1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file implements the well known algorithm from Lengauer and Tarjan
22 to compute the dominators in a control flow graph. A basic block D is said
23 to dominate another block X, when all paths from the entry node of the CFG
24 to X go also over D. The dominance relation is a transitive reflexive
25 relation and its minimal transitive reduction is a tree, called the
26 dominator tree. So for each block X besides the entry block exists a
27 block I(X), called the immediate dominator of X, which is the parent of X
28 in the dominator tree.
30 The algorithm computes this dominator tree implicitly by computing for
31 each block its immediate dominator. We use tree balancing and path
32 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
33 slowly growing functional inverse of the Ackerman function. */
37 #include "coretypes.h"
42 #include "diagnostic-core.h"
43 #include "alloc-pool.h"
44 #include "et-forest.h"
48 /* We name our nodes with integers, beginning with 1. Zero is reserved for
49 'undefined' or 'end of list'. The name of each node is given by the dfs
50 number of the corresponding basic block. Please note, that we include the
51 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
52 support multiple entry points. Its dfs number is of course 1. */
54 /* Type of Basic Block aka. TBB */
55 typedef unsigned int TBB
;
57 /* We work in a poor-mans object oriented fashion, and carry an instance of
58 this structure through all our 'methods'. It holds various arrays
59 reflecting the (sub)structure of the flowgraph. Most of them are of type
60 TBB and are also indexed by TBB. */
64 /* The parent of a node in the DFS tree. */
66 /* For a node x key[x] is roughly the node nearest to the root from which
67 exists a way to x only over nodes behind x. Such a node is also called
70 /* The value in path_min[x] is the node y on the path from x to the root of
71 the tree x is in with the smallest key[y]. */
73 /* bucket[x] points to the first node of the set of nodes having x as key. */
75 /* And next_bucket[x] points to the next node. */
77 /* After the algorithm is done, dom[x] contains the immediate dominator
81 /* The following few fields implement the structures needed for disjoint
83 /* set_chain[x] is the next node on the path from x to the representative
84 of the set containing x. If set_chain[x]==0 then x is a root. */
86 /* set_size[x] is the number of elements in the set named by x. */
87 unsigned int *set_size
;
88 /* set_child[x] is used for balancing the tree representing a set. It can
89 be understood as the next sibling of x. */
92 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
93 number of that node in DFS order counted from 1. This is an index
94 into most of the other arrays in this structure. */
96 /* If x is the DFS-index of a node which corresponds with a basic block,
97 dfs_to_bb[x] is that basic block. Note, that in our structure there are
98 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
99 is true for every basic block bb, but not the opposite. */
100 basic_block
*dfs_to_bb
;
102 /* This is the next free DFS number when creating the DFS tree. */
104 /* The number of nodes in the DFS tree (==dfsnum-1). */
107 /* Blocks with bits set here have a fake edge to EXIT. These are used
108 to turn a DFS forest into a proper tree. */
109 bitmap fake_exit_edge
;
112 static void init_dom_info (struct dom_info
*, enum cdi_direction
);
113 static void free_dom_info (struct dom_info
*);
114 static void calc_dfs_tree_nonrec (struct dom_info
*, basic_block
, bool);
115 static void calc_dfs_tree (struct dom_info
*, bool);
116 static void compress (struct dom_info
*, TBB
);
117 static TBB
eval (struct dom_info
*, TBB
);
118 static void link_roots (struct dom_info
*, TBB
, TBB
);
119 static void calc_idoms (struct dom_info
*, bool);
120 void debug_dominance_info (enum cdi_direction
);
121 void debug_dominance_tree (enum cdi_direction
, basic_block
);
123 /* Helper macro for allocating and initializing an array,
124 for aesthetic reasons. */
125 #define init_ar(var, type, num, content) \
128 unsigned int i = 1; /* Catch content == i. */ \
130 (var) = XCNEWVEC (type, num); \
133 (var) = XNEWVEC (type, (num)); \
134 for (i = 0; i < num; i++) \
135 (var)[i] = (content); \
140 /* Allocate all needed memory in a pessimistic fashion (so we round up).
