]);
2672 attrs.alias = new_alias_set ();
2673 attrs.expr = d;
2674 set_mem_attrs (rd, &attrs);
2675 SET_DECL_RTL (d, rd);
2677 return d;
2680 /* Given MEM, a result from assign_stack_local, fill in the memory
2681 attributes as appropriate for a register allocator spill slot.
2682 These slots are not aliasable by other memory. We arrange for
2683 them all to use a single MEM_EXPR, so that the aliasing code can
2684 work properly in the case of shared spill slots. */
2686 void
2687 set_mem_attrs_for_spill (rtx mem)
2689 rtx addr;
2691 mem_attrs attrs (*get_mem_attrs (mem));
2692 attrs.expr = get_spill_slot_decl (true);
2693 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2694 attrs.addrspace = ADDR_SPACE_GENERIC;
2696 /* We expect the incoming memory to be of the form:
2697 (mem:MODE (plus (reg sfp) (const_int offset)))
2698 with perhaps the plus missing for offset = 0. */
2699 addr = XEXP (mem, 0);
2700 attrs.offset_known_p = true;
2701 strip_offset (addr, &attrs.offset);
2703 set_mem_attrs (mem, &attrs);
2704 MEM_NOTRAP_P (mem) = 1;
2707 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2709 rtx_code_label *
2710 gen_label_rtx (void)
2712 return as_a <rtx_code_label *> (
2713 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2714 NULL, label_num++, NULL));
2717 /* For procedure integration. */
2719 /* Install new pointers to the first and last insns in the chain.
2720 Also, set cur_insn_uid to one higher than the last in use.
2721 Used for an inline-procedure after copying the insn chain. */
2723 void
2724 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2726 rtx_insn *insn;
2728 set_first_insn (first);
2729 set_last_insn (last);
2730 cur_insn_uid = 0;
2732 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2734 int debug_count = 0;
2736 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2737 cur_debug_insn_uid = 0;
2739 for (insn = first; insn; insn = NEXT_INSN (insn))
2740 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2741 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2742 else
2744 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2745 if (DEBUG_INSN_P (insn))
2746 debug_count++;
2749 if (debug_count)
2750 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2751 else
2752 cur_debug_insn_uid++;
2754 else
2755 for (insn = first; insn; insn = NEXT_INSN (insn))
2756 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2758 cur_insn_uid++;
2761 /* Go through all the RTL insn bodies and copy any invalid shared
2762 structure. This routine should only be called once. */
2764 static void
2765 unshare_all_rtl_1 (rtx_insn *insn)
2767 /* Unshare just about everything else. */
2768 unshare_all_rtl_in_chain (insn);
2770 /* Make sure the addresses of stack slots found outside the insn chain
2771 (such as, in DECL_RTL of a variable) are not shared
2772 with the insn chain.
2774 This special care is necessary when the stack slot MEM does not
2775 actually appear in the insn chain. If it does appear, its address
2776 is unshared from all else at that point. */
2777 unsigned int i;
2778 rtx temp;
2779 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2780 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
2783 /* Go through all the RTL insn bodies and copy any invalid shared
2784 structure, again. This is a fairly expensive thing to do so it
2785 should be done sparingly. */
2787 void
2788 unshare_all_rtl_again (rtx_insn *insn)
2790 rtx_insn *p;
2791 tree decl;
2793 for (p = insn; p; p = NEXT_INSN (p))
2794 if (INSN_P (p))
2796 reset_used_flags (PATTERN (p));
2797 reset_used_flags (REG_NOTES (p));
2798 if (CALL_P (p))
2799 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2802 /* Make sure that virtual stack slots are not shared. */
2803 set_used_decls (DECL_INITIAL (cfun->decl));
2805 /* Make sure that virtual parameters are not shared. */
2806 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2807 set_used_flags (DECL_RTL (decl));
2809 rtx temp;
2810 unsigned int i;
2811 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2812 reset_used_flags (temp);
2814 unshare_all_rtl_1 (insn);
2817 unsigned int
2818 unshare_all_rtl (void)
2820 unshare_all_rtl_1 (get_insns ());
2822 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2824 if (DECL_RTL_SET_P (decl))
2825 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2826 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2829 return 0;
2833 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2834 Recursively does the same for subexpressions. */
2836 static void
2837 verify_rtx_sharing (rtx orig, rtx insn)
2839 rtx x = orig;
2840 int i;
2841 enum rtx_code code;
2842 const char *format_ptr;
2844 if (x == 0)
2845 return;
2847 code = GET_CODE (x);
2849 /* These types may be freely shared. */
2851 switch (code)
2853 case REG:
2854 case DEBUG_EXPR:
2855 case VALUE:
2856 CASE_CONST_ANY:
2857 case SYMBOL_REF:
2858 case LABEL_REF:
2859 case CODE_LABEL:
2860 case PC:
2861 case CC0:
2862 case RETURN:
2863 case SIMPLE_RETURN:
2864 case SCRATCH:
2865 /* SCRATCH must be shared because they represent distinct values. */
2866 return;
2867 case CLOBBER:
2868 case CLOBBER_HIGH:
2869 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2870 clobbers or clobbers of hard registers that originated as pseudos.
2871 This is needed to allow safe register renaming. */
2872 if (REG_P (XEXP (x, 0))
2873 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2874 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
2875 return;
2876 break;
2878 case CONST:
2879 if (shared_const_p (orig))
2880 return;
2881 break;
2883 case MEM:
2884 /* A MEM is allowed to be shared if its address is constant. */
2885 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2886 || reload_completed || reload_in_progress)
2887 return;
2889 break;
2891 default:
2892 break;
2895 /* This rtx may not be shared. If it has already been seen,
2896 replace it with a copy of itself. */
2897 if (flag_checking && RTX_FLAG (x, used))
2899 error ("invalid rtl sharing found in the insn");
2900 debug_rtx (insn);
2901 error ("shared rtx");
2902 debug_rtx (x);
2903 internal_error ("internal consistency failure");
2905 gcc_assert (!RTX_FLAG (x, used));
2907 RTX_FLAG (x, used) = 1;
2909 /* Now scan the subexpressions recursively. */
2911 format_ptr = GET_RTX_FORMAT (code);
2913 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2915 switch (*format_ptr++)
2917 case 'e':
2918 verify_rtx_sharing (XEXP (x, i), insn);
2919 break;
2921 case 'E':
2922 if (XVEC (x, i) != NULL)
2924 int j;
2925 int len = XVECLEN (x, i);
2927 for (j = 0; j < len; j++)
2929 /* We allow sharing of ASM_OPERANDS inside single
2930 instruction. */
2931 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2932 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2933 == ASM_OPERANDS))
2934 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2935 else
2936 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2939 break;
2942 return;
2945 /* Reset used-flags for INSN. */
2947 static void
2948 reset_insn_used_flags (rtx insn)
2950 gcc_assert (INSN_P (insn));
2951 reset_used_flags (PATTERN (insn));
2952 reset_used_flags (REG_NOTES (insn));
2953 if (CALL_P (insn))
2954 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2957 /* Go through all the RTL insn bodies and clear all the USED bits. */
2959 static void
2960 reset_all_used_flags (void)
2962 rtx_insn *p;
2964 for (p = get_insns (); p; p = NEXT_INSN (p))
2965 if (INSN_P (p))
2967 rtx pat = PATTERN (p);
2968 if (GET_CODE (pat) != SEQUENCE)
2969 reset_insn_used_flags (p);
2970 else
2972 gcc_assert (REG_NOTES (p) == NULL);
2973 for (int i = 0; i < XVECLEN (pat, 0); i++)
2975 rtx insn = XVECEXP (pat, 0, i);
2976 if (INSN_P (insn))
2977 reset_insn_used_flags (insn);
2983 /* Verify sharing in INSN. */
2985 static void
2986 verify_insn_sharing (rtx insn)
2988 gcc_assert (INSN_P (insn));
2989 verify_rtx_sharing (PATTERN (insn), insn);
2990 verify_rtx_sharing (REG_NOTES (insn), insn);
2991 if (CALL_P (insn))
2992 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
2995 /* Go through all the RTL insn bodies and check that there is no unexpected
2996 sharing in between the subexpressions. */
2998 DEBUG_FUNCTION void
2999 verify_rtl_sharing (void)
3001 rtx_insn *p;
3003 timevar_push (TV_VERIFY_RTL_SHARING);
3005 reset_all_used_flags ();
3007 for (p = get_insns (); p; p = NEXT_INSN (p))
3008 if (INSN_P (p))
3010 rtx pat = PATTERN (p);
3011 if (GET_CODE (pat) != SEQUENCE)
3012 verify_insn_sharing (p);
3013 else
3014 for (int i = 0; i < XVECLEN (pat, 0); i++)
3016 rtx insn = XVECEXP (pat, 0, i);
3017 if (INSN_P (insn))
3018 verify_insn_sharing (insn);
3022 reset_all_used_flags ();
3024 timevar_pop (TV_VERIFY_RTL_SHARING);
3027 /* Go through all the RTL insn bodies and copy any invalid shared structure.
3028 Assumes the mark bits are cleared at entry. */
3030 void
3031 unshare_all_rtl_in_chain (rtx_insn *insn)
3033 for (; insn; insn = NEXT_INSN (insn))
3034 if (INSN_P (insn))
3036 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
3037 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
3038 if (CALL_P (insn))
3039 CALL_INSN_FUNCTION_USAGE (insn)
3040 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
3044 /* Go through all virtual stack slots of a function and mark them as
3045 shared. We never replace the DECL_RTLs themselves with a copy,
3046 but expressions mentioned into a DECL_RTL cannot be shared with
3047 expressions in the instruction stream.
3049 Note that reload may convert pseudo registers into memories in-place.
3050 Pseudo registers are always shared, but MEMs never are. Thus if we
3051 reset the used flags on MEMs in the instruction stream, we must set
3052 them again on MEMs that appear in DECL_RTLs. */
3054 static void
3055 set_used_decls (tree blk)
3057 tree t;
3059 /* Mark decls. */
3060 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
3061 if (DECL_RTL_SET_P (t))
3062 set_used_flags (DECL_RTL (t));
3064 /* Now process sub-blocks. */
3065 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
3066 set_used_decls (t);
3069 /* Mark ORIG as in use, and return a copy of it if it was already in use.
3070 Recursively does the same for subexpressions. Uses
3071 copy_rtx_if_shared_1 to reduce stack space. */
3074 copy_rtx_if_shared (rtx orig)
3076 copy_rtx_if_shared_1 (&orig);
3077 return orig;
3080 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
3081 use. Recursively does the same for subexpressions. */
3083 static void
3084 copy_rtx_if_shared_1 (rtx *orig1)
3086 rtx x;
3087 int i;
3088 enum rtx_code code;
3089 rtx *last_ptr;
3090 const char *format_ptr;
3091 int copied = 0;
3092 int length;
3094 /* Repeat is used to turn tail-recursion into iteration. */
3095 repeat:
3096 x = *orig1;
3098 if (x == 0)
3099 return;
3101 code = GET_CODE (x);
3103 /* These types may be freely shared. */
3105 switch (code)
3107 case REG:
3108 case DEBUG_EXPR:
3109 case VALUE:
3110 CASE_CONST_ANY:
3111 case SYMBOL_REF:
3112 case LABEL_REF:
3113 case CODE_LABEL:
3114 case PC:
3115 case CC0:
3116 case RETURN:
3117 case SIMPLE_RETURN:
3118 case SCRATCH:
3119 /* SCRATCH must be shared because they represent distinct values. */
3120 return;
3121 case CLOBBER:
3122 case CLOBBER_HIGH:
3123 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
3124 clobbers or clobbers of hard registers that originated as pseudos.
3125 This is needed to allow safe register renaming. */
3126 if (REG_P (XEXP (x, 0))
3127 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
3128 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
3129 return;
3130 break;
3132 case CONST:
3133 if (shared_const_p (x))
3134 return;
3135 break;
3137 case DEBUG_INSN:
3138 case INSN:
3139 case JUMP_INSN:
3140 case CALL_INSN:
3141 case NOTE:
3142 case BARRIER:
3143 /* The chain of insns is not being copied. */
3144 return;
3146 default:
3147 break;
3150 /* This rtx may not be shared. If it has already been seen,
3151 replace it with a copy of itself. */
3153 if (RTX_FLAG (x, used))
3155 x = shallow_copy_rtx (x);
3156 copied = 1;
3158 RTX_FLAG (x, used) = 1;
3160 /* Now scan the subexpressions recursively.
