[PATCH] Report LTO phase in lto1 process name v2
[official-gcc.git] / gcc / explow.c
blob21af58a7c815087b74e148de6cb3618f1a591e12
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "except.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "libfuncs.h"
38 #include "hard-reg-set.h"
39 #include "insn-config.h"
40 #include "ggc.h"
41 #include "recog.h"
42 #include "langhooks.h"
43 #include "target.h"
44 #include "output.h"
46 static rtx break_out_memory_refs (rtx);
49 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
51 HOST_WIDE_INT
52 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
54 int width = GET_MODE_BITSIZE (mode);
56 /* You want to truncate to a _what_? */
57 gcc_assert (SCALAR_INT_MODE_P (mode));
59 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
60 if (mode == BImode)
61 return c & 1 ? STORE_FLAG_VALUE : 0;
63 /* Sign-extend for the requested mode. */
65 if (width < HOST_BITS_PER_WIDE_INT)
67 HOST_WIDE_INT sign = 1;
68 sign <<= width - 1;
69 c &= (sign << 1) - 1;
70 c ^= sign;
71 c -= sign;
74 return c;
77 /* Return an rtx for the sum of X and the integer C. */
79 rtx
80 plus_constant (rtx x, HOST_WIDE_INT c)
82 RTX_CODE code;
83 rtx y;
84 enum machine_mode mode;
85 rtx tem;
86 int all_constant = 0;
88 if (c == 0)
89 return x;
91 restart:
93 code = GET_CODE (x);
94 mode = GET_MODE (x);
95 y = x;
97 switch (code)
99 case CONST_INT:
100 return GEN_INT (INTVAL (x) + c);
102 case CONST_DOUBLE:
104 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
105 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
106 unsigned HOST_WIDE_INT l2 = c;
107 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
108 unsigned HOST_WIDE_INT lv;
109 HOST_WIDE_INT hv;
111 add_double (l1, h1, l2, h2, &lv, &hv);
113 return immed_double_const (lv, hv, VOIDmode);
116 case MEM:
117 /* If this is a reference to the constant pool, try replacing it with
118 a reference to a new constant. If the resulting address isn't
119 valid, don't return it because we have no way to validize it. */
120 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
121 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
124 = force_const_mem (GET_MODE (x),
125 plus_constant (get_pool_constant (XEXP (x, 0)),
126 c));
127 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
128 return tem;
130 break;
132 case CONST:
133 /* If adding to something entirely constant, set a flag
134 so that we can add a CONST around the result. */
135 x = XEXP (x, 0);
136 all_constant = 1;
137 goto restart;
139 case SYMBOL_REF:
140 case LABEL_REF:
141 all_constant = 1;
142 break;
144 case PLUS:
145 /* The interesting case is adding the integer to a sum.
146 Look for constant term in the sum and combine
147 with C. For an integer constant term, we make a combined
148 integer. For a constant term that is not an explicit integer,
149 we cannot really combine, but group them together anyway.
151 Restart or use a recursive call in case the remaining operand is
152 something that we handle specially, such as a SYMBOL_REF.
154 We may not immediately return from the recursive call here, lest
155 all_constant gets lost. */
157 if (CONST_INT_P (XEXP (x, 1)))
159 c += INTVAL (XEXP (x, 1));
161 if (GET_MODE (x) != VOIDmode)
162 c = trunc_int_for_mode (c, GET_MODE (x));
164 x = XEXP (x, 0);
165 goto restart;
167 else if (CONSTANT_P (XEXP (x, 1)))
169 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
170 c = 0;
172 else if (find_constant_term_loc (&y))
174 /* We need to be careful since X may be shared and we can't
175 modify it in place. */
176 rtx copy = copy_rtx (x);
177 rtx *const_loc = find_constant_term_loc (&copy);
179 *const_loc = plus_constant (*const_loc, c);
180 x = copy;
181 c = 0;
183 break;
185 default:
186 break;
189 if (c != 0)
190 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
192 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
193 return x;
194 else if (all_constant)
195 return gen_rtx_CONST (mode, x);
196 else
197 return x;
200 /* If X is a sum, return a new sum like X but lacking any constant terms.
201 Add all the removed constant terms into *CONSTPTR.
202 X itself is not altered. The result != X if and only if
203 it is not isomorphic to X. */
206 eliminate_constant_term (rtx x, rtx *constptr)
208 rtx x0, x1;
209 rtx tem;
211 if (GET_CODE (x) != PLUS)
212 return x;
214 /* First handle constants appearing at this level explicitly. */
215 if (CONST_INT_P (XEXP (x, 1))
216 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
217 XEXP (x, 1)))
218 && CONST_INT_P (tem))
220 *constptr = tem;
221 return eliminate_constant_term (XEXP (x, 0), constptr);
224 tem = const0_rtx;
225 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
226 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
227 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
228 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
229 *constptr, tem))
230 && CONST_INT_P (tem))
232 *constptr = tem;
233 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
236 return x;
239 /* Return an rtx for the size in bytes of the value of EXP. */
242 expr_size (tree exp)
244 tree size;
246 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
247 size = TREE_OPERAND (exp, 1);
248 else
250 size = tree_expr_size (exp);
251 gcc_assert (size);
252 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
255 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
258 /* Return a wide integer for the size in bytes of the value of EXP, or -1
259 if the size can vary or is larger than an integer. */
261 HOST_WIDE_INT
262 int_expr_size (tree exp)
264 tree size;
266 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
267 size = TREE_OPERAND (exp, 1);
268 else
270 size = tree_expr_size (exp);
271 gcc_assert (size);
274 if (size == 0 || !host_integerp (size, 0))
275 return -1;
277 return tree_low_cst (size, 0);
280 /* Return a copy of X in which all memory references
281 and all constants that involve symbol refs
282 have been replaced with new temporary registers.
283 Also emit code to load the memory locations and constants
284 into those registers.
286 If X contains no such constants or memory references,
287 X itself (not a copy) is returned.
289 If a constant is found in the address that is not a legitimate constant
290 in an insn, it is left alone in the hope that it might be valid in the
291 address.
