PR rtl-optimization/88018
[official-gcc.git] / gcc / asan.c
blobb2c41187b91432c4031b708d6bdf74af10672b5a
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2018 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "alloc-pool.h"
32 #include "tree-pass.h"
33 #include "memmodel.h"
34 #include "tm_p.h"
35 #include "ssa.h"
36 #include "stringpool.h"
37 #include "tree-ssanames.h"
38 #include "optabs.h"
39 #include "emit-rtl.h"
40 #include "cgraph.h"
41 #include "gimple-pretty-print.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "cfganal.h"
45 #include "gimplify.h"
46 #include "gimple-iterator.h"
47 #include "varasm.h"
48 #include "stor-layout.h"
49 #include "tree-iterator.h"
50 #include "stringpool.h"
51 #include "attribs.h"
52 #include "asan.h"
53 #include "dojump.h"
54 #include "explow.h"
55 #include "expr.h"
56 #include "output.h"
57 #include "langhooks.h"
58 #include "cfgloop.h"
59 #include "gimple-builder.h"
60 #include "gimple-fold.h"
61 #include "ubsan.h"
62 #include "params.h"
63 #include "builtins.h"
64 #include "fnmatch.h"
65 #include "tree-inline.h"
67 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
68 with <2x slowdown on average.
70 The tool consists of two parts:
71 instrumentation module (this file) and a run-time library.
72 The instrumentation module adds a run-time check before every memory insn.
73 For a 8- or 16- byte load accessing address X:
74 ShadowAddr = (X >> 3) + Offset
75 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
76 if (ShadowValue)
77 __asan_report_load8(X);
78 For a load of N bytes (N=1, 2 or 4) from address X:
79 ShadowAddr = (X >> 3) + Offset
80 ShadowValue = *(char*)ShadowAddr;
81 if (ShadowValue)
82 if ((X & 7) + N - 1 > ShadowValue)
83 __asan_report_loadN(X);
84 Stores are instrumented similarly, but using __asan_report_storeN functions.
85 A call too __asan_init_vN() is inserted to the list of module CTORs.
86 N is the version number of the AddressSanitizer API. The changes between the
87 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
89 The run-time library redefines malloc (so that redzone are inserted around
90 the allocated memory) and free (so that reuse of free-ed memory is delayed),
91 provides __asan_report* and __asan_init_vN functions.
93 Read more:
94 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
96 The current implementation supports detection of out-of-bounds and
97 use-after-free in the heap, on the stack and for global variables.
99 [Protection of stack variables]
101 To understand how detection of out-of-bounds and use-after-free works
102 for stack variables, lets look at this example on x86_64 where the
103 stack grows downward:
106 foo ()
108 char a[23] = {0};
109 int b[2] = {0};
111 a[5] = 1;
112 b[1] = 2;
114 return a[5] + b[1];
117 For this function, the stack protected by asan will be organized as
118 follows, from the top of the stack to the bottom:
120 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
122 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
123 the next slot be 32 bytes aligned; this one is called Partial
124 Redzone; this 32 bytes alignment is an asan constraint]
126 Slot 3/ [24 bytes for variable 'a']
128 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
130 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
132 Slot 6/ [8 bytes for variable 'b']
134 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
135 'LEFT RedZone']
137 The 32 bytes of LEFT red zone at the bottom of the stack can be
138 decomposed as such:
140 1/ The first 8 bytes contain a magical asan number that is always
141 0x41B58AB3.
143 2/ The following 8 bytes contains a pointer to a string (to be
144 parsed at runtime by the runtime asan library), which format is
145 the following:
147 "<function-name> <space> <num-of-variables-on-the-stack>
148 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
149 <length-of-var-in-bytes> ){n} "
151 where '(...){n}' means the content inside the parenthesis occurs 'n'
152 times, with 'n' being the number of variables on the stack.
154 3/ The following 8 bytes contain the PC of the current function which
155 will be used by the run-time library to print an error message.
157 4/ The following 8 bytes are reserved for internal use by the run-time.
159 The shadow memory for that stack layout is going to look like this:
161 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
162 The F1 byte pattern is a magic number called
163 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
164 the memory for that shadow byte is part of a the LEFT red zone
165 intended to seat at the bottom of the variables on the stack.
167 - content of shadow memory 8 bytes for slots 6 and 5:
168 0xF4F4F400. The F4 byte pattern is a magic number
169 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
170 memory region for this shadow byte is a PARTIAL red zone
171 intended to pad a variable A, so that the slot following
172 {A,padding} is 32 bytes aligned.
174 Note that the fact that the least significant byte of this
175 shadow memory content is 00 means that 8 bytes of its
176 corresponding memory (which corresponds to the memory of
177 variable 'b') is addressable.
179 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
180 The F2 byte pattern is a magic number called
181 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
182 region for this shadow byte is a MIDDLE red zone intended to
183 seat between two 32 aligned slots of {variable,padding}.
185 - content of shadow memory 8 bytes for slot 3 and 2:
186 0xF4000000. This represents is the concatenation of
187 variable 'a' and the partial red zone following it, like what we
188 had for variable 'b'. The least significant 3 bytes being 00
189 means that the 3 bytes of variable 'a' are addressable.
191 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
192 The F3 byte pattern is a magic number called
193 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
194 region for this shadow byte is a RIGHT red zone intended to seat
195 at the top of the variables of the stack.
197 Note that the real variable layout is done in expand_used_vars in
198 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
199 stack variables as well as the different red zones, emits some
200 prologue code to populate the shadow memory as to poison (mark as
201 non-accessible) the regions of the red zones and mark the regions of
202 stack variables as accessible, and emit some epilogue code to
203 un-poison (mark as accessible) the regions of red zones right before
204 the function exits.
206 [Protection of global variables]
208 The basic idea is to insert a red zone between two global variables
209 and install a constructor function that calls the asan runtime to do
210 the populating of the relevant shadow memory regions at load time.
212 So the global variables are laid out as to insert a red zone between
213 them. The size of the red zones is so that each variable starts on a
214 32 bytes boundary.
216 Then a constructor function is installed so that, for each global
217 variable, it calls the runtime asan library function
218 __asan_register_globals_with an instance of this type:
220 struct __asan_global
222 // Address of the beginning of the global variable.
223 const void *__beg;
225 // Initial size of the global variable.
226 uptr __size;
228 // Size of the global variable + size of the red zone. This
229 // size is 32 bytes aligned.
230 uptr __size_with_redzone;
232 // Name of the global variable.
233 const void *__name;
235 // Name of the module where the global variable is declared.
236 const void *__module_name;
238 // 1 if it has dynamic initialization, 0 otherwise.
239 uptr __has_dynamic_init;
241 // A pointer to struct that contains source location, could be NULL.
242 __asan_global_source_location *__location;
245 A destructor function that calls the runtime asan library function
246 _asan_unregister_globals is also installed. */
248 static unsigned HOST_WIDE_INT asan_shadow_offset_value;
249 static bool asan_shadow_offset_computed;
250 static vec<char *> sanitized_sections;
251 static tree last_alloca_addr;
253 /* Set of variable declarations that are going to be guarded by
254 use-after-scope sanitizer. */
256 hash_set<tree> *asan_handled_variables = NULL;
258 hash_set <tree> *asan_used_labels = NULL;
260 /* Sets shadow offset to value in string VAL. */
262 bool
263 set_asan_shadow_offset (const char *val)
265 char *endp;
267 errno = 0;
268 #ifdef HAVE_LONG_LONG
269 asan_shadow_offset_value = strtoull (val, &endp, 0);
270 #else
271 asan_shadow_offset_value = strtoul (val, &endp, 0);
272 #endif
273 if (!(*val != '\0' && *endp == '\0' && errno == 0))
274 return false;
276 asan_shadow_offset_computed = true;
278 return true;
281 /* Set list of user-defined sections that need to be sanitized. */
283 void
284 set_sanitized_sections (const char *sections)
286 char *pat;
287 unsigned i;
288 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
289 free (pat);
290 sanitized_sections.truncate (0);
292 for (const char *s = sections; *s; )
294 const char *end;
295 for (end = s; *end && *end != ','; ++end);
296 size_t len = end - s;
297 sanitized_sections.safe_push (xstrndup (s, len));
298 s = *end ? end + 1 : end;
302 bool
303 asan_mark_p (gimple *stmt, enum asan_mark_flags flag)
305 return (gimple_call_internal_p (stmt, IFN_ASAN_MARK)
306 && tree_to_uhwi (gimple_call_arg (stmt, 0)) == flag);
309 bool
310 asan_sanitize_stack_p (void)
312 return (sanitize_flags_p (SANITIZE_ADDRESS) && ASAN_STACK);
315 bool
316 asan_sanitize_allocas_p (void)
318 return (asan_sanitize_stack_p () && ASAN_PROTECT_ALLOCAS);
321 /* Checks whether section SEC should be sanitized. */
323 static bool
324 section_sanitized_p (const char *sec)
326 char *pat;
327 unsigned i;
328 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
329 if (fnmatch (pat, sec, FNM_PERIOD) == 0)
330 return true;
331 return false;
334 /* Returns Asan shadow offset. */
336 static unsigned HOST_WIDE_INT
337 asan_shadow_offset ()
339 if (!asan_shadow_offset_computed)
341 asan_shadow_offset_computed = true;
342 asan_shadow_offset_value = targetm.asan_shadow_offset ();
344 return asan_shadow_offset_value;
347 alias_set_type asan_shadow_set = -1;
349 /* Pointer types to 1, 2 or 4 byte integers in shadow memory. A separate
350 alias set is used for all shadow memory accesses. */
351 static GTY(()) tree shadow_ptr_types[3];
353 /* Decl for __asan_option_detect_stack_use_after_return. */
354 static GTY(()) tree asan_detect_stack_use_after_return;
356 /* Hashtable support for memory references used by gimple
357 statements. */
359 /* This type represents a reference to a memory region. */
360 struct asan_mem_ref
362 /* The expression of the beginning of the memory region. */
363 tree start;
365 /* The size of the access. */
366 HOST_WIDE_INT access_size;
369 object_allocator <asan_mem_ref> asan_mem_ref_pool ("asan_mem_ref");
371 /* Initializes an instance of asan_mem_ref. */
373 static void
374 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
376 ref->start = start;
377 ref->access_size = access_size;
380 /* Allocates memory for an instance of asan_mem_ref into the memory
381 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
382 START is the address of (or the expression pointing to) the
383 beginning of memory reference. ACCESS_SIZE is the size of the
384 access to the referenced memory. */
386 static asan_mem_ref*
387 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
389 asan_mem_ref *ref = asan_mem_ref_pool.allocate ();
391 asan_mem_ref_init (ref, start, access_size);
392 return ref;
395 /* This builds and returns a pointer to the end of the memory region
396 that starts at START and of length LEN. */
398 tree
399 asan_mem_ref_get_end (tree start, tree len)
401 if (len == NULL_TREE || integer_zerop (len))
402 return start;
404 if (!ptrofftype_p (len))
405 len = convert_to_ptrofftype (len);
407 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
410 /* Return a tree expression that represents the end of the referenced
411 memory region. Beware that this function can actually build a new
412 tree expression. */
414 tree
415 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
417 return asan_mem_ref_get_end (ref->start, len);
420 struct asan_mem_ref_hasher : nofree_ptr_hash <asan_mem_ref>
422 static inline hashval_t hash (const asan_mem_ref *);
423 static inline bool equal (const asan_mem_ref *, const asan_mem_ref *);
426 /* Hash a memory reference. */
428 inline hashval_t
429 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
431 return iterative_hash_expr (mem_ref->start, 0);
434 /* Compare two memory references. We accept the length of either
435 memory references to be NULL_TREE. */
437 inline bool
438 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
439 const asan_mem_ref *m2)
441 return operand_equal_p (m1->start, m2->start, 0);
444 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
446 /* Returns a reference to the hash table containing memory references.
447 This function ensures that the hash table is created. Note that
448 this hash table is updated by the function
449 update_mem_ref_hash_table. */
451 static hash_table<asan_mem_ref_hasher> *
452 get_mem_ref_hash_table ()
454 if (!asan_mem_ref_ht)
455 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
457 return asan_mem_ref_ht;
460 /* Clear all entries from the memory references hash table. */
462 static void
463 empty_mem_ref_hash_table ()
465 if (asan_mem_ref_ht)
466 asan_mem_ref_ht->empty ();
469 /* Free the memory references hash table. */
471 static void
472 free_mem_ref_resources ()
474 delete asan_mem_ref_ht;
475 asan_mem_ref_ht = NULL;
477 asan_mem_ref_pool.release ();
480 /* Return true iff the memory reference REF has been instrumented. */
482 static bool
483 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
485 asan_mem_ref r;
486 asan_mem_ref_init (&r, ref, access_size);
488 asan_mem_ref *saved_ref = get_mem_ref_hash_table ()->find (&r);
489 return saved_ref && saved_ref->access_size >= access_size;
492 /* Return true iff the memory reference REF has been instrumented. */
494 static bool
495 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
497 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
500 /* Return true iff access to memory region starting at REF and of
501 length LEN has been instrumented. */
503 static bool
504 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
506 HOST_WIDE_INT size_in_bytes
507 = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
509 return size_in_bytes != -1
510 && has_mem_ref_been_instrumented (ref->start, size_in_bytes);
513 /* Set REF to the memory reference present in a gimple assignment
514 ASSIGNMENT. Return true upon successful completion, false
515 otherwise. */
517 static bool
518 get_mem_ref_of_assignment (const gassign *assignment,
519 asan_mem_ref *ref,
520 bool *ref_is_store)
522 gcc_assert (gimple_assign_single_p (assignment));
524 if (gimple_store_p (assignment)
525 && !gimple_clobber_p (assignment))
527 ref->start = gimple_assign_lhs (assignment);
528 *ref_is_store = true;
530 else if (gimple_assign_load_p (assignment))
532 ref->start = gimple_assign_rhs1 (assignment);
533 *ref_is_store = false;
535 else
536 return false;
538 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
539 return true;
542 /* Return address of last allocated dynamic alloca. */
544 static tree
545 get_last_alloca_addr ()
547 if (last_alloca_addr)
548 return last_alloca_addr;
550 last_alloca_addr = create_tmp_reg (ptr_type_node, "last_alloca_addr");
551 gassign *g = gimple_build_assign (last_alloca_addr, null_pointer_node);
552 edge e = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
553 gsi_insert_on_edge_immediate (e, g);
554 return last_alloca_addr;
557 /* Insert __asan_allocas_unpoison (top, bottom) call before
558 __builtin_stack_restore (new_sp) call.
559 The pseudocode of this routine should look like this:
560 top = last_alloca_addr;
561 bot = new_sp;
562 __asan_allocas_unpoison (top, bot);
563 last_alloca_addr = new_sp;
564 __builtin_stack_restore (new_sp);
565 In general, we can't use new_sp as bot parameter because on some
566 architectures SP has non zero offset from dynamic stack area. Moreover, on
567 some architectures this offset (STACK_DYNAMIC_OFFSET) becomes known for each
568 particular function only after all callees were expanded to rtl.