3161 We can store any replaced subexpressions directly into X
3162 since we know X is not shared! Any vectors in X
3163 must be copied if X was copied. */
3165 format_ptr = GET_RTX_FORMAT (code);
3166 length = GET_RTX_LENGTH (code);
3167 last_ptr = NULL;
3169 for (i = 0; i < length; i++)
3171 switch (*format_ptr++)
3173 case 'e':
3174 if (last_ptr)
3175 copy_rtx_if_shared_1 (last_ptr);
3176 last_ptr = &XEXP (x, i);
3177 break;
3179 case 'E':
3180 if (XVEC (x, i) != NULL)
3182 int j;
3183 int len = XVECLEN (x, i);
3185 /* Copy the vector iff I copied the rtx and the length
3186 is nonzero. */
3187 if (copied && len > 0)
3188 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3190 /* Call recursively on all inside the vector. */
3191 for (j = 0; j < len; j++)
3193 if (last_ptr)
3194 copy_rtx_if_shared_1 (last_ptr);
3195 last_ptr = &XVECEXP (x, i, j);
3198 break;
3201 *orig1 = x;
3202 if (last_ptr)
3204 orig1 = last_ptr;
3205 goto repeat;
3207 return;
3210 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3212 static void
3213 mark_used_flags (rtx x, int flag)
3215 int i, j;
3216 enum rtx_code code;
3217 const char *format_ptr;
3218 int length;
3220 /* Repeat is used to turn tail-recursion into iteration. */
3221 repeat:
3222 if (x == 0)
3223 return;
3225 code = GET_CODE (x);
3227 /* These types may be freely shared so we needn't do any resetting
3228 for them. */
3230 switch (code)
3232 case REG:
3233 case DEBUG_EXPR:
3234 case VALUE:
3235 CASE_CONST_ANY:
3236 case SYMBOL_REF:
3237 case CODE_LABEL:
3238 case PC:
3239 case CC0:
3240 case RETURN:
3241 case SIMPLE_RETURN:
3242 return;
3244 case DEBUG_INSN:
3245 case INSN:
3246 case JUMP_INSN:
3247 case CALL_INSN:
3248 case NOTE:
3249 case LABEL_REF:
3250 case BARRIER:
3251 /* The chain of insns is not being copied. */
3252 return;
3254 default:
3255 break;
3258 RTX_FLAG (x, used) = flag;
3260 format_ptr = GET_RTX_FORMAT (code);
3261 length = GET_RTX_LENGTH (code);
3263 for (i = 0; i < length; i++)
3265 switch (*format_ptr++)
3267 case 'e':
3268 if (i == length-1)
3270 x = XEXP (x, i);
3271 goto repeat;
3273 mark_used_flags (XEXP (x, i), flag);
3274 break;
3276 case 'E':
3277 for (j = 0; j < XVECLEN (x, i); j++)
3278 mark_used_flags (XVECEXP (x, i, j), flag);
3279 break;
3284 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3285 to look for shared sub-parts. */
3287 void
3288 reset_used_flags (rtx x)
3290 mark_used_flags (x, 0);
3293 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3294 to look for shared sub-parts. */
3296 void
3297 set_used_flags (rtx x)
3299 mark_used_flags (x, 1);
3302 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3303 Return X or the rtx for the pseudo reg the value of X was copied into.
3304 OTHER must be valid as a SET_DEST. */
3307 make_safe_from (rtx x, rtx other)
3309 while (1)
3310 switch (GET_CODE (other))
3312 case SUBREG:
3313 other = SUBREG_REG (other);
3314 break;
3315 case STRICT_LOW_PART:
3316 case SIGN_EXTEND:
3317 case ZERO_EXTEND:
3318 other = XEXP (other, 0);
3319 break;
3320 default:
3321 goto done;
3323 done:
3324 if ((MEM_P (other)
3325 && ! CONSTANT_P (x)
3326 && !REG_P (x)
3327 && GET_CODE (x) != SUBREG)
3328 || (REG_P (other)
3329 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3330 || reg_mentioned_p (other, x))))
3332 rtx temp = gen_reg_rtx (GET_MODE (x));
3333 emit_move_insn (temp, x);
3334 return temp;
3336 return x;
3339 /* Emission of insns (adding them to the doubly-linked list). */
3341 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3343 rtx_insn *
3344 get_last_insn_anywhere (void)
3346 struct sequence_stack *seq;
3347 for (seq = get_current_sequence (); seq; seq = seq->next)
3348 if (seq->last != 0)
3349 return seq->last;
3350 return 0;
3353 /* Return the first nonnote insn emitted in current sequence or current
3354 function. This routine looks inside SEQUENCEs. */
3356 rtx_insn *
3357 get_first_nonnote_insn (void)
3359 rtx_insn *insn = get_insns ();
3361 if (insn)
3363 if (NOTE_P (insn))
3364 for (insn = next_insn (insn);
3365 insn && NOTE_P (insn);
3366 insn = next_insn (insn))
3367 continue;
3368 else
3370 if (NONJUMP_INSN_P (insn)
3371 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3372 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3376 return insn;
3379 /* Return the last nonnote insn emitted in current sequence or current
3380 function. This routine looks inside SEQUENCEs. */
3382 rtx_insn *
3383 get_last_nonnote_insn (void)
3385 rtx_insn *insn = get_last_insn ();
3387 if (insn)
3389 if (NOTE_P (insn))
3390 for (insn = previous_insn (insn);
3391 insn && NOTE_P (insn);
3392 insn = previous_insn (insn))
3393 continue;
3394 else
3396 if (NONJUMP_INSN_P (insn))
3397 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3398 insn = seq->insn (seq->len () - 1);
3402 return insn;
3405 /* Return the number of actual (non-debug) insns emitted in this
3406 function. */
3409 get_max_insn_count (void)
3411 int n = cur_insn_uid;
3413 /* The table size must be stable across -g, to avoid codegen
3414 differences due to debug insns, and not be affected by
3415 -fmin-insn-uid, to avoid excessive table size and to simplify
3416 debugging of -fcompare-debug failures. */
3417 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3418 n -= cur_debug_insn_uid;
3419 else
3420 n -= MIN_NONDEBUG_INSN_UID;
3422 return n;
3426 /* Return the next insn. If it is a SEQUENCE, return the first insn
3427 of the sequence. */
3429 rtx_insn *
3430 next_insn (rtx_insn *insn)
3432 if (insn)
3434 insn = NEXT_INSN (insn);
3435 if (insn && NONJUMP_INSN_P (insn)
3436 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3437 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3440 return insn;
3443 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3444 of the sequence. */
3446 rtx_insn *
3447 previous_insn (rtx_insn *insn)
3449 if (insn)
3451 insn = PREV_INSN (insn);
3452 if (insn && NONJUMP_INSN_P (insn))
3453 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3454 insn = seq->insn (seq->len () - 1);
3457 return insn;
3460 /* Return the next insn after INSN that is not a NOTE. This routine does not
3461 look inside SEQUENCEs. */
3463 rtx_insn *
3464 next_nonnote_insn (rtx_insn *insn)
3466 while (insn)
3468 insn = NEXT_INSN (insn);
3469 if (insn == 0 || !NOTE_P (insn))
3470 break;
3473 return insn;
3476 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3477 routine does not look inside SEQUENCEs. */
3479 rtx_insn *
3480 next_nondebug_insn (rtx_insn *insn)
3482 while (insn)
3484 insn = NEXT_INSN (insn);
3485 if (insn == 0 || !DEBUG_INSN_P (insn))
3486 break;
3489 return insn;
3492 /* Return the previous insn before INSN that is not a NOTE. This routine does
3493 not look inside SEQUENCEs. */
3495 rtx_insn *
3496 prev_nonnote_insn (rtx_insn *insn)
3498 while (insn)
3500 insn = PREV_INSN (insn);
3501 if (insn == 0 || !NOTE_P (insn))
3502 break;
3505 return insn;
3508 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3509 This routine does not look inside SEQUENCEs. */
3511 rtx_insn *
3512 prev_nondebug_insn (rtx_insn *insn)
3514 while (insn)
3516 insn = PREV_INSN (insn);
3517 if (insn == 0 || !DEBUG_INSN_P (insn))
3518 break;
3521 return insn;
3524 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3525 This routine does not look inside SEQUENCEs. */
3527 rtx_insn *
3528 next_nonnote_nondebug_insn (rtx_insn *insn)
3530 while (insn)
3532 insn = NEXT_INSN (insn);
3533 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3534 break;
3537 return insn;
3540 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN,
3541 but stop the search before we enter another basic block. This
3542 routine does not look inside SEQUENCEs. */
3544 rtx_insn *
3545 next_nonnote_nondebug_insn_bb (rtx_insn *insn)
3547 while (insn)
3549 insn = NEXT_INSN (insn);
3550 if (insn == 0)
3551 break;
3552 if (DEBUG_INSN_P (insn))
3553 continue;
3554 if (!NOTE_P (insn))
3555 break;
3556 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3557 return NULL;
3560 return insn;
3563 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3564 This routine does not look inside SEQUENCEs. */
3566 rtx_insn *
3567 prev_nonnote_nondebug_insn (rtx_insn *insn)
3569 while (insn)
3571 insn = PREV_INSN (insn);
3572 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3573 break;
3576 return insn;
3579 /* Return the previous insn before INSN that is not a NOTE nor
3580 DEBUG_INSN, but stop the search before we enter another basic
3581 block. This routine does not look inside SEQUENCEs. */
3583 rtx_insn *
3584 prev_nonnote_nondebug_insn_bb (rtx_insn *insn)
3586 while (insn)
3588 insn = PREV_INSN (insn);
3589 if (insn == 0)
3590 break;
3591 if (DEBUG_INSN_P (insn))
3592 continue;
3593 if (!NOTE_P (insn))
3594 break;
3595 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3596 return NULL;
3599 return insn;
3602 /* Return the next INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN after INSN;
3603 or 0, if there is none. This routine does not look inside
3604 SEQUENCEs. */
3606 rtx_insn *
3607 next_real_insn (rtx_insn *insn)
3609 while (insn)
3611 insn = NEXT_INSN (insn);
3612 if (insn == 0 || INSN_P (insn))
3613 break;
3616 return insn;
3619 /* Return the last INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN before INSN;
3620 or 0, if there is none. This routine does not look inside
3621 SEQUENCEs. */
3623 rtx_insn *
3624 prev_real_insn (rtx_insn *insn)
3626 while (insn)
3628 insn = PREV_INSN (insn);
3629 if (insn == 0 || INSN_P (insn))
3630 break;
3633 return insn;
3636 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3637 or 0, if there is none. This routine does not look inside
3638 SEQUENCEs. */
3640 rtx_insn *
3641 next_real_nondebug_insn (rtx uncast_insn)
3643 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3645 while (insn)
3647 insn = NEXT_INSN (insn);
3648 if (insn == 0 || NONDEBUG_INSN_P (insn))
3649 break;
3652 return insn;
3655 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3656 or 0, if there is none. This routine does not look inside
3657 SEQUENCEs. */
3659 rtx_insn *
3660 prev_real_nondebug_insn (rtx_insn *insn)
3662 while (insn)
3664 insn = PREV_INSN (insn);
3665 if (insn == 0 || NONDEBUG_INSN_P (insn))
3666 break;
3669 return insn;
3672 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3673 This routine does not look inside SEQUENCEs. */
3675 rtx_call_insn *
3676 last_call_insn (void)
3678 rtx_insn *insn;
3680 for (insn = get_last_insn ();
3681 insn && !CALL_P (insn);
3682 insn = PREV_INSN (insn))
3685 return safe_as_a <rtx_call_insn *> (insn);
3688 /* Find the next insn after INSN that really does something. This routine
3689 does not look inside SEQUENCEs. After reload this also skips over
3690 standalone USE and CLOBBER insn. */
3693 active_insn_p (const rtx_insn *insn)
3695 return (CALL_P (insn) || JUMP_P (insn)
3696 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3697 || (NONJUMP_INSN_P (insn)
3698 && (! reload_completed
3699 || (GET_CODE (PATTERN (insn)) != USE
3700 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3703 rtx_insn *
3704 next_active_insn (rtx_insn *insn)
3706 while (insn)
3708 insn = NEXT_INSN (insn);
3709 if (insn == 0 || active_insn_p (insn))
3710 break;
3713 return insn;
3716 /* Find the last insn before INSN that really does something. This routine
3717 does not look inside SEQUENCEs. After reload this also skips over
3718 standalone USE and CLOBBER insn. */
3720 rtx_insn *
3721 prev_active_insn (rtx_insn *insn)
3723 while (insn)
3725 insn = PREV_INSN (insn);
3726 if (insn == 0 || active_insn_p (insn))
3727 break;
3730 return insn;
3733 /* Return the next insn that uses CC0 after INSN, which is assumed to
3734 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3735 applied to the result of this function should yield INSN).