141 This initializes the contents of DI, which already must be allocated. */
144 init_dom_info (struct dom_info
*di
, enum cdi_direction dir
)
146 /* We need memory for n_basic_blocks nodes. */
147 unsigned int num
= n_basic_blocks_for_fn (cfun
);
148 init_ar (di
->dfs_parent
, TBB
, num
, 0);
149 init_ar (di
->path_min
, TBB
, num
, i
);
150 init_ar (di
->key
, TBB
, num
, i
);
151 init_ar (di
->dom
, TBB
, num
, 0);
153 init_ar (di
->bucket
, TBB
, num
, 0);
154 init_ar (di
->next_bucket
, TBB
, num
, 0);
156 init_ar (di
->set_chain
, TBB
, num
, 0);
157 init_ar (di
->set_size
, unsigned int, num
, 1);
158 init_ar (di
->set_child
, TBB
, num
, 0);
160 init_ar (di
->dfs_order
, TBB
,
161 (unsigned int) last_basic_block_for_fn (cfun
) + 1, 0);
162 init_ar (di
->dfs_to_bb
, basic_block
, num
, 0);
170 di
->fake_exit_edge
= NULL
;
172 case CDI_POST_DOMINATORS
:
173 di
->fake_exit_edge
= BITMAP_ALLOC (NULL
);
183 /* Map dominance calculation type to array index used for various
184 dominance information arrays. This version is simple -- it will need
185 to be modified, obviously, if additional values are added to
189 dom_convert_dir_to_idx (enum cdi_direction dir
)
191 gcc_checking_assert (dir
== CDI_DOMINATORS
|| dir
== CDI_POST_DOMINATORS
);
195 /* Free all allocated memory in DI, but not DI itself. */
198 free_dom_info (struct dom_info
*di
)
200 free (di
->dfs_parent
);
205 free (di
->next_bucket
);
206 free (di
->set_chain
);
208 free (di
->set_child
);
209 free (di
->dfs_order
);
210 free (di
->dfs_to_bb
);
211 BITMAP_FREE (di
->fake_exit_edge
);
214 /* The nonrecursive variant of creating a DFS tree. DI is our working
215 structure, BB the starting basic block for this tree and REVERSE
216 is true, if predecessors should be visited instead of successors of a
217 node. After this is done all nodes reachable from BB were visited, have
218 assigned their dfs number and are linked together to form a tree. */
221 calc_dfs_tree_nonrec (struct dom_info
*di
, basic_block bb
, bool reverse
)
223 /* We call this _only_ if bb is not already visited. */
225 TBB child_i
, my_i
= 0;
226 edge_iterator
*stack
;
227 edge_iterator ei
, einext
;
229 /* Start block (the entry block for forward problem, exit block for backward
231 basic_block en_block
;
233 basic_block ex_block
;
235 stack
= XNEWVEC (edge_iterator
, n_basic_blocks_for_fn (cfun
) + 1);
238 /* Initialize our border blocks, and the first edge. */
241 ei
= ei_start (bb
->preds
);
242 en_block
= EXIT_BLOCK_PTR_FOR_FN (cfun
);
243 ex_block
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
247 ei
= ei_start (bb
->succs
);
248 en_block
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
249 ex_block
= EXIT_BLOCK_PTR_FOR_FN (cfun
);
252 /* When the stack is empty we break out of this loop. */
257 /* This loop traverses edges e in depth first manner, and fills the
259 while (!ei_end_p (ei
))
263 /* Deduce from E the current and the next block (BB and BN), and the
269 /* If the next node BN is either already visited or a border
270 block the current edge is useless, and simply overwritten
271 with the next edge out of the current node. */
272 if (bn
== ex_block
|| di
->dfs_order
[bn
->index
])
278 einext
= ei_start (bn
->preds
);
283 if (bn
== ex_block
|| di
->dfs_order
[bn
->index
])
289 einext
= ei_start (bn
->succs
);
292 gcc_assert (bn
!= en_block
);
294 /* Fill the DFS tree info calculatable _before_ recursing. */
296 my_i
= di
->dfs_order
[bb
->index
];
298 my_i
= di
->dfs_order
[last_basic_block_for_fn (cfun
)];
299 child_i
= di
->dfs_order
[bn
->index
] = di
->dfsnum
++;
300 di
->dfs_to_bb
[child_i
] = bn
;
301 di
->dfs_parent
[child_i
] = my_i
;
303 /* Save the current point in the CFG on the stack, and recurse. */
312 /* OK. The edge-list was exhausted, meaning normally we would
313 end the recursion. After returning from the recursive call,
314 there were (may be) other statements which were run after a
315 child node was completely considered by DFS. Here is the
316 point to do it in the non-recursive variant.
317 E.g. The block just completed is in e->dest for forward DFS,
318 the block not yet completed (the parent of the one above)
319 in e->src. This could be used e.g. for computing the number of
320 descendants or the tree depth. */
326 /* The main entry for calculating the DFS tree or forest. DI is our working
327 structure and REVERSE is true, if we are interested in the reverse flow
328 graph. In that case the result is not necessarily a tree but a forest,
329 because there may be nodes from which the EXIT_BLOCK is unreachable. */
332 calc_dfs_tree (struct dom_info
*di
, bool reverse
)
334 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
335 basic_block begin
= (reverse
336 ? EXIT_BLOCK_PTR_FOR_FN (cfun
) : ENTRY_BLOCK_PTR_FOR_FN (cfun
));
337 di
->dfs_order
[last_basic_block_for_fn (cfun
)] = di
->dfsnum
;
338 di
->dfs_to_bb
[di
->dfsnum
] = begin
;
341 calc_dfs_tree_nonrec (di
, begin
, reverse
);
345 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
346 They are reverse-unreachable. In the dom-case we disallow such
347 nodes, but in post-dom we have to deal with them.