569 The most noticeable example is PowerPC{,64}, see
570 http://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html#DYNAM-STACK.
571 To overcome the issue we use following trick: pass new_sp as a second
572 parameter to __asan_allocas_unpoison and rewrite it during expansion with
573 new_sp + (virtual_dynamic_stack_rtx - sp) later in
574 expand_asan_emit_allocas_unpoison function. */
576 static void
577 handle_builtin_stack_restore (gcall *call, gimple_stmt_iterator *iter)
579 if (!iter || !asan_sanitize_allocas_p ())
580 return;
582 tree last_alloca = get_last_alloca_addr ();
583 tree restored_stack = gimple_call_arg (call, 0);
584 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_ALLOCAS_UNPOISON);
585 gimple *g = gimple_build_call (fn, 2, last_alloca, restored_stack);
586 gsi_insert_before (iter, g, GSI_SAME_STMT);
587 g = gimple_build_assign (last_alloca, restored_stack);
588 gsi_insert_before (iter, g, GSI_SAME_STMT);
591 /* Deploy and poison redzones around __builtin_alloca call. To do this, we
592 should replace this call with another one with changed parameters and
593 replace all its uses with new address, so
594 addr = __builtin_alloca (old_size, align);
595 is replaced by
596 left_redzone_size = max (align, ASAN_RED_ZONE_SIZE);
597 Following two statements are optimized out if we know that
598 old_size & (ASAN_RED_ZONE_SIZE - 1) == 0, i.e. alloca doesn't need partial
599 redzone.
600 misalign = old_size & (ASAN_RED_ZONE_SIZE - 1);
601 partial_redzone_size = ASAN_RED_ZONE_SIZE - misalign;
602 right_redzone_size = ASAN_RED_ZONE_SIZE;
603 additional_size = left_redzone_size + partial_redzone_size +
604 right_redzone_size;
605 new_size = old_size + additional_size;
606 new_alloca = __builtin_alloca (new_size, max (align, 32))
607 __asan_alloca_poison (new_alloca, old_size)
608 addr = new_alloca + max (align, ASAN_RED_ZONE_SIZE);
609 last_alloca_addr = new_alloca;
610 ADDITIONAL_SIZE is added to make new memory allocation contain not only
611 requested memory, but also left, partial and right redzones as well as some
612 additional space, required by alignment. */
614 static void
615 handle_builtin_alloca (gcall *call, gimple_stmt_iterator *iter)
617 if (!iter || !asan_sanitize_allocas_p ())
618 return;
620 gassign *g;
621 gcall *gg;
622 const HOST_WIDE_INT redzone_mask = ASAN_RED_ZONE_SIZE - 1;
624 tree last_alloca = get_last_alloca_addr ();
625 tree callee = gimple_call_fndecl (call);
626 tree old_size = gimple_call_arg (call, 0);
627 tree ptr_type = gimple_call_lhs (call) ? TREE_TYPE (gimple_call_lhs (call))
628 : ptr_type_node;
629 tree partial_size = NULL_TREE;
630 unsigned int align
631 = DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
632 ? 0 : tree_to_uhwi (gimple_call_arg (call, 1));
634 /* If ALIGN > ASAN_RED_ZONE_SIZE, we embed left redzone into first ALIGN
635 bytes of allocated space. Otherwise, align alloca to ASAN_RED_ZONE_SIZE
636 manually. */
637 align = MAX (align, ASAN_RED_ZONE_SIZE * BITS_PER_UNIT);
639 tree alloca_rz_mask = build_int_cst (size_type_node, redzone_mask);
640 tree redzone_size = build_int_cst (size_type_node, ASAN_RED_ZONE_SIZE);
642 /* Extract lower bits from old_size. */
643 wide_int size_nonzero_bits = get_nonzero_bits (old_size);
644 wide_int rz_mask
645 = wi::uhwi (redzone_mask, wi::get_precision (size_nonzero_bits));
646 wide_int old_size_lower_bits = wi::bit_and (size_nonzero_bits, rz_mask);
648 /* If alloca size is aligned to ASAN_RED_ZONE_SIZE, we don't need partial
649 redzone. Otherwise, compute its size here. */
650 if (wi::ne_p (old_size_lower_bits, 0))
652 /* misalign = size & (ASAN_RED_ZONE_SIZE - 1)
653 partial_size = ASAN_RED_ZONE_SIZE - misalign. */
654 g = gimple_build_assign (make_ssa_name (size_type_node, NULL),
655 BIT_AND_EXPR, old_size, alloca_rz_mask);
656 gsi_insert_before (iter, g, GSI_SAME_STMT);
657 tree misalign = gimple_assign_lhs (g);
658 g = gimple_build_assign (make_ssa_name (size_type_node, NULL), MINUS_EXPR,
659 redzone_size, misalign);
660 gsi_insert_before (iter, g, GSI_SAME_STMT);
661 partial_size = gimple_assign_lhs (g);
664 /* additional_size = align + ASAN_RED_ZONE_SIZE. */
665 tree additional_size = build_int_cst (size_type_node, align / BITS_PER_UNIT
666 + ASAN_RED_ZONE_SIZE);
667 /* If alloca has partial redzone, include it to additional_size too. */
668 if (partial_size)
670 /* additional_size += partial_size. */
671 g = gimple_build_assign (make_ssa_name (size_type_node), PLUS_EXPR,
672 partial_size, additional_size);
673 gsi_insert_before (iter, g, GSI_SAME_STMT);
674 additional_size = gimple_assign_lhs (g);
677 /* new_size = old_size + additional_size. */
678 g = gimple_build_assign (make_ssa_name (size_type_node), PLUS_EXPR, old_size,
679 additional_size);
680 gsi_insert_before (iter, g, GSI_SAME_STMT);
681 tree new_size = gimple_assign_lhs (g);
683 /* Build new __builtin_alloca call:
684 new_alloca_with_rz = __builtin_alloca (new_size, align). */
685 tree fn = builtin_decl_implicit (BUILT_IN_ALLOCA_WITH_ALIGN);
686 gg = gimple_build_call (fn, 2, new_size,
687 build_int_cst (size_type_node, align));
688 tree new_alloca_with_rz = make_ssa_name (ptr_type, gg);
689 gimple_call_set_lhs (gg, new_alloca_with_rz);
690 gsi_insert_before (iter, gg, GSI_SAME_STMT);
692 /* new_alloca = new_alloca_with_rz + align. */
693 g = gimple_build_assign (make_ssa_name (ptr_type), POINTER_PLUS_EXPR,
694 new_alloca_with_rz,
695 build_int_cst (size_type_node,
696 align / BITS_PER_UNIT));
697 gsi_insert_before (iter, g, GSI_SAME_STMT);
698 tree new_alloca = gimple_assign_lhs (g);
700 /* Poison newly created alloca redzones:
701 __asan_alloca_poison (new_alloca, old_size). */
702 fn = builtin_decl_implicit (BUILT_IN_ASAN_ALLOCA_POISON);
703 gg = gimple_build_call (fn, 2, new_alloca, old_size);
704 gsi_insert_before (iter, gg, GSI_SAME_STMT);
706 /* Save new_alloca_with_rz value into last_alloca to use it during
707 allocas unpoisoning. */
708 g = gimple_build_assign (last_alloca, new_alloca_with_rz);
709 gsi_insert_before (iter, g, GSI_SAME_STMT);
711 /* Finally, replace old alloca ptr with NEW_ALLOCA. */
712 replace_call_with_value (iter, new_alloca);
715 /* Return the memory references contained in a gimple statement
716 representing a builtin call that has to do with memory access. */
718 static bool
719 get_mem_refs_of_builtin_call (gcall *call,
720 asan_mem_ref *src0,
721 tree *src0_len,
722 bool *src0_is_store,
723 asan_mem_ref *src1,
724 tree *src1_len,
725 bool *src1_is_store,
726 asan_mem_ref *dst,
727 tree *dst_len,
728 bool *dst_is_store,
729 bool *dest_is_deref,
730 bool *intercepted_p,
731 gimple_stmt_iterator *iter = NULL)
733 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
735 tree callee = gimple_call_fndecl (call);
736 tree source0 = NULL_TREE, source1 = NULL_TREE,
737 dest = NULL_TREE, len = NULL_TREE;
738 bool is_store = true, got_reference_p = false;
739 HOST_WIDE_INT access_size = 1;
741 *intercepted_p = asan_intercepted_p ((DECL_FUNCTION_CODE (callee)));
743 switch (DECL_FUNCTION_CODE (callee))
745 /* (s, s, n) style memops. */
746 case BUILT_IN_BCMP:
747 case BUILT_IN_MEMCMP:
748 source0 = gimple_call_arg (call, 0);
749 source1 = gimple_call_arg (call, 1);
750 len = gimple_call_arg (call, 2);
751 break;
753 /* (src, dest, n) style memops. */
754 case BUILT_IN_BCOPY:
755 source0 = gimple_call_arg (call, 0);
756 dest = gimple_call_arg (call, 1);
757 len = gimple_call_arg (call, 2);
758 break;
760 /* (dest, src, n) style memops. */
761 case BUILT_IN_MEMCPY:
762 case BUILT_IN_MEMCPY_CHK:
763 case BUILT_IN_MEMMOVE:
764 case BUILT_IN_MEMMOVE_CHK:
765 case BUILT_IN_MEMPCPY:
766 case BUILT_IN_MEMPCPY_CHK:
767 dest = gimple_call_arg (call, 0);
768 source0 = gimple_call_arg (call, 1);
769 len = gimple_call_arg (call, 2);
770 break;
772 /* (dest, n) style memops. */
773 case BUILT_IN_BZERO:
774 dest = gimple_call_arg (call, 0);
775 len = gimple_call_arg (call, 1);
776 break;
778 /* (dest, x, n) style memops*/
779 case BUILT_IN_MEMSET:
780 case BUILT_IN_MEMSET_CHK:
781 dest = gimple_call_arg (call, 0);
782 len = gimple_call_arg (call, 2);
783 break;
785 case BUILT_IN_STRLEN:
786 source0 = gimple_call_arg (call, 0);
787 len = gimple_call_lhs (call);
788 break;
790 case BUILT_IN_STACK_RESTORE:
791 handle_builtin_stack_restore (call, iter);
792 break;
794 CASE_BUILT_IN_ALLOCA:
795 handle_builtin_alloca (call, iter);
796 break;
797 /* And now the __atomic* and __sync builtins.
798 These are handled differently from the classical memory memory
799 access builtins above. */
801 case BUILT_IN_ATOMIC_LOAD_1:
802 is_store = false;
803 /* FALLTHRU */
804 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
805 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
806 case BUILT_IN_SYNC_FETCH_AND_OR_1:
807 case BUILT_IN_SYNC_FETCH_AND_AND_1:
808 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
809 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
810 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
811 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
812 case BUILT_IN_SYNC_OR_AND_FETCH_1:
813 case BUILT_IN_SYNC_AND_AND_FETCH_1:
814 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
815 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
816 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
817 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
818 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
819 case BUILT_IN_SYNC_LOCK_RELEASE_1:
820 case BUILT_IN_ATOMIC_EXCHANGE_1:
821 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
822 case BUILT_IN_ATOMIC_STORE_1:
823 case BUILT_IN_ATOMIC_ADD_FETCH_1:
824 case BUILT_IN_ATOMIC_SUB_FETCH_1:
825 case BUILT_IN_ATOMIC_AND_FETCH_1:
826 case BUILT_IN_ATOMIC_NAND_FETCH_1:
827 case BUILT_IN_ATOMIC_XOR_FETCH_1:
828 case BUILT_IN_ATOMIC_OR_FETCH_1:
829 case BUILT_IN_ATOMIC_FETCH_ADD_1:
830 case BUILT_IN_ATOMIC_FETCH_SUB_1:
831 case BUILT_IN_ATOMIC_FETCH_AND_1:
832 case BUILT_IN_ATOMIC_FETCH_NAND_1:
833 case BUILT_IN_ATOMIC_FETCH_XOR_1:
834 case BUILT_IN_ATOMIC_FETCH_OR_1:
835 access_size = 1;
836 goto do_atomic;
838 case BUILT_IN_ATOMIC_LOAD_2:
839 is_store = false;
840 /* FALLTHRU */
841 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
842 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
843 case BUILT_IN_SYNC_FETCH_AND_OR_2:
844 case BUILT_IN_SYNC_FETCH_AND_AND_2:
845 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
846 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
847 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
848 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
849 case BUILT_IN_SYNC_OR_AND_FETCH_2:
850 case BUILT_IN_SYNC_AND_AND_FETCH_2:
851 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
852 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
853 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
854 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
855 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
856 case BUILT_IN_SYNC_LOCK_RELEASE_2:
857 case BUILT_IN_ATOMIC_EXCHANGE_2:
858 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
859 case BUILT_IN_ATOMIC_STORE_2:
860 case BUILT_IN_ATOMIC_ADD_FETCH_2:
861 case BUILT_IN_ATOMIC_SUB_FETCH_2:
862 case BUILT_IN_ATOMIC_AND_FETCH_2:
863 case BUILT_IN_ATOMIC_NAND_FETCH_2:
864 case BUILT_IN_ATOMIC_XOR_FETCH_2:
865 case BUILT_IN_ATOMIC_OR_FETCH_2:
866 case BUILT_IN_ATOMIC_FETCH_ADD_2:
867 case BUILT_IN_ATOMIC_FETCH_SUB_2:
868 case BUILT_IN_ATOMIC_FETCH_AND_2:
869 case BUILT_IN_ATOMIC_FETCH_NAND_2:
870 case BUILT_IN_ATOMIC_FETCH_XOR_2:
871 case BUILT_IN_ATOMIC_FETCH_OR_2:
872 access_size = 2;
873 goto do_atomic;
875 case BUILT_IN_ATOMIC_LOAD_4:
876 is_store = false;
877 /* FALLTHRU */
878 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
879 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
880 case BUILT_IN_SYNC_FETCH_AND_OR_4:
881 case BUILT_IN_SYNC_FETCH_AND_AND_4:
882 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
883 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
884 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
885 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
886 case BUILT_IN_SYNC_OR_AND_FETCH_4:
887 case BUILT_IN_SYNC_AND_AND_FETCH_4:
888 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
889 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
890 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
891 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
892 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
893 case BUILT_IN_SYNC_LOCK_RELEASE_4:
894 case BUILT_IN_ATOMIC_EXCHANGE_4:
895 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
896 case BUILT_IN_ATOMIC_STORE_4:
897 case BUILT_IN_ATOMIC_ADD_FETCH_4:
898 case BUILT_IN_ATOMIC_SUB_FETCH_4:
899 case BUILT_IN_ATOMIC_AND_FETCH_4:
900 case BUILT_IN_ATOMIC_NAND_FETCH_4:
901 case BUILT_IN_ATOMIC_XOR_FETCH_4:
902 case BUILT_IN_ATOMIC_OR_FETCH_4:
903 case BUILT_IN_ATOMIC_FETCH_ADD_4:
904 case BUILT_IN_ATOMIC_FETCH_SUB_4:
905 case BUILT_IN_ATOMIC_FETCH_AND_4:
906 case BUILT_IN_ATOMIC_FETCH_NAND_4:
907 case BUILT_IN_ATOMIC_FETCH_XOR_4:
908 case BUILT_IN_ATOMIC_FETCH_OR_4:
909 access_size = 4;
910 goto do_atomic;
912 case BUILT_IN_ATOMIC_LOAD_8:
913 is_store = false;
914 /* FALLTHRU */
915 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
916 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
917 case BUILT_IN_SYNC_FETCH_AND_OR_8:
918 case BUILT_IN_SYNC_FETCH_AND_AND_8:
919 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
920 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
921 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
922 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
923 case BUILT_IN_SYNC_OR_AND_FETCH_8:
924 case BUILT_IN_SYNC_AND_AND_FETCH_8:
925 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
926 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
927 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
928 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
929 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
930 case BUILT_IN_SYNC_LOCK_RELEASE_8:
931 case BUILT_IN_ATOMIC_EXCHANGE_8:
932 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
933 case BUILT_IN_ATOMIC_STORE_8:
934 case BUILT_IN_ATOMIC_ADD_FETCH_8:
935 case BUILT_IN_ATOMIC_SUB_FETCH_8:
936 case BUILT_IN_ATOMIC_AND_FETCH_8:
937 case BUILT_IN_ATOMIC_NAND_FETCH_8:
938 case BUILT_IN_ATOMIC_XOR_FETCH_8:
939 case BUILT_IN_ATOMIC_OR_FETCH_8:
940 case BUILT_IN_ATOMIC_FETCH_ADD_8:
941 case BUILT_IN_ATOMIC_FETCH_SUB_8:
942 case BUILT_IN_ATOMIC_FETCH_AND_8:
943 case BUILT_IN_ATOMIC_FETCH_NAND_8:
944 case BUILT_IN_ATOMIC_FETCH_XOR_8:
945 case BUILT_IN_ATOMIC_FETCH_OR_8:
946 access_size = 8;
947 goto do_atomic;
949 case BUILT_IN_ATOMIC_LOAD_16:
950 is_store = false;
951 /* FALLTHRU */
952 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
953 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
954 case BUILT_IN_SYNC_FETCH_AND_OR_16:
955 case BUILT_IN_SYNC_FETCH_AND_AND_16:
956 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
957 case BUILT_IN_SYNC_FETCH_AND_NAND_16:
958 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
959 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
960 case BUILT_IN_SYNC_OR_AND_FETCH_16:
961 case BUILT_IN_SYNC_AND_AND_FETCH_16:
962 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
963 case BUILT_IN_SYNC_NAND_AND_FETCH_16:
964 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
965 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
966 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
967 case BUILT_IN_SYNC_LOCK_RELEASE_16:
968 case BUILT_IN_ATOMIC_EXCHANGE_16:
969 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
970 case BUILT_IN_ATOMIC_STORE_16:
971 case BUILT_IN_ATOMIC_ADD_FETCH_16:
972 case BUILT_IN_ATOMIC_SUB_FETCH_16:
973 case BUILT_IN_ATOMIC_AND_FETCH_16:
974 case BUILT_IN_ATOMIC_NAND_FETCH_16:
975 case BUILT_IN_ATOMIC_XOR_FETCH_16:
976 case BUILT_IN_ATOMIC_OR_FETCH_16:
977 case BUILT_IN_ATOMIC_FETCH_ADD_16:
978 case BUILT_IN_ATOMIC_FETCH_SUB_16:
979 case BUILT_IN_ATOMIC_FETCH_AND_16:
980 case BUILT_IN_ATOMIC_FETCH_NAND_16:
981 case BUILT_IN_ATOMIC_FETCH_XOR_16:
982 case BUILT_IN_ATOMIC_FETCH_OR_16:
983 access_size = 16;
984 /* FALLTHRU */
985 do_atomic:
987 dest = gimple_call_arg (call, 0);
988 /* DEST represents the address of a memory location.