3737 Normally, this is simply the next insn. However, if a REG_CC_USER note
3738 is present, it contains the insn that uses CC0.
3740 Return 0 if we can't find the insn. */
3742 rtx_insn *
3743 next_cc0_user (rtx_insn *insn)
3745 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3747 if (note)
3748 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3750 insn = next_nonnote_insn (insn);
3751 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3752 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3754 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3755 return insn;
3757 return 0;
3760 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3761 note, it is the previous insn. */
3763 rtx_insn *
3764 prev_cc0_setter (rtx_insn *insn)
3766 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3768 if (note)
3769 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3771 insn = prev_nonnote_insn (insn);
3772 gcc_assert (sets_cc0_p (PATTERN (insn)));
3774 return insn;
3777 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3779 static int
3780 find_auto_inc (const_rtx x, const_rtx reg)
3782 subrtx_iterator::array_type array;
3783 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3785 const_rtx x = *iter;
3786 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3787 && rtx_equal_p (reg, XEXP (x, 0)))
3788 return true;
3790 return false;
3793 /* Increment the label uses for all labels present in rtx. */
3795 static void
3796 mark_label_nuses (rtx x)
3798 enum rtx_code code;
3799 int i, j;
3800 const char *fmt;
3802 code = GET_CODE (x);
3803 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3804 LABEL_NUSES (label_ref_label (x))++;
3806 fmt = GET_RTX_FORMAT (code);
3807 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3809 if (fmt[i] == 'e')
3810 mark_label_nuses (XEXP (x, i));
3811 else if (fmt[i] == 'E')
3812 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3813 mark_label_nuses (XVECEXP (x, i, j));
3818 /* Try splitting insns that can be split for better scheduling.
3819 PAT is the pattern which might split.
3820 TRIAL is the insn providing PAT.
3821 LAST is nonzero if we should return the last insn of the sequence produced.
3823 If this routine succeeds in splitting, it returns the first or last
3824 replacement insn depending on the value of LAST. Otherwise, it
3825 returns TRIAL. If the insn to be returned can be split, it will be. */
3827 rtx_insn *
3828 try_split (rtx pat, rtx_insn *trial, int last)
3830 rtx_insn *before, *after;
3831 rtx note;
3832 rtx_insn *seq, *tem;
3833 profile_probability probability;
3834 rtx_insn *insn_last, *insn;
3835 int njumps = 0;
3836 rtx_insn *call_insn = NULL;
3838 /* We're not good at redistributing frame information. */
3839 if (RTX_FRAME_RELATED_P (trial))
3840 return trial;
3842 if (any_condjump_p (trial)
3843 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3844 split_branch_probability
3845 = profile_probability::from_reg_br_prob_note (XINT (note, 0));
3846 else
3847 split_branch_probability = profile_probability::uninitialized ();
3849 probability = split_branch_probability;
3851 seq = split_insns (pat, trial);
3853 split_branch_probability = profile_probability::uninitialized ();
3855 if (!seq)
3856 return trial;
3858 /* Avoid infinite loop if any insn of the result matches
3859 the original pattern. */
3860 insn_last = seq;
3861 while (1)
3863 if (INSN_P (insn_last)
3864 && rtx_equal_p (PATTERN (insn_last), pat))
3865 return trial;
3866 if (!NEXT_INSN (insn_last))
3867 break;
3868 insn_last = NEXT_INSN (insn_last);
3871 /* We will be adding the new sequence to the function. The splitters
3872 may have introduced invalid RTL sharing, so unshare the sequence now. */
3873 unshare_all_rtl_in_chain (seq);
3875 /* Mark labels and copy flags. */
3876 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3878 if (JUMP_P (insn))
3880 if (JUMP_P (trial))
3881 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3882 mark_jump_label (PATTERN (insn), insn, 0);
3883 njumps++;
3884 if (probability.initialized_p ()
3885 && any_condjump_p (insn)
3886 && !find_reg_note (insn, REG_BR_PROB, 0))
3888 /* We can preserve the REG_BR_PROB notes only if exactly
3889 one jump is created, otherwise the machine description
3890 is responsible for this step using
3891 split_branch_probability variable. */
3892 gcc_assert (njumps == 1);
3893 add_reg_br_prob_note (insn, probability);
3898 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3899 in SEQ and copy any additional information across. */
3900 if (CALL_P (trial))
3902 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3903 if (CALL_P (insn))
3905 gcc_assert (call_insn == NULL_RTX);
3906 call_insn = insn;
3908 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3909 target may have explicitly specified. */
3910 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3911 while (*p)
3912 p = &XEXP (*p, 1);
3913 *p = CALL_INSN_FUNCTION_USAGE (trial);
3915 /* If the old call was a sibling call, the new one must
3916 be too. */
3917 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3921 /* Copy notes, particularly those related to the CFG. */
3922 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3924 switch (REG_NOTE_KIND (note))
3926 case REG_EH_REGION:
3927 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3928 break;
3930 case REG_NORETURN:
3931 case REG_SETJMP:
3932 case REG_TM:
3933 case REG_CALL_NOCF_CHECK:
3934 case REG_CALL_ARG_LOCATION:
3935 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3937 if (CALL_P (insn))
3938 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3940 break;
3942 case REG_NON_LOCAL_GOTO:
3943 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3945 if (JUMP_P (insn))
3946 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3948 break;
3950 case REG_INC:
3951 if (!AUTO_INC_DEC)
3952 break;
3954 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3956 rtx reg = XEXP (note, 0);
3957 if (!FIND_REG_INC_NOTE (insn, reg)
3958 && find_auto_inc (PATTERN (insn), reg))
3959 add_reg_note (insn, REG_INC, reg);
3961 break;
3963 case REG_ARGS_SIZE:
3964 fixup_args_size_notes (NULL, insn_last, get_args_size (note));
3965 break;
3967 case REG_CALL_DECL:
3968 gcc_assert (call_insn != NULL_RTX);
3969 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3970 break;
3972 default:
3973 break;
3977 /* If there are LABELS inside the split insns increment the
3978 usage count so we don't delete the label. */
3979 if (INSN_P (trial))
3981 insn = insn_last;
3982 while (insn != NULL_RTX)
3984 /* JUMP_P insns have already been "marked" above. */
3985 if (NONJUMP_INSN_P (insn))
3986 mark_label_nuses (PATTERN (insn));
3988 insn = PREV_INSN (insn);
3992 before = PREV_INSN (trial);
3993 after = NEXT_INSN (trial);
3995 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3997 delete_insn (trial);
3999 /* Recursively call try_split for each new insn created; by the
4000 time control returns here that insn will be fully split, so
4001 set LAST and continue from the insn after the one returned.
4002 We can't use next_active_insn here since AFTER may be a note.
4003 Ignore deleted insns, which can be occur if not optimizing. */
4004 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
4005 if (! tem->deleted () && INSN_P (tem))
4006 tem = try_split (PATTERN (tem), tem, 1);
4008 /* Return either the first or the last insn, depending on which was
4009 requested. */
4010 return last
4011 ? (after ? PREV_INSN (after) : get_last_insn ())
4012 : NEXT_INSN (before);
4015 /* Make and return an INSN rtx, initializing all its slots.
4016 Store PATTERN in the pattern slots. */
4018 rtx_insn *
4019 make_insn_raw (rtx pattern)
4021 rtx_insn *insn;
4023 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
4025 INSN_UID (insn) = cur_insn_uid++;
4026 PATTERN (insn) = pattern;
4027 INSN_CODE (insn) = -1;
4028 REG_NOTES (insn) = NULL;
4029 INSN_LOCATION (insn) = curr_insn_location ();
4030 BLOCK_FOR_INSN (insn) = NULL;
4032 #ifdef ENABLE_RTL_CHECKING
4033 if (insn
4034 && INSN_P (insn)
4035 && (returnjump_p (insn)
4036 || (GET_CODE (insn) == SET
4037 && SET_DEST (insn) == pc_rtx)))
4039 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
4040 debug_rtx (insn);
4042 #endif
4044 return insn;
4047 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
4049 static rtx_insn *
4050 make_debug_insn_raw (rtx pattern)
4052 rtx_debug_insn *insn;
4054 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
4055 INSN_UID (insn) = cur_debug_insn_uid++;
4056 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
4057 INSN_UID (insn) = cur_insn_uid++;
4059 PATTERN (insn) = pattern;
4060 INSN_CODE (insn) = -1;
4061 REG_NOTES (insn) = NULL;
4062 INSN_LOCATION (insn) = curr_insn_location ();
4063 BLOCK_FOR_INSN (insn) = NULL;
4065 return insn;
4068 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
4070 static rtx_insn *
4071 make_jump_insn_raw (rtx pattern)
4073 rtx_jump_insn *insn;
4075 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
4076 INSN_UID (insn) = cur_insn_uid++;
4078 PATTERN (insn) = pattern;
4079 INSN_CODE (insn) = -1;
4080 REG_NOTES (insn) = NULL;
4081 JUMP_LABEL (insn) = NULL;
4082 INSN_LOCATION (insn) = curr_insn_location ();
4083 BLOCK_FOR_INSN (insn) = NULL;
4085 return insn;
4088 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
4090 static rtx_insn *
4091 make_call_insn_raw (rtx pattern)
4093 rtx_call_insn *insn;
4095 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
4096 INSN_UID (insn) = cur_insn_uid++;
4098 PATTERN (insn) = pattern;
4099 INSN_CODE (insn) = -1;
4100 REG_NOTES (insn) = NULL;
4101 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
4102 INSN_LOCATION (insn) = curr_insn_location ();
4103 BLOCK_FOR_INSN (insn) = NULL;
4105 return insn;
4108 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
4110 static rtx_note *
4111 make_note_raw (enum insn_note subtype)
4113 /* Some notes are never created this way at all. These notes are
4114 only created by patching out insns. */
4115 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
4116 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
4118 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
4119 INSN_UID (note) = cur_insn_uid++;
4120 NOTE_KIND (note) = subtype;
4121 BLOCK_FOR_INSN (note) = NULL;
4122 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4123 return note;
4126 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
4127 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
4128 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
4130 static inline void
4131 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4133 SET_PREV_INSN (insn) = prev;
4134 SET_NEXT_INSN (insn) = next;
4135 if (prev != NULL)
4137 SET_NEXT_INSN (prev) = insn;
4138 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4140 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4141 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
4144 if (next != NULL)
4146 SET_PREV_INSN (next) = insn;
4147 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4149 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4150 SET_PREV_INSN (sequence->insn (0)) = insn;
4154 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4156 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
4157 SET_PREV_INSN (sequence->insn (0)) = prev;
4158 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4162 /* Add INSN to the end of the doubly-linked list.
4163 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4165 void
4166 add_insn (rtx_insn *insn)
4168 rtx_insn *prev = get_last_insn ();
4169 link_insn_into_chain (insn, prev, NULL);
4170 if (get_insns () == NULL)
4171 set_first_insn (insn);
4172 set_last_insn (insn);
4175 /* Add INSN into the doubly-linked list after insn AFTER. */
4177 static void
4178 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4180 rtx_insn *next = NEXT_INSN (after);
4182 gcc_assert (!optimize || !after->deleted ());
4184 link_insn_into_chain (insn, after, next);
4186 if (next == NULL)
4188 struct sequence_stack *seq;
4190 for (seq = get_current_sequence (); seq; seq = seq->next)
4191 if (after == seq->last)
4193 seq->last = insn;
4194 break;
4199 /* Add INSN into the doubly-linked list before insn BEFORE. */
4201 static void
4202 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4204 rtx_insn *prev = PREV_INSN (before);
4206 gcc_assert (!optimize || !before->deleted ());
4208 link_insn_into_chain (insn, prev, before);
4210 if (prev == NULL)
4212 struct sequence_stack *seq;
4214 for (seq = get_current_sequence (); seq; seq = seq->next)
4215 if (before == seq->first)
4217 seq->first = insn;
4218 break;
4221 gcc_assert (seq);
4225 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4226 If BB is NULL, an attempt is made to infer the bb from before.
