1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_notes) when a
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
79 #include "coretypes.h"
86 #include "hard-reg-set.h"
87 #include "basic-block.h"
88 #include "insn-config.h"
90 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "insn-attr.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
104 #include "tree-pass.h"
106 /* Number of attempts to combine instructions in this function. */
108 static int combine_attempts
;
110 /* Number of attempts that got as far as substitution in this function. */
112 static int combine_merges
;
114 /* Number of instructions combined with added SETs in this function. */
116 static int combine_extras
;
118 /* Number of instructions combined in this function. */
120 static int combine_successes
;
122 /* Totals over entire compilation. */
124 static int total_attempts
, total_merges
, total_extras
, total_successes
;
127 /* Vector mapping INSN_UIDs to cuids.
128 The cuids are like uids but increase monotonically always.
129 Combine always uses cuids so that it can compare them.
130 But actually renumbering the uids, which we used to do,
131 proves to be a bad idea because it makes it hard to compare
132 the dumps produced by earlier passes with those from later passes. */
134 static int *uid_cuid
;
135 static int max_uid_cuid
;
137 /* Get the cuid of an insn. */
139 #define INSN_CUID(INSN) \
140 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
142 /* Maximum register number, which is the size of the tables below. */
144 static unsigned int combine_max_regno
;
147 /* Record last point of death of (hard or pseudo) register n. */
150 /* Record last point of modification of (hard or pseudo) register n. */
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick
;
205 /* Record the value of label_tick when the value for register n is placed in
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits
;
216 char last_set_sign_bit_copies
;
217 ENUM_BITFIELD(machine_mode
) last_set_mode
: 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid
;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies
;
239 unsigned HOST_WIDE_INT nonzero_bits
;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label
;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
252 ENUM_BITFIELD(machine_mode
) truncated_to_mode
: 8;
255 static struct reg_stat
*reg_stat
;
257 /* Record the cuid of the last insn that invalidated memory
258 (anything that writes memory, and subroutine calls, but not pushes). */
260 static int mem_last_set
;
262 /* Record the cuid of the last CALL_INSN
263 so we can tell whether a potential combination crosses any calls. */
265 static int last_call_cuid
;
267 /* When `subst' is called, this is the insn that is being modified
268 (by combining in a previous insn). The PATTERN of this insn
269 is still the old pattern partially modified and it should not be
270 looked at, but this may be used to examine the successors of the insn
271 to judge whether a simplification is valid. */
273 static rtx subst_insn
;
275 /* This is the lowest CUID that `subst' is currently dealing with.
276 get_last_value will not return a value if the register was set at or
277 after this CUID. If not for this mechanism, we could get confused if
278 I2 or I1 in try_combine were an insn that used the old value of a register
279 to obtain a new value. In that case, we might erroneously get the
280 new value of the register when we wanted the old one. */
282 static int subst_low_cuid
;
284 /* This contains any hard registers that are used in newpat; reg_dead_at_p
285 must consider all these registers to be always live. */
287 static HARD_REG_SET newpat_used_regs
;
289 /* This is an insn to which a LOG_LINKS entry has been added. If this
290 insn is the earlier than I2 or I3, combine should rescan starting at
293 static rtx added_links_insn
;
295 /* Basic block in which we are performing combines. */
296 static basic_block this_basic_block
;
298 /* A bitmap indicating which blocks had registers go dead at entry.
299 After combine, we'll need to re-do global life analysis with
300 those blocks as starting points. */
301 static sbitmap refresh_blocks
;
303 /* The following array records the insn_rtx_cost for every insn
304 in the instruction stream. */
306 static int *uid_insn_cost
;
308 /* Length of the currently allocated uid_insn_cost array. */
310 static int last_insn_cost
;
312 /* Incremented for each label. */
314 static int label_tick
;
316 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
317 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
319 static enum machine_mode nonzero_bits_mode
;
321 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
322 be safely used. It is zero while computing them and after combine has
323 completed. This former test prevents propagating values based on
324 previously set values, which can be incorrect if a variable is modified
327 static int nonzero_sign_valid
;
330 /* Record one modification to rtl structure
331 to be undone by storing old_contents into *where. */
336 enum { UNDO_RTX
, UNDO_INT
, UNDO_MODE
} kind
;
337 union { rtx r
; int i
; enum machine_mode m
; } old_contents
;
338 union { rtx
*r
; int *i
; } where
;
341 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
342 num_undo says how many are currently recorded.
344 other_insn is nonzero if we have modified some other insn in the process
345 of working on subst_insn. It must be verified too. */
354 static struct undobuf undobuf
;
356 /* Number of times the pseudo being substituted for
357 was found and replaced. */
359 static int n_occurrences
;
361 static rtx
reg_nonzero_bits_for_combine (rtx
, enum machine_mode
, rtx
,
363 unsigned HOST_WIDE_INT
,
364 unsigned HOST_WIDE_INT
*);
365 static rtx
reg_num_sign_bit_copies_for_combine (rtx
, enum machine_mode
, rtx
,
367 unsigned int, unsigned int *);
368 static void do_SUBST (rtx
*, rtx
);
369 static void do_SUBST_INT (int *, int);
370 static void init_reg_last (void);
371 static void setup_incoming_promotions (void);
372 static void set_nonzero_bits_and_sign_copies (rtx
, rtx
, void *);
373 static int cant_combine_insn_p (rtx
);
374 static int can_combine_p (rtx
, rtx
, rtx
, rtx
, rtx
*, rtx
*);
375 static int combinable_i3pat (rtx
, rtx
*, rtx
, rtx
, int, rtx
*);
376 static int contains_muldiv (rtx
);
377 static rtx
try_combine (rtx
, rtx
, rtx
, int *);
378 static void undo_all (void);
379 static void undo_commit (void);
380 static rtx
*find_split_point (rtx
*, rtx
);
381 static rtx
subst (rtx
, rtx
, rtx
, int, int);
382 static rtx
combine_simplify_rtx (rtx
, enum machine_mode
, int);
383 static rtx
simplify_if_then_else (rtx
);
384 static rtx
simplify_set (rtx
);
385 static rtx
simplify_logical (rtx
);
386 static rtx
expand_compound_operation (rtx
);
387 static rtx
expand_field_assignment (rtx
);
388 static rtx
make_extraction (enum machine_mode
, rtx
, HOST_WIDE_INT
,
389 rtx
, unsigned HOST_WIDE_INT
, int, int, int);
390 static rtx
extract_left_shift (rtx
, int);
391 static rtx
make_compound_operation (rtx
, enum rtx_code
);
392 static int get_pos_from_mask (unsigned HOST_WIDE_INT
,
393 unsigned HOST_WIDE_INT
*);
394 static rtx
canon_reg_for_combine (rtx
, rtx
);
395 static rtx
force_to_mode (rtx
, enum machine_mode
,
396 unsigned HOST_WIDE_INT
, int);
397 static rtx
if_then_else_cond (rtx
, rtx
*, rtx
*);
398 static rtx
known_cond (rtx
, enum rtx_code
, rtx
, rtx
);
399 static int rtx_equal_for_field_assignment_p (rtx
, rtx
);
400 static rtx
make_field_assignment (rtx
);
401 static rtx
apply_distributive_law (rtx
);
402 static rtx
distribute_and_simplify_rtx (rtx
, int);
403 static rtx
simplify_and_const_int_1 (enum machine_mode
, rtx
,
404 unsigned HOST_WIDE_INT
);
405 static rtx
simplify_and_const_int (rtx
, enum machine_mode
, rtx
,
406 unsigned HOST_WIDE_INT
);
407 static int merge_outer_ops (enum rtx_code
*, HOST_WIDE_INT
*, enum rtx_code
,
408 HOST_WIDE_INT
, enum machine_mode
, int *);
409 static rtx
simplify_shift_const_1 (enum rtx_code
, enum machine_mode
, rtx
, int);
410 static rtx
simplify_shift_const (rtx
, enum rtx_code
, enum machine_mode
, rtx
,
412 static int recog_for_combine (rtx
*, rtx
, rtx
*);
413 static rtx
gen_lowpart_for_combine (enum machine_mode
, rtx
);
414 static enum rtx_code
simplify_comparison (enum rtx_code
, rtx
*, rtx
*);
415 static void update_table_tick (rtx
);
416 static void record_value_for_reg (rtx
, rtx
, rtx
);
417 static void check_conversions (rtx
, rtx
);
418 static void record_dead_and_set_regs_1 (rtx
, rtx
, void *);
419 static void record_dead_and_set_regs (rtx
);
420 static int get_last_value_validate (rtx
*, rtx
, int, int);
421 static rtx
get_last_value (rtx
);
422 static int use_crosses_set_p (rtx
, int);
423 static void reg_dead_at_p_1 (rtx
, rtx
, void *);
424 static int reg_dead_at_p (rtx
, rtx
);
425 static void move_deaths (rtx
, rtx
, int, rtx
, rtx
*);
426 static int reg_bitfield_target_p (rtx
, rtx
);
427 static void distribute_notes (rtx
, rtx
, rtx
, rtx
, rtx
, rtx
);
428 static void distribute_links (rtx
);
429 static void mark_used_regs_combine (rtx
);
430 static int insn_cuid (rtx
);
431 static void record_promoted_value (rtx
, rtx
);
432 static int unmentioned_reg_p_1 (rtx
*, void *);
433 static bool unmentioned_reg_p (rtx
, rtx
);
434 static void record_truncated_value (rtx
);
435 static bool reg_truncated_to_mode (enum machine_mode
, rtx
);
436 static rtx
gen_lowpart_or_truncate (enum machine_mode
, rtx
);
439 /* It is not safe to use ordinary gen_lowpart in combine.
440 See comments in gen_lowpart_for_combine. */
441 #undef RTL_HOOKS_GEN_LOWPART
442 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
444 /* Our implementation of gen_lowpart never emits a new pseudo. */
445 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
446 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
448 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
449 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
451 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
452 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
454 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
455 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
457 static const struct rtl_hooks combine_rtl_hooks
= RTL_HOOKS_INITIALIZER
;
460 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
461 insn. The substitution can be undone by undo_all. If INTO is already
462 set to NEWVAL, do not record this change. Because computing NEWVAL might
463 also call SUBST, we have to compute it before we put anything into
467 do_SUBST (rtx
*into
, rtx newval
)
472 if (oldval
== newval
)
475 /* We'd like to catch as many invalid transformations here as
476 possible. Unfortunately, there are way too many mode changes
477 that are perfectly valid, so we'd waste too much effort for
478 little gain doing the checks here. Focus on catching invalid
479 transformations involving integer constants. */
480 if (GET_MODE_CLASS (GET_MODE (oldval
)) == MODE_INT
481 && GET_CODE (newval
) == CONST_INT
)
483 /* Sanity check that we're replacing oldval with a CONST_INT
484 that is a valid sign-extension for the original mode. */
485 gcc_assert (INTVAL (newval
)
486 == trunc_int_for_mode (INTVAL (newval
), GET_MODE (oldval
)));
488 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
489 CONST_INT is not valid, because after the replacement, the
490 original mode would be gone. Unfortunately, we can't tell
491 when do_SUBST is called to replace the operand thereof, so we
492 perform this test on oldval instead, checking whether an
493 invalid replacement took place before we got here. */
494 gcc_assert (!(GET_CODE (oldval
) == SUBREG
495 && GET_CODE (SUBREG_REG (oldval
)) == CONST_INT
));
496 gcc_assert (!(GET_CODE (oldval
) == ZERO_EXTEND
497 && GET_CODE (XEXP (oldval
, 0)) == CONST_INT
));
501 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
503 buf
= XNEW (struct undo
);
505 buf
->kind
= UNDO_RTX
;
507 buf
->old_contents
.r
= oldval
;
510 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
513 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
515 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
516 for the value of a HOST_WIDE_INT value (including CONST_INT) is
520 do_SUBST_INT (int *into
, int newval
)
525 if (oldval
== newval
)
529 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
531 buf
= XNEW (struct undo
);
533 buf
->kind
= UNDO_INT
;
535 buf
->old_contents
.i
= oldval
;
538 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
541 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
543 /* Similar to SUBST, but just substitute the mode. This is used when
544 changing the mode of a pseudo-register, so that any other
545 references to the entry in the regno_reg_rtx array will change as
549 do_SUBST_MODE (rtx
*into
, enum machine_mode newval
)
552 enum machine_mode oldval
= GET_MODE (*into
);
554 if (oldval
== newval
)
558 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
560 buf
= XNEW (struct undo
);
562 buf
->kind
= UNDO_MODE
;
564 buf
->old_contents
.m
= oldval
;
565 PUT_MODE (*into
, newval
);
567 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
570 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
572 /* Subroutine of try_combine. Determine whether the combine replacement
573 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
574 that the original instruction sequence I1, I2 and I3. Note that I1
575 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
576 costs of all instructions can be estimated, and the replacements are
577 more expensive than the original sequence. */
580 combine_validate_cost (rtx i1
, rtx i2
, rtx i3
, rtx newpat
, rtx newi2pat
)
582 int i1_cost
, i2_cost
, i3_cost
;
583 int new_i2_cost
, new_i3_cost
;
584 int old_cost
, new_cost
;
586 /* Lookup the original insn_rtx_costs. */
587 i2_cost
= INSN_UID (i2
) <= last_insn_cost
588 ? uid_insn_cost
[INSN_UID (i2
)] : 0;
589 i3_cost
= INSN_UID (i3
) <= last_insn_cost
590 ? uid_insn_cost
[INSN_UID (i3
)] : 0;
594 i1_cost
= INSN_UID (i1
) <= last_insn_cost
595 ? uid_insn_cost
[INSN_UID (i1
)] : 0;
596 old_cost
= (i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0)
597 ? i1_cost
+ i2_cost
+ i3_cost
: 0;
601 old_cost
= (i2_cost
> 0 && i3_cost
> 0) ? i2_cost
+ i3_cost
: 0;
605 /* Calculate the replacement insn_rtx_costs. */
606 new_i3_cost
= insn_rtx_cost (newpat
);
609 new_i2_cost
= insn_rtx_cost (newi2pat
);
610 new_cost
= (new_i2_cost
> 0 && new_i3_cost
> 0)
611 ? new_i2_cost
+ new_i3_cost
: 0;
615 new_cost
= new_i3_cost
;
619 if (undobuf
.other_insn
)
621 int old_other_cost
, new_other_cost
;
623 old_other_cost
= (INSN_UID (undobuf
.other_insn
) <= last_insn_cost
624 ? uid_insn_cost
[INSN_UID (undobuf
.other_insn
)] : 0);
625 new_other_cost
= insn_rtx_cost (PATTERN (undobuf
.other_insn
));
626 if (old_other_cost
> 0 && new_other_cost
> 0)
628 old_cost
+= old_other_cost
;
629 new_cost
+= new_other_cost
;
635 /* Disallow this recombination if both new_cost and old_cost are
636 greater than zero, and new_cost is greater than old cost. */
638 && new_cost
> old_cost
)
645 "rejecting combination of insns %d, %d and %d\n",
646 INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
647 fprintf (dump_file
, "original costs %d + %d + %d = %d\n",
648 i1_cost
, i2_cost
, i3_cost
, old_cost
);
653 "rejecting combination of insns %d and %d\n",
654 INSN_UID (i2
), INSN_UID (i3
));
655 fprintf (dump_file
, "original costs %d + %d = %d\n",
656 i2_cost
, i3_cost
, old_cost
);
661 fprintf (dump_file
, "replacement costs %d + %d = %d\n",
662 new_i2_cost
, new_i3_cost
, new_cost
);
665 fprintf (dump_file
, "replacement cost %d\n", new_cost
);
671 /* Update the uid_insn_cost array with the replacement costs. */
672 uid_insn_cost
[INSN_UID (i2
)] = new_i2_cost
;
673 uid_insn_cost
[INSN_UID (i3
)] = new_i3_cost
;
675 uid_insn_cost
[INSN_UID (i1
)] = 0;
680 /* Main entry point for combiner. F is the first insn of the function.
681 NREGS is the first unused pseudo-reg number.
683 Return nonzero if the combiner has turned an indirect jump
684 instruction into a direct jump. */
686 combine_instructions (rtx f
, unsigned int nregs
)
694 rtx links
, nextlinks
;
695 sbitmap_iterator sbi
;
697 int new_direct_jump_p
= 0;
699 combine_attempts
= 0;
702 combine_successes
= 0;
704 combine_max_regno
= nregs
;
706 rtl_hooks
= combine_rtl_hooks
;
708 reg_stat
= XCNEWVEC (struct reg_stat
, nregs
);
710 init_recog_no_volatile ();
712 /* Compute maximum uid value so uid_cuid can be allocated. */
714 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
715 if (INSN_UID (insn
) > i
)
718 uid_cuid
= XNEWVEC (int, i
+ 1);
721 nonzero_bits_mode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
723 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
724 problems when, for example, we have j <<= 1 in a loop. */
726 nonzero_sign_valid
= 0;
728 /* Compute the mapping from uids to cuids.
729 Cuids are numbers assigned to insns, like uids,
730 except that cuids increase monotonically through the code.
732 Scan all SETs and see if we can deduce anything about what
733 bits are known to be zero for some registers and how many copies
734 of the sign bit are known to exist for those registers.
736 Also set any known values so that we can use it while searching
737 for what bits are known to be set. */
741 setup_incoming_promotions ();
743 refresh_blocks
= sbitmap_alloc (last_basic_block
);
744 sbitmap_zero (refresh_blocks
);
746 /* Allocate array of current insn_rtx_costs. */
747 uid_insn_cost
= XCNEWVEC (int, max_uid_cuid
+ 1);
748 last_insn_cost
= max_uid_cuid
;
750 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
752 uid_cuid
[INSN_UID (insn
)] = ++i
;
758 note_stores (PATTERN (insn
), set_nonzero_bits_and_sign_copies
,
760 record_dead_and_set_regs (insn
);
763 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
764 if (REG_NOTE_KIND (links
) == REG_INC
)
765 set_nonzero_bits_and_sign_copies (XEXP (links
, 0), NULL_RTX
,
769 /* Record the current insn_rtx_cost of this instruction. */
770 if (NONJUMP_INSN_P (insn
))
771 uid_insn_cost
[INSN_UID (insn
)] = insn_rtx_cost (PATTERN (insn
));
773 fprintf(dump_file
, "insn_cost %d: %d\n",
774 INSN_UID (insn
), uid_insn_cost
[INSN_UID (insn
)]);
781 nonzero_sign_valid
= 1;
783 /* Now scan all the insns in forward order. */
789 setup_incoming_promotions ();
791 FOR_EACH_BB (this_basic_block
)
793 for (insn
= BB_HEAD (this_basic_block
);
794 insn
!= NEXT_INSN (BB_END (this_basic_block
));
795 insn
= next
? next
: NEXT_INSN (insn
))
802 else if (INSN_P (insn
))
804 /* See if we know about function return values before this
805 insn based upon SUBREG flags. */
806 check_conversions (insn
, PATTERN (insn
));
808 /* Try this insn with each insn it links back to. */
810 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
811 if ((next
= try_combine (insn
, XEXP (links
, 0),
812 NULL_RTX
, &new_direct_jump_p
)) != 0)
815 /* Try each sequence of three linked insns ending with this one. */
817 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
819 rtx link
= XEXP (links
, 0);
821 /* If the linked insn has been replaced by a note, then there
822 is no point in pursuing this chain any further. */
826 for (nextlinks
= LOG_LINKS (link
);
828 nextlinks
= XEXP (nextlinks
, 1))
829 if ((next
= try_combine (insn
, link
,
831 &new_direct_jump_p
)) != 0)
836 /* Try to combine a jump insn that uses CC0
837 with a preceding insn that sets CC0, and maybe with its
838 logical predecessor as well.
839 This is how we make decrement-and-branch insns.
840 We need this special code because data flow connections
841 via CC0 do not get entered in LOG_LINKS. */
844 && (prev
= prev_nonnote_insn (insn
)) != 0
845 && NONJUMP_INSN_P (prev
)
846 && sets_cc0_p (PATTERN (prev
)))
848 if ((next
= try_combine (insn
, prev
,
849 NULL_RTX
, &new_direct_jump_p
)) != 0)
852 for (nextlinks
= LOG_LINKS (prev
); nextlinks
;
853 nextlinks
= XEXP (nextlinks
, 1))
854 if ((next
= try_combine (insn
, prev
,
856 &new_direct_jump_p
)) != 0)
860 /* Do the same for an insn that explicitly references CC0. */
861 if (NONJUMP_INSN_P (insn
)
862 && (prev
= prev_nonnote_insn (insn
)) != 0
863 && NONJUMP_INSN_P (prev
)
864 && sets_cc0_p (PATTERN (prev
))
865 && GET_CODE (PATTERN (insn
)) == SET
866 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (insn
))))
868 if ((next
= try_combine (insn
, prev
,
869 NULL_RTX
, &new_direct_jump_p
)) != 0)
872 for (nextlinks
= LOG_LINKS (prev
); nextlinks
;
873 nextlinks
= XEXP (nextlinks
, 1))
874 if ((next
= try_combine (insn
, prev
,
876 &new_direct_jump_p
)) != 0)
880 /* Finally, see if any of the insns that this insn links to
881 explicitly references CC0. If so, try this insn, that insn,
882 and its predecessor if it sets CC0. */
883 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
884 if (NONJUMP_INSN_P (XEXP (links
, 0))
885 && GET_CODE (PATTERN (XEXP (links
, 0))) == SET
886 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (XEXP (links
, 0))))
887 && (prev
= prev_nonnote_insn (XEXP (links
, 0))) != 0
888 && NONJUMP_INSN_P (prev
)
889 && sets_cc0_p (PATTERN (prev
))
890 && (next
= try_combine (insn
, XEXP (links
, 0),
891 prev
, &new_direct_jump_p
)) != 0)
895 /* Try combining an insn with two different insns whose results it
897 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
898 for (nextlinks
= XEXP (links
, 1); nextlinks
;
899 nextlinks
= XEXP (nextlinks
, 1))
900 if ((next
= try_combine (insn
, XEXP (links
, 0),
902 &new_direct_jump_p
)) != 0)
905 /* Try this insn with each REG_EQUAL note it links back to. */
906 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
909 rtx temp
= XEXP (links
, 0);
910 if ((set
= single_set (temp
)) != 0
911 && (note
= find_reg_equal_equiv_note (temp
)) != 0
912 && (note
= XEXP (note
, 0), GET_CODE (note
)) != EXPR_LIST
913 /* Avoid using a register that may already been marked
914 dead by an earlier instruction. */
915 && ! unmentioned_reg_p (note
, SET_SRC (set
))
916 && (GET_MODE (note
) == VOIDmode
917 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set
)))
918 : GET_MODE (SET_DEST (set
)) == GET_MODE (note
)))
920 /* Temporarily replace the set's source with the
921 contents of the REG_EQUAL note. The insn will
922 be deleted or recognized by try_combine. */
923 rtx orig
= SET_SRC (set
);
924 SET_SRC (set
) = note
;
925 next
= try_combine (insn
, temp
, NULL_RTX
,
929 SET_SRC (set
) = orig
;
934 record_dead_and_set_regs (insn
);
943 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks
, 0, j
, sbi
)
944 BASIC_BLOCK (j
)->flags
|= BB_DIRTY
;
945 new_direct_jump_p
|= purge_all_dead_edges ();
946 delete_noop_moves ();
948 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES
,
949 PROP_DEATH_NOTES
| PROP_SCAN_DEAD_CODE
950 | PROP_KILL_DEAD_CODE
);
953 sbitmap_free (refresh_blocks
);
954 free (uid_insn_cost
);
959 struct undo
*undo
, *next
;
960 for (undo
= undobuf
.frees
; undo
; undo
= next
)
968 total_attempts
+= combine_attempts
;
969 total_merges
+= combine_merges
;
970 total_extras
+= combine_extras
;
971 total_successes
+= combine_successes
;
973 nonzero_sign_valid
= 0;
974 rtl_hooks
= general_rtl_hooks
;
976 /* Make recognizer allow volatile MEMs again. */
979 return new_direct_jump_p
;
982 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
988 for (i
= 0; i
< combine_max_regno
; i
++)
989 memset (reg_stat
+ i
, 0, offsetof (struct reg_stat
, sign_bit_copies
));
992 /* Set up any promoted values for incoming argument registers. */
995 setup_incoming_promotions (void)
999 enum machine_mode mode
;
1001 rtx first
= get_insns ();
1003 if (targetm
.calls
.promote_function_args (TREE_TYPE (cfun
->decl
)))
1005 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
1006 /* Check whether this register can hold an incoming pointer
1007 argument. FUNCTION_ARG_REGNO_P tests outgoing register
1008 numbers, so translate if necessary due to register windows. */
1009 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno
))
1010 && (reg
= promoted_input_arg (regno
, &mode
, &unsignedp
)) != 0)
1012 record_value_for_reg
1013 (reg
, first
, gen_rtx_fmt_e ((unsignedp
? ZERO_EXTEND
1016 gen_rtx_CLOBBER (mode
, const0_rtx
)));
1021 /* Called via note_stores. If X is a pseudo that is narrower than
1022 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1024 If we are setting only a portion of X and we can't figure out what
1025 portion, assume all bits will be used since we don't know what will
1028 Similarly, set how many bits of X are known to be copies of the sign bit
1029 at all locations in the function. This is the smallest number implied
1033 set_nonzero_bits_and_sign_copies (rtx x
, rtx set
,
1034 void *data ATTRIBUTE_UNUSED
)
1039 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
1040 /* If this register is undefined at the start of the file, we can't
1041 say what its contents were. */
1042 && ! REGNO_REG_SET_P
1043 (ENTRY_BLOCK_PTR
->next_bb
->il
.rtl
->global_live_at_start
, REGNO (x
))
1044 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
)
1046 if (set
== 0 || GET_CODE (set
) == CLOBBER
)
1048 reg_stat
[REGNO (x
)].nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1049 reg_stat
[REGNO (x
)].sign_bit_copies
= 1;
1053 /* If this is a complex assignment, see if we can convert it into a
1054 simple assignment. */
1055 set
= expand_field_assignment (set
);
1057 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1058 set what we know about X. */
1060 if (SET_DEST (set
) == x
1061 || (GET_CODE (SET_DEST (set
)) == SUBREG
1062 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set
)))
1063 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set
)))))
1064 && SUBREG_REG (SET_DEST (set
)) == x
))
1066 rtx src
= SET_SRC (set
);
1068 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1069 /* If X is narrower than a word and SRC is a non-negative
1070 constant that would appear negative in the mode of X,
1071 sign-extend it for use in reg_stat[].nonzero_bits because some
1072 machines (maybe most) will actually do the sign-extension
1073 and this is the conservative approach.
1075 ??? For 2.5, try to tighten up the MD files in this regard
1076 instead of this kludge. */
1078 if (GET_MODE_BITSIZE (GET_MODE (x
)) < BITS_PER_WORD
1079 && GET_CODE (src
) == CONST_INT
1081 && 0 != (INTVAL (src
)
1082 & ((HOST_WIDE_INT
) 1
1083 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
1084 src
= GEN_INT (INTVAL (src
)
1085 | ((HOST_WIDE_INT
) (-1)
1086 << GET_MODE_BITSIZE (GET_MODE (x
))));
1089 /* Don't call nonzero_bits if it cannot change anything. */
1090 if (reg_stat
[REGNO (x
)].nonzero_bits
!= ~(unsigned HOST_WIDE_INT
) 0)
1091 reg_stat
[REGNO (x
)].nonzero_bits
1092 |= nonzero_bits (src
, nonzero_bits_mode
);
1093 num
= num_sign_bit_copies (SET_SRC (set
), GET_MODE (x
));
1094 if (reg_stat
[REGNO (x
)].sign_bit_copies
== 0
1095 || reg_stat
[REGNO (x
)].sign_bit_copies
> num
)
1096 reg_stat
[REGNO (x
)].sign_bit_copies
= num
;
1100 reg_stat
[REGNO (x
)].nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1101 reg_stat
[REGNO (x
)].sign_bit_copies
= 1;
1106 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1107 insns that were previously combined into I3 or that will be combined
1108 into the merger of INSN and I3.
1110 Return 0 if the combination is not allowed for any reason.
1112 If the combination is allowed, *PDEST will be set to the single
1113 destination of INSN and *PSRC to the single source, and this function
1117 can_combine_p (rtx insn
, rtx i3
, rtx pred ATTRIBUTE_UNUSED
, rtx succ
,
1118 rtx
*pdest
, rtx
*psrc
)
1121 rtx set
= 0, src
, dest
;
1126 int all_adjacent
= (succ
? (next_active_insn (insn
) == succ
1127 && next_active_insn (succ
) == i3
)
1128 : next_active_insn (insn
) == i3
);
1130 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1131 or a PARALLEL consisting of such a SET and CLOBBERs.
1133 If INSN has CLOBBER parallel parts, ignore them for our processing.
1134 By definition, these happen during the execution of the insn. When it
1135 is merged with another insn, all bets are off. If they are, in fact,
1136 needed and aren't also supplied in I3, they may be added by
1137 recog_for_combine. Otherwise, it won't match.
1139 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1142 Get the source and destination of INSN. If more than one, can't
1145 if (GET_CODE (PATTERN (insn
)) == SET
)
1146 set
= PATTERN (insn
);
1147 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1148 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1150 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1152 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
1155 switch (GET_CODE (elt
))
1157 /* This is important to combine floating point insns
1158 for the SH4 port. */
1160 /* Combining an isolated USE doesn't make sense.
1161 We depend here on combinable_i3pat to reject them. */
1162 /* The code below this loop only verifies that the inputs of
1163 the SET in INSN do not change. We call reg_set_between_p
1164 to verify that the REG in the USE does not change between
1166 If the USE in INSN was for a pseudo register, the matching
1167 insn pattern will likely match any register; combining this
1168 with any other USE would only be safe if we knew that the
1169 used registers have identical values, or if there was
1170 something to tell them apart, e.g. different modes. For
1171 now, we forgo such complicated tests and simply disallow
1172 combining of USES of pseudo registers with any other USE. */
1173 if (REG_P (XEXP (elt
, 0))
1174 && GET_CODE (PATTERN (i3
)) == PARALLEL
)
1176 rtx i3pat
= PATTERN (i3
);
1177 int i
= XVECLEN (i3pat
, 0) - 1;
1178 unsigned int regno
= REGNO (XEXP (elt
, 0));
1182 rtx i3elt
= XVECEXP (i3pat
, 0, i
);
1184 if (GET_CODE (i3elt
) == USE
1185 && REG_P (XEXP (i3elt
, 0))
1186 && (REGNO (XEXP (i3elt
, 0)) == regno
1187 ? reg_set_between_p (XEXP (elt
, 0),
1188 PREV_INSN (insn
), i3
)
1189 : regno
>= FIRST_PSEUDO_REGISTER
))
1196 /* We can ignore CLOBBERs. */
1201 /* Ignore SETs whose result isn't used but not those that
1202 have side-effects. */
1203 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (elt
))
1204 && (!(note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
))
1205 || INTVAL (XEXP (note
, 0)) <= 0)
1206 && ! side_effects_p (elt
))
1209 /* If we have already found a SET, this is a second one and
1210 so we cannot combine with this insn. */
1218 /* Anything else means we can't combine. */
1224 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1225 so don't do anything with it. */
1226 || GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1235 set
= expand_field_assignment (set
);
1236 src
= SET_SRC (set
), dest
= SET_DEST (set
);
1238 /* Don't eliminate a store in the stack pointer. */
1239 if (dest
== stack_pointer_rtx
1240 /* Don't combine with an insn that sets a register to itself if it has
1241 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1242 || (rtx_equal_p (src
, dest
) && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1243 /* Can't merge an ASM_OPERANDS. */
1244 || GET_CODE (src
) == ASM_OPERANDS
1245 /* Can't merge a function call. */
1246 || GET_CODE (src
) == CALL
1247 /* Don't eliminate a function call argument. */
1249 && (find_reg_fusage (i3
, USE
, dest
)
1251 && REGNO (dest
) < FIRST_PSEUDO_REGISTER
1252 && global_regs
[REGNO (dest
)])))
1253 /* Don't substitute into an incremented register. */
1254 || FIND_REG_INC_NOTE (i3
, dest
)
1255 || (succ
&& FIND_REG_INC_NOTE (succ
, dest
))
1256 /* Don't substitute into a non-local goto, this confuses CFG. */
1257 || (JUMP_P (i3
) && find_reg_note (i3
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
1259 /* Don't combine the end of a libcall into anything. */
1260 /* ??? This gives worse code, and appears to be unnecessary, since no
1261 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1262 use REG_RETVAL notes for noconflict blocks, but other code here
1263 makes sure that those insns don't disappear. */
1264 || find_reg_note (insn
, REG_RETVAL
, NULL_RTX
)
1266 /* Make sure that DEST is not used after SUCC but before I3. */
1267 || (succ
&& ! all_adjacent
1268 && reg_used_between_p (dest
, succ
, i3
))
1269 /* Make sure that the value that is to be substituted for the register
1270 does not use any registers whose values alter in between. However,
1271 If the insns are adjacent, a use can't cross a set even though we
1272 think it might (this can happen for a sequence of insns each setting
1273 the same destination; last_set of that register might point to
1274 a NOTE). If INSN has a REG_EQUIV note, the register is always
1275 equivalent to the memory so the substitution is valid even if there
1276 are intervening stores. Also, don't move a volatile asm or
1277 UNSPEC_VOLATILE across any other insns. */
1280 || ! find_reg_note (insn
, REG_EQUIV
, src
))
1281 && use_crosses_set_p (src
, INSN_CUID (insn
)))
1282 || (GET_CODE (src
) == ASM_OPERANDS
&& MEM_VOLATILE_P (src
))
1283 || GET_CODE (src
) == UNSPEC_VOLATILE
))
1284 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1285 better register allocation by not doing the combine. */
1286 || find_reg_note (i3
, REG_NO_CONFLICT
, dest
)
1287 || (succ
&& find_reg_note (succ
, REG_NO_CONFLICT
, dest
))
1288 /* Don't combine across a CALL_INSN, because that would possibly
1289 change whether the life span of some REGs crosses calls or not,
1290 and it is a pain to update that information.