989 instrument_derefs wants the memory location, so lets
990 dereference the address DEST before handing it to
991 instrument_derefs. */
992 tree type = build_nonstandard_integer_type (access_size
993 * BITS_PER_UNIT, 1);
994 dest = build2 (MEM_REF, type, dest,
995 build_int_cst (build_pointer_type (char_type_node), 0));
996 break;
999 default:
1000 /* The other builtins memory access are not instrumented in this
1001 function because they either don't have any length parameter,
1002 or their length parameter is just a limit. */
1003 break;
1006 if (len != NULL_TREE)
1008 if (source0 != NULL_TREE)
1010 src0->start = source0;
1011 src0->access_size = access_size;
1012 *src0_len = len;
1013 *src0_is_store = false;
1016 if (source1 != NULL_TREE)
1018 src1->start = source1;
1019 src1->access_size = access_size;
1020 *src1_len = len;
1021 *src1_is_store = false;
1024 if (dest != NULL_TREE)
1026 dst->start = dest;
1027 dst->access_size = access_size;
1028 *dst_len = len;
1029 *dst_is_store = true;
1032 got_reference_p = true;
1034 else if (dest)
1036 dst->start = dest;
1037 dst->access_size = access_size;
1038 *dst_len = NULL_TREE;
1039 *dst_is_store = is_store;
1040 *dest_is_deref = true;
1041 got_reference_p = true;
1044 return got_reference_p;
1047 /* Return true iff a given gimple statement has been instrumented.
1048 Note that the statement is "defined" by the memory references it
1049 contains. */
1051 static bool
1052 has_stmt_been_instrumented_p (gimple *stmt)
1054 if (gimple_assign_single_p (stmt))
1056 bool r_is_store;
1057 asan_mem_ref r;
1058 asan_mem_ref_init (&r, NULL, 1);
1060 if (get_mem_ref_of_assignment (as_a <gassign *> (stmt), &r,
1061 &r_is_store))
1062 return has_mem_ref_been_instrumented (&r);
1064 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1066 asan_mem_ref src0, src1, dest;
1067 asan_mem_ref_init (&src0, NULL, 1);
1068 asan_mem_ref_init (&src1, NULL, 1);
1069 asan_mem_ref_init (&dest, NULL, 1);
1071 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1072 bool src0_is_store = false, src1_is_store = false,
1073 dest_is_store = false, dest_is_deref = false, intercepted_p = true;
1074 if (get_mem_refs_of_builtin_call (as_a <gcall *> (stmt),
1075 &src0, &src0_len, &src0_is_store,
1076 &src1, &src1_len, &src1_is_store,
1077 &dest, &dest_len, &dest_is_store,
1078 &dest_is_deref, &intercepted_p))
1080 if (src0.start != NULL_TREE
1081 && !has_mem_ref_been_instrumented (&src0, src0_len))
1082 return false;
1084 if (src1.start != NULL_TREE
1085 && !has_mem_ref_been_instrumented (&src1, src1_len))
1086 return false;
1088 if (dest.start != NULL_TREE
1089 && !has_mem_ref_been_instrumented (&dest, dest_len))
1090 return false;
1092 return true;
1095 else if (is_gimple_call (stmt) && gimple_store_p (stmt))
1097 asan_mem_ref r;
1098 asan_mem_ref_init (&r, NULL, 1);
1100 r.start = gimple_call_lhs (stmt);
1101 r.access_size = int_size_in_bytes (TREE_TYPE (r.start));
1102 return has_mem_ref_been_instrumented (&r);
1105 return false;
1108 /* Insert a memory reference into the hash table. */
1110 static void
1111 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
1113 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
1115 asan_mem_ref r;
1116 asan_mem_ref_init (&r, ref, access_size);
1118 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
1119 if (*slot == NULL || (*slot)->access_size < access_size)
1120 *slot = asan_mem_ref_new (ref, access_size);
1123 /* Initialize shadow_ptr_types array. */
1125 static void
1126 asan_init_shadow_ptr_types (void)
1128 asan_shadow_set = new_alias_set ();
1129 tree types[3] = { signed_char_type_node, short_integer_type_node,
1130 integer_type_node };
1132 for (unsigned i = 0; i < 3; i++)
1134 shadow_ptr_types[i] = build_distinct_type_copy (types[i]);
1135 TYPE_ALIAS_SET (shadow_ptr_types[i]) = asan_shadow_set;
1136 shadow_ptr_types[i] = build_pointer_type (shadow_ptr_types[i]);
1139 initialize_sanitizer_builtins ();
1142 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
1144 static tree
1145 asan_pp_string (pretty_printer *pp)
1147 const char *buf = pp_formatted_text (pp);
1148 size_t len = strlen (buf);
1149 tree ret = build_string (len + 1, buf);
1150 TREE_TYPE (ret)
1151 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
1152 build_index_type (size_int (len)));
1153 TREE_READONLY (ret) = 1;
1154 TREE_STATIC (ret) = 1;
1155 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
1158 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
1160 static rtx
1161 asan_shadow_cst (unsigned char shadow_bytes[4])
1163 int i;
1164 unsigned HOST_WIDE_INT val = 0;
1165 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
1166 for (i = 0; i < 4; i++)
1167 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
1168 << (BITS_PER_UNIT * i);
1169 return gen_int_mode (val, SImode);
1172 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
1173 though. */
1175 static void
1176 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
1178 rtx_insn *insn, *insns, *jump;
1179 rtx_code_label *top_label;
1180 rtx end, addr, tmp;
1182 start_sequence ();
1183 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
1184 insns = get_insns ();
1185 end_sequence ();
1186 for (insn = insns; insn; insn = NEXT_INSN (insn))
1187 if (CALL_P (insn))
1188 break;
1189 if (insn == NULL_RTX)
1191 emit_insn (insns);
1192 return;
1195 gcc_assert ((len & 3) == 0);
1196 top_label = gen_label_rtx ();
1197 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
1198 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
1199 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
1200 emit_label (top_label);
1202 emit_move_insn (shadow_mem, const0_rtx);
1203 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
1204 true, OPTAB_LIB_WIDEN);
1205 if (tmp != addr)
1206 emit_move_insn (addr, tmp);
1207 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
1208 jump = get_last_insn ();
1209 gcc_assert (JUMP_P (jump));
1210 add_reg_br_prob_note (jump,
1211 profile_probability::guessed_always ()
1212 .apply_scale (80, 100));
1215 void
1216 asan_function_start (void)
1218 section *fnsec = function_section (current_function_decl);
1219 switch_to_section (fnsec);
1220 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
1221 current_function_funcdef_no);
1224 /* Return number of shadow bytes that are occupied by a local variable
1225 of SIZE bytes. */
1227 static unsigned HOST_WIDE_INT
1228 shadow_mem_size (unsigned HOST_WIDE_INT size)
1230 /* It must be possible to align stack variables to granularity
1231 of shadow memory. */
1232 gcc_assert (BITS_PER_UNIT
1233 * ASAN_SHADOW_GRANULARITY <= MAX_SUPPORTED_STACK_ALIGNMENT);
1235 return ROUND_UP (size, ASAN_SHADOW_GRANULARITY) / ASAN_SHADOW_GRANULARITY;
1238 /* Insert code to protect stack vars. The prologue sequence should be emitted
1239 directly, epilogue sequence returned. BASE is the register holding the
1240 stack base, against which OFFSETS array offsets are relative to, OFFSETS
1241 array contains pairs of offsets in reverse order, always the end offset
1242 of some gap that needs protection followed by starting offset,
1243 and DECLS is an array of representative decls for each var partition.