4228 This and the next function should be the only functions called
4229 to insert an insn once delay slots have been filled since only
4230 they know how to update a SEQUENCE. */
4232 void
4233 add_insn_after (rtx_insn *insn, rtx_insn *after, basic_block bb)
4235 add_insn_after_nobb (insn, after);
4236 if (!BARRIER_P (after)
4237 && !BARRIER_P (insn)
4238 && (bb = BLOCK_FOR_INSN (after)))
4240 set_block_for_insn (insn, bb);
4241 if (INSN_P (insn))
4242 df_insn_rescan (insn);
4243 /* Should not happen as first in the BB is always
4244 either NOTE or LABEL. */
4245 if (BB_END (bb) == after
4246 /* Avoid clobbering of structure when creating new BB. */
4247 && !BARRIER_P (insn)
4248 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4249 BB_END (bb) = insn;
4253 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4254 If BB is NULL, an attempt is made to infer the bb from before.
4256 This and the previous function should be the only functions called
4257 to insert an insn once delay slots have been filled since only
4258 they know how to update a SEQUENCE. */
4260 void
4261 add_insn_before (rtx_insn *insn, rtx_insn *before, basic_block bb)
4263 add_insn_before_nobb (insn, before);
4265 if (!bb
4266 && !BARRIER_P (before)
4267 && !BARRIER_P (insn))
4268 bb = BLOCK_FOR_INSN (before);
4270 if (bb)
4272 set_block_for_insn (insn, bb);
4273 if (INSN_P (insn))
4274 df_insn_rescan (insn);
4275 /* Should not happen as first in the BB is always either NOTE or
4276 LABEL. */
4277 gcc_assert (BB_HEAD (bb) != insn
4278 /* Avoid clobbering of structure when creating new BB. */
4279 || BARRIER_P (insn)
4280 || NOTE_INSN_BASIC_BLOCK_P (insn));
4284 /* Replace insn with an deleted instruction note. */
4286 void
4287 set_insn_deleted (rtx_insn *insn)
4289 if (INSN_P (insn))
4290 df_insn_delete (insn);
4291 PUT_CODE (insn, NOTE);
4292 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4296 /* Unlink INSN from the insn chain.
4298 This function knows how to handle sequences.
4300 This function does not invalidate data flow information associated with
4301 INSN (i.e. does not call df_insn_delete). That makes this function
4302 usable for only disconnecting an insn from the chain, and re-emit it
4303 elsewhere later.
4305 To later insert INSN elsewhere in the insn chain via add_insn and
4306 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4307 the caller. Nullifying them here breaks many insn chain walks.
4309 To really delete an insn and related DF information, use delete_insn. */
4311 void
4312 remove_insn (rtx_insn *insn)
4314 rtx_insn *next = NEXT_INSN (insn);
4315 rtx_insn *prev = PREV_INSN (insn);
4316 basic_block bb;
4318 if (prev)
4320 SET_NEXT_INSN (prev) = next;
4321 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4323 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4324 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4327 else
4329 struct sequence_stack *seq;
4331 for (seq = get_current_sequence (); seq; seq = seq->next)
4332 if (insn == seq->first)
4334 seq->first = next;
4335 break;
4338 gcc_assert (seq);
4341 if (next)
4343 SET_PREV_INSN (next) = prev;
4344 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4346 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4347 SET_PREV_INSN (sequence->insn (0)) = prev;
4350 else
4352 struct sequence_stack *seq;
4354 for (seq = get_current_sequence (); seq; seq = seq->next)
4355 if (insn == seq->last)
4357 seq->last = prev;
4358 break;
4361 gcc_assert (seq);
4364 /* Fix up basic block boundaries, if necessary. */
4365 if (!BARRIER_P (insn)
4366 && (bb = BLOCK_FOR_INSN (insn)))
4368 if (BB_HEAD (bb) == insn)
4370 /* Never ever delete the basic block note without deleting whole
4371 basic block. */
4372 gcc_assert (!NOTE_P (insn));
4373 BB_HEAD (bb) = next;
4375 if (BB_END (bb) == insn)
4376 BB_END (bb) = prev;
4380 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4382 void
4383 add_function_usage_to (rtx call_insn, rtx call_fusage)
4385 gcc_assert (call_insn && CALL_P (call_insn));
4387 /* Put the register usage information on the CALL. If there is already
4388 some usage information, put ours at the end. */
4389 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4391 rtx link;
4393 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4394 link = XEXP (link, 1))
4397 XEXP (link, 1) = call_fusage;
4399 else
4400 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4403 /* Delete all insns made since FROM.
4404 FROM becomes the new last instruction. */
4406 void
4407 delete_insns_since (rtx_insn *from)
4409 if (from == 0)
4410 set_first_insn (0);
4411 else
4412 SET_NEXT_INSN (from) = 0;
4413 set_last_insn (from);
4416 /* This function is deprecated, please use sequences instead.
4418 Move a consecutive bunch of insns to a different place in the chain.
4419 The insns to be moved are those between FROM and TO.
4420 They are moved to a new position after the insn AFTER.
4421 AFTER must not be FROM or TO or any insn in between.
4423 This function does not know about SEQUENCEs and hence should not be
4424 called after delay-slot filling has been done. */
4426 void
4427 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4429 if (flag_checking)
4431 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4432 gcc_assert (after != x);
4433 gcc_assert (after != to);
4436 /* Splice this bunch out of where it is now. */
4437 if (PREV_INSN (from))
4438 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4439 if (NEXT_INSN (to))
4440 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4441 if (get_last_insn () == to)
4442 set_last_insn (PREV_INSN (from));
4443 if (get_insns () == from)
4444 set_first_insn (NEXT_INSN (to));
4446 /* Make the new neighbors point to it and it to them. */
4447 if (NEXT_INSN (after))
4448 SET_PREV_INSN (NEXT_INSN (after)) = to;
4450 SET_NEXT_INSN (to) = NEXT_INSN (after);
4451 SET_PREV_INSN (from) = after;
4452 SET_NEXT_INSN (after) = from;
4453 if (after == get_last_insn ())
4454 set_last_insn (to);
4457 /* Same as function above, but take care to update BB boundaries. */
4458 void
4459 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4461 rtx_insn *prev = PREV_INSN (from);
4462 basic_block bb, bb2;
4464 reorder_insns_nobb (from, to, after);
4466 if (!BARRIER_P (after)
4467 && (bb = BLOCK_FOR_INSN (after)))
4469 rtx_insn *x;
4470 df_set_bb_dirty (bb);
4472 if (!BARRIER_P (from)
4473 && (bb2 = BLOCK_FOR_INSN (from)))
4475 if (BB_END (bb2) == to)
4476 BB_END (bb2) = prev;
4477 df_set_bb_dirty (bb2);
4480 if (BB_END (bb) == after)
4481 BB_END (bb) = to;
4483 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4484 if (!BARRIER_P (x))
4485 df_insn_change_bb (x, bb);
4490 /* Emit insn(s) of given code and pattern
4491 at a specified place within the doubly-linked list.
4493 All of the emit_foo global entry points accept an object
4494 X which is either an insn list or a PATTERN of a single
4495 instruction.
4497 There are thus a few canonical ways to generate code and
4498 emit it at a specific place in the instruction stream. For
4499 example, consider the instruction named SPOT and the fact that
4500 we would like to emit some instructions before SPOT. We might
4501 do it like this:
4503 start_sequence ();
4504 ... emit the new instructions ...
4505 insns_head = get_insns ();
4506 end_sequence ();
4508 emit_insn_before (insns_head, SPOT);
4510 It used to be common to generate SEQUENCE rtl instead, but that
4511 is a relic of the past which no longer occurs. The reason is that
4512 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4513 generated would almost certainly die right after it was created. */
4515 static rtx_insn *
4516 emit_pattern_before_noloc (rtx x, rtx_insn *before, rtx_insn *last,
4517 basic_block bb,
4518 rtx_insn *(*make_raw) (rtx))
4520 rtx_insn *insn;
4522 gcc_assert (before);
4524 if (x == NULL_RTX)
4525 return last;
4527 switch (GET_CODE (x))
4529 case DEBUG_INSN:
4530 case INSN:
4531 case JUMP_INSN:
4532 case CALL_INSN:
4533 case CODE_LABEL:
4534 case BARRIER:
4535 case NOTE:
4536 insn = as_a <rtx_insn *> (x);
4537 while (insn)
4539 rtx_insn *next = NEXT_INSN (insn);
4540 add_insn_before (insn, before, bb);
4541 last = insn;
4542 insn = next;
4544 break;
4546 #ifdef ENABLE_RTL_CHECKING
4547 case SEQUENCE:
4548 gcc_unreachable ();
4549 break;
4550 #endif
4552 default:
4553 last = (*make_raw) (x);
4554 add_insn_before (last, before, bb);
4555 break;
4558 return last;
4561 /* Make X be output before the instruction BEFORE. */
4563 rtx_insn *
4564 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4566 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4569 /* Make an instruction with body X and code JUMP_INSN
4570 and output it before the instruction BEFORE. */
4572 rtx_jump_insn *
4573 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4575 return as_a <rtx_jump_insn *> (
4576 emit_pattern_before_noloc (x, before, NULL, NULL,
4577 make_jump_insn_raw));
4580 /* Make an instruction with body X and code CALL_INSN
4581 and output it before the instruction BEFORE. */
4583 rtx_insn *
4584 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4586 return emit_pattern_before_noloc (x, before, NULL, NULL,
4587 make_call_insn_raw);
4590 /* Make an instruction with body X and code DEBUG_INSN
4591 and output it before the instruction BEFORE. */
4593 rtx_insn *
4594 emit_debug_insn_before_noloc (rtx x, rtx_insn *before)
4596 return emit_pattern_before_noloc (x, before, NULL, NULL,
4597 make_debug_insn_raw);
4600 /* Make an insn of code BARRIER
4601 and output it before the insn BEFORE. */
4603 rtx_barrier *
4604 emit_barrier_before (rtx_insn *before)
4606 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4608 INSN_UID (insn) = cur_insn_uid++;
4610 add_insn_before (insn, before, NULL);
4611 return insn;
4614 /* Emit the label LABEL before the insn BEFORE. */
4616 rtx_code_label *
4617 emit_label_before (rtx_code_label *label, rtx_insn *before)
4619 gcc_checking_assert (INSN_UID (label) == 0);
4620 INSN_UID (label) = cur_insn_uid++;
4621 add_insn_before (label, before, NULL);
4622 return label;
4625 /* Helper for emit_insn_after, handles lists of instructions
4626 efficiently. */
4628 static rtx_insn *
4629 emit_insn_after_1 (rtx_insn *first, rtx_insn *after, basic_block bb)
4631 rtx_insn *last;
4632 rtx_insn *after_after;
4633 if (!bb && !BARRIER_P (after))
4634 bb = BLOCK_FOR_INSN (after);
4636 if (bb)
4638 df_set_bb_dirty (bb);
4639 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4640 if (!BARRIER_P (last))
4642 set_block_for_insn (last, bb);
4643 df_insn_rescan (last);
4645 if (!BARRIER_P (last))
4647 set_block_for_insn (last, bb);
4648 df_insn_rescan (last);
4650 if (BB_END (bb) == after)
4651 BB_END (bb) = last;
4653 else
4654 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4655 continue;
4657 after_after = NEXT_INSN (after);
4659 SET_NEXT_INSN (after) = first;
4660 SET_PREV_INSN (first) = after;
4661 SET_NEXT_INSN (last) = after_after;
4662 if (after_after)
4663 SET_PREV_INSN (after_after) = last;
4665 if (after == get_last_insn ())
4666 set_last_insn (last);
4668 return last;
4671 static rtx_insn *
4672 emit_pattern_after_noloc (rtx x, rtx_insn *after, basic_block bb,
4673 rtx_insn *(*make_raw)(rtx))
4675 rtx_insn *last = after;
4677 gcc_assert (after);
4679 if (x == NULL_RTX)
4680 return last;
4682 switch (GET_CODE (x))
4684 case DEBUG_INSN:
4685 case INSN:
4686 case JUMP_INSN:
4687 case CALL_INSN:
4688 case CODE_LABEL:
4689 case BARRIER:
4690 case NOTE:
4691 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4692 break;
4694 #ifdef ENABLE_RTL_CHECKING
4695 case SEQUENCE:
4696 gcc_unreachable ();
4697 break;
4698 #endif
4700 default:
4701 last = (*make_raw) (x);
4702 add_insn_after (last, after, bb);
4703 break;
4706 return last;
4709 /* Make X be output after the insn AFTER and set the BB of insn. If
4710 BB is NULL, an attempt is made to infer the BB from AFTER. */
4712 rtx_insn *
4713 emit_insn_after_noloc (rtx x, rtx_insn *after, basic_block bb)
4715 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4719 /* Make an insn of code JUMP_INSN with body X
4720 and output it after the insn AFTER. */
4722 rtx_jump_insn *
4723 emit_jump_insn_after_noloc (rtx x, rtx_insn *after)
4725 return as_a <rtx_jump_insn *> (
4726 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4729 /* Make an instruction with body X and code CALL_INSN
4730 and output it after the instruction AFTER. */
4732 rtx_insn *
4733 emit_call_insn_after_noloc (rtx x, rtx_insn *after)
4735 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4738 /* Make an instruction with body X and code CALL_INSN
4739 and output it after the instruction AFTER. */
4741 rtx_insn *
4742 emit_debug_insn_after_noloc (rtx x, rtx_insn *after)
4744 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4747 /* Make an insn of code BARRIER
4748 and output it after the insn AFTER. */
4750 rtx_barrier *
4751 emit_barrier_after (rtx_insn *after)
4753 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4755 INSN_UID (insn) = cur_insn_uid++;