349 There are two situations in which this occurs. First, noreturn
350 functions. Second, infinite loops. In the first case we need to
351 pretend that there is an edge to the exit block. In the second
352 case, we wind up with a forest. We need to process all noreturn
353 blocks before we know if we've got any infinite loops. */
356 bool saw_unconnected
= false;
358 FOR_EACH_BB_REVERSE_FN (b
, cfun
)
360 if (EDGE_COUNT (b
->succs
) > 0)
362 if (di
->dfs_order
[b
->index
] == 0)
363 saw_unconnected
= true;
366 bitmap_set_bit (di
->fake_exit_edge
, b
->index
);
367 di
->dfs_order
[b
->index
] = di
->dfsnum
;
368 di
->dfs_to_bb
[di
->dfsnum
] = b
;
369 di
->dfs_parent
[di
->dfsnum
] =
370 di
->dfs_order
[last_basic_block_for_fn (cfun
)];
372 calc_dfs_tree_nonrec (di
, b
, reverse
);
377 FOR_EACH_BB_REVERSE_FN (b
, cfun
)
380 if (di
->dfs_order
[b
->index
])
382 b2
= dfs_find_deadend (b
);
383 gcc_checking_assert (di
->dfs_order
[b2
->index
] == 0);
384 bitmap_set_bit (di
->fake_exit_edge
, b2
->index
);
385 di
->dfs_order
[b2
->index
] = di
->dfsnum
;
386 di
->dfs_to_bb
[di
->dfsnum
] = b2
;
387 di
->dfs_parent
[di
->dfsnum
] =
388 di
->dfs_order
[last_basic_block_for_fn (cfun
)];
390 calc_dfs_tree_nonrec (di
, b2
, reverse
);
391 gcc_checking_assert (di
->dfs_order
[b
->index
]);
396 di
->nodes
= di
->dfsnum
- 1;
398 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
399 gcc_assert (di
->nodes
== (unsigned int) n_basic_blocks_for_fn (cfun
) - 1);
402 /* Compress the path from V to the root of its set and update path_min at the
403 same time. After compress(di, V) set_chain[V] is the root of the set V is
404 in and path_min[V] is the node with the smallest key[] value on the path
405 from V to that root. */
408 compress (struct dom_info
*di
, TBB v
)
410 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
411 greater than 5 even for huge graphs (I've not seen call depth > 4).
412 Also performance wise compress() ranges _far_ behind eval(). */
413 TBB parent
= di
->set_chain
[v
];
414 if (di
->set_chain
[parent
])
416 compress (di
, parent
);
417 if (di
->key
[di
->path_min
[parent
]] < di
->key
[di
->path_min
[v
]])
418 di
->path_min
[v
] = di
->path_min
[parent
];
419 di
->set_chain
[v
] = di
->set_chain
[parent
];
423 /* Compress the path from V to the set root of V if needed (when the root has
424 changed since the last call). Returns the node with the smallest key[]
425 value on the path from V to the root. */
428 eval (struct dom_info
*di
, TBB v
)
430 /* The representative of the set V is in, also called root (as the set
431 representation is a tree). */
432 TBB rep
= di
->set_chain
[v
];
434 /* V itself is the root. */
436 return di
->path_min
[v
];
438 /* Compress only if necessary. */
439 if (di
->set_chain
[rep
])
442 rep
= di
->set_chain
[v
];
445 if (di
->key
[di
->path_min
[rep
]] >= di
->key
[di
->path_min
[v
]])
446 return di
->path_min
[v
];
448 return di
->path_min
[rep
];
451 /* This essentially merges the two sets of V and W, giving a single set with
452 the new root V. The internal representation of these disjoint sets is a
453 balanced tree. Currently link(V,W) is only used with V being the parent
457 link_roots (struct dom_info
*di
, TBB v
, TBB w
)
461 /* Rebalance the tree. */
462 while (di
->key
[di
->path_min
[w
]] < di
->key
[di
->path_min
[di
->set_child
[s
]]])
464 if (di
->set_size
[s
] + di
->set_size
[di
->set_child
[di
->set_child
[s
]]]
465 >= 2 * di
->set_size
[di
->set_child
[s
]])
467 di
->set_chain
[di
->set_child
[s
]] = s
;
468 di
->set_child
[s
] = di
->set_child
[di
->set_child
[s
]];
472 di
->set_size
[di
->set_child
[s
]] = di
->set_size
[s
];
473 s
= di
->set_chain
[s
] = di
->set_child
[s
];
477 di
->path_min
[s
] = di
->path_min
[w
];
478 di
->set_size
[v
] += di
->set_size
[w
];
479 if (di
->set_size
[v
] < 2 * di
->set_size
[w
])
480 std::swap (di
->set_child
[v
], s
);
482 /* Merge all subtrees. */
485 di
->set_chain
[s
] = v
;
486 s
= di
->set_child
[s
];
490 /* This calculates the immediate dominators (or post-dominators if REVERSE is
491 true). DI is our working structure and should hold the DFS forest.