293 X may contain no arithmetic except addition, subtraction and multiplication.
294 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
296 static rtx
297 break_out_memory_refs (rtx x)
299 if (MEM_P (x)
300 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
301 && GET_MODE (x) != VOIDmode))
302 x = force_reg (GET_MODE (x), x);
303 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
304 || GET_CODE (x) == MULT)
306 rtx op0 = break_out_memory_refs (XEXP (x, 0));
307 rtx op1 = break_out_memory_refs (XEXP (x, 1));
309 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
310 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
313 return x;
316 /* Given X, a memory address in address space AS' pointer mode, convert it to
317 an address in the address space's address mode, or vice versa (TO_MODE says
318 which way). We take advantage of the fact that pointers are not allowed to
319 overflow by commuting arithmetic operations over conversions so that address
320 arithmetic insns can be used. */
323 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
324 rtx x, addr_space_t as ATTRIBUTE_UNUSED)
326 #ifndef POINTERS_EXTEND_UNSIGNED
327 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
328 return x;
329 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
330 enum machine_mode pointer_mode, address_mode, from_mode;
331 rtx temp;
332 enum rtx_code code;
334 /* If X already has the right mode, just return it. */
335 if (GET_MODE (x) == to_mode)
336 return x;
338 pointer_mode = targetm.addr_space.pointer_mode (as);
339 address_mode = targetm.addr_space.address_mode (as);
340 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
342 /* Here we handle some special cases. If none of them apply, fall through
343 to the default case. */
344 switch (GET_CODE (x))
346 case CONST_INT:
347 case CONST_DOUBLE:
348 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
349 code = TRUNCATE;
350 else if (POINTERS_EXTEND_UNSIGNED < 0)
351 break;
352 else if (POINTERS_EXTEND_UNSIGNED > 0)
353 code = ZERO_EXTEND;
354 else
355 code = SIGN_EXTEND;
356 temp = simplify_unary_operation (code, to_mode, x, from_mode);
357 if (temp)
358 return temp;
359 break;
361 case SUBREG:
362 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
363 && GET_MODE (SUBREG_REG (x)) == to_mode)
364 return SUBREG_REG (x);
365 break;
367 case LABEL_REF:
368 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
369 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
370 return temp;
371 break;
373 case SYMBOL_REF:
374 temp = shallow_copy_rtx (x);
375 PUT_MODE (temp, to_mode);
376 return temp;
377 break;
379 case CONST:
380 return gen_rtx_CONST (to_mode,
381 convert_memory_address_addr_space
382 (to_mode, XEXP (x, 0), as));
383 break;
385 case PLUS:
386 case MULT:
387 /* For addition we can safely permute the conversion and addition
388 operation if one operand is a constant and converting the constant
389 does not change it or if one operand is a constant and we are
390 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
391 We can always safely permute them if we are making the address
392 narrower. */
393 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
394 || (GET_CODE (x) == PLUS
395 && CONST_INT_P (XEXP (x, 1))
396 && (XEXP (x, 1) == convert_memory_address_addr_space
397 (to_mode, XEXP (x, 1), as)
398 || POINTERS_EXTEND_UNSIGNED < 0)))
399 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
400 convert_memory_address_addr_space
401 (to_mode, XEXP (x, 0), as),
402 XEXP (x, 1));
403 break;
405 default:
406 break;
409 return convert_modes (to_mode, from_mode,
410 x, POINTERS_EXTEND_UNSIGNED);
411 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
414 /* Return something equivalent to X but valid as a memory address for something
415 of mode MODE in the named address space AS. When X is not itself valid,
416 this works by copying X or subexpressions of it into registers. */
419 memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
421 rtx oldx = x;
422 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
424 x = convert_memory_address_addr_space (address_mode, x, as);
426 /* By passing constant addresses through registers
427 we get a chance to cse them. */
428 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
429 x = force_reg (address_mode, x);
431 /* We get better cse by rejecting indirect addressing at this stage.
432 Let the combiner create indirect addresses where appropriate.
433 For now, generate the code so that the subexpressions useful to share
434 are visible. But not if cse won't be done! */
435 else
437 if (! cse_not_expected && !REG_P (x))
438 x = break_out_memory_refs (x);
440 /* At this point, any valid address is accepted. */
441 if (memory_address_addr_space_p (mode, x, as))
442 goto done;
444 /* If it was valid before but breaking out memory refs invalidated it,
445 use it the old way. */
446 if (memory_address_addr_space_p (mode, oldx, as))
448 x = oldx;
449 goto done;
452 /* Perform machine-dependent transformations on X
453 in certain cases. This is not necessary since the code
454 below can handle all possible cases, but machine-dependent
455 transformations can make better code. */
457 rtx orig_x = x;
458 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
459 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
460 goto done;
463 /* PLUS and MULT can appear in special ways
464 as the result of attempts to make an address usable for indexing.
465 Usually they are dealt with by calling force_operand, below.
466 But a sum containing constant terms is special
467 if removing them makes the sum a valid address:
468 then we generate that address in a register
469 and index off of it. We do this because it often makes
470 shorter code, and because the addresses thus generated
471 in registers often become common subexpressions. */
472 if (GET_CODE (x) == PLUS)
474 rtx constant_term = const0_rtx;
475 rtx y = eliminate_constant_term (x, &constant_term);
476 if (constant_term == const0_rtx
477 || ! memory_address_addr_space_p (mode, y, as))
478 x = force_operand (x, NULL_RTX);
479 else
481 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
482 if (! memory_address_addr_space_p (mode, y, as))
483 x = force_operand (x, NULL_RTX);
484 else
485 x = y;
489 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
490 x = force_operand (x, NULL_RTX);
492 /* If we have a register that's an invalid address,
493 it must be a hard reg of the wrong class. Copy it to a pseudo. */
494 else if (REG_P (x))
495 x = copy_to_reg (x);
497 /* Last resort: copy the value to a register, since
498 the register is a valid address. */
499 else
500 x = force_reg (address_mode, x);
503 done:
505 gcc_assert (memory_address_addr_space_p (mode, x, as));
506 /* If we didn't change the address, we are done. Otherwise, mark
507 a reg as a pointer if we have REG or REG + CONST_INT. */
508 if (oldx == x)
509 return x;
510 else if (REG_P (x))
511 mark_reg_pointer (x, BITS_PER_UNIT);
512 else if (GET_CODE (x) == PLUS
513 && REG_P (XEXP (x, 0))
514 && CONST_INT_P (XEXP (x, 1)))
515 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
517 /* OLDX may have been the address on a temporary. Update the address
518 to indicate that X is now used. */
519 update_temp_slot_address (oldx, x);
521 return x;
524 /* Convert a mem ref into one with a valid memory address.