1291 Exception: if source is a constant, moving it later can't hurt.
1292 Accept that special case, because it helps -fforce-addr a lot. */
1293 || (INSN_CUID (insn
) < last_call_cuid
&& ! CONSTANT_P (src
)))
1296 /* DEST must either be a REG or CC0. */
1299 /* If register alignment is being enforced for multi-word items in all
1300 cases except for parameters, it is possible to have a register copy
1301 insn referencing a hard register that is not allowed to contain the
1302 mode being copied and which would not be valid as an operand of most
1303 insns. Eliminate this problem by not combining with such an insn.
1305 Also, on some machines we don't want to extend the life of a hard
1309 && ((REGNO (dest
) < FIRST_PSEUDO_REGISTER
1310 && ! HARD_REGNO_MODE_OK (REGNO (dest
), GET_MODE (dest
)))
1311 /* Don't extend the life of a hard register unless it is
1312 user variable (if we have few registers) or it can't
1313 fit into the desired register (meaning something special
1315 Also avoid substituting a return register into I3, because
1316 reload can't handle a conflict with constraints of other
1318 || (REGNO (src
) < FIRST_PSEUDO_REGISTER
1319 && ! HARD_REGNO_MODE_OK (REGNO (src
), GET_MODE (src
)))))
1322 else if (GET_CODE (dest
) != CC0
)
1326 if (GET_CODE (PATTERN (i3
)) == PARALLEL
)
1327 for (i
= XVECLEN (PATTERN (i3
), 0) - 1; i
>= 0; i
--)
1328 if (GET_CODE (XVECEXP (PATTERN (i3
), 0, i
)) == CLOBBER
)
1330 /* Don't substitute for a register intended as a clobberable
1332 rtx reg
= XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0);
1333 if (rtx_equal_p (reg
, dest
))
1336 /* If the clobber represents an earlyclobber operand, we must not
1337 substitute an expression containing the clobbered register.
1338 As we do not analyze the constraint strings here, we have to
1339 make the conservative assumption. However, if the register is
1340 a fixed hard reg, the clobber cannot represent any operand;
1341 we leave it up to the machine description to either accept or
1342 reject use-and-clobber patterns. */
1344 || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1345 || !fixed_regs
[REGNO (reg
)])
1346 if (reg_overlap_mentioned_p (reg
, src
))
1350 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1351 or not), reject, unless nothing volatile comes between it and I3 */
1353 if (GET_CODE (src
) == ASM_OPERANDS
|| volatile_refs_p (src
))
1355 /* Make sure succ doesn't contain a volatile reference. */
1356 if (succ
!= 0 && volatile_refs_p (PATTERN (succ
)))
1359 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
1360 if (INSN_P (p
) && p
!= succ
&& volatile_refs_p (PATTERN (p
)))
1364 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1365 to be an explicit register variable, and was chosen for a reason. */
1367 if (GET_CODE (src
) == ASM_OPERANDS
1368 && REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
1371 /* If there are any volatile insns between INSN and I3, reject, because
1372 they might affect machine state. */
1374 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
1375 if (INSN_P (p
) && p
!= succ
&& volatile_insn_p (PATTERN (p
)))
1378 /* If INSN contains an autoincrement or autodecrement, make sure that
1379 register is not used between there and I3, and not already used in
1380 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1381 Also insist that I3 not be a jump; if it were one
1382 and the incremented register were spilled, we would lose. */
1385 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1386 if (REG_NOTE_KIND (link
) == REG_INC
1388 || reg_used_between_p (XEXP (link
, 0), insn
, i3
)
1389 || (pred
!= NULL_RTX
1390 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred
)))
1391 || (succ
!= NULL_RTX
1392 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ
)))
1393 || reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i3
))))
1398 /* Don't combine an insn that follows a CC0-setting insn.
1399 An insn that uses CC0 must not be separated from the one that sets it.
1400 We do, however, allow I2 to follow a CC0-setting insn if that insn
1401 is passed as I1; in that case it will be deleted also.
1402 We also allow combining in this case if all the insns are adjacent
1403 because that would leave the two CC0 insns adjacent as well.
1404 It would be more logical to test whether CC0 occurs inside I1 or I2,
1405 but that would be much slower, and this ought to be equivalent. */
1407 p
= prev_nonnote_insn (insn
);
1408 if (p
&& p
!= pred
&& NONJUMP_INSN_P (p
) && sets_cc0_p (PATTERN (p
))
1413 /* If we get here, we have passed all the tests and the combination is
1422 /* LOC is the location within I3 that contains its pattern or the component
1423 of a PARALLEL of the pattern. We validate that it is valid for combining.
1425 One problem is if I3 modifies its output, as opposed to replacing it
1426 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1427 so would produce an insn that is not equivalent to the original insns.
1431 (set (reg:DI 101) (reg:DI 100))
1432 (set (subreg:SI (reg:DI 101) 0) <foo>)
1434 This is NOT equivalent to:
1436 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1437 (set (reg:DI 101) (reg:DI 100))])
1439 Not only does this modify 100 (in which case it might still be valid
1440 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1442 We can also run into a problem if I2 sets a register that I1
1443 uses and I1 gets directly substituted into I3 (not via I2). In that
1444 case, we would be getting the wrong value of I2DEST into I3, so we
1445 must reject the combination. This case occurs when I2 and I1 both
1446 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1447 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1448 of a SET must prevent combination from occurring.
1450 Before doing the above check, we first try to expand a field assignment
1451 into a set of logical operations.
1453 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1454 we place a register that is both set and used within I3. If more than one
1455 such register is detected, we fail.
1457 Return 1 if the combination is valid, zero otherwise. */
1460 combinable_i3pat (rtx i3
, rtx
*loc
, rtx i2dest
, rtx i1dest
,
1461 int i1_not_in_src
, rtx
*pi3dest_killed
)
1465 if (GET_CODE (x
) == SET
)
1468 rtx dest
= SET_DEST (set
);
1469 rtx src
= SET_SRC (set
);
1470 rtx inner_dest
= dest
;
1473 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
1474 || GET_CODE (inner_dest
) == SUBREG
1475 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
1476 inner_dest
= XEXP (inner_dest
, 0);
1478 /* Check for the case where I3 modifies its output, as discussed
1479 above. We don't want to prevent pseudos from being combined
1480 into the address of a MEM, so only prevent the combination if
1481 i1 or i2 set the same MEM. */
1482 if ((inner_dest
!= dest
&&
1483 (!MEM_P (inner_dest
)
1484 || rtx_equal_p (i2dest
, inner_dest
)
1485 || (i1dest
&& rtx_equal_p (i1dest
, inner_dest
)))
1486 && (reg_overlap_mentioned_p (i2dest
, inner_dest
)
1487 || (i1dest
&& reg_overlap_mentioned_p (i1dest
, inner_dest
))))
1489 /* This is the same test done in can_combine_p except we can't test
1490 all_adjacent; we don't have to, since this instruction will stay
1491 in place, thus we are not considering increasing the lifetime of
1494 Also, if this insn sets a function argument, combining it with
1495 something that might need a spill could clobber a previous
1496 function argument; the all_adjacent test in can_combine_p also
1497 checks this; here, we do a more specific test for this case. */
1499 || (REG_P (inner_dest
)
1500 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
1501 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest
),
1502 GET_MODE (inner_dest
))))
1503 || (i1_not_in_src
&& reg_overlap_mentioned_p (i1dest
, src
)))
1506 /* If DEST is used in I3, it is being killed in this insn, so
1507 record that for later. We have to consider paradoxical
1508 subregs here, since they kill the whole register, but we
1509 ignore partial subregs, STRICT_LOW_PART, etc.
1510 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1511 STACK_POINTER_REGNUM, since these are always considered to be
1512 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1514 if (GET_CODE (subdest
) == SUBREG
1515 && (GET_MODE_SIZE (GET_MODE (subdest
))
1516 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest
)))))
1517 subdest
= SUBREG_REG (subdest
);
1520 && reg_referenced_p (subdest
, PATTERN (i3
))
1521 && REGNO (subdest
) != FRAME_POINTER_REGNUM
1522 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1523 && REGNO (subdest
) != HARD_FRAME_POINTER_REGNUM
1525 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1526 && (REGNO (subdest
) != ARG_POINTER_REGNUM
1527 || ! fixed_regs
[REGNO (subdest
)])
1529 && REGNO (subdest
) != STACK_POINTER_REGNUM
)
1531 if (*pi3dest_killed
)
1534 *pi3dest_killed
= subdest
;
1538 else if (GET_CODE (x
) == PARALLEL
)
1542 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
1543 if (! combinable_i3pat (i3
, &XVECEXP (x
, 0, i
), i2dest
, i1dest
,
1544 i1_not_in_src
, pi3dest_killed
))
1551 /* Return 1 if X is an arithmetic expression that contains a multiplication
1552 and division. We don't count multiplications by powers of two here. */
1555 contains_muldiv (rtx x
)
1557 switch (GET_CODE (x
))
1559 case MOD
: case DIV
: case UMOD
: case UDIV
:
1563 return ! (GET_CODE (XEXP (x
, 1)) == CONST_INT
1564 && exact_log2 (INTVAL (XEXP (x
, 1))) >= 0);
1567 return contains_muldiv (XEXP (x
, 0))
1568 || contains_muldiv (XEXP (x
, 1));
1571 return contains_muldiv (XEXP (x
, 0));
1577 /* Determine whether INSN can be used in a combination. Return nonzero if
1578 not. This is used in try_combine to detect early some cases where we
1579 can't perform combinations. */
1582 cant_combine_insn_p (rtx insn
)
1587 /* If this isn't really an insn, we can't do anything.
1588 This can occur when flow deletes an insn that it has merged into an
1589 auto-increment address. */
1590 if (! INSN_P (insn
))
1593 /* Never combine loads and stores involving hard regs that are likely
1594 to be spilled. The register allocator can usually handle such
1595 reg-reg moves by tying. If we allow the combiner to make
1596 substitutions of likely-spilled regs, reload might die.
1597 As an exception, we allow combinations involving fixed regs; these are
1598 not available to the register allocator so there's no risk involved. */
1600 set
= single_set (insn
);
1603 src
= SET_SRC (set
);
1604 dest
= SET_DEST (set
);
1605 if (GET_CODE (src
) == SUBREG
)
1606 src
= SUBREG_REG (src
);
1607 if (GET_CODE (dest
) == SUBREG
)
1608 dest
= SUBREG_REG (dest
);
1609 if (REG_P (src
) && REG_P (dest
)
1610 && ((REGNO (src
) < FIRST_PSEUDO_REGISTER
1611 && ! fixed_regs
[REGNO (src
)]
1612 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src
))))
1613 || (REGNO (dest
) < FIRST_PSEUDO_REGISTER
1614 && ! fixed_regs
[REGNO (dest
)]
1615 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest
))))))
1621 struct likely_spilled_retval_info
1623 unsigned regno
, nregs
;
1627 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
1628 hard registers that are known to be written to / clobbered in full. */
1630 likely_spilled_retval_1 (rtx x
, rtx set
, void *data
)
1632 struct likely_spilled_retval_info
*info
= data
;
1633 unsigned regno
, nregs
;
1636 if (!REG_P (XEXP (set
, 0)))
1639 if (regno
>= info
->regno
+ info
->nregs
)
1641 nregs
= hard_regno_nregs
[regno
][GET_MODE (x
)];
1642 if (regno
+ nregs
<= info
->regno
)
1644 new_mask
= (2U << (nregs
- 1)) - 1;
1645 if (regno
< info
->regno
)
1646 new_mask
>>= info
->regno
- regno
;
1648 new_mask
<<= regno
- info
->regno
;
1649 info
->mask
&= new_mask
;
1652 /* Return nonzero iff part of the return value is live during INSN, and
1653 it is likely spilled. This can happen when more than one insn is needed
1654 to copy the return value, e.g. when we consider to combine into the
1655 second copy insn for a complex value. */
1658 likely_spilled_retval_p (rtx insn
)
1660 rtx use
= BB_END (this_basic_block
);
1662 unsigned regno
, nregs
;
1663 /* We assume here that no machine mode needs more than
1664 32 hard registers when the value overlaps with a register
1665 for which FUNCTION_VALUE_REGNO_P is true. */
1667 struct likely_spilled_retval_info info
;
1669 if (!NONJUMP_INSN_P (use
) || GET_CODE (PATTERN (use
)) != USE
|| insn
== use
)
1671 reg
= XEXP (PATTERN (use
), 0);
1672 if (!REG_P (reg
) || !FUNCTION_VALUE_REGNO_P (REGNO (reg
)))
1674 regno
= REGNO (reg
);
1675 nregs
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
1678 mask
= (2U << (nregs
- 1)) - 1;
1680 /* Disregard parts of the return value that are set later. */
1684 for (p
= PREV_INSN (use
); info
.mask
&& p
!= insn
; p
= PREV_INSN (p
))
1685 note_stores (PATTERN (insn
), likely_spilled_retval_1
, &info
);
1688 /* Check if any of the (probably) live return value registers is
1693 if ((mask
& 1 << nregs
)
1694 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno
+ nregs
)))
1700 /* Adjust INSN after we made a change to its destination.
1702 Changing the destination can invalidate notes that say something about
1703 the results of the insn and a LOG_LINK pointing to the insn. */
1706 adjust_for_new_dest (rtx insn
)
1710 /* For notes, be conservative and simply remove them. */
1711 loc
= ®_NOTES (insn
);
1714 enum reg_note kind
= REG_NOTE_KIND (*loc
);
1715 if (kind
== REG_EQUAL
|| kind
== REG_EQUIV
)
1716 *loc
= XEXP (*loc
, 1);
1718 loc
= &XEXP (*loc
, 1);
1721 /* The new insn will have a destination that was previously the destination
1722 of an insn just above it. Call distribute_links to make a LOG_LINK from
1723 the next use of that destination. */
1724 distribute_links (gen_rtx_INSN_LIST (VOIDmode
, insn
, NULL_RTX
));
1727 /* Return TRUE if combine can reuse reg X in mode MODE.
1728 ADDED_SETS is nonzero if the original set is still required. */
1730 can_change_dest_mode (rtx x
, int added_sets
, enum machine_mode mode
)
1738 /* Allow hard registers if the new mode is legal, and occupies no more
1739 registers than the old mode. */
1740 if (regno
< FIRST_PSEUDO_REGISTER
)
1741 return (HARD_REGNO_MODE_OK (regno
, mode
)
1742 && (hard_regno_nregs
[regno
][GET_MODE (x
)]
1743 >= hard_regno_nregs
[regno
][mode
]));
1745 /* Or a pseudo that is only used once. */
1746 return (REG_N_SETS (regno
) == 1 && !added_sets
1747 && !REG_USERVAR_P (x
));
1751 /* Check whether X, the destination of a set, refers to part of
1752 the register specified by REG. */
1755 reg_subword_p (rtx x
, rtx reg
)
1757 /* Check that reg is an integer mode register. */
1758 if (!REG_P (reg
) || GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
1761 if (GET_CODE (x
) == STRICT_LOW_PART
1762 || GET_CODE (x
) == ZERO_EXTRACT
)
1765 return GET_CODE (x
) == SUBREG
1766 && SUBREG_REG (x
) == reg
1767 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
;
1771 /* Try to combine the insns I1 and I2 into I3.
1772 Here I1 and I2 appear earlier than I3.
1773 I1 can be zero; then we combine just I2 into I3.
1775 If we are combining three insns and the resulting insn is not recognized,
1776 try splitting it into two insns. If that happens, I2 and I3 are retained
1777 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1780 Return 0 if the combination does not work. Then nothing is changed.
1781 If we did the combination, return the insn at which combine should
1784 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1785 new direct jump instruction. */
1788 try_combine (rtx i3
, rtx i2
, rtx i1
, int *new_direct_jump_p
)
1790 /* New patterns for I3 and I2, respectively. */
1791 rtx newpat
, newi2pat
= 0;
1792 rtvec newpat_vec_with_clobbers
= 0;
1793 int substed_i2
= 0, substed_i1
= 0;
1794 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1795 int added_sets_1
, added_sets_2
;
1796 /* Total number of SETs to put into I3. */
1798 /* Nonzero if I2's body now appears in I3. */
1800 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1801 int insn_code_number
, i2_code_number
= 0, other_code_number
= 0;
1802 /* Contains I3 if the destination of I3 is used in its source, which means
1803 that the old life of I3 is being killed. If that usage is placed into
1804 I2 and not in I3, a REG_DEAD note must be made. */
1805 rtx i3dest_killed
= 0;
1806 /* SET_DEST and SET_SRC of I2 and I1. */
1807 rtx i2dest
, i2src
, i1dest
= 0, i1src
= 0;
1808 /* PATTERN (I2), or a copy of it in certain cases. */
1810 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1811 int i2dest_in_i2src
= 0, i1dest_in_i1src
= 0, i2dest_in_i1src
= 0;
1812 int i2dest_killed
= 0, i1dest_killed
= 0;
1813 int i1_feeds_i3
= 0;
1814 /* Notes that must be added to REG_NOTES in I3 and I2. */
1815 rtx new_i3_notes
, new_i2_notes
;
1816 /* Notes that we substituted I3 into I2 instead of the normal case. */
1817 int i3_subst_into_i2
= 0;
1818 /* Notes that I1, I2 or I3 is a MULT operation. */
1827 /* Exit early if one of the insns involved can't be used for
1829 if (cant_combine_insn_p (i3
)
1830 || cant_combine_insn_p (i2
)
1831 || (i1
&& cant_combine_insn_p (i1
))
1832 || likely_spilled_retval_p (i3
)
1833 /* We also can't do anything if I3 has a
1834 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1837 /* ??? This gives worse code, and appears to be unnecessary, since no
1838 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1839 || find_reg_note (i3
, REG_LIBCALL
, NULL_RTX
)
1845 undobuf
.other_insn
= 0;
1847 /* Reset the hard register usage information. */
1848 CLEAR_HARD_REG_SET (newpat_used_regs
);
1850 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1851 code below, set I1 to be the earlier of the two insns. */
1852 if (i1
&& INSN_CUID (i1
) > INSN_CUID (i2
))
1853 temp
= i1
, i1
= i2
, i2
= temp
;
1855 added_links_insn
= 0;
1857 /* First check for one important special-case that the code below will
1858 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1859 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1860 we may be able to replace that destination with the destination of I3.
1861 This occurs in the common code where we compute both a quotient and
1862 remainder into a structure, in which case we want to do the computation
1863 directly into the structure to avoid register-register copies.
1865 Note that this case handles both multiple sets in I2 and also
1866 cases where I2 has a number of CLOBBER or PARALLELs.
1868 We make very conservative checks below and only try to handle the
1869 most common cases of this. For example, we only handle the case
1870 where I2 and I3 are adjacent to avoid making difficult register
1873 if (i1
== 0 && NONJUMP_INSN_P (i3
) && GET_CODE (PATTERN (i3
)) == SET
1874 && REG_P (SET_SRC (PATTERN (i3
)))
1875 && REGNO (SET_SRC (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
1876 && find_reg_note (i3
, REG_DEAD
, SET_SRC (PATTERN (i3
)))
1877 && GET_CODE (PATTERN (i2
)) == PARALLEL
1878 && ! side_effects_p (SET_DEST (PATTERN (i3
)))
1879 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1880 below would need to check what is inside (and reg_overlap_mentioned_p
1881 doesn't support those codes anyway). Don't allow those destinations;
1882 the resulting insn isn't likely to be recognized anyway. */
1883 && GET_CODE (SET_DEST (PATTERN (i3
))) != ZERO_EXTRACT
1884 && GET_CODE (SET_DEST (PATTERN (i3
))) != STRICT_LOW_PART
1885 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3
)),
1886 SET_DEST (PATTERN (i3
)))
1887 && next_real_insn (i2
) == i3
)
1889 rtx p2
= PATTERN (i2
);
1891 /* Make sure that the destination of I3,
1892 which we are going to substitute into one output of I2,
1893 is not used within another output of I2. We must avoid making this:
1894 (parallel [(set (mem (reg 69)) ...)
1895 (set (reg 69) ...)])
1896 which is not well-defined as to order of actions.
1897 (Besides, reload can't handle output reloads for this.)
1899 The problem can also happen if the dest of I3 is a memory ref,
1900 if another dest in I2 is an indirect memory ref. */
1901 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
1902 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
1903 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
1904 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3
)),
1905 SET_DEST (XVECEXP (p2
, 0, i
))))
1908 if (i
== XVECLEN (p2
, 0))
1909 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
1910 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
1911 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
1912 && SET_DEST (XVECEXP (p2
, 0, i
)) == SET_SRC (PATTERN (i3
)))
1917 subst_low_cuid
= INSN_CUID (i2
);
1919 added_sets_2
= added_sets_1
= 0;
1920 i2dest
= SET_SRC (PATTERN (i3
));
1921 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
1923 /* Replace the dest in I2 with our dest and make the resulting
1924 insn the new pattern for I3. Then skip to where we
1925 validate the pattern. Everything was set up above. */
1926 SUBST (SET_DEST (XVECEXP (p2
, 0, i
)),
1927 SET_DEST (PATTERN (i3
)));
1930 i3_subst_into_i2
= 1;
1931 goto validate_replacement
;
1935 /* If I2 is setting a pseudo to a constant and I3 is setting some
1936 sub-part of it to another constant, merge them by making a new
1939 && (temp
= single_set (i2
)) != 0
1940 && (GET_CODE (SET_SRC (temp
)) == CONST_INT
1941 || GET_CODE (SET_SRC (temp
)) == CONST_DOUBLE
)
1942 && GET_CODE (PATTERN (i3
)) == SET
1943 && (GET_CODE (SET_SRC (PATTERN (i3
))) == CONST_INT
1944 || GET_CODE (SET_SRC (PATTERN (i3
))) == CONST_DOUBLE
)
1945 && reg_subword_p (SET_DEST (PATTERN (i3
)), SET_DEST (temp
)))
1947 rtx dest
= SET_DEST (PATTERN (i3
));
1951 if (GET_CODE (dest
) == ZERO_EXTRACT
)
1953 if (GET_CODE (XEXP (dest
, 1)) == CONST_INT
1954 && GET_CODE (XEXP (dest
, 2)) == CONST_INT
)
1956 width
= INTVAL (XEXP (dest
, 1));
1957 offset
= INTVAL (XEXP (dest
, 2));
1958 dest
= XEXP (dest
, 0);
1959 if (BITS_BIG_ENDIAN
)
1960 offset
= GET_MODE_BITSIZE (GET_MODE (dest
)) - width
- offset
;
1965 if (GET_CODE (dest
) == STRICT_LOW_PART
)
1966 dest
= XEXP (dest
, 0);
1967 width
= GET_MODE_BITSIZE (GET_MODE (dest
));
1973 /* If this is the low part, we're done. */
1974 if (subreg_lowpart_p (dest
))
1976 /* Handle the case where inner is twice the size of outer. */
1977 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp
)))
1978 == 2 * GET_MODE_BITSIZE (GET_MODE (dest
)))
1979 offset
+= GET_MODE_BITSIZE (GET_MODE (dest
));
1980 /* Otherwise give up for now. */
1987 HOST_WIDE_INT mhi
, ohi
, ihi
;
1988 HOST_WIDE_INT mlo
, olo
, ilo
;
1989 rtx inner
= SET_SRC (PATTERN (i3
));
1990 rtx outer
= SET_SRC (temp
);
1992 if (GET_CODE (outer
) == CONST_INT
)
1994 olo
= INTVAL (outer
);
1995 ohi
= olo
< 0 ? -1 : 0;
1999 olo
= CONST_DOUBLE_LOW (outer
);
2000 ohi
= CONST_DOUBLE_HIGH (outer
);
2003 if (GET_CODE (inner
) == CONST_INT
)
2005 ilo
= INTVAL (inner
);
2006 ihi
= ilo
< 0 ? -1 : 0;
2010 ilo
= CONST_DOUBLE_LOW (inner
);
2011 ihi
= CONST_DOUBLE_HIGH (inner
);
2014 if (width
< HOST_BITS_PER_WIDE_INT
)
2016 mlo
= ((unsigned HOST_WIDE_INT
) 1 << width
) - 1;
2019 else if (width
< HOST_BITS_PER_WIDE_INT
* 2)
2021 mhi
= ((unsigned HOST_WIDE_INT
) 1
2022 << (width
- HOST_BITS_PER_WIDE_INT
)) - 1;
2034 if (offset
>= HOST_BITS_PER_WIDE_INT
)
2036 mhi
= mlo
<< (offset
- HOST_BITS_PER_WIDE_INT
);
2038 ihi
= ilo
<< (offset
- HOST_BITS_PER_WIDE_INT
);
2041 else if (offset
> 0)
2043 mhi
= (mhi
<< offset
) | ((unsigned HOST_WIDE_INT
) mlo
2044 >> (HOST_BITS_PER_WIDE_INT
- offset
));
2045 mlo
= mlo
<< offset
;
2046 ihi
= (ihi
<< offset
) | ((unsigned HOST_WIDE_INT
) ilo
2047 >> (HOST_BITS_PER_WIDE_INT
- offset
));
2048 ilo
= ilo
<< offset
;
2051 olo
= (olo
& ~mlo
) | ilo
;
2052 ohi
= (ohi
& ~mhi
) | ihi
;
2056 subst_low_cuid
= INSN_CUID (i2
);
2057 added_sets_2
= added_sets_1
= 0;
2058 i2dest
= SET_DEST (temp
);
2059 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2061 SUBST (SET_SRC (temp
),
2062 immed_double_const (olo
, ohi
, GET_MODE (SET_DEST (temp
))));
2064 newpat
= PATTERN (i2
);
2065 goto validate_replacement
;
2070 /* If we have no I1 and I2 looks like:
2071 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2073 make up a dummy I1 that is
2076 (set (reg:CC X) (compare:CC Y (const_int 0)))
2078 (We can ignore any trailing CLOBBERs.)
2080 This undoes a previous combination and allows us to match a branch-and-
2083 if (i1
== 0 && GET_CODE (PATTERN (i2
)) == PARALLEL
2084 && XVECLEN (PATTERN (i2
), 0) >= 2
2085 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 0)) == SET
2086 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0))))
2088 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0))) == COMPARE
2089 && XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 1) == const0_rtx
2090 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 1)) == SET
2091 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)))
2092 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 0),
2093 SET_SRC (XVECEXP (PATTERN (i2
), 0, 1))))
2095 for (i
= XVECLEN (PATTERN (i2
), 0) - 1; i
>= 2; i
--)
2096 if (GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) != CLOBBER
)
2101 /* We make I1 with the same INSN_UID as I2. This gives it
2102 the same INSN_CUID for value tracking. Our fake I1 will
2103 never appear in the insn stream so giving it the same INSN_UID
2104 as I2 will not cause a problem. */
2106 i1
= gen_rtx_INSN (VOIDmode
, INSN_UID (i2
), NULL_RTX
, i2
,
2107 BLOCK_FOR_INSN (i2
), INSN_LOCATOR (i2
),
2108 XVECEXP (PATTERN (i2
), 0, 1), -1, NULL_RTX
,
2111 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 0));
2112 SUBST (XEXP (SET_SRC (PATTERN (i2
)), 0),
2113 SET_DEST (PATTERN (i1
)));
2118 /* Verify that I2 and I1 are valid for combining. */
2119 if (! can_combine_p (i2
, i3
, i1
, NULL_RTX
, &i2dest
, &i2src
)
2120 || (i1
&& ! can_combine_p (i1
, i3
, NULL_RTX
, i2
, &i1dest
, &i1src
)))
2126 /* Record whether I2DEST is used in I2SRC and similarly for the other
2127 cases. Knowing this will help in register status updating below. */
2128 i2dest_in_i2src
= reg_overlap_mentioned_p (i2dest
, i2src
);
2129 i1dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i1dest
, i1src
);
2130 i2dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i2dest
, i1src
);
2131 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2132 i1dest_killed
= i1
&& dead_or_set_p (i1
, i1dest
);
2134 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2136 i1_feeds_i3
= i1
&& ! reg_overlap_mentioned_p (i1dest
, i2src
);
2138 /* Ensure that I3's pattern can be the destination of combines. */
2139 if (! combinable_i3pat (i3
, &PATTERN (i3
), i2dest
, i1dest
,
2140 i1
&& i2dest_in_i1src
&& i1_feeds_i3
,
2147 /* See if any of the insns is a MULT operation. Unless one is, we will
2148 reject a combination that is, since it must be slower. Be conservative
2150 if (GET_CODE (i2src
) == MULT
2151 || (i1
!= 0 && GET_CODE (i1src
) == MULT
)
2152 || (GET_CODE (PATTERN (i3
)) == SET
2153 && GET_CODE (SET_SRC (PATTERN (i3
))) == MULT
))
2156 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2157 We used to do this EXCEPT in one case: I3 has a post-inc in an
2158 output operand. However, that exception can give rise to insns like
2160 which is a famous insn on the PDP-11 where the value of r3 used as the
2161 source was model-dependent. Avoid this sort of thing. */
2164 if (!(GET_CODE (PATTERN (i3
)) == SET
2165 && REG_P (SET_SRC (PATTERN (i3
)))
2166 && MEM_P (SET_DEST (PATTERN (i3
)))
2167 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_INC
2168 || GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_DEC
)))
2169 /* It's not the exception. */
2172 for (link
= REG_NOTES (i3
); link
; link
= XEXP (link
, 1))
2173 if (REG_NOTE_KIND (link
) == REG_INC
2174 && (reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i2
))
2176 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i1
)))))
2183 /* See if the SETs in I1 or I2 need to be kept around in the merged
2184 instruction: whenever the value set there is still needed past I3.
2185 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2187 For the SET in I1, we have two cases: If I1 and I2 independently
2188 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2189 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2190 in I1 needs to be kept around unless I1DEST dies or is set in either
2191 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2192 I1DEST. If so, we know I1 feeds into I2. */
2194 added_sets_2
= ! dead_or_set_p (i3
, i2dest
);
2197 = i1
&& ! (i1_feeds_i3
? dead_or_set_p (i3
, i1dest
)
2198 : (dead_or_set_p (i3
, i1dest
) || dead_or_set_p (i2
, i1dest
)));
2200 /* If the set in I2 needs to be kept around, we must make a copy of
2201 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2202 PATTERN (I2), we are only substituting for the original I1DEST, not into
2203 an already-substituted copy. This also prevents making self-referential
2204 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2207 i2pat
= (GET_CODE (PATTERN (i2
)) == PARALLEL
2208 ? gen_rtx_SET (VOIDmode
, i2dest
, i2src
)
2212 i2pat
= copy_rtx (i2pat
);
2216 /* Substitute in the latest insn for the regs set by the earlier ones. */
2218 maxreg
= max_reg_num ();
2223 /* Many machines that don't use CC0 have insns that can both perform an
2224 arithmetic operation and set the condition code. These operations will
2225 be represented as a PARALLEL with the first element of the vector
2226 being a COMPARE of an arithmetic operation with the constant zero.
2227 The second element of the vector will set some pseudo to the result
2228 of the same arithmetic operation. If we simplify the COMPARE, we won't
2229 match such a pattern and so will generate an extra insn. Here we test
2230 for this case, where both the comparison and the operation result are
2231 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2232 I2SRC. Later we will make the PARALLEL that contains I2. */
2234 if (i1
== 0 && added_sets_2
&& GET_CODE (PATTERN (i3
)) == SET
2235 && GET_CODE (SET_SRC (PATTERN (i3
))) == COMPARE
2236 && XEXP (SET_SRC (PATTERN (i3
)), 1) == const0_rtx
2237 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3
)), 0), i2dest
))
2239 #ifdef SELECT_CC_MODE
2241 enum machine_mode compare_mode
;
2244 newpat
= PATTERN (i3
);
2245 SUBST (XEXP (SET_SRC (newpat
), 0), i2src
);
2249 #ifdef SELECT_CC_MODE
2250 /* See if a COMPARE with the operand we substituted in should be done
2251 with the mode that is currently being used. If not, do the same
2252 processing we do in `subst' for a SET; namely, if the destination
2253 is used only once, try to replace it with a register of the proper
2254 mode and also replace the COMPARE. */
2255 if (undobuf
.other_insn
== 0
2256 && (cc_use
= find_single_use (SET_DEST (newpat
), i3
,
2257 &undobuf
.other_insn
))
2258 && ((compare_mode
= SELECT_CC_MODE (GET_CODE (*cc_use
),
2260 != GET_MODE (SET_DEST (newpat
))))
2262 if (can_change_dest_mode(SET_DEST (newpat
), added_sets_2
,
2265 unsigned int regno
= REGNO (SET_DEST (newpat
));
2268 if (regno
< FIRST_PSEUDO_REGISTER
)
2269 new_dest
= gen_rtx_REG (compare_mode
, regno
);
2272 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
2273 new_dest
= regno_reg_rtx
[regno
];
2276 SUBST (SET_DEST (newpat
), new_dest
);
2277 SUBST (XEXP (*cc_use
, 0), new_dest
);
2278 SUBST (SET_SRC (newpat
),
2279 gen_rtx_COMPARE (compare_mode
, i2src
, const0_rtx
));
2282 undobuf
.other_insn
= 0;
2289 /* It is possible that the source of I2 or I1 may be performing
2290 an unneeded operation, such as a ZERO_EXTEND of something
2291 that is known to have the high part zero. Handle that case
2292 by letting subst look at the innermost one of them.