4757 add_insn_after (insn, after, NULL);
4758 return insn;
4761 /* Emit the label LABEL after the insn AFTER. */
4763 rtx_insn *
4764 emit_label_after (rtx_insn *label, rtx_insn *after)
4766 gcc_checking_assert (INSN_UID (label) == 0);
4767 INSN_UID (label) = cur_insn_uid++;
4768 add_insn_after (label, after, NULL);
4769 return label;
4772 /* Notes require a bit of special handling: Some notes need to have their
4773 BLOCK_FOR_INSN set, others should never have it set, and some should
4774 have it set or clear depending on the context. */
4776 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4777 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4778 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4780 static bool
4781 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4783 switch (subtype)
4785 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4786 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4787 return true;
4789 /* Notes for var tracking and EH region markers can appear between or
4790 inside basic blocks. If the caller is emitting on the basic block
4791 boundary, do not set BLOCK_FOR_INSN on the new note. */
4792 case NOTE_INSN_VAR_LOCATION:
4793 case NOTE_INSN_EH_REGION_BEG:
4794 case NOTE_INSN_EH_REGION_END:
4795 return on_bb_boundary_p;
4797 /* Otherwise, BLOCK_FOR_INSN must be set. */
4798 default:
4799 return false;
4803 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4805 rtx_note *
4806 emit_note_after (enum insn_note subtype, rtx_insn *after)
4808 rtx_note *note = make_note_raw (subtype);
4809 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4810 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4812 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4813 add_insn_after_nobb (note, after);
4814 else
4815 add_insn_after (note, after, bb);
4816 return note;
4819 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4821 rtx_note *
4822 emit_note_before (enum insn_note subtype, rtx_insn *before)
4824 rtx_note *note = make_note_raw (subtype);
4825 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4826 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4828 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4829 add_insn_before_nobb (note, before);
4830 else
4831 add_insn_before (note, before, bb);
4832 return note;
4835 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4836 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4838 static rtx_insn *
4839 emit_pattern_after_setloc (rtx pattern, rtx_insn *after, location_t loc,
4840 rtx_insn *(*make_raw) (rtx))
4842 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4844 if (pattern == NULL_RTX || !loc)
4845 return last;
4847 after = NEXT_INSN (after);
4848 while (1)
4850 if (active_insn_p (after)
4851 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4852 && !INSN_LOCATION (after))
4853 INSN_LOCATION (after) = loc;
4854 if (after == last)
4855 break;
4856 after = NEXT_INSN (after);
4858 return last;
4861 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4862 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4863 any DEBUG_INSNs. */
4865 static rtx_insn *
4866 emit_pattern_after (rtx pattern, rtx_insn *after, bool skip_debug_insns,
4867 rtx_insn *(*make_raw) (rtx))
4869 rtx_insn *prev = after;
4871 if (skip_debug_insns)
4872 while (DEBUG_INSN_P (prev))
4873 prev = PREV_INSN (prev);
4875 if (INSN_P (prev))
4876 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4877 make_raw);
4878 else
4879 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4882 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4883 rtx_insn *
4884 emit_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4886 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4889 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4890 rtx_insn *
4891 emit_insn_after (rtx pattern, rtx_insn *after)
4893 return emit_pattern_after (pattern, after, true, make_insn_raw);
4896 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4897 rtx_jump_insn *
4898 emit_jump_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4900 return as_a <rtx_jump_insn *> (
4901 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4904 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4905 rtx_jump_insn *
4906 emit_jump_insn_after (rtx pattern, rtx_insn *after)
4908 return as_a <rtx_jump_insn *> (
4909 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4912 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4913 rtx_insn *
4914 emit_call_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4916 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4919 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4920 rtx_insn *
4921 emit_call_insn_after (rtx pattern, rtx_insn *after)
4923 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4926 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4927 rtx_insn *
4928 emit_debug_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4930 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4933 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4934 rtx_insn *
4935 emit_debug_insn_after (rtx pattern, rtx_insn *after)
4937 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4940 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4941 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4942 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4943 CALL_INSN, etc. */
4945 static rtx_insn *
4946 emit_pattern_before_setloc (rtx pattern, rtx_insn *before, location_t loc,
4947 bool insnp, rtx_insn *(*make_raw) (rtx))
4949 rtx_insn *first = PREV_INSN (before);
4950 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4951 insnp ? before : NULL,
4952 NULL, make_raw);
4954 if (pattern == NULL_RTX || !loc)
4955 return last;
4957 if (!first)
4958 first = get_insns ();
4959 else
4960 first = NEXT_INSN (first);
4961 while (1)
4963 if (active_insn_p (first)
4964 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4965 && !INSN_LOCATION (first))
4966 INSN_LOCATION (first) = loc;
4967 if (first == last)
4968 break;
4969 first = NEXT_INSN (first);
4971 return last;
4974 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4975 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4976 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4977 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4979 static rtx_insn *
4980 emit_pattern_before (rtx pattern, rtx_insn *before, bool skip_debug_insns,
4981 bool insnp, rtx_insn *(*make_raw) (rtx))
4983 rtx_insn *next = before;
4985 if (skip_debug_insns)
4986 while (DEBUG_INSN_P (next))
4987 next = PREV_INSN (next);
4989 if (INSN_P (next))
4990 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4991 insnp, make_raw);
4992 else
4993 return emit_pattern_before_noloc (pattern, before,
4994 insnp ? before : NULL,
4995 NULL, make_raw);
4998 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4999 rtx_insn *
5000 emit_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
5002 return emit_pattern_before_setloc (pattern, before, loc, true,
5003 make_insn_raw);
5006 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
5007 rtx_insn *
5008 emit_insn_before (rtx pattern, rtx_insn *before)
5010 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
5013 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5014 rtx_jump_insn *
5015 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
5017 return as_a <rtx_jump_insn *> (
5018 emit_pattern_before_setloc (pattern, before, loc, false,
5019 make_jump_insn_raw));
5022 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
5023 rtx_jump_insn *
5024 emit_jump_insn_before (rtx pattern, rtx_insn *before)
5026 return as_a <rtx_jump_insn *> (
5027 emit_pattern_before (pattern, before, true, false,
5028 make_jump_insn_raw));
5031 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5032 rtx_insn *
5033 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
5035 return emit_pattern_before_setloc (pattern, before, loc, false,
5036 make_call_insn_raw);
5039 /* Like emit_call_insn_before_noloc,
5040 but set insn_location according to BEFORE. */
5041 rtx_insn *
5042 emit_call_insn_before (rtx pattern, rtx_insn *before)
5044 return emit_pattern_before (pattern, before, true, false,
5045 make_call_insn_raw);
5048 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5049 rtx_insn *
5050 emit_debug_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
5052 return emit_pattern_before_setloc (pattern, before, loc, false,
5053 make_debug_insn_raw);
5056 /* Like emit_debug_insn_before_noloc,
5057 but set insn_location according to BEFORE. */
5058 rtx_insn *
5059 emit_debug_insn_before (rtx pattern, rtx_insn *before)
5061 return emit_pattern_before (pattern, before, false, false,
5062 make_debug_insn_raw);
5065 /* Take X and emit it at the end of the doubly-linked
5066 INSN list.
5068 Returns the last insn emitted. */
5070 rtx_insn *
5071 emit_insn (rtx x)
5073 rtx_insn *last = get_last_insn ();
5074 rtx_insn *insn;
5076 if (x == NULL_RTX)
5077 return last;
5079 switch (GET_CODE (x))
5081 case DEBUG_INSN:
5082 case INSN:
5083 case JUMP_INSN:
5084 case CALL_INSN:
5085 case CODE_LABEL:
5086 case BARRIER:
5087 case NOTE:
5088 insn = as_a <rtx_insn *> (x);
5089 while (insn)
5091 rtx_insn *next = NEXT_INSN (insn);
5092 add_insn (insn);
5093 last = insn;
5094 insn = next;
5096 break;
5098 #ifdef ENABLE_RTL_CHECKING
5099 case JUMP_TABLE_DATA:
5100 case SEQUENCE:
5101 gcc_unreachable ();
5102 break;
5103 #endif
5105 default:
5106 last = make_insn_raw (x);
5107 add_insn (last);
5108 break;
5111 return last;
5114 /* Make an insn of code DEBUG_INSN with pattern X
5115 and add it to the end of the doubly-linked list. */
5117 rtx_insn *
5118 emit_debug_insn (rtx x)
5120 rtx_insn *last = get_last_insn ();
5121 rtx_insn *insn;
5123 if (x == NULL_RTX)
5124 return last;
5126 switch (GET_CODE (x))
5128 case DEBUG_INSN:
5129 case INSN:
5130 case JUMP_INSN:
5131 case CALL_INSN:
5132 case CODE_LABEL:
5133 case BARRIER:
5134 case NOTE:
5135 insn = as_a <rtx_insn *> (x);
5136 while (insn)
5138 rtx_insn *next = NEXT_INSN (insn);
5139 add_insn (insn);
5140 last = insn;
5141 insn = next;
5143 break;
5145 #ifdef ENABLE_RTL_CHECKING
5146 case JUMP_TABLE_DATA:
5147 case SEQUENCE:
5148 gcc_unreachable ();
5149 break;
5150 #endif
5152 default:
5153 last = make_debug_insn_raw (x);
5154 add_insn (last);
5155 break;
5158 return last;
5161 /* Make an insn of code JUMP_INSN with pattern X
5162 and add it to the end of the doubly-linked list. */
5164 rtx_insn *
5165 emit_jump_insn (rtx x)
5167 rtx_insn *last = NULL;
5168 rtx_insn *insn;
5170 switch (GET_CODE (x))
5172 case DEBUG_INSN:
5173 case INSN:
5174 case JUMP_INSN:
5175 case CALL_INSN:
5176 case CODE_LABEL:
5177 case BARRIER:
5178 case NOTE:
5179 insn = as_a <rtx_insn *> (x);
5180 while (insn)
5182 rtx_insn *next = NEXT_INSN (insn);
5183 add_insn (insn);
5184 last = insn;
5185 insn = next;
5187 break;
5189 #ifdef ENABLE_RTL_CHECKING
5190 case JUMP_TABLE_DATA:
5191 case SEQUENCE:
5192 gcc_unreachable ();
5193 break;
5194 #endif
5196 default:
5197 last = make_jump_insn_raw (x);
5198 add_insn (last);
5199 break;
5202 return last;
5205 /* Make an insn of code CALL_INSN with pattern X
5206 and add it to the end of the doubly-linked list. */
5208 rtx_insn *
5209 emit_call_insn (rtx x)
5211 rtx_insn *insn;
5213 switch (GET_CODE (x))
5215 case DEBUG_INSN:
5216 case INSN:
5217 case JUMP_INSN:
5218 case CALL_INSN:
5219 case CODE_LABEL:
5220 case BARRIER:
5221 case NOTE:
5222 insn = emit_insn (x);
5223 break;
5225 #ifdef ENABLE_RTL_CHECKING
5226 case SEQUENCE:
5227 case JUMP_TABLE_DATA:
5228 gcc_unreachable ();
5229 break;
5230 #endif
5232 default:
5233 insn = make_call_insn_raw (x);
5234 add_insn (insn);
5235 break;
5238 return insn;
5241 /* Add the label LABEL to the end of the doubly-linked list. */
5243 rtx_code_label *
5244 emit_label (rtx uncast_label)
5246 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5248 gcc_checking_assert (INSN_UID (label) == 0);
5249 INSN_UID (label) = cur_insn_uid++;
5250 add_insn (label);
5251 return label;
5254 /* Make an insn of code JUMP_TABLE_DATA
5255 and add it to the end of the doubly-linked list. */
5257 rtx_jump_table_data *
5258 emit_jump_table_data (rtx table)
5260 rtx_jump_table_data *jump_table_data =
5261 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5262 INSN_UID (jump_table_data) = cur_insn_uid++;
5263 PATTERN (jump_table_data) = table;
5264 BLOCK_FOR_INSN (jump_table_data) = NULL;
5265 add_insn (jump_table_data);
5266 return jump_table_data;
5269 /* Make an insn of code BARRIER
5270 and add it to the end of the doubly-linked list. */
5272 rtx_barrier *
5273 emit_barrier (void)
5275 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5276 INSN_UID (barrier) = cur_insn_uid++;
5277 add_insn (barrier);
5278 return barrier;
5281 /* Emit a copy of note ORIG. */
5283 rtx_note *
5284 emit_note_copy (rtx_note *orig)
5286 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5287 rtx_note *note = make_note_raw (kind);