525 Pass through anything else unchanged. */
528 validize_mem (rtx ref)
530 if (!MEM_P (ref))
531 return ref;
532 ref = use_anchored_address (ref);
533 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
534 MEM_ADDR_SPACE (ref)))
535 return ref;
537 /* Don't alter REF itself, since that is probably a stack slot. */
538 return replace_equiv_address (ref, XEXP (ref, 0));
541 /* If X is a memory reference to a member of an object block, try rewriting
542 it to use an anchor instead. Return the new memory reference on success
543 and the old one on failure. */
546 use_anchored_address (rtx x)
548 rtx base;
549 HOST_WIDE_INT offset;
551 if (!flag_section_anchors)
552 return x;
554 if (!MEM_P (x))
555 return x;
557 /* Split the address into a base and offset. */
558 base = XEXP (x, 0);
559 offset = 0;
560 if (GET_CODE (base) == CONST
561 && GET_CODE (XEXP (base, 0)) == PLUS
562 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
564 offset += INTVAL (XEXP (XEXP (base, 0), 1));
565 base = XEXP (XEXP (base, 0), 0);
568 /* Check whether BASE is suitable for anchors. */
569 if (GET_CODE (base) != SYMBOL_REF
570 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
571 || SYMBOL_REF_ANCHOR_P (base)
572 || SYMBOL_REF_BLOCK (base) == NULL
573 || !targetm.use_anchors_for_symbol_p (base))
574 return x;
576 /* Decide where BASE is going to be. */
577 place_block_symbol (base);
579 /* Get the anchor we need to use. */
580 offset += SYMBOL_REF_BLOCK_OFFSET (base);
581 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
582 SYMBOL_REF_TLS_MODEL (base));
584 /* Work out the offset from the anchor. */
585 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
587 /* If we're going to run a CSE pass, force the anchor into a register.
588 We will then be able to reuse registers for several accesses, if the
589 target costs say that that's worthwhile. */
590 if (!cse_not_expected)
591 base = force_reg (GET_MODE (base), base);
593 return replace_equiv_address (x, plus_constant (base, offset));
596 /* Copy the value or contents of X to a new temp reg and return that reg. */
599 copy_to_reg (rtx x)
601 rtx temp = gen_reg_rtx (GET_MODE (x));
603 /* If not an operand, must be an address with PLUS and MULT so
604 do the computation. */
605 if (! general_operand (x, VOIDmode))
606 x = force_operand (x, temp);
608 if (x != temp)
609 emit_move_insn (temp, x);
611 return temp;
614 /* Like copy_to_reg but always give the new register mode Pmode
615 in case X is a constant. */
618 copy_addr_to_reg (rtx x)
620 return copy_to_mode_reg (Pmode, x);
623 /* Like copy_to_reg but always give the new register mode MODE
624 in case X is a constant. */
627 copy_to_mode_reg (enum machine_mode mode, rtx x)
629 rtx temp = gen_reg_rtx (mode);
631 /* If not an operand, must be an address with PLUS and MULT so
632 do the computation. */
633 if (! general_operand (x, VOIDmode))
634 x = force_operand (x, temp);
636 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
637 if (x != temp)
638 emit_move_insn (temp, x);
639 return temp;
642 /* Load X into a register if it is not already one.
643 Use mode MODE for the register.
644 X should be valid for mode MODE, but it may be a constant which
645 is valid for all integer modes; that's why caller must specify MODE.
647 The caller must not alter the value in the register we return,
648 since we mark it as a "constant" register. */
651 force_reg (enum machine_mode mode, rtx x)
653 rtx temp, insn, set;
655 if (REG_P (x))
656 return x;
658 if (general_operand (x, mode))
660 temp = gen_reg_rtx (mode);
661 insn = emit_move_insn (temp, x);
663 else
665 temp = force_operand (x, NULL_RTX);
666 if (REG_P (temp))
667 insn = get_last_insn ();
668 else
670 rtx temp2 = gen_reg_rtx (mode);
671 insn = emit_move_insn (temp2, temp);
672 temp = temp2;
676 /* Let optimizers know that TEMP's value never changes
677 and that X can be substituted for it. Don't get confused
678 if INSN set something else (such as a SUBREG of TEMP). */
679 if (CONSTANT_P (x)
680 && (set = single_set (insn)) != 0
681 && SET_DEST (set) == temp
682 && ! rtx_equal_p (x, SET_SRC (set)))
683 set_unique_reg_note (insn, REG_EQUAL, x);
685 /* Let optimizers know that TEMP is a pointer, and if so, the
686 known alignment of that pointer. */
688 unsigned align = 0;
689 if (GET_CODE (x) == SYMBOL_REF)
691 align = BITS_PER_UNIT;
692 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
693 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
695 else if (GET_CODE (x) == LABEL_REF)
696 align = BITS_PER_UNIT;
697 else if (GET_CODE (x) == CONST
698 && GET_CODE (XEXP (x, 0)) == PLUS
699 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
700 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
702 rtx s = XEXP (XEXP (x, 0), 0);
703 rtx c = XEXP (XEXP (x, 0), 1);
704 unsigned sa, ca;
706 sa = BITS_PER_UNIT;
707 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
708 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
710 if (INTVAL (c) == 0)
711 align = sa;
712 else
714 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
715 align = MIN (sa, ca);
719 if (align || (MEM_P (x) && MEM_POINTER (x)))
720 mark_reg_pointer (temp, align);
723 return temp;
726 /* If X is a memory ref, copy its contents to a new temp reg and return
727 that reg. Otherwise, return X. */
730 force_not_mem (rtx x)
732 rtx temp;
734 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
735 return x;
737 temp = gen_reg_rtx (GET_MODE (x));
739 if (MEM_POINTER (x))
740 REG_POINTER (temp) = 1;
742 emit_move_insn (temp, x);
743 return temp;
746 /* Copy X to TARGET (if it's nonzero and a reg)
747 or to a new temp reg and return that reg.
748 MODE is the mode to use for X in case it is a constant. */
751 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
753 rtx temp;
755 if (target && REG_P (target))
756 temp = target;
757 else
758 temp = gen_reg_rtx (mode);
760 emit_move_insn (temp, x);
761 return temp;
764 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
765 PUNSIGNEDP points to the signedness of the type and may be adjusted
766 to show what signedness to use on extension operations.