2294 Another way to do this would be to have a function that tries
2295 to simplify a single insn instead of merging two or more
2296 insns. We don't do this because of the potential of infinite
2297 loops and because of the potential extra memory required.
2298 However, doing it the way we are is a bit of a kludge and
2299 doesn't catch all cases.
2301 But only do this if -fexpensive-optimizations since it slows
2302 things down and doesn't usually win.
2304 This is not done in the COMPARE case above because the
2305 unmodified I2PAT is used in the PARALLEL and so a pattern
2306 with a modified I2SRC would not match. */
2308 if (flag_expensive_optimizations
)
2310 /* Pass pc_rtx so no substitutions are done, just
2314 subst_low_cuid
= INSN_CUID (i1
);
2315 i1src
= subst (i1src
, pc_rtx
, pc_rtx
, 0, 0);
2319 subst_low_cuid
= INSN_CUID (i2
);
2320 i2src
= subst (i2src
, pc_rtx
, pc_rtx
, 0, 0);
2324 n_occurrences
= 0; /* `subst' counts here */
2326 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2327 need to make a unique copy of I2SRC each time we substitute it
2328 to avoid self-referential rtl. */
2330 subst_low_cuid
= INSN_CUID (i2
);
2331 newpat
= subst (PATTERN (i3
), i2dest
, i2src
, 0,
2332 ! i1_feeds_i3
&& i1dest_in_i1src
);
2335 /* Record whether i2's body now appears within i3's body. */
2336 i2_is_used
= n_occurrences
;
2339 /* If we already got a failure, don't try to do more. Otherwise,
2340 try to substitute in I1 if we have it. */
2342 if (i1
&& GET_CODE (newpat
) != CLOBBER
)
2344 /* Before we can do this substitution, we must redo the test done
2345 above (see detailed comments there) that ensures that I1DEST
2346 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2348 if (! combinable_i3pat (NULL_RTX
, &newpat
, i1dest
, NULL_RTX
,
2356 subst_low_cuid
= INSN_CUID (i1
);
2357 newpat
= subst (newpat
, i1dest
, i1src
, 0, 0);
2361 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2362 to count all the ways that I2SRC and I1SRC can be used. */
2363 if ((FIND_REG_INC_NOTE (i2
, NULL_RTX
) != 0
2364 && i2_is_used
+ added_sets_2
> 1)
2365 || (i1
!= 0 && FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
2366 && (n_occurrences
+ added_sets_1
+ (added_sets_2
&& ! i1_feeds_i3
)
2368 /* Fail if we tried to make a new register. */
2369 || max_reg_num () != maxreg
2370 /* Fail if we couldn't do something and have a CLOBBER. */
2371 || GET_CODE (newpat
) == CLOBBER
2372 /* Fail if this new pattern is a MULT and we didn't have one before
2373 at the outer level. */
2374 || (GET_CODE (newpat
) == SET
&& GET_CODE (SET_SRC (newpat
)) == MULT
2381 /* If the actions of the earlier insns must be kept
2382 in addition to substituting them into the latest one,
2383 we must make a new PARALLEL for the latest insn
2384 to hold additional the SETs. */
2386 if (added_sets_1
|| added_sets_2
)
2390 if (GET_CODE (newpat
) == PARALLEL
)
2392 rtvec old
= XVEC (newpat
, 0);
2393 total_sets
= XVECLEN (newpat
, 0) + added_sets_1
+ added_sets_2
;
2394 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
2395 memcpy (XVEC (newpat
, 0)->elem
, &old
->elem
[0],
2396 sizeof (old
->elem
[0]) * old
->num_elem
);
2401 total_sets
= 1 + added_sets_1
+ added_sets_2
;
2402 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
2403 XVECEXP (newpat
, 0, 0) = old
;
2407 XVECEXP (newpat
, 0, --total_sets
)
2408 = (GET_CODE (PATTERN (i1
)) == PARALLEL
2409 ? gen_rtx_SET (VOIDmode
, i1dest
, i1src
) : PATTERN (i1
));
2413 /* If there is no I1, use I2's body as is. We used to also not do
2414 the subst call below if I2 was substituted into I3,
2415 but that could lose a simplification. */
2417 XVECEXP (newpat
, 0, --total_sets
) = i2pat
;
2419 /* See comment where i2pat is assigned. */
2420 XVECEXP (newpat
, 0, --total_sets
)
2421 = subst (i2pat
, i1dest
, i1src
, 0, 0);
2425 /* We come here when we are replacing a destination in I2 with the
2426 destination of I3. */
2427 validate_replacement
:
2429 /* Note which hard regs this insn has as inputs. */
2430 mark_used_regs_combine (newpat
);
2432 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2433 consider splitting this pattern, we might need these clobbers. */
2434 if (i1
&& GET_CODE (newpat
) == PARALLEL
2435 && GET_CODE (XVECEXP (newpat
, 0, XVECLEN (newpat
, 0) - 1)) == CLOBBER
)
2437 int len
= XVECLEN (newpat
, 0);
2439 newpat_vec_with_clobbers
= rtvec_alloc (len
);
2440 for (i
= 0; i
< len
; i
++)
2441 RTVEC_ELT (newpat_vec_with_clobbers
, i
) = XVECEXP (newpat
, 0, i
);
2444 /* Is the result of combination a valid instruction? */
2445 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2447 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2448 the second SET's destination is a register that is unused and isn't
2449 marked as an instruction that might trap in an EH region. In that case,
2450 we just need the first SET. This can occur when simplifying a divmod
2451 insn. We *must* test for this case here because the code below that
2452 splits two independent SETs doesn't handle this case correctly when it
2453 updates the register status.
2455 It's pointless doing this if we originally had two sets, one from
2456 i3, and one from i2. Combining then splitting the parallel results
2457 in the original i2 again plus an invalid insn (which we delete).
2458 The net effect is only to move instructions around, which makes
2459 debug info less accurate.
2461 Also check the case where the first SET's destination is unused.
2462 That would not cause incorrect code, but does cause an unneeded
2465 if (insn_code_number
< 0
2466 && !(added_sets_2
&& i1
== 0)
2467 && GET_CODE (newpat
) == PARALLEL
2468 && XVECLEN (newpat
, 0) == 2
2469 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2470 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2471 && asm_noperands (newpat
) < 0)
2473 rtx set0
= XVECEXP (newpat
, 0, 0);
2474 rtx set1
= XVECEXP (newpat
, 0, 1);
2477 if (((REG_P (SET_DEST (set1
))
2478 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set1
)))
2479 || (GET_CODE (SET_DEST (set1
)) == SUBREG
2480 && find_reg_note (i3
, REG_UNUSED
, SUBREG_REG (SET_DEST (set1
)))))
2481 && (!(note
= find_reg_note (i3
, REG_EH_REGION
, NULL_RTX
))
2482 || INTVAL (XEXP (note
, 0)) <= 0)
2483 && ! side_effects_p (SET_SRC (set1
)))
2486 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2489 else if (((REG_P (SET_DEST (set0
))
2490 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set0
)))
2491 || (GET_CODE (SET_DEST (set0
)) == SUBREG
2492 && find_reg_note (i3
, REG_UNUSED
,
2493 SUBREG_REG (SET_DEST (set0
)))))
2494 && (!(note
= find_reg_note (i3
, REG_EH_REGION
, NULL_RTX
))
2495 || INTVAL (XEXP (note
, 0)) <= 0)
2496 && ! side_effects_p (SET_SRC (set0
)))
2499 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2501 if (insn_code_number
>= 0)
2503 /* If we will be able to accept this, we have made a
2504 change to the destination of I3. This requires us to
2505 do a few adjustments. */
2507 PATTERN (i3
) = newpat
;
2508 adjust_for_new_dest (i3
);
2513 /* If we were combining three insns and the result is a simple SET
2514 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2515 insns. There are two ways to do this. It can be split using a
2516 machine-specific method (like when you have an addition of a large
2517 constant) or by combine in the function find_split_point. */
2519 if (i1
&& insn_code_number
< 0 && GET_CODE (newpat
) == SET
2520 && asm_noperands (newpat
) < 0)
2522 rtx m_split
, *split
;
2524 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2525 use I2DEST as a scratch register will help. In the latter case,
2526 convert I2DEST to the mode of the source of NEWPAT if we can. */
2528 m_split
= split_insns (newpat
, i3
);
2530 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2531 inputs of NEWPAT. */
2533 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2534 possible to try that as a scratch reg. This would require adding
2535 more code to make it work though. */
2537 if (m_split
== 0 && ! reg_overlap_mentioned_p (i2dest
, newpat
))
2539 enum machine_mode new_mode
= GET_MODE (SET_DEST (newpat
));
2541 /* First try to split using the original register as a
2542 scratch register. */
2543 m_split
= split_insns (gen_rtx_PARALLEL
2545 gen_rtvec (2, newpat
,
2546 gen_rtx_CLOBBER (VOIDmode
,
2550 /* If that didn't work, try changing the mode of I2DEST if
2553 && new_mode
!= GET_MODE (i2dest
)
2554 && new_mode
!= VOIDmode
2555 && can_change_dest_mode (i2dest
, added_sets_2
, new_mode
))
2557 enum machine_mode old_mode
= GET_MODE (i2dest
);
2560 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
2561 ni2dest
= gen_rtx_REG (new_mode
, REGNO (i2dest
));
2564 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], new_mode
);
2565 ni2dest
= regno_reg_rtx
[REGNO (i2dest
)];
2568 m_split
= split_insns (gen_rtx_PARALLEL
2570 gen_rtvec (2, newpat
,
2571 gen_rtx_CLOBBER (VOIDmode
,
2576 && REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
2580 PUT_MODE (regno_reg_rtx
[REGNO (i2dest
)], old_mode
);
2581 buf
= undobuf
.undos
;
2582 undobuf
.undos
= buf
->next
;
2583 buf
->next
= undobuf
.frees
;
2584 undobuf
.frees
= buf
;
2589 /* If recog_for_combine has discarded clobbers, try to use them
2590 again for the split. */
2591 if (m_split
== 0 && newpat_vec_with_clobbers
)
2593 = split_insns (gen_rtx_PARALLEL (VOIDmode
,
2594 newpat_vec_with_clobbers
), i3
);
2596 if (m_split
&& NEXT_INSN (m_split
) == NULL_RTX
)
2598 m_split
= PATTERN (m_split
);
2599 insn_code_number
= recog_for_combine (&m_split
, i3
, &new_i3_notes
);
2600 if (insn_code_number
>= 0)
2603 else if (m_split
&& NEXT_INSN (NEXT_INSN (m_split
)) == NULL_RTX
2604 && (next_real_insn (i2
) == i3
2605 || ! use_crosses_set_p (PATTERN (m_split
), INSN_CUID (i2
))))
2608 rtx newi3pat
= PATTERN (NEXT_INSN (m_split
));
2609 newi2pat
= PATTERN (m_split
);
2611 i3set
= single_set (NEXT_INSN (m_split
));
2612 i2set
= single_set (m_split
);
2614 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2616 /* If I2 or I3 has multiple SETs, we won't know how to track
2617 register status, so don't use these insns. If I2's destination
2618 is used between I2 and I3, we also can't use these insns. */
2620 if (i2_code_number
>= 0 && i2set
&& i3set
2621 && (next_real_insn (i2
) == i3
2622 || ! reg_used_between_p (SET_DEST (i2set
), i2
, i3
)))
2623 insn_code_number
= recog_for_combine (&newi3pat
, i3
,
2625 if (insn_code_number
>= 0)
2628 /* It is possible that both insns now set the destination of I3.
2629 If so, we must show an extra use of it. */
2631 if (insn_code_number
>= 0)
2633 rtx new_i3_dest
= SET_DEST (i3set
);
2634 rtx new_i2_dest
= SET_DEST (i2set
);
2636 while (GET_CODE (new_i3_dest
) == ZERO_EXTRACT
2637 || GET_CODE (new_i3_dest
) == STRICT_LOW_PART
2638 || GET_CODE (new_i3_dest
) == SUBREG
)
2639 new_i3_dest
= XEXP (new_i3_dest
, 0);
2641 while (GET_CODE (new_i2_dest
) == ZERO_EXTRACT
2642 || GET_CODE (new_i2_dest
) == STRICT_LOW_PART
2643 || GET_CODE (new_i2_dest
) == SUBREG
)
2644 new_i2_dest
= XEXP (new_i2_dest
, 0);
2646 if (REG_P (new_i3_dest
)
2647 && REG_P (new_i2_dest
)
2648 && REGNO (new_i3_dest
) == REGNO (new_i2_dest
))
2649 REG_N_SETS (REGNO (new_i2_dest
))++;
2653 /* If we can split it and use I2DEST, go ahead and see if that
2654 helps things be recognized. Verify that none of the registers
2655 are set between I2 and I3. */
2656 if (insn_code_number
< 0 && (split
= find_split_point (&newpat
, i3
)) != 0
2660 /* We need I2DEST in the proper mode. If it is a hard register
2661 or the only use of a pseudo, we can change its mode.
2662 Make sure we don't change a hard register to have a mode that
2663 isn't valid for it, or change the number of registers. */
2664 && (GET_MODE (*split
) == GET_MODE (i2dest
)
2665 || GET_MODE (*split
) == VOIDmode
2666 || can_change_dest_mode (i2dest
, added_sets_2
,
2668 && (next_real_insn (i2
) == i3
2669 || ! use_crosses_set_p (*split
, INSN_CUID (i2
)))
2670 /* We can't overwrite I2DEST if its value is still used by
2672 && ! reg_referenced_p (i2dest
, newpat
))
2674 rtx newdest
= i2dest
;
2675 enum rtx_code split_code
= GET_CODE (*split
);
2676 enum machine_mode split_mode
= GET_MODE (*split
);
2677 bool subst_done
= false;
2678 newi2pat
= NULL_RTX
;
2680 /* Get NEWDEST as a register in the proper mode. We have already
2681 validated that we can do this. */
2682 if (GET_MODE (i2dest
) != split_mode
&& split_mode
!= VOIDmode
)
2684 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
2685 newdest
= gen_rtx_REG (split_mode
, REGNO (i2dest
));
2688 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], split_mode
);
2689 newdest
= regno_reg_rtx
[REGNO (i2dest
)];
2693 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2694 an ASHIFT. This can occur if it was inside a PLUS and hence
2695 appeared to be a memory address. This is a kludge. */
2696 if (split_code
== MULT
2697 && GET_CODE (XEXP (*split
, 1)) == CONST_INT
2698 && INTVAL (XEXP (*split
, 1)) > 0
2699 && (i
= exact_log2 (INTVAL (XEXP (*split
, 1)))) >= 0)
2701 SUBST (*split
, gen_rtx_ASHIFT (split_mode
,
2702 XEXP (*split
, 0), GEN_INT (i
)));
2703 /* Update split_code because we may not have a multiply
2705 split_code
= GET_CODE (*split
);
2708 #ifdef INSN_SCHEDULING
2709 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2710 be written as a ZERO_EXTEND. */
2711 if (split_code
== SUBREG
&& MEM_P (SUBREG_REG (*split
)))
2713 #ifdef LOAD_EXTEND_OP
2714 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2715 what it really is. */
2716 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split
)))
2718 SUBST (*split
, gen_rtx_SIGN_EXTEND (split_mode
,
2719 SUBREG_REG (*split
)));
2722 SUBST (*split
, gen_rtx_ZERO_EXTEND (split_mode
,
2723 SUBREG_REG (*split
)));
2727 /* Attempt to split binary operators using arithmetic identities. */
2728 if (BINARY_P (SET_SRC (newpat
))
2729 && split_mode
== GET_MODE (SET_SRC (newpat
))
2730 && ! side_effects_p (SET_SRC (newpat
)))
2732 rtx setsrc
= SET_SRC (newpat
);
2733 enum machine_mode mode
= GET_MODE (setsrc
);
2734 enum rtx_code code
= GET_CODE (setsrc
);
2735 rtx src_op0
= XEXP (setsrc
, 0);
2736 rtx src_op1
= XEXP (setsrc
, 1);
2738 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
2739 if (rtx_equal_p (src_op0
, src_op1
))
2741 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, src_op0
);
2742 SUBST (XEXP (setsrc
, 0), newdest
);
2743 SUBST (XEXP (setsrc
, 1), newdest
);
2746 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
2747 else if ((code
== PLUS
|| code
== MULT
)
2748 && GET_CODE (src_op0
) == code
2749 && GET_CODE (XEXP (src_op0
, 0)) == code
2750 && (INTEGRAL_MODE_P (mode
)
2751 || (FLOAT_MODE_P (mode
)
2752 && flag_unsafe_math_optimizations
)))
2754 rtx p
= XEXP (XEXP (src_op0
, 0), 0);
2755 rtx q
= XEXP (XEXP (src_op0
, 0), 1);
2756 rtx r
= XEXP (src_op0
, 1);
2759 /* Split both "((X op Y) op X) op Y" and
2760 "((X op Y) op Y) op X" as "T op T" where T is
2762 if ((rtx_equal_p (p
,r
) && rtx_equal_p (q
,s
))
2763 || (rtx_equal_p (p
,s
) && rtx_equal_p (q
,r
)))
2765 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
,
2767 SUBST (XEXP (setsrc
, 0), newdest
);
2768 SUBST (XEXP (setsrc
, 1), newdest
);
2771 /* Split "((X op X) op Y) op Y)" as "T op T" where
2773 else if (rtx_equal_p (p
,q
) && rtx_equal_p (r
,s
))
2775 rtx tmp
= simplify_gen_binary (code
, mode
, p
, r
);
2776 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, tmp
);
2777 SUBST (XEXP (setsrc
, 0), newdest
);
2778 SUBST (XEXP (setsrc
, 1), newdest
);
2786 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, *split
);
2787 SUBST (*split
, newdest
);
2790 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2792 /* recog_for_combine might have added CLOBBERs to newi2pat.
2793 Make sure NEWPAT does not depend on the clobbered regs. */
2794 if (GET_CODE (newi2pat
) == PARALLEL
)
2795 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
2796 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
2798 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
2799 if (reg_overlap_mentioned_p (reg
, newpat
))
2806 /* If the split point was a MULT and we didn't have one before,
2807 don't use one now. */
2808 if (i2_code_number
>= 0 && ! (split_code
== MULT
&& ! have_mult
))
2809 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2813 /* Check for a case where we loaded from memory in a narrow mode and
2814 then sign extended it, but we need both registers. In that case,
2815 we have a PARALLEL with both loads from the same memory location.
2816 We can split this into a load from memory followed by a register-register
2817 copy. This saves at least one insn, more if register allocation can
2820 We cannot do this if the destination of the first assignment is a
2821 condition code register or cc0. We eliminate this case by making sure
2822 the SET_DEST and SET_SRC have the same mode.
2824 We cannot do this if the destination of the second assignment is
2825 a register that we have already assumed is zero-extended. Similarly
2826 for a SUBREG of such a register. */
2828 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
2829 && GET_CODE (newpat
) == PARALLEL
2830 && XVECLEN (newpat
, 0) == 2
2831 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2832 && GET_CODE (SET_SRC (XVECEXP (newpat
, 0, 0))) == SIGN_EXTEND
2833 && (GET_MODE (SET_DEST (XVECEXP (newpat
, 0, 0)))
2834 == GET_MODE (SET_SRC (XVECEXP (newpat
, 0, 0))))
2835 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2836 && rtx_equal_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2837 XEXP (SET_SRC (XVECEXP (newpat
, 0, 0)), 0))
2838 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2840 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
2841 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
2842 && ! (temp
= SET_DEST (XVECEXP (newpat
, 0, 1)),
2844 && reg_stat
[REGNO (temp
)].nonzero_bits
!= 0
2845 && GET_MODE_BITSIZE (GET_MODE (temp
)) < BITS_PER_WORD
2846 && GET_MODE_BITSIZE (GET_MODE (temp
)) < HOST_BITS_PER_INT
2847 && (reg_stat
[REGNO (temp
)].nonzero_bits
2848 != GET_MODE_MASK (word_mode
))))
2849 && ! (GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == SUBREG
2850 && (temp
= SUBREG_REG (SET_DEST (XVECEXP (newpat
, 0, 1))),
2852 && reg_stat
[REGNO (temp
)].nonzero_bits
!= 0
2853 && GET_MODE_BITSIZE (GET_MODE (temp
)) < BITS_PER_WORD
2854 && GET_MODE_BITSIZE (GET_MODE (temp
)) < HOST_BITS_PER_INT
2855 && (reg_stat
[REGNO (temp
)].nonzero_bits
2856 != GET_MODE_MASK (word_mode
)))))
2857 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
2858 SET_SRC (XVECEXP (newpat
, 0, 1)))
2859 && ! find_reg_note (i3
, REG_UNUSED
,
2860 SET_DEST (XVECEXP (newpat
, 0, 0))))
2864 newi2pat
= XVECEXP (newpat
, 0, 0);
2865 ni2dest
= SET_DEST (XVECEXP (newpat
, 0, 0));
2866 newpat
= XVECEXP (newpat
, 0, 1);
2867 SUBST (SET_SRC (newpat
),
2868 gen_lowpart (GET_MODE (SET_SRC (newpat
)), ni2dest
));
2869 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2871 if (i2_code_number
>= 0)
2872 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2874 if (insn_code_number
>= 0)
2878 /* Similarly, check for a case where we have a PARALLEL of two independent
2879 SETs but we started with three insns. In this case, we can do the sets
2880 as two separate insns. This case occurs when some SET allows two
2881 other insns to combine, but the destination of that SET is still live. */
2883 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
2884 && GET_CODE (newpat
) == PARALLEL
2885 && XVECLEN (newpat
, 0) == 2
2886 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2887 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != ZERO_EXTRACT
2888 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != STRICT_LOW_PART
2889 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2890 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
2891 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
2892 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2894 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
2895 XVECEXP (newpat
, 0, 0))
2896 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 0)),
2897 XVECEXP (newpat
, 0, 1))
2898 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 0)))
2899 && contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 1)))))
2901 /* Normally, it doesn't matter which of the two is done first,
2902 but it does if one references cc0. In that case, it has to
2905 if (reg_referenced_p (cc0_rtx
, XVECEXP (newpat
, 0, 0)))
2907 newi2pat
= XVECEXP (newpat
, 0, 0);
2908 newpat
= XVECEXP (newpat
, 0, 1);
2913 newi2pat
= XVECEXP (newpat
, 0, 1);
2914 newpat
= XVECEXP (newpat
, 0, 0);
2917 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2919 if (i2_code_number
>= 0)
2920 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2923 /* If it still isn't recognized, fail and change things back the way they
2925 if ((insn_code_number
< 0
2926 /* Is the result a reasonable ASM_OPERANDS? */
2927 && (! check_asm_operands (newpat
) || added_sets_1
|| added_sets_2
)))
2933 /* If we had to change another insn, make sure it is valid also. */
2934 if (undobuf
.other_insn
)
2936 rtx other_pat
= PATTERN (undobuf
.other_insn
);
2937 rtx new_other_notes
;
2940 CLEAR_HARD_REG_SET (newpat_used_regs
);
2942 other_code_number
= recog_for_combine (&other_pat
, undobuf
.other_insn
,
2945 if (other_code_number
< 0 && ! check_asm_operands (other_pat
))
2951 PATTERN (undobuf
.other_insn
) = other_pat
;
2953 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2954 are still valid. Then add any non-duplicate notes added by
2955 recog_for_combine. */
2956 for (note
= REG_NOTES (undobuf
.other_insn
); note
; note
= next
)
2958 next
= XEXP (note
, 1);
2960 if (REG_NOTE_KIND (note
) == REG_UNUSED
2961 && ! reg_set_p (XEXP (note
, 0), PATTERN (undobuf
.other_insn
)))
2963 if (REG_P (XEXP (note
, 0)))
2964 REG_N_DEATHS (REGNO (XEXP (note
, 0)))--;
2966 remove_note (undobuf
.other_insn
, note
);
2970 for (note
= new_other_notes
; note
; note
= XEXP (note
, 1))
2971 if (REG_P (XEXP (note
, 0)))
2972 REG_N_DEATHS (REGNO (XEXP (note
, 0)))++;
2974 distribute_notes (new_other_notes
, undobuf
.other_insn
,
2975 undobuf
.other_insn
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
2978 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2979 they are adjacent to each other or not. */
2981 rtx p
= prev_nonnote_insn (i3
);
2982 if (p
&& p
!= i2
&& NONJUMP_INSN_P (p
) && newi2pat
2983 && sets_cc0_p (newi2pat
))
2991 /* Only allow this combination if insn_rtx_costs reports that the
2992 replacement instructions are cheaper than the originals. */
2993 if (!combine_validate_cost (i1
, i2
, i3
, newpat
, newi2pat
))
2999 /* We now know that we can do this combination. Merge the insns and
3000 update the status of registers and LOG_LINKS. */
3008 /* I3 now uses what used to be its destination and which is now
3009 I2's destination. This requires us to do a few adjustments. */
3010 PATTERN (i3
) = newpat
;
3011 adjust_for_new_dest (i3
);
3013 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3016 However, some later insn might be using I2's dest and have
3017 a LOG_LINK pointing at I3. We must remove this link.
3018 The simplest way to remove the link is to point it at I1,
3019 which we know will be a NOTE. */
3021 /* newi2pat is usually a SET here; however, recog_for_combine might
3022 have added some clobbers. */
3023 if (GET_CODE (newi2pat
) == PARALLEL
)
3024 ni2dest
= SET_DEST (XVECEXP (newi2pat
, 0, 0));
3026 ni2dest
= SET_DEST (newi2pat
);
3028 for (insn
= NEXT_INSN (i3
);
3029 insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR
3030 || insn
!= BB_HEAD (this_basic_block
->next_bb
));
3031 insn
= NEXT_INSN (insn
))
3033 if (INSN_P (insn
) && reg_referenced_p (ni2dest
, PATTERN (insn
)))
3035 for (link
= LOG_LINKS (insn
); link
;
3036 link
= XEXP (link
, 1))
3037 if (XEXP (link
, 0) == i3
)
3038 XEXP (link
, 0) = i1
;
3046 rtx i3notes
, i2notes
, i1notes
= 0;
3047 rtx i3links
, i2links
, i1links
= 0;
3050 /* Compute which registers we expect to eliminate. newi2pat may be setting
3051 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3052 same as i3dest, in which case newi2pat may be setting i1dest. */
3053 rtx elim_i2
= ((newi2pat
&& reg_set_p (i2dest
, newi2pat
))
3054 || i2dest_in_i2src
|| i2dest_in_i1src
3057 rtx elim_i1
= (i1
== 0 || i1dest_in_i1src
3058 || (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
3062 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3064 i3notes
= REG_NOTES (i3
), i3links
= LOG_LINKS (i3
);
3065 i2notes
= REG_NOTES (i2
), i2links
= LOG_LINKS (i2
);
3067 i1notes
= REG_NOTES (i1
), i1links
= LOG_LINKS (i1
);
3069 /* Ensure that we do not have something that should not be shared but
3070 occurs multiple times in the new insns. Check this by first
3071 resetting all the `used' flags and then copying anything is shared. */
3073 reset_used_flags (i3notes
);
3074 reset_used_flags (i2notes
);
3075 reset_used_flags (i1notes
);
3076 reset_used_flags (newpat
);
3077 reset_used_flags (newi2pat
);
3078 if (undobuf
.other_insn
)
3079 reset_used_flags (PATTERN (undobuf
.other_insn
));
3081 i3notes
= copy_rtx_if_shared (i3notes
);
3082 i2notes
= copy_rtx_if_shared (i2notes
);
3083 i1notes
= copy_rtx_if_shared (i1notes
);
3084 newpat
= copy_rtx_if_shared (newpat
);
3085 newi2pat
= copy_rtx_if_shared (newi2pat
);
3086 if (undobuf
.other_insn
)
3087 reset_used_flags (PATTERN (undobuf
.other_insn
));
3089 INSN_CODE (i3
) = insn_code_number
;
3090 PATTERN (i3
) = newpat
;
3092 if (CALL_P (i3
) && CALL_INSN_FUNCTION_USAGE (i3
))
3094 rtx call_usage
= CALL_INSN_FUNCTION_USAGE (i3
);
3096 reset_used_flags (call_usage
);
3097 call_usage
= copy_rtx (call_usage
);
3100 replace_rtx (call_usage
, i2dest
, i2src
);
3103 replace_rtx (call_usage
, i1dest
, i1src
);
3105 CALL_INSN_FUNCTION_USAGE (i3
) = call_usage
;
3108 if (undobuf
.other_insn
)
3109 INSN_CODE (undobuf
.other_insn
) = other_code_number
;
3111 /* We had one special case above where I2 had more than one set and
3112 we replaced a destination of one of those sets with the destination
3113 of I3. In that case, we have to update LOG_LINKS of insns later
3114 in this basic block. Note that this (expensive) case is rare.
3116 Also, in this case, we must pretend that all REG_NOTEs for I2
3117 actually came from I3, so that REG_UNUSED notes from I2 will be
3118 properly handled. */
3120 if (i3_subst_into_i2
)
3122 for (i
= 0; i
< XVECLEN (PATTERN (i2
), 0); i
++)
3123 if ((GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == SET
3124 || GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == CLOBBER
)
3125 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)))
3126 && SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)) != i2dest
3127 && ! find_reg_note (i2
, REG_UNUSED
,
3128 SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))))
3129 for (temp
= NEXT_INSN (i2
);
3130 temp
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR
3131 || BB_HEAD (this_basic_block
) != temp
);
3132 temp
= NEXT_INSN (temp
))
3133 if (temp
!= i3
&& INSN_P (temp
))
3134 for (link
= LOG_LINKS (temp
); link
; link
= XEXP (link
, 1))
3135 if (XEXP (link
, 0) == i2
)
3136 XEXP (link
, 0) = i3
;
3141 while (XEXP (link
, 1))
3142 link
= XEXP (link
, 1);
3143 XEXP (link
, 1) = i2notes
;
3157 INSN_CODE (i2
) = i2_code_number
;
3158 PATTERN (i2
) = newi2pat
;
3161 SET_INSN_DELETED (i2
);
3167 SET_INSN_DELETED (i1
);
3170 /* Get death notes for everything that is now used in either I3 or
3171 I2 and used to die in a previous insn. If we built two new
3172 patterns, move from I1 to I2 then I2 to I3 so that we get the
3173 proper movement on registers that I2 modifies. */
3177 move_deaths (newi2pat
, NULL_RTX
, INSN_CUID (i1
), i2
, &midnotes
);
3178 move_deaths (newpat
, newi2pat
, INSN_CUID (i1
), i3
, &midnotes
);
3181 move_deaths (newpat
, NULL_RTX
, i1
? INSN_CUID (i1
) : INSN_CUID (i2
),
3184 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3186 distribute_notes (i3notes
, i3
, i3
, newi2pat
? i2
: NULL_RTX
,
3189 distribute_notes (i2notes
, i2
, i3
, newi2pat
? i2
: NULL_RTX
,
3192 distribute_notes (i1notes
, i1
, i3
, newi2pat
? i2
: NULL_RTX
,
3195 distribute_notes (midnotes
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
3198 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3199 know these are REG_UNUSED and want them to go to the desired insn,
3200 so we always pass it as i3. We have not counted the notes in
3201 reg_n_deaths yet, so we need to do so now. */
3203 if (newi2pat
&& new_i2_notes
)
3205 for (temp
= new_i2_notes
; temp
; temp
= XEXP (temp
, 1))
3206 if (REG_P (XEXP (temp
, 0)))
3207 REG_N_DEATHS (REGNO (XEXP (temp
, 0)))++;
3209 distribute_notes (new_i2_notes
, i2
, i2
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
3214 for (temp
= new_i3_notes
; temp
; temp
= XEXP (temp
, 1))
3215 if (REG_P (XEXP (temp
, 0)))
3216 REG_N_DEATHS (REGNO (XEXP (temp
, 0)))++;
3218 distribute_notes (new_i3_notes
, i3
, i3
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
3221 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3222 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3223 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3224 in that case, it might delete I2. Similarly for I2 and I1.