492 On return the immediate dominator to node V is in di->dom[V]. */
495 calc_idoms (struct dom_info
*di
, bool reverse
)
498 basic_block en_block
;
499 edge_iterator ei
, einext
;
502 en_block
= EXIT_BLOCK_PTR_FOR_FN (cfun
);
504 en_block
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
506 /* Go backwards in DFS order, to first look at the leafs. */
510 basic_block bb
= di
->dfs_to_bb
[v
];
513 par
= di
->dfs_parent
[v
];
516 ei
= (reverse
) ? ei_start (bb
->succs
) : ei_start (bb
->preds
);
520 /* If this block has a fake edge to exit, process that first. */
521 if (bitmap_bit_p (di
->fake_exit_edge
, bb
->index
))
525 goto do_fake_exit_edge
;
529 /* Search all direct predecessors for the smallest node with a path
530 to them. That way we have the smallest node with also a path to
531 us only over nodes behind us. In effect we search for our
533 while (!ei_end_p (ei
))
539 b
= (reverse
) ? e
->dest
: e
->src
;
546 k1
= di
->dfs_order
[last_basic_block_for_fn (cfun
)];
549 k1
= di
->dfs_order
[b
->index
];
551 /* Call eval() only if really needed. If k1 is above V in DFS tree,
552 then we know, that eval(k1) == k1 and key[k1] == k1. */
554 k1
= di
->key
[eval (di
, k1
)];
562 link_roots (di
, par
, v
);
563 di
->next_bucket
[v
] = di
->bucket
[k
];
566 /* Transform semidominators into dominators. */
567 for (w
= di
->bucket
[par
]; w
; w
= di
->next_bucket
[w
])
570 if (di
->key
[k
] < di
->key
[w
])
575 /* We don't need to cleanup next_bucket[]. */
580 /* Explicitly define the dominators. */
582 for (v
= 2; v
<= di
->nodes
; v
++)
583 if (di
->dom
[v
] != di
->key
[v
])
584 di
->dom
[v
] = di
->dom
[di
->dom
[v
]];
587 /* Assign dfs numbers starting from NUM to NODE and its sons. */
590 assign_dfs_numbers (struct et_node
*node
, int *num
)
594 node
->dfs_num_in
= (*num
)++;
598 assign_dfs_numbers (node
->son
, num
);
599 for (son
= node
->son
->right
; son
!= node
->son
; son
= son
->right
)
600 assign_dfs_numbers (son
, num
);
603 node
->dfs_num_out
= (*num
)++;
606 /* Compute the data necessary for fast resolving of dominator queries in a
607 static dominator tree. */
610 compute_dom_fast_query (enum cdi_direction dir
)
614 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
616 gcc_checking_assert (dom_info_available_p (dir
));
618 if (dom_computed
[dir_index
] == DOM_OK
)
621 FOR_ALL_BB_FN (bb
, cfun
)
623 if (!bb
->dom
[dir_index
]->father
)
624 assign_dfs_numbers (bb
->dom
[dir_index
], &num
);
627 dom_computed
[dir_index
] = DOM_OK
;
630 /* The main entry point into this module. DIR is set depending on whether
631 we want to compute dominators or postdominators. */
634 calculate_dominance_info (enum cdi_direction dir
)
638 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
639 bool reverse
= (dir
== CDI_POST_DOMINATORS
) ? true : false;
641 if (dom_computed
[dir_index
] == DOM_OK
)
644 verify_dominators (dir
);
649 timevar_push (TV_DOMINANCE
);
650 if (!dom_info_available_p (dir
))
652 gcc_assert (!n_bbs_in_dom_tree
[dir_index
]);
654 FOR_ALL_BB_FN (b
, cfun
)
656 b
->dom
[dir_index
] = et_new_tree (b
);
658 n_bbs_in_dom_tree
[dir_index
] = n_basic_blocks_for_fn (cfun
);
660 init_dom_info (&di
, dir
);
661 calc_dfs_tree (&di
, reverse
);
662 calc_idoms (&di
, reverse
);
664 FOR_EACH_BB_FN (b
, cfun
)
666 TBB d
= di
.dom
[di
.dfs_order
[b
->index
]];
669 et_set_father (b
->dom
[dir_index
], di
.dfs_to_bb
[d
]->dom
[dir_index
]);
673 dom_computed
[dir_index
] = DOM_NO_FAST_QUERY
;
678 verify_dominators (dir
);
682 compute_dom_fast_query (dir
);
684 timevar_pop (TV_DOMINANCE
);
687 /* Free dominance information for direction DIR. */
689 free_dominance_info (function
*fn
, enum cdi_direction dir
)
692 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
694 if (!dom_info_available_p (fn
, dir
))
697 FOR_ALL_BB_FN (bb
, fn
)
699 et_free_tree_force (bb
->dom
[dir_index
]);
700 bb
->dom
[dir_index
] = NULL
;
704 fn
->cfg
->x_n_bbs_in_dom_tree
[dir_index
] = 0;
706 fn
->cfg
->x_dom_computed
[dir_index
] = DOM_NONE
;
710 free_dominance_info (enum cdi_direction dir
)
712 free_dominance_info (cfun
, dir
);
715 /* Return the immediate dominator of basic block BB. */
717 get_immediate_dominator (enum cdi_direction dir
, basic_block bb
)
719 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
720 struct et_node
*node
= bb
->dom
[dir_index
];
722 gcc_checking_assert (dom_computed
[dir_index
]);
727 return (basic_block
) node
->father
->data
;
730 /* Set the immediate dominator of the block possibly removing
731 existing edge. NULL can be used to remove any edge. */
733 set_immediate_dominator (enum cdi_direction dir
, basic_block bb
,
734 basic_block dominated_by
)
736 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
737 struct et_node
*node
= bb
->dom
[dir_index
];
739 gcc_checking_assert (dom_computed
[dir_index
]);
743 if (node
->father
->data
== dominated_by
)
749 et_set_father (node
, dominated_by
->dom
[dir_index
]);
751 if (dom_computed
[dir_index
] == DOM_OK
)
752 dom_computed
[dir_index
] = DOM_NO_FAST_QUERY
;
755 /* Returns the list of basic blocks immediately dominated by BB, in the