1244 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
1245 elements long (OFFSETS include gap before the first variable as well
1246 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
1247 register which stack vars DECL_RTLs are based on. Either BASE should be
1248 assigned to PBASE, when not doing use after return protection, or
1249 corresponding address based on __asan_stack_malloc* return value. */
1251 rtx_insn *
1252 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
1253 HOST_WIDE_INT *offsets, tree *decls, int length)
1255 rtx shadow_base, shadow_mem, ret, mem, orig_base;
1256 rtx_code_label *lab;
1257 rtx_insn *insns;
1258 char buf[32];
1259 unsigned char shadow_bytes[4];
1260 HOST_WIDE_INT base_offset = offsets[length - 1];
1261 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
1262 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
1263 HOST_WIDE_INT last_offset, last_size;
1264 int l;
1265 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
1266 tree str_cst, decl, id;
1267 int use_after_return_class = -1;
1269 if (shadow_ptr_types[0] == NULL_TREE)
1270 asan_init_shadow_ptr_types ();
1272 expanded_location cfun_xloc
1273 = expand_location (DECL_SOURCE_LOCATION (current_function_decl));
1275 /* First of all, prepare the description string. */
1276 pretty_printer asan_pp;
1278 pp_decimal_int (&asan_pp, length / 2 - 1);
1279 pp_space (&asan_pp);
1280 for (l = length - 2; l; l -= 2)
1282 tree decl = decls[l / 2 - 1];
1283 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1284 pp_space (&asan_pp);
1285 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1286 pp_space (&asan_pp);
1288 expanded_location xloc
1289 = expand_location (DECL_SOURCE_LOCATION (decl));
1290 char location[32];
1292 if (xloc.file == cfun_xloc.file)
1293 sprintf (location, ":%d", xloc.line);
1294 else
1295 location[0] = '\0';
1297 if (DECL_P (decl) && DECL_NAME (decl))
1299 unsigned idlen
1300 = IDENTIFIER_LENGTH (DECL_NAME (decl)) + strlen (location);
1301 pp_decimal_int (&asan_pp, idlen);
1302 pp_space (&asan_pp);
1303 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1304 pp_string (&asan_pp, location);
1306 else
1307 pp_string (&asan_pp, "9 <unknown>");
1309 if (l > 2)
1310 pp_space (&asan_pp);
1312 str_cst = asan_pp_string (&asan_pp);
1314 /* Emit the prologue sequence. */
1315 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1316 && ASAN_USE_AFTER_RETURN)
1318 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1319 /* __asan_stack_malloc_N guarantees alignment
1320 N < 6 ? (64 << N) : 4096 bytes. */
1321 if (alignb > (use_after_return_class < 6
1322 ? (64U << use_after_return_class) : 4096U))
1323 use_after_return_class = -1;
1324 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1325 base_align_bias = ((asan_frame_size + alignb - 1)
1326 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1328 /* Align base if target is STRICT_ALIGNMENT. */
1329 if (STRICT_ALIGNMENT)
1330 base = expand_binop (Pmode, and_optab, base,
1331 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1332 << ASAN_SHADOW_SHIFT)
1333 / BITS_PER_UNIT), Pmode), NULL_RTX,
1334 1, OPTAB_DIRECT);
1336 if (use_after_return_class == -1 && pbase)
1337 emit_move_insn (pbase, base);
1339 base = expand_binop (Pmode, add_optab, base,
1340 gen_int_mode (base_offset - base_align_bias, Pmode),
1341 NULL_RTX, 1, OPTAB_DIRECT);
1342 orig_base = NULL_RTX;
1343 if (use_after_return_class != -1)
1345 if (asan_detect_stack_use_after_return == NULL_TREE)
1347 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1348 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1349 integer_type_node);
1350 SET_DECL_ASSEMBLER_NAME (decl, id);
1351 TREE_ADDRESSABLE (decl) = 1;
1352 DECL_ARTIFICIAL (decl) = 1;
1353 DECL_IGNORED_P (decl) = 1;
1354 DECL_EXTERNAL (decl) = 1;
1355 TREE_STATIC (decl) = 1;
1356 TREE_PUBLIC (decl) = 1;
1357 TREE_USED (decl) = 1;
1358 asan_detect_stack_use_after_return = decl;
1360 orig_base = gen_reg_rtx (Pmode);
1361 emit_move_insn (orig_base, base);
1362 ret = expand_normal (asan_detect_stack_use_after_return);
1363 lab = gen_label_rtx ();
1364 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1365 VOIDmode, 0, lab,
1366 profile_probability::very_likely ());
1367 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1368 use_after_return_class);
1369 ret = init_one_libfunc (buf);
1370 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode,
1371 GEN_INT (asan_frame_size
1372 + base_align_bias),
1373 TYPE_MODE (pointer_sized_int_node));
1374 /* __asan_stack_malloc_[n] returns a pointer to fake stack if succeeded
1375 and NULL otherwise. Check RET value is NULL here and jump over the
1376 BASE reassignment in this case. Otherwise, reassign BASE to RET. */
1377 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1378 VOIDmode, 0, lab,
1379 profile_probability:: very_unlikely ());
1380 ret = convert_memory_address (Pmode, ret);
1381 emit_move_insn (base, ret);
1382 emit_label (lab);
1383 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1384 gen_int_mode (base_align_bias
1385 - base_offset, Pmode),
1386 NULL_RTX, 1, OPTAB_DIRECT));
1388 mem = gen_rtx_MEM (ptr_mode, base);
1389 mem = adjust_address (mem, VOIDmode, base_align_bias);
1390 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1391 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1392 emit_move_insn (mem, expand_normal (str_cst));
1393 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1394 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1395 id = get_identifier (buf);
1396 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1397 VAR_DECL, id, char_type_node);
1398 SET_DECL_ASSEMBLER_NAME (decl, id);
1399 TREE_ADDRESSABLE (decl) = 1;
1400 TREE_READONLY (decl) = 1;
1401 DECL_ARTIFICIAL (decl) = 1;
1402 DECL_IGNORED_P (decl) = 1;
1403 TREE_STATIC (decl) = 1;
1404 TREE_PUBLIC (decl) = 0;
1405 TREE_USED (decl) = 1;
1406 DECL_INITIAL (decl) = decl;
1407 TREE_ASM_WRITTEN (decl) = 1;
1408 TREE_ASM_WRITTEN (id) = 1;
1409 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1410 shadow_base = expand_binop (Pmode, lshr_optab, base,
1411 gen_int_shift_amount (Pmode, ASAN_SHADOW_SHIFT),
1412 NULL_RTX, 1, OPTAB_DIRECT);
1413 shadow_base
1414 = plus_constant (Pmode, shadow_base,
1415 asan_shadow_offset ()
1416 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1417 gcc_assert (asan_shadow_set != -1
1418 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1419 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1420 set_mem_alias_set (shadow_mem, asan_shadow_set);
1421 if (STRICT_ALIGNMENT)
1422 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1423 prev_offset = base_offset;
1424 for (l = length; l; l -= 2)
1426 if (l == 2)
1427 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1428 offset = offsets[l - 1];
1429 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1431 int i;
1432 HOST_WIDE_INT aoff
1433 = base_offset + ((offset - base_offset)
1434 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1435 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1436 (aoff - prev_offset)
1437 >> ASAN_SHADOW_SHIFT);
1438 prev_offset = aoff;
1439 for (i = 0; i < 4; i++, aoff += ASAN_SHADOW_GRANULARITY)
1440 if (aoff < offset)
1442 if (aoff < offset - (HOST_WIDE_INT)ASAN_SHADOW_GRANULARITY + 1)
1443 shadow_bytes[i] = 0;
1444 else
1445 shadow_bytes[i] = offset - aoff;
1447 else
1448 shadow_bytes[i] = ASAN_STACK_MAGIC_MIDDLE;
1449 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1450 offset = aoff;
1452 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1454 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1455 (offset - prev_offset)
1456 >> ASAN_SHADOW_SHIFT);
1457 prev_offset = offset;
1458 memset (shadow_bytes, cur_shadow_byte, 4);
1459 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1460 offset += ASAN_RED_ZONE_SIZE;
1462 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1464 do_pending_stack_adjust ();
1466 /* Construct epilogue sequence. */
1467 start_sequence ();
1469 lab = NULL;
1470 if (use_after_return_class != -1)
1472 rtx_code_label *lab2 = gen_label_rtx ();
1473 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1474 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1475 VOIDmode, 0, lab2,
1476 profile_probability::very_likely ());
1477 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1478 set_mem_alias_set (shadow_mem, asan_shadow_set);
1479 mem = gen_rtx_MEM (ptr_mode, base);
1480 mem = adjust_address (mem, VOIDmode, base_align_bias);
1481 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1482 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1483 if (use_after_return_class < 5
1484 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1485 BITS_PER_UNIT, true))
1486 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1487 BITS_PER_UNIT, true, 0);
1488 else if (use_after_return_class >= 5
1489 || !set_storage_via_setmem (shadow_mem,
1490 GEN_INT (sz),
1491 gen_int_mode (c, QImode),
1492 BITS_PER_UNIT, BITS_PER_UNIT,
1493 -1, sz, sz, sz))
1495 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1496 use_after_return_class);
1497 ret = init_one_libfunc (buf);
1498 rtx addr = convert_memory_address (ptr_mode, base);
1499 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1500 emit_library_call (ret, LCT_NORMAL, ptr_mode, addr, ptr_mode,
1501 GEN_INT (asan_frame_size + base_align_bias),
1502 TYPE_MODE (pointer_sized_int_node),
1503 orig_addr, ptr_mode);
1505 lab = gen_label_rtx ();
1506 emit_jump (lab);
1507 emit_label (lab2);
1510 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1511 set_mem_alias_set (shadow_mem, asan_shadow_set);
1513 if (STRICT_ALIGNMENT)
1514 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1516 prev_offset = base_offset;
1517 last_offset = base_offset;
1518 last_size = 0;
1519 for (l = length; l; l -= 2)
1521 offset = base_offset + ((offsets[l - 1] - base_offset)
1522 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1523 if (last_offset + last_size != offset)
1525 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1526 (last_offset - prev_offset)
1527 >> ASAN_SHADOW_SHIFT);
1528 prev_offset = last_offset;
1529 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1530 last_offset = offset;
1531 last_size = 0;
1533 last_size += base_offset + ((offsets[l - 2] - base_offset)
1534 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1535 - offset;
1537 /* Unpoison shadow memory that corresponds to a variable that is
1538 is subject of use-after-return sanitization. */
1539 if (l > 2)
1541 decl = decls[l / 2 - 2];
1542 if (asan_handled_variables != NULL
1543 && asan_handled_variables->contains (decl))
1545 HOST_WIDE_INT size = offsets[l - 3] - offsets[l - 2];
1546 if (dump_file && (dump_flags & TDF_DETAILS))
1548 const char *n = (DECL_NAME (decl)
1549 ? IDENTIFIER_POINTER (DECL_NAME (decl))
1550 : "<unknown>");
1551 fprintf (dump_file, "Unpoisoning shadow stack for variable: "
1552 "%s (%" PRId64 " B)\n", n, size);
1555 last_size += size & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1);
1559 if (last_size)
1561 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1562 (last_offset - prev_offset)
1563 >> ASAN_SHADOW_SHIFT);
1564 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1567 /* Clean-up set with instrumented stack variables. */
1568 delete asan_handled_variables;
1569 asan_handled_variables = NULL;
1570 delete asan_used_labels;
1571 asan_used_labels = NULL;
1573 do_pending_stack_adjust ();
1574 if (lab)
1575 emit_label (lab);
1577 insns = get_insns ();
1578 end_sequence ();
1579 return insns;
1582 /* Emit __asan_allocas_unpoison (top, bot) call. The BASE parameter corresponds
1583 to BOT argument, for TOP virtual_stack_dynamic_rtx is used. NEW_SEQUENCE
1584 indicates whether we're emitting new instructions sequence or not. */
1586 rtx_insn *
1587 asan_emit_allocas_unpoison (rtx top, rtx bot, rtx_insn *before)
1589 if (before)
1590 push_to_sequence (before);
1591 else
1592 start_sequence ();
1593 rtx ret = init_one_libfunc ("__asan_allocas_unpoison");
1594 top = convert_memory_address (ptr_mode, top);
1595 bot = convert_memory_address (ptr_mode, bot);
1596 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode,
1597 top, ptr_mode, bot, ptr_mode);
1599 do_pending_stack_adjust ();
1600 rtx_insn *insns = get_insns ();
1601 end_sequence ();
1602 return insns;
1605 /* Return true if DECL, a global var, might be overridden and needs
1606 therefore a local alias. */
1608 static bool
1609 asan_needs_local_alias (tree decl)
1611 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1614 /* Return true if DECL, a global var, is an artificial ODR indicator symbol
1615 therefore doesn't need protection. */
1617 static bool
1618 is_odr_indicator (tree decl)
1620 return (DECL_ARTIFICIAL (decl)
1621 && lookup_attribute ("asan odr indicator", DECL_ATTRIBUTES (decl)));
1624 /* Return true if DECL is a VAR_DECL that should be protected
1625 by Address Sanitizer, by appending a red zone with protected
1626 shadow memory after it and aligning it to at least
1627 ASAN_RED_ZONE_SIZE bytes. */
1629 bool
1630 asan_protect_global (tree decl, bool ignore_decl_rtl_set_p)
1632 if (!ASAN_GLOBALS)
1633 return false;
1635 rtx rtl, symbol;
1637 if (TREE_CODE (decl) == STRING_CST)
1639 /* Instrument all STRING_CSTs except those created
1640 by asan_pp_string here. */
1641 if (shadow_ptr_types[0] != NULL_TREE
1642 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1643 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1644 return false;
1645 return true;
1647 if (!VAR_P (decl)
1648 /* TLS vars aren't statically protectable. */
1649 || DECL_THREAD_LOCAL_P (decl)
1650 /* Externs will be protected elsewhere. */
1651 || DECL_EXTERNAL (decl)
1652 /* PR sanitizer/81697: For architectures that use section anchors first
1653 call to asan_protect_global may occur before DECL_RTL (decl) is set.
1654 We should ignore DECL_RTL_SET_P then, because otherwise the first call
1655 to asan_protect_global will return FALSE and the following calls on the
1656 same decl after setting DECL_RTL (decl) will return TRUE and we'll end
1657 up with inconsistency at runtime. */
1658 || (!DECL_RTL_SET_P (decl) && !ignore_decl_rtl_set_p)
1659 /* Comdat vars pose an ABI problem, we can't know if
1660 the var that is selected by the linker will have
1661 padding or not. */
1662 || DECL_ONE_ONLY (decl)
1663 /* Similarly for common vars. People can use -fno-common.
1664 Note: Linux kernel is built with -fno-common, so we do instrument
1665 globals there even if it is C. */
1666 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1667 /* Don't protect if using user section, often vars placed
1668 into user section from multiple TUs are then assumed
1669 to be an array of such vars, putting padding in there
1670 breaks this assumption. */
1671 || (DECL_SECTION_NAME (decl) != NULL
1672 && !symtab_node::get (decl)->implicit_section
1673 && !section_sanitized_p (DECL_SECTION_NAME (decl)))
1674 || DECL_SIZE (decl) == 0
1675 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1676 || TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST
1677 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1678 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE
1679 || TREE_TYPE (decl) == ubsan_get_source_location_type ()
1680 || is_odr_indicator (decl))
1681 return false;
1683 if (!ignore_decl_rtl_set_p || DECL_RTL_SET_P (decl))
1686 rtl = DECL_RTL (decl);
1687 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1688 return false;
1689 symbol = XEXP (rtl, 0);
1691 if (CONSTANT_POOL_ADDRESS_P (symbol)
1692 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1693 return false;
1696 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1697 return false;
1699 if (!TARGET_SUPPORTS_ALIASES && asan_needs_local_alias (decl))
1700 return false;
1702 return true;
1705 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1706 IS_STORE is either 1 (for a store) or 0 (for a load). */
1708 static tree
1709 report_error_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1710 int *nargs)
1712 static enum built_in_function report[2][2][6]
1713 = { { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1714 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1715 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1716 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1717 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1718 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } },
1719 { { BUILT_IN_ASAN_REPORT_LOAD1_NOABORT,
1720 BUILT_IN_ASAN_REPORT_LOAD2_NOABORT,
1721 BUILT_IN_ASAN_REPORT_LOAD4_NOABORT,
1722 BUILT_IN_ASAN_REPORT_LOAD8_NOABORT,
1723 BUILT_IN_ASAN_REPORT_LOAD16_NOABORT,
1724 BUILT_IN_ASAN_REPORT_LOAD_N_NOABORT },
1725 { BUILT_IN_ASAN_REPORT_STORE1_NOABORT,
1726 BUILT_IN_ASAN_REPORT_STORE2_NOABORT,
1727 BUILT_IN_ASAN_REPORT_STORE4_NOABORT,
1728 BUILT_IN_ASAN_REPORT_STORE8_NOABORT,
1729 BUILT_IN_ASAN_REPORT_STORE16_NOABORT,
1730 BUILT_IN_ASAN_REPORT_STORE_N_NOABORT } } };
1731 if (size_in_bytes == -1)
1733 *nargs = 2;
1734 return builtin_decl_implicit (report[recover_p][is_store][5]);
1736 *nargs = 1;
1737 int size_log2 = exact_log2 (size_in_bytes);
1738 return builtin_decl_implicit (report[recover_p][is_store][size_log2]);
1741 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1742 IS_STORE is either 1 (for a store) or 0 (for a load). */
1744 static tree
1745 check_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1746 int *nargs)
1748 static enum built_in_function check[2][2][6]
1749 = { { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1750 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1751 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1752 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1753 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1754 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } },
1755 { { BUILT_IN_ASAN_LOAD1_NOABORT,
1756 BUILT_IN_ASAN_LOAD2_NOABORT,
1757 BUILT_IN_ASAN_LOAD4_NOABORT,
1758 BUILT_IN_ASAN_LOAD8_NOABORT,
1759 BUILT_IN_ASAN_LOAD16_NOABORT,
1760 BUILT_IN_ASAN_LOADN_NOABORT },
1761 { BUILT_IN_ASAN_STORE1_NOABORT,
1762 BUILT_IN_ASAN_STORE2_NOABORT,
1763 BUILT_IN_ASAN_STORE4_NOABORT,
1764 BUILT_IN_ASAN_STORE8_NOABORT,
1765 BUILT_IN_ASAN_STORE16_NOABORT,
1766 BUILT_IN_ASAN_STOREN_NOABORT } } };
1767 if (size_in_bytes == -1)
1769 *nargs = 2;
1770 return builtin_decl_implicit (check[recover_p][is_store][5]);
1772 *nargs = 1;
1773 int size_log2 = exact_log2 (size_in_bytes);
1774 return builtin_decl_implicit (check[recover_p][is_store][size_log2]);
1777 /* Split the current basic block and create a condition statement
1778 insertion point right before or after the statement pointed to by
1779 ITER. Return an iterator to the point at which the caller might
1780 safely insert the condition statement.