3225 Show an additional death due to the REG_DEAD note we make here. If
3226 we discard it in distribute_notes, we will decrement it again. */
3230 if (REG_P (i3dest_killed
))
3231 REG_N_DEATHS (REGNO (i3dest_killed
))++;
3233 if (newi2pat
&& reg_set_p (i3dest_killed
, newi2pat
))
3234 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i3dest_killed
,
3236 NULL_RTX
, i2
, NULL_RTX
, elim_i2
, elim_i1
);
3238 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i3dest_killed
,
3240 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
3244 if (i2dest_in_i2src
)
3247 REG_N_DEATHS (REGNO (i2dest
))++;
3249 if (newi2pat
&& reg_set_p (i2dest
, newi2pat
))
3250 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i2dest
, NULL_RTX
),
3251 NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
3253 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i2dest
, NULL_RTX
),
3254 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
3255 NULL_RTX
, NULL_RTX
);
3258 if (i1dest_in_i1src
)
3261 REG_N_DEATHS (REGNO (i1dest
))++;
3263 if (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
3264 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i1dest
, NULL_RTX
),
3265 NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
3267 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i1dest
, NULL_RTX
),
3268 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
3269 NULL_RTX
, NULL_RTX
);
3272 distribute_links (i3links
);
3273 distribute_links (i2links
);
3274 distribute_links (i1links
);
3279 rtx i2_insn
= 0, i2_val
= 0, set
;
3281 /* The insn that used to set this register doesn't exist, and
3282 this life of the register may not exist either. See if one of
3283 I3's links points to an insn that sets I2DEST. If it does,
3284 that is now the last known value for I2DEST. If we don't update
3285 this and I2 set the register to a value that depended on its old
3286 contents, we will get confused. If this insn is used, thing
3287 will be set correctly in combine_instructions. */
3289 for (link
= LOG_LINKS (i3
); link
; link
= XEXP (link
, 1))
3290 if ((set
= single_set (XEXP (link
, 0))) != 0
3291 && rtx_equal_p (i2dest
, SET_DEST (set
)))
3292 i2_insn
= XEXP (link
, 0), i2_val
= SET_SRC (set
);
3294 record_value_for_reg (i2dest
, i2_insn
, i2_val
);
3296 /* If the reg formerly set in I2 died only once and that was in I3,
3297 zero its use count so it won't make `reload' do any work. */
3299 && (newi2pat
== 0 || ! reg_mentioned_p (i2dest
, newi2pat
))
3300 && ! i2dest_in_i2src
)
3302 regno
= REGNO (i2dest
);
3303 REG_N_SETS (regno
)--;
3307 if (i1
&& REG_P (i1dest
))
3310 rtx i1_insn
= 0, i1_val
= 0, set
;
3312 for (link
= LOG_LINKS (i3
); link
; link
= XEXP (link
, 1))
3313 if ((set
= single_set (XEXP (link
, 0))) != 0
3314 && rtx_equal_p (i1dest
, SET_DEST (set
)))
3315 i1_insn
= XEXP (link
, 0), i1_val
= SET_SRC (set
);
3317 record_value_for_reg (i1dest
, i1_insn
, i1_val
);
3319 regno
= REGNO (i1dest
);
3320 if (! added_sets_1
&& ! i1dest_in_i1src
)
3321 REG_N_SETS (regno
)--;
3324 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3325 been made to this insn. The order of
3326 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3327 can affect nonzero_bits of newpat */
3329 note_stores (newi2pat
, set_nonzero_bits_and_sign_copies
, NULL
);
3330 note_stores (newpat
, set_nonzero_bits_and_sign_copies
, NULL
);
3332 /* Set new_direct_jump_p if a new return or simple jump instruction
3335 If I3 is now an unconditional jump, ensure that it has a
3336 BARRIER following it since it may have initially been a
3337 conditional jump. It may also be the last nonnote insn. */
3339 if (returnjump_p (i3
) || any_uncondjump_p (i3
))
3341 *new_direct_jump_p
= 1;
3342 mark_jump_label (PATTERN (i3
), i3
, 0);
3344 if ((temp
= next_nonnote_insn (i3
)) == NULL_RTX
3345 || !BARRIER_P (temp
))
3346 emit_barrier_after (i3
);
3349 if (undobuf
.other_insn
!= NULL_RTX
3350 && (returnjump_p (undobuf
.other_insn
)
3351 || any_uncondjump_p (undobuf
.other_insn
)))
3353 *new_direct_jump_p
= 1;
3355 if ((temp
= next_nonnote_insn (undobuf
.other_insn
)) == NULL_RTX
3356 || !BARRIER_P (temp
))
3357 emit_barrier_after (undobuf
.other_insn
);
3360 /* An NOOP jump does not need barrier, but it does need cleaning up
3362 if (GET_CODE (newpat
) == SET
3363 && SET_SRC (newpat
) == pc_rtx
3364 && SET_DEST (newpat
) == pc_rtx
)
3365 *new_direct_jump_p
= 1;
3368 combine_successes
++;
3371 if (added_links_insn
3372 && (newi2pat
== 0 || INSN_CUID (added_links_insn
) < INSN_CUID (i2
))
3373 && INSN_CUID (added_links_insn
) < INSN_CUID (i3
))
3374 return added_links_insn
;
3376 return newi2pat
? i2
: i3
;
3379 /* Undo all the modifications recorded in undobuf. */
3384 struct undo
*undo
, *next
;
3386 for (undo
= undobuf
.undos
; undo
; undo
= next
)
3392 *undo
->where
.r
= undo
->old_contents
.r
;
3395 *undo
->where
.i
= undo
->old_contents
.i
;
3398 PUT_MODE (*undo
->where
.r
, undo
->old_contents
.m
);
3404 undo
->next
= undobuf
.frees
;
3405 undobuf
.frees
= undo
;
3411 /* We've committed to accepting the changes we made. Move all
3412 of the undos to the free list. */
3417 struct undo
*undo
, *next
;
3419 for (undo
= undobuf
.undos
; undo
; undo
= next
)
3422 undo
->next
= undobuf
.frees
;
3423 undobuf
.frees
= undo
;
3429 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3430 where we have an arithmetic expression and return that point. LOC will
3433 try_combine will call this function to see if an insn can be split into
3437 find_split_point (rtx
*loc
, rtx insn
)
3440 enum rtx_code code
= GET_CODE (x
);
3442 unsigned HOST_WIDE_INT len
= 0;
3443 HOST_WIDE_INT pos
= 0;
3445 rtx inner
= NULL_RTX
;
3447 /* First special-case some codes. */
3451 #ifdef INSN_SCHEDULING
3452 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3454 if (MEM_P (SUBREG_REG (x
)))
3457 return find_split_point (&SUBREG_REG (x
), insn
);
3461 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3462 using LO_SUM and HIGH. */
3463 if (GET_CODE (XEXP (x
, 0)) == CONST
3464 || GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
3467 gen_rtx_LO_SUM (Pmode
,
3468 gen_rtx_HIGH (Pmode
, XEXP (x
, 0)),
3470 return &XEXP (XEXP (x
, 0), 0);
3474 /* If we have a PLUS whose second operand is a constant and the
3475 address is not valid, perhaps will can split it up using
3476 the machine-specific way to split large constants. We use
3477 the first pseudo-reg (one of the virtual regs) as a placeholder;
3478 it will not remain in the result. */
3479 if (GET_CODE (XEXP (x
, 0)) == PLUS
3480 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
3481 && ! memory_address_p (GET_MODE (x
), XEXP (x
, 0)))
3483 rtx reg
= regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
3484 rtx seq
= split_insns (gen_rtx_SET (VOIDmode
, reg
, XEXP (x
, 0)),
3487 /* This should have produced two insns, each of which sets our
3488 placeholder. If the source of the second is a valid address,
3489 we can make put both sources together and make a split point
3493 && NEXT_INSN (seq
) != NULL_RTX
3494 && NEXT_INSN (NEXT_INSN (seq
)) == NULL_RTX
3495 && NONJUMP_INSN_P (seq
)
3496 && GET_CODE (PATTERN (seq
)) == SET
3497 && SET_DEST (PATTERN (seq
)) == reg
3498 && ! reg_mentioned_p (reg
,
3499 SET_SRC (PATTERN (seq
)))
3500 && NONJUMP_INSN_P (NEXT_INSN (seq
))
3501 && GET_CODE (PATTERN (NEXT_INSN (seq
))) == SET
3502 && SET_DEST (PATTERN (NEXT_INSN (seq
))) == reg
3503 && memory_address_p (GET_MODE (x
),
3504 SET_SRC (PATTERN (NEXT_INSN (seq
)))))
3506 rtx src1
= SET_SRC (PATTERN (seq
));
3507 rtx src2
= SET_SRC (PATTERN (NEXT_INSN (seq
)));
3509 /* Replace the placeholder in SRC2 with SRC1. If we can
3510 find where in SRC2 it was placed, that can become our
3511 split point and we can replace this address with SRC2.
3512 Just try two obvious places. */
3514 src2
= replace_rtx (src2
, reg
, src1
);
3516 if (XEXP (src2
, 0) == src1
)
3517 split
= &XEXP (src2
, 0);
3518 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2
, 0)))[0] == 'e'
3519 && XEXP (XEXP (src2
, 0), 0) == src1
)
3520 split
= &XEXP (XEXP (src2
, 0), 0);
3524 SUBST (XEXP (x
, 0), src2
);
3529 /* If that didn't work, perhaps the first operand is complex and
3530 needs to be computed separately, so make a split point there.
3531 This will occur on machines that just support REG + CONST
3532 and have a constant moved through some previous computation. */
3534 else if (!OBJECT_P (XEXP (XEXP (x
, 0), 0))
3535 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
3536 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
3537 return &XEXP (XEXP (x
, 0), 0);
3543 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3544 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3545 we need to put the operand into a register. So split at that
3548 if (SET_DEST (x
) == cc0_rtx
3549 && GET_CODE (SET_SRC (x
)) != COMPARE
3550 && GET_CODE (SET_SRC (x
)) != ZERO_EXTRACT
3551 && !OBJECT_P (SET_SRC (x
))
3552 && ! (GET_CODE (SET_SRC (x
)) == SUBREG
3553 && OBJECT_P (SUBREG_REG (SET_SRC (x
)))))
3554 return &SET_SRC (x
);
3557 /* See if we can split SET_SRC as it stands. */
3558 split
= find_split_point (&SET_SRC (x
), insn
);
3559 if (split
&& split
!= &SET_SRC (x
))
3562 /* See if we can split SET_DEST as it stands. */
3563 split
= find_split_point (&SET_DEST (x
), insn
);
3564 if (split
&& split
!= &SET_DEST (x
))
3567 /* See if this is a bitfield assignment with everything constant. If
3568 so, this is an IOR of an AND, so split it into that. */
3569 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
3570 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0)))
3571 <= HOST_BITS_PER_WIDE_INT
)
3572 && GET_CODE (XEXP (SET_DEST (x
), 1)) == CONST_INT
3573 && GET_CODE (XEXP (SET_DEST (x
), 2)) == CONST_INT
3574 && GET_CODE (SET_SRC (x
)) == CONST_INT
3575 && ((INTVAL (XEXP (SET_DEST (x
), 1))
3576 + INTVAL (XEXP (SET_DEST (x
), 2)))
3577 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0))))
3578 && ! side_effects_p (XEXP (SET_DEST (x
), 0)))
3580 HOST_WIDE_INT pos
= INTVAL (XEXP (SET_DEST (x
), 2));
3581 unsigned HOST_WIDE_INT len
= INTVAL (XEXP (SET_DEST (x
), 1));
3582 unsigned HOST_WIDE_INT src
= INTVAL (SET_SRC (x
));
3583 rtx dest
= XEXP (SET_DEST (x
), 0);
3584 enum machine_mode mode
= GET_MODE (dest
);
3585 unsigned HOST_WIDE_INT mask
= ((HOST_WIDE_INT
) 1 << len
) - 1;
3588 if (BITS_BIG_ENDIAN
)
3589 pos
= GET_MODE_BITSIZE (mode
) - len
- pos
;
3591 or_mask
= gen_int_mode (src
<< pos
, mode
);
3594 simplify_gen_binary (IOR
, mode
, dest
, or_mask
));
3597 rtx negmask
= gen_int_mode (~(mask
<< pos
), mode
);
3599 simplify_gen_binary (IOR
, mode
,
3600 simplify_gen_binary (AND
, mode
,
3605 SUBST (SET_DEST (x
), dest
);
3607 split
= find_split_point (&SET_SRC (x
), insn
);
3608 if (split
&& split
!= &SET_SRC (x
))
3612 /* Otherwise, see if this is an operation that we can split into two.
3613 If so, try to split that. */
3614 code
= GET_CODE (SET_SRC (x
));
3619 /* If we are AND'ing with a large constant that is only a single
3620 bit and the result is only being used in a context where we
3621 need to know if it is zero or nonzero, replace it with a bit
3622 extraction. This will avoid the large constant, which might
3623 have taken more than one insn to make. If the constant were
3624 not a valid argument to the AND but took only one insn to make,
3625 this is no worse, but if it took more than one insn, it will
3628 if (GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
3629 && REG_P (XEXP (SET_SRC (x
), 0))
3630 && (pos
= exact_log2 (INTVAL (XEXP (SET_SRC (x
), 1)))) >= 7
3631 && REG_P (SET_DEST (x
))
3632 && (split
= find_single_use (SET_DEST (x
), insn
, (rtx
*) 0)) != 0
3633 && (GET_CODE (*split
) == EQ
|| GET_CODE (*split
) == NE
)
3634 && XEXP (*split
, 0) == SET_DEST (x
)
3635 && XEXP (*split
, 1) == const0_rtx
)
3637 rtx extraction
= make_extraction (GET_MODE (SET_DEST (x
)),
3638 XEXP (SET_SRC (x
), 0),
3639 pos
, NULL_RTX
, 1, 1, 0, 0);
3640 if (extraction
!= 0)
3642 SUBST (SET_SRC (x
), extraction
);
3643 return find_split_point (loc
, insn
);
3649 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3650 is known to be on, this can be converted into a NEG of a shift. */
3651 if (STORE_FLAG_VALUE
== -1 && XEXP (SET_SRC (x
), 1) == const0_rtx
3652 && GET_MODE (SET_SRC (x
)) == GET_MODE (XEXP (SET_SRC (x
), 0))
3653 && 1 <= (pos
= exact_log2
3654 (nonzero_bits (XEXP (SET_SRC (x
), 0),
3655 GET_MODE (XEXP (SET_SRC (x
), 0))))))
3657 enum machine_mode mode
= GET_MODE (XEXP (SET_SRC (x
), 0));
3661 gen_rtx_LSHIFTRT (mode
,
3662 XEXP (SET_SRC (x
), 0),
3665 split
= find_split_point (&SET_SRC (x
), insn
);
3666 if (split
&& split
!= &SET_SRC (x
))
3672 inner
= XEXP (SET_SRC (x
), 0);
3674 /* We can't optimize if either mode is a partial integer
3675 mode as we don't know how many bits are significant
3677 if (GET_MODE_CLASS (GET_MODE (inner
)) == MODE_PARTIAL_INT
3678 || GET_MODE_CLASS (GET_MODE (SET_SRC (x
))) == MODE_PARTIAL_INT
)
3682 len
= GET_MODE_BITSIZE (GET_MODE (inner
));
3688 if (GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
3689 && GET_CODE (XEXP (SET_SRC (x
), 2)) == CONST_INT
)
3691 inner
= XEXP (SET_SRC (x
), 0);
3692 len
= INTVAL (XEXP (SET_SRC (x
), 1));
3693 pos
= INTVAL (XEXP (SET_SRC (x
), 2));
3695 if (BITS_BIG_ENDIAN
)
3696 pos
= GET_MODE_BITSIZE (GET_MODE (inner
)) - len
- pos
;
3697 unsignedp
= (code
== ZERO_EXTRACT
);
3705 if (len
&& pos
>= 0 && pos
+ len
<= GET_MODE_BITSIZE (GET_MODE (inner
)))
3707 enum machine_mode mode
= GET_MODE (SET_SRC (x
));
3709 /* For unsigned, we have a choice of a shift followed by an
3710 AND or two shifts. Use two shifts for field sizes where the
3711 constant might be too large. We assume here that we can
3712 always at least get 8-bit constants in an AND insn, which is
3713 true for every current RISC. */
3715 if (unsignedp
&& len
<= 8)
3720 (mode
, gen_lowpart (mode
, inner
),
3722 GEN_INT (((HOST_WIDE_INT
) 1 << len
) - 1)));
3724 split
= find_split_point (&SET_SRC (x
), insn
);
3725 if (split
&& split
!= &SET_SRC (x
))
3732 (unsignedp
? LSHIFTRT
: ASHIFTRT
, mode
,
3733 gen_rtx_ASHIFT (mode
,
3734 gen_lowpart (mode
, inner
),
3735 GEN_INT (GET_MODE_BITSIZE (mode
)
3737 GEN_INT (GET_MODE_BITSIZE (mode
) - len
)));
3739 split
= find_split_point (&SET_SRC (x
), insn
);
3740 if (split
&& split
!= &SET_SRC (x
))
3745 /* See if this is a simple operation with a constant as the second
3746 operand. It might be that this constant is out of range and hence
3747 could be used as a split point. */
3748 if (BINARY_P (SET_SRC (x
))
3749 && CONSTANT_P (XEXP (SET_SRC (x
), 1))
3750 && (OBJECT_P (XEXP (SET_SRC (x
), 0))
3751 || (GET_CODE (XEXP (SET_SRC (x
), 0)) == SUBREG
3752 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x
), 0))))))
3753 return &XEXP (SET_SRC (x
), 1);
3755 /* Finally, see if this is a simple operation with its first operand
3756 not in a register. The operation might require this operand in a
3757 register, so return it as a split point. We can always do this
3758 because if the first operand were another operation, we would have
3759 already found it as a split point. */
3760 if ((BINARY_P (SET_SRC (x
)) || UNARY_P (SET_SRC (x
)))
3761 && ! register_operand (XEXP (SET_SRC (x
), 0), VOIDmode
))
3762 return &XEXP (SET_SRC (x
), 0);
3768 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3769 it is better to write this as (not (ior A B)) so we can split it.
3770 Similarly for IOR. */
3771 if (GET_CODE (XEXP (x
, 0)) == NOT
&& GET_CODE (XEXP (x
, 1)) == NOT
)
3774 gen_rtx_NOT (GET_MODE (x
),
3775 gen_rtx_fmt_ee (code
== IOR
? AND
: IOR
,
3777 XEXP (XEXP (x
, 0), 0),
3778 XEXP (XEXP (x
, 1), 0))));
3779 return find_split_point (loc
, insn
);
3782 /* Many RISC machines have a large set of logical insns. If the
3783 second operand is a NOT, put it first so we will try to split the
3784 other operand first. */
3785 if (GET_CODE (XEXP (x
, 1)) == NOT
)
3787 rtx tem
= XEXP (x
, 0);
3788 SUBST (XEXP (x
, 0), XEXP (x
, 1));
3789 SUBST (XEXP (x
, 1), tem
);
3797 /* Otherwise, select our actions depending on our rtx class. */
3798 switch (GET_RTX_CLASS (code
))
3800 case RTX_BITFIELD_OPS
: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3802 split
= find_split_point (&XEXP (x
, 2), insn
);
3805 /* ... fall through ... */
3807 case RTX_COMM_ARITH
:
3809 case RTX_COMM_COMPARE
:
3810 split
= find_split_point (&XEXP (x
, 1), insn
);
3813 /* ... fall through ... */
3815 /* Some machines have (and (shift ...) ...) insns. If X is not
3816 an AND, but XEXP (X, 0) is, use it as our split point. */
3817 if (GET_CODE (x
) != AND
&& GET_CODE (XEXP (x
, 0)) == AND
)
3818 return &XEXP (x
, 0);
3820 split
= find_split_point (&XEXP (x
, 0), insn
);
3826 /* Otherwise, we don't have a split point. */
3831 /* Throughout X, replace FROM with TO, and return the result.
3832 The result is TO if X is FROM;
3833 otherwise the result is X, but its contents may have been modified.
3834 If they were modified, a record was made in undobuf so that
3835 undo_all will (among other things) return X to its original state.
3837 If the number of changes necessary is too much to record to undo,
3838 the excess changes are not made, so the result is invalid.
3839 The changes already made can still be undone.
3840 undobuf.num_undo is incremented for such changes, so by testing that
3841 the caller can tell whether the result is valid.
3843 `n_occurrences' is incremented each time FROM is replaced.
3845 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3847 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3848 by copying if `n_occurrences' is nonzero. */
3851 subst (rtx x
, rtx from
, rtx to
, int in_dest
, int unique_copy
)
3853 enum rtx_code code
= GET_CODE (x
);
3854 enum machine_mode op0_mode
= VOIDmode
;
3859 /* Two expressions are equal if they are identical copies of a shared
3860 RTX or if they are both registers with the same register number
3863 #define COMBINE_RTX_EQUAL_P(X,Y) \
3865 || (REG_P (X) && REG_P (Y) \
3866 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3868 if (! in_dest
&& COMBINE_RTX_EQUAL_P (x
, from
))
3871 return (unique_copy
&& n_occurrences
> 1 ? copy_rtx (to
) : to
);
3874 /* If X and FROM are the same register but different modes, they will
3875 not have been seen as equal above. However, flow.c will make a
3876 LOG_LINKS entry for that case. If we do nothing, we will try to
3877 rerecognize our original insn and, when it succeeds, we will
3878 delete the feeding insn, which is incorrect.
3880 So force this insn not to match in this (rare) case. */
3881 if (! in_dest
&& code
== REG
&& REG_P (from
)
3882 && REGNO (x
) == REGNO (from
))
3883 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
3885 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3886 of which may contain things that can be combined. */
3887 if (code
!= MEM
&& code
!= LO_SUM
&& OBJECT_P (x
))
3890 /* It is possible to have a subexpression appear twice in the insn.
3891 Suppose that FROM is a register that appears within TO.
3892 Then, after that subexpression has been scanned once by `subst',
3893 the second time it is scanned, TO may be found. If we were
3894 to scan TO here, we would find FROM within it and create a
3895 self-referent rtl structure which is completely wrong. */
3896 if (COMBINE_RTX_EQUAL_P (x
, to
))
3899 /* Parallel asm_operands need special attention because all of the
3900 inputs are shared across the arms. Furthermore, unsharing the
3901 rtl results in recognition failures. Failure to handle this case
3902 specially can result in circular rtl.
3904 Solve this by doing a normal pass across the first entry of the
3905 parallel, and only processing the SET_DESTs of the subsequent
3908 if (code
== PARALLEL
3909 && GET_CODE (XVECEXP (x
, 0, 0)) == SET
3910 && GET_CODE (SET_SRC (XVECEXP (x
, 0, 0))) == ASM_OPERANDS
)
3912 new = subst (XVECEXP (x
, 0, 0), from
, to
, 0, unique_copy
);
3914 /* If this substitution failed, this whole thing fails. */
3915 if (GET_CODE (new) == CLOBBER
3916 && XEXP (new, 0) == const0_rtx
)
3919 SUBST (XVECEXP (x
, 0, 0), new);
3921 for (i
= XVECLEN (x
, 0) - 1; i
>= 1; i
--)
3923 rtx dest
= SET_DEST (XVECEXP (x
, 0, i
));
3926 && GET_CODE (dest
) != CC0
3927 && GET_CODE (dest
) != PC
)
3929 new = subst (dest
, from
, to
, 0, unique_copy
);
3931 /* If this substitution failed, this whole thing fails. */
3932 if (GET_CODE (new) == CLOBBER
3933 && XEXP (new, 0) == const0_rtx
)
3936 SUBST (SET_DEST (XVECEXP (x
, 0, i
)), new);
3942 len
= GET_RTX_LENGTH (code
);
3943 fmt
= GET_RTX_FORMAT (code
);
3945 /* We don't need to process a SET_DEST that is a register, CC0,
3946 or PC, so set up to skip this common case. All other cases
3947 where we want to suppress replacing something inside a
3948 SET_SRC are handled via the IN_DEST operand. */
3950 && (REG_P (SET_DEST (x
))
3951 || GET_CODE (SET_DEST (x
)) == CC0
3952 || GET_CODE (SET_DEST (x
)) == PC
))
3955 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3958 op0_mode
= GET_MODE (XEXP (x
, 0));
3960 for (i
= 0; i
< len
; i
++)
3965 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3967 if (COMBINE_RTX_EQUAL_P (XVECEXP (x
, i
, j
), from
))
3969 new = (unique_copy
&& n_occurrences
3970 ? copy_rtx (to
) : to
);
3975 new = subst (XVECEXP (x
, i
, j
), from
, to
, 0,
3978 /* If this substitution failed, this whole thing
3980 if (GET_CODE (new) == CLOBBER
3981 && XEXP (new, 0) == const0_rtx
)
3985 SUBST (XVECEXP (x
, i
, j
), new);
3988 else if (fmt
[i
] == 'e')
3990 /* If this is a register being set, ignore it. */
3994 && (((code
== SUBREG
|| code
== ZERO_EXTRACT
)
3996 || code
== STRICT_LOW_PART
))
3999 else if (COMBINE_RTX_EQUAL_P (XEXP (x
, i
), from
))
4001 /* In general, don't install a subreg involving two
4002 modes not tieable. It can worsen register
4003 allocation, and can even make invalid reload
4004 insns, since the reg inside may need to be copied
4005 from in the outside mode, and that may be invalid
4006 if it is an fp reg copied in integer mode.
