[PATCH] Report LTO phase in lto1 process name v2
[official-gcc.git] / gcc / tree-cfg.c
blobcf67fb8613efb0bf7820beb638f30388573dbe64
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "toplev.h"
42 #include "except.h"
43 #include "cfgloop.h"
44 #include "cfglayout.h"
45 #include "tree-ssa-propagate.h"
46 #include "value-prof.h"
47 #include "pointer-set.h"
48 #include "tree-inline.h"
50 /* This file contains functions for building the Control Flow Graph (CFG)
51 for a function tree. */
53 /* Local declarations. */
55 /* Initial capacity for the basic block array. */
56 static const int initial_cfg_capacity = 20;
58 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
59 which use a particular edge. The CASE_LABEL_EXPRs are chained together
60 via their TREE_CHAIN field, which we clear after we're done with the
61 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
63 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
64 update the case vector in response to edge redirections.
66 Right now this table is set up and torn down at key points in the
67 compilation process. It would be nice if we could make the table
68 more persistent. The key is getting notification of changes to
69 the CFG (particularly edge removal, creation and redirection). */
71 static struct pointer_map_t *edge_to_cases;
73 /* If we record edge_to_cases, this bitmap will hold indexes
74 of basic blocks that end in a GIMPLE_SWITCH which we touched
75 due to edge manipulations. */
77 static bitmap touched_switch_bbs;
79 /* CFG statistics. */
80 struct cfg_stats_d
82 long num_merged_labels;
85 static struct cfg_stats_d cfg_stats;
87 /* Nonzero if we found a computed goto while building basic blocks. */
88 static bool found_computed_goto;
90 /* Hash table to store last discriminator assigned for each locus. */
91 struct locus_discrim_map
93 location_t locus;
94 int discriminator;
96 static htab_t discriminator_per_locus;
98 /* Basic blocks and flowgraphs. */
99 static void make_blocks (gimple_seq);
100 static void factor_computed_gotos (void);
102 /* Edges. */
103 static void make_edges (void);
104 static void make_cond_expr_edges (basic_block);
105 static void make_gimple_switch_edges (basic_block);
106 static void make_goto_expr_edges (basic_block);
107 static void make_gimple_asm_edges (basic_block);
108 static unsigned int locus_map_hash (const void *);
109 static int locus_map_eq (const void *, const void *);
110 static void assign_discriminator (location_t, basic_block);
111 static edge gimple_redirect_edge_and_branch (edge, basic_block);
112 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
113 static unsigned int split_critical_edges (void);
115 /* Various helpers. */
116 static inline bool stmt_starts_bb_p (gimple, gimple);
117 static int gimple_verify_flow_info (void);
118 static void gimple_make_forwarder_block (edge);
119 static void gimple_cfg2vcg (FILE *);
120 static gimple first_non_label_stmt (basic_block);
122 /* Flowgraph optimization and cleanup. */
123 static void gimple_merge_blocks (basic_block, basic_block);
124 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
125 static void remove_bb (basic_block);
126 static edge find_taken_edge_computed_goto (basic_block, tree);
127 static edge find_taken_edge_cond_expr (basic_block, tree);
128 static edge find_taken_edge_switch_expr (basic_block, tree);
129 static tree find_case_label_for_value (gimple, tree);
130 static void group_case_labels_stmt (gimple);
132 void
133 init_empty_tree_cfg_for_function (struct function *fn)
135 /* Initialize the basic block array. */
136 init_flow (fn);
137 profile_status_for_function (fn) = PROFILE_ABSENT;
138 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
139 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
140 basic_block_info_for_function (fn)
141 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
142 VEC_safe_grow_cleared (basic_block, gc,
143 basic_block_info_for_function (fn),
144 initial_cfg_capacity);
146 /* Build a mapping of labels to their associated blocks. */
147 label_to_block_map_for_function (fn)
148 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
149 VEC_safe_grow_cleared (basic_block, gc,
150 label_to_block_map_for_function (fn),
151 initial_cfg_capacity);
153 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
154 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
155 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
156 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
158 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
159 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
160 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
161 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
164 void
165 init_empty_tree_cfg (void)
167 init_empty_tree_cfg_for_function (cfun);
170 /*---------------------------------------------------------------------------
171 Create basic blocks
172 ---------------------------------------------------------------------------*/
174 /* Entry point to the CFG builder for trees. SEQ is the sequence of
175 statements to be added to the flowgraph. */
177 static void
178 build_gimple_cfg (gimple_seq seq)
180 /* Register specific gimple functions. */
181 gimple_register_cfg_hooks ();
183 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
185 init_empty_tree_cfg ();
187 found_computed_goto = 0;
188 make_blocks (seq);
190 /* Computed gotos are hell to deal with, especially if there are
191 lots of them with a large number of destinations. So we factor
192 them to a common computed goto location before we build the
193 edge list. After we convert back to normal form, we will un-factor
194 the computed gotos since factoring introduces an unwanted jump. */
195 if (found_computed_goto)
196 factor_computed_gotos ();
198 /* Make sure there is always at least one block, even if it's empty. */
199 if (n_basic_blocks == NUM_FIXED_BLOCKS)
200 create_empty_bb (ENTRY_BLOCK_PTR);
202 /* Adjust the size of the array. */
203 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
204 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
206 /* To speed up statement iterator walks, we first purge dead labels. */
207 cleanup_dead_labels ();
209 /* Group case nodes to reduce the number of edges.
210 We do this after cleaning up dead labels because otherwise we miss
211 a lot of obvious case merging opportunities. */
212 group_case_labels ();
214 /* Create the edges of the flowgraph. */
215 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
216 free);
217 make_edges ();
218 cleanup_dead_labels ();
219 htab_delete (discriminator_per_locus);
221 /* Debugging dumps. */
223 /* Write the flowgraph to a VCG file. */
225 int local_dump_flags;
226 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
227 if (vcg_file)
229 gimple_cfg2vcg (vcg_file);
230 dump_end (TDI_vcg, vcg_file);
235 static unsigned int
236 execute_build_cfg (void)
238 gimple_seq body = gimple_body (current_function_decl);
240 build_gimple_cfg (body);
241 gimple_set_body (current_function_decl, NULL);
242 if (dump_file && (dump_flags & TDF_DETAILS))
244 fprintf (dump_file, "Scope blocks:\n");
245 dump_scope_blocks (dump_file, dump_flags);
247 return 0;
250 struct gimple_opt_pass pass_build_cfg =
253 GIMPLE_PASS,
254 "cfg", /* name */
255 NULL, /* gate */
256 execute_build_cfg, /* execute */
257 NULL, /* sub */
258 NULL, /* next */
259 0, /* static_pass_number */
260 TV_TREE_CFG, /* tv_id */
261 PROP_gimple_leh, /* properties_required */
262 PROP_cfg, /* properties_provided */
263 0, /* properties_destroyed */
264 0, /* todo_flags_start */
265 TODO_verify_stmts | TODO_cleanup_cfg
266 | TODO_dump_func /* todo_flags_finish */
271 /* Return true if T is a computed goto. */
273 static bool
274 computed_goto_p (gimple t)
276 return (gimple_code (t) == GIMPLE_GOTO
277 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
281 /* Search the CFG for any computed gotos. If found, factor them to a
282 common computed goto site. Also record the location of that site so
283 that we can un-factor the gotos after we have converted back to
284 normal form. */
286 static void
287 factor_computed_gotos (void)
289 basic_block bb;
290 tree factored_label_decl = NULL;
291 tree var = NULL;
292 gimple factored_computed_goto_label = NULL;
293 gimple factored_computed_goto = NULL;
295 /* We know there are one or more computed gotos in this function.
296 Examine the last statement in each basic block to see if the block
297 ends with a computed goto. */
299 FOR_EACH_BB (bb)
301 gimple_stmt_iterator gsi = gsi_last_bb (bb);
302 gimple last;
304 if (gsi_end_p (gsi))
305 continue;
307 last = gsi_stmt (gsi);
309 /* Ignore the computed goto we create when we factor the original
310 computed gotos. */
311 if (last == factored_computed_goto)
312 continue;
314 /* If the last statement is a computed goto, factor it. */
315 if (computed_goto_p (last))
317 gimple assignment;
319 /* The first time we find a computed goto we need to create
320 the factored goto block and the variable each original
321 computed goto will use for their goto destination. */
322 if (!factored_computed_goto)
324 basic_block new_bb = create_empty_bb (bb);
325 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
327 /* Create the destination of the factored goto. Each original
328 computed goto will put its desired destination into this
329 variable and jump to the label we create immediately
330 below. */
331 var = create_tmp_var (ptr_type_node, "gotovar");
333 /* Build a label for the new block which will contain the
334 factored computed goto. */
335 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
336 factored_computed_goto_label
337 = gimple_build_label (factored_label_decl);
338 gsi_insert_after (&new_gsi, factored_computed_goto_label,
339 GSI_NEW_STMT);
341 /* Build our new computed goto. */
342 factored_computed_goto = gimple_build_goto (var);
343 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
346 /* Copy the original computed goto's destination into VAR. */
347 assignment = gimple_build_assign (var, gimple_goto_dest (last));
348 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
350 /* And re-vector the computed goto to the new destination. */
351 gimple_goto_set_dest (last, factored_label_decl);
357 /* Build a flowgraph for the sequence of stmts SEQ. */
359 static void
360 make_blocks (gimple_seq seq)
362 gimple_stmt_iterator i = gsi_start (seq);
363 gimple stmt = NULL;
364 bool start_new_block = true;
365 bool first_stmt_of_seq = true;
366 basic_block bb = ENTRY_BLOCK_PTR;
368 while (!gsi_end_p (i))
370 gimple prev_stmt;
372 prev_stmt = stmt;
373 stmt = gsi_stmt (i);
375 /* If the statement starts a new basic block or if we have determined
376 in a previous pass that we need to create a new block for STMT, do
377 so now. */
378 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
380 if (!first_stmt_of_seq)
381 seq = gsi_split_seq_before (&i);
382 bb = create_basic_block (seq, NULL, bb);
383 start_new_block = false;
386 /* Now add STMT to BB and create the subgraphs for special statement
387 codes. */
388 gimple_set_bb (stmt, bb);
390 if (computed_goto_p (stmt))
391 found_computed_goto = true;
393 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
394 next iteration. */
395 if (stmt_ends_bb_p (stmt))
397 /* If the stmt can make abnormal goto use a new temporary
398 for the assignment to the LHS. This makes sure the old value
399 of the LHS is available on the abnormal edge. Otherwise
400 we will end up with overlapping life-ranges for abnormal
401 SSA names. */
402 if (gimple_has_lhs (stmt)
403 && stmt_can_make_abnormal_goto (stmt)
404 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
406 tree lhs = gimple_get_lhs (stmt);
407 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
408 gimple s = gimple_build_assign (lhs, tmp);
409 gimple_set_location (s, gimple_location (stmt));
410 gimple_set_block (s, gimple_block (stmt));
411 gimple_set_lhs (stmt, tmp);
412 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
413 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
414 DECL_GIMPLE_REG_P (tmp) = 1;
415 gsi_insert_after (&i, s, GSI_SAME_STMT);
417 start_new_block = true;
420 gsi_next (&i);
421 first_stmt_of_seq = false;
426 /* Create and return a new empty basic block after bb AFTER. */
428 static basic_block
429 create_bb (void *h, void *e, basic_block after)
431 basic_block bb;
433 gcc_assert (!e);
435 /* Create and initialize a new basic block. Since alloc_block uses
436 GC allocation that clears memory to allocate a basic block, we do
437 not have to clear the newly allocated basic block here. */
438 bb = alloc_block ();
440 bb->index = last_basic_block;
441 bb->flags = BB_NEW;
442 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
443 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
445 /* Add the new block to the linked list of blocks. */
446 link_block (bb, after);
448 /* Grow the basic block array if needed. */
449 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
451 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
452 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
455 /* Add the newly created block to the array. */
456 SET_BASIC_BLOCK (last_basic_block, bb);
458 n_basic_blocks++;
459 last_basic_block++;
461 return bb;
465 /*---------------------------------------------------------------------------
466 Edge creation
467 ---------------------------------------------------------------------------*/
469 /* Fold COND_EXPR_COND of each COND_EXPR. */
471 void
472 fold_cond_expr_cond (void)
474 basic_block bb;
476 FOR_EACH_BB (bb)
478 gimple stmt = last_stmt (bb);
480 if (stmt && gimple_code (stmt) == GIMPLE_COND)
482 location_t loc = gimple_location (stmt);
483 tree cond;
484 bool zerop, onep;
486 fold_defer_overflow_warnings ();
487 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
488 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
489 if (cond)
491 zerop = integer_zerop (cond);
492 onep = integer_onep (cond);
494 else
495 zerop = onep = false;
497 fold_undefer_overflow_warnings (zerop || onep,
498 stmt,
499 WARN_STRICT_OVERFLOW_CONDITIONAL);
500 if (zerop)
501 gimple_cond_make_false (stmt);
502 else if (onep)
503 gimple_cond_make_true (stmt);
508 /* Join all the blocks in the flowgraph. */
510 static void
511 make_edges (void)
513 basic_block bb;
514 struct omp_region *cur_region = NULL;
516 /* Create an edge from entry to the first block with executable
517 statements in it. */
518 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
520 /* Traverse the basic block array placing edges. */
521 FOR_EACH_BB (bb)
523 gimple last = last_stmt (bb);
524 bool fallthru;
526 if (last)
528 enum gimple_code code = gimple_code (last);
529 switch (code)
531 case GIMPLE_GOTO:
532 make_goto_expr_edges (bb);
533 fallthru = false;
534 break;
535 case GIMPLE_RETURN:
536 make_edge (bb, EXIT_BLOCK_PTR, 0);
537 fallthru = false;
538 break;
539 case GIMPLE_COND:
540 make_cond_expr_edges (bb);
541 fallthru = false;
542 break;
543 case GIMPLE_SWITCH:
544 make_gimple_switch_edges (bb);
545 fallthru = false;
546 break;
547 case GIMPLE_RESX:
548 make_eh_edges (last);
549 fallthru = false;
550 break;
551 case GIMPLE_EH_DISPATCH:
552 fallthru = make_eh_dispatch_edges (last);
553 break;
555 case GIMPLE_CALL:
556 /* If this function receives a nonlocal goto, then we need to
557 make edges from this call site to all the nonlocal goto
558 handlers. */
559 if (stmt_can_make_abnormal_goto (last))
560 make_abnormal_goto_edges (bb, true);
562 /* If this statement has reachable exception handlers, then
563 create abnormal edges to them. */
564 make_eh_edges (last);
566 /* BUILTIN_RETURN is really a return statement. */
567 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
568 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
569 /* Some calls are known not to return. */
570 else
571 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
572 break;
574 case GIMPLE_ASSIGN:
575 /* A GIMPLE_ASSIGN may throw internally and thus be considered
576 control-altering. */
577 if (is_ctrl_altering_stmt (last))
578 make_eh_edges (last);
579 fallthru = true;
580 break;
582 case GIMPLE_ASM:
583 make_gimple_asm_edges (bb);
584 fallthru = true;
585 break;
587 case GIMPLE_OMP_PARALLEL:
588 case GIMPLE_OMP_TASK:
589 case GIMPLE_OMP_FOR:
590 case GIMPLE_OMP_SINGLE:
591 case GIMPLE_OMP_MASTER:
592 case GIMPLE_OMP_ORDERED:
593 case GIMPLE_OMP_CRITICAL:
594 case GIMPLE_OMP_SECTION:
595 cur_region = new_omp_region (bb, code, cur_region);
596 fallthru = true;
597 break;
599 case GIMPLE_OMP_SECTIONS:
600 cur_region = new_omp_region (bb, code, cur_region);
601 fallthru = true;
602 break;
604 case GIMPLE_OMP_SECTIONS_SWITCH:
605 fallthru = false;
606 break;
608 case GIMPLE_OMP_ATOMIC_LOAD:
609 case GIMPLE_OMP_ATOMIC_STORE:
610 fallthru = true;
611 break;
613 case GIMPLE_OMP_RETURN:
614 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
615 somewhere other than the next block. This will be
616 created later. */
617 cur_region->exit = bb;
618 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
619 cur_region = cur_region->outer;
620 break;
622 case GIMPLE_OMP_CONTINUE:
623 cur_region->cont = bb;
624 switch (cur_region->type)
626 case GIMPLE_OMP_FOR:
627 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
628 succs edges as abnormal to prevent splitting
629 them. */
630 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
631 /* Make the loopback edge. */
632 make_edge (bb, single_succ (cur_region->entry),
633 EDGE_ABNORMAL);
635 /* Create an edge from GIMPLE_OMP_FOR to exit, which
636 corresponds to the case that the body of the loop
637 is not executed at all. */
638 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
639 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
640 fallthru = false;
641 break;
643 case GIMPLE_OMP_SECTIONS:
644 /* Wire up the edges into and out of the nested sections. */
646 basic_block switch_bb = single_succ (cur_region->entry);
648 struct omp_region *i;
649 for (i = cur_region->inner; i ; i = i->next)
651 gcc_assert (i->type == GIMPLE_OMP_SECTION);
652 make_edge (switch_bb, i->entry, 0);
653 make_edge (i->exit, bb, EDGE_FALLTHRU);
656 /* Make the loopback edge to the block with
657 GIMPLE_OMP_SECTIONS_SWITCH. */
658 make_edge (bb, switch_bb, 0);
660 /* Make the edge from the switch to exit. */
661 make_edge (switch_bb, bb->next_bb, 0);
662 fallthru = false;
664 break;
666 default:
667 gcc_unreachable ();
669 break;
671 default:
672 gcc_assert (!stmt_ends_bb_p (last));
673 fallthru = true;
676 else
677 fallthru = true;
679 if (fallthru)
681 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
682 if (last)
683 assign_discriminator (gimple_location (last), bb->next_bb);
687 if (root_omp_region)
688 free_omp_regions ();
690 /* Fold COND_EXPR_COND of each COND_EXPR. */
691 fold_cond_expr_cond ();
694 /* Trivial hash function for a location_t. ITEM is a pointer to
695 a hash table entry that maps a location_t to a discriminator. */
697 static unsigned int
698 locus_map_hash (const void *item)
700 return ((const struct locus_discrim_map *) item)->locus;
703 /* Equality function for the locus-to-discriminator map. VA and VB
704 point to the two hash table entries to compare. */
706 static int
707 locus_map_eq (const void *va, const void *vb)
709 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
710 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
711 return a->locus == b->locus;
714 /* Find the next available discriminator value for LOCUS. The
715 discriminator distinguishes among several basic blocks that
716 share a common locus, allowing for more accurate sample-based
717 profiling. */
719 static int
720 next_discriminator_for_locus (location_t locus)
722 struct locus_discrim_map item;
723 struct locus_discrim_map **slot;
725 item.locus = locus;
726 item.discriminator = 0;
727 slot = (struct locus_discrim_map **)
728 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
729 (hashval_t) locus, INSERT);
730 gcc_assert (slot);
731 if (*slot == HTAB_EMPTY_ENTRY)
733 *slot = XNEW (struct locus_discrim_map);
734 gcc_assert (*slot);
735 (*slot)->locus = locus;
736 (*slot)->discriminator = 0;
738 (*slot)->discriminator++;
739 return (*slot)->discriminator;
742 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
744 static bool
745 same_line_p (location_t locus1, location_t locus2)
747 expanded_location from, to;
749 if (locus1 == locus2)
750 return true;
752 from = expand_location (locus1);
753 to = expand_location (locus2);
755 if (from.line != to.line)
756 return false;
757 if (from.file == to.file)
758 return true;
759 return (from.file != NULL
760 && to.file != NULL
761 && strcmp (from.file, to.file) == 0);
764 /* Assign a unique discriminator value to block BB if it begins at the same
765 LOCUS as its predecessor block. */
767 static void
768 assign_discriminator (location_t locus, basic_block bb)
770 gimple first_in_to_bb, last_in_to_bb;
772 if (locus == 0 || bb->discriminator != 0)
773 return;
775 first_in_to_bb = first_non_label_stmt (bb);
776 last_in_to_bb = last_stmt (bb);
777 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
778 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
779 bb->discriminator = next_discriminator_for_locus (locus);
782 /* Create the edges for a GIMPLE_COND starting at block BB. */
784 static void
785 make_cond_expr_edges (basic_block bb)
787 gimple entry = last_stmt (bb);
788 gimple then_stmt, else_stmt;
789 basic_block then_bb, else_bb;
790 tree then_label, else_label;
791 edge e;
792 location_t entry_locus;
794 gcc_assert (entry);
795 gcc_assert (gimple_code (entry) == GIMPLE_COND);
797 entry_locus = gimple_location (entry);
799 /* Entry basic blocks for each component. */
800 then_label = gimple_cond_true_label (entry);
801 else_label = gimple_cond_false_label (entry);
802 then_bb = label_to_block (then_label);
803 else_bb = label_to_block (else_label);
804 then_stmt = first_stmt (then_bb);
805 else_stmt = first_stmt (else_bb);
807 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
808 assign_discriminator (entry_locus, then_bb);
809 e->goto_locus = gimple_location (then_stmt);
810 if (e->goto_locus)
811 e->goto_block = gimple_block (then_stmt);
812 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
813 if (e)
815 assign_discriminator (entry_locus, else_bb);
816 e->goto_locus = gimple_location (else_stmt);
817 if (e->goto_locus)
818 e->goto_block = gimple_block (else_stmt);
821 /* We do not need the labels anymore. */
822 gimple_cond_set_true_label (entry, NULL_TREE);
823 gimple_cond_set_false_label (entry, NULL_TREE);
827 /* Called for each element in the hash table (P) as we delete the
828 edge to cases hash table.
830 Clear all the TREE_CHAINs to prevent problems with copying of
831 SWITCH_EXPRs and structure sharing rules, then free the hash table
832 element. */
834 static bool
835 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
836 void *data ATTRIBUTE_UNUSED)
838 tree t, next;
840 for (t = (tree) *value; t; t = next)
842 next = TREE_CHAIN (t);
843 TREE_CHAIN (t) = NULL;
846 *value = NULL;
847 return false;
850 /* Start recording information mapping edges to case labels. */
852 void
853 start_recording_case_labels (void)
855 gcc_assert (edge_to_cases == NULL);
856 edge_to_cases = pointer_map_create ();
857 touched_switch_bbs = BITMAP_ALLOC (NULL);
860 /* Return nonzero if we are recording information for case labels. */
862 static bool
863 recording_case_labels_p (void)
865 return (edge_to_cases != NULL);
868 /* Stop recording information mapping edges to case labels and
869 remove any information we have recorded. */
870 void
871 end_recording_case_labels (void)
873 bitmap_iterator bi;
874 unsigned i;
875 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
876 pointer_map_destroy (edge_to_cases);
877 edge_to_cases = NULL;
878 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
880 basic_block bb = BASIC_BLOCK (i);
881 if (bb)
883 gimple stmt = last_stmt (bb);
884 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
885 group_case_labels_stmt (stmt);
888 BITMAP_FREE (touched_switch_bbs);
891 /* If we are inside a {start,end}_recording_cases block, then return
892 a chain of CASE_LABEL_EXPRs from T which reference E.