5288 NOTE_DATA (note) = NOTE_DATA (orig);
5289 add_insn (note);
5290 return note;
5293 /* Make an insn of code NOTE or type NOTE_NO
5294 and add it to the end of the doubly-linked list. */
5296 rtx_note *
5297 emit_note (enum insn_note kind)
5299 rtx_note *note = make_note_raw (kind);
5300 add_insn (note);
5301 return note;
5304 /* Emit a clobber of lvalue X. */
5306 rtx_insn *
5307 emit_clobber (rtx x)
5309 /* CONCATs should not appear in the insn stream. */
5310 if (GET_CODE (x) == CONCAT)
5312 emit_clobber (XEXP (x, 0));
5313 return emit_clobber (XEXP (x, 1));
5315 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5318 /* Return a sequence of insns to clobber lvalue X. */
5320 rtx_insn *
5321 gen_clobber (rtx x)
5323 rtx_insn *seq;
5325 start_sequence ();
5326 emit_clobber (x);
5327 seq = get_insns ();
5328 end_sequence ();
5329 return seq;
5332 /* Emit a use of rvalue X. */
5334 rtx_insn *
5335 emit_use (rtx x)
5337 /* CONCATs should not appear in the insn stream. */
5338 if (GET_CODE (x) == CONCAT)
5340 emit_use (XEXP (x, 0));
5341 return emit_use (XEXP (x, 1));
5343 return emit_insn (gen_rtx_USE (VOIDmode, x));
5346 /* Return a sequence of insns to use rvalue X. */
5348 rtx_insn *
5349 gen_use (rtx x)
5351 rtx_insn *seq;
5353 start_sequence ();
5354 emit_use (x);
5355 seq = get_insns ();
5356 end_sequence ();
5357 return seq;
5360 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5361 Return the set in INSN that such notes describe, or NULL if the notes
5362 have no meaning for INSN. */
5365 set_for_reg_notes (rtx insn)
5367 rtx pat, reg;
5369 if (!INSN_P (insn))
5370 return NULL_RTX;
5372 pat = PATTERN (insn);
5373 if (GET_CODE (pat) == PARALLEL)
5375 /* We do not use single_set because that ignores SETs of unused
5376 registers. REG_EQUAL and REG_EQUIV notes really do require the
5377 PARALLEL to have a single SET. */
5378 if (multiple_sets (insn))
5379 return NULL_RTX;
5380 pat = XVECEXP (pat, 0, 0);
5383 if (GET_CODE (pat) != SET)
5384 return NULL_RTX;
5386 reg = SET_DEST (pat);
5388 /* Notes apply to the contents of a STRICT_LOW_PART. */
5389 if (GET_CODE (reg) == STRICT_LOW_PART
5390 || GET_CODE (reg) == ZERO_EXTRACT)
5391 reg = XEXP (reg, 0);
5393 /* Check that we have a register. */
5394 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5395 return NULL_RTX;
5397 return pat;
5400 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5401 note of this type already exists, remove it first. */
5404 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5406 rtx note = find_reg_note (insn, kind, NULL_RTX);
5408 switch (kind)
5410 case REG_EQUAL:
5411 case REG_EQUIV:
5412 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5413 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
5414 return NULL_RTX;
5416 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5417 It serves no useful purpose and breaks eliminate_regs. */
5418 if (GET_CODE (datum) == ASM_OPERANDS)
5419 return NULL_RTX;
5421 /* Notes with side effects are dangerous. Even if the side-effect
5422 initially mirrors one in PATTERN (INSN), later optimizations
5423 might alter the way that the final register value is calculated
5424 and so move or alter the side-effect in some way. The note would
5425 then no longer be a valid substitution for SET_SRC. */
5426 if (side_effects_p (datum))
5427 return NULL_RTX;
5428 break;
5430 default:
5431 break;
5434 if (note)
5435 XEXP (note, 0) = datum;
5436 else
5438 add_reg_note (insn, kind, datum);
5439 note = REG_NOTES (insn);
5442 switch (kind)
5444 case REG_EQUAL:
5445 case REG_EQUIV:
5446 df_notes_rescan (as_a <rtx_insn *> (insn));
5447 break;
5448 default:
5449 break;
5452 return note;
5455 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5457 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5459 rtx set = set_for_reg_notes (insn);
5461 if (set && SET_DEST (set) == dst)
5462 return set_unique_reg_note (insn, kind, datum);
5463 return NULL_RTX;
5466 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5467 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5468 is true.
5470 If X is a label, it is simply added into the insn chain. */
5472 rtx_insn *
5473 emit (rtx x, bool allow_barrier_p)
5475 enum rtx_code code = classify_insn (x);
5477 switch (code)
5479 case CODE_LABEL:
5480 return emit_label (x);
5481 case INSN:
5482 return emit_insn (x);
5483 case JUMP_INSN:
5485 rtx_insn *insn = emit_jump_insn (x);
5486 if (allow_barrier_p
5487 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5488 return emit_barrier ();
5489 return insn;
5491 case CALL_INSN:
5492 return emit_call_insn (x);
5493 case DEBUG_INSN:
5494 return emit_debug_insn (x);
5495 default:
5496 gcc_unreachable ();
5500 /* Space for free sequence stack entries. */
5501 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5503 /* Begin emitting insns to a sequence. If this sequence will contain
5504 something that might cause the compiler to pop arguments to function
5505 calls (because those pops have previously been deferred; see
5506 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5507 before calling this function. That will ensure that the deferred
5508 pops are not accidentally emitted in the middle of this sequence. */
5510 void
5511 start_sequence (void)
5513 struct sequence_stack *tem;
5515 if (free_sequence_stack != NULL)
5517 tem = free_sequence_stack;
5518 free_sequence_stack = tem->next;
5520 else
5521 tem = ggc_alloc<sequence_stack> ();
5523 tem->next = get_current_sequence ()->next;
5524 tem->first = get_insns ();
5525 tem->last = get_last_insn ();
5526 get_current_sequence ()->next = tem;
5528 set_first_insn (0);
5529 set_last_insn (0);
5532 /* Set up the insn chain starting with FIRST as the current sequence,
5533 saving the previously current one. See the documentation for
5534 start_sequence for more information about how to use this function. */
5536 void
5537 push_to_sequence (rtx_insn *first)
5539 rtx_insn *last;
5541 start_sequence ();
5543 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5546 set_first_insn (first);
5547 set_last_insn (last);
5550 /* Like push_to_sequence, but take the last insn as an argument to avoid
5551 looping through the list. */
5553 void
5554 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5556 start_sequence ();
5558 set_first_insn (first);
5559 set_last_insn (last);
5562 /* Set up the outer-level insn chain
5563 as the current sequence, saving the previously current one. */
5565 void
5566 push_topmost_sequence (void)
5568 struct sequence_stack *top;
5570 start_sequence ();
5572 top = get_topmost_sequence ();
5573 set_first_insn (top->first);
5574 set_last_insn (top->last);
5577 /* After emitting to the outer-level insn chain, update the outer-level
5578 insn chain, and restore the previous saved state. */
5580 void
5581 pop_topmost_sequence (void)
5583 struct sequence_stack *top;
5585 top = get_topmost_sequence ();
5586 top->first = get_insns ();
5587 top->last = get_last_insn ();
5589 end_sequence ();
5592 /* After emitting to a sequence, restore previous saved state.
5594 To get the contents of the sequence just made, you must call
5595 `get_insns' *before* calling here.
5597 If the compiler might have deferred popping arguments while
5598 generating this sequence, and this sequence will not be immediately
5599 inserted into the instruction stream, use do_pending_stack_adjust
5600 before calling get_insns. That will ensure that the deferred
5601 pops are inserted into this sequence, and not into some random
5602 location in the instruction stream. See INHIBIT_DEFER_POP for more
5603 information about deferred popping of arguments. */
5605 void
5606 end_sequence (void)
5608 struct sequence_stack *tem = get_current_sequence ()->next;
5610 set_first_insn (tem->first);
5611 set_last_insn (tem->last);
5612 get_current_sequence ()->next = tem->next;
5614 memset (tem, 0, sizeof (*tem));
5615 tem->next = free_sequence_stack;
5616 free_sequence_stack = tem;
5619 /* Return 1 if currently emitting into a sequence. */
5622 in_sequence_p (void)
5624 return get_current_sequence ()->next != 0;
5627 /* Put the various virtual registers into REGNO_REG_RTX. */
5629 static void
5630 init_virtual_regs (void)
5632 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5633 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5634 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5635 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5636 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5637 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5638 = virtual_preferred_stack_boundary_rtx;
5642 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5643 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5644 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5645 static int copy_insn_n_scratches;
5647 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5648 copied an ASM_OPERANDS.
5649 In that case, it is the original input-operand vector. */
5650 static rtvec orig_asm_operands_vector;
5652 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5653 copied an ASM_OPERANDS.
5654 In that case, it is the copied input-operand vector. */
5655 static rtvec copy_asm_operands_vector;
5657 /* Likewise for the constraints vector. */
5658 static rtvec orig_asm_constraints_vector;
5659 static rtvec copy_asm_constraints_vector;
5661 /* Recursively create a new copy of an rtx for copy_insn.
5662 This function differs from copy_rtx in that it handles SCRATCHes and
5663 ASM_OPERANDs properly.
5664 Normally, this function is not used directly; use copy_insn as front end.
5665 However, you could first copy an insn pattern with copy_insn and then use
5666 this function afterwards to properly copy any REG_NOTEs containing
5667 SCRATCHes. */
5670 copy_insn_1 (rtx orig)
5672 rtx copy;
5673 int i, j;
5674 RTX_CODE code;
5675 const char *format_ptr;
5677 if (orig == NULL)
5678 return NULL;
5680 code = GET_CODE (orig);
5682 switch (code)
5684 case REG:
5685 case DEBUG_EXPR:
5686 CASE_CONST_ANY:
5687 case SYMBOL_REF:
5688 case CODE_LABEL:
5689 case PC:
5690 case CC0:
5691 case RETURN:
5692 case SIMPLE_RETURN:
5693 return orig;
5694 case CLOBBER:
5695 case CLOBBER_HIGH:
5696 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5697 clobbers or clobbers of hard registers that originated as pseudos.
5698 This is needed to allow safe register renaming. */
5699 if (REG_P (XEXP (orig, 0))
5700 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5701 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
5702 return orig;
5703 break;
5705 case SCRATCH:
5706 for (i = 0; i < copy_insn_n_scratches; i++)
5707 if (copy_insn_scratch_in[i] == orig)
5708 return copy_insn_scratch_out[i];
5709 break;
5711 case CONST:
5712 if (shared_const_p (orig))
5713 return orig;
5714 break;
5716 /* A MEM with a constant address is not sharable. The problem is that
5717 the constant address may need to be reloaded. If the mem is shared,
5718 then reloading one copy of this mem will cause all copies to appear
5719 to have been reloaded. */
5721 default:
5722 break;
5725 /* Copy the various flags, fields, and other information. We assume
5726 that all fields need copying, and then clear the fields that should
5727 not be copied. That is the sensible default behavior, and forces
5728 us to explicitly document why we are *not* copying a flag. */
5729 copy = shallow_copy_rtx (orig);
5731 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5732 if (INSN_P (orig))
5734 RTX_FLAG (copy, jump) = 0;
5735 RTX_FLAG (copy, call) = 0;
5736 RTX_FLAG (copy, frame_related) = 0;
5739 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5741 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5742 switch (*format_ptr++)
5744 case 'e':
5745 if (XEXP (orig, i) != NULL)
5746 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5747 break;
5749 case 'E':
5750 case 'V':
5751 if (XVEC (orig, i) == orig_asm_constraints_vector)
5752 XVEC (copy, i) = copy_asm_constraints_vector;
5753 else if (XVEC (orig, i) == orig_asm_operands_vector)
5754 XVEC (copy, i) = copy_asm_operands_vector;
5755 else if (XVEC (orig, i) != NULL)
5757 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5758 for (j = 0; j < XVECLEN (copy, i); j++)
5759 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5761 break;
5763 case 't':
5764 case 'w':
5765 case 'i':
5766 case 'p':
5767 case 's':
5768 case 'S':
5769 case 'u':
5770 case '0':
5771 /* These are left unchanged. */
5772 break;
5774 default:
5775 gcc_unreachable ();
5778 if (code == SCRATCH)
5780 i = copy_insn_n_scratches++;
5781 gcc_assert (i < MAX_RECOG_OPERANDS);
5782 copy_insn_scratch_in[i] = orig;
5783 copy_insn_scratch_out[i] = copy;
5785 else if (code == ASM_OPERANDS)
5787 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5788 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5789 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5790 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5793 return copy;
5796 /* Create a new copy of an rtx.