1782 THEN_BLOCK must be set to the address of an uninitialized instance
1783 of basic_block. The function will then set *THEN_BLOCK to the
1784 'then block' of the condition statement to be inserted by the
1785 caller.
1787 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1788 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1790 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1791 block' of the condition statement to be inserted by the caller.
1793 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1794 statements starting from *ITER, and *THEN_BLOCK is a new empty
1795 block.
1797 *ITER is adjusted to point to always point to the first statement
1798 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1799 same as what ITER was pointing to prior to calling this function,
1800 if BEFORE_P is true; otherwise, it is its following statement. */
1802 gimple_stmt_iterator
1803 create_cond_insert_point (gimple_stmt_iterator *iter,
1804 bool before_p,
1805 bool then_more_likely_p,
1806 bool create_then_fallthru_edge,
1807 basic_block *then_block,
1808 basic_block *fallthrough_block)
1810 gimple_stmt_iterator gsi = *iter;
1812 if (!gsi_end_p (gsi) && before_p)
1813 gsi_prev (&gsi);
1815 basic_block cur_bb = gsi_bb (*iter);
1817 edge e = split_block (cur_bb, gsi_stmt (gsi));
1819 /* Get a hold on the 'condition block', the 'then block' and the
1820 'else block'. */
1821 basic_block cond_bb = e->src;
1822 basic_block fallthru_bb = e->dest;
1823 basic_block then_bb = create_empty_bb (cond_bb);
1824 if (current_loops)
1826 add_bb_to_loop (then_bb, cond_bb->loop_father);
1827 loops_state_set (LOOPS_NEED_FIXUP);
1830 /* Set up the newly created 'then block'. */
1831 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1832 profile_probability fallthrough_probability
1833 = then_more_likely_p
1834 ? profile_probability::very_unlikely ()
1835 : profile_probability::very_likely ();
1836 e->probability = fallthrough_probability.invert ();
1837 then_bb->count = e->count ();
1838 if (create_then_fallthru_edge)
1839 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1841 /* Set up the fallthrough basic block. */
1842 e = find_edge (cond_bb, fallthru_bb);
1843 e->flags = EDGE_FALSE_VALUE;
1844 e->probability = fallthrough_probability;
1846 /* Update dominance info for the newly created then_bb; note that
1847 fallthru_bb's dominance info has already been updated by
1848 split_bock. */
1849 if (dom_info_available_p (CDI_DOMINATORS))
1850 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1852 *then_block = then_bb;
1853 *fallthrough_block = fallthru_bb;
1854 *iter = gsi_start_bb (fallthru_bb);
1856 return gsi_last_bb (cond_bb);
1859 /* Insert an if condition followed by a 'then block' right before the
1860 statement pointed to by ITER. The fallthrough block -- which is the
1861 else block of the condition as well as the destination of the
1862 outcoming edge of the 'then block' -- starts with the statement
1863 pointed to by ITER.
1865 COND is the condition of the if.
1867 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1868 'then block' is higher than the probability of the edge to the
1869 fallthrough block.
1871 Upon completion of the function, *THEN_BB is set to the newly
1872 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1873 fallthrough block.
1875 *ITER is adjusted to still point to the same statement it was
1876 pointing to initially. */
1878 static void
1879 insert_if_then_before_iter (gcond *cond,
1880 gimple_stmt_iterator *iter,
1881 bool then_more_likely_p,
1882 basic_block *then_bb,
1883 basic_block *fallthrough_bb)
1885 gimple_stmt_iterator cond_insert_point =
1886 create_cond_insert_point (iter,
1887 /*before_p=*/true,
1888 then_more_likely_p,
1889 /*create_then_fallthru_edge=*/true,
1890 then_bb,
1891 fallthrough_bb);
1892 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1895 /* Build (base_addr >> ASAN_SHADOW_SHIFT) + asan_shadow_offset ().
1896 If RETURN_ADDRESS is set to true, return memory location instread
1897 of a value in the shadow memory. */
1899 static tree
1900 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1901 tree base_addr, tree shadow_ptr_type,
1902 bool return_address = false)
1904 tree t, uintptr_type = TREE_TYPE (base_addr);
1905 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1906 gimple *g;
1908 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1909 g = gimple_build_assign (make_ssa_name (uintptr_type), RSHIFT_EXPR,
1910 base_addr, t);
1911 gimple_set_location (g, location);
1912 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1914 t = build_int_cst (uintptr_type, asan_shadow_offset ());
1915 g = gimple_build_assign (make_ssa_name (uintptr_type), PLUS_EXPR,
1916 gimple_assign_lhs (g), t);
1917 gimple_set_location (g, location);
1918 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1920 g = gimple_build_assign (make_ssa_name (shadow_ptr_type), NOP_EXPR,
1921 gimple_assign_lhs (g));
1922 gimple_set_location (g, location);
1923 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1925 if (!return_address)
1927 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1928 build_int_cst (shadow_ptr_type, 0));
1929 g = gimple_build_assign (make_ssa_name (shadow_type), MEM_REF, t);
1930 gimple_set_location (g, location);
1931 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1934 return gimple_assign_lhs (g);
1937 /* BASE can already be an SSA_NAME; in that case, do not create a
1938 new SSA_NAME for it. */
1940 static tree
1941 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1942 bool before_p)
1944 if (TREE_CODE (base) == SSA_NAME)
1945 return base;
1946 gimple *g = gimple_build_assign (make_ssa_name (TREE_TYPE (base)),
1947 TREE_CODE (base), base);
1948 gimple_set_location (g, loc);
1949 if (before_p)
1950 gsi_insert_before (iter, g, GSI_SAME_STMT);
1951 else
1952 gsi_insert_after (iter, g, GSI_NEW_STMT);
1953 return gimple_assign_lhs (g);
1956 /* LEN can already have necessary size and precision;
1957 in that case, do not create a new variable. */
1959 tree
1960 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
1961 bool before_p)
1963 if (ptrofftype_p (len))
1964 return len;
1965 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
1966 NOP_EXPR, len);
1967 gimple_set_location (g, loc);
1968 if (before_p)
1969 gsi_insert_before (iter, g, GSI_SAME_STMT);
1970 else
1971 gsi_insert_after (iter, g, GSI_NEW_STMT);
1972 return gimple_assign_lhs (g);
1975 /* Instrument the memory access instruction BASE. Insert new
1976 statements before or after ITER.
1978 Note that the memory access represented by BASE can be either an
1979 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1980 location. IS_STORE is TRUE for a store, FALSE for a load.
1981 BEFORE_P is TRUE for inserting the instrumentation code before
1982 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1983 for a scalar memory access and FALSE for memory region access.
1984 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1985 length. ALIGN tells alignment of accessed memory object.
1987 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1988 memory region have already been instrumented.
1990 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1991 statement it was pointing to prior to calling this function,
1992 otherwise, it points to the statement logically following it. */
1994 static void
1995 build_check_stmt (location_t loc, tree base, tree len,
1996 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1997 bool is_non_zero_len, bool before_p, bool is_store,
1998 bool is_scalar_access, unsigned int align = 0)
2000 gimple_stmt_iterator gsi = *iter;
2001 gimple *g;
2003 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
2005 gsi = *iter;
2007 base = unshare_expr (base);
2008 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
2010 if (len)
2012 len = unshare_expr (len);
2013 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
2015 else
2017 gcc_assert (size_in_bytes != -1);
2018 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
2021 if (size_in_bytes > 1)
2023 if ((size_in_bytes & (size_in_bytes - 1)) != 0
2024 || size_in_bytes > 16)
2025 is_scalar_access = false;
2026 else if (align && align < size_in_bytes * BITS_PER_UNIT)
2028 /* On non-strict alignment targets, if
2029 16-byte access is just 8-byte aligned,
2030 this will result in misaligned shadow
2031 memory 2 byte load, but otherwise can
2032 be handled using one read. */
2033 if (size_in_bytes != 16
2034 || STRICT_ALIGNMENT
2035 || align < 8 * BITS_PER_UNIT)
2036 is_scalar_access = false;
2040 HOST_WIDE_INT flags = 0;
2041 if (is_store)
2042 flags |= ASAN_CHECK_STORE;
2043 if (is_non_zero_len)
2044 flags |= ASAN_CHECK_NON_ZERO_LEN;
2045 if (is_scalar_access)
2046 flags |= ASAN_CHECK_SCALAR_ACCESS;
2048 g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
2049 build_int_cst (integer_type_node, flags),
2050 base, len,
2051 build_int_cst (integer_type_node,
2052 align / BITS_PER_UNIT));
2053 gimple_set_location (g, loc);
2054 if (before_p)
2055 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
2056 else
2058 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2059 gsi_next (&gsi);
2060 *iter = gsi;
2064 /* If T represents a memory access, add instrumentation code before ITER.
2065 LOCATION is source code location.
2066 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
2068 static void
2069 instrument_derefs (gimple_stmt_iterator *iter, tree t,
2070 location_t location, bool is_store)
2072 if (is_store && !ASAN_INSTRUMENT_WRITES)
2073 return;
2074 if (!is_store && !ASAN_INSTRUMENT_READS)
2075 return;
2077 tree type, base;
2078 HOST_WIDE_INT size_in_bytes;
2079 if (location == UNKNOWN_LOCATION)
2080 location = EXPR_LOCATION (t);
2082 type = TREE_TYPE (t);
2083 switch (TREE_CODE (t))
2085 case ARRAY_REF:
2086 case COMPONENT_REF:
2087 case INDIRECT_REF:
2088 case MEM_REF:
2089 case VAR_DECL:
2090 case BIT_FIELD_REF:
2091 break;
2092 /* FALLTHRU */
2093 default:
2094 return;
2097 size_in_bytes = int_size_in_bytes (type);
2098 if (size_in_bytes <= 0)
2099 return;
2101 poly_int64 bitsize, bitpos;
2102 tree offset;
2103 machine_mode mode;
2104 int unsignedp, reversep, volatilep = 0;
2105 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset, &mode,
2106 &unsignedp, &reversep, &volatilep);
2108 if (TREE_CODE (t) == COMPONENT_REF
2109 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
2111 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
2112 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
2113 TREE_OPERAND (t, 0), repr,
2114 TREE_OPERAND (t, 2)),
2115 location, is_store);
2116 return;
2119 if (!multiple_p (bitpos, BITS_PER_UNIT)
2120 || maybe_ne (bitsize, size_in_bytes * BITS_PER_UNIT))
2121 return;
2123 if (VAR_P (inner) && DECL_HARD_REGISTER (inner))
2124 return;
2126 poly_int64 decl_size;
2127 if (VAR_P (inner)
2128 && offset == NULL_TREE
2129 && DECL_SIZE (inner)
2130 && poly_int_tree_p (DECL_SIZE (inner), &decl_size)
2131 && known_subrange_p (bitpos, bitsize, 0, decl_size))
2133 if (DECL_THREAD_LOCAL_P (inner))
2134 return;
2135 if (!ASAN_GLOBALS && is_global_var (inner))
2136 return;
2137 if (!TREE_STATIC (inner))
2139 /* Automatic vars in the current function will be always
2140 accessible. */
2141 if (decl_function_context (inner) == current_function_decl
2142 && (!asan_sanitize_use_after_scope ()
2143 || !TREE_ADDRESSABLE (inner)))
2144 return;
2146 /* Always instrument external vars, they might be dynamically
2147 initialized. */
2148 else if (!DECL_EXTERNAL (inner))
2150 /* For static vars if they are known not to be dynamically
2151 initialized, they will be always accessible. */
2152 varpool_node *vnode = varpool_node::get (inner);
2153 if (vnode && !vnode->dynamically_initialized)
2154 return;
2158 base = build_fold_addr_expr (t);
2159 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
2161 unsigned int align = get_object_alignment (t);
2162 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
2163 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
2164 is_store, /*is_scalar_access*/true, align);
2165 update_mem_ref_hash_table (base, size_in_bytes);
2166 update_mem_ref_hash_table (t, size_in_bytes);
2171 /* Insert a memory reference into the hash table if access length
2172 can be determined in compile time. */
2174 static void
2175 maybe_update_mem_ref_hash_table (tree base, tree len)
2177 if (!POINTER_TYPE_P (TREE_TYPE (base))
2178 || !INTEGRAL_TYPE_P (TREE_TYPE (len)))
2179 return;
2181 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2183 if (size_in_bytes != -1)
2184 update_mem_ref_hash_table (base, size_in_bytes);
2187 /* Instrument an access to a contiguous memory region that starts at
2188 the address pointed to by BASE, over a length of LEN (expressed in
2189 the sizeof (*BASE) bytes). ITER points to the instruction before
2190 which the instrumentation instructions must be inserted. LOCATION
2191 is the source location that the instrumentation instructions must
2192 have. If IS_STORE is true, then the memory access is a store;
2193 otherwise, it's a load. */
2195 static void
2196 instrument_mem_region_access (tree base, tree len,
2197 gimple_stmt_iterator *iter,
2198 location_t location, bool is_store)
2200 if (!POINTER_TYPE_P (TREE_TYPE (base))
2201 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
2202 || integer_zerop (len))
2203 return;
2205 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2207 if ((size_in_bytes == -1)
2208 || !has_mem_ref_been_instrumented (base, size_in_bytes))
2210 build_check_stmt (location, base, len, size_in_bytes, iter,
2211 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
2212 is_store, /*is_scalar_access*/false, /*align*/0);
2215 maybe_update_mem_ref_hash_table (base, len);
2216 *iter = gsi_for_stmt (gsi_stmt (*iter));
2219 /* Instrument the call to a built-in memory access function that is
2220 pointed to by the iterator ITER.