894 Otherwise return NULL. */
896 static tree
897 get_cases_for_edge (edge e, gimple t)
899 void **slot;
900 size_t i, n;
902 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
903 chains available. Return NULL so the caller can detect this case. */
904 if (!recording_case_labels_p ())
905 return NULL;
907 slot = pointer_map_contains (edge_to_cases, e);
908 if (slot)
909 return (tree) *slot;
911 /* If we did not find E in the hash table, then this must be the first
912 time we have been queried for information about E & T. Add all the
913 elements from T to the hash table then perform the query again. */
915 n = gimple_switch_num_labels (t);
916 for (i = 0; i < n; i++)
918 tree elt = gimple_switch_label (t, i);
919 tree lab = CASE_LABEL (elt);
920 basic_block label_bb = label_to_block (lab);
921 edge this_edge = find_edge (e->src, label_bb);
923 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
924 a new chain. */
925 slot = pointer_map_insert (edge_to_cases, this_edge);
926 TREE_CHAIN (elt) = (tree) *slot;
927 *slot = elt;
930 return (tree) *pointer_map_contains (edge_to_cases, e);
933 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
935 static void
936 make_gimple_switch_edges (basic_block bb)
938 gimple entry = last_stmt (bb);
939 location_t entry_locus;
940 size_t i, n;
942 entry_locus = gimple_location (entry);
944 n = gimple_switch_num_labels (entry);
946 for (i = 0; i < n; ++i)
948 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
949 basic_block label_bb = label_to_block (lab);
950 make_edge (bb, label_bb, 0);
951 assign_discriminator (entry_locus, label_bb);
956 /* Return the basic block holding label DEST. */
958 basic_block
959 label_to_block_fn (struct function *ifun, tree dest)
961 int uid = LABEL_DECL_UID (dest);
963 /* We would die hard when faced by an undefined label. Emit a label to
964 the very first basic block. This will hopefully make even the dataflow
965 and undefined variable warnings quite right. */
966 if (seen_error () && uid < 0)
968 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
969 gimple stmt;
971 stmt = gimple_build_label (dest);
972 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
973 uid = LABEL_DECL_UID (dest);
975 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
976 <= (unsigned int) uid)
977 return NULL;
978 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
981 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
982 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
984 void
985 make_abnormal_goto_edges (basic_block bb, bool for_call)
987 basic_block target_bb;
988 gimple_stmt_iterator gsi;
990 FOR_EACH_BB (target_bb)
991 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
993 gimple label_stmt = gsi_stmt (gsi);
994 tree target;
996 if (gimple_code (label_stmt) != GIMPLE_LABEL)
997 break;
999 target = gimple_label_label (label_stmt);
1001 /* Make an edge to every label block that has been marked as a
1002 potential target for a computed goto or a non-local goto. */
1003 if ((FORCED_LABEL (target) && !for_call)
1004 || (DECL_NONLOCAL (target) && for_call))
1006 make_edge (bb, target_bb, EDGE_ABNORMAL);
1007 break;
1012 /* Create edges for a goto statement at block BB. */
1014 static void
1015 make_goto_expr_edges (basic_block bb)
1017 gimple_stmt_iterator last = gsi_last_bb (bb);
1018 gimple goto_t = gsi_stmt (last);
1020 /* A simple GOTO creates normal edges. */
1021 if (simple_goto_p (goto_t))
1023 tree dest = gimple_goto_dest (goto_t);
1024 basic_block label_bb = label_to_block (dest);
1025 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1026 e->goto_locus = gimple_location (goto_t);
1027 assign_discriminator (e->goto_locus, label_bb);
1028 if (e->goto_locus)
1029 e->goto_block = gimple_block (goto_t);
1030 gsi_remove (&last, true);
1031 return;
1034 /* A computed GOTO creates abnormal edges. */
1035 make_abnormal_goto_edges (bb, false);
1038 /* Create edges for an asm statement with labels at block BB. */
1040 static void
1041 make_gimple_asm_edges (basic_block bb)
1043 gimple stmt = last_stmt (bb);
1044 location_t stmt_loc = gimple_location (stmt);
1045 int i, n = gimple_asm_nlabels (stmt);
1047 for (i = 0; i < n; ++i)
1049 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1050 basic_block label_bb = label_to_block (label);
1051 make_edge (bb, label_bb, 0);
1052 assign_discriminator (stmt_loc, label_bb);
1056 /*---------------------------------------------------------------------------
1057 Flowgraph analysis
1058 ---------------------------------------------------------------------------*/
1060 /* Cleanup useless labels in basic blocks. This is something we wish
1061 to do early because it allows us to group case labels before creating
1062 the edges for the CFG, and it speeds up block statement iterators in
1063 all passes later on.
1064 We rerun this pass after CFG is created, to get rid of the labels that
1065 are no longer referenced. After then we do not run it any more, since
1066 (almost) no new labels should be created. */
1068 /* A map from basic block index to the leading label of that block. */
1069 static struct label_record
1071 /* The label. */
1072 tree label;
1074 /* True if the label is referenced from somewhere. */
1075 bool used;
1076 } *label_for_bb;
1078 /* Given LABEL return the first label in the same basic block. */
1080 static tree
1081 main_block_label (tree label)
1083 basic_block bb = label_to_block (label);
1084 tree main_label = label_for_bb[bb->index].label;
1086 /* label_to_block possibly inserted undefined label into the chain. */
1087 if (!main_label)
1089 label_for_bb[bb->index].label = label;
1090 main_label = label;
1093 label_for_bb[bb->index].used = true;
1094 return main_label;
1097 /* Clean up redundant labels within the exception tree. */
1099 static void
1100 cleanup_dead_labels_eh (void)
1102 eh_landing_pad lp;
1103 eh_region r;
1104 tree lab;
1105 int i;
1107 if (cfun->eh == NULL)
1108 return;
1110 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1111 if (lp && lp->post_landing_pad)
1113 lab = main_block_label (lp->post_landing_pad);
1114 if (lab != lp->post_landing_pad)
1116 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1117 EH_LANDING_PAD_NR (lab) = lp->index;
1121 FOR_ALL_EH_REGION (r)
1122 switch (r->type)
1124 case ERT_CLEANUP:
1125 case ERT_MUST_NOT_THROW:
1126 break;
1128 case ERT_TRY:
1130 eh_catch c;
1131 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1133 lab = c->label;
1134 if (lab)
1135 c->label = main_block_label (lab);
1138 break;
1140 case ERT_ALLOWED_EXCEPTIONS:
1141 lab = r->u.allowed.label;
1142 if (lab)
1143 r->u.allowed.label = main_block_label (lab);
1144 break;
1149 /* Cleanup redundant labels. This is a three-step process:
1150 1) Find the leading label for each block.
1151 2) Redirect all references to labels to the leading labels.
1152 3) Cleanup all useless labels. */
1154 void
1155 cleanup_dead_labels (void)
1157 basic_block bb;
1158 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1160 /* Find a suitable label for each block. We use the first user-defined
1161 label if there is one, or otherwise just the first label we see. */
1162 FOR_EACH_BB (bb)
1164 gimple_stmt_iterator i;
1166 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1168 tree label;
1169 gimple stmt = gsi_stmt (i);
1171 if (gimple_code (stmt) != GIMPLE_LABEL)
1172 break;
1174 label = gimple_label_label (stmt);
1176 /* If we have not yet seen a label for the current block,
1177 remember this one and see if there are more labels. */
1178 if (!label_for_bb[bb->index].label)
1180 label_for_bb[bb->index].label = label;
1181 continue;
1184 /* If we did see a label for the current block already, but it
1185 is an artificially created label, replace it if the current
1186 label is a user defined label. */
1187 if (!DECL_ARTIFICIAL (label)
1188 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1190 label_for_bb[bb->index].label = label;
1191 break;
1196 /* Now redirect all jumps/branches to the selected label.
1197 First do so for each block ending in a control statement. */
1198 FOR_EACH_BB (bb)
1200 gimple stmt = last_stmt (bb);
1201 if (!stmt)
1202 continue;
1204 switch (gimple_code (stmt))
1206 case GIMPLE_COND:
1208 tree true_label = gimple_cond_true_label (stmt);
1209 tree false_label = gimple_cond_false_label (stmt);
1211 if (true_label)
1212 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1213 if (false_label)
1214 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1215 break;
1218 case GIMPLE_SWITCH:
1220 size_t i, n = gimple_switch_num_labels (stmt);
1222 /* Replace all destination labels. */
1223 for (i = 0; i < n; ++i)
1225 tree case_label = gimple_switch_label (stmt, i);
1226 tree label = main_block_label (CASE_LABEL (case_label));
1227 CASE_LABEL (case_label) = label;
1229 break;
1232 case GIMPLE_ASM:
1234 int i, n = gimple_asm_nlabels (stmt);
1236 for (i = 0; i < n; ++i)
1238 tree cons = gimple_asm_label_op (stmt, i);
1239 tree label = main_block_label (TREE_VALUE (cons));
1240 TREE_VALUE (cons) = label;
1242 break;
1245 /* We have to handle gotos until they're removed, and we don't
1246 remove them until after we've created the CFG edges. */
1247 case GIMPLE_GOTO:
1248 if (!computed_goto_p (stmt))
1250 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1251 gimple_goto_set_dest (stmt, new_dest);
1253 break;
1255 default:
1256 break;
1260 /* Do the same for the exception region tree labels. */
1261 cleanup_dead_labels_eh ();
1263 /* Finally, purge dead labels. All user-defined labels and labels that
1264 can be the target of non-local gotos and labels which have their
1265 address taken are preserved. */
1266 FOR_EACH_BB (bb)
1268 gimple_stmt_iterator i;
1269 tree label_for_this_bb = label_for_bb[bb->index].label;
1271 if (!label_for_this_bb)
1272 continue;
1274 /* If the main label of the block is unused, we may still remove it. */
1275 if (!label_for_bb[bb->index].used)
1276 label_for_this_bb = NULL;
1278 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1280 tree label;
1281 gimple stmt = gsi_stmt (i);
1283 if (gimple_code (stmt) != GIMPLE_LABEL)
1284 break;
1286 label = gimple_label_label (stmt);
1288 if (label == label_for_this_bb
1289 || !DECL_ARTIFICIAL (label)
1290 || DECL_NONLOCAL (label)
1291 || FORCED_LABEL (label))
1292 gsi_next (&i);
1293 else
1294 gsi_remove (&i, true);
1298 free (label_for_bb);
1301 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1302 the ones jumping to the same label.
1303 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1305 static void
1306 group_case_labels_stmt (gimple stmt)
1308 int old_size = gimple_switch_num_labels (stmt);
1309 int i, j, new_size = old_size;
1310 tree default_case = NULL_TREE;
1311 tree default_label = NULL_TREE;
1312 bool has_default;
1314 /* The default label is always the first case in a switch
1315 statement after gimplification if it was not optimized
1316 away */
1317 if (!CASE_LOW (gimple_switch_default_label (stmt))
1318 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1320 default_case = gimple_switch_default_label (stmt);
1321 default_label = CASE_LABEL (default_case);
1322 has_default = true;
1324 else
1325 has_default = false;
1327 /* Look for possible opportunities to merge cases. */
1328 if (has_default)
1329 i = 1;
1330 else
1331 i = 0;
1332 while (i < old_size)
1334 tree base_case, base_label, base_high;
1335 base_case = gimple_switch_label (stmt, i);
1337 gcc_assert (base_case);
1338 base_label = CASE_LABEL (base_case);
1340 /* Discard cases that have the same destination as the
1341 default case. */
1342 if (base_label == default_label)
1344 gimple_switch_set_label (stmt, i, NULL_TREE);
1345 i++;
1346 new_size--;
1347 continue;
1350 base_high = CASE_HIGH (base_case)
1351 ? CASE_HIGH (base_case)
1352 : CASE_LOW (base_case);
1353 i++;
1355 /* Try to merge case labels. Break out when we reach the end
1356 of the label vector or when we cannot merge the next case
1357 label with the current one. */
1358 while (i < old_size)
1360 tree merge_case = gimple_switch_label (stmt, i);
1361 tree merge_label = CASE_LABEL (merge_case);
1362 tree t = int_const_binop (PLUS_EXPR, base_high,
1363 integer_one_node, 1);
1365 /* Merge the cases if they jump to the same place,
1366 and their ranges are consecutive. */
1367 if (merge_label == base_label
1368 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1370 base_high = CASE_HIGH (merge_case) ?
1371 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1372 CASE_HIGH (base_case) = base_high;
1373 gimple_switch_set_label (stmt, i, NULL_TREE);
1374 new_size--;
1375 i++;
1377 else
1378 break;
1382 /* Compress the case labels in the label vector, and adjust the
1383 length of the vector. */
1384 for (i = 0, j = 0; i < new_size; i++)
1386 while (! gimple_switch_label (stmt, j))
1387 j++;
1388 gimple_switch_set_label (stmt, i,
1389 gimple_switch_label (stmt, j++));
1392 gcc_assert (new_size <= old_size);
1393 gimple_switch_set_num_labels (stmt, new_size);
1396 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1397 and scan the sorted vector of cases. Combine the ones jumping to the
1398 same label. */
1400 void
1401 group_case_labels (void)
1403 basic_block bb;
1405 FOR_EACH_BB (bb)
1407 gimple stmt = last_stmt (bb);
1408 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1409 group_case_labels_stmt (stmt);
1413 /* Checks whether we can merge block B into block A. */
1415 static bool
1416 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1418 gimple stmt;
1419 gimple_stmt_iterator gsi;
1420 gimple_seq phis;
1422 if (!single_succ_p (a))
1423 return false;
1425 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1426 return false;
1428 if (single_succ (a) != b)
1429 return false;
1431 if (!single_pred_p (b))
1432 return false;
1434 if (b == EXIT_BLOCK_PTR)
1435 return false;
1437 /* If A ends by a statement causing exceptions or something similar, we
1438 cannot merge the blocks. */
1439 stmt = last_stmt (a);
1440 if (stmt && stmt_ends_bb_p (stmt))
1441 return false;
1443 /* Do not allow a block with only a non-local label to be merged. */
1444 if (stmt
1445 && gimple_code (stmt) == GIMPLE_LABEL
1446 && DECL_NONLOCAL (gimple_label_label (stmt)))
1447 return false;
1449 /* Examine the labels at the beginning of B. */
1450 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1452 tree lab;
1453 stmt = gsi_stmt (gsi);
1454 if (gimple_code (stmt) != GIMPLE_LABEL)
1455 break;
1456 lab = gimple_label_label (stmt);
1458 /* Do not remove user labels. */
1459 if (!DECL_ARTIFICIAL (lab))
1460 return false;
1463 /* Protect the loop latches. */
1464 if (current_loops && b->loop_father->latch == b)
1465 return false;
1467 /* It must be possible to eliminate all phi nodes in B. If ssa form
1468 is not up-to-date and a name-mapping is registered, we cannot eliminate
1469 any phis. Symbols marked for renaming are never a problem though. */
1470 phis = phi_nodes (b);
1471 if (!gimple_seq_empty_p (phis)
1472 && name_mappings_registered_p ())
1473 return false;
1475 /* When not optimizing, don't merge if we'd lose goto_locus. */
1476 if (!optimize
1477 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1479 location_t goto_locus = single_succ_edge (a)->goto_locus;
1480 gimple_stmt_iterator prev, next;
1481 prev = gsi_last_nondebug_bb (a);
1482 next = gsi_after_labels (b);
1483 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1484 gsi_next_nondebug (&next);
1485 if ((gsi_end_p (prev)
1486 || gimple_location (gsi_stmt (prev)) != goto_locus)
1487 && (gsi_end_p (next)
1488 || gimple_location (gsi_stmt (next)) != goto_locus))
1489 return false;
1492 return true;
1495 /* Return true if the var whose chain of uses starts at PTR has no
1496 nondebug uses. */
1497 bool
1498 has_zero_uses_1 (const ssa_use_operand_t *head)
1500 const ssa_use_operand_t *ptr;
1502 for (ptr = head->next; ptr != head; ptr = ptr->next)
1503 if (!is_gimple_debug (USE_STMT (ptr)))
1504 return false;
1506 return true;
1509 /* Return true if the var whose chain of uses starts at PTR has a
1510 single nondebug use. Set USE_P and STMT to that single nondebug
1511 use, if so, or to NULL otherwise. */
1512 bool
1513 single_imm_use_1 (const ssa_use_operand_t *head,
1514 use_operand_p *use_p, gimple *stmt)
1516 ssa_use_operand_t *ptr, *single_use = 0;
1518 for (ptr = head->next; ptr != head; ptr = ptr->next)
1519 if (!is_gimple_debug (USE_STMT (ptr)))
1521 if (single_use)
1523 single_use = NULL;
1524 break;
1526 single_use = ptr;
1529 if (use_p)
1530 *use_p = single_use;
1532 if (stmt)
1533 *stmt = single_use ? single_use->loc.stmt : NULL;
1535 return !!single_use;
1538 /* Replaces all uses of NAME by VAL. */
1540 void
1541 replace_uses_by (tree name, tree val)
1543 imm_use_iterator imm_iter;
1544 use_operand_p use;
1545 gimple stmt;
1546 edge e;
1548 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1550 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1552 replace_exp (use, val);
1554 if (gimple_code (stmt) == GIMPLE_PHI)
1556 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1557 if (e->flags & EDGE_ABNORMAL)
1559 /* This can only occur for virtual operands, since
1560 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1561 would prevent replacement. */
1562 gcc_assert (!is_gimple_reg (name));
1563 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1568 if (gimple_code (stmt) != GIMPLE_PHI)
1570 size_t i;
1572 fold_stmt_inplace (stmt);
1573 if (cfgcleanup_altered_bbs)
1574 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1576 /* FIXME. This should go in update_stmt. */
1577 for (i = 0; i < gimple_num_ops (stmt); i++)
1579 tree op = gimple_op (stmt, i);
1580 /* Operands may be empty here. For example, the labels
1581 of a GIMPLE_COND are nulled out following the creation
1582 of the corresponding CFG edges. */
1583 if (op && TREE_CODE (op) == ADDR_EXPR)
1584 recompute_tree_invariant_for_addr_expr (op);
1587 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1588 update_stmt (stmt);
1592 gcc_assert (has_zero_uses (name));
1594 /* Also update the trees stored in loop structures. */
1595 if (current_loops)
1597 struct loop *loop;
1598 loop_iterator li;
1600 FOR_EACH_LOOP (li, loop, 0)
1602 substitute_in_loop_info (loop, name, val);
1607 /* Merge block B into block A. */
1609 static void
1610 gimple_merge_blocks (basic_block a, basic_block b)
1612 gimple_stmt_iterator last, gsi, psi;
1613 gimple_seq phis = phi_nodes (b);
1615 if (dump_file)
1616 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1618 /* Remove all single-valued PHI nodes from block B of the form
1619 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1620 gsi = gsi_last_bb (a);
1621 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1623 gimple phi = gsi_stmt (psi);
1624 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1625 gimple copy;
1626 bool may_replace_uses = !is_gimple_reg (def)
1627 || may_propagate_copy (def, use);
1629 /* In case we maintain loop closed ssa form, do not propagate arguments
1630 of loop exit phi nodes. */
1631 if (current_loops
1632 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1633 && is_gimple_reg (def)
1634 && TREE_CODE (use) == SSA_NAME
1635 && a->loop_father != b->loop_father)
1636 may_replace_uses = false;
1638 if (!may_replace_uses)
1640 gcc_assert (is_gimple_reg (def));
1642 /* Note that just emitting the copies is fine -- there is no problem
1643 with ordering of phi nodes. This is because A is the single
1644 predecessor of B, therefore results of the phi nodes cannot
1645 appear as arguments of the phi nodes. */
1646 copy = gimple_build_assign (def, use);
1647 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1648 remove_phi_node (&psi, false);
1650 else
1652 /* If we deal with a PHI for virtual operands, we can simply
1653 propagate these without fussing with folding or updating
1654 the stmt. */
1655 if (!is_gimple_reg (def))
1657 imm_use_iterator iter;
1658 use_operand_p use_p;
1659 gimple stmt;
1661 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1662 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1663 SET_USE (use_p, use);
1665 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1666 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1668 else
1669 replace_uses_by (def, use);
1671 remove_phi_node (&psi, true);
1675 /* Ensure that B follows A. */
1676 move_block_after (b, a);
1678 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1679 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1681 /* Remove labels from B and set gimple_bb to A for other statements. */
1682 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1684 gimple stmt = gsi_stmt (gsi);
1685 if (gimple_code (stmt) == GIMPLE_LABEL)
1687 tree label = gimple_label_label (stmt);
1688 int lp_nr;
1690 gsi_remove (&gsi, false);
1692 /* Now that we can thread computed gotos, we might have
1693 a situation where we have a forced label in block B
1694 However, the label at the start of block B might still be
1695 used in other ways (think about the runtime checking for
1696 Fortran assigned gotos). So we can not just delete the
1697 label. Instead we move the label to the start of block A. */
1698 if (FORCED_LABEL (label))
1700 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1701 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1704 lp_nr = EH_LANDING_PAD_NR (label);
1705 if (lp_nr)
1707 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1708 lp->post_landing_pad = NULL;
1711 else
1713 gimple_set_bb (stmt, a);
1714 gsi_next (&gsi);
1718 /* Merge the sequences. */
1719 last = gsi_last_bb (a);
1720 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1721 set_bb_seq (b, NULL);
1723 if (cfgcleanup_altered_bbs)
1724 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1728 /* Return the one of two successors of BB that is not reachable by a
1729 complex edge, if there is one. Else, return BB. We use
1730 this in optimizations that use post-dominators for their heuristics,
1731 to catch the cases in C++ where function calls are involved. */
1733 basic_block
1734 single_noncomplex_succ (basic_block bb)
1736 edge e0, e1;
1737 if (EDGE_COUNT (bb->succs) != 2)
1738 return bb;
1740 e0 = EDGE_SUCC (bb, 0);
1741 e1 = EDGE_SUCC (bb, 1);
1742 if (e0->flags & EDGE_COMPLEX)
1743 return e1->dest;
1744 if (e1->flags & EDGE_COMPLEX)
1745 return e0->dest;
1747 return bb;
1750 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1752 void
1753 notice_special_calls (gimple call)
1755 int flags = gimple_call_flags (call);
1757 if (flags & ECF_MAY_BE_ALLOCA)
1758 cfun->calls_alloca = true;
1759 if (flags & ECF_RETURNS_TWICE)
1760 cfun->calls_setjmp = true;
1764 /* Clear flags set by notice_special_calls. Used by dead code removal
1765 to update the flags. */
1767 void
1768 clear_special_calls (void)
1770 cfun->calls_alloca = false;
1771 cfun->calls_setjmp = false;
1774 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1776 static void
1777 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1779 /* Since this block is no longer reachable, we can just delete all
1780 of its PHI nodes. */
1781 remove_phi_nodes (bb);
1783 /* Remove edges to BB's successors. */
1784 while (EDGE_COUNT (bb->succs) > 0)
1785 remove_edge (EDGE_SUCC (bb, 0));
1789 /* Remove statements of basic block BB. */
1791 static void
1792 remove_bb (basic_block bb)
1794 gimple_stmt_iterator i;
1796 if (dump_file)
1798 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1799 if (dump_flags & TDF_DETAILS)
1801 dump_bb (bb, dump_file, 0);
1802 fprintf (dump_file, "\n");
1806 if (current_loops)
1808 struct loop *loop = bb->loop_father;
1810 /* If a loop gets removed, clean up the information associated
1811 with it. */
1812 if (loop->latch == bb
1813 || loop->header == bb)
1814 free_numbers_of_iterations_estimates_loop (loop);
1817 /* Remove all the instructions in the block. */
1818 if (bb_seq (bb) != NULL)
1820 /* Walk backwards so as to get a chance to substitute all
1821 released DEFs into debug stmts. See
1822 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1823 details. */
1824 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1826 gimple stmt = gsi_stmt (i);
1827 if (gimple_code (stmt) == GIMPLE_LABEL
1828 && (FORCED_LABEL (gimple_label_label (stmt))
1829 || DECL_NONLOCAL (gimple_label_label (stmt))))
1831 basic_block new_bb;
1832 gimple_stmt_iterator new_gsi;
1834 /* A non-reachable non-local label may still be referenced.
1835 But it no longer needs to carry the extra semantics of
1836 non-locality. */
1837 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1839 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1840 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1843 new_bb = bb->prev_bb;
1844 new_gsi = gsi_start_bb (new_bb);
1845 gsi_remove (&i, false);
1846 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1848 else
1850 /* Release SSA definitions if we are in SSA. Note that we
1851 may be called when not in SSA. For example,
1852 final_cleanup calls this function via
1853 cleanup_tree_cfg. */
1854 if (gimple_in_ssa_p (cfun))
1855 release_defs (stmt);
1857 gsi_remove (&i, true);
1860 if (gsi_end_p (i))
1861 i = gsi_last_bb (bb);
1862 else
1863 gsi_prev (&i);
1867 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1868 bb->il.gimple = NULL;
1872 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1873 predicate VAL, return the edge that will be taken out of the block.