758 get_dominated_by (enum cdi_direction dir
, basic_block bb
)
760 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
761 struct et_node
*node
= bb
->dom
[dir_index
], *son
= node
->son
, *ason
;
762 vec
<basic_block
> bbs
= vNULL
;
764 gcc_checking_assert (dom_computed
[dir_index
]);
769 bbs
.safe_push ((basic_block
) son
->data
);
770 for (ason
= son
->right
; ason
!= son
; ason
= ason
->right
)
771 bbs
.safe_push ((basic_block
) ason
->data
);
776 /* Returns the list of basic blocks that are immediately dominated (in
777 direction DIR) by some block between N_REGION ones stored in REGION,
778 except for blocks in the REGION itself. */
781 get_dominated_by_region (enum cdi_direction dir
, basic_block
*region
,
786 vec
<basic_block
> doms
= vNULL
;
788 for (i
= 0; i
< n_region
; i
++)
789 region
[i
]->flags
|= BB_DUPLICATED
;
790 for (i
= 0; i
< n_region
; i
++)
791 for (dom
= first_dom_son (dir
, region
[i
]);
793 dom
= next_dom_son (dir
, dom
))
794 if (!(dom
->flags
& BB_DUPLICATED
))
795 doms
.safe_push (dom
);
796 for (i
= 0; i
< n_region
; i
++)
797 region
[i
]->flags
&= ~BB_DUPLICATED
;
802 /* Returns the list of basic blocks including BB dominated by BB, in the
803 direction DIR up to DEPTH in the dominator tree. The DEPTH of zero will
804 produce a vector containing all dominated blocks. The vector will be sorted
808 get_dominated_to_depth (enum cdi_direction dir
, basic_block bb
, int depth
)
810 vec
<basic_block
> bbs
= vNULL
;
812 unsigned next_level_start
;
816 next_level_start
= 1; /* = bbs.length (); */
823 for (son
= first_dom_son (dir
, bb
);
825 son
= next_dom_son (dir
, son
))
828 if (i
== next_level_start
&& --depth
)
829 next_level_start
= bbs
.length ();
831 while (i
< next_level_start
);
836 /* Returns the list of basic blocks including BB dominated by BB, in the
837 direction DIR. The vector will be sorted in preorder. */
840 get_all_dominated_blocks (enum cdi_direction dir
, basic_block bb
)
842 return get_dominated_to_depth (dir
, bb
, 0);
845 /* Redirect all edges pointing to BB to TO. */
847 redirect_immediate_dominators (enum cdi_direction dir
, basic_block bb
,
850 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
851 struct et_node
*bb_node
, *to_node
, *son
;
853 bb_node
= bb
->dom
[dir_index
];
854 to_node
= to
->dom
[dir_index
];
856 gcc_checking_assert (dom_computed
[dir_index
]);
866 et_set_father (son
, to_node
);
869 if (dom_computed
[dir_index
] == DOM_OK
)
870 dom_computed
[dir_index
] = DOM_NO_FAST_QUERY
;
873 /* Find first basic block in the tree dominating both BB1 and BB2. */
875 nearest_common_dominator (enum cdi_direction dir
, basic_block bb1
, basic_block bb2
)
877 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
879 gcc_checking_assert (dom_computed
[dir_index
]);
886 return (basic_block
) et_nca (bb1
->dom
[dir_index
], bb2
->dom
[dir_index
])->data
;
890 /* Find the nearest common dominator for the basic blocks in BLOCKS,
891 using dominance direction DIR. */
894 nearest_common_dominator_for_set (enum cdi_direction dir
, bitmap blocks
)
900 first
= bitmap_first_set_bit (blocks
);
901 dom
= BASIC_BLOCK_FOR_FN (cfun
, first
);
902 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
903 if (dom
!= BASIC_BLOCK_FOR_FN (cfun
, i
))
904 dom
= nearest_common_dominator (dir
, dom
, BASIC_BLOCK_FOR_FN (cfun
, i
));
909 /* Given a dominator tree, we can determine whether one thing
910 dominates another in constant time by using two DFS numbers:
912 1. The number for when we visit a node on the way down the tree
913 2. The number for when we visit a node on the way back up the tree
915 You can view these as bounds for the range of dfs numbers the
916 nodes in the subtree of the dominator tree rooted at that node
919 The dominator tree is always a simple acyclic tree, so there are
920 only three possible relations two nodes in the dominator tree have
923 1. Node A is above Node B (and thus, Node A dominates node B)
932 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
933 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
934 because we must hit A in the dominator tree *before* B on the walk
935 down, and we will hit A *after* B on the walk back up
937 2. Node A is below node B (and thus, node B dominates node A)
946 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
947 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
949 This is because we must hit A in the dominator tree *after* B on
950 the walk down, and we will hit A *before* B on the walk back up
952 3. Node A and B are siblings (and thus, neither dominates the other)
960 In the above case, DFS_Number_In of A will *always* be <=
961 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
962 DFS_Number_Out of B. This is because we will always finish the dfs
963 walk of one of the subtrees before the other, and thus, the dfs
964 numbers for one subtree can't intersect with the range of dfs
965 numbers for the other subtree. If you swap A and B's position in
966 the dominator tree, the comparison changes direction, but the point
967 is that both comparisons will always go the same way if there is no
968 dominance relationship.