4008 We allow two exceptions to this: It is valid if
4009 it is inside another SUBREG and the mode of that
4010 SUBREG and the mode of the inside of TO is
4011 tieable and it is valid if X is a SET that copies
4014 if (GET_CODE (to
) == SUBREG
4015 && ! MODES_TIEABLE_P (GET_MODE (to
),
4016 GET_MODE (SUBREG_REG (to
)))
4017 && ! (code
== SUBREG
4018 && MODES_TIEABLE_P (GET_MODE (x
),
4019 GET_MODE (SUBREG_REG (to
))))
4021 && ! (code
== SET
&& i
== 1 && XEXP (x
, 0) == cc0_rtx
)
4024 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
4026 #ifdef CANNOT_CHANGE_MODE_CLASS
4029 && REGNO (to
) < FIRST_PSEUDO_REGISTER
4030 && REG_CANNOT_CHANGE_MODE_P (REGNO (to
),
4033 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
4036 new = (unique_copy
&& n_occurrences
? copy_rtx (to
) : to
);
4040 /* If we are in a SET_DEST, suppress most cases unless we
4041 have gone inside a MEM, in which case we want to
4042 simplify the address. We assume here that things that
4043 are actually part of the destination have their inner
4044 parts in the first expression. This is true for SUBREG,
4045 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4046 things aside from REG and MEM that should appear in a
4048 new = subst (XEXP (x
, i
), from
, to
,
4050 && (code
== SUBREG
|| code
== STRICT_LOW_PART
4051 || code
== ZERO_EXTRACT
))
4053 && i
== 0), unique_copy
);
4055 /* If we found that we will have to reject this combination,
4056 indicate that by returning the CLOBBER ourselves, rather than
4057 an expression containing it. This will speed things up as
4058 well as prevent accidents where two CLOBBERs are considered
4059 to be equal, thus producing an incorrect simplification. */
4061 if (GET_CODE (new) == CLOBBER
&& XEXP (new, 0) == const0_rtx
)
4064 if (GET_CODE (x
) == SUBREG
4065 && (GET_CODE (new) == CONST_INT
4066 || GET_CODE (new) == CONST_DOUBLE
))
4068 enum machine_mode mode
= GET_MODE (x
);
4070 x
= simplify_subreg (GET_MODE (x
), new,
4071 GET_MODE (SUBREG_REG (x
)),
4074 x
= gen_rtx_CLOBBER (mode
, const0_rtx
);
4076 else if (GET_CODE (new) == CONST_INT
4077 && GET_CODE (x
) == ZERO_EXTEND
)
4079 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
4080 new, GET_MODE (XEXP (x
, 0)));
4084 SUBST (XEXP (x
, i
), new);
4089 /* Try to simplify X. If the simplification changed the code, it is likely
4090 that further simplification will help, so loop, but limit the number
4091 of repetitions that will be performed. */
4093 for (i
= 0; i
< 4; i
++)
4095 /* If X is sufficiently simple, don't bother trying to do anything
4097 if (code
!= CONST_INT
&& code
!= REG
&& code
!= CLOBBER
)
4098 x
= combine_simplify_rtx (x
, op0_mode
, in_dest
);
4100 if (GET_CODE (x
) == code
)
4103 code
= GET_CODE (x
);
4105 /* We no longer know the original mode of operand 0 since we
4106 have changed the form of X) */
4107 op0_mode
= VOIDmode
;
4113 /* Simplify X, a piece of RTL. We just operate on the expression at the
4114 outer level; call `subst' to simplify recursively. Return the new
4117 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4118 if we are inside a SET_DEST. */
4121 combine_simplify_rtx (rtx x
, enum machine_mode op0_mode
, int in_dest
)
4123 enum rtx_code code
= GET_CODE (x
);
4124 enum machine_mode mode
= GET_MODE (x
);
4128 /* If this is a commutative operation, put a constant last and a complex
4129 expression first. We don't need to do this for comparisons here. */
4130 if (COMMUTATIVE_ARITH_P (x
)
4131 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
4134 SUBST (XEXP (x
, 0), XEXP (x
, 1));
4135 SUBST (XEXP (x
, 1), temp
);
4138 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4139 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4140 things. Check for cases where both arms are testing the same
4143 Don't do anything if all operands are very simple. */
4146 && ((!OBJECT_P (XEXP (x
, 0))
4147 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
4148 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))
4149 || (!OBJECT_P (XEXP (x
, 1))
4150 && ! (GET_CODE (XEXP (x
, 1)) == SUBREG
4151 && OBJECT_P (SUBREG_REG (XEXP (x
, 1)))))))
4153 && (!OBJECT_P (XEXP (x
, 0))
4154 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
4155 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))))
4157 rtx cond
, true_rtx
, false_rtx
;
4159 cond
= if_then_else_cond (x
, &true_rtx
, &false_rtx
);
4161 /* If everything is a comparison, what we have is highly unlikely
4162 to be simpler, so don't use it. */
4163 && ! (COMPARISON_P (x
)
4164 && (COMPARISON_P (true_rtx
) || COMPARISON_P (false_rtx
))))
4166 rtx cop1
= const0_rtx
;
4167 enum rtx_code cond_code
= simplify_comparison (NE
, &cond
, &cop1
);
4169 if (cond_code
== NE
&& COMPARISON_P (cond
))
4172 /* Simplify the alternative arms; this may collapse the true and
4173 false arms to store-flag values. Be careful to use copy_rtx
4174 here since true_rtx or false_rtx might share RTL with x as a
4175 result of the if_then_else_cond call above. */
4176 true_rtx
= subst (copy_rtx (true_rtx
), pc_rtx
, pc_rtx
, 0, 0);
4177 false_rtx
= subst (copy_rtx (false_rtx
), pc_rtx
, pc_rtx
, 0, 0);
4179 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4180 is unlikely to be simpler. */
4181 if (general_operand (true_rtx
, VOIDmode
)
4182 && general_operand (false_rtx
, VOIDmode
))
4184 enum rtx_code reversed
;
4186 /* Restarting if we generate a store-flag expression will cause
4187 us to loop. Just drop through in this case. */
4189 /* If the result values are STORE_FLAG_VALUE and zero, we can
4190 just make the comparison operation. */
4191 if (true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
4192 x
= simplify_gen_relational (cond_code
, mode
, VOIDmode
,
4194 else if (true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
4195 && ((reversed
= reversed_comparison_code_parts
4196 (cond_code
, cond
, cop1
, NULL
))
4198 x
= simplify_gen_relational (reversed
, mode
, VOIDmode
,
4201 /* Likewise, we can make the negate of a comparison operation
4202 if the result values are - STORE_FLAG_VALUE and zero. */
4203 else if (GET_CODE (true_rtx
) == CONST_INT
4204 && INTVAL (true_rtx
) == - STORE_FLAG_VALUE
4205 && false_rtx
== const0_rtx
)
4206 x
= simplify_gen_unary (NEG
, mode
,
4207 simplify_gen_relational (cond_code
,
4211 else if (GET_CODE (false_rtx
) == CONST_INT
4212 && INTVAL (false_rtx
) == - STORE_FLAG_VALUE
4213 && true_rtx
== const0_rtx
4214 && ((reversed
= reversed_comparison_code_parts
4215 (cond_code
, cond
, cop1
, NULL
))
4217 x
= simplify_gen_unary (NEG
, mode
,
4218 simplify_gen_relational (reversed
,
4223 return gen_rtx_IF_THEN_ELSE (mode
,
4224 simplify_gen_relational (cond_code
,
4229 true_rtx
, false_rtx
);
4231 code
= GET_CODE (x
);
4232 op0_mode
= VOIDmode
;
4237 /* Try to fold this expression in case we have constants that weren't
4240 switch (GET_RTX_CLASS (code
))
4243 if (op0_mode
== VOIDmode
)
4244 op0_mode
= GET_MODE (XEXP (x
, 0));
4245 temp
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
4248 case RTX_COMM_COMPARE
:
4250 enum machine_mode cmp_mode
= GET_MODE (XEXP (x
, 0));
4251 if (cmp_mode
== VOIDmode
)
4253 cmp_mode
= GET_MODE (XEXP (x
, 1));
4254 if (cmp_mode
== VOIDmode
)
4255 cmp_mode
= op0_mode
;
4257 temp
= simplify_relational_operation (code
, mode
, cmp_mode
,
4258 XEXP (x
, 0), XEXP (x
, 1));
4261 case RTX_COMM_ARITH
:
4263 temp
= simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
4265 case RTX_BITFIELD_OPS
:
4267 temp
= simplify_ternary_operation (code
, mode
, op0_mode
, XEXP (x
, 0),
4268 XEXP (x
, 1), XEXP (x
, 2));
4277 code
= GET_CODE (temp
);
4278 op0_mode
= VOIDmode
;
4279 mode
= GET_MODE (temp
);
4282 /* First see if we can apply the inverse distributive law. */
4283 if (code
== PLUS
|| code
== MINUS
4284 || code
== AND
|| code
== IOR
|| code
== XOR
)
4286 x
= apply_distributive_law (x
);
4287 code
= GET_CODE (x
);
4288 op0_mode
= VOIDmode
;
4291 /* If CODE is an associative operation not otherwise handled, see if we
4292 can associate some operands. This can win if they are constants or
4293 if they are logically related (i.e. (a & b) & a). */
4294 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
|| code
== DIV
4295 || code
== AND
|| code
== IOR
|| code
== XOR
4296 || code
== SMAX
|| code
== SMIN
|| code
== UMAX
|| code
== UMIN
)
4297 && ((INTEGRAL_MODE_P (mode
) && code
!= DIV
)
4298 || (flag_unsafe_math_optimizations
&& FLOAT_MODE_P (mode
))))
4300 if (GET_CODE (XEXP (x
, 0)) == code
)
4302 rtx other
= XEXP (XEXP (x
, 0), 0);
4303 rtx inner_op0
= XEXP (XEXP (x
, 0), 1);
4304 rtx inner_op1
= XEXP (x
, 1);
4307 /* Make sure we pass the constant operand if any as the second
4308 one if this is a commutative operation. */
4309 if (CONSTANT_P (inner_op0
) && COMMUTATIVE_ARITH_P (x
))
4311 rtx tem
= inner_op0
;
4312 inner_op0
= inner_op1
;
4315 inner
= simplify_binary_operation (code
== MINUS
? PLUS
4316 : code
== DIV
? MULT
4318 mode
, inner_op0
, inner_op1
);
4320 /* For commutative operations, try the other pair if that one
4322 if (inner
== 0 && COMMUTATIVE_ARITH_P (x
))
4324 other
= XEXP (XEXP (x
, 0), 1);
4325 inner
= simplify_binary_operation (code
, mode
,
4326 XEXP (XEXP (x
, 0), 0),
4331 return simplify_gen_binary (code
, mode
, other
, inner
);
4335 /* A little bit of algebraic simplification here. */
4339 /* Ensure that our address has any ASHIFTs converted to MULT in case
4340 address-recognizing predicates are called later. */
4341 temp
= make_compound_operation (XEXP (x
, 0), MEM
);
4342 SUBST (XEXP (x
, 0), temp
);
4346 if (op0_mode
== VOIDmode
)
4347 op0_mode
= GET_MODE (SUBREG_REG (x
));
4349 /* See if this can be moved to simplify_subreg. */
4350 if (CONSTANT_P (SUBREG_REG (x
))
4351 && subreg_lowpart_offset (mode
, op0_mode
) == SUBREG_BYTE (x
)
4352 /* Don't call gen_lowpart if the inner mode
4353 is VOIDmode and we cannot simplify it, as SUBREG without
4354 inner mode is invalid. */
4355 && (GET_MODE (SUBREG_REG (x
)) != VOIDmode
4356 || gen_lowpart_common (mode
, SUBREG_REG (x
))))
4357 return gen_lowpart (mode
, SUBREG_REG (x
));
4359 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_CC
)
4363 temp
= simplify_subreg (mode
, SUBREG_REG (x
), op0_mode
,
4369 /* Don't change the mode of the MEM if that would change the meaning
4371 if (MEM_P (SUBREG_REG (x
))
4372 && (MEM_VOLATILE_P (SUBREG_REG (x
))
4373 || mode_dependent_address_p (XEXP (SUBREG_REG (x
), 0))))
4374 return gen_rtx_CLOBBER (mode
, const0_rtx
);
4376 /* Note that we cannot do any narrowing for non-constants since
4377 we might have been counting on using the fact that some bits were
4378 zero. We now do this in the SET. */
4383 temp
= expand_compound_operation (XEXP (x
, 0));
4385 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4386 replaced by (lshiftrt X C). This will convert
4387 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4389 if (GET_CODE (temp
) == ASHIFTRT
4390 && GET_CODE (XEXP (temp
, 1)) == CONST_INT
4391 && INTVAL (XEXP (temp
, 1)) == GET_MODE_BITSIZE (mode
) - 1)
4392 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (temp
, 0),
4393 INTVAL (XEXP (temp
, 1)));
4395 /* If X has only a single bit that might be nonzero, say, bit I, convert
4396 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4397 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4398 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4399 or a SUBREG of one since we'd be making the expression more
4400 complex if it was just a register. */
4403 && ! (GET_CODE (temp
) == SUBREG
4404 && REG_P (SUBREG_REG (temp
)))
4405 && (i
= exact_log2 (nonzero_bits (temp
, mode
))) >= 0)
4407 rtx temp1
= simplify_shift_const
4408 (NULL_RTX
, ASHIFTRT
, mode
,
4409 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, temp
,
4410 GET_MODE_BITSIZE (mode
) - 1 - i
),
4411 GET_MODE_BITSIZE (mode
) - 1 - i
);
4413 /* If all we did was surround TEMP with the two shifts, we
4414 haven't improved anything, so don't use it. Otherwise,
4415 we are better off with TEMP1. */
4416 if (GET_CODE (temp1
) != ASHIFTRT
4417 || GET_CODE (XEXP (temp1
, 0)) != ASHIFT
4418 || XEXP (XEXP (temp1
, 0), 0) != temp
)
4424 /* We can't handle truncation to a partial integer mode here
4425 because we don't know the real bitsize of the partial
4427 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
4430 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4431 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
4432 GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))))
4434 force_to_mode (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
4435 GET_MODE_MASK (mode
), 0));
4437 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4438 whose value is a comparison can be replaced with a subreg if
4439 STORE_FLAG_VALUE permits. */
4440 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4441 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0
4442 && (temp
= get_last_value (XEXP (x
, 0)))
4443 && COMPARISON_P (temp
))
4444 return gen_lowpart (mode
, XEXP (x
, 0));
4449 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4450 using cc0, in which case we want to leave it as a COMPARE
4451 so we can distinguish it from a register-register-copy. */
4452 if (XEXP (x
, 1) == const0_rtx
)
4455 /* x - 0 is the same as x unless x's mode has signed zeros and
4456 allows rounding towards -infinity. Under those conditions,
4458 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x
, 0)))
4459 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x
, 0))))
4460 && XEXP (x
, 1) == CONST0_RTX (GET_MODE (XEXP (x
, 0))))
4466 /* (const (const X)) can become (const X). Do it this way rather than
4467 returning the inner CONST since CONST can be shared with a
4469 if (GET_CODE (XEXP (x
, 0)) == CONST
)
4470 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4475 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4476 can add in an offset. find_split_point will split this address up
4477 again if it doesn't match. */
4478 if (GET_CODE (XEXP (x
, 0)) == HIGH
4479 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))
4485 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4486 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4487 bit-field and can be replaced by either a sign_extend or a
4488 sign_extract. The `and' may be a zero_extend and the two
4489 <c>, -<c> constants may be reversed. */
4490 if (GET_CODE (XEXP (x
, 0)) == XOR
4491 && GET_CODE (XEXP (x
, 1)) == CONST_INT
4492 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
4493 && INTVAL (XEXP (x
, 1)) == -INTVAL (XEXP (XEXP (x
, 0), 1))
4494 && ((i
= exact_log2 (INTVAL (XEXP (XEXP (x
, 0), 1)))) >= 0
4495 || (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0)
4496 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4497 && ((GET_CODE (XEXP (XEXP (x
, 0), 0)) == AND
4498 && GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 1)) == CONST_INT
4499 && (INTVAL (XEXP (XEXP (XEXP (x
, 0), 0), 1))
4500 == ((HOST_WIDE_INT
) 1 << (i
+ 1)) - 1))
4501 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
4502 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)))
4503 == (unsigned int) i
+ 1))))
4504 return simplify_shift_const
4505 (NULL_RTX
, ASHIFTRT
, mode
,
4506 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4507 XEXP (XEXP (XEXP (x
, 0), 0), 0),
4508 GET_MODE_BITSIZE (mode
) - (i
+ 1)),
4509 GET_MODE_BITSIZE (mode
) - (i
+ 1));
4511 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4512 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4513 the bitsize of the mode - 1. This allows simplification of
4514 "a = (b & 8) == 0;" */
4515 if (XEXP (x
, 1) == constm1_rtx
4516 && !REG_P (XEXP (x
, 0))
4517 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
4518 && REG_P (SUBREG_REG (XEXP (x
, 0))))
4519 && nonzero_bits (XEXP (x
, 0), mode
) == 1)
4520 return simplify_shift_const (NULL_RTX
, ASHIFTRT
, mode
,
4521 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4522 gen_rtx_XOR (mode
, XEXP (x
, 0), const1_rtx
),
4523 GET_MODE_BITSIZE (mode
) - 1),
4524 GET_MODE_BITSIZE (mode
) - 1);
4526 /* If we are adding two things that have no bits in common, convert
4527 the addition into an IOR. This will often be further simplified,
4528 for example in cases like ((a & 1) + (a & 2)), which can
4531 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4532 && (nonzero_bits (XEXP (x
, 0), mode
)
4533 & nonzero_bits (XEXP (x
, 1), mode
)) == 0)
4535 /* Try to simplify the expression further. */
4536 rtx tor
= simplify_gen_binary (IOR
, mode
, XEXP (x
, 0), XEXP (x
, 1));
4537 temp
= combine_simplify_rtx (tor
, mode
, in_dest
);
4539 /* If we could, great. If not, do not go ahead with the IOR
4540 replacement, since PLUS appears in many special purpose
4541 address arithmetic instructions. */
4542 if (GET_CODE (temp
) != CLOBBER
&& temp
!= tor
)
4548 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4549 (and <foo> (const_int pow2-1)) */
4550 if (GET_CODE (XEXP (x
, 1)) == AND
4551 && GET_CODE (XEXP (XEXP (x
, 1), 1)) == CONST_INT
4552 && exact_log2 (-INTVAL (XEXP (XEXP (x
, 1), 1))) >= 0
4553 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
4554 return simplify_and_const_int (NULL_RTX
, mode
, XEXP (x
, 0),
4555 -INTVAL (XEXP (XEXP (x
, 1), 1)) - 1);
4559 /* If we have (mult (plus A B) C), apply the distributive law and then
4560 the inverse distributive law to see if things simplify. This
4561 occurs mostly in addresses, often when unrolling loops. */
4563 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
4565 rtx result
= distribute_and_simplify_rtx (x
, 0);
4570 /* Try simplify a*(b/c) as (a*b)/c. */
4571 if (FLOAT_MODE_P (mode
) && flag_unsafe_math_optimizations
4572 && GET_CODE (XEXP (x
, 0)) == DIV
)
4574 rtx tem
= simplify_binary_operation (MULT
, mode
,
4575 XEXP (XEXP (x
, 0), 0),
4578 return simplify_gen_binary (DIV
, mode
, tem
, XEXP (XEXP (x
, 0), 1));
4583 /* If this is a divide by a power of two, treat it as a shift if
4584 its first operand is a shift. */
4585 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
4586 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0
4587 && (GET_CODE (XEXP (x
, 0)) == ASHIFT
4588 || GET_CODE (XEXP (x
, 0)) == LSHIFTRT
4589 || GET_CODE (XEXP (x
, 0)) == ASHIFTRT
4590 || GET_CODE (XEXP (x
, 0)) == ROTATE
4591 || GET_CODE (XEXP (x
, 0)) == ROTATERT
))
4592 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (x
, 0), i
);
4596 case GT
: case GTU
: case GE
: case GEU
:
4597 case LT
: case LTU
: case LE
: case LEU
:
4598 case UNEQ
: case LTGT
:
4599 case UNGT
: case UNGE
:
4600 case UNLT
: case UNLE
:
4601 case UNORDERED
: case ORDERED
:
4602 /* If the first operand is a condition code, we can't do anything
4604 if (GET_CODE (XEXP (x
, 0)) == COMPARE
4605 || (GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))) != MODE_CC
4606 && ! CC0_P (XEXP (x
, 0))))
4608 rtx op0
= XEXP (x
, 0);
4609 rtx op1
= XEXP (x
, 1);
4610 enum rtx_code new_code
;
4612 if (GET_CODE (op0
) == COMPARE
)
4613 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
4615 /* Simplify our comparison, if possible. */
4616 new_code
= simplify_comparison (code
, &op0
, &op1
);
4618 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4619 if only the low-order bit is possibly nonzero in X (such as when
4620 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4621 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4622 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4625 Remove any ZERO_EXTRACT we made when thinking this was a
4626 comparison. It may now be simpler to use, e.g., an AND. If a
4627 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4628 the call to make_compound_operation in the SET case. */
4630 if (STORE_FLAG_VALUE
== 1
4631 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4632 && op1
== const0_rtx
4633 && mode
== GET_MODE (op0
)
4634 && nonzero_bits (op0
, mode
) == 1)
4635 return gen_lowpart (mode
,
4636 expand_compound_operation (op0
));
4638 else if (STORE_FLAG_VALUE
== 1
4639 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4640 && op1
== const0_rtx
4641 && mode
== GET_MODE (op0
)
4642 && (num_sign_bit_copies (op0
, mode
)
4643 == GET_MODE_BITSIZE (mode
)))
4645 op0
= expand_compound_operation (op0
);
4646 return simplify_gen_unary (NEG
, mode
,
4647 gen_lowpart (mode
, op0
),
4651 else if (STORE_FLAG_VALUE
== 1
4652 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4653 && op1
== const0_rtx
4654 && mode
== GET_MODE (op0
)
4655 && nonzero_bits (op0
, mode
) == 1)
4657 op0
= expand_compound_operation (op0
);
4658 return simplify_gen_binary (XOR
, mode
,
4659 gen_lowpart (mode
, op0
),
4663 else if (STORE_FLAG_VALUE
== 1
4664 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4665 && op1
== const0_rtx
4666 && mode
== GET_MODE (op0
)
4667 && (num_sign_bit_copies (op0
, mode
)
4668 == GET_MODE_BITSIZE (mode
)))
4670 op0
= expand_compound_operation (op0
);
4671 return plus_constant (gen_lowpart (mode
, op0
), 1);
4674 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4676 if (STORE_FLAG_VALUE
== -1
4677 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4678 && op1
== const0_rtx
4679 && (num_sign_bit_copies (op0
, mode
)
4680 == GET_MODE_BITSIZE (mode
)))
4681 return gen_lowpart (mode
,
4682 expand_compound_operation (op0
));
4684 else if (STORE_FLAG_VALUE
== -1
4685 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4686 && op1
== const0_rtx
4687 && mode
== GET_MODE (op0
)
4688 && nonzero_bits (op0
, mode
) == 1)
4690 op0
= expand_compound_operation (op0
);
4691 return simplify_gen_unary (NEG
, mode
,
4692 gen_lowpart (mode
, op0
),
4696 else if (STORE_FLAG_VALUE
== -1
4697 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4698 && op1
== const0_rtx
4699 && mode
== GET_MODE (op0
)
4700 && (num_sign_bit_copies (op0
, mode
)
4701 == GET_MODE_BITSIZE (mode
)))
4703 op0
= expand_compound_operation (op0
);
4704 return simplify_gen_unary (NOT
, mode
,
4705 gen_lowpart (mode
, op0
),
4709 /* If X is 0/1, (eq X 0) is X-1. */
4710 else if (STORE_FLAG_VALUE
== -1
4711 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4712 && op1
== const0_rtx
4713 && mode
== GET_MODE (op0
)
4714 && nonzero_bits (op0
, mode
) == 1)
4716 op0
= expand_compound_operation (op0
);
4717 return plus_constant (gen_lowpart (mode
, op0
), -1);
4720 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4721 one bit that might be nonzero, we can convert (ne x 0) to
4722 (ashift x c) where C puts the bit in the sign bit. Remove any
4723 AND with STORE_FLAG_VALUE when we are done, since we are only
4724 going to test the sign bit. */
4725 if (new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4726 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4727 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
4728 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1))
4729 && op1
== const0_rtx
4730 && mode
== GET_MODE (op0
)
4731 && (i
= exact_log2 (nonzero_bits (op0
, mode
))) >= 0)
4733 x
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4734 expand_compound_operation (op0
),
4735 GET_MODE_BITSIZE (mode
) - 1 - i
);
4736 if (GET_CODE (x
) == AND
&& XEXP (x
, 1) == const_true_rtx
)
4742 /* If the code changed, return a whole new comparison. */
4743 if (new_code
!= code
)
4744 return gen_rtx_fmt_ee (new_code
, mode
, op0
, op1
);
4746 /* Otherwise, keep this operation, but maybe change its operands.
4747 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4748 SUBST (XEXP (x
, 0), op0
);
4749 SUBST (XEXP (x
, 1), op1
);
4754 return simplify_if_then_else (x
);
4760 /* If we are processing SET_DEST, we are done. */
4764 return expand_compound_operation (x
);
4767 return simplify_set (x
);
4771 return simplify_logical (x
);
4778 /* If this is a shift by a constant amount, simplify it. */
4779 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
4780 return simplify_shift_const (x
, code
, mode
, XEXP (x
, 0),
4781 INTVAL (XEXP (x
, 1)));
4783 else if (SHIFT_COUNT_TRUNCATED
&& !REG_P (XEXP (x
, 1)))
4785 force_to_mode (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)),
4787 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x
))))
4799 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4802 simplify_if_then_else (rtx x
)
4804 enum machine_mode mode
= GET_MODE (x
);
4805 rtx cond
= XEXP (x
, 0);
4806 rtx true_rtx
= XEXP (x
, 1);
4807 rtx false_rtx
= XEXP (x
, 2);
4808 enum rtx_code true_code
= GET_CODE (cond
);
4809 int comparison_p
= COMPARISON_P (cond
);
4812 enum rtx_code false_code
;
4815 /* Simplify storing of the truth value. */
4816 if (comparison_p
&& true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
4817 return simplify_gen_relational (true_code
, mode
, VOIDmode
,
4818 XEXP (cond
, 0), XEXP (cond
, 1));
4820 /* Also when the truth value has to be reversed. */
4822 && true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
4823 && (reversed
= reversed_comparison (cond
, mode
)))
4826 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4827 in it is being compared against certain values. Get the true and false
4828 comparisons and see if that says anything about the value of each arm. */
4831 && ((false_code
= reversed_comparison_code (cond
, NULL
))
4833 && REG_P (XEXP (cond
, 0)))
4836 rtx from
= XEXP (cond
, 0);
4837 rtx true_val
= XEXP (cond
, 1);
4838 rtx false_val
= true_val
;
4841 /* If FALSE_CODE is EQ, swap the codes and arms. */
4843 if (false_code
== EQ
)
4845 swapped
= 1, true_code
= EQ
, false_code
= NE
;
4846 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
4849 /* If we are comparing against zero and the expression being tested has
4850 only a single bit that might be nonzero, that is its value when it is
4851 not equal to zero. Similarly if it is known to be -1 or 0. */
4853 if (true_code
== EQ
&& true_val
== const0_rtx
4854 && exact_log2 (nzb
= nonzero_bits (from
, GET_MODE (from
))) >= 0)
4855 false_code
= EQ
, false_val
= GEN_INT (nzb
);
4856 else if (true_code
== EQ
&& true_val
== const0_rtx
4857 && (num_sign_bit_copies (from
, GET_MODE (from
))
4858 == GET_MODE_BITSIZE (GET_MODE (from
))))
4859 false_code
= EQ
, false_val
= constm1_rtx
;
4861 /* Now simplify an arm if we know the value of the register in the
4862 branch and it is used in the arm. Be careful due to the potential
4863 of locally-shared RTL. */
4865 if (reg_mentioned_p (from
, true_rtx
))
4866 true_rtx
= subst (known_cond (copy_rtx (true_rtx
), true_code
,
4868 pc_rtx
, pc_rtx
, 0, 0);
4869 if (reg_mentioned_p (from
, false_rtx
))
4870 false_rtx
= subst (known_cond (copy_rtx (false_rtx
), false_code
,
4872 pc_rtx
, pc_rtx
, 0, 0);
4874 SUBST (XEXP (x
, 1), swapped
? false_rtx
: true_rtx
);
4875 SUBST (XEXP (x
, 2), swapped
? true_rtx
: false_rtx
);
4877 true_rtx
= XEXP (x
, 1);
4878 false_rtx
= XEXP (x
, 2);
4879 true_code
= GET_CODE (cond
);
4882 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4883 reversed, do so to avoid needing two sets of patterns for
4884 subtract-and-branch insns. Similarly if we have a constant in the true
4885 arm, the false arm is the same as the first operand of the comparison, or
4886 the false arm is more complicated than the true arm. */
4889 && reversed_comparison_code (cond
, NULL
) != UNKNOWN
4890 && (true_rtx
== pc_rtx
4891 || (CONSTANT_P (true_rtx
)
4892 && GET_CODE (false_rtx
) != CONST_INT
&& false_rtx
!= pc_rtx
)
4893 || true_rtx
== const0_rtx
4894 || (OBJECT_P (true_rtx
) && !OBJECT_P (false_rtx
))
4895 || (GET_CODE (true_rtx
) == SUBREG
&& OBJECT_P (SUBREG_REG (true_rtx
))
4896 && !OBJECT_P (false_rtx
))
4897 || reg_mentioned_p (true_rtx
, false_rtx
)
4898 || rtx_equal_p (false_rtx
, XEXP (cond
, 0))))
4900 true_code
= reversed_comparison_code (cond
, NULL
);
4901 SUBST (XEXP (x
, 0), reversed_comparison (cond
, GET_MODE (cond
)));
4902 SUBST (XEXP (x
, 1), false_rtx
);
4903 SUBST (XEXP (x
, 2), true_rtx
);
4905 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
4908 /* It is possible that the conditional has been simplified out. */
4909 true_code
= GET_CODE (cond
);
4910 comparison_p
= COMPARISON_P (cond
);
4913 /* If the two arms are identical, we don't need the comparison. */
4915 if (rtx_equal_p (true_rtx
, false_rtx
) && ! side_effects_p (cond
))
4918 /* Convert a == b ? b : a to "a". */
4919 if (true_code
== EQ
&& ! side_effects_p (cond
)
4920 && !HONOR_NANS (mode
)
4921 && rtx_equal_p (XEXP (cond
, 0), false_rtx
)
4922 && rtx_equal_p (XEXP (cond
, 1), true_rtx
))
4924 else if (true_code
== NE
&& ! side_effects_p (cond
)
4925 && !HONOR_NANS (mode
)
4926 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
4927 && rtx_equal_p (XEXP (cond
, 1), false_rtx
))
4930 /* Look for cases where we have (abs x) or (neg (abs X)). */
4932 if (GET_MODE_CLASS (mode
) == MODE_INT
4933 && GET_CODE (false_rtx
) == NEG
4934 && rtx_equal_p (true_rtx
, XEXP (false_rtx
, 0))
4936 && rtx_equal_p (true_rtx
, XEXP (cond
, 0))
4937 && ! side_effects_p (true_rtx
))
4942 return simplify_gen_unary (ABS
, mode
, true_rtx
, mode
);
4946 simplify_gen_unary (NEG
, mode
,
4947 simplify_gen_unary (ABS
, mode
, true_rtx
, mode
),
4953 /* Look for MIN or MAX. */
4955 if ((! FLOAT_MODE_P (mode
) || flag_unsafe_math_optimizations
)
4957 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
4958 && rtx_equal_p (XEXP (cond
, 1), false_rtx
)
4959 && ! side_effects_p (cond
))
4964 return simplify_gen_binary (SMAX
, mode
, true_rtx
, false_rtx
);
4967 return simplify_gen_binary (SMIN
, mode
, true_rtx
, false_rtx
);
4970 return simplify_gen_binary (UMAX
, mode
, true_rtx
, false_rtx
);
4973 return simplify_gen_binary (UMIN
, mode
, true_rtx
, false_rtx
);
4978 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4979 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4980 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4981 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4982 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4983 neither 1 or -1, but it isn't worth checking for. */
4985 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
4987 && GET_MODE_CLASS (mode
) == MODE_INT
4988 && ! side_effects_p (x
))
4990 rtx t
= make_compound_operation (true_rtx
, SET
);
4991 rtx f
= make_compound_operation (false_rtx
, SET
);
4992 rtx cond_op0
= XEXP (cond
, 0);
4993 rtx cond_op1
= XEXP (cond
, 1);
4994 enum rtx_code op
= UNKNOWN
, extend_op
= UNKNOWN
;
4995 enum machine_mode m
= mode
;
4996 rtx z
= 0, c1
= NULL_RTX
;
4998 if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == MINUS
4999 || GET_CODE (t
) == IOR
|| GET_CODE (t
) == XOR
5000 || GET_CODE (t
) == ASHIFT
5001 || GET_CODE (t
) == LSHIFTRT
|| GET_CODE (t
) == ASHIFTRT
)
5002 && rtx_equal_p (XEXP (t
, 0), f
))
5003 c1
= XEXP (t
, 1), op
= GET_CODE (t
), z
= f
;
5005 /* If an identity-zero op is commutative, check whether there
5006 would be a match if we swapped the operands. */
5007 else if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == IOR
5008 || GET_CODE (t
) == XOR
)
5009 && rtx_equal_p (XEXP (t
, 1), f
))
5010 c1
= XEXP (t
, 0), op
= GET_CODE (t
), z
= f
;
5011 else if (GET_CODE (t
) == SIGN_EXTEND
5012 && (GET_CODE (XEXP (t
, 0)) == PLUS
5013 || GET_CODE (XEXP (t
, 0)) == MINUS
5014 || GET_CODE (XEXP (t
, 0)) == IOR
5015 || GET_CODE (XEXP (t
, 0)) == XOR
5016 || GET_CODE (XEXP (t
, 0)) == ASHIFT
5017 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
5018 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
5019 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
5020 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
5021 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
5022 && (num_sign_bit_copies (f
, GET_MODE (f
))
5024 (GET_MODE_BITSIZE (mode
)
5025 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t
, 0), 0))))))
5027 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
5028 extend_op
= SIGN_EXTEND
;
5029 m
= GET_MODE (XEXP (t
, 0));
5031 else if (GET_CODE (t
) == SIGN_EXTEND
5032 && (GET_CODE (XEXP (t
, 0)) == PLUS
5033 || GET_CODE (XEXP (t
, 0)) == IOR
5034 || GET_CODE (XEXP (t
, 0)) == XOR
)
5035 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
5036 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
5037 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
5038 && (num_sign_bit_copies (f
, GET_MODE (f
))
5040 (GET_MODE_BITSIZE (mode
)
5041 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t
, 0), 1))))))
5043 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
5044 extend_op
= SIGN_EXTEND
;
5045 m
= GET_MODE (XEXP (t
, 0));
5047 else if (GET_CODE (t
) == ZERO_EXTEND
5048 && (GET_CODE (XEXP (t
, 0)) == PLUS
5049 || GET_CODE (XEXP (t
, 0)) == MINUS
5050 || GET_CODE (XEXP (t
, 0)) == IOR
5051 || GET_CODE (XEXP (t
, 0)) == XOR
5052 || GET_CODE (XEXP (t
, 0)) == ASHIFT
5053 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
5054 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
5055 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
5056 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5057 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
5058 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
5059 && ((nonzero_bits (f
, GET_MODE (f
))
5060 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 0))))
5063 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
5064 extend_op
= ZERO_EXTEND
;
5065 m
= GET_MODE (XEXP (t
, 0));
5067 else if (GET_CODE (t
) == ZERO_EXTEND
5068 && (GET_CODE (XEXP (t
, 0)) == PLUS
5069 || GET_CODE (XEXP (t
, 0)) == IOR
5070 || GET_CODE (XEXP (t
, 0)) == XOR
)
5071 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
5072 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5073 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
5074 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
5075 && ((nonzero_bits (f
, GET_MODE (f
))
5076 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 1))))
5079 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
5080 extend_op
= ZERO_EXTEND
;
5081 m
= GET_MODE (XEXP (t
, 0));
5086 temp
= subst (simplify_gen_relational (true_code
, m
, VOIDmode
,
5087 cond_op0
, cond_op1
),
5088 pc_rtx
, pc_rtx
, 0, 0);
5089 temp
= simplify_gen_binary (MULT
, m
, temp
,
5090 simplify_gen_binary (MULT
, m
, c1
,
5092 temp
= subst (temp
, pc_rtx
, pc_rtx
, 0, 0);
5093 temp
= simplify_gen_binary (op
, m
, gen_lowpart (m
, z
), temp
);
5095 if (extend_op
!= UNKNOWN
)
5096 temp
= simplify_gen_unary (extend_op
, mode
, temp
, m
);
5102 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5103 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5104 negation of a single bit, we can convert this operation to a shift. We
5105 can actually do this more generally, but it doesn't seem worth it. */
5107 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
5108 && false_rtx
== const0_rtx
&& GET_CODE (true_rtx
) == CONST_INT
5109 && ((1 == nonzero_bits (XEXP (cond
, 0), mode
)
5110 && (i
= exact_log2 (INTVAL (true_rtx
))) >= 0)
5111 || ((num_sign_bit_copies (XEXP (cond
, 0), mode
)
5112 == GET_MODE_BITSIZE (mode
))
5113 && (i
= exact_log2 (-INTVAL (true_rtx
))) >= 0)))
5115 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5116 gen_lowpart (mode
, XEXP (cond
, 0)), i
);
5118 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5119 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
5120 && false_rtx
== const0_rtx
&& GET_CODE (true_rtx
) == CONST_INT
5121 && GET_MODE (XEXP (cond
, 0)) == mode
5122 && (INTVAL (true_rtx
) & GET_MODE_MASK (mode
))
5123 == nonzero_bits (XEXP (cond
, 0), mode
)
5124 && (i
= exact_log2 (INTVAL (true_rtx
) & GET_MODE_MASK (mode
))) >= 0)
5125 return XEXP (cond
, 0);
5130 /* Simplify X, a SET expression. Return the new expression. */
5133 simplify_set (rtx x
)
5135 rtx src
= SET_SRC (x
);
5136 rtx dest
= SET_DEST (x
);
5137 enum machine_mode mode
5138 = GET_MODE (src
) != VOIDmode
? GET_MODE (src
) : GET_MODE (dest
);
5142 /* (set (pc) (return)) gets written as (return). */
5143 if (GET_CODE (dest
) == PC
&& GET_CODE (src
) == RETURN
)
5146 /* Now that we know for sure which bits of SRC we are using, see if we can
5147 simplify the expression for the object knowing that we only need the
5150 if (GET_MODE_CLASS (mode
) == MODE_INT
5151 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
5153 src
= force_to_mode (src
, mode
, ~(HOST_WIDE_INT
) 0, 0);
5154 SUBST (SET_SRC (x
), src
);
5157 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5158 the comparison result and try to simplify it unless we already have used
5159 undobuf.other_insn. */
5160 if ((GET_MODE_CLASS (mode
) == MODE_CC
5161 || GET_CODE (src
) == COMPARE
5163 && (cc_use
= find_single_use (dest
, subst_insn
, &other_insn
)) != 0
5164 && (undobuf
.other_insn
== 0 || other_insn
== undobuf
.other_insn
)
5165 && COMPARISON_P (*cc_use
)
5166 && rtx_equal_p (XEXP (*cc_use
, 0), dest
))
5168 enum rtx_code old_code
= GET_CODE (*cc_use
);
5169 enum rtx_code new_code
;
5171 int other_changed
= 0;
5172 enum machine_mode compare_mode
= GET_MODE (dest
);
5174 if (GET_CODE (src
) == COMPARE
)
5175 op0
= XEXP (src
, 0), op1
= XEXP (src
, 1);
5177 op0
= src
, op1
= CONST0_RTX (GET_MODE (src
));
5179 tmp
= simplify_relational_operation (old_code
, compare_mode
, VOIDmode
,
5182 new_code
= old_code
;
5183 else if (!CONSTANT_P (tmp
))
5185 new_code
= GET_CODE (tmp
);
5186 op0
= XEXP (tmp
, 0);
5187 op1
= XEXP (tmp
, 1);
5191 rtx pat
= PATTERN (other_insn
);
5192 undobuf
.other_insn
= other_insn
;
5193 SUBST (*cc_use
, tmp
);
5195 /* Attempt to simplify CC user. */
5196 if (GET_CODE (pat
) == SET
)
5198 rtx
new = simplify_rtx (SET_SRC (pat
));
5199 if (new != NULL_RTX
)
5200 SUBST (SET_SRC (pat
), new);
5203 /* Convert X into a no-op move. */
5204 SUBST (SET_DEST (x
), pc_rtx
);
5205 SUBST (SET_SRC (x
), pc_rtx
);
5209 /* Simplify our comparison, if possible. */
5210 new_code
= simplify_comparison (new_code
, &op0
, &op1
);
5212 #ifdef SELECT_CC_MODE
5213 /* If this machine has CC modes other than CCmode, check to see if we
5214 need to use a different CC mode here. */
5215 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
5216 compare_mode
= GET_MODE (op0
);
5218 compare_mode
= SELECT_CC_MODE (new_code
, op0
, op1
);
5221 /* If the mode changed, we have to change SET_DEST, the mode in the
5222 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5223 a hard register, just build new versions with the proper mode. If it
5224 is a pseudo, we lose unless it is only time we set the pseudo, in
5225 which case we can safely change its mode. */
5226 if (compare_mode
!= GET_MODE (dest
))
5228 if (can_change_dest_mode (dest
, 0, compare_mode
))
5230 unsigned int regno
= REGNO (dest
);
5233 if (regno
< FIRST_PSEUDO_REGISTER
)
5234 new_dest
= gen_rtx_REG (compare_mode
, regno
);
5237 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
5238 new_dest
= regno_reg_rtx
[regno
];
5241 SUBST (SET_DEST (x
), new_dest
);
5242 SUBST (XEXP (*cc_use
, 0), new_dest
);
5249 #endif /* SELECT_CC_MODE */
5251 /* If the code changed, we have to build a new comparison in
5252 undobuf.other_insn. */
5253 if (new_code
!= old_code
)
5255 int other_changed_previously
= other_changed
;
5256 unsigned HOST_WIDE_INT mask
;
5258 SUBST (*cc_use
, gen_rtx_fmt_ee (new_code
, GET_MODE (*cc_use
),
5262 /* If the only change we made was to change an EQ into an NE or
5263 vice versa, OP0 has only one bit that might be nonzero, and OP1
5264 is zero, check if changing the user of the condition code will
5265 produce a valid insn. If it won't, we can keep the original code
5266 in that insn by surrounding our operation with an XOR. */
5268 if (((old_code
== NE
&& new_code
== EQ
)
5269 || (old_code
== EQ
&& new_code
== NE
))
5270 && ! other_changed_previously
&& op1
== const0_rtx
5271 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
5272 && exact_log2 (mask
= nonzero_bits (op0
, GET_MODE (op0
))) >= 0)
5274 rtx pat
= PATTERN (other_insn
), note
= 0;
5276 if ((recog_for_combine (&pat
, other_insn
, ¬e
) < 0
5277 && ! check_asm_operands (pat
)))
5279 PUT_CODE (*cc_use
, old_code
);
5282 op0
= simplify_gen_binary (XOR
, GET_MODE (op0
),
5283 op0
, GEN_INT (mask
));
5289 undobuf
.other_insn
= other_insn
;
5292 /* If we are now comparing against zero, change our source if
5293 needed. If we do not use cc0, we always have a COMPARE. */
5294 if (op1
== const0_rtx
&& dest
== cc0_rtx
)
5296 SUBST (SET_SRC (x
), op0
);
5302 /* Otherwise, if we didn't previously have a COMPARE in the
5303 correct mode, we need one. */
5304 if (GET_CODE (src
) != COMPARE
|| GET_MODE (src
) != compare_mode
)
5306 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
5309 else if (GET_MODE (op0
) == compare_mode
&& op1
== const0_rtx
)
5311 SUBST(SET_SRC (x
), op0
);
5316 /* Otherwise, update the COMPARE if needed. */
5317 SUBST (XEXP (src
, 0), op0
);
5318 SUBST (XEXP (src
, 1), op1
);
5323 /* Get SET_SRC in a form where we have placed back any
5324 compound expressions. Then do the checks below. */
5325 src
= make_compound_operation (src
, SET
);
5326 SUBST (SET_SRC (x
), src
);
5329 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5330 and X being a REG or (subreg (reg)), we may be able to convert this to
5331 (set (subreg:m2 x) (op)).