1874 If VAL does not match a unique edge, NULL is returned. */
1876 edge
1877 find_taken_edge (basic_block bb, tree val)
1879 gimple stmt;
1881 stmt = last_stmt (bb);
1883 gcc_assert (stmt);
1884 gcc_assert (is_ctrl_stmt (stmt));
1886 if (val == NULL)
1887 return NULL;
1889 if (!is_gimple_min_invariant (val))
1890 return NULL;
1892 if (gimple_code (stmt) == GIMPLE_COND)
1893 return find_taken_edge_cond_expr (bb, val);
1895 if (gimple_code (stmt) == GIMPLE_SWITCH)
1896 return find_taken_edge_switch_expr (bb, val);
1898 if (computed_goto_p (stmt))
1900 /* Only optimize if the argument is a label, if the argument is
1901 not a label then we can not construct a proper CFG.
1903 It may be the case that we only need to allow the LABEL_REF to
1904 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1905 appear inside a LABEL_EXPR just to be safe. */
1906 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1907 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1908 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1909 return NULL;
1912 gcc_unreachable ();
1915 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1916 statement, determine which of the outgoing edges will be taken out of the
1917 block. Return NULL if either edge may be taken. */
1919 static edge
1920 find_taken_edge_computed_goto (basic_block bb, tree val)
1922 basic_block dest;
1923 edge e = NULL;
1925 dest = label_to_block (val);
1926 if (dest)
1928 e = find_edge (bb, dest);
1929 gcc_assert (e != NULL);
1932 return e;
1935 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1936 statement, determine which of the two edges will be taken out of the
1937 block. Return NULL if either edge may be taken. */
1939 static edge
1940 find_taken_edge_cond_expr (basic_block bb, tree val)
1942 edge true_edge, false_edge;
1944 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1946 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1947 return (integer_zerop (val) ? false_edge : true_edge);
1950 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1951 statement, determine which edge will be taken out of the block. Return
1952 NULL if any edge may be taken. */
1954 static edge
1955 find_taken_edge_switch_expr (basic_block bb, tree val)
1957 basic_block dest_bb;
1958 edge e;
1959 gimple switch_stmt;
1960 tree taken_case;
1962 switch_stmt = last_stmt (bb);
1963 taken_case = find_case_label_for_value (switch_stmt, val);
1964 dest_bb = label_to_block (CASE_LABEL (taken_case));
1966 e = find_edge (bb, dest_bb);
1967 gcc_assert (e);
1968 return e;
1972 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1973 We can make optimal use here of the fact that the case labels are
1974 sorted: We can do a binary search for a case matching VAL. */
1976 static tree
1977 find_case_label_for_value (gimple switch_stmt, tree val)
1979 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1980 tree default_case = gimple_switch_default_label (switch_stmt);
1982 for (low = 0, high = n; high - low > 1; )
1984 size_t i = (high + low) / 2;
1985 tree t = gimple_switch_label (switch_stmt, i);
1986 int cmp;
1988 /* Cache the result of comparing CASE_LOW and val. */
1989 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1991 if (cmp > 0)
1992 high = i;
1993 else
1994 low = i;
1996 if (CASE_HIGH (t) == NULL)
1998 /* A singe-valued case label. */
1999 if (cmp == 0)
2000 return t;
2002 else
2004 /* A case range. We can only handle integer ranges. */
2005 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2006 return t;
2010 return default_case;
2014 /* Dump a basic block on stderr. */
2016 void
2017 gimple_debug_bb (basic_block bb)
2019 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2023 /* Dump basic block with index N on stderr. */
2025 basic_block
2026 gimple_debug_bb_n (int n)
2028 gimple_debug_bb (BASIC_BLOCK (n));
2029 return BASIC_BLOCK (n);
2033 /* Dump the CFG on stderr.
2035 FLAGS are the same used by the tree dumping functions
2036 (see TDF_* in tree-pass.h). */
2038 void
2039 gimple_debug_cfg (int flags)
2041 gimple_dump_cfg (stderr, flags);
2045 /* Dump the program showing basic block boundaries on the given FILE.
2047 FLAGS are the same used by the tree dumping functions (see TDF_* in
2048 tree.h). */
2050 void
2051 gimple_dump_cfg (FILE *file, int flags)
2053 if (flags & TDF_DETAILS)
2055 const char *funcname
2056 = lang_hooks.decl_printable_name (current_function_decl, 2);
2058 fputc ('\n', file);
2059 fprintf (file, ";; Function %s\n\n", funcname);
2060 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2061 n_basic_blocks, n_edges, last_basic_block);
2063 brief_dump_cfg (file);
2064 fprintf (file, "\n");
2067 if (flags & TDF_STATS)
2068 dump_cfg_stats (file);
2070 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2074 /* Dump CFG statistics on FILE. */
2076 void
2077 dump_cfg_stats (FILE *file)
2079 static long max_num_merged_labels = 0;
2080 unsigned long size, total = 0;
2081 long num_edges;
2082 basic_block bb;
2083 const char * const fmt_str = "%-30s%-13s%12s\n";
2084 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2085 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2086 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2087 const char *funcname
2088 = lang_hooks.decl_printable_name (current_function_decl, 2);
2091 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2093 fprintf (file, "---------------------------------------------------------\n");
2094 fprintf (file, fmt_str, "", " Number of ", "Memory");
2095 fprintf (file, fmt_str, "", " instances ", "used ");
2096 fprintf (file, "---------------------------------------------------------\n");
2098 size = n_basic_blocks * sizeof (struct basic_block_def);
2099 total += size;
2100 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2101 SCALE (size), LABEL (size));
2103 num_edges = 0;
2104 FOR_EACH_BB (bb)
2105 num_edges += EDGE_COUNT (bb->succs);
2106 size = num_edges * sizeof (struct edge_def);
2107 total += size;
2108 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2110 fprintf (file, "---------------------------------------------------------\n");
2111 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2112 LABEL (total));
2113 fprintf (file, "---------------------------------------------------------\n");
2114 fprintf (file, "\n");
2116 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2117 max_num_merged_labels = cfg_stats.num_merged_labels;
2119 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2120 cfg_stats.num_merged_labels, max_num_merged_labels);
2122 fprintf (file, "\n");
2126 /* Dump CFG statistics on stderr. Keep extern so that it's always
2127 linked in the final executable. */
2129 DEBUG_FUNCTION void
2130 debug_cfg_stats (void)
2132 dump_cfg_stats (stderr);
2136 /* Dump the flowgraph to a .vcg FILE. */
2138 static void
2139 gimple_cfg2vcg (FILE *file)
2141 edge e;
2142 edge_iterator ei;
2143 basic_block bb;
2144 const char *funcname
2145 = lang_hooks.decl_printable_name (current_function_decl, 2);
2147 /* Write the file header. */
2148 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2149 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2150 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2152 /* Write blocks and edges. */
2153 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2155 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2156 e->dest->index);
2158 if (e->flags & EDGE_FAKE)
2159 fprintf (file, " linestyle: dotted priority: 10");
2160 else
2161 fprintf (file, " linestyle: solid priority: 100");
2163 fprintf (file, " }\n");
2165 fputc ('\n', file);
2167 FOR_EACH_BB (bb)
2169 enum gimple_code head_code, end_code;
2170 const char *head_name, *end_name;
2171 int head_line = 0;
2172 int end_line = 0;
2173 gimple first = first_stmt (bb);
2174 gimple last = last_stmt (bb);
2176 if (first)
2178 head_code = gimple_code (first);
2179 head_name = gimple_code_name[head_code];
2180 head_line = get_lineno (first);
2182 else
2183 head_name = "no-statement";
2185 if (last)
2187 end_code = gimple_code (last);
2188 end_name = gimple_code_name[end_code];
2189 end_line = get_lineno (last);
2191 else
2192 end_name = "no-statement";
2194 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2195 bb->index, bb->index, head_name, head_line, end_name,
2196 end_line);
2198 FOR_EACH_EDGE (e, ei, bb->succs)
2200 if (e->dest == EXIT_BLOCK_PTR)
2201 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2202 else
2203 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2205 if (e->flags & EDGE_FAKE)
2206 fprintf (file, " priority: 10 linestyle: dotted");
2207 else
2208 fprintf (file, " priority: 100 linestyle: solid");
2210 fprintf (file, " }\n");
2213 if (bb->next_bb != EXIT_BLOCK_PTR)
2214 fputc ('\n', file);
2217 fputs ("}\n\n", file);
2222 /*---------------------------------------------------------------------------
2223 Miscellaneous helpers
2224 ---------------------------------------------------------------------------*/
2226 /* Return true if T represents a stmt that always transfers control. */
2228 bool
2229 is_ctrl_stmt (gimple t)
2231 switch (gimple_code (t))
2233 case GIMPLE_COND:
2234 case GIMPLE_SWITCH:
2235 case GIMPLE_GOTO:
2236 case GIMPLE_RETURN:
2237 case GIMPLE_RESX:
2238 return true;
2239 default:
2240 return false;
2245 /* Return true if T is a statement that may alter the flow of control
2246 (e.g., a call to a non-returning function). */
2248 bool
2249 is_ctrl_altering_stmt (gimple t)
2251 gcc_assert (t);
2253 switch (gimple_code (t))
2255 case GIMPLE_CALL:
2257 int flags = gimple_call_flags (t);
2259 /* A non-pure/const call alters flow control if the current
2260 function has nonlocal labels. */
2261 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2262 && cfun->has_nonlocal_label)
2263 return true;
2265 /* A call also alters control flow if it does not return. */
2266 if (flags & ECF_NORETURN)
2267 return true;
2269 /* BUILT_IN_RETURN call is same as return statement. */
2270 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2271 return true;
2273 break;
2275 case GIMPLE_EH_DISPATCH:
2276 /* EH_DISPATCH branches to the individual catch handlers at
2277 this level of a try or allowed-exceptions region. It can
2278 fallthru to the next statement as well. */
2279 return true;
2281 case GIMPLE_ASM:
2282 if (gimple_asm_nlabels (t) > 0)
2283 return true;
2284 break;
2286 CASE_GIMPLE_OMP:
2287 /* OpenMP directives alter control flow. */
2288 return true;
2290 default:
2291 break;
2294 /* If a statement can throw, it alters control flow. */
2295 return stmt_can_throw_internal (t);
2299 /* Return true if T is a simple local goto. */
2301 bool
2302 simple_goto_p (gimple t)
2304 return (gimple_code (t) == GIMPLE_GOTO
2305 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2309 /* Return true if T can make an abnormal transfer of control flow.
2310 Transfers of control flow associated with EH are excluded. */
2312 bool
2313 stmt_can_make_abnormal_goto (gimple t)
2315 if (computed_goto_p (t))
2316 return true;
2317 if (is_gimple_call (t))
2318 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2319 && !(gimple_call_flags (t) & ECF_LEAF));
2320 return false;
2324 /* Return true if STMT should start a new basic block. PREV_STMT is
2325 the statement preceding STMT. It is used when STMT is a label or a
2326 case label. Labels should only start a new basic block if their
2327 previous statement wasn't a label. Otherwise, sequence of labels
2328 would generate unnecessary basic blocks that only contain a single
2329 label. */
2331 static inline bool
2332 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2334 if (stmt == NULL)
2335 return false;
2337 /* Labels start a new basic block only if the preceding statement
2338 wasn't a label of the same type. This prevents the creation of
2339 consecutive blocks that have nothing but a single label. */
2340 if (gimple_code (stmt) == GIMPLE_LABEL)
2342 /* Nonlocal and computed GOTO targets always start a new block. */
2343 if (DECL_NONLOCAL (gimple_label_label (stmt))
2344 || FORCED_LABEL (gimple_label_label (stmt)))
2345 return true;
2347 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2349 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2350 return true;
2352 cfg_stats.num_merged_labels++;
2353 return false;
2355 else
2356 return true;
2359 return false;
2363 /* Return true if T should end a basic block. */
2365 bool
2366 stmt_ends_bb_p (gimple t)
2368 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2371 /* Remove block annotations and other data structures. */
2373 void
2374 delete_tree_cfg_annotations (void)
2376 label_to_block_map = NULL;
2380 /* Return the first statement in basic block BB. */
2382 gimple
2383 first_stmt (basic_block bb)
2385 gimple_stmt_iterator i = gsi_start_bb (bb);
2386 gimple stmt = NULL;
2388 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2390 gsi_next (&i);
2391 stmt = NULL;
2393 return stmt;
2396 /* Return the first non-label statement in basic block BB. */
2398 static gimple
2399 first_non_label_stmt (basic_block bb)
2401 gimple_stmt_iterator i = gsi_start_bb (bb);
2402 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2403 gsi_next (&i);
2404 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2407 /* Return the last statement in basic block BB. */
2409 gimple
2410 last_stmt (basic_block bb)
2412 gimple_stmt_iterator i = gsi_last_bb (bb);
2413 gimple stmt = NULL;
2415 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2417 gsi_prev (&i);
2418 stmt = NULL;
2420 return stmt;
2423 /* Return the last statement of an otherwise empty block. Return NULL
2424 if the block is totally empty, or if it contains more than one
2425 statement. */
2427 gimple
2428 last_and_only_stmt (basic_block bb)
2430 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2431 gimple last, prev;
2433 if (gsi_end_p (i))
2434 return NULL;
2436 last = gsi_stmt (i);
2437 gsi_prev_nondebug (&i);
2438 if (gsi_end_p (i))
2439 return last;
2441 /* Empty statements should no longer appear in the instruction stream.
2442 Everything that might have appeared before should be deleted by
2443 remove_useless_stmts, and the optimizers should just gsi_remove
2444 instead of smashing with build_empty_stmt.
2446 Thus the only thing that should appear here in a block containing
2447 one executable statement is a label. */
2448 prev = gsi_stmt (i);
2449 if (gimple_code (prev) == GIMPLE_LABEL)
2450 return last;
2451 else
2452 return NULL;
2455 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2457 static void
2458 reinstall_phi_args (edge new_edge, edge old_edge)
2460 edge_var_map_vector v;
2461 edge_var_map *vm;
2462 int i;
2463 gimple_stmt_iterator phis;
2465 v = redirect_edge_var_map_vector (old_edge);
2466 if (!v)
2467 return;
2469 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2470 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2471 i++, gsi_next (&phis))
2473 gimple phi = gsi_stmt (phis);
2474 tree result = redirect_edge_var_map_result (vm);
2475 tree arg = redirect_edge_var_map_def (vm);
2477 gcc_assert (result == gimple_phi_result (phi));
2479 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2482 redirect_edge_var_map_clear (old_edge);
2485 /* Returns the basic block after which the new basic block created
2486 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2487 near its "logical" location. This is of most help to humans looking
2488 at debugging dumps. */
2490 static basic_block
2491 split_edge_bb_loc (edge edge_in)
2493 basic_block dest = edge_in->dest;
2494 basic_block dest_prev = dest->prev_bb;
2496 if (dest_prev)
2498 edge e = find_edge (dest_prev, dest);
2499 if (e && !(e->flags & EDGE_COMPLEX))
2500 return edge_in->src;
2502 return dest_prev;
2505 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2506 Abort on abnormal edges. */
2508 static basic_block
2509 gimple_split_edge (edge edge_in)
2511 basic_block new_bb, after_bb, dest;
2512 edge new_edge, e;
2514 /* Abnormal edges cannot be split. */
2515 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2517 dest = edge_in->dest;
2519 after_bb = split_edge_bb_loc (edge_in);
2521 new_bb = create_empty_bb (after_bb);
2522 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2523 new_bb->count = edge_in->count;
2524 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2525 new_edge->probability = REG_BR_PROB_BASE;
2526 new_edge->count = edge_in->count;
2528 e = redirect_edge_and_branch (edge_in, new_bb);
2529 gcc_assert (e == edge_in);
2530 reinstall_phi_args (new_edge, e);
2532 return new_bb;
2536 /* Verify properties of the address expression T with base object BASE. */
2538 static tree
2539 verify_address (tree t, tree base)
2541 bool old_constant;
2542 bool old_side_effects;
2543 bool new_constant;
2544 bool new_side_effects;
2546 old_constant = TREE_CONSTANT (t);
2547 old_side_effects = TREE_SIDE_EFFECTS (t);
2549 recompute_tree_invariant_for_addr_expr (t);
2550 new_side_effects = TREE_SIDE_EFFECTS (t);
2551 new_constant = TREE_CONSTANT (t);
2553 if (old_constant != new_constant)
2555 error ("constant not recomputed when ADDR_EXPR changed");
2556 return t;
2558 if (old_side_effects != new_side_effects)
2560 error ("side effects not recomputed when ADDR_EXPR changed");
2561 return t;
2564 if (!(TREE_CODE (base) == VAR_DECL
2565 || TREE_CODE (base) == PARM_DECL
2566 || TREE_CODE (base) == RESULT_DECL))
2567 return NULL_TREE;
2569 if (DECL_GIMPLE_REG_P (base))
2571 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2572 return base;
2575 return NULL_TREE;
2578 /* Callback for walk_tree, check that all elements with address taken are
2579 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2580 inside a PHI node. */
2582 static tree
2583 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2585 tree t = *tp, x;
2587 if (TYPE_P (t))
2588 *walk_subtrees = 0;
2590 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2591 #define CHECK_OP(N, MSG) \
2592 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2593 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2595 switch (TREE_CODE (t))
2597 case SSA_NAME:
2598 if (SSA_NAME_IN_FREE_LIST (t))
2600 error ("SSA name in freelist but still referenced");
2601 return *tp;
2603 break;
2605 case INDIRECT_REF:
2606 error ("INDIRECT_REF in gimple IL");
2607 return t;
2609 case MEM_REF:
2610 x = TREE_OPERAND (t, 0);
2611 if (!POINTER_TYPE_P (TREE_TYPE (x))
2612 || !is_gimple_mem_ref_addr (x))
2614 error ("Invalid first operand of MEM_REF.");
2615 return x;
2617 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2618 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2620 error ("Invalid offset operand of MEM_REF.");
2621 return TREE_OPERAND (t, 1);
2623 if (TREE_CODE (x) == ADDR_EXPR
2624 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2625 return x;
2626 *walk_subtrees = 0;
2627 break;
2629 case ASSERT_EXPR:
2630 x = fold (ASSERT_EXPR_COND (t));
2631 if (x == boolean_false_node)
2633 error ("ASSERT_EXPR with an always-false condition");
2634 return *tp;
2636 break;
2638 case MODIFY_EXPR:
2639 error ("MODIFY_EXPR not expected while having tuples.");
2640 return *tp;
2642 case ADDR_EXPR:
2644 tree tem;
2646 gcc_assert (is_gimple_address (t));
2648 /* Skip any references (they will be checked when we recurse down the
2649 tree) and ensure that any variable used as a prefix is marked
2650 addressable. */
2651 for (x = TREE_OPERAND (t, 0);
2652 handled_component_p (x);
2653 x = TREE_OPERAND (x, 0))
2656 if ((tem = verify_address (t, x)))
2657 return tem;
2659 if (!(TREE_CODE (x) == VAR_DECL
2660 || TREE_CODE (x) == PARM_DECL
2661 || TREE_CODE (x) == RESULT_DECL))
2662 return NULL;
2664 if (!TREE_ADDRESSABLE (x))
2666 error ("address taken, but ADDRESSABLE bit not set");
2667 return x;
2670 break;
2673 case COND_EXPR:
2674 x = COND_EXPR_COND (t);
2675 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2677 error ("non-integral used in condition");
2678 return x;
2680 if (!is_gimple_condexpr (x))
2682 error ("invalid conditional operand");
2683 return x;
2685 break;
2687 case NON_LVALUE_EXPR:
2688 gcc_unreachable ();
2690 CASE_CONVERT:
2691 case FIX_TRUNC_EXPR:
2692 case FLOAT_EXPR:
2693 case NEGATE_EXPR:
2694 case ABS_EXPR:
2695 case BIT_NOT_EXPR:
2696 case TRUTH_NOT_EXPR:
2697 CHECK_OP (0, "invalid operand to unary operator");
2698 break;
2700 case REALPART_EXPR:
2701 case IMAGPART_EXPR:
2702 case COMPONENT_REF:
2703 case ARRAY_REF:
2704 case ARRAY_RANGE_REF:
2705 case BIT_FIELD_REF:
2706 case VIEW_CONVERT_EXPR:
2707 /* We have a nest of references. Verify that each of the operands
2708 that determine where to reference is either a constant or a variable,
2709 verify that the base is valid, and then show we've already checked
2710 the subtrees. */
2711 while (handled_component_p (t))
2713 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2714 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2715 else if (TREE_CODE (t) == ARRAY_REF
2716 || TREE_CODE (t) == ARRAY_RANGE_REF)
2718 CHECK_OP (1, "invalid array index");
2719 if (TREE_OPERAND (t, 2))
2720 CHECK_OP (2, "invalid array lower bound");
2721 if (TREE_OPERAND (t, 3))
2722 CHECK_OP (3, "invalid array stride");
2724 else if (TREE_CODE (t) == BIT_FIELD_REF)
2726 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2727 || !host_integerp (TREE_OPERAND (t, 2), 1))
2729 error ("invalid position or size operand to BIT_FIELD_REF");
2730 return t;
2732 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2733 && (TYPE_PRECISION (TREE_TYPE (t))
2734 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2736 error ("integral result type precision does not match "
2737 "field size of BIT_FIELD_REF");
2738 return t;
2740 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2741 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2742 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2744 error ("mode precision of non-integral result does not "
2745 "match field size of BIT_FIELD_REF");
2746 return t;
2750 t = TREE_OPERAND (t, 0);
2753 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2755 error ("invalid reference prefix");
2756 return t;
2758 *walk_subtrees = 0;
2759 break;
2760 case PLUS_EXPR:
2761 case MINUS_EXPR:
2762 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2763 POINTER_PLUS_EXPR. */
2764 if (POINTER_TYPE_P (TREE_TYPE (t)))
2766 error ("invalid operand to plus/minus, type is a pointer");
2767 return t;
2769 CHECK_OP (0, "invalid operand to binary operator");
2770 CHECK_OP (1, "invalid operand to binary operator");
2771 break;
2773 case POINTER_PLUS_EXPR:
2774 /* Check to make sure the first operand is a pointer or reference type. */
2775 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2777 error ("invalid operand to pointer plus, first operand is not a pointer");
2778 return t;
2780 /* Check to make sure the second operand is an integer with type of
2781 sizetype. */
2782 if (!useless_type_conversion_p (sizetype,
2783 TREE_TYPE (TREE_OPERAND (t, 1))))
2785 error ("invalid operand to pointer plus, second operand is not an "
2786 "integer with type of sizetype.");
2787 return t;
2789 /* FALLTHROUGH */
2790 case LT_EXPR:
2791 case LE_EXPR:
2792 case GT_EXPR:
2793 case GE_EXPR:
2794 case EQ_EXPR:
2795 case NE_EXPR:
2796 case UNORDERED_EXPR:
2797 case ORDERED_EXPR:
2798 case UNLT_EXPR:
2799 case UNLE_EXPR:
2800 case UNGT_EXPR:
2801 case UNGE_EXPR:
2802 case UNEQ_EXPR:
2803 case LTGT_EXPR:
2804 case MULT_EXPR:
2805 case TRUNC_DIV_EXPR:
2806 case CEIL_DIV_EXPR:
2807 case FLOOR_DIV_EXPR:
2808 case ROUND_DIV_EXPR:
2809 case TRUNC_MOD_EXPR:
2810 case CEIL_MOD_EXPR:
2811 case FLOOR_MOD_EXPR:
2812 case ROUND_MOD_EXPR:
2813 case RDIV_EXPR:
2814 case EXACT_DIV_EXPR:
2815 case MIN_EXPR:
2816 case MAX_EXPR:
2817 case LSHIFT_EXPR:
2818 case RSHIFT_EXPR:
2819 case LROTATE_EXPR:
2820 case RROTATE_EXPR:
2821 case BIT_IOR_EXPR:
2822 case BIT_XOR_EXPR:
2823 case BIT_AND_EXPR:
2824 CHECK_OP (0, "invalid operand to binary operator");
2825 CHECK_OP (1, "invalid operand to binary operator");
2826 break;
2828 case CONSTRUCTOR:
2829 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2830 *walk_subtrees = 0;
2831 break;
2833 default:
2834 break;
2836 return NULL;
2838 #undef CHECK_OP
2842 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2843 Returns true if there is an error, otherwise false. */
2845 static bool
2846 verify_types_in_gimple_min_lval (tree expr)
2848 tree op;
2850 if (is_gimple_id (expr))
2851 return false;
2853 if (TREE_CODE (expr) != TARGET_MEM_REF
2854 && TREE_CODE (expr) != MEM_REF)
2856 error ("invalid expression for min lvalue");
2857 return true;
2860 /* TARGET_MEM_REFs are strange beasts. */
2861 if (TREE_CODE (expr) == TARGET_MEM_REF)
2862 return false;
2864 op = TREE_OPERAND (expr, 0);
2865 if (!is_gimple_val (op))
2867 error ("invalid operand in indirect reference");
2868 debug_generic_stmt (op);
2869 return true;
2871 /* Memory references now generally can involve a value conversion. */
2873 return false;
2876 /* Verify if EXPR is a valid GIMPLE reference expression. If
2877 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2878 if there is an error, otherwise false. */
2880 static bool
2881 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2883 while (handled_component_p (expr))
2885 tree op = TREE_OPERAND (expr, 0);
2887 if (TREE_CODE (expr) == ARRAY_REF
2888 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2890 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2891 || (TREE_OPERAND (expr, 2)
2892 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2893 || (TREE_OPERAND (expr, 3)
2894 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2896 error ("invalid operands to array reference");
2897 debug_generic_stmt (expr);
2898 return true;
2902 /* Verify if the reference array element types are compatible. */
2903 if (TREE_CODE (expr) == ARRAY_REF
2904 && !useless_type_conversion_p (TREE_TYPE (expr),
2905 TREE_TYPE (TREE_TYPE (op))))
2907 error ("type mismatch in array reference");
2908 debug_generic_stmt (TREE_TYPE (expr));
2909 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2910 return true;
2912 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2913 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2914 TREE_TYPE (TREE_TYPE (op))))
2916 error ("type mismatch in array range reference");
2917 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2918 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2919 return true;
2922 if ((TREE_CODE (expr) == REALPART_EXPR
2923 || TREE_CODE (expr) == IMAGPART_EXPR)
2924 && !useless_type_conversion_p (TREE_TYPE (expr),
2925 TREE_TYPE (TREE_TYPE (op))))
2927 error ("type mismatch in real/imagpart reference");
2928 debug_generic_stmt (TREE_TYPE (expr));
2929 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2930 return true;
2933 if (TREE_CODE (expr) == COMPONENT_REF
2934 && !useless_type_conversion_p (TREE_TYPE (expr),
2935 TREE_TYPE (TREE_OPERAND (expr, 1))))
2937 error ("type mismatch in component reference");
2938 debug_generic_stmt (TREE_TYPE (expr));
2939 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2940 return true;
2943 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2945 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2946 that their operand is not an SSA name or an invariant when
2947 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2948 bug). Otherwise there is nothing to verify, gross mismatches at
2949 most invoke undefined behavior. */
2950 if (require_lvalue
2951 && (TREE_CODE (op) == SSA_NAME
2952 || is_gimple_min_invariant (op)))
2954 error ("Conversion of an SSA_NAME on the left hand side.");
2955 debug_generic_stmt (expr);
2956 return true;
2958 else if (TREE_CODE (op) == SSA_NAME
2959 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2961 error ("Conversion of register to a different size.");
2962 debug_generic_stmt (expr);
2963 return true;
2965 else if (!handled_component_p (op))
2966 return false;
2969 expr = op;
2972 if (TREE_CODE (expr) == MEM_REF)
2974 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2976 error ("Invalid address operand in MEM_REF.");
2977 debug_generic_stmt (expr);
2978 return true;
2980 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2981 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2983 error ("Invalid offset operand in MEM_REF.");
2984 debug_generic_stmt (expr);
2985 return true;
2988 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2990 if (!TMR_BASE (expr)
2991 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2993 error ("Invalid address operand in in TARGET_MEM_REF.");
2994 return true;
2996 if (!TMR_OFFSET (expr)
2997 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
2998 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3000 error ("Invalid offset operand in TARGET_MEM_REF.");
3001 debug_generic_stmt (expr);
3002 return true;
3006 return ((require_lvalue || !is_gimple_min_invariant (expr))
3007 && verify_types_in_gimple_min_lval (expr));
3010 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3011 list of pointer-to types that is trivially convertible to DEST. */
3013 static bool
3014 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3016 tree src;
3018 if (!TYPE_POINTER_TO (src_obj))
3019 return true;
3021 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3022 if (useless_type_conversion_p (dest, src))
3023 return true;
3025 return false;
3028 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3029 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3031 static bool
3032 valid_fixed_convert_types_p (tree type1, tree type2)
3034 return (FIXED_POINT_TYPE_P (type1)
3035 && (INTEGRAL_TYPE_P (type2)
3036 || SCALAR_FLOAT_TYPE_P (type2)
3037 || FIXED_POINT_TYPE_P (type2)));
3040 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3041 is a problem, otherwise false. */
3043 static bool
3044 verify_gimple_call (gimple stmt)
3046 tree fn = gimple_call_fn (stmt);
3047 tree fntype;
3048 unsigned i;
3050 if (TREE_CODE (fn) != OBJ_TYPE_REF
3051 && !is_gimple_val (fn))
3053 error ("invalid function in gimple call");
3054 debug_generic_stmt (fn);
3055 return true;
3058 if (!POINTER_TYPE_P (TREE_TYPE (fn))
3059 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3060 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
3062 error ("non-function in gimple call");
3063 return true;
3066 if (gimple_call_lhs (stmt)
3067 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3068 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3070 error ("invalid LHS in gimple call");
3071 return true;
3074 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3076 error ("LHS in noreturn call");
3077 return true;
3080 fntype = TREE_TYPE (TREE_TYPE (fn));
3081 if (gimple_call_lhs (stmt)
3082 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3083 TREE_TYPE (fntype))
3084 /* ??? At least C++ misses conversions at assignments from
3085 void * call results.