2222 Upon completion, return TRUE iff *ITER has been advanced to the
2223 statement following the one it was originally pointing to. */
2225 static bool
2226 instrument_builtin_call (gimple_stmt_iterator *iter)
2228 if (!ASAN_MEMINTRIN)
2229 return false;
2231 bool iter_advanced_p = false;
2232 gcall *call = as_a <gcall *> (gsi_stmt (*iter));
2234 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
2236 location_t loc = gimple_location (call);
2238 asan_mem_ref src0, src1, dest;
2239 asan_mem_ref_init (&src0, NULL, 1);
2240 asan_mem_ref_init (&src1, NULL, 1);
2241 asan_mem_ref_init (&dest, NULL, 1);
2243 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
2244 bool src0_is_store = false, src1_is_store = false, dest_is_store = false,
2245 dest_is_deref = false, intercepted_p = true;
2247 if (get_mem_refs_of_builtin_call (call,
2248 &src0, &src0_len, &src0_is_store,
2249 &src1, &src1_len, &src1_is_store,
2250 &dest, &dest_len, &dest_is_store,
2251 &dest_is_deref, &intercepted_p, iter))
2253 if (dest_is_deref)
2255 instrument_derefs (iter, dest.start, loc, dest_is_store);
2256 gsi_next (iter);
2257 iter_advanced_p = true;
2259 else if (!intercepted_p
2260 && (src0_len || src1_len || dest_len))
2262 if (src0.start != NULL_TREE)
2263 instrument_mem_region_access (src0.start, src0_len,
2264 iter, loc, /*is_store=*/false);
2265 if (src1.start != NULL_TREE)
2266 instrument_mem_region_access (src1.start, src1_len,
2267 iter, loc, /*is_store=*/false);
2268 if (dest.start != NULL_TREE)
2269 instrument_mem_region_access (dest.start, dest_len,
2270 iter, loc, /*is_store=*/true);
2272 *iter = gsi_for_stmt (call);
2273 gsi_next (iter);
2274 iter_advanced_p = true;
2276 else
2278 if (src0.start != NULL_TREE)
2279 maybe_update_mem_ref_hash_table (src0.start, src0_len);
2280 if (src1.start != NULL_TREE)
2281 maybe_update_mem_ref_hash_table (src1.start, src1_len);
2282 if (dest.start != NULL_TREE)
2283 maybe_update_mem_ref_hash_table (dest.start, dest_len);
2286 return iter_advanced_p;
2289 /* Instrument the assignment statement ITER if it is subject to
2290 instrumentation. Return TRUE iff instrumentation actually
2291 happened. In that case, the iterator ITER is advanced to the next
2292 logical expression following the one initially pointed to by ITER,
2293 and the relevant memory reference that which access has been
2294 instrumented is added to the memory references hash table. */
2296 static bool
2297 maybe_instrument_assignment (gimple_stmt_iterator *iter)
2299 gimple *s = gsi_stmt (*iter);
2301 gcc_assert (gimple_assign_single_p (s));
2303 tree ref_expr = NULL_TREE;
2304 bool is_store, is_instrumented = false;
2306 if (gimple_store_p (s))
2308 ref_expr = gimple_assign_lhs (s);
2309 is_store = true;
2310 instrument_derefs (iter, ref_expr,
2311 gimple_location (s),
2312 is_store);
2313 is_instrumented = true;
2316 if (gimple_assign_load_p (s))
2318 ref_expr = gimple_assign_rhs1 (s);
2319 is_store = false;
2320 instrument_derefs (iter, ref_expr,
2321 gimple_location (s),
2322 is_store);
2323 is_instrumented = true;
2326 if (is_instrumented)
2327 gsi_next (iter);
2329 return is_instrumented;
2332 /* Instrument the function call pointed to by the iterator ITER, if it
2333 is subject to instrumentation. At the moment, the only function
2334 calls that are instrumented are some built-in functions that access
2335 memory. Look at instrument_builtin_call to learn more.
2337 Upon completion return TRUE iff *ITER was advanced to the statement
2338 following the one it was originally pointing to. */
2340 static bool
2341 maybe_instrument_call (gimple_stmt_iterator *iter)
2343 gimple *stmt = gsi_stmt (*iter);
2344 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2346 if (is_builtin && instrument_builtin_call (iter))
2347 return true;
2349 if (gimple_call_noreturn_p (stmt))
2351 if (is_builtin)
2353 tree callee = gimple_call_fndecl (stmt);
2354 switch (DECL_FUNCTION_CODE (callee))
2356 case BUILT_IN_UNREACHABLE:
2357 case BUILT_IN_TRAP:
2358 /* Don't instrument these. */
2359 return false;
2360 default:
2361 break;
2364 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2365 gimple *g = gimple_build_call (decl, 0);
2366 gimple_set_location (g, gimple_location (stmt));
2367 gsi_insert_before (iter, g, GSI_SAME_STMT);
2370 bool instrumented = false;
2371 if (gimple_store_p (stmt))
2373 tree ref_expr = gimple_call_lhs (stmt);
2374 instrument_derefs (iter, ref_expr,
2375 gimple_location (stmt),
2376 /*is_store=*/true);
2378 instrumented = true;
2381 /* Walk through gimple_call arguments and check them id needed. */
2382 unsigned args_num = gimple_call_num_args (stmt);
2383 for (unsigned i = 0; i < args_num; ++i)
2385 tree arg = gimple_call_arg (stmt, i);
2386 /* If ARG is not a non-aggregate register variable, compiler in general
2387 creates temporary for it and pass it as argument to gimple call.
2388 But in some cases, e.g. when we pass by value a small structure that
2389 fits to register, compiler can avoid extra overhead by pulling out
2390 these temporaries. In this case, we should check the argument. */
2391 if (!is_gimple_reg (arg) && !is_gimple_min_invariant (arg))
2393 instrument_derefs (iter, arg,
2394 gimple_location (stmt),
2395 /*is_store=*/false);
2396 instrumented = true;
2399 if (instrumented)
2400 gsi_next (iter);
2401 return instrumented;
2404 /* Walk each instruction of all basic block and instrument those that
2405 represent memory references: loads, stores, or function calls.
2406 In a given basic block, this function avoids instrumenting memory
2407 references that have already been instrumented. */
2409 static void
2410 transform_statements (void)
2412 basic_block bb, last_bb = NULL;
2413 gimple_stmt_iterator i;
2414 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2416 FOR_EACH_BB_FN (bb, cfun)
2418 basic_block prev_bb = bb;
2420 if (bb->index >= saved_last_basic_block) continue;
2422 /* Flush the mem ref hash table, if current bb doesn't have
2423 exactly one predecessor, or if that predecessor (skipping
2424 over asan created basic blocks) isn't the last processed
2425 basic block. Thus we effectively flush on extended basic
2426 block boundaries. */
2427 while (single_pred_p (prev_bb))
2429 prev_bb = single_pred (prev_bb);
2430 if (prev_bb->index < saved_last_basic_block)
2431 break;
2433 if (prev_bb != last_bb)
2434 empty_mem_ref_hash_table ();
2435 last_bb = bb;
2437 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2439 gimple *s = gsi_stmt (i);
2441 if (has_stmt_been_instrumented_p (s))
2442 gsi_next (&i);
2443 else if (gimple_assign_single_p (s)
2444 && !gimple_clobber_p (s)
2445 && maybe_instrument_assignment (&i))
2446 /* Nothing to do as maybe_instrument_assignment advanced
2447 the iterator I. */;
2448 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2449 /* Nothing to do as maybe_instrument_call
2450 advanced the iterator I. */;
2451 else
2453 /* No instrumentation happened.
2455 If the current instruction is a function call that
2456 might free something, let's forget about the memory
2457 references that got instrumented. Otherwise we might
2458 miss some instrumentation opportunities. Do the same
2459 for a ASAN_MARK poisoning internal function. */
2460 if (is_gimple_call (s)
2461 && (!nonfreeing_call_p (s)
2462 || asan_mark_p (s, ASAN_MARK_POISON)))
2463 empty_mem_ref_hash_table ();
2465 gsi_next (&i);
2469 free_mem_ref_resources ();
2472 /* Build
2473 __asan_before_dynamic_init (module_name)
2475 __asan_after_dynamic_init ()
2476 call. */
2478 tree
2479 asan_dynamic_init_call (bool after_p)
2481 if (shadow_ptr_types[0] == NULL_TREE)
2482 asan_init_shadow_ptr_types ();
2484 tree fn = builtin_decl_implicit (after_p
2485 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2486 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2487 tree module_name_cst = NULL_TREE;
2488 if (!after_p)
2490 pretty_printer module_name_pp;
2491 pp_string (&module_name_pp, main_input_filename);
2493 module_name_cst = asan_pp_string (&module_name_pp);
2494 module_name_cst = fold_convert (const_ptr_type_node,
2495 module_name_cst);
2498 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2501 /* Build
2502 struct __asan_global
2504 const void *__beg;
2505 uptr __size;
2506 uptr __size_with_redzone;
2507 const void *__name;
2508 const void *__module_name;
2509 uptr __has_dynamic_init;
2510 __asan_global_source_location *__location;
2511 char *__odr_indicator;
2512 } type. */
2514 static tree
2515 asan_global_struct (void)
2517 static const char *field_names[]
2518 = { "__beg", "__size", "__size_with_redzone",
2519 "__name", "__module_name", "__has_dynamic_init", "__location",
2520 "__odr_indicator" };
2521 tree fields[ARRAY_SIZE (field_names)], ret;
2522 unsigned i;
2524 ret = make_node (RECORD_TYPE);
2525 for (i = 0; i < ARRAY_SIZE (field_names); i++)
2527 fields[i]
2528 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2529 get_identifier (field_names[i]),
2530 (i == 0 || i == 3) ? const_ptr_type_node
2531 : pointer_sized_int_node);
2532 DECL_CONTEXT (fields[i]) = ret;
2533 if (i)
2534 DECL_CHAIN (fields[i - 1]) = fields[i];
2536 tree type_decl = build_decl (input_location, TYPE_DECL,
2537 get_identifier ("__asan_global"), ret);
2538 DECL_IGNORED_P (type_decl) = 1;
2539 DECL_ARTIFICIAL (type_decl) = 1;
2540 TYPE_FIELDS (ret) = fields[0];
2541 TYPE_NAME (ret) = type_decl;
2542 TYPE_STUB_DECL (ret) = type_decl;
2543 layout_type (ret);
2544 return ret;
2547 /* Create and return odr indicator symbol for DECL.
2548 TYPE is __asan_global struct type as returned by asan_global_struct. */
2550 static tree
2551 create_odr_indicator (tree decl, tree type)
2553 char *name;
2554 tree uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2555 tree decl_name
2556 = (HAS_DECL_ASSEMBLER_NAME_P (decl) ? DECL_ASSEMBLER_NAME (decl)
2557 : DECL_NAME (decl));
2558 /* DECL_NAME theoretically might be NULL. Bail out with 0 in this case. */
2559 if (decl_name == NULL_TREE)
2560 return build_int_cst (uptr, 0);
2561 const char *dname = IDENTIFIER_POINTER (decl_name);
2562 if (HAS_DECL_ASSEMBLER_NAME_P (decl))
2563 dname = targetm.strip_name_encoding (dname);
2564 size_t len = strlen (dname) + sizeof ("__odr_asan_");
2565 name = XALLOCAVEC (char, len);
2566 snprintf (name, len, "__odr_asan_%s", dname);
2567 #ifndef NO_DOT_IN_LABEL
2568 name[sizeof ("__odr_asan") - 1] = '.';
2569 #elif !defined(NO_DOLLAR_IN_LABEL)
2570 name[sizeof ("__odr_asan") - 1] = '$';
2571 #endif
2572 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (name),
2573 char_type_node);
2574 TREE_ADDRESSABLE (var) = 1;
2575 TREE_READONLY (var) = 0;
2576 TREE_THIS_VOLATILE (var) = 1;
2577 DECL_GIMPLE_REG_P (var) = 0;
2578 DECL_ARTIFICIAL (var) = 1;
2579 DECL_IGNORED_P (var) = 1;
2580 TREE_STATIC (var) = 1;
2581 TREE_PUBLIC (var) = 1;
2582 DECL_VISIBILITY (var) = DECL_VISIBILITY (decl);
2583 DECL_VISIBILITY_SPECIFIED (var) = DECL_VISIBILITY_SPECIFIED (decl);
2585 TREE_USED (var) = 1;
2586 tree ctor = build_constructor_va (TREE_TYPE (var), 1, NULL_TREE,
2587 build_int_cst (unsigned_type_node, 0));
2588 TREE_CONSTANT (ctor) = 1;
2589 TREE_STATIC (ctor) = 1;
2590 DECL_INITIAL (var) = ctor;
2591 DECL_ATTRIBUTES (var) = tree_cons (get_identifier ("asan odr indicator"),
2592 NULL, DECL_ATTRIBUTES (var));
2593 make_decl_rtl (var);
2594 varpool_node::finalize_decl (var);
2595 return fold_convert (uptr, build_fold_addr_expr (var));
2598 /* Return true if DECL, a global var, might be overridden and needs
2599 an additional odr indicator symbol. */
2601 static bool
2602 asan_needs_odr_indicator_p (tree decl)
2604 /* Don't emit ODR indicators for kernel because:
2605 a) Kernel is written in C thus doesn't need ODR indicators.
2606 b) Some kernel code may have assumptions about symbols containing specific
2607 patterns in their names. Since ODR indicators contain original names
2608 of symbols they are emitted for, these assumptions would be broken for
2609 ODR indicator symbols. */
2610 return (!(flag_sanitize & SANITIZE_KERNEL_ADDRESS)
2611 && !DECL_ARTIFICIAL (decl)
2612 && !DECL_WEAK (decl)
2613 && TREE_PUBLIC (decl));
2616 /* Append description of a single global DECL into vector V.