5333 We can always do this if M1 is narrower than M2 because that means that
5334 we only care about the low bits of the result.
5336 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5337 perform a narrower operation than requested since the high-order bits will
5338 be undefined. On machine where it is defined, this transformation is safe
5339 as long as M1 and M2 have the same number of words. */
5341 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
5342 && !OBJECT_P (SUBREG_REG (src
))
5343 && (((GET_MODE_SIZE (GET_MODE (src
)) + (UNITS_PER_WORD
- 1))
5345 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))
5346 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
5347 #ifndef WORD_REGISTER_OPERATIONS
5348 && (GET_MODE_SIZE (GET_MODE (src
))
5349 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))))
5351 #ifdef CANNOT_CHANGE_MODE_CLASS
5352 && ! (REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
5353 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest
),
5354 GET_MODE (SUBREG_REG (src
)),
5358 || (GET_CODE (dest
) == SUBREG
5359 && REG_P (SUBREG_REG (dest
)))))
5361 SUBST (SET_DEST (x
),
5362 gen_lowpart (GET_MODE (SUBREG_REG (src
)),
5364 SUBST (SET_SRC (x
), SUBREG_REG (src
));
5366 src
= SET_SRC (x
), dest
= SET_DEST (x
);
5370 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5373 && GET_CODE (src
) == SUBREG
5374 && subreg_lowpart_p (src
)
5375 && (GET_MODE_BITSIZE (GET_MODE (src
))
5376 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src
)))))
5378 rtx inner
= SUBREG_REG (src
);
5379 enum machine_mode inner_mode
= GET_MODE (inner
);
5381 /* Here we make sure that we don't have a sign bit on. */
5382 if (GET_MODE_BITSIZE (inner_mode
) <= HOST_BITS_PER_WIDE_INT
5383 && (nonzero_bits (inner
, inner_mode
)
5384 < ((unsigned HOST_WIDE_INT
) 1
5385 << (GET_MODE_BITSIZE (GET_MODE (src
)) - 1))))
5387 SUBST (SET_SRC (x
), inner
);
5393 #ifdef LOAD_EXTEND_OP
5394 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5395 would require a paradoxical subreg. Replace the subreg with a
5396 zero_extend to avoid the reload that would otherwise be required. */
5398 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
5399 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))) != UNKNOWN
5400 && SUBREG_BYTE (src
) == 0
5401 && (GET_MODE_SIZE (GET_MODE (src
))
5402 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))))
5403 && MEM_P (SUBREG_REG (src
)))
5406 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))),
5407 GET_MODE (src
), SUBREG_REG (src
)));
5413 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5414 are comparing an item known to be 0 or -1 against 0, use a logical
5415 operation instead. Check for one of the arms being an IOR of the other
5416 arm with some value. We compute three terms to be IOR'ed together. In
5417 practice, at most two will be nonzero. Then we do the IOR's. */
5419 if (GET_CODE (dest
) != PC
5420 && GET_CODE (src
) == IF_THEN_ELSE
5421 && GET_MODE_CLASS (GET_MODE (src
)) == MODE_INT
5422 && (GET_CODE (XEXP (src
, 0)) == EQ
|| GET_CODE (XEXP (src
, 0)) == NE
)
5423 && XEXP (XEXP (src
, 0), 1) == const0_rtx
5424 && GET_MODE (src
) == GET_MODE (XEXP (XEXP (src
, 0), 0))
5425 #ifdef HAVE_conditional_move
5426 && ! can_conditionally_move_p (GET_MODE (src
))
5428 && (num_sign_bit_copies (XEXP (XEXP (src
, 0), 0),
5429 GET_MODE (XEXP (XEXP (src
, 0), 0)))
5430 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src
, 0), 0))))
5431 && ! side_effects_p (src
))
5433 rtx true_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
5434 ? XEXP (src
, 1) : XEXP (src
, 2));
5435 rtx false_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
5436 ? XEXP (src
, 2) : XEXP (src
, 1));
5437 rtx term1
= const0_rtx
, term2
, term3
;
5439 if (GET_CODE (true_rtx
) == IOR
5440 && rtx_equal_p (XEXP (true_rtx
, 0), false_rtx
))
5441 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 1), false_rtx
= const0_rtx
;
5442 else if (GET_CODE (true_rtx
) == IOR
5443 && rtx_equal_p (XEXP (true_rtx
, 1), false_rtx
))
5444 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 0), false_rtx
= const0_rtx
;
5445 else if (GET_CODE (false_rtx
) == IOR
5446 && rtx_equal_p (XEXP (false_rtx
, 0), true_rtx
))
5447 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 1), true_rtx
= const0_rtx
;
5448 else if (GET_CODE (false_rtx
) == IOR
5449 && rtx_equal_p (XEXP (false_rtx
, 1), true_rtx
))
5450 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 0), true_rtx
= const0_rtx
;
5452 term2
= simplify_gen_binary (AND
, GET_MODE (src
),
5453 XEXP (XEXP (src
, 0), 0), true_rtx
);
5454 term3
= simplify_gen_binary (AND
, GET_MODE (src
),
5455 simplify_gen_unary (NOT
, GET_MODE (src
),
5456 XEXP (XEXP (src
, 0), 0),
5461 simplify_gen_binary (IOR
, GET_MODE (src
),
5462 simplify_gen_binary (IOR
, GET_MODE (src
),
5469 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5470 whole thing fail. */
5471 if (GET_CODE (src
) == CLOBBER
&& XEXP (src
, 0) == const0_rtx
)
5473 else if (GET_CODE (dest
) == CLOBBER
&& XEXP (dest
, 0) == const0_rtx
)
5476 /* Convert this into a field assignment operation, if possible. */
5477 return make_field_assignment (x
);
5480 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5484 simplify_logical (rtx x
)
5486 enum machine_mode mode
= GET_MODE (x
);
5487 rtx op0
= XEXP (x
, 0);
5488 rtx op1
= XEXP (x
, 1);
5490 switch (GET_CODE (x
))
5493 /* We can call simplify_and_const_int only if we don't lose
5494 any (sign) bits when converting INTVAL (op1) to
5495 "unsigned HOST_WIDE_INT". */
5496 if (GET_CODE (op1
) == CONST_INT
5497 && (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5498 || INTVAL (op1
) > 0))
5500 x
= simplify_and_const_int (x
, mode
, op0
, INTVAL (op1
));
5501 if (GET_CODE (x
) != AND
)
5508 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5509 apply the distributive law and then the inverse distributive
5510 law to see if things simplify. */
5511 if (GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == XOR
)
5513 rtx result
= distribute_and_simplify_rtx (x
, 0);
5517 if (GET_CODE (op1
) == IOR
|| GET_CODE (op1
) == XOR
)
5519 rtx result
= distribute_and_simplify_rtx (x
, 1);
5526 /* If we have (ior (and A B) C), apply the distributive law and then
5527 the inverse distributive law to see if things simplify. */
5529 if (GET_CODE (op0
) == AND
)
5531 rtx result
= distribute_and_simplify_rtx (x
, 0);
5536 if (GET_CODE (op1
) == AND
)
5538 rtx result
= distribute_and_simplify_rtx (x
, 1);
5551 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5552 operations" because they can be replaced with two more basic operations.
5553 ZERO_EXTEND is also considered "compound" because it can be replaced with
5554 an AND operation, which is simpler, though only one operation.
5556 The function expand_compound_operation is called with an rtx expression
5557 and will convert it to the appropriate shifts and AND operations,
5558 simplifying at each stage.
5560 The function make_compound_operation is called to convert an expression
5561 consisting of shifts and ANDs into the equivalent compound expression.
5562 It is the inverse of this function, loosely speaking. */
5565 expand_compound_operation (rtx x
)
5567 unsigned HOST_WIDE_INT pos
= 0, len
;
5569 unsigned int modewidth
;
5572 switch (GET_CODE (x
))
5577 /* We can't necessarily use a const_int for a multiword mode;
5578 it depends on implicitly extending the value.
5579 Since we don't know the right way to extend it,
5580 we can't tell whether the implicit way is right.
5582 Even for a mode that is no wider than a const_int,
5583 we can't win, because we need to sign extend one of its bits through
5584 the rest of it, and we don't know which bit. */
5585 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
)
5588 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5589 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5590 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5591 reloaded. If not for that, MEM's would very rarely be safe.
5593 Reject MODEs bigger than a word, because we might not be able
5594 to reference a two-register group starting with an arbitrary register
5595 (and currently gen_lowpart might crash for a SUBREG). */
5597 if (GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))) > UNITS_PER_WORD
)
5600 /* Reject MODEs that aren't scalar integers because turning vector
5601 or complex modes into shifts causes problems. */
5603 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
5606 len
= GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)));
5607 /* If the inner object has VOIDmode (the only way this can happen
5608 is if it is an ASM_OPERANDS), we can't do anything since we don't
5609 know how much masking to do. */
5618 /* ... fall through ... */
5621 /* If the operand is a CLOBBER, just return it. */
5622 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
5625 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
5626 || GET_CODE (XEXP (x
, 2)) != CONST_INT
5627 || GET_MODE (XEXP (x
, 0)) == VOIDmode
)
5630 /* Reject MODEs that aren't scalar integers because turning vector
5631 or complex modes into shifts causes problems. */
5633 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
5636 len
= INTVAL (XEXP (x
, 1));
5637 pos
= INTVAL (XEXP (x
, 2));
5639 /* This should stay within the object being extracted, fail otherwise. */
5640 if (len
+ pos
> GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))))
5643 if (BITS_BIG_ENDIAN
)
5644 pos
= GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - len
- pos
;
5651 /* Convert sign extension to zero extension, if we know that the high
5652 bit is not set, as this is easier to optimize. It will be converted
5653 back to cheaper alternative in make_extraction. */
5654 if (GET_CODE (x
) == SIGN_EXTEND
5655 && (GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5656 && ((nonzero_bits (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
5657 & ~(((unsigned HOST_WIDE_INT
)
5658 GET_MODE_MASK (GET_MODE (XEXP (x
, 0))))
5662 rtx temp
= gen_rtx_ZERO_EXTEND (GET_MODE (x
), XEXP (x
, 0));
5663 rtx temp2
= expand_compound_operation (temp
);
5665 /* Make sure this is a profitable operation. */
5666 if (rtx_cost (x
, SET
) > rtx_cost (temp2
, SET
))
5668 else if (rtx_cost (x
, SET
) > rtx_cost (temp
, SET
))
5674 /* We can optimize some special cases of ZERO_EXTEND. */
5675 if (GET_CODE (x
) == ZERO_EXTEND
)
5677 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5678 know that the last value didn't have any inappropriate bits
5680 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
5681 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
5682 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5683 && (nonzero_bits (XEXP (XEXP (x
, 0), 0), GET_MODE (x
))
5684 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5685 return XEXP (XEXP (x
, 0), 0);
5687 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5688 if (GET_CODE (XEXP (x
, 0)) == SUBREG
5689 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
5690 && subreg_lowpart_p (XEXP (x
, 0))
5691 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5692 && (nonzero_bits (SUBREG_REG (XEXP (x
, 0)), GET_MODE (x
))
5693 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5694 return SUBREG_REG (XEXP (x
, 0));
5696 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5697 is a comparison and STORE_FLAG_VALUE permits. This is like
5698 the first case, but it works even when GET_MODE (x) is larger
5699 than HOST_WIDE_INT. */
5700 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
5701 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
5702 && COMPARISON_P (XEXP (XEXP (x
, 0), 0))
5703 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
5704 <= HOST_BITS_PER_WIDE_INT
)
5705 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
5706 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5707 return XEXP (XEXP (x
, 0), 0);
5709 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5710 if (GET_CODE (XEXP (x
, 0)) == SUBREG
5711 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
5712 && subreg_lowpart_p (XEXP (x
, 0))
5713 && COMPARISON_P (SUBREG_REG (XEXP (x
, 0)))
5714 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
5715 <= HOST_BITS_PER_WIDE_INT
)
5716 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
5717 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5718 return SUBREG_REG (XEXP (x
, 0));
5722 /* If we reach here, we want to return a pair of shifts. The inner
5723 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5724 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5725 logical depending on the value of UNSIGNEDP.
5727 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5728 converted into an AND of a shift.
5730 We must check for the case where the left shift would have a negative
5731 count. This can happen in a case like (x >> 31) & 255 on machines
5732 that can't shift by a constant. On those machines, we would first
5733 combine the shift with the AND to produce a variable-position
5734 extraction. Then the constant of 31 would be substituted in to produce
5735 a such a position. */
5737 modewidth
= GET_MODE_BITSIZE (GET_MODE (x
));
5738 if (modewidth
+ len
>= pos
)
5739 tem
= simplify_shift_const (NULL_RTX
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
5741 simplify_shift_const (NULL_RTX
, ASHIFT
,
5744 modewidth
- pos
- len
),
5747 else if (unsignedp
&& len
< HOST_BITS_PER_WIDE_INT
)
5748 tem
= simplify_and_const_int (NULL_RTX
, GET_MODE (x
),
5749 simplify_shift_const (NULL_RTX
, LSHIFTRT
,
5752 ((HOST_WIDE_INT
) 1 << len
) - 1);
5754 /* Any other cases we can't handle. */
5757 /* If we couldn't do this for some reason, return the original
5759 if (GET_CODE (tem
) == CLOBBER
)
5765 /* X is a SET which contains an assignment of one object into
5766 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5767 or certain SUBREGS). If possible, convert it into a series of
5770 We half-heartedly support variable positions, but do not at all
5771 support variable lengths. */
5774 expand_field_assignment (rtx x
)
5777 rtx pos
; /* Always counts from low bit. */
5779 rtx mask
, cleared
, masked
;
5780 enum machine_mode compute_mode
;
5782 /* Loop until we find something we can't simplify. */
5785 if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
5786 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
)
5788 inner
= SUBREG_REG (XEXP (SET_DEST (x
), 0));
5789 len
= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0)));
5790 pos
= GEN_INT (subreg_lsb (XEXP (SET_DEST (x
), 0)));
5792 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
5793 && GET_CODE (XEXP (SET_DEST (x
), 1)) == CONST_INT
)
5795 inner
= XEXP (SET_DEST (x
), 0);
5796 len
= INTVAL (XEXP (SET_DEST (x
), 1));
5797 pos
= XEXP (SET_DEST (x
), 2);
5799 /* A constant position should stay within the width of INNER. */
5800 if (GET_CODE (pos
) == CONST_INT
5801 && INTVAL (pos
) + len
> GET_MODE_BITSIZE (GET_MODE (inner
)))
5804 if (BITS_BIG_ENDIAN
)
5806 if (GET_CODE (pos
) == CONST_INT
)
5807 pos
= GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner
)) - len
5809 else if (GET_CODE (pos
) == MINUS
5810 && GET_CODE (XEXP (pos
, 1)) == CONST_INT
5811 && (INTVAL (XEXP (pos
, 1))
5812 == GET_MODE_BITSIZE (GET_MODE (inner
)) - len
))
5813 /* If position is ADJUST - X, new position is X. */
5814 pos
= XEXP (pos
, 0);
5816 pos
= simplify_gen_binary (MINUS
, GET_MODE (pos
),
5817 GEN_INT (GET_MODE_BITSIZE (
5824 /* A SUBREG between two modes that occupy the same numbers of words
5825 can be done by moving the SUBREG to the source. */
5826 else if (GET_CODE (SET_DEST (x
)) == SUBREG
5827 /* We need SUBREGs to compute nonzero_bits properly. */
5828 && nonzero_sign_valid
5829 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
5830 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
5831 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
5832 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
5834 x
= gen_rtx_SET (VOIDmode
, SUBREG_REG (SET_DEST (x
)),
5836 (GET_MODE (SUBREG_REG (SET_DEST (x
))),
5843 while (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
5844 inner
= SUBREG_REG (inner
);
5846 compute_mode
= GET_MODE (inner
);
5848 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5849 if (! SCALAR_INT_MODE_P (compute_mode
))
5851 enum machine_mode imode
;
5853 /* Don't do anything for vector or complex integral types. */
5854 if (! FLOAT_MODE_P (compute_mode
))
5857 /* Try to find an integral mode to pun with. */
5858 imode
= mode_for_size (GET_MODE_BITSIZE (compute_mode
), MODE_INT
, 0);
5859 if (imode
== BLKmode
)
5862 compute_mode
= imode
;
5863 inner
= gen_lowpart (imode
, inner
);
5866 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5867 if (len
>= HOST_BITS_PER_WIDE_INT
)
5870 /* Now compute the equivalent expression. Make a copy of INNER
5871 for the SET_DEST in case it is a MEM into which we will substitute;
5872 we don't want shared RTL in that case. */
5873 mask
= GEN_INT (((HOST_WIDE_INT
) 1 << len
) - 1);
5874 cleared
= simplify_gen_binary (AND
, compute_mode
,
5875 simplify_gen_unary (NOT
, compute_mode
,
5876 simplify_gen_binary (ASHIFT
,
5881 masked
= simplify_gen_binary (ASHIFT
, compute_mode
,
5882 simplify_gen_binary (
5884 gen_lowpart (compute_mode
, SET_SRC (x
)),
5888 x
= gen_rtx_SET (VOIDmode
, copy_rtx (inner
),
5889 simplify_gen_binary (IOR
, compute_mode
,
5896 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5897 it is an RTX that represents a variable starting position; otherwise,
5898 POS is the (constant) starting bit position (counted from the LSB).
5900 UNSIGNEDP is nonzero for an unsigned reference and zero for a
5903 IN_DEST is nonzero if this is a reference in the destination of a
5904 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
5905 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5908 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
5909 ZERO_EXTRACT should be built even for bits starting at bit 0.
5911 MODE is the desired mode of the result (if IN_DEST == 0).
5913 The result is an RTX for the extraction or NULL_RTX if the target
5917 make_extraction (enum machine_mode mode
, rtx inner
, HOST_WIDE_INT pos
,
5918 rtx pos_rtx
, unsigned HOST_WIDE_INT len
, int unsignedp
,
5919 int in_dest
, int in_compare
)
5921 /* This mode describes the size of the storage area
5922 to fetch the overall value from. Within that, we
5923 ignore the POS lowest bits, etc. */
5924 enum machine_mode is_mode
= GET_MODE (inner
);
5925 enum machine_mode inner_mode
;
5926 enum machine_mode wanted_inner_mode
;
5927 enum machine_mode wanted_inner_reg_mode
= word_mode
;
5928 enum machine_mode pos_mode
= word_mode
;
5929 enum machine_mode extraction_mode
= word_mode
;
5930 enum machine_mode tmode
= mode_for_size (len
, MODE_INT
, 1);
5932 rtx orig_pos_rtx
= pos_rtx
;
5933 HOST_WIDE_INT orig_pos
;
5935 if (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
5937 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5938 consider just the QI as the memory to extract from.
5939 The subreg adds or removes high bits; its mode is
5940 irrelevant to the meaning of this extraction,
5941 since POS and LEN count from the lsb. */
5942 if (MEM_P (SUBREG_REG (inner
)))
5943 is_mode
= GET_MODE (SUBREG_REG (inner
));
5944 inner
= SUBREG_REG (inner
);
5946 else if (GET_CODE (inner
) == ASHIFT
5947 && GET_CODE (XEXP (inner
, 1)) == CONST_INT
5948 && pos_rtx
== 0 && pos
== 0
5949 && len
> (unsigned HOST_WIDE_INT
) INTVAL (XEXP (inner
, 1)))
5951 /* We're extracting the least significant bits of an rtx
5952 (ashift X (const_int C)), where LEN > C. Extract the
5953 least significant (LEN - C) bits of X, giving an rtx
5954 whose mode is MODE, then shift it left C times. */
5955 new = make_extraction (mode
, XEXP (inner
, 0),
5956 0, 0, len
- INTVAL (XEXP (inner
, 1)),
5957 unsignedp
, in_dest
, in_compare
);
5959 return gen_rtx_ASHIFT (mode
, new, XEXP (inner
, 1));
5962 inner_mode
= GET_MODE (inner
);
5964 if (pos_rtx
&& GET_CODE (pos_rtx
) == CONST_INT
)
5965 pos
= INTVAL (pos_rtx
), pos_rtx
= 0;
5967 /* See if this can be done without an extraction. We never can if the
5968 width of the field is not the same as that of some integer mode. For
5969 registers, we can only avoid the extraction if the position is at the
5970 low-order bit and this is either not in the destination or we have the
5971 appropriate STRICT_LOW_PART operation available.
5973 For MEM, we can avoid an extract if the field starts on an appropriate
5974 boundary and we can change the mode of the memory reference. */
5976 if (tmode
!= BLKmode
5977 && ((pos_rtx
== 0 && (pos
% BITS_PER_WORD
) == 0
5979 && (inner_mode
== tmode
5981 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode
),
5982 GET_MODE_BITSIZE (inner_mode
))
5983 || reg_truncated_to_mode (tmode
, inner
))
5986 && have_insn_for (STRICT_LOW_PART
, tmode
))))
5987 || (MEM_P (inner
) && pos_rtx
== 0
5989 % (STRICT_ALIGNMENT
? GET_MODE_ALIGNMENT (tmode
)
5990 : BITS_PER_UNIT
)) == 0
5991 /* We can't do this if we are widening INNER_MODE (it
5992 may not be aligned, for one thing). */
5993 && GET_MODE_BITSIZE (inner_mode
) >= GET_MODE_BITSIZE (tmode
)
5994 && (inner_mode
== tmode
5995 || (! mode_dependent_address_p (XEXP (inner
, 0))
5996 && ! MEM_VOLATILE_P (inner
))))))
5998 /* If INNER is a MEM, make a new MEM that encompasses just the desired
5999 field. If the original and current mode are the same, we need not
6000 adjust the offset. Otherwise, we do if bytes big endian.
6002 If INNER is not a MEM, get a piece consisting of just the field
6003 of interest (in this case POS % BITS_PER_WORD must be 0). */
6007 HOST_WIDE_INT offset
;
6009 /* POS counts from lsb, but make OFFSET count in memory order. */
6010 if (BYTES_BIG_ENDIAN
)
6011 offset
= (GET_MODE_BITSIZE (is_mode
) - len
- pos
) / BITS_PER_UNIT
;
6013 offset
= pos
/ BITS_PER_UNIT
;
6015 new = adjust_address_nv (inner
, tmode
, offset
);
6017 else if (REG_P (inner
))
6019 if (tmode
!= inner_mode
)
6021 /* We can't call gen_lowpart in a DEST since we
6022 always want a SUBREG (see below) and it would sometimes
6023 return a new hard register. */
6026 HOST_WIDE_INT final_word
= pos
/ BITS_PER_WORD
;
6028 if (WORDS_BIG_ENDIAN
6029 && GET_MODE_SIZE (inner_mode
) > UNITS_PER_WORD
)
6030 final_word
= ((GET_MODE_SIZE (inner_mode
)
6031 - GET_MODE_SIZE (tmode
))
6032 / UNITS_PER_WORD
) - final_word
;
6034 final_word
*= UNITS_PER_WORD
;
6035 if (BYTES_BIG_ENDIAN
&&
6036 GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (tmode
))
6037 final_word
+= (GET_MODE_SIZE (inner_mode
)
6038 - GET_MODE_SIZE (tmode
)) % UNITS_PER_WORD
;
6040 /* Avoid creating invalid subregs, for example when
6041 simplifying (x>>32)&255. */
6042 if (!validate_subreg (tmode
, inner_mode
, inner
, final_word
))
6045 new = gen_rtx_SUBREG (tmode
, inner
, final_word
);
6048 new = gen_lowpart (tmode
, inner
);
6054 new = force_to_mode (inner
, tmode
,
6055 len
>= HOST_BITS_PER_WIDE_INT
6056 ? ~(unsigned HOST_WIDE_INT
) 0
6057 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
6060 /* If this extraction is going into the destination of a SET,
6061 make a STRICT_LOW_PART unless we made a MEM. */
6064 return (MEM_P (new) ? new
6065 : (GET_CODE (new) != SUBREG
6066 ? gen_rtx_CLOBBER (tmode
, const0_rtx
)
6067 : gen_rtx_STRICT_LOW_PART (VOIDmode
, new)));
6072 if (GET_CODE (new) == CONST_INT
)
6073 return gen_int_mode (INTVAL (new), mode
);
6075 /* If we know that no extraneous bits are set, and that the high
6076 bit is not set, convert the extraction to the cheaper of
6077 sign and zero extension, that are equivalent in these cases. */
6078 if (flag_expensive_optimizations
6079 && (GET_MODE_BITSIZE (tmode
) <= HOST_BITS_PER_WIDE_INT
6080 && ((nonzero_bits (new, tmode
)
6081 & ~(((unsigned HOST_WIDE_INT
)
6082 GET_MODE_MASK (tmode
))
6086 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, new);
6087 rtx temp1
= gen_rtx_SIGN_EXTEND (mode
, new);
6089 /* Prefer ZERO_EXTENSION, since it gives more information to
6091 if (rtx_cost (temp
, SET
) <= rtx_cost (temp1
, SET
))
6096 /* Otherwise, sign- or zero-extend unless we already are in the
6099 return (gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
6103 /* Unless this is a COMPARE or we have a funny memory reference,
6104 don't do anything with zero-extending field extracts starting at
6105 the low-order bit since they are simple AND operations. */
6106 if (pos_rtx
== 0 && pos
== 0 && ! in_dest
6107 && ! in_compare
&& unsignedp
)
6110 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6111 if the position is not a constant and the length is not 1. In all
6112 other cases, we would only be going outside our object in cases when
6113 an original shift would have been undefined. */
6115 && ((pos_rtx
== 0 && pos
+ len
> GET_MODE_BITSIZE (is_mode
))
6116 || (pos_rtx
!= 0 && len
!= 1)))
6119 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6120 and the mode for the result. */
6121 if (in_dest
&& mode_for_extraction (EP_insv
, -1) != MAX_MACHINE_MODE
)
6123 wanted_inner_reg_mode
= mode_for_extraction (EP_insv
, 0);
6124 pos_mode
= mode_for_extraction (EP_insv
, 2);
6125 extraction_mode
= mode_for_extraction (EP_insv
, 3);
6128 if (! in_dest
&& unsignedp
6129 && mode_for_extraction (EP_extzv
, -1) != MAX_MACHINE_MODE
)
6131 wanted_inner_reg_mode
= mode_for_extraction (EP_extzv
, 1);
6132 pos_mode
= mode_for_extraction (EP_extzv
, 3);
6133 extraction_mode
= mode_for_extraction (EP_extzv
, 0);
6136 if (! in_dest
&& ! unsignedp
6137 && mode_for_extraction (EP_extv
, -1) != MAX_MACHINE_MODE
)
6139 wanted_inner_reg_mode
= mode_for_extraction (EP_extv
, 1);
6140 pos_mode
= mode_for_extraction (EP_extv
, 3);
6141 extraction_mode
= mode_for_extraction (EP_extv
, 0);
6144 /* Never narrow an object, since that might not be safe. */
6146 if (mode
!= VOIDmode
6147 && GET_MODE_SIZE (extraction_mode
) < GET_MODE_SIZE (mode
))
6148 extraction_mode
= mode
;
6150 if (pos_rtx
&& GET_MODE (pos_rtx
) != VOIDmode
6151 && GET_MODE_SIZE (pos_mode
) < GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6152 pos_mode
= GET_MODE (pos_rtx
);
6154 /* If this is not from memory, the desired mode is the preferred mode
6155 for an extraction pattern's first input operand, or word_mode if there
6158 wanted_inner_mode
= wanted_inner_reg_mode
;
6161 /* Be careful not to go beyond the extracted object and maintain the
6162 natural alignment of the memory. */
6163 wanted_inner_mode
= smallest_mode_for_size (len
, MODE_INT
);
6164 while (pos
% GET_MODE_BITSIZE (wanted_inner_mode
) + len
6165 > GET_MODE_BITSIZE (wanted_inner_mode
))
6167 wanted_inner_mode
= GET_MODE_WIDER_MODE (wanted_inner_mode
);
6168 gcc_assert (wanted_inner_mode
!= VOIDmode
);
6171 /* If we have to change the mode of memory and cannot, the desired mode
6172 is EXTRACTION_MODE. */
6173 if (inner_mode
!= wanted_inner_mode
6174 && (mode_dependent_address_p (XEXP (inner
, 0))
6175 || MEM_VOLATILE_P (inner
)
6177 wanted_inner_mode
= extraction_mode
;
6182 if (BITS_BIG_ENDIAN
)
6184 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6185 BITS_BIG_ENDIAN style. If position is constant, compute new
6186 position. Otherwise, build subtraction.
6187 Note that POS is relative to the mode of the original argument.
6188 If it's a MEM we need to recompute POS relative to that.
6189 However, if we're extracting from (or inserting into) a register,
6190 we want to recompute POS relative to wanted_inner_mode. */
6191 int width
= (MEM_P (inner
)
6192 ? GET_MODE_BITSIZE (is_mode
)
6193 : GET_MODE_BITSIZE (wanted_inner_mode
));
6196 pos
= width
- len
- pos
;
6199 = gen_rtx_MINUS (GET_MODE (pos_rtx
), GEN_INT (width
- len
), pos_rtx
);
6200 /* POS may be less than 0 now, but we check for that below.
6201 Note that it can only be less than 0 if !MEM_P (inner). */
6204 /* If INNER has a wider mode, and this is a constant extraction, try to
6205 make it smaller and adjust the byte to point to the byte containing
6207 if (wanted_inner_mode
!= VOIDmode
6208 && inner_mode
!= wanted_inner_mode
6210 && GET_MODE_SIZE (wanted_inner_mode
) < GET_MODE_SIZE (is_mode
)
6212 && ! mode_dependent_address_p (XEXP (inner
, 0))
6213 && ! MEM_VOLATILE_P (inner
))
6217 /* The computations below will be correct if the machine is big
6218 endian in both bits and bytes or little endian in bits and bytes.