3086 ??? Java is completely off. Especially with functions
3087 returning java.lang.Object.
3088 For now simply allow arbitrary pointer type conversions. */
3089 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3090 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3092 error ("invalid conversion in gimple call");
3093 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3094 debug_generic_stmt (TREE_TYPE (fntype));
3095 return true;
3098 if (gimple_call_chain (stmt)
3099 && !is_gimple_val (gimple_call_chain (stmt)))
3101 error ("invalid static chain in gimple call");
3102 debug_generic_stmt (gimple_call_chain (stmt));
3103 return true;
3106 /* If there is a static chain argument, this should not be an indirect
3107 call, and the decl should have DECL_STATIC_CHAIN set. */
3108 if (gimple_call_chain (stmt))
3110 if (TREE_CODE (fn) != ADDR_EXPR
3111 || TREE_CODE (TREE_OPERAND (fn, 0)) != FUNCTION_DECL)
3113 error ("static chain in indirect gimple call");
3114 return true;
3116 fn = TREE_OPERAND (fn, 0);
3118 if (!DECL_STATIC_CHAIN (fn))
3120 error ("static chain with function that doesn't use one");
3121 return true;
3125 /* ??? The C frontend passes unpromoted arguments in case it
3126 didn't see a function declaration before the call. So for now
3127 leave the call arguments mostly unverified. Once we gimplify
3128 unit-at-a-time we have a chance to fix this. */
3130 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3132 tree arg = gimple_call_arg (stmt, i);
3133 if ((is_gimple_reg_type (TREE_TYPE (arg))
3134 && !is_gimple_val (arg))
3135 || (!is_gimple_reg_type (TREE_TYPE (arg))
3136 && !is_gimple_lvalue (arg)))
3138 error ("invalid argument to gimple call");
3139 debug_generic_expr (arg);
3143 return false;
3146 /* Verifies the gimple comparison with the result type TYPE and
3147 the operands OP0 and OP1. */
3149 static bool
3150 verify_gimple_comparison (tree type, tree op0, tree op1)
3152 tree op0_type = TREE_TYPE (op0);
3153 tree op1_type = TREE_TYPE (op1);
3155 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3157 error ("invalid operands in gimple comparison");
3158 return true;
3161 /* For comparisons we do not have the operations type as the
3162 effective type the comparison is carried out in. Instead
3163 we require that either the first operand is trivially
3164 convertible into the second, or the other way around.
3165 The resulting type of a comparison may be any integral type.
3166 Because we special-case pointers to void we allow
3167 comparisons of pointers with the same mode as well. */
3168 if ((!useless_type_conversion_p (op0_type, op1_type)
3169 && !useless_type_conversion_p (op1_type, op0_type)
3170 && (!POINTER_TYPE_P (op0_type)
3171 || !POINTER_TYPE_P (op1_type)
3172 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3173 || !INTEGRAL_TYPE_P (type))
3175 error ("type mismatch in comparison expression");
3176 debug_generic_expr (type);
3177 debug_generic_expr (op0_type);
3178 debug_generic_expr (op1_type);
3179 return true;
3182 return false;
3185 /* Verify a gimple assignment statement STMT with an unary rhs.
3186 Returns true if anything is wrong. */
3188 static bool
3189 verify_gimple_assign_unary (gimple stmt)
3191 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3192 tree lhs = gimple_assign_lhs (stmt);
3193 tree lhs_type = TREE_TYPE (lhs);
3194 tree rhs1 = gimple_assign_rhs1 (stmt);
3195 tree rhs1_type = TREE_TYPE (rhs1);
3197 if (!is_gimple_reg (lhs)
3198 && !(optimize == 0
3199 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3201 error ("non-register as LHS of unary operation");
3202 return true;
3205 if (!is_gimple_val (rhs1))
3207 error ("invalid operand in unary operation");
3208 return true;
3211 /* First handle conversions. */
3212 switch (rhs_code)
3214 CASE_CONVERT:
3216 /* Allow conversions between integral types and pointers only if
3217 there is no sign or zero extension involved.
3218 For targets were the precision of sizetype doesn't match that
3219 of pointers we need to allow arbitrary conversions from and
3220 to sizetype. */
3221 if ((POINTER_TYPE_P (lhs_type)
3222 && INTEGRAL_TYPE_P (rhs1_type)
3223 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3224 || rhs1_type == sizetype))
3225 || (POINTER_TYPE_P (rhs1_type)
3226 && INTEGRAL_TYPE_P (lhs_type)
3227 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3228 || lhs_type == sizetype)))
3229 return false;
3231 /* Allow conversion from integer to offset type and vice versa. */
3232 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3233 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3234 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3235 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3236 return false;
3238 /* Otherwise assert we are converting between types of the
3239 same kind. */
3240 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3242 error ("invalid types in nop conversion");
3243 debug_generic_expr (lhs_type);
3244 debug_generic_expr (rhs1_type);
3245 return true;
3248 return false;
3251 case ADDR_SPACE_CONVERT_EXPR:
3253 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3254 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3255 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3257 error ("invalid types in address space conversion");
3258 debug_generic_expr (lhs_type);
3259 debug_generic_expr (rhs1_type);
3260 return true;
3263 return false;
3266 case FIXED_CONVERT_EXPR:
3268 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3269 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3271 error ("invalid types in fixed-point conversion");
3272 debug_generic_expr (lhs_type);
3273 debug_generic_expr (rhs1_type);
3274 return true;
3277 return false;
3280 case FLOAT_EXPR:
3282 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3284 error ("invalid types in conversion to floating point");
3285 debug_generic_expr (lhs_type);
3286 debug_generic_expr (rhs1_type);
3287 return true;
3290 return false;
3293 case FIX_TRUNC_EXPR:
3295 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3297 error ("invalid types in conversion to integer");
3298 debug_generic_expr (lhs_type);
3299 debug_generic_expr (rhs1_type);
3300 return true;
3303 return false;
3306 case VEC_UNPACK_HI_EXPR:
3307 case VEC_UNPACK_LO_EXPR:
3308 case REDUC_MAX_EXPR:
3309 case REDUC_MIN_EXPR:
3310 case REDUC_PLUS_EXPR:
3311 case VEC_UNPACK_FLOAT_HI_EXPR:
3312 case VEC_UNPACK_FLOAT_LO_EXPR:
3313 /* FIXME. */
3314 return false;
3316 case TRUTH_NOT_EXPR:
3317 case NEGATE_EXPR:
3318 case ABS_EXPR:
3319 case BIT_NOT_EXPR:
3320 case PAREN_EXPR:
3321 case NON_LVALUE_EXPR:
3322 case CONJ_EXPR:
3323 break;
3325 default:
3326 gcc_unreachable ();
3329 /* For the remaining codes assert there is no conversion involved. */
3330 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3332 error ("non-trivial conversion in unary operation");
3333 debug_generic_expr (lhs_type);
3334 debug_generic_expr (rhs1_type);
3335 return true;
3338 return false;
3341 /* Verify a gimple assignment statement STMT with a binary rhs.
3342 Returns true if anything is wrong. */
3344 static bool
3345 verify_gimple_assign_binary (gimple stmt)
3347 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3348 tree lhs = gimple_assign_lhs (stmt);
3349 tree lhs_type = TREE_TYPE (lhs);
3350 tree rhs1 = gimple_assign_rhs1 (stmt);
3351 tree rhs1_type = TREE_TYPE (rhs1);
3352 tree rhs2 = gimple_assign_rhs2 (stmt);
3353 tree rhs2_type = TREE_TYPE (rhs2);
3355 if (!is_gimple_reg (lhs)
3356 && !(optimize == 0
3357 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3359 error ("non-register as LHS of binary operation");
3360 return true;
3363 if (!is_gimple_val (rhs1)
3364 || !is_gimple_val (rhs2))
3366 error ("invalid operands in binary operation");
3367 return true;
3370 /* First handle operations that involve different types. */
3371 switch (rhs_code)
3373 case COMPLEX_EXPR:
3375 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3376 || !(INTEGRAL_TYPE_P (rhs1_type)
3377 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3378 || !(INTEGRAL_TYPE_P (rhs2_type)
3379 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3381 error ("type mismatch in complex expression");
3382 debug_generic_expr (lhs_type);
3383 debug_generic_expr (rhs1_type);
3384 debug_generic_expr (rhs2_type);
3385 return true;
3388 return false;
3391 case LSHIFT_EXPR:
3392 case RSHIFT_EXPR:
3393 case LROTATE_EXPR:
3394 case RROTATE_EXPR:
3396 /* Shifts and rotates are ok on integral types, fixed point
3397 types and integer vector types. */
3398 if ((!INTEGRAL_TYPE_P (rhs1_type)
3399 && !FIXED_POINT_TYPE_P (rhs1_type)
3400 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3401 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3402 || (!INTEGRAL_TYPE_P (rhs2_type)
3403 /* Vector shifts of vectors are also ok. */
3404 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3405 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3406 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3407 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3408 || !useless_type_conversion_p (lhs_type, rhs1_type))
3410 error ("type mismatch in shift expression");
3411 debug_generic_expr (lhs_type);
3412 debug_generic_expr (rhs1_type);
3413 debug_generic_expr (rhs2_type);
3414 return true;
3417 return false;
3420 case VEC_LSHIFT_EXPR:
3421 case VEC_RSHIFT_EXPR:
3423 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3424 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3425 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3426 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3427 || (!INTEGRAL_TYPE_P (rhs2_type)
3428 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3429 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3430 || !useless_type_conversion_p (lhs_type, rhs1_type))
3432 error ("type mismatch in vector shift expression");
3433 debug_generic_expr (lhs_type);
3434 debug_generic_expr (rhs1_type);
3435 debug_generic_expr (rhs2_type);
3436 return true;
3438 /* For shifting a vector of floating point components we
3439 only allow shifting by a constant multiple of the element size. */
3440 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
3441 && (TREE_CODE (rhs2) != INTEGER_CST
3442 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3443 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3445 error ("non-element sized vector shift of floating point vector");
3446 return true;
3449 return false;
3452 case PLUS_EXPR:
3453 case MINUS_EXPR:
3455 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3456 ??? This just makes the checker happy and may not be what is
3457 intended. */
3458 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3459 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3461 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3462 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3464 error ("invalid non-vector operands to vector valued plus");
3465 return true;
3467 lhs_type = TREE_TYPE (lhs_type);
3468 rhs1_type = TREE_TYPE (rhs1_type);
3469 rhs2_type = TREE_TYPE (rhs2_type);
3470 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3471 the pointer to 2nd place. */
3472 if (POINTER_TYPE_P (rhs2_type))
3474 tree tem = rhs1_type;
3475 rhs1_type = rhs2_type;
3476 rhs2_type = tem;
3478 goto do_pointer_plus_expr_check;
3480 if (POINTER_TYPE_P (lhs_type)
3481 || POINTER_TYPE_P (rhs1_type)
3482 || POINTER_TYPE_P (rhs2_type))
3484 error ("invalid (pointer) operands to plus/minus");
3485 return true;
3488 /* Continue with generic binary expression handling. */
3489 break;
3492 case POINTER_PLUS_EXPR:
3494 do_pointer_plus_expr_check:
3495 if (!POINTER_TYPE_P (rhs1_type)
3496 || !useless_type_conversion_p (lhs_type, rhs1_type)
3497 || !useless_type_conversion_p (sizetype, rhs2_type))
3499 error ("type mismatch in pointer plus expression");
3500 debug_generic_stmt (lhs_type);
3501 debug_generic_stmt (rhs1_type);
3502 debug_generic_stmt (rhs2_type);
3503 return true;
3506 return false;
3509 case TRUTH_ANDIF_EXPR:
3510 case TRUTH_ORIF_EXPR:
3511 gcc_unreachable ();
3513 case TRUTH_AND_EXPR:
3514 case TRUTH_OR_EXPR:
3515 case TRUTH_XOR_EXPR:
3517 /* We allow any kind of integral typed argument and result. */
3518 if (!INTEGRAL_TYPE_P (rhs1_type)
3519 || !INTEGRAL_TYPE_P (rhs2_type)
3520 || !INTEGRAL_TYPE_P (lhs_type))
3522 error ("type mismatch in binary truth expression");
3523 debug_generic_expr (lhs_type);
3524 debug_generic_expr (rhs1_type);
3525 debug_generic_expr (rhs2_type);
3526 return true;
3529 return false;
3532 case LT_EXPR:
3533 case LE_EXPR:
3534 case GT_EXPR:
3535 case GE_EXPR:
3536 case EQ_EXPR:
3537 case NE_EXPR:
3538 case UNORDERED_EXPR:
3539 case ORDERED_EXPR:
3540 case UNLT_EXPR:
3541 case UNLE_EXPR:
3542 case UNGT_EXPR:
3543 case UNGE_EXPR:
3544 case UNEQ_EXPR:
3545 case LTGT_EXPR:
3546 /* Comparisons are also binary, but the result type is not
3547 connected to the operand types. */
3548 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3550 case WIDEN_MULT_EXPR:
3551 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3552 return true;
3553 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3554 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3556 case WIDEN_SUM_EXPR:
3557 case VEC_WIDEN_MULT_HI_EXPR:
3558 case VEC_WIDEN_MULT_LO_EXPR:
3559 case VEC_PACK_TRUNC_EXPR:
3560 case VEC_PACK_SAT_EXPR:
3561 case VEC_PACK_FIX_TRUNC_EXPR:
3562 case VEC_EXTRACT_EVEN_EXPR:
3563 case VEC_EXTRACT_ODD_EXPR:
3564 case VEC_INTERLEAVE_HIGH_EXPR:
3565 case VEC_INTERLEAVE_LOW_EXPR:
3566 /* FIXME. */
3567 return false;
3569 case MULT_EXPR:
3570 case TRUNC_DIV_EXPR:
3571 case CEIL_DIV_EXPR:
3572 case FLOOR_DIV_EXPR:
3573 case ROUND_DIV_EXPR:
3574 case TRUNC_MOD_EXPR:
3575 case CEIL_MOD_EXPR:
3576 case FLOOR_MOD_EXPR:
3577 case ROUND_MOD_EXPR:
3578 case RDIV_EXPR:
3579 case EXACT_DIV_EXPR:
3580 case MIN_EXPR:
3581 case MAX_EXPR:
3582 case BIT_IOR_EXPR:
3583 case BIT_XOR_EXPR:
3584 case BIT_AND_EXPR:
3585 /* Continue with generic binary expression handling. */
3586 break;
3588 default:
3589 gcc_unreachable ();
3592 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3593 || !useless_type_conversion_p (lhs_type, rhs2_type))
3595 error ("type mismatch in binary expression");
3596 debug_generic_stmt (lhs_type);
3597 debug_generic_stmt (rhs1_type);
3598 debug_generic_stmt (rhs2_type);
3599 return true;
3602 return false;
3605 /* Verify a gimple assignment statement STMT with a ternary rhs.
3606 Returns true if anything is wrong. */
3608 static bool
3609 verify_gimple_assign_ternary (gimple stmt)
3611 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3612 tree lhs = gimple_assign_lhs (stmt);
3613 tree lhs_type = TREE_TYPE (lhs);
3614 tree rhs1 = gimple_assign_rhs1 (stmt);
3615 tree rhs1_type = TREE_TYPE (rhs1);
3616 tree rhs2 = gimple_assign_rhs2 (stmt);
3617 tree rhs2_type = TREE_TYPE (rhs2);
3618 tree rhs3 = gimple_assign_rhs3 (stmt);
3619 tree rhs3_type = TREE_TYPE (rhs3);
3621 if (!is_gimple_reg (lhs)
3622 && !(optimize == 0
3623 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3625 error ("non-register as LHS of ternary operation");
3626 return true;
3629 if (!is_gimple_val (rhs1)
3630 || !is_gimple_val (rhs2)
3631 || !is_gimple_val (rhs3))
3633 error ("invalid operands in ternary operation");
3634 return true;
3637 /* First handle operations that involve different types. */
3638 switch (rhs_code)
3640 case WIDEN_MULT_PLUS_EXPR:
3641 case WIDEN_MULT_MINUS_EXPR:
3642 if ((!INTEGRAL_TYPE_P (rhs1_type)
3643 && !FIXED_POINT_TYPE_P (rhs1_type))
3644 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3645 || !useless_type_conversion_p (lhs_type, rhs3_type)
3646 || 2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type)
3647 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3649 error ("type mismatch in widening multiply-accumulate expression");
3650 debug_generic_expr (lhs_type);
3651 debug_generic_expr (rhs1_type);
3652 debug_generic_expr (rhs2_type);
3653 debug_generic_expr (rhs3_type);
3654 return true;
3656 break;
3658 default:
3659 gcc_unreachable ();
3661 return false;
3664 /* Verify a gimple assignment statement STMT with a single rhs.