970 Thus, it is sufficient to write
972 A_Dominates_B (node A, node B)
974 return DFS_Number_In(A) <= DFS_Number_In(B)
975 && DFS_Number_Out (A) >= DFS_Number_Out(B);
978 A_Dominated_by_B (node A, node B)
980 return DFS_Number_In(A) >= DFS_Number_In(B)
981 && DFS_Number_Out (A) <= DFS_Number_Out(B);
984 /* Return TRUE in case BB1 is dominated by BB2. */
986 dominated_by_p (enum cdi_direction dir
, const_basic_block bb1
, const_basic_block bb2
)
988 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
989 struct et_node
*n1
= bb1
->dom
[dir_index
], *n2
= bb2
->dom
[dir_index
];
991 gcc_checking_assert (dom_computed
[dir_index
]);
993 if (dom_computed
[dir_index
] == DOM_OK
)
994 return (n1
->dfs_num_in
>= n2
->dfs_num_in
995 && n1
->dfs_num_out
<= n2
->dfs_num_out
);
997 return et_below (n1
, n2
);
1000 /* Returns the entry dfs number for basic block BB, in the direction DIR. */
1003 bb_dom_dfs_in (enum cdi_direction dir
, basic_block bb
)
1005 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
1006 struct et_node
*n
= bb
->dom
[dir_index
];
1008 gcc_checking_assert (dom_computed
[dir_index
] == DOM_OK
);
1009 return n
->dfs_num_in
;
1012 /* Returns the exit dfs number for basic block BB, in the direction DIR. */
1015 bb_dom_dfs_out (enum cdi_direction dir
, basic_block bb
)
1017 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
1018 struct et_node
*n
= bb
->dom
[dir_index
];
1020 gcc_checking_assert (dom_computed
[dir_index
] == DOM_OK
);
1021 return n
->dfs_num_out
;
1024 /* Verify invariants of dominator structure. */
1026 verify_dominators (enum cdi_direction dir
)
1029 basic_block bb
, imm_bb
, imm_bb_correct
;
1031 bool reverse
= (dir
== CDI_POST_DOMINATORS
) ? true : false;
1033 gcc_assert (dom_info_available_p (dir
));
1035 init_dom_info (&di
, dir
);
1036 calc_dfs_tree (&di
, reverse
);
1037 calc_idoms (&di
, reverse
);
1039 FOR_EACH_BB_FN (bb
, cfun
)
1041 imm_bb
= get_immediate_dominator (dir
, bb
);
1044 error ("dominator of %d status unknown", bb
->index
);
1048 imm_bb_correct
= di
.dfs_to_bb
[di
.dom
[di
.dfs_order
[bb
->index
]]];
1049 if (imm_bb
!= imm_bb_correct
)
1051 error ("dominator of %d should be %d, not %d",
1052 bb
->index
, imm_bb_correct
->index
, imm_bb
->index
);
1057 free_dom_info (&di
);
1061 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
1062 assuming that dominators of other blocks are correct. We also use it to
1063 recompute the dominators in a restricted area, by iterating it until it
1064 reaches a fixed point. */
1067 recompute_dominator (enum cdi_direction dir
, basic_block bb
)
1069 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
1070 basic_block dom_bb
= NULL
;
1074 gcc_checking_assert (dom_computed
[dir_index
]);
1076 if (dir
== CDI_DOMINATORS
)
1078 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1080 if (!dominated_by_p (dir
, e
->src
, bb
))
1081 dom_bb
= nearest_common_dominator (dir
, dom_bb
, e
->src
);
1086 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1088 if (!dominated_by_p (dir
, e
->dest
, bb
))
1089 dom_bb
= nearest_common_dominator (dir
, dom_bb
, e
->dest
);
1096 /* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1097 of BBS. We assume that all the immediate dominators except for those of the
1098 blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the
1099 currently recorded immediate dominators of blocks in BBS really dominate the
1100 blocks. The basic blocks for that we determine the dominator are removed
1104 prune_bbs_to_update_dominators (vec
<basic_block
> bbs
,
1109 basic_block bb
, dom
= NULL
;
1113 for (i
= 0; bbs
.iterate (i
, &bb
);)
1115 if (bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1118 if (single_pred_p (bb
))
1120 set_immediate_dominator (CDI_DOMINATORS
, bb
, single_pred (bb
));
1129 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1131 if (dominated_by_p (CDI_DOMINATORS
, e
->src
, bb
))
1139 dom
= nearest_common_dominator (CDI_DOMINATORS
, dom
, e
->src
);
1143 gcc_assert (dom
!= NULL
);
1145 || find_edge (dom
, bb
))
1147 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom
);
1156 bbs
.unordered_remove (i
);
1160 /* Returns root of the dominance tree in the direction DIR that contains
1164 root_of_dom_tree (enum cdi_direction dir
, basic_block bb
)
1166 return (basic_block
) et_root (bb
->dom
[dom_convert_dir_to_idx (dir
)])->data
;
1169 /* See the comment in iterate_fix_dominators. Finds the immediate dominators
1170 for the sons of Y, found using the SON and BROTHER arrays representing
1171 the dominance tree of graph G. BBS maps the vertices of G to the basic
1175 determine_dominators_for_sons (struct graph
*g
, vec
<basic_block
> bbs
,
1176 int y
, int *son
, int *brother
)
1181 basic_block bb
, dom
, ybb
;
1188 if (y
== (int) bbs
.length ())
1189 ybb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1193 if (brother
[son
[y
]] == -1)
1195 /* Handle the common case Y has just one son specially. */
1197 set_immediate_dominator (CDI_DOMINATORS
, bb
,
1198 recompute_dominator (CDI_DOMINATORS
, bb
));
1199 identify_vertices (g
, y
, son
[y
]);
1203 gprime
= BITMAP_ALLOC (NULL
);
1204 for (a
= son
[y
]; a
!= -1; a
= brother
[a
])
1205 bitmap_set_bit (gprime
, a
);
1207 nc
= graphds_scc (g
, gprime
);
1208 BITMAP_FREE (gprime
);
1210 /* ??? Needed to work around the pre-processor confusion with
1211 using a multi-argument template type as macro argument. */
1212 typedef vec
<int> vec_int_heap
;
1213 sccs
= XCNEWVEC (vec_int_heap
, nc
);
1214 for (a
= son
[y
]; a
!= -1; a
= brother
[a
])
1215 sccs
[g
->vertices
[a
].component
].safe_push (a
);
1217 for (i
= nc
- 1; i
>= 0; i
--)
1220 FOR_EACH_VEC_ELT (sccs
[i
], si
, a
)
1223 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1225 if (root_of_dom_tree (CDI_DOMINATORS
, e
->src
) != ybb
)
1228 dom
= nearest_common_dominator (CDI_DOMINATORS
, dom
, e
->src
);
1232 gcc_assert (dom
!= NULL
);
1233 FOR_EACH_VEC_ELT (sccs
[i
], si
, a
)
1236 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom
);
1240 for (i
= 0; i
< nc
; i
++)
1244 for (a
= son
[y
]; a
!= -1; a
= brother
[a
])
1245 identify_vertices (g
, y
, a
);
1248 /* Recompute dominance information for basic blocks in the set BBS. The
1249 function assumes that the immediate dominators of all the other blocks
1250 in CFG are correct, and that there are no unreachable blocks.