768 FOR_RETURN is nonzero if the caller is promoting the return value
769 of FNDECL, else it is for promoting args. */
771 enum machine_mode
772 promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
773 const_tree funtype, int for_return)
775 switch (TREE_CODE (type))
777 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
778 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
779 case POINTER_TYPE: case REFERENCE_TYPE:
780 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
781 for_return);
783 default:
784 return mode;
787 /* Return the mode to use to store a scalar of TYPE and MODE.
788 PUNSIGNEDP points to the signedness of the type and may be adjusted
789 to show what signedness to use on extension operations. */
791 enum machine_mode
792 promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
793 int *punsignedp ATTRIBUTE_UNUSED)
795 /* FIXME: this is the same logic that was there until GCC 4.4, but we
796 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
797 is not defined. The affected targets are M32C, S390, SPARC. */
798 #ifdef PROMOTE_MODE
799 const enum tree_code code = TREE_CODE (type);
800 int unsignedp = *punsignedp;
802 switch (code)
804 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
805 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
806 PROMOTE_MODE (mode, unsignedp, type);
807 *punsignedp = unsignedp;
808 return mode;
809 break;
811 #ifdef POINTERS_EXTEND_UNSIGNED
812 case REFERENCE_TYPE:
813 case POINTER_TYPE:
814 *punsignedp = POINTERS_EXTEND_UNSIGNED;
815 return targetm.addr_space.address_mode
816 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
817 break;
818 #endif
820 default:
821 return mode;
823 #else
824 return mode;
825 #endif
829 /* Use one of promote_mode or promote_function_mode to find the promoted
830 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
831 of DECL after promotion. */
833 enum machine_mode
834 promote_decl_mode (const_tree decl, int *punsignedp)
836 tree type = TREE_TYPE (decl);
837 int unsignedp = TYPE_UNSIGNED (type);
838 enum machine_mode mode = DECL_MODE (decl);
839 enum machine_mode pmode;
841 if (TREE_CODE (decl) == RESULT_DECL
842 || TREE_CODE (decl) == PARM_DECL)
843 pmode = promote_function_mode (type, mode, &unsignedp,
844 TREE_TYPE (current_function_decl), 2);
845 else
846 pmode = promote_mode (type, mode, &unsignedp);
848 if (punsignedp)
849 *punsignedp = unsignedp;
850 return pmode;
854 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
855 This pops when ADJUST is positive. ADJUST need not be constant. */
857 void
858 adjust_stack (rtx adjust)
860 rtx temp;
862 if (adjust == const0_rtx)
863 return;
865 /* We expect all variable sized adjustments to be multiple of
866 PREFERRED_STACK_BOUNDARY. */
867 if (CONST_INT_P (adjust))
868 stack_pointer_delta -= INTVAL (adjust);
870 temp = expand_binop (Pmode,
871 #ifdef STACK_GROWS_DOWNWARD
872 add_optab,
873 #else
874 sub_optab,
875 #endif
876 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
877 OPTAB_LIB_WIDEN);
879 if (temp != stack_pointer_rtx)
880 emit_move_insn (stack_pointer_rtx, temp);
883 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
884 This pushes when ADJUST is positive. ADJUST need not be constant. */
886 void
887 anti_adjust_stack (rtx adjust)
889 rtx temp;
891 if (adjust == const0_rtx)
892 return;
894 /* We expect all variable sized adjustments to be multiple of
895 PREFERRED_STACK_BOUNDARY. */
896 if (CONST_INT_P (adjust))
897 stack_pointer_delta += INTVAL (adjust);
899 temp = expand_binop (Pmode,
900 #ifdef STACK_GROWS_DOWNWARD
901 sub_optab,
902 #else
903 add_optab,
904 #endif
905 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
906 OPTAB_LIB_WIDEN);
908 if (temp != stack_pointer_rtx)
909 emit_move_insn (stack_pointer_rtx, temp);
912 /* Round the size of a block to be pushed up to the boundary required
913 by this machine. SIZE is the desired size, which need not be constant. */
915 static rtx
916 round_push (rtx size)
918 rtx align_rtx, alignm1_rtx;
920 if (!SUPPORTS_STACK_ALIGNMENT
921 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
923 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
925 if (align == 1)
926 return size;
928 if (CONST_INT_P (size))
930 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
932 if (INTVAL (size) != new_size)
933 size = GEN_INT (new_size);
934 return size;
937 align_rtx = GEN_INT (align);
938 alignm1_rtx = GEN_INT (align - 1);
940 else
942 /* If crtl->preferred_stack_boundary might still grow, use
943 virtual_preferred_stack_boundary_rtx instead. This will be
944 substituted by the right value in vregs pass and optimized
945 during combine. */
946 align_rtx = virtual_preferred_stack_boundary_rtx;
947 alignm1_rtx = force_operand (plus_constant (align_rtx, -1), NULL_RTX);
950 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
951 but we know it can't. So add ourselves and then do
952 TRUNC_DIV_EXPR. */
953 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
954 NULL_RTX, 1, OPTAB_LIB_WIDEN);
955 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
956 NULL_RTX, 1);
957 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
959 return size;
962 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
963 to a previously-created save area. If no save area has been allocated,
964 this function will allocate one. If a save area is specified, it
965 must be of the proper mode.