5797 This function differs from copy_rtx in that it handles SCRATCHes and
5798 ASM_OPERANDs properly.
5799 INSN doesn't really have to be a full INSN; it could be just the
5800 pattern. */
5802 copy_insn (rtx insn)
5804 copy_insn_n_scratches = 0;
5805 orig_asm_operands_vector = 0;
5806 orig_asm_constraints_vector = 0;
5807 copy_asm_operands_vector = 0;
5808 copy_asm_constraints_vector = 0;
5809 return copy_insn_1 (insn);
5812 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5813 on that assumption that INSN itself remains in its original place. */
5815 rtx_insn *
5816 copy_delay_slot_insn (rtx_insn *insn)
5818 /* Copy INSN with its rtx_code, all its notes, location etc. */
5819 insn = as_a <rtx_insn *> (copy_rtx (insn));
5820 INSN_UID (insn) = cur_insn_uid++;
5821 return insn;
5824 /* Initialize data structures and variables in this file
5825 before generating rtl for each function. */
5827 void
5828 init_emit (void)
5830 set_first_insn (NULL);
5831 set_last_insn (NULL);
5832 if (MIN_NONDEBUG_INSN_UID)
5833 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5834 else
5835 cur_insn_uid = 1;
5836 cur_debug_insn_uid = 1;
5837 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5838 first_label_num = label_num;
5839 get_current_sequence ()->next = NULL;
5841 /* Init the tables that describe all the pseudo regs. */
5843 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5845 crtl->emit.regno_pointer_align
5846 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5848 regno_reg_rtx
5849 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5851 /* Put copies of all the hard registers into regno_reg_rtx. */
5852 memcpy (regno_reg_rtx,
5853 initial_regno_reg_rtx,
5854 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5856 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5857 init_virtual_regs ();
5859 /* Indicate that the virtual registers and stack locations are
5860 all pointers. */
5861 REG_POINTER (stack_pointer_rtx) = 1;
5862 REG_POINTER (frame_pointer_rtx) = 1;
5863 REG_POINTER (hard_frame_pointer_rtx) = 1;
5864 REG_POINTER (arg_pointer_rtx) = 1;
5866 REG_POINTER (virtual_incoming_args_rtx) = 1;
5867 REG_POINTER (virtual_stack_vars_rtx) = 1;
5868 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5869 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5870 REG_POINTER (virtual_cfa_rtx) = 1;
5872 #ifdef STACK_BOUNDARY
5873 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5874 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5875 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5876 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5878 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5879 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5880 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5881 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5883 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5884 #endif
5886 #ifdef INIT_EXPANDERS
5887 INIT_EXPANDERS;
5888 #endif
5891 /* Return the value of element I of CONST_VECTOR X as a wide_int. */
5893 wide_int
5894 const_vector_int_elt (const_rtx x, unsigned int i)
5896 /* First handle elements that are directly encoded. */
5897 machine_mode elt_mode = GET_MODE_INNER (GET_MODE (x));
5898 if (i < (unsigned int) XVECLEN (x, 0))
5899 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, i), elt_mode);
5901 /* Identify the pattern that contains element I and work out the index of
5902 the last encoded element for that pattern. */
5903 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5904 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5905 unsigned int count = i / npatterns;
5906 unsigned int pattern = i % npatterns;
5907 unsigned int final_i = encoded_nelts - npatterns + pattern;
5909 /* If there are no steps, the final encoded value is the right one. */
5910 if (!CONST_VECTOR_STEPPED_P (x))
5911 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, final_i), elt_mode);
5913 /* Otherwise work out the value from the last two encoded elements. */
5914 rtx v1 = CONST_VECTOR_ENCODED_ELT (x, final_i - npatterns);
5915 rtx v2 = CONST_VECTOR_ENCODED_ELT (x, final_i);
5916 wide_int diff = wi::sub (rtx_mode_t (v2, elt_mode),
5917 rtx_mode_t (v1, elt_mode));
5918 return wi::add (rtx_mode_t (v2, elt_mode), (count - 2) * diff);
5921 /* Return the value of element I of CONST_VECTOR X. */
5924 const_vector_elt (const_rtx x, unsigned int i)
5926 /* First handle elements that are directly encoded. */
5927 if (i < (unsigned int) XVECLEN (x, 0))
5928 return CONST_VECTOR_ENCODED_ELT (x, i);
5930 /* If there are no steps, the final encoded value is the right one. */
5931 if (!CONST_VECTOR_STEPPED_P (x))
5933 /* Identify the pattern that contains element I and work out the index of
5934 the last encoded element for that pattern. */
5935 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5936 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5937 unsigned int pattern = i % npatterns;
5938 unsigned int final_i = encoded_nelts - npatterns + pattern;
5939 return CONST_VECTOR_ENCODED_ELT (x, final_i);
5942 /* Otherwise work out the value from the last two encoded elements. */
5943 return immed_wide_int_const (const_vector_int_elt (x, i),
5944 GET_MODE_INNER (GET_MODE (x)));
5947 /* Return true if X is a valid element for a CONST_VECTOR of the given
5948 mode. */
5950 bool
5951 valid_for_const_vector_p (machine_mode, rtx x)
5953 return (CONST_SCALAR_INT_P (x)
5954 || CONST_DOUBLE_AS_FLOAT_P (x)
5955 || CONST_FIXED_P (x));
5958 /* Generate a vector constant of mode MODE in which every element has
5959 value ELT. */
5962 gen_const_vec_duplicate (machine_mode mode, rtx elt)
5964 rtx_vector_builder builder (mode, 1, 1);
5965 builder.quick_push (elt);
5966 return builder.build ();
5969 /* Return a vector rtx of mode MODE in which every element has value X.
5970 The result will be a constant if X is constant. */
5973 gen_vec_duplicate (machine_mode mode, rtx x)
5975 if (valid_for_const_vector_p (mode, x))
5976 return gen_const_vec_duplicate (mode, x);
5977 return gen_rtx_VEC_DUPLICATE (mode, x);
5980 /* A subroutine of const_vec_series_p that handles the case in which:
5982 (GET_CODE (X) == CONST_VECTOR
5983 && CONST_VECTOR_NPATTERNS (X) == 1
5984 && !CONST_VECTOR_DUPLICATE_P (X))
5986 is known to hold. */
5988 bool
5989 const_vec_series_p_1 (const_rtx x, rtx *base_out, rtx *step_out)
5991 /* Stepped sequences are only defined for integers, to avoid specifying
5992 rounding behavior. */
5993 if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_INT)
5994 return false;
5996 /* A non-duplicated vector with two elements can always be seen as a
5997 series with a nonzero step. Longer vectors must have a stepped
5998 encoding. */
5999 if (maybe_ne (CONST_VECTOR_NUNITS (x), 2)
6000 && !CONST_VECTOR_STEPPED_P (x))
6001 return false;
6003 /* Calculate the step between the first and second elements. */
6004 scalar_mode inner = GET_MODE_INNER (GET_MODE (x));
6005 rtx base = CONST_VECTOR_ELT (x, 0);
6006 rtx step = simplify_binary_operation (MINUS, inner,
6007 CONST_VECTOR_ENCODED_ELT (x, 1), base);
6008 if (rtx_equal_p (step, CONST0_RTX (inner)))
6009 return false;
6011 /* If we have a stepped encoding, check that the step between the
6012 second and third elements is the same as STEP. */
6013 if (CONST_VECTOR_STEPPED_P (x))
6015 rtx diff = simplify_binary_operation (MINUS, inner,
6016 CONST_VECTOR_ENCODED_ELT (x, 2),
6017 CONST_VECTOR_ENCODED_ELT (x, 1));
6018 if (!rtx_equal_p (step, diff))
6019 return false;
6022 *base_out = base;
6023 *step_out = step;
6024 return true;
6027 /* Generate a vector constant of mode MODE in which element I has
6028 the value BASE + I * STEP. */
6031 gen_const_vec_series (machine_mode mode, rtx base, rtx step)
6033 gcc_assert (valid_for_const_vector_p (mode, base)
6034 && valid_for_const_vector_p (mode, step));
6036 rtx_vector_builder builder (mode, 1, 3);
6037 builder.quick_push (base);
6038 for (int i = 1; i < 3; ++i)
6039 builder.quick_push (simplify_gen_binary (PLUS, GET_MODE_INNER (mode),
6040 builder[i - 1], step));
6041 return builder.build ();
6044 /* Generate a vector of mode MODE in which element I has the value
6045 BASE + I * STEP. The result will be a constant if BASE and STEP
6046 are both constants. */
6049 gen_vec_series (machine_mode mode, rtx base, rtx step)
6051 if (step == const0_rtx)
6052 return gen_vec_duplicate (mode, base);
6053 if (valid_for_const_vector_p (mode, base)
6054 && valid_for_const_vector_p (mode, step))
6055 return gen_const_vec_series (mode, base, step);
6056 return gen_rtx_VEC_SERIES (mode, base, step);
6059 /* Generate a new vector constant for mode MODE and constant value
6060 CONSTANT. */
6062 static rtx
6063 gen_const_vector (machine_mode mode, int constant)
6065 machine_mode inner = GET_MODE_INNER (mode);
6067 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
6069 rtx el = const_tiny_rtx[constant][(int) inner];
6070 gcc_assert (el);
6072 return gen_const_vec_duplicate (mode, el);
6075 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
6076 all elements are zero, and the one vector when all elements are one. */
6078 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
6080 gcc_assert (known_eq (GET_MODE_NUNITS (mode), GET_NUM_ELEM (v)));
6082 /* If the values are all the same, check to see if we can use one of the
6083 standard constant vectors. */
6084 if (rtvec_all_equal_p (v))
6085 return gen_const_vec_duplicate (mode, RTVEC_ELT (v, 0));
6087 unsigned int nunits = GET_NUM_ELEM (v);
6088 rtx_vector_builder builder (mode, nunits, 1);
6089 for (unsigned int i = 0; i < nunits; ++i)
6090 builder.quick_push (RTVEC_ELT (v, i));
6091 return builder.build (v);
6094 /* Initialise global register information required by all functions. */
6096 void
6097 init_emit_regs (void)
6099 int i;
6100 machine_mode mode;
6101 mem_attrs *attrs;
6103 /* Reset register attributes */
6104 reg_attrs_htab->empty ();
6106 /* We need reg_raw_mode, so initialize the modes now. */
6107 init_reg_modes_target ();
6109 /* Assign register numbers to the globally defined register rtx. */
6110 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
6111 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
6112 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
6113 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
6114 virtual_incoming_args_rtx =
6115 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
6116 virtual_stack_vars_rtx =
6117 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
6118 virtual_stack_dynamic_rtx =
6119 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
6120 virtual_outgoing_args_rtx =
6121 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
6122 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
6123 virtual_preferred_stack_boundary_rtx =
6124 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
6126 /* Initialize RTL for commonly used hard registers. These are
6127 copied into regno_reg_rtx as we begin to compile each function. */
6128 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6129 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
6131 #ifdef RETURN_ADDRESS_POINTER_REGNUM
6132 return_address_pointer_rtx
6133 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
6134 #endif
6136 pic_offset_table_rtx = NULL_RTX;
6137 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
6138 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
6140 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
6142 mode = (machine_mode) i;
6143 attrs = ggc_cleared_alloc<mem_attrs> ();
6144 attrs->align = BITS_PER_UNIT;
6145 attrs->addrspace = ADDR_SPACE_GENERIC;
6146 if (mode != BLKmode && mode != VOIDmode)
6148 attrs->size_known_p = true;
6149 attrs->size = GET_MODE_SIZE (mode);
6150 if (STRICT_ALIGNMENT)
6151 attrs->align = GET_MODE_ALIGNMENT (mode);
6153 mode_mem_attrs[i] = attrs;
6156 split_branch_probability = profile_probability::uninitialized ();
6159 /* Initialize global machine_mode variables. */
6161 void
6162 init_derived_machine_modes (void)
6164 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode;
6165 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
6167 scalar_int_mode mode = mode_iter.require ();
6169 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
6170 && !opt_byte_mode.exists ())
6171 opt_byte_mode = mode;
6173 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
6174 && !opt_word_mode.exists ())
6175 opt_word_mode = mode;
6178 byte_mode = opt_byte_mode.require ();
6179 word_mode = opt_word_mode.require ();
6180 ptr_mode = as_a <scalar_int_mode>
6181 (mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0).require ());
6184 /* Create some permanent unique rtl objects shared between all functions. */
6186 void
6187 init_emit_once (void)
6189 int i;
6190 machine_mode mode;
6191 scalar_float_mode double_mode;
6192 opt_scalar_mode smode_iter;
6194 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
6195 CONST_FIXED, and memory attribute hash tables. */
6196 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
6198 #if TARGET_SUPPORTS_WIDE_INT
6199 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
6200 #endif
6201 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
6203 if (NUM_POLY_INT_COEFFS > 1)
6204 const_poly_int_htab = hash_table<const_poly_int_hasher>::create_ggc (37);
6206 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