2617 TYPE is __asan_global struct type as returned by asan_global_struct. */
2619 static void
2620 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2622 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2623 unsigned HOST_WIDE_INT size;
2624 tree str_cst, module_name_cst, refdecl = decl;
2625 vec<constructor_elt, va_gc> *vinner = NULL;
2627 pretty_printer asan_pp, module_name_pp;
2629 if (DECL_NAME (decl))
2630 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2631 else
2632 pp_string (&asan_pp, "<unknown>");
2633 str_cst = asan_pp_string (&asan_pp);
2635 pp_string (&module_name_pp, main_input_filename);
2636 module_name_cst = asan_pp_string (&module_name_pp);
2638 if (asan_needs_local_alias (decl))
2640 char buf[20];
2641 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2642 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2643 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2644 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2645 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2646 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2647 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2648 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2649 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2650 TREE_STATIC (refdecl) = 1;
2651 TREE_PUBLIC (refdecl) = 0;
2652 TREE_USED (refdecl) = 1;
2653 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2656 tree odr_indicator_ptr
2657 = (asan_needs_odr_indicator_p (decl) ? create_odr_indicator (decl, type)
2658 : build_int_cst (uptr, 0));
2659 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2660 fold_convert (const_ptr_type_node,
2661 build_fold_addr_expr (refdecl)));
2662 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2663 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2664 size += asan_red_zone_size (size);
2665 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2666 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2667 fold_convert (const_ptr_type_node, str_cst));
2668 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2669 fold_convert (const_ptr_type_node, module_name_cst));
2670 varpool_node *vnode = varpool_node::get (decl);
2671 int has_dynamic_init = 0;
2672 /* FIXME: Enable initialization order fiasco detection in LTO mode once
2673 proper fix for PR 79061 will be applied. */
2674 if (!in_lto_p)
2675 has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2676 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2677 build_int_cst (uptr, has_dynamic_init));
2678 tree locptr = NULL_TREE;
2679 location_t loc = DECL_SOURCE_LOCATION (decl);
2680 expanded_location xloc = expand_location (loc);
2681 if (xloc.file != NULL)
2683 static int lasanloccnt = 0;
2684 char buf[25];
2685 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANLOC", ++lasanloccnt);
2686 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2687 ubsan_get_source_location_type ());
2688 TREE_STATIC (var) = 1;
2689 TREE_PUBLIC (var) = 0;
2690 DECL_ARTIFICIAL (var) = 1;
2691 DECL_IGNORED_P (var) = 1;
2692 pretty_printer filename_pp;
2693 pp_string (&filename_pp, xloc.file);
2694 tree str = asan_pp_string (&filename_pp);
2695 tree ctor = build_constructor_va (TREE_TYPE (var), 3,
2696 NULL_TREE, str, NULL_TREE,
2697 build_int_cst (unsigned_type_node,
2698 xloc.line), NULL_TREE,
2699 build_int_cst (unsigned_type_node,
2700 xloc.column));
2701 TREE_CONSTANT (ctor) = 1;
2702 TREE_STATIC (ctor) = 1;
2703 DECL_INITIAL (var) = ctor;
2704 varpool_node::finalize_decl (var);
2705 locptr = fold_convert (uptr, build_fold_addr_expr (var));
2707 else
2708 locptr = build_int_cst (uptr, 0);
2709 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, locptr);
2710 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, odr_indicator_ptr);
2711 init = build_constructor (type, vinner);
2712 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2715 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2716 void
2717 initialize_sanitizer_builtins (void)
2719 tree decl;
2721 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2722 return;
2724 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2725 tree BT_FN_VOID_PTR
2726 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2727 tree BT_FN_VOID_CONST_PTR
2728 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2729 tree BT_FN_VOID_PTR_PTR
2730 = build_function_type_list (void_type_node, ptr_type_node,
2731 ptr_type_node, NULL_TREE);
2732 tree BT_FN_VOID_PTR_PTR_PTR
2733 = build_function_type_list (void_type_node, ptr_type_node,
2734 ptr_type_node, ptr_type_node, NULL_TREE);
2735 tree BT_FN_VOID_PTR_PTRMODE
2736 = build_function_type_list (void_type_node, ptr_type_node,
2737 pointer_sized_int_node, NULL_TREE);
2738 tree BT_FN_VOID_INT
2739 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2740 tree BT_FN_SIZE_CONST_PTR_INT
2741 = build_function_type_list (size_type_node, const_ptr_type_node,
2742 integer_type_node, NULL_TREE);
2744 tree BT_FN_VOID_UINT8_UINT8
2745 = build_function_type_list (void_type_node, unsigned_char_type_node,
2746 unsigned_char_type_node, NULL_TREE);
2747 tree BT_FN_VOID_UINT16_UINT16
2748 = build_function_type_list (void_type_node, uint16_type_node,
2749 uint16_type_node, NULL_TREE);
2750 tree BT_FN_VOID_UINT32_UINT32
2751 = build_function_type_list (void_type_node, uint32_type_node,
2752 uint32_type_node, NULL_TREE);
2753 tree BT_FN_VOID_UINT64_UINT64
2754 = build_function_type_list (void_type_node, uint64_type_node,
2755 uint64_type_node, NULL_TREE);
2756 tree BT_FN_VOID_FLOAT_FLOAT
2757 = build_function_type_list (void_type_node, float_type_node,
2758 float_type_node, NULL_TREE);
2759 tree BT_FN_VOID_DOUBLE_DOUBLE
2760 = build_function_type_list (void_type_node, double_type_node,
2761 double_type_node, NULL_TREE);
2762 tree BT_FN_VOID_UINT64_PTR
2763 = build_function_type_list (void_type_node, uint64_type_node,
2764 ptr_type_node, NULL_TREE);
2766 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2767 tree BT_FN_IX_CONST_VPTR_INT[5];
2768 tree BT_FN_IX_VPTR_IX_INT[5];
2769 tree BT_FN_VOID_VPTR_IX_INT[5];
2770 tree vptr
2771 = build_pointer_type (build_qualified_type (void_type_node,
2772 TYPE_QUAL_VOLATILE));
2773 tree cvptr
2774 = build_pointer_type (build_qualified_type (void_type_node,
2775 TYPE_QUAL_VOLATILE
2776 |TYPE_QUAL_CONST));
2777 tree boolt
2778 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2779 int i;
2780 for (i = 0; i < 5; i++)
2782 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2783 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2784 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2785 integer_type_node, integer_type_node,
2786 NULL_TREE);
2787 BT_FN_IX_CONST_VPTR_INT[i]
2788 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2789 BT_FN_IX_VPTR_IX_INT[i]
2790 = build_function_type_list (ix, vptr, ix, integer_type_node,
2791 NULL_TREE);
2792 BT_FN_VOID_VPTR_IX_INT[i]
2793 = build_function_type_list (void_type_node, vptr, ix,
2794 integer_type_node, NULL_TREE);
2796 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2797 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2798 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2799 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2800 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2801 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2802 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2803 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2804 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2805 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2806 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2807 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2808 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2809 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2810 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2811 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2812 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2813 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2814 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2815 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2816 #undef ATTR_NOTHROW_LEAF_LIST
2817 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2818 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2819 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2820 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2821 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2822 #undef ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2823 #define ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST \
2824 ECF_CONST | ATTR_NORETURN_NOTHROW_LEAF_LIST
2825 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2826 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2827 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2828 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2829 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2830 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2831 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2832 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2833 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2834 #undef ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST
2835 #define ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST \
2836 /* ECF_COLD missing */ ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2837 #undef ATTR_PURE_NOTHROW_LEAF_LIST
2838 #define ATTR_PURE_NOTHROW_LEAF_LIST ECF_PURE | ATTR_NOTHROW_LEAF_LIST
2839 #undef DEF_BUILTIN_STUB
2840 #define DEF_BUILTIN_STUB(ENUM, NAME)
2841 #undef DEF_SANITIZER_BUILTIN_1
2842 #define DEF_SANITIZER_BUILTIN_1(ENUM, NAME, TYPE, ATTRS) \
2843 do { \
2844 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2845 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2846 set_call_expr_flags (decl, ATTRS); \
2847 set_builtin_decl (ENUM, decl, true); \
2848 } while (0)
2849 #undef DEF_SANITIZER_BUILTIN
2850 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2851 DEF_SANITIZER_BUILTIN_1 (ENUM, NAME, TYPE, ATTRS);
2853 #include "sanitizer.def"
2855 /* -fsanitize=object-size uses __builtin_object_size, but that might
2856 not be available for e.g. Fortran at this point. We use
2857 DEF_SANITIZER_BUILTIN here only as a convenience macro. */
2858 if ((flag_sanitize & SANITIZE_OBJECT_SIZE)
2859 && !builtin_decl_implicit_p (BUILT_IN_OBJECT_SIZE))
2860 DEF_SANITIZER_BUILTIN_1 (BUILT_IN_OBJECT_SIZE, "object_size",
2861 BT_FN_SIZE_CONST_PTR_INT,
2862 ATTR_PURE_NOTHROW_LEAF_LIST);
2864 #undef DEF_SANITIZER_BUILTIN_1
2865 #undef DEF_SANITIZER_BUILTIN
2866 #undef DEF_BUILTIN_STUB
2869 /* Called via htab_traverse. Count number of emitted
2870 STRING_CSTs in the constant hash table. */
2873 count_string_csts (constant_descriptor_tree **slot,
2874 unsigned HOST_WIDE_INT *data)
2876 struct constant_descriptor_tree *desc = *slot;
2877 if (TREE_CODE (desc->value) == STRING_CST
2878 && TREE_ASM_WRITTEN (desc->value)
2879 && asan_protect_global (desc->value))
2880 ++*data;
2881 return 1;
2884 /* Helper structure to pass two parameters to
2885 add_string_csts. */
2887 struct asan_add_string_csts_data
2889 tree type;
2890 vec<constructor_elt, va_gc> *v;
2893 /* Called via hash_table::traverse. Call asan_add_global
2894 on emitted STRING_CSTs from the constant hash table. */
2897 add_string_csts (constant_descriptor_tree **slot,
2898 asan_add_string_csts_data *aascd)
2900 struct constant_descriptor_tree *desc = *slot;
2901 if (TREE_CODE (desc->value) == STRING_CST
2902 && TREE_ASM_WRITTEN (desc->value)
2903 && asan_protect_global (desc->value))
2905 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2906 aascd->type, aascd->v);
2908 return 1;
2911 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2912 invoke ggc_collect. */
2913 static GTY(()) tree asan_ctor_statements;
2915 /* Module-level instrumentation.
2916 - Insert __asan_init_vN() into the list of CTORs.
2917 - TODO: insert redzones around globals.
2920 void
2921 asan_finish_file (void)
2923 varpool_node *vnode;
2924 unsigned HOST_WIDE_INT gcount = 0;
2926 if (shadow_ptr_types[0] == NULL_TREE)
2927 asan_init_shadow_ptr_types ();
2928 /* Avoid instrumenting code in the asan ctors/dtors.
2929 We don't need to insert padding after the description strings,
2930 nor after .LASAN* array. */
2931 flag_sanitize &= ~SANITIZE_ADDRESS;
2933 /* For user-space we want asan constructors to run first.
2934 Linux kernel does not support priorities other than default, and the only
2935 other user of constructors is coverage. So we run with the default
2936 priority. */
2937 int priority = flag_sanitize & SANITIZE_USER_ADDRESS
2938 ? MAX_RESERVED_INIT_PRIORITY - 1 : DEFAULT_INIT_PRIORITY;
2940 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2942 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2943 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2944 fn = builtin_decl_implicit (BUILT_IN_ASAN_VERSION_MISMATCH_CHECK);
2945 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2947 FOR_EACH_DEFINED_VARIABLE (vnode)
2948 if (TREE_ASM_WRITTEN (vnode->decl)
2949 && asan_protect_global (vnode->decl))
2950 ++gcount;
2951 hash_table<tree_descriptor_hasher> *const_desc_htab = constant_pool_htab ();
2952 const_desc_htab->traverse<unsigned HOST_WIDE_INT *, count_string_csts>
2953 (&gcount);
2954 if (gcount)
2956 tree type = asan_global_struct (), var, ctor;
2957 tree dtor_statements = NULL_TREE;
2958 vec<constructor_elt, va_gc> *v;
2959 char buf[20];
2961 type = build_array_type_nelts (type, gcount);
2962 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2963 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2964 type);
2965 TREE_STATIC (var) = 1;
2966 TREE_PUBLIC (var) = 0;
2967 DECL_ARTIFICIAL (var) = 1;
2968 DECL_IGNORED_P (var) = 1;
2969 vec_alloc (v, gcount);
2970 FOR_EACH_DEFINED_VARIABLE (vnode)
2971 if (TREE_ASM_WRITTEN (vnode->decl)
2972 && asan_protect_global (vnode->decl))
2973 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2974 struct asan_add_string_csts_data aascd;
2975 aascd.type = TREE_TYPE (type);
2976 aascd.v = v;
2977 const_desc_htab->traverse<asan_add_string_csts_data *, add_string_csts>
2978 (&aascd);
2979 ctor = build_constructor (type, v);
2980 TREE_CONSTANT (ctor) = 1;
2981 TREE_STATIC (ctor) = 1;
2982 DECL_INITIAL (var) = ctor;
2983 SET_DECL_ALIGN (var, MAX (DECL_ALIGN (var),
2984 ASAN_SHADOW_GRANULARITY * BITS_PER_UNIT));
2986 varpool_node::finalize_decl (var);
2988 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2989 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2990 append_to_statement_list (build_call_expr (fn, 2,
2991 build_fold_addr_expr (var),
2992 gcount_tree),
2993 &asan_ctor_statements);
2995 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2996 append_to_statement_list (build_call_expr (fn, 2,
2997 build_fold_addr_expr (var),
2998 gcount_tree),
2999 &dtor_statements);
3000 cgraph_build_static_cdtor ('D', dtor_statements, priority);
3002 if (asan_ctor_statements)
3003 cgraph_build_static_cdtor ('I', asan_ctor_statements, priority);
3004 flag_sanitize |= SANITIZE_ADDRESS;
3007 /* Poison or unpoison (depending on IS_CLOBBER variable) shadow memory based
3008 on SHADOW address. Newly added statements will be added to ITER with
3009 given location LOC. We mark SIZE bytes in shadow memory, where
3010 LAST_CHUNK_SIZE is greater than zero in situation where we are at the
3011 end of a variable. */
3013 static void
3014 asan_store_shadow_bytes (gimple_stmt_iterator *iter, location_t loc,
3015 tree shadow,
3016 unsigned HOST_WIDE_INT base_addr_offset,
3017 bool is_clobber, unsigned size,
3018 unsigned last_chunk_size)
3020 tree shadow_ptr_type;
3022 switch (size)
3024 case 1:
3025 shadow_ptr_type = shadow_ptr_types[0];
3026 break;
3027 case 2:
3028 shadow_ptr_type = shadow_ptr_types[1];
3029 break;
3030 case 4:
3031 shadow_ptr_type = shadow_ptr_types[2];
3032 break;
3033 default:
3034 gcc_unreachable ();
3037 unsigned char c = (char) is_clobber ? ASAN_STACK_MAGIC_USE_AFTER_SCOPE : 0;
3038 unsigned HOST_WIDE_INT val = 0;
3039 unsigned last_pos = size;
3040 if (last_chunk_size && !is_clobber)
3041 last_pos = BYTES_BIG_ENDIAN ? 0 : size - 1;
3042 for (unsigned i = 0; i < size; ++i)
3044 unsigned char shadow_c = c;
3045 if (i == last_pos)
3046 shadow_c = last_chunk_size;
3047 val |= (unsigned HOST_WIDE_INT) shadow_c << (BITS_PER_UNIT * i);
3050 /* Handle last chunk in unpoisoning. */
3051 tree magic = build_int_cst (TREE_TYPE (shadow_ptr_type), val);
3053 tree dest = build2 (MEM_REF, TREE_TYPE (shadow_ptr_type), shadow,
3054 build_int_cst (shadow_ptr_type, base_addr_offset));
3056 gimple *g = gimple_build_assign (dest, magic);
3057 gimple_set_location (g, loc);
3058 gsi_insert_after (iter, g, GSI_NEW_STMT);
3061 /* Expand the ASAN_MARK builtins. */
3063 bool
3064 asan_expand_mark_ifn (gimple_stmt_iterator *iter)
3066 gimple *g = gsi_stmt (*iter);
3067 location_t loc = gimple_location (g);
3068 HOST_WIDE_INT flag = tree_to_shwi (gimple_call_arg (g, 0));
3069 bool is_poison = ((asan_mark_flags)flag) == ASAN_MARK_POISON;
3071 tree base = gimple_call_arg (g, 1);
3072 gcc_checking_assert (TREE_CODE (base) == ADDR_EXPR);
3073 tree decl = TREE_OPERAND (base, 0);
3075 /* For a nested function, we can have: ASAN_MARK (2, &FRAME.2.fp_input, 4) */
3076 if (TREE_CODE (decl) == COMPONENT_REF
3077 && DECL_NONLOCAL_FRAME (TREE_OPERAND (decl, 0)))
3078 decl = TREE_OPERAND (decl, 0);
3080 gcc_checking_assert (TREE_CODE (decl) == VAR_DECL);
3082 if (is_poison)
3084 if (asan_handled_variables == NULL)
3085 asan_handled_variables = new hash_set<tree> (16);
3086 asan_handled_variables->add (decl);
3088 tree len = gimple_call_arg (g, 2);
3090 gcc_assert (tree_fits_shwi_p (len));
3091 unsigned HOST_WIDE_INT size_in_bytes = tree_to_shwi (len);
3092 gcc_assert (size_in_bytes);
3094 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3095 NOP_EXPR, base);
3096 gimple_set_location (g, loc);
3097 gsi_replace (iter, g, false);
3098 tree base_addr = gimple_assign_lhs (g);
3100 /* Generate direct emission if size_in_bytes is small. */
3101 if (size_in_bytes <= ASAN_PARAM_USE_AFTER_SCOPE_DIRECT_EMISSION_THRESHOLD)
3103 unsigned HOST_WIDE_INT shadow_size = shadow_mem_size (size_in_bytes);
3105 tree shadow = build_shadow_mem_access (iter, loc, base_addr,
3106 shadow_ptr_types[0], true);
3108 for (unsigned HOST_WIDE_INT offset = 0; offset < shadow_size;)
3110 unsigned size = 1;
3111 if (shadow_size - offset >= 4)
3112 size = 4;
3113 else if (shadow_size - offset >= 2)
3114 size = 2;
3116 unsigned HOST_WIDE_INT last_chunk_size = 0;
3117 unsigned HOST_WIDE_INT s = (offset + size) * ASAN_SHADOW_GRANULARITY;
3118 if (s > size_in_bytes)
3119 last_chunk_size = ASAN_SHADOW_GRANULARITY - (s - size_in_bytes);
3121 asan_store_shadow_bytes (iter, loc, shadow, offset, is_poison,
3122 size, last_chunk_size);
3123 offset += size;
3126 else
3128 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3129 NOP_EXPR, len);
3130 gimple_set_location (g, loc);
3131 gsi_insert_before (iter, g, GSI_SAME_STMT);
3132 tree sz_arg = gimple_assign_lhs (g);
3134 tree fun
3135 = builtin_decl_implicit (is_poison ? BUILT_IN_ASAN_POISON_STACK_MEMORY
3136 : BUILT_IN_ASAN_UNPOISON_STACK_MEMORY);
3137 g = gimple_build_call (fun, 2, base_addr, sz_arg);
3138 gimple_set_location (g, loc);
3139 gsi_insert_after (iter, g, GSI_NEW_STMT);
3142 return false;
3145 /* Expand the ASAN_{LOAD,STORE} builtins. */
3147 bool
3148 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
3150 gimple *g = gsi_stmt (*iter);
3151 location_t loc = gimple_location (g);
3152 bool recover_p;
3153 if (flag_sanitize & SANITIZE_USER_ADDRESS)
3154 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
3155 else
3156 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
3158 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
3159 gcc_assert (flags < ASAN_CHECK_LAST);
3160 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
3161 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
3162 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
3164 tree base = gimple_call_arg (g, 1);
3165 tree len = gimple_call_arg (g, 2);
3166 HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
3168 HOST_WIDE_INT size_in_bytes
3169 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
3171 if (use_calls)
3173 /* Instrument using callbacks. */
3174 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3175 NOP_EXPR, base);
3176 gimple_set_location (g, loc);
3177 gsi_insert_before (iter, g, GSI_SAME_STMT);
3178 tree base_addr = gimple_assign_lhs (g);
3180 int nargs;
3181 tree fun = check_func (is_store, recover_p, size_in_bytes, &nargs);
3182 if (nargs == 1)
3183 g = gimple_build_call (fun, 1, base_addr);
3184 else
3186 gcc_assert (nargs == 2);
3187 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3188 NOP_EXPR, len);
3189 gimple_set_location (g, loc);
3190 gsi_insert_before (iter, g, GSI_SAME_STMT);
3191 tree sz_arg = gimple_assign_lhs (g);
3192 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
3194 gimple_set_location (g, loc);
3195 gsi_replace (iter, g, false);
3196 return false;
3199 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
3201 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
3202 tree shadow_type = TREE_TYPE (shadow_ptr_type);
3204 gimple_stmt_iterator gsi = *iter;
3206 if (!is_non_zero_len)
3208 /* So, the length of the memory area to asan-protect is
3209 non-constant. Let's guard the generated instrumentation code
3210 like:
3212 if (len != 0)
3214 //asan instrumentation code goes here.