967 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
968 are emitted at the current position. */
970 void
971 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
973 rtx sa = *psave;
974 /* The default is that we use a move insn and save in a Pmode object. */
975 rtx (*fcn) (rtx, rtx) = gen_move_insn;
976 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
978 /* See if this machine has anything special to do for this kind of save. */
979 switch (save_level)
981 #ifdef HAVE_save_stack_block
982 case SAVE_BLOCK:
983 if (HAVE_save_stack_block)
984 fcn = gen_save_stack_block;
985 break;
986 #endif
987 #ifdef HAVE_save_stack_function
988 case SAVE_FUNCTION:
989 if (HAVE_save_stack_function)
990 fcn = gen_save_stack_function;
991 break;
992 #endif
993 #ifdef HAVE_save_stack_nonlocal
994 case SAVE_NONLOCAL:
995 if (HAVE_save_stack_nonlocal)
996 fcn = gen_save_stack_nonlocal;
997 break;
998 #endif
999 default:
1000 break;
1003 /* If there is no save area and we have to allocate one, do so. Otherwise
1004 verify the save area is the proper mode. */
1006 if (sa == 0)
1008 if (mode != VOIDmode)
1010 if (save_level == SAVE_NONLOCAL)
1011 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1012 else
1013 *psave = sa = gen_reg_rtx (mode);
1017 if (after)
1019 rtx seq;
1021 start_sequence ();
1022 do_pending_stack_adjust ();
1023 /* We must validize inside the sequence, to ensure that any instructions
1024 created by the validize call also get moved to the right place. */
1025 if (sa != 0)
1026 sa = validize_mem (sa);
1027 emit_insn (fcn (sa, stack_pointer_rtx));
1028 seq = get_insns ();
1029 end_sequence ();
1030 emit_insn_after (seq, after);
1032 else
1034 do_pending_stack_adjust ();
1035 if (sa != 0)
1036 sa = validize_mem (sa);
1037 emit_insn (fcn (sa, stack_pointer_rtx));
1041 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1042 area made by emit_stack_save. If it is zero, we have nothing to do.
1044 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1045 current position. */
1047 void
1048 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
1050 /* The default is that we use a move insn. */
1051 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1053 /* See if this machine has anything special to do for this kind of save. */
1054 switch (save_level)
1056 #ifdef HAVE_restore_stack_block
1057 case SAVE_BLOCK:
1058 if (HAVE_restore_stack_block)
1059 fcn = gen_restore_stack_block;
1060 break;
1061 #endif
1062 #ifdef HAVE_restore_stack_function
1063 case SAVE_FUNCTION:
1064 if (HAVE_restore_stack_function)
1065 fcn = gen_restore_stack_function;
1066 break;
1067 #endif
1068 #ifdef HAVE_restore_stack_nonlocal
1069 case SAVE_NONLOCAL:
1070 if (HAVE_restore_stack_nonlocal)
1071 fcn = gen_restore_stack_nonlocal;
1072 break;
1073 #endif
1074 default:
1075 break;
1078 if (sa != 0)
1080 sa = validize_mem (sa);
1081 /* These clobbers prevent the scheduler from moving
1082 references to variable arrays below the code
1083 that deletes (pops) the arrays. */
1084 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1085 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1088 discard_pending_stack_adjust ();
1090 if (after)
1092 rtx seq;
1094 start_sequence ();
1095 emit_insn (fcn (stack_pointer_rtx, sa));
1096 seq = get_insns ();
1097 end_sequence ();
1098 emit_insn_after (seq, after);
1100 else
1101 emit_insn (fcn (stack_pointer_rtx, sa));
1104 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1105 function. This function should be called whenever we allocate or
1106 deallocate dynamic stack space. */
1108 void
1109 update_nonlocal_goto_save_area (void)
1111 tree t_save;
1112 rtx r_save;
1114 /* The nonlocal_goto_save_area object is an array of N pointers. The
1115 first one is used for the frame pointer save; the rest are sized by
1116 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1117 of the stack save area slots. */
1118 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1119 integer_one_node, NULL_TREE, NULL_TREE);
1120 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1122 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1125 /* Return an rtx representing the address of an area of memory dynamically
1126 pushed on the stack. This region of memory is always aligned to
1127 a multiple of BIGGEST_ALIGNMENT.
1129 Any required stack pointer alignment is preserved.
1131 SIZE is an rtx representing the size of the area.
1132 TARGET is a place in which the address can be placed.
1134 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has.
1136 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1137 stack space allocated by the generated code cannot be added with itself
1138 in the course of the execution of the function. It is always safe to
1139 pass FALSE here and the following criterion is sufficient in order to
1140 pass TRUE: every path in the CFG that starts at the allocation point and
1141 loops to it executes the associated deallocation code. */
1144 allocate_dynamic_stack_space (rtx size, rtx target, int known_align,
1145 bool cannot_accumulate)
1147 HOST_WIDE_INT stack_usage_size = -1;
1148 bool known_align_valid = true;
1149 rtx final_label, final_target;
1151 /* If we're asking for zero bytes, it doesn't matter what we point
1152 to since we can't dereference it. But return a reasonable
1153 address anyway. */
1154 if (size == const0_rtx)
1155 return virtual_stack_dynamic_rtx;
1157 /* Otherwise, show we're calling alloca or equivalent. */
1158 cfun->calls_alloca = 1;
1160 /* If stack usage info is requested, look into the size we are passed.
1161 We need to do so this early to avoid the obfuscation that may be
1162 introduced later by the various alignment operations. */
1163 if (flag_stack_usage)
1165 if (CONST_INT_P (size))
1166 stack_usage_size = INTVAL (size);
1167 else if (REG_P (size))
1169 /* Look into the last emitted insn and see if we can deduce
1170 something for the register. */
1171 rtx insn, set, note;
1172 insn = get_last_insn ();
1173 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1175 if (CONST_INT_P (SET_SRC (set)))
1176 stack_usage_size = INTVAL (SET_SRC (set));
1177 else if ((note = find_reg_equal_equiv_note (insn))
1178 && CONST_INT_P (XEXP (note, 0)))
1179 stack_usage_size = INTVAL (XEXP (note, 0));
1183 /* If the size is not constant, we can't say anything. */
1184 if (stack_usage_size == -1)
1186 current_function_has_unbounded_dynamic_stack_size = 1;
1187 stack_usage_size = 0;
1191 /* Ensure the size is in the proper mode. */
1192 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1193 size = convert_to_mode (Pmode, size, 1);
1195 /* We can't attempt to minimize alignment necessary, because we don't
1196 know the final value of preferred_stack_boundary yet while executing
1197 this code. */
1198 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1199 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1201 /* We will need to ensure that the address we return is aligned to
1202 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1203 always know its final value at this point in the compilation (it
1204 might depend on the size of the outgoing parameter lists, for
1205 example), so we must align the value to be returned in that case.