3665 Returns true if anything is wrong. */
3667 static bool
3668 verify_gimple_assign_single (gimple stmt)
3670 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3671 tree lhs = gimple_assign_lhs (stmt);
3672 tree lhs_type = TREE_TYPE (lhs);
3673 tree rhs1 = gimple_assign_rhs1 (stmt);
3674 tree rhs1_type = TREE_TYPE (rhs1);
3675 bool res = false;
3677 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3679 error ("non-trivial conversion at assignment");
3680 debug_generic_expr (lhs_type);
3681 debug_generic_expr (rhs1_type);
3682 return true;
3685 if (handled_component_p (lhs))
3686 res |= verify_types_in_gimple_reference (lhs, true);
3688 /* Special codes we cannot handle via their class. */
3689 switch (rhs_code)
3691 case ADDR_EXPR:
3693 tree op = TREE_OPERAND (rhs1, 0);
3694 if (!is_gimple_addressable (op))
3696 error ("invalid operand in unary expression");
3697 return true;
3700 if (!types_compatible_p (TREE_TYPE (op), TREE_TYPE (TREE_TYPE (rhs1)))
3701 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3702 TREE_TYPE (op)))
3704 error ("type mismatch in address expression");
3705 debug_generic_stmt (TREE_TYPE (rhs1));
3706 debug_generic_stmt (TREE_TYPE (op));
3707 return true;
3710 return verify_types_in_gimple_reference (op, true);
3713 /* tcc_reference */
3714 case INDIRECT_REF:
3715 error ("INDIRECT_REF in gimple IL");
3716 return true;
3718 case COMPONENT_REF:
3719 case BIT_FIELD_REF:
3720 case ARRAY_REF:
3721 case ARRAY_RANGE_REF:
3722 case VIEW_CONVERT_EXPR:
3723 case REALPART_EXPR:
3724 case IMAGPART_EXPR:
3725 case TARGET_MEM_REF:
3726 case MEM_REF:
3727 if (!is_gimple_reg (lhs)
3728 && is_gimple_reg_type (TREE_TYPE (lhs)))
3730 error ("invalid rhs for gimple memory store");
3731 debug_generic_stmt (lhs);
3732 debug_generic_stmt (rhs1);
3733 return true;
3735 return res || verify_types_in_gimple_reference (rhs1, false);
3737 /* tcc_constant */
3738 case SSA_NAME:
3739 case INTEGER_CST:
3740 case REAL_CST:
3741 case FIXED_CST:
3742 case COMPLEX_CST:
3743 case VECTOR_CST:
3744 case STRING_CST:
3745 return res;
3747 /* tcc_declaration */
3748 case CONST_DECL:
3749 return res;
3750 case VAR_DECL:
3751 case PARM_DECL:
3752 if (!is_gimple_reg (lhs)
3753 && !is_gimple_reg (rhs1)
3754 && is_gimple_reg_type (TREE_TYPE (lhs)))
3756 error ("invalid rhs for gimple memory store");
3757 debug_generic_stmt (lhs);
3758 debug_generic_stmt (rhs1);
3759 return true;
3761 return res;
3763 case COND_EXPR:
3764 if (!is_gimple_reg (lhs)
3765 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3766 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3767 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3768 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3769 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3770 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3772 error ("invalid COND_EXPR in gimple assignment");
3773 debug_generic_stmt (rhs1);
3774 return true;
3776 return res;
3778 case CONSTRUCTOR:
3779 case OBJ_TYPE_REF:
3780 case ASSERT_EXPR:
3781 case WITH_SIZE_EXPR:
3782 case POLYNOMIAL_CHREC:
3783 case DOT_PROD_EXPR:
3784 case VEC_COND_EXPR:
3785 case REALIGN_LOAD_EXPR:
3786 /* FIXME. */
3787 return res;
3789 default:;
3792 return res;
3795 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3796 is a problem, otherwise false. */
3798 static bool
3799 verify_gimple_assign (gimple stmt)
3801 switch (gimple_assign_rhs_class (stmt))
3803 case GIMPLE_SINGLE_RHS:
3804 return verify_gimple_assign_single (stmt);
3806 case GIMPLE_UNARY_RHS:
3807 return verify_gimple_assign_unary (stmt);
3809 case GIMPLE_BINARY_RHS:
3810 return verify_gimple_assign_binary (stmt);
3812 case GIMPLE_TERNARY_RHS:
3813 return verify_gimple_assign_ternary (stmt);
3815 default:
3816 gcc_unreachable ();
3820 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3821 is a problem, otherwise false. */
3823 static bool
3824 verify_gimple_return (gimple stmt)
3826 tree op = gimple_return_retval (stmt);
3827 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3829 /* We cannot test for present return values as we do not fix up missing
3830 return values from the original source. */
3831 if (op == NULL)
3832 return false;
3834 if (!is_gimple_val (op)
3835 && TREE_CODE (op) != RESULT_DECL)
3837 error ("invalid operand in return statement");
3838 debug_generic_stmt (op);
3839 return true;
3842 if ((TREE_CODE (op) == RESULT_DECL
3843 && DECL_BY_REFERENCE (op))
3844 || (TREE_CODE (op) == SSA_NAME
3845 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3846 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3847 op = TREE_TYPE (op);
3849 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3851 error ("invalid conversion in return statement");
3852 debug_generic_stmt (restype);
3853 debug_generic_stmt (TREE_TYPE (op));
3854 return true;
3857 return false;
3861 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3862 is a problem, otherwise false. */
3864 static bool
3865 verify_gimple_goto (gimple stmt)
3867 tree dest = gimple_goto_dest (stmt);
3869 /* ??? We have two canonical forms of direct goto destinations, a
3870 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3871 if (TREE_CODE (dest) != LABEL_DECL
3872 && (!is_gimple_val (dest)
3873 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3875 error ("goto destination is neither a label nor a pointer");
3876 return true;
3879 return false;
3882 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3883 is a problem, otherwise false. */
3885 static bool
3886 verify_gimple_switch (gimple stmt)
3888 if (!is_gimple_val (gimple_switch_index (stmt)))
3890 error ("invalid operand to switch statement");
3891 debug_generic_stmt (gimple_switch_index (stmt));
3892 return true;
3895 return false;
3899 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3900 and false otherwise. */
3902 static bool
3903 verify_gimple_phi (gimple stmt)
3905 tree type = TREE_TYPE (gimple_phi_result (stmt));
3906 unsigned i;
3908 if (TREE_CODE (gimple_phi_result (stmt)) != SSA_NAME)
3910 error ("Invalid PHI result");
3911 return true;
3914 for (i = 0; i < gimple_phi_num_args (stmt); i++)
3916 tree arg = gimple_phi_arg_def (stmt, i);
3917 if ((is_gimple_reg (gimple_phi_result (stmt))
3918 && !is_gimple_val (arg))
3919 || (!is_gimple_reg (gimple_phi_result (stmt))
3920 && !is_gimple_addressable (arg)))
3922 error ("Invalid PHI argument");
3923 debug_generic_stmt (arg);
3924 return true;
3926 if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
3928 error ("Incompatible types in PHI argument %u", i);
3929 debug_generic_stmt (type);
3930 debug_generic_stmt (TREE_TYPE (arg));
3931 return true;
3935 return false;
3939 /* Verify a gimple debug statement STMT.
3940 Returns true if anything is wrong. */
3942 static bool
3943 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3945 /* There isn't much that could be wrong in a gimple debug stmt. A
3946 gimple debug bind stmt, for example, maps a tree, that's usually
3947 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3948 component or member of an aggregate type, to another tree, that
3949 can be an arbitrary expression. These stmts expand into debug
3950 insns, and are converted to debug notes by var-tracking.c. */
3951 return false;
3955 /* Verify the GIMPLE statement STMT. Returns true if there is an
3956 error, otherwise false. */
3958 static bool
3959 verify_types_in_gimple_stmt (gimple stmt)
3961 switch (gimple_code (stmt))
3963 case GIMPLE_ASSIGN:
3964 return verify_gimple_assign (stmt);
3966 case GIMPLE_LABEL:
3967 return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
3969 case GIMPLE_CALL:
3970 return verify_gimple_call (stmt);
3972 case GIMPLE_COND:
3973 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
3975 error ("invalid comparison code in gimple cond");
3976 return true;
3978 if (!(!gimple_cond_true_label (stmt)
3979 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
3980 || !(!gimple_cond_false_label (stmt)
3981 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
3983 error ("invalid labels in gimple cond");
3984 return true;
3987 return verify_gimple_comparison (boolean_type_node,
3988 gimple_cond_lhs (stmt),
3989 gimple_cond_rhs (stmt));
3991 case GIMPLE_GOTO:
3992 return verify_gimple_goto (stmt);
3994 case GIMPLE_SWITCH:
3995 return verify_gimple_switch (stmt);
3997 case GIMPLE_RETURN:
3998 return verify_gimple_return (stmt);
4000 case GIMPLE_ASM:
4001 return false;
4003 case GIMPLE_PHI:
4004 return verify_gimple_phi (stmt);
4006 /* Tuples that do not have tree operands. */
4007 case GIMPLE_NOP:
4008 case GIMPLE_PREDICT:
4009 case GIMPLE_RESX:
4010 case GIMPLE_EH_DISPATCH:
4011 case GIMPLE_EH_MUST_NOT_THROW:
4012 return false;
4014 CASE_GIMPLE_OMP:
4015 /* OpenMP directives are validated by the FE and never operated
4016 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4017 non-gimple expressions when the main index variable has had
4018 its address taken. This does not affect the loop itself
4019 because the header of an GIMPLE_OMP_FOR is merely used to determine
4020 how to setup the parallel iteration. */
4021 return false;
4023 case GIMPLE_DEBUG:
4024 return verify_gimple_debug (stmt);
4026 default:
4027 gcc_unreachable ();
4031 /* Verify the GIMPLE statements inside the sequence STMTS. */
4033 static bool
4034 verify_types_in_gimple_seq_2 (gimple_seq stmts)
4036 gimple_stmt_iterator ittr;
4037 bool err = false;
4039 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4041 gimple stmt = gsi_stmt (ittr);
4043 switch (gimple_code (stmt))
4045 case GIMPLE_BIND:
4046 err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
4047 break;
4049 case GIMPLE_TRY:
4050 err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
4051 err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
4052 break;
4054 case GIMPLE_EH_FILTER:
4055 err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
4056 break;
4058 case GIMPLE_CATCH:
4059 err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
4060 break;
4062 default:
4064 bool err2 = verify_types_in_gimple_stmt (stmt);
4065 if (err2)
4066 debug_gimple_stmt (stmt);
4067 err |= err2;
4072 return err;
4076 /* Verify the GIMPLE statements inside the statement list STMTS. */
4078 void
4079 verify_types_in_gimple_seq (gimple_seq stmts)
4081 if (verify_types_in_gimple_seq_2 (stmts))
4082 internal_error ("verify_gimple failed");
4086 /* Verify STMT, return true if STMT is not in GIMPLE form.
4087 TODO: Implement type checking. */
4089 static bool
4090 verify_stmt (gimple_stmt_iterator *gsi)
4092 tree addr;
4093 struct walk_stmt_info wi;
4094 bool last_in_block = gsi_one_before_end_p (*gsi);
4095 gimple stmt = gsi_stmt (*gsi);
4096 int lp_nr;
4098 if (is_gimple_omp (stmt))
4100 /* OpenMP directives are validated by the FE and never operated
4101 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4102 non-gimple expressions when the main index variable has had
4103 its address taken. This does not affect the loop itself
4104 because the header of an GIMPLE_OMP_FOR is merely used to determine
4105 how to setup the parallel iteration. */
4106 return false;
4109 /* FIXME. The C frontend passes unpromoted arguments in case it
4110 didn't see a function declaration before the call. */
4111 if (is_gimple_call (stmt))
4113 tree decl;
4115 if (!is_gimple_call_addr (gimple_call_fn (stmt)))
4117 error ("invalid function in call statement");
4118 return true;
4121 decl = gimple_call_fndecl (stmt);
4122 if (decl
4123 && TREE_CODE (decl) == FUNCTION_DECL
4124 && DECL_LOOPING_CONST_OR_PURE_P (decl)
4125 && (!DECL_PURE_P (decl))
4126 && (!TREE_READONLY (decl)))
4128 error ("invalid pure const state for function");
4129 return true;
4133 if (is_gimple_debug (stmt))
4134 return false;
4136 memset (&wi, 0, sizeof (wi));
4137 addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
4138 if (addr)
4140 debug_generic_expr (addr);
4141 inform (gimple_location (gsi_stmt (*gsi)), "in statement");
4142 debug_gimple_stmt (stmt);
4143 return true;
4146 /* If the statement is marked as part of an EH region, then it is
4147 expected that the statement could throw. Verify that when we
4148 have optimizations that simplify statements such that we prove
4149 that they cannot throw, that we update other data structures
4150 to match. */
4151 lp_nr = lookup_stmt_eh_lp (stmt);
4152 if (lp_nr != 0)
4154 if (!stmt_could_throw_p (stmt))
4156 error ("statement marked for throw, but doesn%'t");
4157 goto fail;
4159 else if (lp_nr > 0 && !last_in_block && stmt_can_throw_internal (stmt))
4161 error ("statement marked for throw in middle of block");
4162 goto fail;
4166 return false;
4168 fail:
4169 debug_gimple_stmt (stmt);
4170 return true;
4174 /* Return true when the T can be shared. */
4176 bool
4177 tree_node_can_be_shared (tree t)
4179 if (IS_TYPE_OR_DECL_P (t)
4180 || is_gimple_min_invariant (t)
4181 || TREE_CODE (t) == SSA_NAME
4182 || t == error_mark_node
4183 || TREE_CODE (t) == IDENTIFIER_NODE)
4184 return true;
4186 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4187 return true;
4189 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4190 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4191 || TREE_CODE (t) == COMPONENT_REF
4192 || TREE_CODE (t) == REALPART_EXPR
4193 || TREE_CODE (t) == IMAGPART_EXPR)
4194 t = TREE_OPERAND (t, 0);
4196 if (DECL_P (t))
4197 return true;
4199 return false;
4203 /* Called via walk_gimple_stmt. Verify tree sharing. */
4205 static tree
4206 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4208 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4209 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4211 if (tree_node_can_be_shared (*tp))
4213 *walk_subtrees = false;
4214 return NULL;
4217 if (pointer_set_insert (visited, *tp))
4218 return *tp;
4220 return NULL;
4224 static bool eh_error_found;
4225 static int
4226 verify_eh_throw_stmt_node (void **slot, void *data)
4228 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4229 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4231 if (!pointer_set_contains (visited, node->stmt))
4233 error ("Dead STMT in EH table");
4234 debug_gimple_stmt (node->stmt);
4235 eh_error_found = true;
4237 return 1;
4241 /* Verify the GIMPLE statements in every basic block. */
4243 DEBUG_FUNCTION void
4244 verify_stmts (void)
4246 basic_block bb;
4247 gimple_stmt_iterator gsi;
4248 bool err = false;
4249 struct pointer_set_t *visited, *visited_stmts;
4250 tree addr;
4251 struct walk_stmt_info wi;
4253 timevar_push (TV_TREE_STMT_VERIFY);
4254 visited = pointer_set_create ();
4255 visited_stmts = pointer_set_create ();
4257 memset (&wi, 0, sizeof (wi));
4258 wi.info = (void *) visited;
4260 FOR_EACH_BB (bb)
4262 gimple phi;
4263 size_t i;
4265 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4267 phi = gsi_stmt (gsi);
4268 pointer_set_insert (visited_stmts, phi);
4269 if (gimple_bb (phi) != bb)
4271 error ("gimple_bb (phi) is set to a wrong basic block");
4272 err |= true;
4275 for (i = 0; i < gimple_phi_num_args (phi); i++)
4277 tree t = gimple_phi_arg_def (phi, i);
4278 tree addr;
4280 if (!t)
4282 error ("missing PHI def");
4283 debug_gimple_stmt (phi);
4284 err |= true;
4285 continue;
4287 /* Addressable variables do have SSA_NAMEs but they
4288 are not considered gimple values. */
4289 else if (TREE_CODE (t) != SSA_NAME
4290 && TREE_CODE (t) != FUNCTION_DECL
4291 && !is_gimple_min_invariant (t))
4293 error ("PHI argument is not a GIMPLE value");
4294 debug_gimple_stmt (phi);
4295 debug_generic_expr (t);
4296 err |= true;
4299 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
4300 if (addr)
4302 error ("incorrect sharing of tree nodes");
4303 debug_gimple_stmt (phi);
4304 debug_generic_expr (addr);
4305 err |= true;
4309 #ifdef ENABLE_TYPES_CHECKING
4310 if (verify_gimple_phi (phi))
4312 debug_gimple_stmt (phi);
4313 err |= true;
4315 #endif
4318 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
4320 gimple stmt = gsi_stmt (gsi);
4322 if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
4323 || gimple_code (stmt) == GIMPLE_BIND)
4325 error ("invalid GIMPLE statement");
4326 debug_gimple_stmt (stmt);
4327 err |= true;
4330 pointer_set_insert (visited_stmts, stmt);
4332 if (gimple_bb (stmt) != bb)
4334 error ("gimple_bb (stmt) is set to a wrong basic block");
4335 debug_gimple_stmt (stmt);
4336 err |= true;
4339 if (gimple_code (stmt) == GIMPLE_LABEL)
4341 tree decl = gimple_label_label (stmt);
4342 int uid = LABEL_DECL_UID (decl);
4344 if (uid == -1
4345 || VEC_index (basic_block, label_to_block_map, uid) != bb)
4347 error ("incorrect entry in label_to_block_map");
4348 err |= true;
4351 uid = EH_LANDING_PAD_NR (decl);
4352 if (uid)
4354 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4355 if (decl != lp->post_landing_pad)
4357 error ("incorrect setting of landing pad number");
4358 err |= true;
4363 err |= verify_stmt (&gsi);
4365 #ifdef ENABLE_TYPES_CHECKING
4366 if (verify_types_in_gimple_stmt (gsi_stmt (gsi)))
4368 debug_gimple_stmt (stmt);
4369 err |= true;
4371 #endif
4372 addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
4373 if (addr)
4375 error ("incorrect sharing of tree nodes");
4376 debug_gimple_stmt (stmt);
4377 debug_generic_expr (addr);
4378 err |= true;
4380 gsi_next (&gsi);
4384 eh_error_found = false;
4385 if (get_eh_throw_stmt_table (cfun))
4386 htab_traverse (get_eh_throw_stmt_table (cfun),
4387 verify_eh_throw_stmt_node,
4388 visited_stmts);
4390 if (err | eh_error_found)
4391 internal_error ("verify_stmts failed");
4393 pointer_set_destroy (visited);
4394 pointer_set_destroy (visited_stmts);
4395 verify_histograms ();
4396 timevar_pop (TV_TREE_STMT_VERIFY);
4400 /* Verifies that the flow information is OK. */
4402 static int
4403 gimple_verify_flow_info (void)
4405 int err = 0;
4406 basic_block bb;
4407 gimple_stmt_iterator gsi;
4408 gimple stmt;
4409 edge e;
4410 edge_iterator ei;
4412 if (ENTRY_BLOCK_PTR->il.gimple)
4414 error ("ENTRY_BLOCK has IL associated with it");
4415 err = 1;
4418 if (EXIT_BLOCK_PTR->il.gimple)
4420 error ("EXIT_BLOCK has IL associated with it");
4421 err = 1;
4424 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4425 if (e->flags & EDGE_FALLTHRU)
4427 error ("fallthru to exit from bb %d", e->src->index);
4428 err = 1;
4431 FOR_EACH_BB (bb)
4433 bool found_ctrl_stmt = false;
4435 stmt = NULL;
4437 /* Skip labels on the start of basic block. */
4438 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4440 tree label;
4441 gimple prev_stmt = stmt;
4443 stmt = gsi_stmt (gsi);
4445 if (gimple_code (stmt) != GIMPLE_LABEL)
4446 break;
4448 label = gimple_label_label (stmt);
4449 if (prev_stmt && DECL_NONLOCAL (label))
4451 error ("nonlocal label ");
4452 print_generic_expr (stderr, label, 0);
4453 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4454 bb->index);
4455 err = 1;
4458 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4460 error ("EH landing pad label ");
4461 print_generic_expr (stderr, label, 0);
4462 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4463 bb->index);
4464 err = 1;
4467 if (label_to_block (label) != bb)
4469 error ("label ");
4470 print_generic_expr (stderr, label, 0);
4471 fprintf (stderr, " to block does not match in bb %d",
4472 bb->index);
4473 err = 1;
4476 if (decl_function_context (label) != current_function_decl)
4478 error ("label ");
4479 print_generic_expr (stderr, label, 0);
4480 fprintf (stderr, " has incorrect context in bb %d",
4481 bb->index);
4482 err = 1;
4486 /* Verify that body of basic block BB is free of control flow. */
4487 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4489 gimple stmt = gsi_stmt (gsi);
4491 if (found_ctrl_stmt)
4493 error ("control flow in the middle of basic block %d",
4494 bb->index);
4495 err = 1;
4498 if (stmt_ends_bb_p (stmt))
4499 found_ctrl_stmt = true;
4501 if (gimple_code (stmt) == GIMPLE_LABEL)
4503 error ("label ");
4504 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4505 fprintf (stderr, " in the middle of basic block %d", bb->index);
4506 err = 1;
4510 gsi = gsi_last_bb (bb);
4511 if (gsi_end_p (gsi))
4512 continue;
4514 stmt = gsi_stmt (gsi);
4516 if (gimple_code (stmt) == GIMPLE_LABEL)
4517 continue;
4519 err |= verify_eh_edges (stmt);
4521 if (is_ctrl_stmt (stmt))
4523 FOR_EACH_EDGE (e, ei, bb->succs)
4524 if (e->flags & EDGE_FALLTHRU)
4526 error ("fallthru edge after a control statement in bb %d",
4527 bb->index);
4528 err = 1;
4532 if (gimple_code (stmt) != GIMPLE_COND)
4534 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4535 after anything else but if statement. */
4536 FOR_EACH_EDGE (e, ei, bb->succs)
4537 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4539 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4540 bb->index);
4541 err = 1;
4545 switch (gimple_code (stmt))
4547 case GIMPLE_COND:
4549 edge true_edge;
4550 edge false_edge;
4552 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4554 if (!true_edge
4555 || !false_edge
4556 || !(true_edge->flags & EDGE_TRUE_VALUE)
4557 || !(false_edge->flags & EDGE_FALSE_VALUE)
4558 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4559 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4560 || EDGE_COUNT (bb->succs) >= 3)
4562 error ("wrong outgoing edge flags at end of bb %d",
4563 bb->index);
4564 err = 1;
4567 break;
4569 case GIMPLE_GOTO:
4570 if (simple_goto_p (stmt))
4572 error ("explicit goto at end of bb %d", bb->index);
4573 err = 1;
4575 else
4577 /* FIXME. We should double check that the labels in the
4578 destination blocks have their address taken. */
4579 FOR_EACH_EDGE (e, ei, bb->succs)
4580 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4581 | EDGE_FALSE_VALUE))
4582 || !(e->flags & EDGE_ABNORMAL))
4584 error ("wrong outgoing edge flags at end of bb %d",
4585 bb->index);
4586 err = 1;
4589 break;
4591 case GIMPLE_CALL:
4592 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4593 break;
4594 /* ... fallthru ... */
4595 case GIMPLE_RETURN:
4596 if (!single_succ_p (bb)
4597 || (single_succ_edge (bb)->flags
4598 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4599 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4601 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4602 err = 1;
4604 if (single_succ (bb) != EXIT_BLOCK_PTR)
4606 error ("return edge does not point to exit in bb %d",
4607 bb->index);
4608 err = 1;
4610 break;
4612 case GIMPLE_SWITCH:
4614 tree prev;
4615 edge e;
4616 size_t i, n;
4618 n = gimple_switch_num_labels (stmt);
4620 /* Mark all the destination basic blocks. */
4621 for (i = 0; i < n; ++i)
4623 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4624 basic_block label_bb = label_to_block (lab);
4625 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4626 label_bb->aux = (void *)1;
4629 /* Verify that the case labels are sorted. */
4630 prev = gimple_switch_label (stmt, 0);
4631 for (i = 1; i < n; ++i)
4633 tree c = gimple_switch_label (stmt, i);
4634 if (!CASE_LOW (c))
4636 error ("found default case not at the start of "
4637 "case vector");
4638 err = 1;
4639 continue;
4641 if (CASE_LOW (prev)
4642 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4644 error ("case labels not sorted: ");
4645 print_generic_expr (stderr, prev, 0);
4646 fprintf (stderr," is greater than ");
4647 print_generic_expr (stderr, c, 0);
4648 fprintf (stderr," but comes before it.\n");
4649 err = 1;
4651 prev = c;
4653 /* VRP will remove the default case if it can prove it will
4654 never be executed. So do not verify there always exists
4655 a default case here. */
4657 FOR_EACH_EDGE (e, ei, bb->succs)
4659 if (!e->dest->aux)
4661 error ("extra outgoing edge %d->%d",
4662 bb->index, e->dest->index);
4663 err = 1;
4666 e->dest->aux = (void *)2;
4667 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4668 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4670 error ("wrong outgoing edge flags at end of bb %d",
4671 bb->index);
4672 err = 1;
4676 /* Check that we have all of them. */
4677 for (i = 0; i < n; ++i)
4679 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4680 basic_block label_bb = label_to_block (lab);
4682 if (label_bb->aux != (void *)2)
4684 error ("missing edge %i->%i", bb->index, label_bb->index);
4685 err = 1;
4689 FOR_EACH_EDGE (e, ei, bb->succs)
4690 e->dest->aux = (void *)0;
4692 break;
4694 case GIMPLE_EH_DISPATCH:
4695 err |= verify_eh_dispatch_edge (stmt);
4696 break;
4698 default:
4699 break;
4703 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4704 verify_dominators (CDI_DOMINATORS);
4706 return err;
4710 /* Updates phi nodes after creating a forwarder block joined
4711 by edge FALLTHRU. */
4713 static void
4714 gimple_make_forwarder_block (edge fallthru)
4716 edge e;
4717 edge_iterator ei;
4718 basic_block dummy, bb;
4719 tree var;
4720 gimple_stmt_iterator gsi;
4722 dummy = fallthru->src;
4723 bb = fallthru->dest;
4725 if (single_pred_p (bb))
4726 return;
4728 /* If we redirected a branch we must create new PHI nodes at the
4729 start of BB. */
4730 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4732 gimple phi, new_phi;
4734 phi = gsi_stmt (gsi);
4735 var = gimple_phi_result (phi);
4736 new_phi = create_phi_node (var, bb);
4737 SSA_NAME_DEF_STMT (var) = new_phi;
4738 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4739 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4740 UNKNOWN_LOCATION);
4743 /* Add the arguments we have stored on edges. */
4744 FOR_EACH_EDGE (e, ei, bb->preds)
4746 if (e == fallthru)
4747 continue;
4749 flush_pending_stmts (e);
4754 /* Return a non-special label in the head of basic block BLOCK.