3216 // falltrough instructions, starting with *ITER. */
3218 g = gimple_build_cond (NE_EXPR,
3219 len,
3220 build_int_cst (TREE_TYPE (len), 0),
3221 NULL_TREE, NULL_TREE);
3222 gimple_set_location (g, loc);
3224 basic_block then_bb, fallthrough_bb;
3225 insert_if_then_before_iter (as_a <gcond *> (g), iter,
3226 /*then_more_likely_p=*/true,
3227 &then_bb, &fallthrough_bb);
3228 /* Note that fallthrough_bb starts with the statement that was
3229 pointed to by ITER. */
3231 /* The 'then block' of the 'if (len != 0) condition is where
3232 we'll generate the asan instrumentation code now. */
3233 gsi = gsi_last_bb (then_bb);
3236 /* Get an iterator on the point where we can add the condition
3237 statement for the instrumentation. */
3238 basic_block then_bb, else_bb;
3239 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
3240 /*then_more_likely_p=*/false,
3241 /*create_then_fallthru_edge*/recover_p,
3242 &then_bb,
3243 &else_bb);
3245 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3246 NOP_EXPR, base);
3247 gimple_set_location (g, loc);
3248 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
3249 tree base_addr = gimple_assign_lhs (g);
3251 tree t = NULL_TREE;
3252 if (real_size_in_bytes >= 8)
3254 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
3255 shadow_ptr_type);
3256 t = shadow;
3258 else
3260 /* Slow path for 1, 2 and 4 byte accesses. */
3261 /* Test (shadow != 0)
3262 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
3263 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
3264 shadow_ptr_type);
3265 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
3266 gimple_seq seq = NULL;
3267 gimple_seq_add_stmt (&seq, shadow_test);
3268 /* Aligned (>= 8 bytes) can test just
3269 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
3270 to be 0. */
3271 if (align < 8)
3273 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
3274 base_addr, 7));
3275 gimple_seq_add_stmt (&seq,
3276 build_type_cast (shadow_type,
3277 gimple_seq_last (seq)));
3278 if (real_size_in_bytes > 1)
3279 gimple_seq_add_stmt (&seq,
3280 build_assign (PLUS_EXPR,
3281 gimple_seq_last (seq),
3282 real_size_in_bytes - 1));
3283 t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
3285 else
3286 t = build_int_cst (shadow_type, real_size_in_bytes - 1);
3287 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
3288 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3289 gimple_seq_last (seq)));
3290 t = gimple_assign_lhs (gimple_seq_last (seq));
3291 gimple_seq_set_location (seq, loc);
3292 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3294 /* For non-constant, misaligned or otherwise weird access sizes,
3295 check first and last byte. */
3296 if (size_in_bytes == -1)
3298 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3299 MINUS_EXPR, len,
3300 build_int_cst (pointer_sized_int_node, 1));
3301 gimple_set_location (g, loc);
3302 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3303 tree last = gimple_assign_lhs (g);
3304 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3305 PLUS_EXPR, base_addr, last);
3306 gimple_set_location (g, loc);
3307 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3308 tree base_end_addr = gimple_assign_lhs (g);
3310 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
3311 shadow_ptr_type);
3312 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
3313 gimple_seq seq = NULL;
3314 gimple_seq_add_stmt (&seq, shadow_test);
3315 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
3316 base_end_addr, 7));
3317 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
3318 gimple_seq_last (seq)));
3319 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
3320 gimple_seq_last (seq),
3321 shadow));
3322 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3323 gimple_seq_last (seq)));
3324 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
3325 gimple_seq_last (seq)));
3326 t = gimple_assign_lhs (gimple_seq_last (seq));
3327 gimple_seq_set_location (seq, loc);
3328 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3332 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
3333 NULL_TREE, NULL_TREE);
3334 gimple_set_location (g, loc);
3335 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3337 /* Generate call to the run-time library (e.g. __asan_report_load8). */
3338 gsi = gsi_start_bb (then_bb);
3339 int nargs;
3340 tree fun = report_error_func (is_store, recover_p, size_in_bytes, &nargs);
3341 g = gimple_build_call (fun, nargs, base_addr, len);
3342 gimple_set_location (g, loc);
3343 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3345 gsi_remove (iter, true);
3346 *iter = gsi_start_bb (else_bb);
3348 return true;
3351 /* Create ASAN shadow variable for a VAR_DECL which has been rewritten
3352 into SSA. Already seen VAR_DECLs are stored in SHADOW_VARS_MAPPING. */
3354 static tree
3355 create_asan_shadow_var (tree var_decl,
3356 hash_map<tree, tree> &shadow_vars_mapping)
3358 tree *slot = shadow_vars_mapping.get (var_decl);
3359 if (slot == NULL)
3361 tree shadow_var = copy_node (var_decl);
3363 copy_body_data id;
3364 memset (&id, 0, sizeof (copy_body_data));
3365 id.src_fn = id.dst_fn = current_function_decl;
3366 copy_decl_for_dup_finish (&id, var_decl, shadow_var);
3368 DECL_ARTIFICIAL (shadow_var) = 1;
3369 DECL_IGNORED_P (shadow_var) = 1;
3370 DECL_SEEN_IN_BIND_EXPR_P (shadow_var) = 0;
3371 gimple_add_tmp_var (shadow_var);
3373 shadow_vars_mapping.put (var_decl, shadow_var);
3374 return shadow_var;
3376 else
3377 return *slot;
3380 /* Expand ASAN_POISON ifn. */
3382 bool
3383 asan_expand_poison_ifn (gimple_stmt_iterator *iter,
3384 bool *need_commit_edge_insert,
3385 hash_map<tree, tree> &shadow_vars_mapping)
3387 gimple *g = gsi_stmt (*iter);
3388 tree poisoned_var = gimple_call_lhs (g);
3389 if (!poisoned_var || has_zero_uses (poisoned_var))
3391 gsi_remove (iter, true);
3392 return true;
3395 if (SSA_NAME_VAR (poisoned_var) == NULL_TREE)
3396 SET_SSA_NAME_VAR_OR_IDENTIFIER (poisoned_var,
3397 create_tmp_var (TREE_TYPE (poisoned_var)));
3399 tree shadow_var = create_asan_shadow_var (SSA_NAME_VAR (poisoned_var),
3400 shadow_vars_mapping);
3402 bool recover_p;
3403 if (flag_sanitize & SANITIZE_USER_ADDRESS)
3404 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
3405 else
3406 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
3407 tree size = DECL_SIZE_UNIT (shadow_var);
3408 gimple *poison_call
3409 = gimple_build_call_internal (IFN_ASAN_MARK, 3,
3410 build_int_cst (integer_type_node,
3411 ASAN_MARK_POISON),
3412 build_fold_addr_expr (shadow_var), size);
3414 gimple *use;
3415 imm_use_iterator imm_iter;
3416 FOR_EACH_IMM_USE_STMT (use, imm_iter, poisoned_var)
3418 if (is_gimple_debug (use))
3419 continue;
3421 int nargs;
3422 bool store_p = gimple_call_internal_p (use, IFN_ASAN_POISON_USE);
3423 tree fun = report_error_func (store_p, recover_p, tree_to_uhwi (size),
3424 &nargs);
3426 gcall *call = gimple_build_call (fun, 1,
3427 build_fold_addr_expr (shadow_var));
3428 gimple_set_location (call, gimple_location (use));
3429 gimple *call_to_insert = call;
3431 /* The USE can be a gimple PHI node. If so, insert the call on
3432 all edges leading to the PHI node. */
3433 if (is_a <gphi *> (use))
3435 gphi *phi = dyn_cast<gphi *> (use);
3436 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
3437 if (gimple_phi_arg_def (phi, i) == poisoned_var)
3439 edge e = gimple_phi_arg_edge (phi, i);
3441 /* Do not insert on an edge we can't split. */
3442 if (e->flags & EDGE_ABNORMAL)
3443 continue;
3445 if (call_to_insert == NULL)
3446 call_to_insert = gimple_copy (call);
3448 gsi_insert_seq_on_edge (e, call_to_insert);
3449 *need_commit_edge_insert = true;
3450 call_to_insert = NULL;
3453 else
3455 gimple_stmt_iterator gsi = gsi_for_stmt (use);
3456 if (store_p)
3457 gsi_replace (&gsi, call, true);
3458 else
3459 gsi_insert_before (&gsi, call, GSI_NEW_STMT);
3463 SSA_NAME_IS_DEFAULT_DEF (poisoned_var) = true;
3464 SSA_NAME_DEF_STMT (poisoned_var) = gimple_build_nop ();
3465 gsi_replace (iter, poison_call, false);
3467 return true;
3470 /* Instrument the current function. */
3472 static unsigned int
3473 asan_instrument (void)
3475 if (shadow_ptr_types[0] == NULL_TREE)
3476 asan_init_shadow_ptr_types ();
3477 transform_statements ();
3478 last_alloca_addr = NULL_TREE;
3479 return 0;
3482 static bool
3483 gate_asan (void)
3485 return sanitize_flags_p (SANITIZE_ADDRESS);
3488 namespace {
3490 const pass_data pass_data_asan =
3492 GIMPLE_PASS, /* type */
3493 "asan", /* name */
3494 OPTGROUP_NONE, /* optinfo_flags */
3495 TV_NONE, /* tv_id */
3496 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3497 0, /* properties_provided */
3498 0, /* properties_destroyed */
3499 0, /* todo_flags_start */
3500 TODO_update_ssa, /* todo_flags_finish */
3503 class pass_asan : public gimple_opt_pass
3505 public:
3506 pass_asan (gcc::context *ctxt)
3507 : gimple_opt_pass (pass_data_asan, ctxt)
3510 /* opt_pass methods: */
3511 opt_pass * clone () { return new pass_asan (m_ctxt); }
3512 virtual bool gate (function *) { return gate_asan (); }
3513 virtual unsigned int execute (function *) { return asan_instrument (); }
3515 }; // class pass_asan
3517 } // anon namespace
3519 gimple_opt_pass *
3520 make_pass_asan (gcc::context *ctxt)
3522 return new pass_asan (ctxt);
3525 namespace {
3527 const pass_data pass_data_asan_O0 =
3529 GIMPLE_PASS, /* type */
3530 "asan0", /* name */
3531 OPTGROUP_NONE, /* optinfo_flags */
3532 TV_NONE, /* tv_id */
3533 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3534 0, /* properties_provided */
3535 0, /* properties_destroyed */
3536 0, /* todo_flags_start */
3537 TODO_update_ssa, /* todo_flags_finish */
3540 class pass_asan_O0 : public gimple_opt_pass
3542 public:
3543 pass_asan_O0 (gcc::context *ctxt)
3544 : gimple_opt_pass (pass_data_asan_O0, ctxt)
3547 /* opt_pass methods: */
3548 virtual bool gate (function *) { return !optimize && gate_asan (); }
3549 virtual unsigned int execute (function *) { return asan_instrument (); }
3551 }; // class pass_asan_O0
3553 } // anon namespace
3555 gimple_opt_pass *
3556 make_pass_asan_O0 (gcc::context *ctxt)
3558 return new pass_asan_O0 (ctxt);
3561 #include "gt-asan.h"