1206 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1207 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1208 We must also do an alignment operation on the returned value if
1209 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1211 If we have to align, we must leave space in SIZE for the hole
1212 that might result from the alignment operation. */
1214 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1215 #define MUST_ALIGN 1
1216 #else
1217 #define MUST_ALIGN (crtl->preferred_stack_boundary < BIGGEST_ALIGNMENT)
1218 #endif
1220 if (MUST_ALIGN)
1222 size
1223 = force_operand (plus_constant (size,
1224 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1225 NULL_RTX);
1227 if (flag_stack_usage)
1228 stack_usage_size += BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1;
1230 known_align_valid = false;
1233 #ifdef SETJMP_VIA_SAVE_AREA
1234 /* If setjmp restores regs from a save area in the stack frame,
1235 avoid clobbering the reg save area. Note that the offset of
1236 virtual_incoming_args_rtx includes the preallocated stack args space.
1237 It would be no problem to clobber that, but it's on the wrong side
1238 of the old save area.
1240 What used to happen is that, since we did not know for sure
1241 whether setjmp() was invoked until after RTL generation, we
1242 would use reg notes to store the "optimized" size and fix things
1243 up later. These days we know this information before we ever
1244 start building RTL so the reg notes are unnecessary. */
1245 if (cfun->calls_setjmp)
1247 rtx dynamic_offset
1248 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1249 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1251 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1252 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1254 /* The above dynamic offset cannot be computed statically at this
1255 point, but it will be possible to do so after RTL expansion is
1256 done. Record how many times we will need to add it. */
1257 if (flag_stack_usage)
1258 current_function_dynamic_alloc_count++;
1260 known_align_valid = false;
1262 #endif /* SETJMP_VIA_SAVE_AREA */
1264 /* Round the size to a multiple of the required stack alignment.
1265 Since the stack if presumed to be rounded before this allocation,
1266 this will maintain the required alignment.
1268 If the stack grows downward, we could save an insn by subtracting
1269 SIZE from the stack pointer and then aligning the stack pointer.
1270 The problem with this is that the stack pointer may be unaligned
1271 between the execution of the subtraction and alignment insns and
1272 some machines do not allow this. Even on those that do, some
1273 signal handlers malfunction if a signal should occur between those
1274 insns. Since this is an extremely rare event, we have no reliable
1275 way of knowing which systems have this problem. So we avoid even
1276 momentarily mis-aligning the stack. */
1277 if (!known_align_valid || known_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1279 size = round_push (size);
1281 if (flag_stack_usage)
1283 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1284 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1288 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1289 if (target == 0 || !REG_P (target)
1290 || REGNO (target) < FIRST_PSEUDO_REGISTER
1291 || GET_MODE (target) != Pmode)
1292 target = gen_reg_rtx (Pmode);
1294 mark_reg_pointer (target, known_align);
1296 /* The size is supposed to be fully adjusted at this point so record it
1297 if stack usage info is requested. */
1298 if (flag_stack_usage)
1300 current_function_dynamic_stack_size += stack_usage_size;
1302 /* ??? This is gross but the only safe stance in the absence
1303 of stack usage oriented flow analysis. */
1304 if (!cannot_accumulate)
1305 current_function_has_unbounded_dynamic_stack_size = 1;
1308 final_label = NULL_RTX;
1309 final_target = NULL_RTX;
1311 /* If we are splitting the stack, we need to ask the backend whether
1312 there is enough room on the current stack. If there isn't, or if
1313 the backend doesn't know how to tell is, then we need to call a
1314 function to allocate memory in some other way. This memory will
1315 be released when we release the current stack segment. The
1316 effect is that stack allocation becomes less efficient, but at
1317 least it doesn't cause a stack overflow. */
1318 if (flag_split_stack)
1320 rtx available_label, space, func;
1322 available_label = NULL_RTX;
1324 #ifdef HAVE_split_stack_space_check
1325 if (HAVE_split_stack_space_check)
1327 available_label = gen_label_rtx ();
1329 /* This instruction will branch to AVAILABLE_LABEL if there
1330 are SIZE bytes available on the stack. */
1331 emit_insn (gen_split_stack_space_check (size, available_label));
1333 #endif
1335 func = init_one_libfunc ("__morestack_allocate_stack_space");
1337 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1338 1, size, Pmode);
1340 if (available_label == NULL_RTX)
1341 return space;
1343 final_target = gen_reg_rtx (Pmode);
1344 mark_reg_pointer (final_target, known_align);
1346 emit_move_insn (final_target, space);
1348 final_label = gen_label_rtx ();
1349 emit_jump (final_label);
1351 emit_label (available_label);
1354 do_pending_stack_adjust ();
1356 /* We ought to be called always on the toplevel and stack ought to be aligned
1357 properly. */
1358 gcc_assert (!(stack_pointer_delta
1359 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1361 /* If needed, check that we have the required amount of stack. Take into
1362 account what has already been checked. */
1363 if (STACK_CHECK_MOVING_SP)
1365 else if (flag_stack_check == GENERIC_STACK_CHECK)
1366 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1367 size);
1368 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1369 probe_stack_range (STACK_CHECK_PROTECT, size);
1371 /* Perform the required allocation from the stack. Some systems do
1372 this differently than simply incrementing/decrementing from the
1373 stack pointer, such as acquiring the space by calling malloc(). */
1374 #ifdef HAVE_allocate_stack
1375 if (HAVE_allocate_stack)
1377 enum machine_mode mode = STACK_SIZE_MODE;
1378 insn_operand_predicate_fn pred;
1380 /* We don't have to check against the predicate for operand 0 since
1381 TARGET is known to be a pseudo of the proper mode, which must
1382 be valid for the operand. For operand 1, convert to the
1383 proper mode and validate. */
1384 if (mode == VOIDmode)
1385 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1387 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1388 if (pred && ! ((*pred) (size, mode)))
1389 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1391 emit_insn (gen_allocate_stack (target, size));
1393 else
1394 #endif
1396 int saved_stack_pointer_delta;
1398 #ifndef STACK_GROWS_DOWNWARD
1399 emit_move_insn (target, virtual_stack_dynamic_rtx);
1400 #endif
1402 /* Check stack bounds if necessary. */
1403 if (crtl->limit_stack)
1405 rtx available;
1406 rtx space_available = gen_label_rtx ();
1407 #ifdef STACK_GROWS_DOWNWARD
1408 available = expand_binop (Pmode, sub_optab,
1409 stack_pointer_rtx, stack_limit_rtx,
1410 NULL_RTX, 1, OPTAB_WIDEN);
1411 #else
1412 available = expand_binop (Pmode, sub_optab,
1413 stack_limit_rtx, stack_pointer_rtx,
1414 NULL_RTX, 1, OPTAB_WIDEN);
1415 #endif
1416 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1417 space_available);
1418 #ifdef HAVE_trap
1419 if (HAVE_trap)
1420 emit_insn (gen_trap ());
1421 else
1422 #endif
1423 error ("stack limits not supported on this target");
1424 emit_barrier ();
1425 emit_label (space_available);
1428 saved_stack_pointer_delta = stack_pointer_delta;
1429 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1430 anti_adjust_stack_and_probe (size, false);
1431 else
1432 anti_adjust_stack (size);
1433 /* Even if size is constant, don't modify stack_pointer_delta.