1252 If CONSERVATIVE is true, we additionally assume that all the ancestors of
1253 a block of BBS in the current dominance tree dominate it. */
1256 iterate_fix_dominators (enum cdi_direction dir
, vec
<basic_block
> bbs
,
1260 basic_block bb
, dom
;
1266 int *parent
, *son
, *brother
;
1267 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
1269 /* We only support updating dominators. There are some problems with
1270 updating postdominators (need to add fake edges from infinite loops
1271 and noreturn functions), and since we do not currently use
1272 iterate_fix_dominators for postdominators, any attempt to handle these
1273 problems would be unused, untested, and almost surely buggy. We keep
1274 the DIR argument for consistency with the rest of the dominator analysis
1276 gcc_checking_assert (dir
== CDI_DOMINATORS
&& dom_computed
[dir_index
]);
1278 /* The algorithm we use takes inspiration from the following papers, although
1279 the details are quite different from any of them:
1281 [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1282 Dominator Tree of a Reducible Flowgraph
1283 [2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1285 [3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1288 First, we use the following heuristics to decrease the size of the BBS
1290 a) if BB has a single predecessor, then its immediate dominator is this
1292 additionally, if CONSERVATIVE is true:
1293 b) if all the predecessors of BB except for one (X) are dominated by BB,
1294 then X is the immediate dominator of BB
1295 c) if the nearest common ancestor of the predecessors of BB is X and
1296 X -> BB is an edge in CFG, then X is the immediate dominator of BB
1298 Then, we need to establish the dominance relation among the basic blocks
1299 in BBS. We split the dominance tree by removing the immediate dominator
1300 edges from BBS, creating a forest F. We form a graph G whose vertices
1301 are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
1302 X' -> Y in CFG such that X' belongs to the tree of the dominance forest
1303 whose root is X. We then determine dominance tree of G. Note that
1304 for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1305 In this step, we can use arbitrary algorithm to determine dominators.
1306 We decided to prefer the algorithm [3] to the algorithm of
1307 Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1308 10 during gcc bootstrap), and [3] should perform better in this case.
1310 Finally, we need to determine the immediate dominators for the basic
1311 blocks of BBS. If the immediate dominator of X in G is Y, then
1312 the immediate dominator of X in CFG belongs to the tree of F rooted in
1313 Y. We process the dominator tree T of G recursively, starting from leaves.
1314 Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1315 subtrees of the dominance tree of CFG rooted in X_i are already correct.
1316 Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make
1317 the following observations:
1318 (i) the immediate dominator of all blocks in a strongly connected
1319 component of G' is the same
1320 (ii) if X has no predecessors in G', then the immediate dominator of X
1321 is the nearest common ancestor of the predecessors of X in the
1322 subtree of F rooted in Y
1323 Therefore, it suffices to find the topological ordering of G', and
1324 process the nodes X_i in this order using the rules (i) and (ii).