6219 If it is mixed, we must adjust. */
6221 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6222 adjust OFFSET to compensate. */
6223 if (BYTES_BIG_ENDIAN
6224 && GET_MODE_SIZE (inner_mode
) < GET_MODE_SIZE (is_mode
))
6225 offset
-= GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (inner_mode
);
6227 /* We can now move to the desired byte. */
6228 offset
+= (pos
/ GET_MODE_BITSIZE (wanted_inner_mode
))
6229 * GET_MODE_SIZE (wanted_inner_mode
);
6230 pos
%= GET_MODE_BITSIZE (wanted_inner_mode
);
6232 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
6233 && is_mode
!= wanted_inner_mode
)
6234 offset
= (GET_MODE_SIZE (is_mode
)
6235 - GET_MODE_SIZE (wanted_inner_mode
) - offset
);
6237 inner
= adjust_address_nv (inner
, wanted_inner_mode
, offset
);
6240 /* If INNER is not memory, we can always get it into the proper mode. If we
6241 are changing its mode, POS must be a constant and smaller than the size
6243 else if (!MEM_P (inner
))
6245 if (GET_MODE (inner
) != wanted_inner_mode
6247 || orig_pos
+ len
> GET_MODE_BITSIZE (wanted_inner_mode
)))
6253 inner
= force_to_mode (inner
, wanted_inner_mode
,
6255 || len
+ orig_pos
>= HOST_BITS_PER_WIDE_INT
6256 ? ~(unsigned HOST_WIDE_INT
) 0
6257 : ((((unsigned HOST_WIDE_INT
) 1 << len
) - 1)
6262 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6263 have to zero extend. Otherwise, we can just use a SUBREG. */
6265 && GET_MODE_SIZE (pos_mode
) > GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6267 rtx temp
= gen_rtx_ZERO_EXTEND (pos_mode
, pos_rtx
);
6269 /* If we know that no extraneous bits are set, and that the high
6270 bit is not set, convert extraction to cheaper one - either
6271 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6273 if (flag_expensive_optimizations
6274 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx
)) <= HOST_BITS_PER_WIDE_INT
6275 && ((nonzero_bits (pos_rtx
, GET_MODE (pos_rtx
))
6276 & ~(((unsigned HOST_WIDE_INT
)
6277 GET_MODE_MASK (GET_MODE (pos_rtx
)))
6281 rtx temp1
= gen_rtx_SIGN_EXTEND (pos_mode
, pos_rtx
);
6283 /* Prefer ZERO_EXTENSION, since it gives more information to
6285 if (rtx_cost (temp1
, SET
) < rtx_cost (temp
, SET
))
6290 else if (pos_rtx
!= 0
6291 && GET_MODE_SIZE (pos_mode
) < GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6292 pos_rtx
= gen_lowpart (pos_mode
, pos_rtx
);
6294 /* Make POS_RTX unless we already have it and it is correct. If we don't
6295 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6297 if (pos_rtx
== 0 && orig_pos_rtx
!= 0 && INTVAL (orig_pos_rtx
) == pos
)
6298 pos_rtx
= orig_pos_rtx
;
6300 else if (pos_rtx
== 0)
6301 pos_rtx
= GEN_INT (pos
);
6303 /* Make the required operation. See if we can use existing rtx. */
6304 new = gen_rtx_fmt_eee (unsignedp
? ZERO_EXTRACT
: SIGN_EXTRACT
,
6305 extraction_mode
, inner
, GEN_INT (len
), pos_rtx
);
6307 new = gen_lowpart (mode
, new);
6312 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6313 with any other operations in X. Return X without that shift if so. */
6316 extract_left_shift (rtx x
, int count
)
6318 enum rtx_code code
= GET_CODE (x
);
6319 enum machine_mode mode
= GET_MODE (x
);
6325 /* This is the shift itself. If it is wide enough, we will return
6326 either the value being shifted if the shift count is equal to
6327 COUNT or a shift for the difference. */
6328 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6329 && INTVAL (XEXP (x
, 1)) >= count
)
6330 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (x
, 0),
6331 INTVAL (XEXP (x
, 1)) - count
);
6335 if ((tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
6336 return simplify_gen_unary (code
, mode
, tem
, mode
);
6340 case PLUS
: case IOR
: case XOR
: case AND
:
6341 /* If we can safely shift this constant and we find the inner shift,
6342 make a new operation. */
6343 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6344 && (INTVAL (XEXP (x
, 1)) & ((((HOST_WIDE_INT
) 1 << count
)) - 1)) == 0
6345 && (tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
6346 return simplify_gen_binary (code
, mode
, tem
,
6347 GEN_INT (INTVAL (XEXP (x
, 1)) >> count
));
6358 /* Look at the expression rooted at X. Look for expressions
6359 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6360 Form these expressions.
6362 Return the new rtx, usually just X.
6364 Also, for machines like the VAX that don't have logical shift insns,
6365 try to convert logical to arithmetic shift operations in cases where
6366 they are equivalent. This undoes the canonicalizations to logical
6367 shifts done elsewhere.
6369 We try, as much as possible, to re-use rtl expressions to save memory.
6371 IN_CODE says what kind of expression we are processing. Normally, it is
6372 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6373 being kludges), it is MEM. When processing the arguments of a comparison
6374 or a COMPARE against zero, it is COMPARE. */
6377 make_compound_operation (rtx x
, enum rtx_code in_code
)
6379 enum rtx_code code
= GET_CODE (x
);
6380 enum machine_mode mode
= GET_MODE (x
);
6381 int mode_width
= GET_MODE_BITSIZE (mode
);
6383 enum rtx_code next_code
;
6389 /* Select the code to be used in recursive calls. Once we are inside an
6390 address, we stay there. If we have a comparison, set to COMPARE,
6391 but once inside, go back to our default of SET. */
6393 next_code
= (code
== MEM
|| code
== PLUS
|| code
== MINUS
? MEM
6394 : ((code
== COMPARE
|| COMPARISON_P (x
))
6395 && XEXP (x
, 1) == const0_rtx
) ? COMPARE
6396 : in_code
== COMPARE
? SET
: in_code
);
6398 /* Process depending on the code of this operation. If NEW is set
6399 nonzero, it will be returned. */
6404 /* Convert shifts by constants into multiplications if inside
6406 if (in_code
== MEM
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6407 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
6408 && INTVAL (XEXP (x
, 1)) >= 0)
6410 new = make_compound_operation (XEXP (x
, 0), next_code
);
6411 new = gen_rtx_MULT (mode
, new,
6412 GEN_INT ((HOST_WIDE_INT
) 1
6413 << INTVAL (XEXP (x
, 1))));
6418 /* If the second operand is not a constant, we can't do anything
6420 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
)
6423 /* If the constant is a power of two minus one and the first operand
6424 is a logical right shift, make an extraction. */
6425 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6426 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6428 new = make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
6429 new = make_extraction (mode
, new, 0, XEXP (XEXP (x
, 0), 1), i
, 1,
6430 0, in_code
== COMPARE
);
6433 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6434 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
6435 && subreg_lowpart_p (XEXP (x
, 0))
6436 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == LSHIFTRT
6437 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6439 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x
, 0)), 0),
6441 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x
, 0))), new, 0,
6442 XEXP (SUBREG_REG (XEXP (x
, 0)), 1), i
, 1,
6443 0, in_code
== COMPARE
);
6445 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6446 else if ((GET_CODE (XEXP (x
, 0)) == XOR
6447 || GET_CODE (XEXP (x
, 0)) == IOR
)
6448 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LSHIFTRT
6449 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == LSHIFTRT
6450 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6452 /* Apply the distributive law, and then try to make extractions. */
6453 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)), mode
,
6454 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 0),
6456 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 1),
6458 new = make_compound_operation (new, in_code
);
6461 /* If we are have (and (rotate X C) M) and C is larger than the number
6462 of bits in M, this is an extraction. */
6464 else if (GET_CODE (XEXP (x
, 0)) == ROTATE
6465 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
6466 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0
6467 && i
<= INTVAL (XEXP (XEXP (x
, 0), 1)))
6469 new = make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
6470 new = make_extraction (mode
, new,
6471 (GET_MODE_BITSIZE (mode
)
6472 - INTVAL (XEXP (XEXP (x
, 0), 1))),
6473 NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
6476 /* On machines without logical shifts, if the operand of the AND is
6477 a logical shift and our mask turns off all the propagated sign
6478 bits, we can replace the logical shift with an arithmetic shift. */
6479 else if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6480 && !have_insn_for (LSHIFTRT
, mode
)
6481 && have_insn_for (ASHIFTRT
, mode
)
6482 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
6483 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
6484 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
6485 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
6487 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
6489 mask
>>= INTVAL (XEXP (XEXP (x
, 0), 1));
6490 if ((INTVAL (XEXP (x
, 1)) & ~mask
) == 0)
6492 gen_rtx_ASHIFTRT (mode
,
6493 make_compound_operation
6494 (XEXP (XEXP (x
, 0), 0), next_code
),
6495 XEXP (XEXP (x
, 0), 1)));
6498 /* If the constant is one less than a power of two, this might be
6499 representable by an extraction even if no shift is present.
6500 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6501 we are in a COMPARE. */
6502 else if ((i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6503 new = make_extraction (mode
,
6504 make_compound_operation (XEXP (x
, 0),
6506 0, NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
6508 /* If we are in a comparison and this is an AND with a power of two,
6509 convert this into the appropriate bit extract. */
6510 else if (in_code
== COMPARE
6511 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0)
6512 new = make_extraction (mode
,
6513 make_compound_operation (XEXP (x
, 0),
6515 i
, NULL_RTX
, 1, 1, 0, 1);
6520 /* If the sign bit is known to be zero, replace this with an
6521 arithmetic shift. */
6522 if (have_insn_for (ASHIFTRT
, mode
)
6523 && ! have_insn_for (LSHIFTRT
, mode
)
6524 && mode_width
<= HOST_BITS_PER_WIDE_INT
6525 && (nonzero_bits (XEXP (x
, 0), mode
) & (1 << (mode_width
- 1))) == 0)
6527 new = gen_rtx_ASHIFTRT (mode
,
6528 make_compound_operation (XEXP (x
, 0),
6534 /* ... fall through ... */
6540 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6541 this is a SIGN_EXTRACT. */
6542 if (GET_CODE (rhs
) == CONST_INT
6543 && GET_CODE (lhs
) == ASHIFT
6544 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
6545 && INTVAL (rhs
) >= INTVAL (XEXP (lhs
, 1)))
6547 new = make_compound_operation (XEXP (lhs
, 0), next_code
);
6548 new = make_extraction (mode
, new,
6549 INTVAL (rhs
) - INTVAL (XEXP (lhs
, 1)),
6550 NULL_RTX
, mode_width
- INTVAL (rhs
),
6551 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
6555 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6556 If so, try to merge the shifts into a SIGN_EXTEND. We could
6557 also do this for some cases of SIGN_EXTRACT, but it doesn't
6558 seem worth the effort; the case checked for occurs on Alpha. */
6561 && ! (GET_CODE (lhs
) == SUBREG
6562 && (OBJECT_P (SUBREG_REG (lhs
))))
6563 && GET_CODE (rhs
) == CONST_INT
6564 && INTVAL (rhs
) < HOST_BITS_PER_WIDE_INT
6565 && (new = extract_left_shift (lhs
, INTVAL (rhs
))) != 0)
6566 new = make_extraction (mode
, make_compound_operation (new, next_code
),
6567 0, NULL_RTX
, mode_width
- INTVAL (rhs
),
6568 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
6573 /* Call ourselves recursively on the inner expression. If we are
6574 narrowing the object and it has a different RTL code from
6575 what it originally did, do this SUBREG as a force_to_mode. */
6577 tem
= make_compound_operation (SUBREG_REG (x
), in_code
);
6581 simplified
= simplify_subreg (GET_MODE (x
), tem
, GET_MODE (tem
),
6587 if (GET_CODE (tem
) != GET_CODE (SUBREG_REG (x
))
6588 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (tem
))
6589 && subreg_lowpart_p (x
))
6591 rtx newer
= force_to_mode (tem
, mode
, ~(HOST_WIDE_INT
) 0,
6594 /* If we have something other than a SUBREG, we might have
6595 done an expansion, so rerun ourselves. */
6596 if (GET_CODE (newer
) != SUBREG
)
6597 newer
= make_compound_operation (newer
, in_code
);
6613 x
= gen_lowpart (mode
, new);
6614 code
= GET_CODE (x
);
6617 /* Now recursively process each operand of this operation. */
6618 fmt
= GET_RTX_FORMAT (code
);
6619 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
6622 new = make_compound_operation (XEXP (x
, i
), next_code
);
6623 SUBST (XEXP (x
, i
), new);
6626 /* If this is a commutative operation, the changes to the operands
6627 may have made it noncanonical. */
6628 if (COMMUTATIVE_ARITH_P (x
)
6629 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
6632 SUBST (XEXP (x
, 0), XEXP (x
, 1));
6633 SUBST (XEXP (x
, 1), tem
);
6639 /* Given M see if it is a value that would select a field of bits
6640 within an item, but not the entire word. Return -1 if not.
6641 Otherwise, return the starting position of the field, where 0 is the
6644 *PLEN is set to the length of the field. */
6647 get_pos_from_mask (unsigned HOST_WIDE_INT m
, unsigned HOST_WIDE_INT
*plen
)
6649 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6650 int pos
= exact_log2 (m
& -m
);
6654 /* Now shift off the low-order zero bits and see if we have a
6655 power of two minus 1. */
6656 len
= exact_log2 ((m
>> pos
) + 1);
6665 /* If X refers to a register that equals REG in value, replace these
6666 references with REG. */
6668 canon_reg_for_combine (rtx x
, rtx reg
)
6675 enum rtx_code code
= GET_CODE (x
);
6676 switch (GET_RTX_CLASS (code
))
6679 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
6680 if (op0
!= XEXP (x
, 0))
6681 return simplify_gen_unary (GET_CODE (x
), GET_MODE (x
), op0
,
6686 case RTX_COMM_ARITH
:
6687 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
6688 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
6689 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
6690 return simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
6694 case RTX_COMM_COMPARE
:
6695 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
6696 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
6697 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
6698 return simplify_gen_relational (GET_CODE (x
), GET_MODE (x
),
6699 GET_MODE (op0
), op0
, op1
);
6703 case RTX_BITFIELD_OPS
:
6704 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
6705 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
6706 op2
= canon_reg_for_combine (XEXP (x
, 2), reg
);
6707 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1) || op2
!= XEXP (x
, 2))
6708 return simplify_gen_ternary (GET_CODE (x
), GET_MODE (x
),
6709 GET_MODE (op0
), op0
, op1
, op2
);
6714 if (rtx_equal_p (get_last_value (reg
), x
)
6715 || rtx_equal_p (reg
, get_last_value (x
)))
6724 fmt
= GET_RTX_FORMAT (code
);
6726 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
6729 rtx op
= canon_reg_for_combine (XEXP (x
, i
), reg
);
6730 if (op
!= XEXP (x
, i
))
6740 else if (fmt
[i
] == 'E')
6743 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
6745 rtx op
= canon_reg_for_combine (XVECEXP (x
, i
, j
), reg
);
6746 if (op
!= XVECEXP (x
, i
, j
))
6753 XVECEXP (x
, i
, j
) = op
;
6764 /* Return X converted to MODE. If the value is already truncated to
6765 MODE we can just return a subreg even though in the general case we
6766 would need an explicit truncation. */
6769 gen_lowpart_or_truncate (enum machine_mode mode
, rtx x
)
6771 if (GET_MODE_SIZE (GET_MODE (x
)) <= GET_MODE_SIZE (mode
)
6772 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
6773 GET_MODE_BITSIZE (GET_MODE (x
)))
6774 || (REG_P (x
) && reg_truncated_to_mode (mode
, x
)))
6775 return gen_lowpart (mode
, x
);
6777 return simplify_gen_unary (TRUNCATE
, mode
, x
, GET_MODE (x
));
6780 /* See if X can be simplified knowing that we will only refer to it in
6781 MODE and will only refer to those bits that are nonzero in MASK.
6782 If other bits are being computed or if masking operations are done
6783 that select a superset of the bits in MASK, they can sometimes be
6786 Return a possibly simplified expression, but always convert X to
6787 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6789 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6790 are all off in X. This is used when X will be complemented, by either
6791 NOT, NEG, or XOR. */
6794 force_to_mode (rtx x
, enum machine_mode mode
, unsigned HOST_WIDE_INT mask
,
6797 enum rtx_code code
= GET_CODE (x
);
6798 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
6799 enum machine_mode op_mode
;
6800 unsigned HOST_WIDE_INT fuller_mask
, nonzero
;
6803 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6804 code below will do the wrong thing since the mode of such an
6805 expression is VOIDmode.
6807 Also do nothing if X is a CLOBBER; this can happen if X was
6808 the return value from a call to gen_lowpart. */
6809 if (code
== CALL
|| code
== ASM_OPERANDS
|| code
== CLOBBER
)
6812 /* We want to perform the operation is its present mode unless we know
6813 that the operation is valid in MODE, in which case we do the operation
6815 op_mode
= ((GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (x
))
6816 && have_insn_for (code
, mode
))
6817 ? mode
: GET_MODE (x
));
6819 /* It is not valid to do a right-shift in a narrower mode
6820 than the one it came in with. */
6821 if ((code
== LSHIFTRT
|| code
== ASHIFTRT
)
6822 && GET_MODE_BITSIZE (mode
) < GET_MODE_BITSIZE (GET_MODE (x
)))
6823 op_mode
= GET_MODE (x
);
6825 /* Truncate MASK to fit OP_MODE. */
6827 mask
&= GET_MODE_MASK (op_mode
);
6829 /* When we have an arithmetic operation, or a shift whose count we
6830 do not know, we need to assume that all bits up to the highest-order
6831 bit in MASK will be needed. This is how we form such a mask. */
6832 if (mask
& ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
6833 fuller_mask
= ~(unsigned HOST_WIDE_INT
) 0;
6835 fuller_mask
= (((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mask
) + 1))
6838 /* Determine what bits of X are guaranteed to be (non)zero. */
6839 nonzero
= nonzero_bits (x
, mode
);
6841 /* If none of the bits in X are needed, return a zero. */
6842 if (! just_select
&& (nonzero
& mask
) == 0)
6845 /* If X is a CONST_INT, return a new one. Do this here since the
6846 test below will fail. */
6847 if (GET_CODE (x
) == CONST_INT
)
6849 if (SCALAR_INT_MODE_P (mode
))
6850 return gen_int_mode (INTVAL (x
) & mask
, mode
);
6853 x
= GEN_INT (INTVAL (x
) & mask
);
6854 return gen_lowpart_common (mode
, x
);
6858 /* If X is narrower than MODE and we want all the bits in X's mode, just
6859 get X in the proper mode. */
6860 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (mode
)
6861 && (GET_MODE_MASK (GET_MODE (x
)) & ~mask
) == 0)
6862 return gen_lowpart (mode
, x
);
6867 /* If X is a (clobber (const_int)), return it since we know we are
6868 generating something that won't match. */
6875 x
= expand_compound_operation (x
);
6876 if (GET_CODE (x
) != code
)
6877 return force_to_mode (x
, mode
, mask
, next_select
);
6881 if (subreg_lowpart_p (x
)
6882 /* We can ignore the effect of this SUBREG if it narrows the mode or
6883 if the constant masks to zero all the bits the mode doesn't
6885 && ((GET_MODE_SIZE (GET_MODE (x
))
6886 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
6888 & GET_MODE_MASK (GET_MODE (x
))
6889 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
)))))))
6890 return force_to_mode (SUBREG_REG (x
), mode
, mask
, next_select
);
6894 /* If this is an AND with a constant, convert it into an AND
6895 whose constant is the AND of that constant with MASK. If it
6896 remains an AND of MASK, delete it since it is redundant. */
6898 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
6900 x
= simplify_and_const_int (x
, op_mode
, XEXP (x
, 0),
6901 mask
& INTVAL (XEXP (x
, 1)));
6903 /* If X is still an AND, see if it is an AND with a mask that
6904 is just some low-order bits. If so, and it is MASK, we don't
6907 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6908 && ((INTVAL (XEXP (x
, 1)) & GET_MODE_MASK (GET_MODE (x
)))
6912 /* If it remains an AND, try making another AND with the bits
6913 in the mode mask that aren't in MASK turned on. If the
6914 constant in the AND is wide enough, this might make a
6915 cheaper constant. */
6917 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6918 && GET_MODE_MASK (GET_MODE (x
)) != mask
6919 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
)
6921 HOST_WIDE_INT cval
= (INTVAL (XEXP (x
, 1))
6922 | (GET_MODE_MASK (GET_MODE (x
)) & ~mask
));
6923 int width
= GET_MODE_BITSIZE (GET_MODE (x
));
6926 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6927 number, sign extend it. */
6928 if (width
> 0 && width
< HOST_BITS_PER_WIDE_INT
6929 && (cval
& ((HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
6930 cval
|= (HOST_WIDE_INT
) -1 << width
;
6932 y
= simplify_gen_binary (AND
, GET_MODE (x
),
6933 XEXP (x
, 0), GEN_INT (cval
));
6934 if (rtx_cost (y
, SET
) < rtx_cost (x
, SET
))
6944 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6945 low-order bits (as in an alignment operation) and FOO is already
6946 aligned to that boundary, mask C1 to that boundary as well.
6947 This may eliminate that PLUS and, later, the AND. */
6950 unsigned int width
= GET_MODE_BITSIZE (mode
);
6951 unsigned HOST_WIDE_INT smask
= mask
;
6953 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6954 number, sign extend it. */
6956 if (width
< HOST_BITS_PER_WIDE_INT
6957 && (smask
& ((HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
6958 smask
|= (HOST_WIDE_INT
) -1 << width
;
6960 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6961 && exact_log2 (- smask
) >= 0
6962 && (nonzero_bits (XEXP (x
, 0), mode
) & ~smask
) == 0
6963 && (INTVAL (XEXP (x
, 1)) & ~smask
) != 0)
6964 return force_to_mode (plus_constant (XEXP (x
, 0),
6965 (INTVAL (XEXP (x
, 1)) & smask
)),
6966 mode
, smask
, next_select
);
6969 /* ... fall through ... */
6972 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6973 most significant bit in MASK since carries from those bits will
6974 affect the bits we are interested in. */
6979 /* If X is (minus C Y) where C's least set bit is larger than any bit
6980 in the mask, then we may replace with (neg Y). */
6981 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
6982 && (((unsigned HOST_WIDE_INT
) (INTVAL (XEXP (x
, 0))
6983 & -INTVAL (XEXP (x
, 0))))
6986 x
= simplify_gen_unary (NEG
, GET_MODE (x
), XEXP (x
, 1),
6988 return force_to_mode (x
, mode
, mask
, next_select
);
6991 /* Similarly, if C contains every bit in the fuller_mask, then we may
6992 replace with (not Y). */
6993 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
6994 && ((INTVAL (XEXP (x
, 0)) | (HOST_WIDE_INT
) fuller_mask
)
6995 == INTVAL (XEXP (x
, 0))))
6997 x
= simplify_gen_unary (NOT
, GET_MODE (x
),
6998 XEXP (x
, 1), GET_MODE (x
));
6999 return force_to_mode (x
, mode
, mask
, next_select
);
7007 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7008 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7009 operation which may be a bitfield extraction. Ensure that the
7010 constant we form is not wider than the mode of X. */
7012 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7013 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
7014 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
7015 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
7016 && GET_CODE (XEXP (x
, 1)) == CONST_INT
7017 && ((INTVAL (XEXP (XEXP (x
, 0), 1))
7018 + floor_log2 (INTVAL (XEXP (x
, 1))))
7019 < GET_MODE_BITSIZE (GET_MODE (x
)))
7020 && (INTVAL (XEXP (x
, 1))
7021 & ~nonzero_bits (XEXP (x
, 0), GET_MODE (x
))) == 0)
7023 temp
= GEN_INT ((INTVAL (XEXP (x
, 1)) & mask
)
7024 << INTVAL (XEXP (XEXP (x
, 0), 1)));
7025 temp
= simplify_gen_binary (GET_CODE (x
), GET_MODE (x
),
7026 XEXP (XEXP (x
, 0), 0), temp
);
7027 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
), temp
,
7028 XEXP (XEXP (x
, 0), 1));
7029 return force_to_mode (x
, mode
, mask
, next_select
);
7033 /* For most binary operations, just propagate into the operation and
7034 change the mode if we have an operation of that mode. */
7036 op0
= gen_lowpart_or_truncate (op_mode
,
7037 force_to_mode (XEXP (x
, 0), mode
, mask
,
7039 op1
= gen_lowpart_or_truncate (op_mode
,
7040 force_to_mode (XEXP (x
, 1), mode
, mask
,
7043 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
7044 x
= simplify_gen_binary (code
, op_mode
, op0
, op1
);
7048 /* For left shifts, do the same, but just for the first operand.
7049 However, we cannot do anything with shifts where we cannot
7050 guarantee that the counts are smaller than the size of the mode
7051 because such a count will have a different meaning in a
7054 if (! (GET_CODE (XEXP (x
, 1)) == CONST_INT
7055 && INTVAL (XEXP (x
, 1)) >= 0
7056 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (mode
))
7057 && ! (GET_MODE (XEXP (x
, 1)) != VOIDmode
7058 && (nonzero_bits (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)))
7059 < (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
))))
7062 /* If the shift count is a constant and we can do arithmetic in
7063 the mode of the shift, refine which bits we need. Otherwise, use the
7064 conservative form of the mask. */
7065 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
7066 && INTVAL (XEXP (x
, 1)) >= 0
7067 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (op_mode
)
7068 && GET_MODE_BITSIZE (op_mode
) <= HOST_BITS_PER_WIDE_INT
)
7069 mask
>>= INTVAL (XEXP (x
, 1));
7073 op0
= gen_lowpart_or_truncate (op_mode
,
7074 force_to_mode (XEXP (x
, 0), op_mode
,
7075 mask
, next_select
));
7077 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
7078 x
= simplify_gen_binary (code
, op_mode
, op0
, XEXP (x
, 1));
7082 /* Here we can only do something if the shift count is a constant,
7083 this shift constant is valid for the host, and we can do arithmetic
7086 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
7087 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
7088 && GET_MODE_BITSIZE (op_mode
) <= HOST_BITS_PER_WIDE_INT
)
7090 rtx inner
= XEXP (x
, 0);
7091 unsigned HOST_WIDE_INT inner_mask
;
7093 /* Select the mask of the bits we need for the shift operand. */
7094 inner_mask
= mask
<< INTVAL (XEXP (x
, 1));
7096 /* We can only change the mode of the shift if we can do arithmetic
7097 in the mode of the shift and INNER_MASK is no wider than the
7098 width of X's mode. */
7099 if ((inner_mask
& ~GET_MODE_MASK (GET_MODE (x
))) != 0)
7100 op_mode
= GET_MODE (x
);
7102 inner
= force_to_mode (inner
, op_mode
, inner_mask
, next_select
);
7104 if (GET_MODE (x
) != op_mode
|| inner
!= XEXP (x
, 0))
7105 x
= simplify_gen_binary (LSHIFTRT
, op_mode
, inner
, XEXP (x
, 1));
7108 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7109 shift and AND produces only copies of the sign bit (C2 is one less
7110 than a power of two), we can do this with just a shift. */
7112 if (GET_CODE (x
) == LSHIFTRT
7113 && GET_CODE (XEXP (x
, 1)) == CONST_INT
7114 /* The shift puts one of the sign bit copies in the least significant
7116 && ((INTVAL (XEXP (x
, 1))
7117 + num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0))))
7118 >= GET_MODE_BITSIZE (GET_MODE (x
)))
7119 && exact_log2 (mask
+ 1) >= 0
7120 /* Number of bits left after the shift must be more than the mask
7122 && ((INTVAL (XEXP (x
, 1)) + exact_log2 (mask
+ 1))
7123 <= GET_MODE_BITSIZE (GET_MODE (x
)))
7124 /* Must be more sign bit copies than the mask needs. */
7125 && ((int) num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
7126 >= exact_log2 (mask
+ 1)))
7127 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
7128 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x
))
7129 - exact_log2 (mask
+ 1)));
7134 /* If we are just looking for the sign bit, we don't need this shift at
7135 all, even if it has a variable count. */
7136 if (GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
7137 && (mask
== ((unsigned HOST_WIDE_INT
) 1
7138 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
7139 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
7141 /* If this is a shift by a constant, get a mask that contains those bits
7142 that are not copies of the sign bit. We then have two cases: If
7143 MASK only includes those bits, this can be a logical shift, which may
7144 allow simplifications. If MASK is a single-bit field not within
7145 those bits, we are requesting a copy of the sign bit and hence can
7146 shift the sign bit to the appropriate location. */
7148 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) >= 0
7149 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
7153 /* If the considered data is wider than HOST_WIDE_INT, we can't
7154 represent a mask for all its bits in a single scalar.
7155 But we only care about the lower bits, so calculate these. */
7157 if (GET_MODE_BITSIZE (GET_MODE (x
)) > HOST_BITS_PER_WIDE_INT
)
7159 nonzero
= ~(HOST_WIDE_INT
) 0;
7161 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7162 is the number of bits a full-width mask would have set.
7163 We need only shift if these are fewer than nonzero can
7164 hold. If not, we must keep all bits set in nonzero. */
7166 if (GET_MODE_BITSIZE (GET_MODE (x
)) - INTVAL (XEXP (x
, 1))
7167 < HOST_BITS_PER_WIDE_INT
)
7168 nonzero
>>= INTVAL (XEXP (x
, 1))
7169 + HOST_BITS_PER_WIDE_INT
7170 - GET_MODE_BITSIZE (GET_MODE (x
)) ;
7174 nonzero
= GET_MODE_MASK (GET_MODE (x
));
7175 nonzero
>>= INTVAL (XEXP (x
, 1));
7178 if ((mask
& ~nonzero
) == 0)
7180 x
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, GET_MODE (x
),
7181 XEXP (x
, 0), INTVAL (XEXP (x
, 1)));
7182 if (GET_CODE (x
) != ASHIFTRT
)
7183 return force_to_mode (x
, mode
, mask
, next_select
);
7186 else if ((i
= exact_log2 (mask
)) >= 0)
7188 x
= simplify_shift_const
7189 (NULL_RTX
, LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
7190 GET_MODE_BITSIZE (GET_MODE (x
)) - 1 - i
);
7192 if (GET_CODE (x
) != ASHIFTRT
)
7193 return force_to_mode (x
, mode
, mask
, next_select
);
7197 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7198 even if the shift count isn't a constant. */
7200 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
),
7201 XEXP (x
, 0), XEXP (x
, 1));
7205 /* If this is a zero- or sign-extension operation that just affects bits
7206 we don't care about, remove it. Be sure the call above returned
7207 something that is still a shift. */
7209 if ((GET_CODE (x
) == LSHIFTRT
|| GET_CODE (x
) == ASHIFTRT
)
7210 && GET_CODE (XEXP (x
, 1)) == CONST_INT
7211 && INTVAL (XEXP (x
, 1)) >= 0
7212 && (INTVAL (XEXP (x
, 1))
7213 <= GET_MODE_BITSIZE (GET_MODE (x
)) - (floor_log2 (mask
) + 1))
7214 && GET_CODE (XEXP (x
, 0)) == ASHIFT
7215 && XEXP (XEXP (x
, 0), 1) == XEXP (x
, 1))
7216 return force_to_mode (XEXP (XEXP (x
, 0), 0), mode
, mask
,
7223 /* If the shift count is constant and we can do computations
7224 in the mode of X, compute where the bits we care about are.
7225 Otherwise, we can't do anything. Don't change the mode of
7226 the shift or propagate MODE into the shift, though. */
7227 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
7228 && INTVAL (XEXP (x
, 1)) >= 0)
7230 temp
= simplify_binary_operation (code
== ROTATE
? ROTATERT
: ROTATE
,
7231 GET_MODE (x
), GEN_INT (mask
),
7233 if (temp
&& GET_CODE (temp
) == CONST_INT
)
7235 force_to_mode (XEXP (x
, 0), GET_MODE (x
),
7236 INTVAL (temp
), next_select
));
7241 /* If we just want the low-order bit, the NEG isn't needed since it
7242 won't change the low-order bit. */
7244 return force_to_mode (XEXP (x
, 0), mode
, mask
, just_select
);
7246 /* We need any bits less significant than the most significant bit in
7247 MASK since carries from those bits will affect the bits we are
7253 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7254 same as the XOR case above. Ensure that the constant we form is not
7255 wider than the mode of X. */
7257 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7258 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
7259 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
7260 && (INTVAL (XEXP (XEXP (x
, 0), 1)) + floor_log2 (mask
)
7261 < GET_MODE_BITSIZE (GET_MODE (x
)))
7262 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
7264 temp
= gen_int_mode (mask
<< INTVAL (XEXP (XEXP (x
, 0), 1)),
7266 temp
= simplify_gen_binary (XOR
, GET_MODE (x
),
7267 XEXP (XEXP (x
, 0), 0), temp
);
7268 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
),
7269 temp
, XEXP (XEXP (x
, 0), 1));
7271 return force_to_mode (x
, mode
, mask
, next_select
);
7274 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7275 use the full mask inside the NOT. */
7279 op0
= gen_lowpart_or_truncate (op_mode
,
7280 force_to_mode (XEXP (x
, 0), mode
, mask
,
7282 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
7283 x
= simplify_gen_unary (code
, op_mode
, op0
, op_mode
);
7287 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7288 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7289 which is equal to STORE_FLAG_VALUE. */
7290 if ((mask
& ~STORE_FLAG_VALUE
) == 0 && XEXP (x
, 1) == const0_rtx
7291 && GET_MODE (XEXP (x
, 0)) == mode
7292 && exact_log2 (nonzero_bits (XEXP (x
, 0), mode
)) >= 0
7293 && (nonzero_bits (XEXP (x
, 0), mode
)
7294 == (unsigned HOST_WIDE_INT
) STORE_FLAG_VALUE
))
7295 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
7300 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7301 written in a narrower mode. We play it safe and do not do so. */
7304 gen_lowpart_or_truncate (GET_MODE (x
),
7305 force_to_mode (XEXP (x
, 1), mode
,
7306 mask
, next_select
)));
7308 gen_lowpart_or_truncate (GET_MODE (x
),
7309 force_to_mode (XEXP (x
, 2), mode
,
7310 mask
, next_select
)));
7317 /* Ensure we return a value of the proper mode. */
7318 return gen_lowpart_or_truncate (mode
, x
);
7321 /* Return nonzero if X is an expression that has one of two values depending on
7322 whether some other value is zero or nonzero. In that case, we return the
7323 value that is being tested, *PTRUE is set to the value if the rtx being
7324 returned has a nonzero value, and *PFALSE is set to the other alternative.