1434 The constant size alloca should preserve
1435 crtl->preferred_stack_boundary alignment. */
1436 stack_pointer_delta = saved_stack_pointer_delta;
1438 #ifdef STACK_GROWS_DOWNWARD
1439 emit_move_insn (target, virtual_stack_dynamic_rtx);
1440 #endif
1443 if (MUST_ALIGN)
1445 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1446 but we know it can't. So add ourselves and then do
1447 TRUNC_DIV_EXPR. */
1448 target = expand_binop (Pmode, add_optab, target,
1449 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1450 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1451 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1452 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1453 NULL_RTX, 1);
1454 target = expand_mult (Pmode, target,
1455 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1456 NULL_RTX, 1);
1459 /* Record the new stack level for nonlocal gotos. */
1460 if (cfun->nonlocal_goto_save_area != 0)
1461 update_nonlocal_goto_save_area ();
1463 /* Finish up the split stack handling. */
1464 if (final_label != NULL_RTX)
1466 gcc_assert (flag_split_stack);
1467 emit_move_insn (final_target, target);
1468 emit_label (final_label);
1469 target = final_target;
1472 return target;
1475 /* A front end may want to override GCC's stack checking by providing a
1476 run-time routine to call to check the stack, so provide a mechanism for
1477 calling that routine. */
1479 static GTY(()) rtx stack_check_libfunc;
1481 void
1482 set_stack_check_libfunc (const char *libfunc_name)
1484 gcc_assert (stack_check_libfunc == NULL_RTX);
1485 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1488 /* Emit one stack probe at ADDRESS, an address within the stack. */
1490 void
1491 emit_stack_probe (rtx address)
1493 rtx memref = gen_rtx_MEM (word_mode, address);
1495 MEM_VOLATILE_P (memref) = 1;
1497 /* See if we have an insn to probe the stack. */
1498 #ifdef HAVE_probe_stack
1499 if (HAVE_probe_stack)
1500 emit_insn (gen_probe_stack (memref));
1501 else
1502 #endif
1503 emit_move_insn (memref, const0_rtx);
1506 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1507 FIRST is a constant and size is a Pmode RTX. These are offsets from
1508 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1509 or subtract them from the stack pointer. */
1511 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1513 #ifdef STACK_GROWS_DOWNWARD
1514 #define STACK_GROW_OP MINUS
1515 #define STACK_GROW_OPTAB sub_optab
1516 #define STACK_GROW_OFF(off) -(off)
1517 #else
1518 #define STACK_GROW_OP PLUS
1519 #define STACK_GROW_OPTAB add_optab
1520 #define STACK_GROW_OFF(off) (off)
1521 #endif
1523 void
1524 probe_stack_range (HOST_WIDE_INT first, rtx size)
1526 /* First ensure SIZE is Pmode. */
1527 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1528 size = convert_to_mode (Pmode, size, 1);
1530 /* Next see if we have a function to check the stack. */
1531 if (stack_check_libfunc)
1533 rtx addr = memory_address (Pmode,
1534 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1535 stack_pointer_rtx,
1536 plus_constant (size, first)));
1537 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1538 Pmode);
1541 /* Next see if we have an insn to check the stack. */
1542 #ifdef HAVE_check_stack
1543 else if (HAVE_check_stack)
1545 rtx addr = memory_address (Pmode,
1546 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1547 stack_pointer_rtx,
1548 plus_constant (size, first)));
1549 insn_operand_predicate_fn pred
1550 = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1551 if (pred && !((*pred) (addr, Pmode)))
1552 addr = copy_to_mode_reg (Pmode, addr);
1554 emit_insn (gen_check_stack (addr));
1556 #endif
1558 /* Otherwise we have to generate explicit probes. If we have a constant
1559 small number of them to generate, that's the easy case. */
1560 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1562 HOST_WIDE_INT isize = INTVAL (size), i;
1563 rtx addr;
1565 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1566 it exceeds SIZE. If only one probe is needed, this will not
1567 generate any code. Then probe at FIRST + SIZE. */
1568 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1570 addr = memory_address (Pmode,
1571 plus_constant (stack_pointer_rtx,
1572 STACK_GROW_OFF (first + i)));
1573 emit_stack_probe (addr);
1576 addr = memory_address (Pmode,
1577 plus_constant (stack_pointer_rtx,
1578 STACK_GROW_OFF (first + isize)));
1579 emit_stack_probe (addr);
1582 /* In the variable case, do the same as above, but in a loop. Note that we
1583 must be extra careful with variables wrapping around because we might be
1584 at the very top (or the very bottom) of the address space and we have to
1585 be able to handle this case properly; in particular, we use an equality
1586 test for the loop condition. */
1587 else
1589 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1590 rtx loop_lab = gen_label_rtx ();
1591 rtx end_lab = gen_label_rtx ();
1594 /* Step 1: round SIZE to the previous multiple of the interval. */
1596 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1597 rounded_size
1598 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1599 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1602 /* Step 2: compute initial and final value of the loop counter. */
1604 /* TEST_ADDR = SP + FIRST. */
1605 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1606 stack_pointer_rtx,
1607 GEN_INT (first)), NULL_RTX);
1609 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1610 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1611 test_addr,
1612 rounded_size_op), NULL_RTX);
1615 /* Step 3: the loop
1617 while (TEST_ADDR != LAST_ADDR)
1619 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1620 probe at TEST_ADDR
1623 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1624 until it is equal to ROUNDED_SIZE. */
1626 emit_label (loop_lab);
1628 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1629 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1630 end_lab);
1632 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1633 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1634 GEN_INT (PROBE_INTERVAL), test_addr,
1635 1, OPTAB_WIDEN);
1637 gcc_assert (temp == test_addr);
1639 /* Probe at TEST_ADDR. */
1640 emit_stack_probe (test_addr);
1642 emit_jump (loop_lab);
1644 emit_label (end_lab);
1647 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1648 that SIZE is equal to ROUNDED_SIZE. */
1650 /* TEMP = SIZE - ROUNDED_SIZE. */
1651 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1652 if (temp != const0_rtx)
1654 rtx addr;
1656 if (CONST_INT_P (temp))
1658 /* Use [base + disp} addressing mode if supported. */