1325 Then, we contract all the nodes X_i with Y in G, so that the further
1326 steps work correctly. */
1330 /* Split the tree now. If the idoms of blocks in BBS are not
1331 conservatively correct, setting the dominators using the
1332 heuristics in prune_bbs_to_update_dominators could
1333 create cycles in the dominance "tree", and cause ICE. */
1334 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
1335 set_immediate_dominator (CDI_DOMINATORS
, bb
, NULL
);
1338 prune_bbs_to_update_dominators (bbs
, conservative
);
1347 set_immediate_dominator (CDI_DOMINATORS
, bb
,
1348 recompute_dominator (CDI_DOMINATORS
, bb
));
1352 /* Construct the graph G. */
1353 hash_map
<basic_block
, int> map (251);
1354 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
1356 /* If the dominance tree is conservatively correct, split it now. */
1358 set_immediate_dominator (CDI_DOMINATORS
, bb
, NULL
);
1361 map
.put (ENTRY_BLOCK_PTR_FOR_FN (cfun
), n
);
1363 g
= new_graph (n
+ 1);
1364 for (y
= 0; y
< g
->n_vertices
; y
++)
1365 g
->vertices
[y
].data
= BITMAP_ALLOC (NULL
);
1366 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
1368 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1370 dom
= root_of_dom_tree (CDI_DOMINATORS
, e
->src
);
1374 dom_i
= *map
.get (dom
);
1376 /* Do not include parallel edges to G. */
1377 if (!bitmap_set_bit ((bitmap
) g
->vertices
[dom_i
].data
, i
))
1380 add_edge (g
, dom_i
, i
);
1383 for (y
= 0; y
< g
->n_vertices
; y
++)
1384 BITMAP_FREE (g
->vertices
[y
].data
);
1386 /* Find the dominator tree of G. */
1387 son
= XNEWVEC (int, n
+ 1);
1388 brother
= XNEWVEC (int, n
+ 1);
1389 parent
= XNEWVEC (int, n
+ 1);
1390 graphds_domtree (g
, n
, parent
, son
, brother
);
1392 /* Finally, traverse the tree and find the immediate dominators. */
1393 for (y
= n
; son
[y
] != -1; y
= son
[y
])
1397 determine_dominators_for_sons (g
, bbs
, y
, son
, brother
);
1399 if (brother
[y
] != -1)
1402 while (son
[y
] != -1)
1417 add_to_dominance_info (enum cdi_direction dir
, basic_block bb
)
1419 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
1421 gcc_checking_assert (dom_computed
[dir_index
] && !bb
->dom
[dir_index
]);
1423 n_bbs_in_dom_tree
[dir_index
]++;
1425 bb
->dom
[dir_index
] = et_new_tree (bb
);
1427 if (dom_computed
[dir_index
] == DOM_OK
)
1428 dom_computed
[dir_index
] = DOM_NO_FAST_QUERY
;
1432 delete_from_dominance_info (enum cdi_direction dir
, basic_block bb
)
1434 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
1436 gcc_checking_assert (dom_computed
[dir_index
]);
1438 et_free_tree (bb
->dom
[dir_index
]);
1439 bb
->dom
[dir_index
] = NULL
;
1440 n_bbs_in_dom_tree
[dir_index
]--;
1442 if (dom_computed
[dir_index
] == DOM_OK
)
1443 dom_computed
[dir_index
] = DOM_NO_FAST_QUERY
;
1446 /* Returns the first son of BB in the dominator or postdominator tree
1447 as determined by DIR. */
1450 first_dom_son (enum cdi_direction dir
, basic_block bb
)
1452 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
1453 struct et_node
*son
= bb
->dom
[dir_index
]->son
;
1455 return (basic_block
) (son
? son
->data
: NULL
);
1458 /* Returns the next dominance son after BB in the dominator or postdominator
1459 tree as determined by DIR, or NULL if it was the last one. */
1462 next_dom_son (enum cdi_direction dir
, basic_block bb
)
1464 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
1465 struct et_node
*next
= bb
->dom
[dir_index
]->right
;
1467 return (basic_block
) (next
->father
->son
== next
? NULL
: next
->data
);
1470 /* Return dominance availability for dominance info DIR. */
1473 dom_info_state (function
*fn
, enum cdi_direction dir
)
1478 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
1479 return fn
->cfg
->x_dom_computed
[dir_index
];
1483 dom_info_state (enum cdi_direction dir
)
1485 return dom_info_state (cfun
, dir
);
1488 /* Set the dominance availability for dominance info DIR to NEW_STATE. */
1491 set_dom_info_availability (enum cdi_direction dir
, enum dom_state new_state
)
1493 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
1495 dom_computed
[dir_index
] = new_state
;
1498 /* Returns true if dominance information for direction DIR is available. */
1501 dom_info_available_p (function
*fn
, enum cdi_direction dir
)
1503 return dom_info_state (fn
, dir
) != DOM_NONE
;
1507 dom_info_available_p (enum cdi_direction dir
)
1509 return dom_info_available_p (cfun
, dir
);
1513 debug_dominance_info (enum cdi_direction dir
)
1515 basic_block bb
, bb2
;
1516 FOR_EACH_BB_FN (bb
, cfun
)
1517 if ((bb2
= get_immediate_dominator (dir
, bb
)))
1518 fprintf (stderr
, "%i %i\n", bb
->index
, bb2
->index
);
1521 /* Prints to stderr representation of the dominance tree (for direction DIR)
1522 rooted in ROOT, indented by INDENT tabulators. If INDENT_FIRST is false,
1523 the first line of the output is not indented. */
1526 debug_dominance_tree_1 (enum cdi_direction dir
, basic_block root
,
1527 unsigned indent
, bool indent_first
)
1534 for (i
= 0; i
< indent
; i
++)
1535 fprintf (stderr
, "\t");
1536 fprintf (stderr
, "%d\t", root
->index
);
1538 for (son
= first_dom_son (dir
, root
);
1540 son
= next_dom_son (dir
, son
))
1542 debug_dominance_tree_1 (dir
, son
, indent
+ 1, !first
);
1547 fprintf (stderr
, "\n");
1550 /* Prints to stderr representation of the dominance tree (for direction DIR)
1554 debug_dominance_tree (enum cdi_direction dir
, basic_block root
)
1556 debug_dominance_tree_1 (dir
, root
, 0, false);