4755 Create one if it doesn't exist. */
4757 tree
4758 gimple_block_label (basic_block bb)
4760 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4761 bool first = true;
4762 tree label;
4763 gimple stmt;
4765 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4767 stmt = gsi_stmt (i);
4768 if (gimple_code (stmt) != GIMPLE_LABEL)
4769 break;
4770 label = gimple_label_label (stmt);
4771 if (!DECL_NONLOCAL (label))
4773 if (!first)
4774 gsi_move_before (&i, &s);
4775 return label;
4779 label = create_artificial_label (UNKNOWN_LOCATION);
4780 stmt = gimple_build_label (label);
4781 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4782 return label;
4786 /* Attempt to perform edge redirection by replacing a possibly complex
4787 jump instruction by a goto or by removing the jump completely.
4788 This can apply only if all edges now point to the same block. The
4789 parameters and return values are equivalent to
4790 redirect_edge_and_branch. */
4792 static edge
4793 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4795 basic_block src = e->src;
4796 gimple_stmt_iterator i;
4797 gimple stmt;
4799 /* We can replace or remove a complex jump only when we have exactly
4800 two edges. */
4801 if (EDGE_COUNT (src->succs) != 2
4802 /* Verify that all targets will be TARGET. Specifically, the
4803 edge that is not E must also go to TARGET. */
4804 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4805 return NULL;
4807 i = gsi_last_bb (src);
4808 if (gsi_end_p (i))
4809 return NULL;
4811 stmt = gsi_stmt (i);
4813 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4815 gsi_remove (&i, true);
4816 e = ssa_redirect_edge (e, target);
4817 e->flags = EDGE_FALLTHRU;
4818 return e;
4821 return NULL;
4825 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4826 edge representing the redirected branch. */
4828 static edge
4829 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4831 basic_block bb = e->src;
4832 gimple_stmt_iterator gsi;
4833 edge ret;
4834 gimple stmt;
4836 if (e->flags & EDGE_ABNORMAL)
4837 return NULL;
4839 if (e->dest == dest)
4840 return NULL;
4842 if (e->flags & EDGE_EH)
4843 return redirect_eh_edge (e, dest);
4845 if (e->src != ENTRY_BLOCK_PTR)
4847 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4848 if (ret)
4849 return ret;
4852 gsi = gsi_last_bb (bb);
4853 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4855 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4857 case GIMPLE_COND:
4858 /* For COND_EXPR, we only need to redirect the edge. */
4859 break;
4861 case GIMPLE_GOTO:
4862 /* No non-abnormal edges should lead from a non-simple goto, and
4863 simple ones should be represented implicitly. */
4864 gcc_unreachable ();
4866 case GIMPLE_SWITCH:
4868 tree label = gimple_block_label (dest);
4869 tree cases = get_cases_for_edge (e, stmt);
4871 /* If we have a list of cases associated with E, then use it
4872 as it's a lot faster than walking the entire case vector. */
4873 if (cases)
4875 edge e2 = find_edge (e->src, dest);
4876 tree last, first;
4878 first = cases;
4879 while (cases)
4881 last = cases;
4882 CASE_LABEL (cases) = label;
4883 cases = TREE_CHAIN (cases);
4886 /* If there was already an edge in the CFG, then we need
4887 to move all the cases associated with E to E2. */
4888 if (e2)
4890 tree cases2 = get_cases_for_edge (e2, stmt);
4892 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4893 TREE_CHAIN (cases2) = first;
4895 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4897 else
4899 size_t i, n = gimple_switch_num_labels (stmt);
4901 for (i = 0; i < n; i++)
4903 tree elt = gimple_switch_label (stmt, i);
4904 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4905 CASE_LABEL (elt) = label;
4909 break;
4911 case GIMPLE_ASM:
4913 int i, n = gimple_asm_nlabels (stmt);
4914 tree label = NULL;
4916 for (i = 0; i < n; ++i)
4918 tree cons = gimple_asm_label_op (stmt, i);
4919 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4921 if (!label)
4922 label = gimple_block_label (dest);
4923 TREE_VALUE (cons) = label;
4927 /* If we didn't find any label matching the former edge in the
4928 asm labels, we must be redirecting the fallthrough
4929 edge. */
4930 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4932 break;
4934 case GIMPLE_RETURN:
4935 gsi_remove (&gsi, true);
4936 e->flags |= EDGE_FALLTHRU;
4937 break;
4939 case GIMPLE_OMP_RETURN:
4940 case GIMPLE_OMP_CONTINUE:
4941 case GIMPLE_OMP_SECTIONS_SWITCH:
4942 case GIMPLE_OMP_FOR:
4943 /* The edges from OMP constructs can be simply redirected. */
4944 break;
4946 case GIMPLE_EH_DISPATCH:
4947 if (!(e->flags & EDGE_FALLTHRU))
4948 redirect_eh_dispatch_edge (stmt, e, dest);
4949 break;
4951 default:
4952 /* Otherwise it must be a fallthru edge, and we don't need to
4953 do anything besides redirecting it. */
4954 gcc_assert (e->flags & EDGE_FALLTHRU);
4955 break;
4958 /* Update/insert PHI nodes as necessary. */
4960 /* Now update the edges in the CFG. */
4961 e = ssa_redirect_edge (e, dest);
4963 return e;
4966 /* Returns true if it is possible to remove edge E by redirecting
4967 it to the destination of the other edge from E->src. */
4969 static bool
4970 gimple_can_remove_branch_p (const_edge e)
4972 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4973 return false;
4975 return true;
4978 /* Simple wrapper, as we can always redirect fallthru edges. */
4980 static basic_block
4981 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4983 e = gimple_redirect_edge_and_branch (e, dest);
4984 gcc_assert (e);
4986 return NULL;
4990 /* Splits basic block BB after statement STMT (but at least after the
4991 labels). If STMT is NULL, BB is split just after the labels. */
4993 static basic_block
4994 gimple_split_block (basic_block bb, void *stmt)
4996 gimple_stmt_iterator gsi;
4997 gimple_stmt_iterator gsi_tgt;
4998 gimple act;
4999 gimple_seq list;
5000 basic_block new_bb;
5001 edge e;
5002 edge_iterator ei;
5004 new_bb = create_empty_bb (bb);
5006 /* Redirect the outgoing edges. */
5007 new_bb->succs = bb->succs;
5008 bb->succs = NULL;
5009 FOR_EACH_EDGE (e, ei, new_bb->succs)
5010 e->src = new_bb;
5012 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5013 stmt = NULL;
5015 /* Move everything from GSI to the new basic block. */
5016 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5018 act = gsi_stmt (gsi);
5019 if (gimple_code (act) == GIMPLE_LABEL)
5020 continue;
5022 if (!stmt)
5023 break;
5025 if (stmt == act)
5027 gsi_next (&gsi);
5028 break;
5032 if (gsi_end_p (gsi))
5033 return new_bb;
5035 /* Split the statement list - avoid re-creating new containers as this
5036 brings ugly quadratic memory consumption in the inliner.
5037 (We are still quadratic since we need to update stmt BB pointers,
5038 sadly.) */
5039 list = gsi_split_seq_before (&gsi);
5040 set_bb_seq (new_bb, list);
5041 for (gsi_tgt = gsi_start (list);
5042 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5043 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5045 return new_bb;
5049 /* Moves basic block BB after block AFTER. */
5051 static bool
5052 gimple_move_block_after (basic_block bb, basic_block after)
5054 if (bb->prev_bb == after)
5055 return true;
5057 unlink_block (bb);
5058 link_block (bb, after);
5060 return true;
5064 /* Return true if basic_block can be duplicated. */
5066 static bool
5067 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5069 return true;
5072 /* Create a duplicate of the basic block BB. NOTE: This does not
5073 preserve SSA form. */
5075 static basic_block
5076 gimple_duplicate_bb (basic_block bb)
5078 basic_block new_bb;
5079 gimple_stmt_iterator gsi, gsi_tgt;
5080 gimple_seq phis = phi_nodes (bb);
5081 gimple phi, stmt, copy;
5083 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5085 /* Copy the PHI nodes. We ignore PHI node arguments here because
5086 the incoming edges have not been setup yet. */
5087 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5089 phi = gsi_stmt (gsi);
5090 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5091 create_new_def_for (gimple_phi_result (copy), copy,
5092 gimple_phi_result_ptr (copy));
5095 gsi_tgt = gsi_start_bb (new_bb);
5096 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5098 def_operand_p def_p;
5099 ssa_op_iter op_iter;
5101 stmt = gsi_stmt (gsi);
5102 if (gimple_code (stmt) == GIMPLE_LABEL)
5103 continue;
5105 /* Create a new copy of STMT and duplicate STMT's virtual
5106 operands. */
5107 copy = gimple_copy (stmt);
5108 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5110 maybe_duplicate_eh_stmt (copy, stmt);
5111 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5113 /* Create new names for all the definitions created by COPY and
5114 add replacement mappings for each new name. */
5115 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5116 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5119 return new_bb;
5122 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5124 static void
5125 add_phi_args_after_copy_edge (edge e_copy)
5127 basic_block bb, bb_copy = e_copy->src, dest;
5128 edge e;
5129 edge_iterator ei;
5130 gimple phi, phi_copy;
5131 tree def;
5132 gimple_stmt_iterator psi, psi_copy;
5134 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5135 return;
5137 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5139 if (e_copy->dest->flags & BB_DUPLICATED)
5140 dest = get_bb_original (e_copy->dest);
5141 else
5142 dest = e_copy->dest;
5144 e = find_edge (bb, dest);
5145 if (!e)
5147 /* During loop unrolling the target of the latch edge is copied.
5148 In this case we are not looking for edge to dest, but to
5149 duplicated block whose original was dest. */
5150 FOR_EACH_EDGE (e, ei, bb->succs)
5152 if ((e->dest->flags & BB_DUPLICATED)
5153 && get_bb_original (e->dest) == dest)
5154 break;
5157 gcc_assert (e != NULL);
5160 for (psi = gsi_start_phis (e->dest),
5161 psi_copy = gsi_start_phis (e_copy->dest);
5162 !gsi_end_p (psi);
5163 gsi_next (&psi), gsi_next (&psi_copy))
5165 phi = gsi_stmt (psi);
5166 phi_copy = gsi_stmt (psi_copy);
5167 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5168 add_phi_arg (phi_copy, def, e_copy,
5169 gimple_phi_arg_location_from_edge (phi, e));
5174 /* Basic block BB_COPY was created by code duplication. Add phi node
5175 arguments for edges going out of BB_COPY. The blocks that were
5176 duplicated have BB_DUPLICATED set. */
5178 void
5179 add_phi_args_after_copy_bb (basic_block bb_copy)
5181 edge e_copy;
5182 edge_iterator ei;
5184 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5186 add_phi_args_after_copy_edge (e_copy);
5190 /* Blocks in REGION_COPY array of length N_REGION were created by
5191 duplication of basic blocks. Add phi node arguments for edges
5192 going from these blocks. If E_COPY is not NULL, also add
5193 phi node arguments for its destination.*/
5195 void
5196 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5197 edge e_copy)
5199 unsigned i;
5201 for (i = 0; i < n_region; i++)
5202 region_copy[i]->flags |= BB_DUPLICATED;
5204 for (i = 0; i < n_region; i++)
5205 add_phi_args_after_copy_bb (region_copy[i]);
5206 if (e_copy)
5207 add_phi_args_after_copy_edge (e_copy);
5209 for (i = 0; i < n_region; i++)
5210 region_copy[i]->flags &= ~BB_DUPLICATED;
5213 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5214 important exit edge EXIT. By important we mean that no SSA name defined
5215 inside region is live over the other exit edges of the region. All entry
5216 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5217 to the duplicate of the region. SSA form, dominance and loop information
5218 is updated. The new basic blocks are stored to REGION_COPY in the same
5219 order as they had in REGION, provided that REGION_COPY is not NULL.
5220 The function returns false if it is unable to copy the region,
5221 true otherwise. */
5223 bool
5224 gimple_duplicate_sese_region (edge entry, edge exit,
5225 basic_block *region, unsigned n_region,
5226 basic_block *region_copy)
5228 unsigned i;
5229 bool free_region_copy = false, copying_header = false;
5230 struct loop *loop = entry->dest->loop_father;
5231 edge exit_copy;
5232 VEC (basic_block, heap) *doms;
5233 edge redirected;
5234 int total_freq = 0, entry_freq = 0;
5235 gcov_type total_count = 0, entry_count = 0;
5237 if (!can_copy_bbs_p (region, n_region))
5238 return false;
5240 /* Some sanity checking. Note that we do not check for all possible
5241 missuses of the functions. I.e. if you ask to copy something weird,
5242 it will work, but the state of structures probably will not be
5243 correct. */
5244 for (i = 0; i < n_region; i++)
5246 /* We do not handle subloops, i.e. all the blocks must belong to the
5247 same loop. */
5248 if (region[i]->loop_father != loop)
5249 return false;
5251 if (region[i] != entry->dest
5252 && region[i] == loop->header)
5253 return false;
5256 set_loop_copy (loop, loop);
5258 /* In case the function is used for loop header copying (which is the primary
5259 use), ensure that EXIT and its copy will be new latch and entry edges. */
5260 if (loop->header == entry->dest)
5262 copying_header = true;
5263 set_loop_copy (loop, loop_outer (loop));
5265 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5266 return false;
5268 for (i = 0; i < n_region; i++)
5269 if (region[i] != exit->src
5270 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5271 return false;
5274 if (!region_copy)
5276 region_copy = XNEWVEC (basic_block, n_region);
5277 free_region_copy = true;
5280 gcc_assert (!need_ssa_update_p (cfun));
5282 /* Record blocks outside the region that are dominated by something
5283 inside. */
5284 doms = NULL;
5285 initialize_original_copy_tables ();
5287 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5289 if (entry->dest->count)
5291 total_count = entry->dest->count;
5292 entry_count = entry->count;
5293 /* Fix up corner cases, to avoid division by zero or creation of negative
5294 frequencies. */
5295 if (entry_count > total_count)
5296 entry_count = total_count;
5298 else
5300 total_freq = entry->dest->frequency;
5301 entry_freq = EDGE_FREQUENCY (entry);
5302 /* Fix up corner cases, to avoid division by zero or creation of negative
5303 frequencies. */
5304 if (total_freq == 0)
5305 total_freq = 1;
5306 else if (entry_freq > total_freq)
5307 entry_freq = total_freq;
5310 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5311 split_edge_bb_loc (entry));
5312 if (total_count)
5314 scale_bbs_frequencies_gcov_type (region, n_region,
5315 total_count - entry_count,
5316 total_count);
5317 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5318 total_count);
5320 else
5322 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5323 total_freq);
5324 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5327 if (copying_header)
5329 loop->header = exit->dest;
5330 loop->latch = exit->src;
5333 /* Redirect the entry and add the phi node arguments. */
5334 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5335 gcc_assert (redirected != NULL);
5336 flush_pending_stmts (entry);
5338 /* Concerning updating of dominators: We must recount dominators
5339 for entry block and its copy. Anything that is outside of the
5340 region, but was dominated by something inside needs recounting as
5341 well. */
5342 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5343 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5344 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5345 VEC_free (basic_block, heap, doms);
5347 /* Add the other PHI node arguments. */
5348 add_phi_args_after_copy (region_copy, n_region, NULL);
5350 /* Update the SSA web. */
5351 update_ssa (TODO_update_ssa);
5353 if (free_region_copy)
5354 free (region_copy);
5356 free_original_copy_tables ();
5357 return true;
5360 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5361 are stored to REGION_COPY in the same order in that they appear
5362 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5363 the region, EXIT an exit from it. The condition guarding EXIT
5364 is moved to ENTRY. Returns true if duplication succeeds, false
5365 otherwise.
5367 For example,
5369 some_code;
5370 if (cond)
5372 else
5375 is transformed to
5377 if (cond)
5379 some_code;
5382 else
5384 some_code;
5389 bool
5390 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5391 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5392 basic_block *region_copy ATTRIBUTE_UNUSED)
5394 unsigned i;
5395 bool free_region_copy = false;
5396 struct loop *loop = exit->dest->loop_father;
5397 struct loop *orig_loop = entry->dest->loop_father;
5398 basic_block switch_bb, entry_bb, nentry_bb;
5399 VEC (basic_block, heap) *doms;
5400 int total_freq = 0, exit_freq = 0;
5401 gcov_type total_count = 0, exit_count = 0;
5402 edge exits[2], nexits[2], e;
5403 gimple_stmt_iterator gsi,gsi1;
5404 gimple cond_stmt;
5405 edge sorig, snew;
5406 basic_block exit_bb;
5407 basic_block iters_bb;
5408 tree new_rhs;
5409 gimple_stmt_iterator psi;
5410 gimple phi;
5411 tree def;
5413 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5414 exits[0] = exit;
5415 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5417 if (!can_copy_bbs_p (region, n_region))
5418 return false;
5420 initialize_original_copy_tables ();
5421 set_loop_copy (orig_loop, loop);
5422 duplicate_subloops (orig_loop, loop);
5424 if (!region_copy)
5426 region_copy = XNEWVEC (basic_block, n_region);
5427 free_region_copy = true;
5430 gcc_assert (!need_ssa_update_p (cfun));
5432 /* Record blocks outside the region that are dominated by something
5433 inside. */
5434 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5436 if (exit->src->count)
5438 total_count = exit->src->count;
5439 exit_count = exit->count;
5440 /* Fix up corner cases, to avoid division by zero or creation of negative
5441 frequencies. */
5442 if (exit_count > total_count)
5443 exit_count = total_count;
5445 else
5447 total_freq = exit->src->frequency;
5448 exit_freq = EDGE_FREQUENCY (exit);
5449 /* Fix up corner cases, to avoid division by zero or creation of negative
5450 frequencies. */
5451 if (total_freq == 0)
5452 total_freq = 1;
5453 if (exit_freq > total_freq)
5454 exit_freq = total_freq;
5457 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5458 split_edge_bb_loc (exit));
5459 if (total_count)
5461 scale_bbs_frequencies_gcov_type (region, n_region,
5462 total_count - exit_count,
5463 total_count);
5464 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5465 total_count);
5467 else
5469 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5470 total_freq);
5471 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5474 /* Create the switch block, and put the exit condition to it. */
5475 entry_bb = entry->dest;
5476 nentry_bb = get_bb_copy (entry_bb);
5477 if (!last_stmt (entry->src)
5478 || !stmt_ends_bb_p (last_stmt (entry->src)))
5479 switch_bb = entry->src;
5480 else
5481 switch_bb = split_edge (entry);
5482 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5484 gsi = gsi_last_bb (switch_bb);
5485 cond_stmt = last_stmt (exit->src);
5486 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5487 cond_stmt = gimple_copy (cond_stmt);
5489 /* If the block consisting of the exit condition has the latch as
5490 successor, then the body of the loop is executed before
5491 the exit condition is tested. In such case, moving the
5492 condition to the entry, causes that the loop will iterate
5493 one less iteration (which is the wanted outcome, since we
5494 peel out the last iteration). If the body is executed after
5495 the condition, moving the condition to the entry requires
5496 decrementing one iteration. */
5497 if (exits[1]->dest == orig_loop->latch)
5498 new_rhs = gimple_cond_rhs (cond_stmt);
5499 else
5501 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
5502 gimple_cond_rhs (cond_stmt),
5503 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
5505 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
5507 iters_bb = gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)));
5508 for (gsi1 = gsi_start_bb (iters_bb); !gsi_end_p (gsi1); gsi_next (&gsi1))
5509 if (gsi_stmt (gsi1) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)))
5510 break;
5512 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
5513 NULL_TREE,false,GSI_CONTINUE_LINKING);
5516 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
5517 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5518 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5520 sorig = single_succ_edge (switch_bb);
5521 sorig->flags = exits[1]->flags;
5522 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5524 /* Register the new edge from SWITCH_BB in loop exit lists. */
5525 rescan_loop_exit (snew, true, false);
5527 /* Add the PHI node arguments. */
5528 add_phi_args_after_copy (region_copy, n_region, snew);
5530 /* Get rid of now superfluous conditions and associated edges (and phi node
5531 arguments). */
5532 exit_bb = exit->dest;
5534 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5535 PENDING_STMT (e) = NULL;
5537 /* The latch of ORIG_LOOP was copied, and so was the backedge
5538 to the original header. We redirect this backedge to EXIT_BB. */
5539 for (i = 0; i < n_region; i++)
5540 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5542 gcc_assert (single_succ_edge (region_copy[i]));
5543 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5544 PENDING_STMT (e) = NULL;
5545 for (psi = gsi_start_phis (exit_bb);
5546 !gsi_end_p (psi);
5547 gsi_next (&psi))
5549 phi = gsi_stmt (psi);
5550 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5551 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5554 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5555 PENDING_STMT (e) = NULL;
5557 /* Anything that is outside of the region, but was dominated by something
5558 inside needs to update dominance info. */
5559 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5560 VEC_free (basic_block, heap, doms);
5561 /* Update the SSA web. */
5562 update_ssa (TODO_update_ssa);
5564 if (free_region_copy)
5565 free (region_copy);
5567 free_original_copy_tables ();
5568 return true;
5571 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5572 adding blocks when the dominator traversal reaches EXIT. This
5573 function silently assumes that ENTRY strictly dominates EXIT. */
5575 void
5576 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5577 VEC(basic_block,heap) **bbs_p)
5579 basic_block son;
5581 for (son = first_dom_son (CDI_DOMINATORS, entry);
5582 son;
5583 son = next_dom_son (CDI_DOMINATORS, son))
5585 VEC_safe_push (basic_block, heap, *bbs_p, son);
5586 if (son != exit)
5587 gather_blocks_in_sese_region (son, exit, bbs_p);
5591 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5592 The duplicates are recorded in VARS_MAP. */
5594 static void
5595 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5596 tree to_context)
5598 tree t = *tp, new_t;
5599 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5600 void **loc;
5602 if (DECL_CONTEXT (t) == to_context)
5603 return;
5605 loc = pointer_map_contains (vars_map, t);
5607 if (!loc)
5609 loc = pointer_map_insert (vars_map, t);
5611 if (SSA_VAR_P (t))
5613 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5614 add_local_decl (f, new_t);
5616 else
5618 gcc_assert (TREE_CODE (t) == CONST_DECL);
5619 new_t = copy_node (t);
5621 DECL_CONTEXT (new_t) = to_context;
5623 *loc = new_t;
5625 else
5626 new_t = (tree) *loc;
5628 *tp = new_t;
5632 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5633 VARS_MAP maps old ssa names and var_decls to the new ones. */
5635 static tree
5636 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5637 tree to_context)
5639 void **loc;
5640 tree new_name, decl = SSA_NAME_VAR (name);
5642 gcc_assert (is_gimple_reg (name));
5644 loc = pointer_map_contains (vars_map, name);
5646 if (!loc)
5648 replace_by_duplicate_decl (&decl, vars_map, to_context);
5650 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5651 if (gimple_in_ssa_p (cfun))
5652 add_referenced_var (decl);
5654 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5655 if (SSA_NAME_IS_DEFAULT_DEF (name))
5656 set_default_def (decl, new_name);
5657 pop_cfun ();
5659 loc = pointer_map_insert (vars_map, name);
5660 *loc = new_name;
5662 else
5663 new_name = (tree) *loc;
5665 return new_name;
5668 struct move_stmt_d
5670 tree orig_block;
5671 tree new_block;
5672 tree from_context;
5673 tree to_context;
5674 struct pointer_map_t *vars_map;
5675 htab_t new_label_map;
5676 struct pointer_map_t *eh_map;
5677 bool remap_decls_p;
5680 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5681 contained in *TP if it has been ORIG_BLOCK previously and change the
5682 DECL_CONTEXT of every local variable referenced in *TP. */
5684 static tree
5685 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5687 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5688 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5689 tree t = *tp;
5691 if (EXPR_P (t))
5692 /* We should never have TREE_BLOCK set on non-statements. */
5693 gcc_assert (!TREE_BLOCK (t));
5695 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5697 if (TREE_CODE (t) == SSA_NAME)
5698 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5699 else if (TREE_CODE (t) == LABEL_DECL)
5701 if (p->new_label_map)
5703 struct tree_map in, *out;
5704 in.base.from = t;
5705 out = (struct tree_map *)
5706 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5707 if (out)
5708 *tp = t = out->to;
5711 DECL_CONTEXT (t) = p->to_context;
5713 else if (p->remap_decls_p)
5715 /* Replace T with its duplicate. T should no longer appear in the
5716 parent function, so this looks wasteful; however, it may appear
5717 in referenced_vars, and more importantly, as virtual operands of
5718 statements, and in alias lists of other variables. It would be
5719 quite difficult to expunge it from all those places. ??? It might
5720 suffice to do this for addressable variables. */
5721 if ((TREE_CODE (t) == VAR_DECL
5722 && !is_global_var (t))
5723 || TREE_CODE (t) == CONST_DECL)
5724 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5726 if (SSA_VAR_P (t)
5727 && gimple_in_ssa_p (cfun))
5729 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5730 add_referenced_var (*tp);
5731 pop_cfun ();
5734 *walk_subtrees = 0;
5736 else if (TYPE_P (t))
5737 *walk_subtrees = 0;
5739 return NULL_TREE;
5742 /* Helper for move_stmt_r. Given an EH region number for the source
5743 function, map that to the duplicate EH regio number in the dest. */
5745 static int
5746 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5748 eh_region old_r, new_r;
5749 void **slot;
5751 old_r = get_eh_region_from_number (old_nr);
5752 slot = pointer_map_contains (p->eh_map, old_r);
5753 new_r = (eh_region) *slot;
5755 return new_r->index;
5758 /* Similar, but operate on INTEGER_CSTs. */
5760 static tree
5761 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5763 int old_nr, new_nr;
5765 old_nr = tree_low_cst (old_t_nr, 0);
5766 new_nr = move_stmt_eh_region_nr (old_nr, p);
5768 return build_int_cst (NULL, new_nr);
5771 /* Like move_stmt_op, but for gimple statements.