1659 HOST_WIDE_INT offset = INTVAL (temp);
1660 addr = memory_address (Pmode,
1661 plus_constant (last_addr,
1662 STACK_GROW_OFF (offset)));
1664 else
1666 /* Manual CSE if the difference is not known at compile-time. */
1667 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1668 addr = memory_address (Pmode,
1669 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1670 last_addr, temp));
1673 emit_stack_probe (addr);
1678 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1679 while probing it. This pushes when SIZE is positive. SIZE need not
1680 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1681 by plus SIZE at the end. */
1683 void
1684 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1686 /* We skip the probe for the first interval + a small dope of 4 words and
1687 probe that many bytes past the specified size to maintain a protection
1688 area at the botton of the stack. */
1689 const int dope = 4 * UNITS_PER_WORD;
1691 /* First ensure SIZE is Pmode. */
1692 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1693 size = convert_to_mode (Pmode, size, 1);
1695 /* If we have a constant small number of probes to generate, that's the
1696 easy case. */
1697 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1699 HOST_WIDE_INT isize = INTVAL (size), i;
1700 bool first_probe = true;
1702 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1703 values of N from 1 until it exceeds SIZE. If only one probe is
1704 needed, this will not generate any code. Then adjust and probe
1705 to PROBE_INTERVAL + SIZE. */
1706 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1708 if (first_probe)
1710 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1711 first_probe = false;
1713 else
1714 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1715 emit_stack_probe (stack_pointer_rtx);
1718 if (first_probe)
1719 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1720 else
1721 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL - i));
1722 emit_stack_probe (stack_pointer_rtx);
1725 /* In the variable case, do the same as above, but in a loop. Note that we
1726 must be extra careful with variables wrapping around because we might be
1727 at the very top (or the very bottom) of the address space and we have to
1728 be able to handle this case properly; in particular, we use an equality
1729 test for the loop condition. */
1730 else
1732 rtx rounded_size, rounded_size_op, last_addr, temp;
1733 rtx loop_lab = gen_label_rtx ();
1734 rtx end_lab = gen_label_rtx ();
1737 /* Step 1: round SIZE to the previous multiple of the interval. */
1739 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1740 rounded_size
1741 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1742 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1745 /* Step 2: compute initial and final value of the loop counter. */
1747 /* SP = SP_0 + PROBE_INTERVAL. */
1748 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1750 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1751 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1752 stack_pointer_rtx,
1753 rounded_size_op), NULL_RTX);
1756 /* Step 3: the loop
1758 while (SP != LAST_ADDR)
1760 SP = SP + PROBE_INTERVAL
1761 probe at SP
1764 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1765 values of N from 1 until it is equal to ROUNDED_SIZE. */
1767 emit_label (loop_lab);
1769 /* Jump to END_LAB if SP == LAST_ADDR. */
1770 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1771 Pmode, 1, end_lab);
1773 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1774 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1775 emit_stack_probe (stack_pointer_rtx);
1777 emit_jump (loop_lab);
1779 emit_label (end_lab);
1782 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1783 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1785 /* TEMP = SIZE - ROUNDED_SIZE. */
1786 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1787 if (temp != const0_rtx)
1789 /* Manual CSE if the difference is not known at compile-time. */
1790 if (GET_CODE (temp) != CONST_INT)
1791 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1792 anti_adjust_stack (temp);
1793 emit_stack_probe (stack_pointer_rtx);
1797 /* Adjust back and account for the additional first interval. */
1798 if (adjust_back)
1799 adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1800 else
1801 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1804 /* Return an rtx representing the register or memory location
1805 in which a scalar value of data type VALTYPE
1806 was returned by a function call to function FUNC.
1807 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1808 function is known, otherwise 0.
1809 OUTGOING is 1 if on a machine with register windows this function
1810 should return the register in which the function will put its result
1811 and 0 otherwise. */
1814 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1815 int outgoing ATTRIBUTE_UNUSED)
1817 rtx val;
1819 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1821 if (REG_P (val)
1822 && GET_MODE (val) == BLKmode)
1824 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1825 enum machine_mode tmpmode;
1827 /* int_size_in_bytes can return -1. We don't need a check here
1828 since the value of bytes will then be large enough that no
1829 mode will match anyway. */
1831 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1832 tmpmode != VOIDmode;
1833 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1835 /* Have we found a large enough mode? */
1836 if (GET_MODE_SIZE (tmpmode) >= bytes)
1837 break;
1840 /* No suitable mode found. */
1841 gcc_assert (tmpmode != VOIDmode);
1843 PUT_MODE (val, tmpmode);
1845 return val;
1848 /* Return an rtx representing the register or memory location
1849 in which a scalar value of mode MODE was returned by a library call. */
1852 hard_libcall_value (enum machine_mode mode, rtx fun)
1854 return targetm.calls.libcall_value (mode, fun);
1857 /* Look up the tree code for a given rtx code
1858 to provide the arithmetic operation for REAL_ARITHMETIC.
1859 The function returns an int because the caller may not know
1860 what `enum tree_code' means. */
1863 rtx_to_tree_code (enum rtx_code code)
1865 enum tree_code tcode;
1867 switch (code)
1869 case PLUS:
1870 tcode = PLUS_EXPR;
1871 break;
1872 case MINUS:
1873 tcode = MINUS_EXPR;
1874 break;
1875 case MULT:
1876 tcode = MULT_EXPR;
1877 break;
1878 case DIV:
1879 tcode = RDIV_EXPR;
1880 break;
1881 case SMIN:
1882 tcode = MIN_EXPR;
1883 break;
1884 case SMAX:
1885 tcode = MAX_EXPR;
1886 break;
1887 default:
1888 tcode = LAST_AND_UNUSED_TREE_CODE;
1889 break;
1891 return ((int) tcode);
1894 #include "gt-explow.h"