6208 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
6210 #ifdef INIT_EXPANDERS
6211 /* This is to initialize {init|mark|free}_machine_status before the first
6212 call to push_function_context_to. This is needed by the Chill front
6213 end which calls push_function_context_to before the first call to
6214 init_function_start. */
6215 INIT_EXPANDERS;
6216 #endif
6218 /* Create the unique rtx's for certain rtx codes and operand values. */
6220 /* Process stack-limiting command-line options. */
6221 if (opt_fstack_limit_symbol_arg != NULL)
6222 stack_limit_rtx
6223 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
6224 if (opt_fstack_limit_register_no >= 0)
6225 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
6227 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
6228 tries to use these variables. */
6229 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
6230 const_int_rtx[i + MAX_SAVED_CONST_INT] =
6231 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
6233 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
6234 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
6235 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
6236 else
6237 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
6239 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require ();
6241 real_from_integer (&dconst0, double_mode, 0, SIGNED);
6242 real_from_integer (&dconst1, double_mode, 1, SIGNED);
6243 real_from_integer (&dconst2, double_mode, 2, SIGNED);
6245 dconstm1 = dconst1;
6246 dconstm1.sign = 1;
6248 dconsthalf = dconst1;
6249 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
6251 for (i = 0; i < 3; i++)
6253 const REAL_VALUE_TYPE *const r =
6254 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
6256 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
6257 const_tiny_rtx[i][(int) mode] =
6258 const_double_from_real_value (*r, mode);
6260 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT)
6261 const_tiny_rtx[i][(int) mode] =
6262 const_double_from_real_value (*r, mode);
6264 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
6266 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
6267 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6269 for (mode = MIN_MODE_PARTIAL_INT;
6270 mode <= MAX_MODE_PARTIAL_INT;
6271 mode = (machine_mode)((int)(mode) + 1))
6272 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6275 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
6277 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
6278 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6280 /* For BImode, 1 and -1 are unsigned and signed interpretations
6281 of the same value. */
6282 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6283 const_tiny_rtx[1][(int) BImode] = const_true_rtx;
6284 const_tiny_rtx[3][(int) BImode] = const_true_rtx;
6286 for (mode = MIN_MODE_PARTIAL_INT;
6287 mode <= MAX_MODE_PARTIAL_INT;
6288 mode = (machine_mode)((int)(mode) + 1))
6289 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6291 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT)
6293 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6294 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6297 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
6299 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6300 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6303 /* As for BImode, "all 1" and "all -1" are unsigned and signed
6304 interpretations of the same value. */
6305 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_BOOL)
6307 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6308 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6309 const_tiny_rtx[1][(int) mode] = const_tiny_rtx[3][(int) mode];
6312 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
6314 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6315 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6316 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6319 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
6321 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6322 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6325 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_FRACT)
6327 scalar_mode smode = smode_iter.require ();
6328 FCONST0 (smode).data.high = 0;
6329 FCONST0 (smode).data.low = 0;
6330 FCONST0 (smode).mode = smode;
6331 const_tiny_rtx[0][(int) smode]
6332 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6335 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UFRACT)
6337 scalar_mode smode = smode_iter.require ();
6338 FCONST0 (smode).data.high = 0;
6339 FCONST0 (smode).data.low = 0;
6340 FCONST0 (smode).mode = smode;
6341 const_tiny_rtx[0][(int) smode]
6342 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6345 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_ACCUM)
6347 scalar_mode smode = smode_iter.require ();
6348 FCONST0 (smode).data.high = 0;
6349 FCONST0 (smode).data.low = 0;
6350 FCONST0 (smode).mode = smode;
6351 const_tiny_rtx[0][(int) smode]
6352 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6354 /* We store the value 1. */
6355 FCONST1 (smode).data.high = 0;
6356 FCONST1 (smode).data.low = 0;
6357 FCONST1 (smode).mode = smode;
6358 FCONST1 (smode).data
6359 = double_int_one.lshift (GET_MODE_FBIT (smode),
6360 HOST_BITS_PER_DOUBLE_INT,
6361 SIGNED_FIXED_POINT_MODE_P (smode));
6362 const_tiny_rtx[1][(int) smode]
6363 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6366 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UACCUM)
6368 scalar_mode smode = smode_iter.require ();
6369 FCONST0 (smode).data.high = 0;
6370 FCONST0 (smode).data.low = 0;
6371 FCONST0 (smode).mode = smode;
6372 const_tiny_rtx[0][(int) smode]
6373 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6375 /* We store the value 1. */
6376 FCONST1 (smode).data.high = 0;
6377 FCONST1 (smode).data.low = 0;
6378 FCONST1 (smode).mode = smode;
6379 FCONST1 (smode).data
6380 = double_int_one.lshift (GET_MODE_FBIT (smode),
6381 HOST_BITS_PER_DOUBLE_INT,
6382 SIGNED_FIXED_POINT_MODE_P (smode));
6383 const_tiny_rtx[1][(int) smode]
6384 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6387 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT)
6389 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6392 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT)
6394 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6397 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM)
6399 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6400 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6403 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM)
6405 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6406 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6409 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6410 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6411 const_tiny_rtx[0][i] = const0_rtx;
6413 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6414 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6415 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6416 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6417 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6418 /*prev_insn=*/NULL,
6419 /*next_insn=*/NULL,
6420 /*bb=*/NULL,
6421 /*pattern=*/NULL_RTX,
6422 /*location=*/-1,
6423 CODE_FOR_nothing,
6424 /*reg_notes=*/NULL_RTX);
6427 /* Produce exact duplicate of insn INSN after AFTER.
6428 Care updating of libcall regions if present. */
6430 rtx_insn *
6431 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6433 rtx_insn *new_rtx;
6434 rtx link;
6436 switch (GET_CODE (insn))
6438 case INSN:
6439 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6440 break;
6442 case JUMP_INSN:
6443 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6444 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6445 break;
6447 case DEBUG_INSN:
6448 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6449 break;
6451 case CALL_INSN:
6452 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6453 if (CALL_INSN_FUNCTION_USAGE (insn))
6454 CALL_INSN_FUNCTION_USAGE (new_rtx)
6455 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6456 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6457 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6458 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6459 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6460 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6461 break;
6463 default:
6464 gcc_unreachable ();
6467 /* Update LABEL_NUSES. */
6468 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6470 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6472 /* If the old insn is frame related, then so is the new one. This is
6473 primarily needed for IA-64 unwind info which marks epilogue insns,
6474 which may be duplicated by the basic block reordering code. */
6475 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6477 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6478 rtx *ptail = &REG_NOTES (new_rtx);
6479 while (*ptail != NULL_RTX)
6480 ptail = &XEXP (*ptail, 1);
6482 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6483 will make them. REG_LABEL_TARGETs are created there too, but are
6484 supposed to be sticky, so we copy them. */
6485 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6486 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6488 *ptail = duplicate_reg_note (link);
6489 ptail = &XEXP (*ptail, 1);
6492 INSN_CODE (new_rtx) = INSN_CODE (insn);
6493 return new_rtx;
6496 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6498 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6500 if (hard_reg_clobbers[mode][regno])
6501 return hard_reg_clobbers[mode][regno];
6502 else
6503 return (hard_reg_clobbers[mode][regno] =
6504 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6507 static GTY((deletable)) rtx
6508 hard_reg_clobbers_high[NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6510 /* Return a CLOBBER_HIGH expression for register REGNO that clobbers MODE,
6511 caching into HARD_REG_CLOBBERS_HIGH. */
6513 gen_hard_reg_clobber_high (machine_mode mode, unsigned int regno)
6515 if (hard_reg_clobbers_high[mode][regno])
6516 return hard_reg_clobbers_high[mode][regno];
6517 else
6518 return (hard_reg_clobbers_high[mode][regno]
6519 = gen_rtx_CLOBBER_HIGH (VOIDmode, gen_rtx_REG (mode, regno)));
6522 location_t prologue_location;
6523 location_t epilogue_location;
6525 /* Hold current location information and last location information, so the
6526 datastructures are built lazily only when some instructions in given
6527 place are needed. */
6528 static location_t curr_location;
6530 /* Allocate insn location datastructure. */
6531 void
6532 insn_locations_init (void)
6534 prologue_location = epilogue_location = 0;
6535 curr_location = UNKNOWN_LOCATION;
6538 /* At the end of emit stage, clear current location. */
6539 void
6540 insn_locations_finalize (void)
6542 epilogue_location = curr_location;
6543 curr_location = UNKNOWN_LOCATION;
6546 /* Set current location. */
6547 void
6548 set_curr_insn_location (location_t location)
6550 curr_location = location;
6553 /* Get current location. */
6554 location_t
6555 curr_insn_location (void)
6557 return curr_location;
6560 /* Return lexical scope block insn belongs to. */
6561 tree
6562 insn_scope (const rtx_insn *insn)
6564 return LOCATION_BLOCK (INSN_LOCATION (insn));
6567 /* Return line number of the statement that produced this insn. */
6569 insn_line (const rtx_insn *insn)
6571 return LOCATION_LINE (INSN_LOCATION (insn));
6574 /* Return source file of the statement that produced this insn. */
6575 const char *
6576 insn_file (const rtx_insn *insn)
6578 return LOCATION_FILE (INSN_LOCATION (insn));
6581 /* Return expanded location of the statement that produced this insn. */
6582 expanded_location
6583 insn_location (const rtx_insn *insn)
6585 return expand_location (INSN_LOCATION (insn));
6588 /* Return true if memory model MODEL requires a pre-operation (release-style)
6589 barrier or a post-operation (acquire-style) barrier. While not universal,
6590 this function matches behavior of several targets. */
6592 bool
6593 need_atomic_barrier_p (enum memmodel model, bool pre)
6595 switch (model & MEMMODEL_BASE_MASK)
6597 case MEMMODEL_RELAXED:
6598 case MEMMODEL_CONSUME:
6599 return false;
6600 case MEMMODEL_RELEASE:
6601 return pre;
6602 case MEMMODEL_ACQUIRE:
6603 return !pre;
6604 case MEMMODEL_ACQ_REL:
6605 case MEMMODEL_SEQ_CST:
6606 return true;
6607 default:
6608 gcc_unreachable ();
6612 /* Return a constant shift amount for shifting a value of mode MODE
6613 by VALUE bits. */
6616 gen_int_shift_amount (machine_mode, poly_int64 value)
6618 /* Use a 64-bit mode, to avoid any truncation.
6620 ??? Perhaps this should be automatically derived from the .md files
6621 instead, or perhaps have a target hook. */
6622 scalar_int_mode shift_mode = (BITS_PER_UNIT == 8
6623 ? DImode
6624 : int_mode_for_size (64, 0).require ());
6625 return gen_int_mode (value, shift_mode);
6628 /* Initialize fields of rtl_data related to stack alignment. */
6630 void
6631 rtl_data::init_stack_alignment ()
6633 stack_alignment_needed = STACK_BOUNDARY;
6634 max_used_stack_slot_alignment = STACK_BOUNDARY;
6635 stack_alignment_estimated = 0;
6636 preferred_stack_boundary = STACK_BOUNDARY;
6640 #include "gt-emit-rtl.h"