5773 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5774 contained in the current statement in *GSI_P and change the
5775 DECL_CONTEXT of every local variable referenced in the current
5776 statement. */
5778 static tree
5779 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5780 struct walk_stmt_info *wi)
5782 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5783 gimple stmt = gsi_stmt (*gsi_p);
5784 tree block = gimple_block (stmt);
5786 if (p->orig_block == NULL_TREE
5787 || block == p->orig_block
5788 || block == NULL_TREE)
5789 gimple_set_block (stmt, p->new_block);
5790 #ifdef ENABLE_CHECKING
5791 else if (block != p->new_block)
5793 while (block && block != p->orig_block)
5794 block = BLOCK_SUPERCONTEXT (block);
5795 gcc_assert (block);
5797 #endif
5799 switch (gimple_code (stmt))
5801 case GIMPLE_CALL:
5802 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5804 tree r, fndecl = gimple_call_fndecl (stmt);
5805 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5806 switch (DECL_FUNCTION_CODE (fndecl))
5808 case BUILT_IN_EH_COPY_VALUES:
5809 r = gimple_call_arg (stmt, 1);
5810 r = move_stmt_eh_region_tree_nr (r, p);
5811 gimple_call_set_arg (stmt, 1, r);
5812 /* FALLTHRU */
5814 case BUILT_IN_EH_POINTER:
5815 case BUILT_IN_EH_FILTER:
5816 r = gimple_call_arg (stmt, 0);
5817 r = move_stmt_eh_region_tree_nr (r, p);
5818 gimple_call_set_arg (stmt, 0, r);
5819 break;
5821 default:
5822 break;
5825 break;
5827 case GIMPLE_RESX:
5829 int r = gimple_resx_region (stmt);
5830 r = move_stmt_eh_region_nr (r, p);
5831 gimple_resx_set_region (stmt, r);
5833 break;
5835 case GIMPLE_EH_DISPATCH:
5837 int r = gimple_eh_dispatch_region (stmt);
5838 r = move_stmt_eh_region_nr (r, p);
5839 gimple_eh_dispatch_set_region (stmt, r);
5841 break;
5843 case GIMPLE_OMP_RETURN:
5844 case GIMPLE_OMP_CONTINUE:
5845 break;
5846 default:
5847 if (is_gimple_omp (stmt))
5849 /* Do not remap variables inside OMP directives. Variables
5850 referenced in clauses and directive header belong to the
5851 parent function and should not be moved into the child
5852 function. */
5853 bool save_remap_decls_p = p->remap_decls_p;
5854 p->remap_decls_p = false;
5855 *handled_ops_p = true;
5857 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5858 move_stmt_op, wi);
5860 p->remap_decls_p = save_remap_decls_p;
5862 break;
5865 return NULL_TREE;
5868 /* Move basic block BB from function CFUN to function DEST_FN. The
5869 block is moved out of the original linked list and placed after
5870 block AFTER in the new list. Also, the block is removed from the
5871 original array of blocks and placed in DEST_FN's array of blocks.
5872 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5873 updated to reflect the moved edges.
5875 The local variables are remapped to new instances, VARS_MAP is used
5876 to record the mapping. */
5878 static void
5879 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5880 basic_block after, bool update_edge_count_p,
5881 struct move_stmt_d *d)
5883 struct control_flow_graph *cfg;
5884 edge_iterator ei;
5885 edge e;
5886 gimple_stmt_iterator si;
5887 unsigned old_len, new_len;
5889 /* Remove BB from dominance structures. */
5890 delete_from_dominance_info (CDI_DOMINATORS, bb);
5891 if (current_loops)
5892 remove_bb_from_loops (bb);
5894 /* Link BB to the new linked list. */
5895 move_block_after (bb, after);
5897 /* Update the edge count in the corresponding flowgraphs. */
5898 if (update_edge_count_p)
5899 FOR_EACH_EDGE (e, ei, bb->succs)
5901 cfun->cfg->x_n_edges--;
5902 dest_cfun->cfg->x_n_edges++;
5905 /* Remove BB from the original basic block array. */
5906 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5907 cfun->cfg->x_n_basic_blocks--;
5909 /* Grow DEST_CFUN's basic block array if needed. */
5910 cfg = dest_cfun->cfg;
5911 cfg->x_n_basic_blocks++;
5912 if (bb->index >= cfg->x_last_basic_block)
5913 cfg->x_last_basic_block = bb->index + 1;
5915 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5916 if ((unsigned) cfg->x_last_basic_block >= old_len)
5918 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5919 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5920 new_len);
5923 VEC_replace (basic_block, cfg->x_basic_block_info,
5924 bb->index, bb);
5926 /* Remap the variables in phi nodes. */
5927 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5929 gimple phi = gsi_stmt (si);
5930 use_operand_p use;
5931 tree op = PHI_RESULT (phi);
5932 ssa_op_iter oi;
5934 if (!is_gimple_reg (op))
5936 /* Remove the phi nodes for virtual operands (alias analysis will be
5937 run for the new function, anyway). */
5938 remove_phi_node (&si, true);
5939 continue;
5942 SET_PHI_RESULT (phi,
5943 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5944 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5946 op = USE_FROM_PTR (use);
5947 if (TREE_CODE (op) == SSA_NAME)
5948 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5951 gsi_next (&si);
5954 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5956 gimple stmt = gsi_stmt (si);
5957 struct walk_stmt_info wi;
5959 memset (&wi, 0, sizeof (wi));
5960 wi.info = d;
5961 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5963 if (gimple_code (stmt) == GIMPLE_LABEL)
5965 tree label = gimple_label_label (stmt);
5966 int uid = LABEL_DECL_UID (label);
5968 gcc_assert (uid > -1);
5970 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5971 if (old_len <= (unsigned) uid)
5973 new_len = 3 * uid / 2 + 1;
5974 VEC_safe_grow_cleared (basic_block, gc,
5975 cfg->x_label_to_block_map, new_len);
5978 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5979 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5981 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5983 if (uid >= dest_cfun->cfg->last_label_uid)
5984 dest_cfun->cfg->last_label_uid = uid + 1;
5987 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
5988 remove_stmt_from_eh_lp_fn (cfun, stmt);
5990 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5991 gimple_remove_stmt_histograms (cfun, stmt);
5993 /* We cannot leave any operands allocated from the operand caches of
5994 the current function. */
5995 free_stmt_operands (stmt);
5996 push_cfun (dest_cfun);
5997 update_stmt (stmt);
5998 pop_cfun ();
6001 FOR_EACH_EDGE (e, ei, bb->succs)
6002 if (e->goto_locus)
6004 tree block = e->goto_block;
6005 if (d->orig_block == NULL_TREE
6006 || block == d->orig_block)
6007 e->goto_block = d->new_block;
6008 #ifdef ENABLE_CHECKING
6009 else if (block != d->new_block)
6011 while (block && block != d->orig_block)
6012 block = BLOCK_SUPERCONTEXT (block);
6013 gcc_assert (block);
6015 #endif
6019 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6020 the outermost EH region. Use REGION as the incoming base EH region. */
6022 static eh_region
6023 find_outermost_region_in_block (struct function *src_cfun,
6024 basic_block bb, eh_region region)
6026 gimple_stmt_iterator si;
6028 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6030 gimple stmt = gsi_stmt (si);
6031 eh_region stmt_region;
6032 int lp_nr;
6034 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6035 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6036 if (stmt_region)
6038 if (region == NULL)
6039 region = stmt_region;
6040 else if (stmt_region != region)
6042 region = eh_region_outermost (src_cfun, stmt_region, region);
6043 gcc_assert (region != NULL);
6048 return region;
6051 static tree
6052 new_label_mapper (tree decl, void *data)
6054 htab_t hash = (htab_t) data;
6055 struct tree_map *m;
6056 void **slot;
6058 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6060 m = XNEW (struct tree_map);
6061 m->hash = DECL_UID (decl);
6062 m->base.from = decl;
6063 m->to = create_artificial_label (UNKNOWN_LOCATION);
6064 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6065 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6066 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6068 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6069 gcc_assert (*slot == NULL);
6071 *slot = m;
6073 return m->to;
6076 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6077 subblocks. */
6079 static void
6080 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6081 tree to_context)
6083 tree *tp, t;
6085 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6087 t = *tp;
6088 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6089 continue;
6090 replace_by_duplicate_decl (&t, vars_map, to_context);
6091 if (t != *tp)
6093 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6095 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6096 DECL_HAS_VALUE_EXPR_P (t) = 1;
6098 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6099 *tp = t;
6103 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6104 replace_block_vars_by_duplicates (block, vars_map, to_context);
6107 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6108 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6109 single basic block in the original CFG and the new basic block is
6110 returned. DEST_CFUN must not have a CFG yet.
6112 Note that the region need not be a pure SESE region. Blocks inside
6113 the region may contain calls to abort/exit. The only restriction
6114 is that ENTRY_BB should be the only entry point and it must
6115 dominate EXIT_BB.
6117 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6118 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6119 to the new function.
6121 All local variables referenced in the region are assumed to be in
6122 the corresponding BLOCK_VARS and unexpanded variable lists
6123 associated with DEST_CFUN. */
6125 basic_block
6126 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6127 basic_block exit_bb, tree orig_block)
6129 VEC(basic_block,heap) *bbs, *dom_bbs;
6130 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6131 basic_block after, bb, *entry_pred, *exit_succ, abb;
6132 struct function *saved_cfun = cfun;
6133 int *entry_flag, *exit_flag;
6134 unsigned *entry_prob, *exit_prob;
6135 unsigned i, num_entry_edges, num_exit_edges;
6136 edge e;
6137 edge_iterator ei;
6138 htab_t new_label_map;
6139 struct pointer_map_t *vars_map, *eh_map;
6140 struct loop *loop = entry_bb->loop_father;
6141 struct move_stmt_d d;
6143 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6144 region. */
6145 gcc_assert (entry_bb != exit_bb
6146 && (!exit_bb
6147 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6149 /* Collect all the blocks in the region. Manually add ENTRY_BB
6150 because it won't be added by dfs_enumerate_from. */
6151 bbs = NULL;
6152 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6153 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6155 /* The blocks that used to be dominated by something in BBS will now be
6156 dominated by the new block. */
6157 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6158 VEC_address (basic_block, bbs),
6159 VEC_length (basic_block, bbs));
6161 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6162 the predecessor edges to ENTRY_BB and the successor edges to
6163 EXIT_BB so that we can re-attach them to the new basic block that
6164 will replace the region. */
6165 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6166 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6167 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6168 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6169 i = 0;
6170 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6172 entry_prob[i] = e->probability;
6173 entry_flag[i] = e->flags;
6174 entry_pred[i++] = e->src;
6175 remove_edge (e);
6178 if (exit_bb)
6180 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6181 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6182 sizeof (basic_block));
6183 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6184 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6185 i = 0;
6186 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6188 exit_prob[i] = e->probability;
6189 exit_flag[i] = e->flags;
6190 exit_succ[i++] = e->dest;
6191 remove_edge (e);
6194 else
6196 num_exit_edges = 0;
6197 exit_succ = NULL;
6198 exit_flag = NULL;
6199 exit_prob = NULL;
6202 /* Switch context to the child function to initialize DEST_FN's CFG. */
6203 gcc_assert (dest_cfun->cfg == NULL);
6204 push_cfun (dest_cfun);
6206 init_empty_tree_cfg ();
6208 /* Initialize EH information for the new function. */
6209 eh_map = NULL;
6210 new_label_map = NULL;
6211 if (saved_cfun->eh)
6213 eh_region region = NULL;
6215 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6216 region = find_outermost_region_in_block (saved_cfun, bb, region);
6218 init_eh_for_function ();
6219 if (region != NULL)
6221 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6222 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6223 new_label_mapper, new_label_map);
6227 pop_cfun ();
6229 /* Move blocks from BBS into DEST_CFUN. */
6230 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6231 after = dest_cfun->cfg->x_entry_block_ptr;
6232 vars_map = pointer_map_create ();
6234 memset (&d, 0, sizeof (d));
6235 d.orig_block = orig_block;
6236 d.new_block = DECL_INITIAL (dest_cfun->decl);
6237 d.from_context = cfun->decl;
6238 d.to_context = dest_cfun->decl;
6239 d.vars_map = vars_map;
6240 d.new_label_map = new_label_map;
6241 d.eh_map = eh_map;
6242 d.remap_decls_p = true;
6244 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6246 /* No need to update edge counts on the last block. It has
6247 already been updated earlier when we detached the region from
6248 the original CFG. */
6249 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6250 after = bb;
6253 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6254 if (orig_block)
6256 tree block;
6257 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6258 == NULL_TREE);
6259 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6260 = BLOCK_SUBBLOCKS (orig_block);
6261 for (block = BLOCK_SUBBLOCKS (orig_block);
6262 block; block = BLOCK_CHAIN (block))
6263 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6264 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6267 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6268 vars_map, dest_cfun->decl);
6270 if (new_label_map)
6271 htab_delete (new_label_map);
6272 if (eh_map)
6273 pointer_map_destroy (eh_map);
6274 pointer_map_destroy (vars_map);
6276 /* Rewire the entry and exit blocks. The successor to the entry
6277 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6278 the child function. Similarly, the predecessor of DEST_FN's
6279 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6280 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6281 various CFG manipulation function get to the right CFG.
6283 FIXME, this is silly. The CFG ought to become a parameter to
6284 these helpers. */
6285 push_cfun (dest_cfun);
6286 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6287 if (exit_bb)
6288 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6289 pop_cfun ();
6291 /* Back in the original function, the SESE region has disappeared,
6292 create a new basic block in its place. */
6293 bb = create_empty_bb (entry_pred[0]);
6294 if (current_loops)
6295 add_bb_to_loop (bb, loop);
6296 for (i = 0; i < num_entry_edges; i++)
6298 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6299 e->probability = entry_prob[i];
6302 for (i = 0; i < num_exit_edges; i++)
6304 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6305 e->probability = exit_prob[i];
6308 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6309 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6310 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6311 VEC_free (basic_block, heap, dom_bbs);
6313 if (exit_bb)
6315 free (exit_prob);
6316 free (exit_flag);
6317 free (exit_succ);
6319 free (entry_prob);
6320 free (entry_flag);
6321 free (entry_pred);
6322 VEC_free (basic_block, heap, bbs);
6324 return bb;
6328 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6331 void
6332 dump_function_to_file (tree fn, FILE *file, int flags)
6334 tree arg, var;
6335 struct function *dsf;
6336 bool ignore_topmost_bind = false, any_var = false;
6337 basic_block bb;
6338 tree chain;
6340 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6342 arg = DECL_ARGUMENTS (fn);
6343 while (arg)
6345 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6346 fprintf (file, " ");
6347 print_generic_expr (file, arg, dump_flags);
6348 if (flags & TDF_VERBOSE)
6349 print_node (file, "", arg, 4);
6350 if (DECL_CHAIN (arg))
6351 fprintf (file, ", ");
6352 arg = DECL_CHAIN (arg);
6354 fprintf (file, ")\n");
6356 if (flags & TDF_VERBOSE)
6357 print_node (file, "", fn, 2);
6359 dsf = DECL_STRUCT_FUNCTION (fn);
6360 if (dsf && (flags & TDF_EH))
6361 dump_eh_tree (file, dsf);
6363 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6365 dump_node (fn, TDF_SLIM | flags, file);
6366 return;
6369 /* Switch CFUN to point to FN. */
6370 push_cfun (DECL_STRUCT_FUNCTION (fn));
6372 /* When GIMPLE is lowered, the variables are no longer available in
6373 BIND_EXPRs, so display them separately. */
6374 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6376 unsigned ix;
6377 ignore_topmost_bind = true;
6379 fprintf (file, "{\n");
6380 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6382 print_generic_decl (file, var, flags);
6383 if (flags & TDF_VERBOSE)
6384 print_node (file, "", var, 4);
6385 fprintf (file, "\n");
6387 any_var = true;
6391 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6393 /* If the CFG has been built, emit a CFG-based dump. */
6394 check_bb_profile (ENTRY_BLOCK_PTR, file);
6395 if (!ignore_topmost_bind)
6396 fprintf (file, "{\n");
6398 if (any_var && n_basic_blocks)
6399 fprintf (file, "\n");
6401 FOR_EACH_BB (bb)
6402 gimple_dump_bb (bb, file, 2, flags);
6404 fprintf (file, "}\n");
6405 check_bb_profile (EXIT_BLOCK_PTR, file);
6407 else if (DECL_SAVED_TREE (fn) == NULL)
6409 /* The function is now in GIMPLE form but the CFG has not been
6410 built yet. Emit the single sequence of GIMPLE statements
6411 that make up its body. */
6412 gimple_seq body = gimple_body (fn);
6414 if (gimple_seq_first_stmt (body)
6415 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6416 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6417 print_gimple_seq (file, body, 0, flags);
6418 else
6420 if (!ignore_topmost_bind)
6421 fprintf (file, "{\n");
6423 if (any_var)
6424 fprintf (file, "\n");
6426 print_gimple_seq (file, body, 2, flags);
6427 fprintf (file, "}\n");
6430 else
6432 int indent;
6434 /* Make a tree based dump. */
6435 chain = DECL_SAVED_TREE (fn);
6437 if (chain && TREE_CODE (chain) == BIND_EXPR)
6439 if (ignore_topmost_bind)
6441 chain = BIND_EXPR_BODY (chain);
6442 indent = 2;
6444 else
6445 indent = 0;
6447 else
6449 if (!ignore_topmost_bind)
6450 fprintf (file, "{\n");
6451 indent = 2;
6454 if (any_var)
6455 fprintf (file, "\n");
6457 print_generic_stmt_indented (file, chain, flags, indent);
6458 if (ignore_topmost_bind)
6459 fprintf (file, "}\n");
6462 if (flags & TDF_ENUMERATE_LOCALS)
6463 dump_enumerated_decls (file, flags);
6464 fprintf (file, "\n\n");
6466 /* Restore CFUN. */
6467 pop_cfun ();
6471 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6473 DEBUG_FUNCTION void
6474 debug_function (tree fn, int flags)
6476 dump_function_to_file (fn, stderr, flags);
6480 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6482 static void
6483 print_pred_bbs (FILE *file, basic_block bb)
6485 edge e;
6486 edge_iterator ei;
6488 FOR_EACH_EDGE (e, ei, bb->preds)
6489 fprintf (file, "bb_%d ", e->src->index);
6493 /* Print on FILE the indexes for the successors of basic_block BB. */
6495 static void
6496 print_succ_bbs (FILE *file, basic_block bb)
6498 edge e;
6499 edge_iterator ei;
6501 FOR_EACH_EDGE (e, ei, bb->succs)
6502 fprintf (file, "bb_%d ", e->dest->index);
6505 /* Print to FILE the basic block BB following the VERBOSITY level. */
6507 void
6508 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6510 char *s_indent = (char *) alloca ((size_t) indent + 1);
6511 memset ((void *) s_indent, ' ', (size_t) indent);
6512 s_indent[indent] = '\0';
6514 /* Print basic_block's header. */
6515 if (verbosity >= 2)
6517 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6518 print_pred_bbs (file, bb);
6519 fprintf (file, "}, succs = {");
6520 print_succ_bbs (file, bb);
6521 fprintf (file, "})\n");
6524 /* Print basic_block's body. */
6525 if (verbosity >= 3)
6527 fprintf (file, "%s {\n", s_indent);
6528 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6529 fprintf (file, "%s }\n", s_indent);
6533 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6535 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6536 VERBOSITY level this outputs the contents of the loop, or just its
6537 structure. */
6539 static void
6540 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6542 char *s_indent;
6543 basic_block bb;
6545 if (loop == NULL)
6546 return;
6548 s_indent = (char *) alloca ((size_t) indent + 1);
6549 memset ((void *) s_indent, ' ', (size_t) indent);
6550 s_indent[indent] = '\0';
6552 /* Print loop's header. */
6553 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6554 loop->num, loop->header->index, loop->latch->index);
6555 fprintf (file, ", niter = ");
6556 print_generic_expr (file, loop->nb_iterations, 0);
6558 if (loop->any_upper_bound)
6560 fprintf (file, ", upper_bound = ");
6561 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6564 if (loop->any_estimate)
6566 fprintf (file, ", estimate = ");
6567 dump_double_int (file, loop->nb_iterations_estimate, true);
6569 fprintf (file, ")\n");
6571 /* Print loop's body. */
6572 if (verbosity >= 1)
6574 fprintf (file, "%s{\n", s_indent);
6575 FOR_EACH_BB (bb)
6576 if (bb->loop_father == loop)
6577 print_loops_bb (file, bb, indent, verbosity);
6579 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6580 fprintf (file, "%s}\n", s_indent);
6584 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6585 spaces. Following VERBOSITY level this outputs the contents of the
6586 loop, or just its structure. */
6588 static void
6589 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6591 if (loop == NULL)
6592 return;
6594 print_loop (file, loop, indent, verbosity);
6595 print_loop_and_siblings (file, loop->next, indent, verbosity);
6598 /* Follow a CFG edge from the entry point of the program, and on entry
6599 of a loop, pretty print the loop structure on FILE. */
6601 void
6602 print_loops (FILE *file, int verbosity)
6604 basic_block bb;
6606 bb = ENTRY_BLOCK_PTR;
6607 if (bb && bb->loop_father)
6608 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6612 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6614 DEBUG_FUNCTION void
6615 debug_loops (int verbosity)
6617 print_loops (stderr, verbosity);
6620 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6622 DEBUG_FUNCTION void
6623 debug_loop (struct loop *loop, int verbosity)
6625 print_loop (stderr, loop, 0, verbosity);
6628 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6629 level. */
6631 DEBUG_FUNCTION void
6632 debug_loop_num (unsigned num, int verbosity)
6634 debug_loop (get_loop (num), verbosity);
6637 /* Return true if BB ends with a call, possibly followed by some
6638 instructions that must stay with the call. Return false,
6639 otherwise. */
6641 static bool
6642 gimple_block_ends_with_call_p (basic_block bb)
6644 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6645 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6649 /* Return true if BB ends with a conditional branch. Return false,
6650 otherwise. */
6652 static bool
6653 gimple_block_ends_with_condjump_p (const_basic_block bb)
6655 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6656 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6660 /* Return true if we need to add fake edge to exit at statement T.
6661 Helper function for gimple_flow_call_edges_add. */
6663 static bool
6664 need_fake_edge_p (gimple t)
6666 tree fndecl = NULL_TREE;
6667 int call_flags = 0;
6669 /* NORETURN and LONGJMP calls already have an edge to exit.
6670 CONST and PURE calls do not need one.
6671 We don't currently check for CONST and PURE here, although
6672 it would be a good idea, because those attributes are
6673 figured out from the RTL in mark_constant_function, and
6674 the counter incrementation code from -fprofile-arcs
6675 leads to different results from -fbranch-probabilities. */
6676 if (is_gimple_call (t))
6678 fndecl = gimple_call_fndecl (t);
6679 call_flags = gimple_call_flags (t);
6682 if (is_gimple_call (t)
6683 && fndecl
6684 && DECL_BUILT_IN (fndecl)
6685 && (call_flags & ECF_NOTHROW)
6686 && !(call_flags & ECF_RETURNS_TWICE)
6687 /* fork() doesn't really return twice, but the effect of
6688 wrapping it in __gcov_fork() which calls __gcov_flush()
6689 and clears the counters before forking has the same
6690 effect as returning twice. Force a fake edge. */
6691 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6692 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6693 return false;
6695 if (is_gimple_call (t)
6696 && !(call_flags & ECF_NORETURN))
6697 return true;
6699 if (gimple_code (t) == GIMPLE_ASM
6700 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6701 return true;
6703 return false;
6707 /* Add fake edges to the function exit for any non constant and non
6708 noreturn calls, volatile inline assembly in the bitmap of blocks
6709 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6710 the number of blocks that were split.
6712 The goal is to expose cases in which entering a basic block does
6713 not imply that all subsequent instructions must be executed. */
6715 static int
6716 gimple_flow_call_edges_add (sbitmap blocks)
6718 int i;
6719 int blocks_split = 0;
6720 int last_bb = last_basic_block;
6721 bool check_last_block = false;
6723 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6724 return 0;
6726 if (! blocks)
6727 check_last_block = true;
6728 else
6729 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6731 /* In the last basic block, before epilogue generation, there will be
6732 a fallthru edge to EXIT. Special care is required if the last insn
6733 of the last basic block is a call because make_edge folds duplicate
6734 edges, which would result in the fallthru edge also being marked
6735 fake, which would result in the fallthru edge being removed by
6736 remove_fake_edges, which would result in an invalid CFG.
6738 Moreover, we can't elide the outgoing fake edge, since the block
6739 profiler needs to take this into account in order to solve the minimal
6740 spanning tree in the case that the call doesn't return.
6742 Handle this by adding a dummy instruction in a new last basic block. */
6743 if (check_last_block)
6745 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6746 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6747 gimple t = NULL;
6749 if (!gsi_end_p (gsi))
6750 t = gsi_stmt (gsi);
6752 if (t && need_fake_edge_p (t))
6754 edge e;
6756 e = find_edge (bb, EXIT_BLOCK_PTR);
6757 if (e)
6759 gsi_insert_on_edge (e, gimple_build_nop ());
6760 gsi_commit_edge_inserts ();
6765 /* Now add fake edges to the function exit for any non constant
6766 calls since there is no way that we can determine if they will
6767 return or not... */
6768 for (i = 0; i < last_bb; i++)
6770 basic_block bb = BASIC_BLOCK (i);
6771 gimple_stmt_iterator gsi;
6772 gimple stmt, last_stmt;
6774 if (!bb)
6775 continue;
6777 if (blocks && !TEST_BIT (blocks, i))
6778 continue;
6780 gsi = gsi_last_bb (bb);
6781 if (!gsi_end_p (gsi))
6783 last_stmt = gsi_stmt (gsi);
6786 stmt = gsi_stmt (gsi);
6787 if (need_fake_edge_p (stmt))
6789 edge e;
6791 /* The handling above of the final block before the
6792 epilogue should be enough to verify that there is
6793 no edge to the exit block in CFG already.
6794 Calling make_edge in such case would cause us to
6795 mark that edge as fake and remove it later. */
6796 #ifdef ENABLE_CHECKING
6797 if (stmt == last_stmt)
6799 e = find_edge (bb, EXIT_BLOCK_PTR);
6800 gcc_assert (e == NULL);
6802 #endif
6804 /* Note that the following may create a new basic block
6805 and renumber the existing basic blocks. */
6806 if (stmt != last_stmt)
6808 e = split_block (bb, stmt);
6809 if (e)
6810 blocks_split++;
6812 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6814 gsi_prev (&gsi);
6816 while (!gsi_end_p (gsi));
6820 if (blocks_split)
6821 verify_flow_info ();
6823 return blocks_split;
6826 /* Purge dead abnormal call edges from basic block BB. */
6828 bool
6829 gimple_purge_dead_abnormal_call_edges (basic_block bb)
6831 bool changed = gimple_purge_dead_eh_edges (bb);
6833 if (cfun->has_nonlocal_label)
6835 gimple stmt = last_stmt (bb);
6836 edge_iterator ei;
6837 edge e;
6839 if (!(stmt && stmt_can_make_abnormal_goto (stmt)))
6840 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6842 if (e->flags & EDGE_ABNORMAL)
6844 remove_edge (e);
6845 changed = true;
6847 else
6848 ei_next (&ei);
6851 /* See gimple_purge_dead_eh_edges below. */
6852 if (changed)
6853 free_dominance_info (CDI_DOMINATORS);
6856 return changed;
6859 /* Removes edge E and all the blocks dominated by it, and updates dominance
6860 information. The IL in E->src needs to be updated separately.
6861 If dominance info is not available, only the edge E is removed.*/
6863 void
6864 remove_edge_and_dominated_blocks (edge e)
6866 VEC (basic_block, heap) *bbs_to_remove = NULL;
6867 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6868 bitmap df, df_idom;
6869 edge f;
6870 edge_iterator ei;
6871 bool none_removed = false;
6872 unsigned i;
6873 basic_block bb, dbb;
6874 bitmap_iterator bi;
6876 if (!dom_info_available_p (CDI_DOMINATORS))
6878 remove_edge (e);
6879 return;
6882 /* No updating is needed for edges to exit. */
6883 if (e->dest == EXIT_BLOCK_PTR)
6885 if (cfgcleanup_altered_bbs)
6886 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6887 remove_edge (e);
6888 return;
6891 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6892 that is not dominated by E->dest, then this set is empty. Otherwise,
6893 all the basic blocks dominated by E->dest are removed.
6895 Also, to DF_IDOM we store the immediate dominators of the blocks in
6896 the dominance frontier of E (i.e., of the successors of the
6897 removed blocks, if there are any, and of E->dest otherwise). */
6898 FOR_EACH_EDGE (f, ei, e->dest->preds)
6900 if (f == e)
6901 continue;
6903 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6905 none_removed = true;
6906 break;
6910 df = BITMAP_ALLOC (NULL);
6911 df_idom = BITMAP_ALLOC (NULL);
6913 if (none_removed)
6914 bitmap_set_bit (df_idom,
6915 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6916 else
6918 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6919 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6921 FOR_EACH_EDGE (f, ei, bb->succs)
6923 if (f->dest != EXIT_BLOCK_PTR)
6924 bitmap_set_bit (df, f->dest->index);
6927 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6928 bitmap_clear_bit (df, bb->index);
6930 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6932 bb = BASIC_BLOCK (i);
6933 bitmap_set_bit (df_idom,
6934 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6938 if (cfgcleanup_altered_bbs)
6940 /* Record the set of the altered basic blocks. */
6941 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6942 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6945 /* Remove E and the cancelled blocks. */
6946 if (none_removed)
6947 remove_edge (e);
6948 else
6950 /* Walk backwards so as to get a chance to substitute all
6951 released DEFs into debug stmts. See
6952 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6953 details. */
6954 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6955 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6958 /* Update the dominance information. The immediate dominator may change only
6959 for blocks whose immediate dominator belongs to DF_IDOM:
6961 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6962 removal. Let Z the arbitrary block such that idom(Z) = Y and
6963 Z dominates X after the removal. Before removal, there exists a path P
6964 from Y to X that avoids Z. Let F be the last edge on P that is
6965 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6966 dominates W, and because of P, Z does not dominate W), and W belongs to
6967 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6968 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6970 bb = BASIC_BLOCK (i);
6971 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6972 dbb;
6973 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6974 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6977 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6979 BITMAP_FREE (df);
6980 BITMAP_FREE (df_idom);
6981 VEC_free (basic_block, heap, bbs_to_remove);
6982 VEC_free (basic_block, heap, bbs_to_fix_dom);
6985 /* Purge dead EH edges from basic block BB. */
6987 bool
6988 gimple_purge_dead_eh_edges (basic_block bb)
6990 bool changed = false;
6991 edge e;
6992 edge_iterator ei;
6993 gimple stmt = last_stmt (bb);
6995 if (stmt && stmt_can_throw_internal (stmt))
6996 return false;
6998 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7000 if (e->flags & EDGE_EH)
7002 remove_edge_and_dominated_blocks (e);
7003 changed = true;
7005 else
7006 ei_next (&ei);
7009 return changed;
7012 bool
7013 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7015 bool changed = false;
7016 unsigned i;
7017 bitmap_iterator bi;
7019 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7021 basic_block bb = BASIC_BLOCK (i);
7023 /* Earlier gimple_purge_dead_eh_edges could have removed
7024 this basic block already. */
7025 gcc_assert (bb || changed);
7026 if (bb != NULL)
7027 changed |= gimple_purge_dead_eh_edges (bb);
7030 return changed;
7033 /* This function is called whenever a new edge is created or
7034 redirected. */
7036 static void
7037 gimple_execute_on_growing_pred (edge e)
7039 basic_block bb = e->dest;
7041 if (!gimple_seq_empty_p (phi_nodes (bb)))
7042 reserve_phi_args_for_new_edge (bb);
7045 /* This function is called immediately before edge E is removed from
7046 the edge vector E->dest->preds. */
7048 static void
7049 gimple_execute_on_shrinking_pred (edge e)
7051 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7052 remove_phi_args (e);
7055 /*---------------------------------------------------------------------------
7056 Helper functions for Loop versioning
7057 ---------------------------------------------------------------------------*/
7059 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7060 of 'first'. Both of them are dominated by 'new_head' basic block. When
7061 'new_head' was created by 'second's incoming edge it received phi arguments
7062 on the edge by split_edge(). Later, additional edge 'e' was created to
7063 connect 'new_head' and 'first'. Now this routine adds phi args on this
7064 additional edge 'e' that new_head to second edge received as part of edge
7065 splitting. */
7067 static void
7068 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7069 basic_block new_head, edge e)
7071 gimple phi1, phi2;
7072 gimple_stmt_iterator psi1, psi2;
7073 tree def;
7074 edge e2 = find_edge (new_head, second);
7076 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7077 edge, we should always have an edge from NEW_HEAD to SECOND. */
7078 gcc_assert (e2 != NULL);
7080 /* Browse all 'second' basic block phi nodes and add phi args to
7081 edge 'e' for 'first' head. PHI args are always in correct order. */
7083 for (psi2 = gsi_start_phis (second),
7084 psi1 = gsi_start_phis (first);
7085 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7086 gsi_next (&psi2), gsi_next (&psi1))
7088 phi1 = gsi_stmt (psi1);
7089 phi2 = gsi_stmt (psi2);
7090 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7091 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7096 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7097 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7098 the destination of the ELSE part. */
7100 static void
7101 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7102 basic_block second_head ATTRIBUTE_UNUSED,
7103 basic_block cond_bb, void *cond_e)
7105 gimple_stmt_iterator gsi;
7106 gimple new_cond_expr;
7107 tree cond_expr = (tree) cond_e;
7108 edge e0;
7110 /* Build new conditional expr */
7111 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7112 NULL_TREE, NULL_TREE);
7114 /* Add new cond in cond_bb. */
7115 gsi = gsi_last_bb (cond_bb);
7116 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7118 /* Adjust edges appropriately to connect new head with first head
7119 as well as second head. */
7120 e0 = single_succ_edge (cond_bb);
7121 e0->flags &= ~EDGE_FALLTHRU;
7122 e0->flags |= EDGE_FALSE_VALUE;
7125 struct cfg_hooks gimple_cfg_hooks = {
7126 "gimple",
7127 gimple_verify_flow_info,
7128 gimple_dump_bb, /* dump_bb */
7129 create_bb, /* create_basic_block */
7130 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7131 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7132 gimple_can_remove_branch_p, /* can_remove_branch_p */
7133 remove_bb, /* delete_basic_block */
7134 gimple_split_block, /* split_block */
7135 gimple_move_block_after, /* move_block_after */
7136 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7137 gimple_merge_blocks, /* merge_blocks */
7138 gimple_predict_edge, /* predict_edge */
7139 gimple_predicted_by_p, /* predicted_by_p */
7140 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7141 gimple_duplicate_bb, /* duplicate_block */
7142 gimple_split_edge, /* split_edge */
7143 gimple_make_forwarder_block, /* make_forward_block */
7144 NULL, /* tidy_fallthru_edge */
7145 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7146 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7147 gimple_flow_call_edges_add, /* flow_call_edges_add */
7148 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7149 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7150 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7151 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7152 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7153 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7154 flush_pending_stmts /* flush_pending_stmts */
7158 /* Split all critical edges. */
7160 static unsigned int
7161 split_critical_edges (void)
7163 basic_block bb;
7164 edge e;
7165 edge_iterator ei;
7167 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7168 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7169 mappings around the calls to split_edge. */
7170 start_recording_case_labels ();
7171 FOR_ALL_BB (bb)
7173 FOR_EACH_EDGE (e, ei, bb->succs)
7175 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7176 split_edge (e);
7177 /* PRE inserts statements to edges and expects that
7178 since split_critical_edges was done beforehand, committing edge
7179 insertions will not split more edges. In addition to critical
7180 edges we must split edges that have multiple successors and
7181 end by control flow statements, such as RESX.
7182 Go ahead and split them too. This matches the logic in
7183 gimple_find_edge_insert_loc. */
7184 else if ((!single_pred_p (e->dest)
7185 || !gimple_seq_empty_p (phi_nodes (e->dest))
7186 || e->dest == EXIT_BLOCK_PTR)
7187 && e->src != ENTRY_BLOCK_PTR
7188 && !(e->flags & EDGE_ABNORMAL))
7190 gimple_stmt_iterator gsi;
7192 gsi = gsi_last_bb (e->src);
7193 if (!gsi_end_p (gsi)
7194 && stmt_ends_bb_p (gsi_stmt (gsi))
7195 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7196 && !gimple_call_builtin_p (gsi_stmt (gsi),
7197 BUILT_IN_RETURN)))
7198 split_edge (e);
7202 end_recording_case_labels ();
7203 return 0;
7206 struct gimple_opt_pass pass_split_crit_edges =
7209 GIMPLE_PASS,
7210 "crited", /* name */
7211 NULL, /* gate */
7212 split_critical_edges, /* execute */
7213 NULL, /* sub */
7214 NULL, /* next */
7215 0, /* static_pass_number */
7216 TV_TREE_SPLIT_EDGES, /* tv_id */
7217 PROP_cfg, /* properties required */
7218 PROP_no_crit_edges, /* properties_provided */
7219 0, /* properties_destroyed */
7220 0, /* todo_flags_start */
7221 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7226 /* Build a ternary operation and gimplify it. Emit code before GSI.
7227 Return the gimple_val holding the result. */
7229 tree
7230 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7231 tree type, tree a, tree b, tree c)
7233 tree ret;
7234 location_t loc = gimple_location (gsi_stmt (*gsi));
7236 ret = fold_build3_loc (loc, code, type, a, b, c);
7237 STRIP_NOPS (ret);
7239 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7240 GSI_SAME_STMT);
7243 /* Build a binary operation and gimplify it. Emit code before GSI.
7244 Return the gimple_val holding the result. */
7246 tree
7247 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7248 tree type, tree a, tree b)
7250 tree ret;
7252 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7253 STRIP_NOPS (ret);
7255 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7256 GSI_SAME_STMT);
7259 /* Build a unary operation and gimplify it. Emit code before GSI.
7260 Return the gimple_val holding the result. */
7262 tree
7263 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7264 tree a)
7266 tree ret;
7268 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7269 STRIP_NOPS (ret);
7271 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7272 GSI_SAME_STMT);
7277 /* Emit return warnings. */
7279 static unsigned int
7280 execute_warn_function_return (void)
7282 source_location location;
7283 gimple last;
7284 edge e;
7285 edge_iterator ei;
7287 /* If we have a path to EXIT, then we do return. */
7288 if (TREE_THIS_VOLATILE (cfun->decl)
7289 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7291 location = UNKNOWN_LOCATION;
7292 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7294 last = last_stmt (e->src);
7295 if ((gimple_code (last) == GIMPLE_RETURN
7296 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7297 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7298 break;
7300 if (location == UNKNOWN_LOCATION)
7301 location = cfun->function_end_locus;
7302 warning_at (location, 0, "%<noreturn%> function does return");
7305 /* If we see "return;" in some basic block, then we do reach the end
7306 without returning a value. */
7307 else if (warn_return_type
7308 && !TREE_NO_WARNING (cfun->decl)
7309 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7310 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7312 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7314 gimple last = last_stmt (e->src);
7315 if (gimple_code (last) == GIMPLE_RETURN
7316 && gimple_return_retval (last) == NULL
7317 && !gimple_no_warning_p (last))
7319 location = gimple_location (last);
7320 if (location == UNKNOWN_LOCATION)
7321 location = cfun->function_end_locus;
7322 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7323 TREE_NO_WARNING (cfun->decl) = 1;
7324 break;
7328 return 0;
7332 /* Given a basic block B which ends with a conditional and has
7333 precisely two successors, determine which of the edges is taken if
7334 the conditional is true and which is taken if the conditional is
7335 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7337 void
7338 extract_true_false_edges_from_block (basic_block b,
7339 edge *true_edge,
7340 edge *false_edge)
7342 edge e = EDGE_SUCC (b, 0);
7344 if (e->flags & EDGE_TRUE_VALUE)
7346 *true_edge = e;
7347 *false_edge = EDGE_SUCC (b, 1);
7349 else
7351 *false_edge = e;
7352 *true_edge = EDGE_SUCC (b, 1);
7356 struct gimple_opt_pass pass_warn_function_return =
7359 GIMPLE_PASS,
7360 "*warn_function_return", /* name */
7361 NULL, /* gate */
7362 execute_warn_function_return, /* execute */
7363 NULL, /* sub */
7364 NULL, /* next */
7365 0, /* static_pass_number */
7366 TV_NONE, /* tv_id */
7367 PROP_cfg, /* properties_required */
7368 0, /* properties_provided */
7369 0, /* properties_destroyed */
7370 0, /* todo_flags_start */
7371 0 /* todo_flags_finish */
7375 /* Emit noreturn warnings. */
7377 static unsigned int
7378 execute_warn_function_noreturn (void)
7380 if (!TREE_THIS_VOLATILE (current_function_decl)
7381 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7382 warn_function_noreturn (current_function_decl);
7383 return 0;
7386 static bool
7387 gate_warn_function_noreturn (void)
7389 return warn_suggest_attribute_noreturn;
7392 struct gimple_opt_pass pass_warn_function_noreturn =
7395 GIMPLE_PASS,
7396 "*warn_function_noreturn", /* name */
7397 gate_warn_function_noreturn, /* gate */
7398 execute_warn_function_noreturn, /* execute */
7399 NULL, /* sub */
7400 NULL, /* next */
7401 0, /* static_pass_number */
7402 TV_NONE, /* tv_id */
7403 PROP_cfg, /* properties_required */
7404 0, /* properties_provided */
7405 0, /* properties_destroyed */
7406 0, /* todo_flags_start */
7407 0 /* todo_flags_finish */
7412 /* Walk a gimplified function and warn for functions whose return value is
7413 ignored and attribute((warn_unused_result)) is set. This is done before
7414 inlining, so we don't have to worry about that. */
7416 static void
7417 do_warn_unused_result (gimple_seq seq)
7419 tree fdecl, ftype;
7420 gimple_stmt_iterator i;
7422 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7424 gimple g = gsi_stmt (i);
7426 switch (gimple_code (g))
7428 case GIMPLE_BIND:
7429 do_warn_unused_result (gimple_bind_body (g));
7430 break;
7431 case GIMPLE_TRY:
7432 do_warn_unused_result (gimple_try_eval (g));
7433 do_warn_unused_result (gimple_try_cleanup (g));
7434 break;
7435 case GIMPLE_CATCH:
7436 do_warn_unused_result (gimple_catch_handler (g));
7437 break;
7438 case GIMPLE_EH_FILTER:
7439 do_warn_unused_result (gimple_eh_filter_failure (g));
7440 break;
7442 case GIMPLE_CALL:
7443 if (gimple_call_lhs (g))
7444 break;
7446 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7447 LHS. All calls whose value is ignored should be
7448 represented like this. Look for the attribute. */
7449 fdecl = gimple_call_fndecl (g);
7450 ftype = TREE_TYPE (TREE_TYPE (gimple_call_fn (g)));
7452 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7454 location_t loc = gimple_location (g);
7456 if (fdecl)
7457 warning_at (loc, OPT_Wunused_result,
7458 "ignoring return value of %qD, "
7459 "declared with attribute warn_unused_result",
7460 fdecl);
7461 else
7462 warning_at (loc, OPT_Wunused_result,
7463 "ignoring return value of function "
7464 "declared with attribute warn_unused_result");
7466 break;
7468 default:
7469 /* Not a container, not a call, or a call whose value is used. */
7470 break;
7475 static unsigned int
7476 run_warn_unused_result (void)
7478 do_warn_unused_result (gimple_body (current_function_decl));
7479 return 0;
7482 static bool
7483 gate_warn_unused_result (void)
7485 return flag_warn_unused_result;
7488 struct gimple_opt_pass pass_warn_unused_result =
7491 GIMPLE_PASS,
7492 "*warn_unused_result", /* name */
7493 gate_warn_unused_result, /* gate */
7494 run_warn_unused_result, /* execute */
7495 NULL, /* sub */
7496 NULL, /* next */
7497 0, /* static_pass_number */
7498 TV_NONE, /* tv_id */
7499 PROP_gimple_any, /* properties_required */
7500 0, /* properties_provided */
7501 0, /* properties_destroyed */
7502 0, /* todo_flags_start */
7503 0, /* todo_flags_finish */