7326 If we return zero, we set *PTRUE and *PFALSE to X. */
7329 if_then_else_cond (rtx x
, rtx
*ptrue
, rtx
*pfalse
)
7331 enum machine_mode mode
= GET_MODE (x
);
7332 enum rtx_code code
= GET_CODE (x
);
7333 rtx cond0
, cond1
, true0
, true1
, false0
, false1
;
7334 unsigned HOST_WIDE_INT nz
;
7336 /* If we are comparing a value against zero, we are done. */
7337 if ((code
== NE
|| code
== EQ
)
7338 && XEXP (x
, 1) == const0_rtx
)
7340 *ptrue
= (code
== NE
) ? const_true_rtx
: const0_rtx
;
7341 *pfalse
= (code
== NE
) ? const0_rtx
: const_true_rtx
;
7345 /* If this is a unary operation whose operand has one of two values, apply
7346 our opcode to compute those values. */
7347 else if (UNARY_P (x
)
7348 && (cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
)) != 0)
7350 *ptrue
= simplify_gen_unary (code
, mode
, true0
, GET_MODE (XEXP (x
, 0)));
7351 *pfalse
= simplify_gen_unary (code
, mode
, false0
,
7352 GET_MODE (XEXP (x
, 0)));
7356 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7357 make can't possibly match and would suppress other optimizations. */
7358 else if (code
== COMPARE
)
7361 /* If this is a binary operation, see if either side has only one of two
7362 values. If either one does or if both do and they are conditional on
7363 the same value, compute the new true and false values. */
7364 else if (BINARY_P (x
))
7366 cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
);
7367 cond1
= if_then_else_cond (XEXP (x
, 1), &true1
, &false1
);
7369 if ((cond0
!= 0 || cond1
!= 0)
7370 && ! (cond0
!= 0 && cond1
!= 0 && ! rtx_equal_p (cond0
, cond1
)))
7372 /* If if_then_else_cond returned zero, then true/false are the
7373 same rtl. We must copy one of them to prevent invalid rtl
7376 true0
= copy_rtx (true0
);
7377 else if (cond1
== 0)
7378 true1
= copy_rtx (true1
);
7380 if (COMPARISON_P (x
))
7382 *ptrue
= simplify_gen_relational (code
, mode
, VOIDmode
,
7384 *pfalse
= simplify_gen_relational (code
, mode
, VOIDmode
,
7389 *ptrue
= simplify_gen_binary (code
, mode
, true0
, true1
);
7390 *pfalse
= simplify_gen_binary (code
, mode
, false0
, false1
);
7393 return cond0
? cond0
: cond1
;
7396 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7397 operands is zero when the other is nonzero, and vice-versa,
7398 and STORE_FLAG_VALUE is 1 or -1. */
7400 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
7401 && (code
== PLUS
|| code
== IOR
|| code
== XOR
|| code
== MINUS
7403 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
7405 rtx op0
= XEXP (XEXP (x
, 0), 1);
7406 rtx op1
= XEXP (XEXP (x
, 1), 1);
7408 cond0
= XEXP (XEXP (x
, 0), 0);
7409 cond1
= XEXP (XEXP (x
, 1), 0);
7411 if (COMPARISON_P (cond0
)
7412 && COMPARISON_P (cond1
)
7413 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
7414 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
7415 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
7416 || ((swap_condition (GET_CODE (cond0
))
7417 == reversed_comparison_code (cond1
, NULL
))
7418 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
7419 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
7420 && ! side_effects_p (x
))
7422 *ptrue
= simplify_gen_binary (MULT
, mode
, op0
, const_true_rtx
);
7423 *pfalse
= simplify_gen_binary (MULT
, mode
,
7425 ? simplify_gen_unary (NEG
, mode
,
7433 /* Similarly for MULT, AND and UMIN, except that for these the result
7435 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
7436 && (code
== MULT
|| code
== AND
|| code
== UMIN
)
7437 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
7439 cond0
= XEXP (XEXP (x
, 0), 0);
7440 cond1
= XEXP (XEXP (x
, 1), 0);
7442 if (COMPARISON_P (cond0
)
7443 && COMPARISON_P (cond1
)
7444 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
7445 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
7446 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
7447 || ((swap_condition (GET_CODE (cond0
))
7448 == reversed_comparison_code (cond1
, NULL
))
7449 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
7450 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
7451 && ! side_effects_p (x
))
7453 *ptrue
= *pfalse
= const0_rtx
;
7459 else if (code
== IF_THEN_ELSE
)
7461 /* If we have IF_THEN_ELSE already, extract the condition and
7462 canonicalize it if it is NE or EQ. */
7463 cond0
= XEXP (x
, 0);
7464 *ptrue
= XEXP (x
, 1), *pfalse
= XEXP (x
, 2);
7465 if (GET_CODE (cond0
) == NE
&& XEXP (cond0
, 1) == const0_rtx
)
7466 return XEXP (cond0
, 0);
7467 else if (GET_CODE (cond0
) == EQ
&& XEXP (cond0
, 1) == const0_rtx
)
7469 *ptrue
= XEXP (x
, 2), *pfalse
= XEXP (x
, 1);
7470 return XEXP (cond0
, 0);
7476 /* If X is a SUBREG, we can narrow both the true and false values
7477 if the inner expression, if there is a condition. */
7478 else if (code
== SUBREG
7479 && 0 != (cond0
= if_then_else_cond (SUBREG_REG (x
),
7482 true0
= simplify_gen_subreg (mode
, true0
,
7483 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
7484 false0
= simplify_gen_subreg (mode
, false0
,
7485 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
7486 if (true0
&& false0
)
7494 /* If X is a constant, this isn't special and will cause confusions
7495 if we treat it as such. Likewise if it is equivalent to a constant. */
7496 else if (CONSTANT_P (x
)
7497 || ((cond0
= get_last_value (x
)) != 0 && CONSTANT_P (cond0
)))
7500 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7501 will be least confusing to the rest of the compiler. */
7502 else if (mode
== BImode
)
7504 *ptrue
= GEN_INT (STORE_FLAG_VALUE
), *pfalse
= const0_rtx
;
7508 /* If X is known to be either 0 or -1, those are the true and
7509 false values when testing X. */
7510 else if (x
== constm1_rtx
|| x
== const0_rtx
7511 || (mode
!= VOIDmode
7512 && num_sign_bit_copies (x
, mode
) == GET_MODE_BITSIZE (mode
)))
7514 *ptrue
= constm1_rtx
, *pfalse
= const0_rtx
;
7518 /* Likewise for 0 or a single bit. */
7519 else if (SCALAR_INT_MODE_P (mode
)
7520 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
7521 && exact_log2 (nz
= nonzero_bits (x
, mode
)) >= 0)
7523 *ptrue
= gen_int_mode (nz
, mode
), *pfalse
= const0_rtx
;
7527 /* Otherwise fail; show no condition with true and false values the same. */
7528 *ptrue
= *pfalse
= x
;
7532 /* Return the value of expression X given the fact that condition COND
7533 is known to be true when applied to REG as its first operand and VAL
7534 as its second. X is known to not be shared and so can be modified in
7537 We only handle the simplest cases, and specifically those cases that
7538 arise with IF_THEN_ELSE expressions. */
7541 known_cond (rtx x
, enum rtx_code cond
, rtx reg
, rtx val
)
7543 enum rtx_code code
= GET_CODE (x
);
7548 if (side_effects_p (x
))
7551 /* If either operand of the condition is a floating point value,
7552 then we have to avoid collapsing an EQ comparison. */
7554 && rtx_equal_p (x
, reg
)
7555 && ! FLOAT_MODE_P (GET_MODE (x
))
7556 && ! FLOAT_MODE_P (GET_MODE (val
)))
7559 if (cond
== UNEQ
&& rtx_equal_p (x
, reg
))
7562 /* If X is (abs REG) and we know something about REG's relationship
7563 with zero, we may be able to simplify this. */
7565 if (code
== ABS
&& rtx_equal_p (XEXP (x
, 0), reg
) && val
== const0_rtx
)
7568 case GE
: case GT
: case EQ
:
7571 return simplify_gen_unary (NEG
, GET_MODE (XEXP (x
, 0)),
7573 GET_MODE (XEXP (x
, 0)));
7578 /* The only other cases we handle are MIN, MAX, and comparisons if the
7579 operands are the same as REG and VAL. */
7581 else if (COMPARISON_P (x
) || COMMUTATIVE_ARITH_P (x
))
7583 if (rtx_equal_p (XEXP (x
, 0), val
))
7584 cond
= swap_condition (cond
), temp
= val
, val
= reg
, reg
= temp
;
7586 if (rtx_equal_p (XEXP (x
, 0), reg
) && rtx_equal_p (XEXP (x
, 1), val
))
7588 if (COMPARISON_P (x
))
7590 if (comparison_dominates_p (cond
, code
))
7591 return const_true_rtx
;
7593 code
= reversed_comparison_code (x
, NULL
);
7595 && comparison_dominates_p (cond
, code
))
7600 else if (code
== SMAX
|| code
== SMIN
7601 || code
== UMIN
|| code
== UMAX
)
7603 int unsignedp
= (code
== UMIN
|| code
== UMAX
);
7605 /* Do not reverse the condition when it is NE or EQ.
7606 This is because we cannot conclude anything about
7607 the value of 'SMAX (x, y)' when x is not equal to y,
7608 but we can when x equals y. */
7609 if ((code
== SMAX
|| code
== UMAX
)
7610 && ! (cond
== EQ
|| cond
== NE
))
7611 cond
= reverse_condition (cond
);
7616 return unsignedp
? x
: XEXP (x
, 1);
7618 return unsignedp
? x
: XEXP (x
, 0);
7620 return unsignedp
? XEXP (x
, 1) : x
;
7622 return unsignedp
? XEXP (x
, 0) : x
;
7629 else if (code
== SUBREG
)
7631 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (x
));
7632 rtx
new, r
= known_cond (SUBREG_REG (x
), cond
, reg
, val
);
7634 if (SUBREG_REG (x
) != r
)
7636 /* We must simplify subreg here, before we lose track of the
7637 original inner_mode. */
7638 new = simplify_subreg (GET_MODE (x
), r
,
7639 inner_mode
, SUBREG_BYTE (x
));
7643 SUBST (SUBREG_REG (x
), r
);
7648 /* We don't have to handle SIGN_EXTEND here, because even in the
7649 case of replacing something with a modeless CONST_INT, a
7650 CONST_INT is already (supposed to be) a valid sign extension for
7651 its narrower mode, which implies it's already properly
7652 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7653 story is different. */
7654 else if (code
== ZERO_EXTEND
)
7656 enum machine_mode inner_mode
= GET_MODE (XEXP (x
, 0));
7657 rtx
new, r
= known_cond (XEXP (x
, 0), cond
, reg
, val
);
7659 if (XEXP (x
, 0) != r
)
7661 /* We must simplify the zero_extend here, before we lose
7662 track of the original inner_mode. */
7663 new = simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
7668 SUBST (XEXP (x
, 0), r
);
7674 fmt
= GET_RTX_FORMAT (code
);
7675 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
7678 SUBST (XEXP (x
, i
), known_cond (XEXP (x
, i
), cond
, reg
, val
));
7679 else if (fmt
[i
] == 'E')
7680 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
7681 SUBST (XVECEXP (x
, i
, j
), known_cond (XVECEXP (x
, i
, j
),
7688 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7689 assignment as a field assignment. */
7692 rtx_equal_for_field_assignment_p (rtx x
, rtx y
)
7694 if (x
== y
|| rtx_equal_p (x
, y
))
7697 if (x
== 0 || y
== 0 || GET_MODE (x
) != GET_MODE (y
))
7700 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7701 Note that all SUBREGs of MEM are paradoxical; otherwise they
7702 would have been rewritten. */
7703 if (MEM_P (x
) && GET_CODE (y
) == SUBREG
7704 && MEM_P (SUBREG_REG (y
))
7705 && rtx_equal_p (SUBREG_REG (y
),
7706 gen_lowpart (GET_MODE (SUBREG_REG (y
)), x
)))
7709 if (MEM_P (y
) && GET_CODE (x
) == SUBREG
7710 && MEM_P (SUBREG_REG (x
))
7711 && rtx_equal_p (SUBREG_REG (x
),
7712 gen_lowpart (GET_MODE (SUBREG_REG (x
)), y
)))
7715 /* We used to see if get_last_value of X and Y were the same but that's
7716 not correct. In one direction, we'll cause the assignment to have
7717 the wrong destination and in the case, we'll import a register into this
7718 insn that might have already have been dead. So fail if none of the
7719 above cases are true. */
7723 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7724 Return that assignment if so.
7726 We only handle the most common cases. */
7729 make_field_assignment (rtx x
)
7731 rtx dest
= SET_DEST (x
);
7732 rtx src
= SET_SRC (x
);
7737 unsigned HOST_WIDE_INT len
;
7739 enum machine_mode mode
;
7741 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7742 a clear of a one-bit field. We will have changed it to
7743 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7746 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == ROTATE
7747 && GET_CODE (XEXP (XEXP (src
, 0), 0)) == CONST_INT
7748 && INTVAL (XEXP (XEXP (src
, 0), 0)) == -2
7749 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7751 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
7754 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
7758 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == SUBREG
7759 && subreg_lowpart_p (XEXP (src
, 0))
7760 && (GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)))
7761 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src
, 0)))))
7762 && GET_CODE (SUBREG_REG (XEXP (src
, 0))) == ROTATE
7763 && GET_CODE (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == CONST_INT
7764 && INTVAL (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == -2
7765 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7767 assign
= make_extraction (VOIDmode
, dest
, 0,
7768 XEXP (SUBREG_REG (XEXP (src
, 0)), 1),
7771 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
7775 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7777 if (GET_CODE (src
) == IOR
&& GET_CODE (XEXP (src
, 0)) == ASHIFT
7778 && XEXP (XEXP (src
, 0), 0) == const1_rtx
7779 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7781 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
7784 return gen_rtx_SET (VOIDmode
, assign
, const1_rtx
);
7788 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7789 SRC is an AND with all bits of that field set, then we can discard
7791 if (GET_CODE (dest
) == ZERO_EXTRACT
7792 && GET_CODE (XEXP (dest
, 1)) == CONST_INT
7793 && GET_CODE (src
) == AND
7794 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
7796 HOST_WIDE_INT width
= INTVAL (XEXP (dest
, 1));
7797 unsigned HOST_WIDE_INT and_mask
= INTVAL (XEXP (src
, 1));
7798 unsigned HOST_WIDE_INT ze_mask
;
7800 if (width
>= HOST_BITS_PER_WIDE_INT
)
7803 ze_mask
= ((unsigned HOST_WIDE_INT
)1 << width
) - 1;
7805 /* Complete overlap. We can remove the source AND. */
7806 if ((and_mask
& ze_mask
) == ze_mask
)
7807 return gen_rtx_SET (VOIDmode
, dest
, XEXP (src
, 0));
7809 /* Partial overlap. We can reduce the source AND. */
7810 if ((and_mask
& ze_mask
) != and_mask
)
7812 mode
= GET_MODE (src
);
7813 src
= gen_rtx_AND (mode
, XEXP (src
, 0),
7814 gen_int_mode (and_mask
& ze_mask
, mode
));
7815 return gen_rtx_SET (VOIDmode
, dest
, src
);
7819 /* The other case we handle is assignments into a constant-position
7820 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7821 a mask that has all one bits except for a group of zero bits and
7822 OTHER is known to have zeros where C1 has ones, this is such an
7823 assignment. Compute the position and length from C1. Shift OTHER
7824 to the appropriate position, force it to the required mode, and
7825 make the extraction. Check for the AND in both operands. */
7827 if (GET_CODE (src
) != IOR
&& GET_CODE (src
) != XOR
)
7830 rhs
= expand_compound_operation (XEXP (src
, 0));
7831 lhs
= expand_compound_operation (XEXP (src
, 1));
7833 if (GET_CODE (rhs
) == AND
7834 && GET_CODE (XEXP (rhs
, 1)) == CONST_INT
7835 && rtx_equal_for_field_assignment_p (XEXP (rhs
, 0), dest
))
7836 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
7837 else if (GET_CODE (lhs
) == AND
7838 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
7839 && rtx_equal_for_field_assignment_p (XEXP (lhs
, 0), dest
))
7840 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
7844 pos
= get_pos_from_mask ((~c1
) & GET_MODE_MASK (GET_MODE (dest
)), &len
);
7845 if (pos
< 0 || pos
+ len
> GET_MODE_BITSIZE (GET_MODE (dest
))
7846 || GET_MODE_BITSIZE (GET_MODE (dest
)) > HOST_BITS_PER_WIDE_INT
7847 || (c1
& nonzero_bits (other
, GET_MODE (dest
))) != 0)
7850 assign
= make_extraction (VOIDmode
, dest
, pos
, NULL_RTX
, len
, 1, 1, 0);
7854 /* The mode to use for the source is the mode of the assignment, or of
7855 what is inside a possible STRICT_LOW_PART. */
7856 mode
= (GET_CODE (assign
) == STRICT_LOW_PART
7857 ? GET_MODE (XEXP (assign
, 0)) : GET_MODE (assign
));
7859 /* Shift OTHER right POS places and make it the source, restricting it
7860 to the proper length and mode. */
7862 src
= canon_reg_for_combine (simplify_shift_const (NULL_RTX
, LSHIFTRT
,
7866 src
= force_to_mode (src
, mode
,
7867 GET_MODE_BITSIZE (mode
) >= HOST_BITS_PER_WIDE_INT
7868 ? ~(unsigned HOST_WIDE_INT
) 0
7869 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
7872 /* If SRC is masked by an AND that does not make a difference in
7873 the value being stored, strip it. */
7874 if (GET_CODE (assign
) == ZERO_EXTRACT
7875 && GET_CODE (XEXP (assign
, 1)) == CONST_INT
7876 && INTVAL (XEXP (assign
, 1)) < HOST_BITS_PER_WIDE_INT
7877 && GET_CODE (src
) == AND
7878 && GET_CODE (XEXP (src
, 1)) == CONST_INT
7879 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (src
, 1))
7880 == ((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (assign
, 1))) - 1))
7881 src
= XEXP (src
, 0);
7883 return gen_rtx_SET (VOIDmode
, assign
, src
);
7886 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7890 apply_distributive_law (rtx x
)
7892 enum rtx_code code
= GET_CODE (x
);
7893 enum rtx_code inner_code
;
7894 rtx lhs
, rhs
, other
;
7897 /* Distributivity is not true for floating point as it can change the
7898 value. So we don't do it unless -funsafe-math-optimizations. */
7899 if (FLOAT_MODE_P (GET_MODE (x
))
7900 && ! flag_unsafe_math_optimizations
)
7903 /* The outer operation can only be one of the following: */
7904 if (code
!= IOR
&& code
!= AND
&& code
!= XOR
7905 && code
!= PLUS
&& code
!= MINUS
)
7911 /* If either operand is a primitive we can't do anything, so get out
7913 if (OBJECT_P (lhs
) || OBJECT_P (rhs
))
7916 lhs
= expand_compound_operation (lhs
);
7917 rhs
= expand_compound_operation (rhs
);
7918 inner_code
= GET_CODE (lhs
);
7919 if (inner_code
!= GET_CODE (rhs
))
7922 /* See if the inner and outer operations distribute. */
7929 /* These all distribute except over PLUS. */
7930 if (code
== PLUS
|| code
== MINUS
)
7935 if (code
!= PLUS
&& code
!= MINUS
)
7940 /* This is also a multiply, so it distributes over everything. */
7944 /* Non-paradoxical SUBREGs distributes over all operations,
7945 provided the inner modes and byte offsets are the same, this
7946 is an extraction of a low-order part, we don't convert an fp
7947 operation to int or vice versa, this is not a vector mode,
7948 and we would not be converting a single-word operation into a
7949 multi-word operation. The latter test is not required, but
7950 it prevents generating unneeded multi-word operations. Some
7951 of the previous tests are redundant given the latter test,
7952 but are retained because they are required for correctness.
7954 We produce the result slightly differently in this case. */
7956 if (GET_MODE (SUBREG_REG (lhs
)) != GET_MODE (SUBREG_REG (rhs
))
7957 || SUBREG_BYTE (lhs
) != SUBREG_BYTE (rhs
)
7958 || ! subreg_lowpart_p (lhs
)
7959 || (GET_MODE_CLASS (GET_MODE (lhs
))
7960 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs
))))
7961 || (GET_MODE_SIZE (GET_MODE (lhs
))
7962 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs
))))
7963 || VECTOR_MODE_P (GET_MODE (lhs
))
7964 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs
))) > UNITS_PER_WORD
7965 /* Result might need to be truncated. Don't change mode if
7966 explicit truncation is needed. */
7967 || !TRULY_NOOP_TRUNCATION
7968 (GET_MODE_BITSIZE (GET_MODE (x
)),
7969 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs
)))))
7972 tem
= simplify_gen_binary (code
, GET_MODE (SUBREG_REG (lhs
)),
7973 SUBREG_REG (lhs
), SUBREG_REG (rhs
));
7974 return gen_lowpart (GET_MODE (x
), tem
);
7980 /* Set LHS and RHS to the inner operands (A and B in the example
7981 above) and set OTHER to the common operand (C in the example).
7982 There is only one way to do this unless the inner operation is
7984 if (COMMUTATIVE_ARITH_P (lhs
)
7985 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 0)))
7986 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 1);
7987 else if (COMMUTATIVE_ARITH_P (lhs
)
7988 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 1)))
7989 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 0);
7990 else if (COMMUTATIVE_ARITH_P (lhs
)
7991 && rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 0)))
7992 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 1);
7993 else if (rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 1)))
7994 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 0);
7998 /* Form the new inner operation, seeing if it simplifies first. */
7999 tem
= simplify_gen_binary (code
, GET_MODE (x
), lhs
, rhs
);
8001 /* There is one exception to the general way of distributing:
8002 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8003 if (code
== XOR
&& inner_code
== IOR
)
8006 other
= simplify_gen_unary (NOT
, GET_MODE (x
), other
, GET_MODE (x
));
8009 /* We may be able to continuing distributing the result, so call
8010 ourselves recursively on the inner operation before forming the
8011 outer operation, which we return. */
8012 return simplify_gen_binary (inner_code
, GET_MODE (x
),
8013 apply_distributive_law (tem
), other
);
8016 /* See if X is of the form (* (+ A B) C), and if so convert to
8017 (+ (* A C) (* B C)) and try to simplify.
8019 Most of the time, this results in no change. However, if some of
8020 the operands are the same or inverses of each other, simplifications
8023 For example, (and (ior A B) (not B)) can occur as the result of
8024 expanding a bit field assignment. When we apply the distributive
8025 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8026 which then simplifies to (and (A (not B))).
8028 Note that no checks happen on the validity of applying the inverse
8029 distributive law. This is pointless since we can do it in the
8030 few places where this routine is called.
8032 N is the index of the term that is decomposed (the arithmetic operation,
8033 i.e. (+ A B) in the first example above). !N is the index of the term that
8034 is distributed, i.e. of C in the first example above. */
8036 distribute_and_simplify_rtx (rtx x
, int n
)
8038 enum machine_mode mode
;
8039 enum rtx_code outer_code
, inner_code
;
8040 rtx decomposed
, distributed
, inner_op0
, inner_op1
, new_op0
, new_op1
, tmp
;
8042 decomposed
= XEXP (x
, n
);
8043 if (!ARITHMETIC_P (decomposed
))
8046 mode
= GET_MODE (x
);
8047 outer_code
= GET_CODE (x
);
8048 distributed
= XEXP (x
, !n
);
8050 inner_code
= GET_CODE (decomposed
);
8051 inner_op0
= XEXP (decomposed
, 0);
8052 inner_op1
= XEXP (decomposed
, 1);
8054 /* Special case (and (xor B C) (not A)), which is equivalent to
8055 (xor (ior A B) (ior A C)) */
8056 if (outer_code
== AND
&& inner_code
== XOR
&& GET_CODE (distributed
) == NOT
)
8058 distributed
= XEXP (distributed
, 0);
8064 /* Distribute the second term. */
8065 new_op0
= simplify_gen_binary (outer_code
, mode
, inner_op0
, distributed
);
8066 new_op1
= simplify_gen_binary (outer_code
, mode
, inner_op1
, distributed
);
8070 /* Distribute the first term. */
8071 new_op0
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op0
);
8072 new_op1
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op1
);
8075 tmp
= apply_distributive_law (simplify_gen_binary (inner_code
, mode
,
8077 if (GET_CODE (tmp
) != outer_code
8078 && rtx_cost (tmp
, SET
) < rtx_cost (x
, SET
))
8084 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8085 in MODE. Return an equivalent form, if different from (and VAROP
8086 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8089 simplify_and_const_int_1 (enum machine_mode mode
, rtx varop
,
8090 unsigned HOST_WIDE_INT constop
)
8092 unsigned HOST_WIDE_INT nonzero
;
8093 unsigned HOST_WIDE_INT orig_constop
;
8098 orig_constop
= constop
;
8099 if (GET_CODE (varop
) == CLOBBER
)
8102 /* Simplify VAROP knowing that we will be only looking at some of the
8105 Note by passing in CONSTOP, we guarantee that the bits not set in
8106 CONSTOP are not significant and will never be examined. We must
8107 ensure that is the case by explicitly masking out those bits
8108 before returning. */
8109 varop
= force_to_mode (varop
, mode
, constop
, 0);
8111 /* If VAROP is a CLOBBER, we will fail so return it. */
8112 if (GET_CODE (varop
) == CLOBBER
)
8115 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8116 to VAROP and return the new constant. */
8117 if (GET_CODE (varop
) == CONST_INT
)
8118 return gen_int_mode (INTVAL (varop
) & constop
, mode
);
8120 /* See what bits may be nonzero in VAROP. Unlike the general case of
8121 a call to nonzero_bits, here we don't care about bits outside
8124 nonzero
= nonzero_bits (varop
, mode
) & GET_MODE_MASK (mode
);
8126 /* Turn off all bits in the constant that are known to already be zero.
8127 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8128 which is tested below. */
8132 /* If we don't have any bits left, return zero. */
8136 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8137 a power of two, we can replace this with an ASHIFT. */
8138 if (GET_CODE (varop
) == NEG
&& nonzero_bits (XEXP (varop
, 0), mode
) == 1
8139 && (i
= exact_log2 (constop
)) >= 0)
8140 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (varop
, 0), i
);
8142 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8143 or XOR, then try to apply the distributive law. This may eliminate
8144 operations if either branch can be simplified because of the AND.
8145 It may also make some cases more complex, but those cases probably
8146 won't match a pattern either with or without this. */
8148 if (GET_CODE (varop
) == IOR
|| GET_CODE (varop
) == XOR
)
8152 apply_distributive_law
8153 (simplify_gen_binary (GET_CODE (varop
), GET_MODE (varop
),
8154 simplify_and_const_int (NULL_RTX
,
8158 simplify_and_const_int (NULL_RTX
,
8163 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8164 the AND and see if one of the operands simplifies to zero. If so, we
8165 may eliminate it. */
8167 if (GET_CODE (varop
) == PLUS
8168 && exact_log2 (constop
+ 1) >= 0)
8172 o0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 0), constop
);
8173 o1
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 1), constop
);
8174 if (o0
== const0_rtx
)
8176 if (o1
== const0_rtx
)
8180 /* Make a SUBREG if necessary. If we can't make it, fail. */
8181 varop
= gen_lowpart (mode
, varop
);
8182 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
8185 /* If we are only masking insignificant bits, return VAROP. */
8186 if (constop
== nonzero
)
8189 if (varop
== orig_varop
&& constop
== orig_constop
)
8192 /* Otherwise, return an AND. */
8193 constop
= trunc_int_for_mode (constop
, mode
);
8194 return simplify_gen_binary (AND
, mode
, varop
, GEN_INT (constop
));
8198 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8201 Return an equivalent form, if different from X. Otherwise, return X. If
8202 X is zero, we are to always construct the equivalent form. */
8205 simplify_and_const_int (rtx x
, enum machine_mode mode
, rtx varop
,
8206 unsigned HOST_WIDE_INT constop
)
8208 rtx tem
= simplify_and_const_int_1 (mode
, varop
, constop
);
8213 x
= simplify_gen_binary (AND
, GET_MODE (varop
), varop
, GEN_INT (constop
));
8214 if (GET_MODE (x
) != mode
)
8215 x
= gen_lowpart (mode
, x
);
8219 /* Given a REG, X, compute which bits in X can be nonzero.
8220 We don't care about bits outside of those defined in MODE.
8222 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8223 a shift, AND, or zero_extract, we can do better. */
8226 reg_nonzero_bits_for_combine (rtx x
, enum machine_mode mode
,
8227 rtx known_x ATTRIBUTE_UNUSED
,
8228 enum machine_mode known_mode ATTRIBUTE_UNUSED
,
8229 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED
,
8230 unsigned HOST_WIDE_INT
*nonzero
)
8234 /* If X is a register whose nonzero bits value is current, use it.
8235 Otherwise, if X is a register whose value we can find, use that
8236 value. Otherwise, use the previously-computed global nonzero bits
8237 for this register. */
8239 if (reg_stat
[REGNO (x
)].last_set_value
!= 0
8240 && (reg_stat
[REGNO (x
)].last_set_mode
== mode
8241 || (GET_MODE_CLASS (reg_stat
[REGNO (x
)].last_set_mode
) == MODE_INT
8242 && GET_MODE_CLASS (mode
) == MODE_INT
))
8243 && (reg_stat
[REGNO (x
)].last_set_label
== label_tick
8244 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
8245 && REG_N_SETS (REGNO (x
)) == 1
8246 && ! REGNO_REG_SET_P
8247 (ENTRY_BLOCK_PTR
->next_bb
->il
.rtl
->global_live_at_start
,
8249 && INSN_CUID (reg_stat
[REGNO (x
)].last_set
) < subst_low_cuid
)
8251 *nonzero
&= reg_stat
[REGNO (x
)].last_set_nonzero_bits
;
8255 tem
= get_last_value (x
);
8259 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8260 /* If X is narrower than MODE and TEM is a non-negative
8261 constant that would appear negative in the mode of X,
8262 sign-extend it for use in reg_nonzero_bits because some
8263 machines (maybe most) will actually do the sign-extension
8264 and this is the conservative approach.
8266 ??? For 2.5, try to tighten up the MD files in this regard
8267 instead of this kludge. */
8269 if (GET_MODE_BITSIZE (GET_MODE (x
)) < GET_MODE_BITSIZE (mode
)
8270 && GET_CODE (tem
) == CONST_INT
8272 && 0 != (INTVAL (tem
)
8273 & ((HOST_WIDE_INT
) 1
8274 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
8275 tem
= GEN_INT (INTVAL (tem
)
8276 | ((HOST_WIDE_INT
) (-1)
8277 << GET_MODE_BITSIZE (GET_MODE (x
))));
8281 else if (nonzero_sign_valid
&& reg_stat
[REGNO (x
)].nonzero_bits
)
8283 unsigned HOST_WIDE_INT mask
= reg_stat
[REGNO (x
)].nonzero_bits
;
8285 if (GET_MODE_BITSIZE (GET_MODE (x
)) < GET_MODE_BITSIZE (mode
))
8286 /* We don't know anything about the upper bits. */
8287 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (GET_MODE (x
));
8294 /* Return the number of bits at the high-order end of X that are known to
8295 be equal to the sign bit. X will be used in mode MODE; if MODE is
8296 VOIDmode, X will be used in its own mode. The returned value will always
8297 be between 1 and the number of bits in MODE. */
8300 reg_num_sign_bit_copies_for_combine (rtx x
, enum machine_mode mode
,
8301 rtx known_x ATTRIBUTE_UNUSED
,
8302 enum machine_mode known_mode
8304 unsigned int known_ret ATTRIBUTE_UNUSED
,
8305 unsigned int *result
)
8309 if (reg_stat
[REGNO (x
)].last_set_value
!= 0
8310 && reg_stat
[REGNO (x
)].last_set_mode
== mode
8311 && (reg_stat
[REGNO (x
)].last_set_label
== label_tick
8312 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
8313 && REG_N_SETS (REGNO (x
)) == 1
8314 && ! REGNO_REG_SET_P
8315 (ENTRY_BLOCK_PTR
->next_bb
->il
.rtl
->global_live_at_start
,
8317 && INSN_CUID (reg_stat
[REGNO (x
)].last_set
) < subst_low_cuid
)
8319 *result
= reg_stat
[REGNO (x
)].last_set_sign_bit_copies
;
8323 tem
= get_last_value (x
);
8327 if (nonzero_sign_valid
&& reg_stat
[REGNO (x
)].sign_bit_copies
!= 0
8328 && GET_MODE_BITSIZE (GET_MODE (x
)) == GET_MODE_BITSIZE (mode
))
8329 *result
= reg_stat
[REGNO (x
)].sign_bit_copies
;
8334 /* Return the number of "extended" bits there are in X, when interpreted
8335 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8336 unsigned quantities, this is the number of high-order zero bits.
8337 For signed quantities, this is the number of copies of the sign bit
8338 minus 1. In both case, this function returns the number of "spare"
8339 bits. For example, if two quantities for which this function returns
8340 at least 1 are added, the addition is known not to overflow.
8342 This function will always return 0 unless called during combine, which
8343 implies that it must be called from a define_split. */
8346 extended_count (rtx x
, enum machine_mode mode
, int unsignedp
)
8348 if (nonzero_sign_valid
== 0)
8352 ? (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
8353 ? (unsigned int) (GET_MODE_BITSIZE (mode
) - 1
8354 - floor_log2 (nonzero_bits (x
, mode
)))
8356 : num_sign_bit_copies (x
, mode
) - 1);
8359 /* This function is called from `simplify_shift_const' to merge two
8360 outer operations. Specifically, we have already found that we need
8361 to perform operation *POP0 with constant *PCONST0 at the outermost
8362 position. We would now like to also perform OP1 with constant CONST1
8363 (with *POP0 being done last).
8365 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8366 the resulting operation. *PCOMP_P is set to 1 if we would need to
8367 complement the innermost operand, otherwise it is unchanged.
8369 MODE is the mode in which the operation will be done. No bits outside
8370 the width of this mode matter. It is assumed that the width of this mode
8371 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8373 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8374 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8375 result is simply *PCONST0.
8377 If the resulting operation cannot be expressed as one operation, we
8378 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8381 merge_outer_ops (enum rtx_code
*pop0
, HOST_WIDE_INT
*pconst0
, enum rtx_code op1
, HOST_WIDE_INT const1
, enum machine_mode mode
, int *pcomp_p
)
8383 enum rtx_code op0
= *pop0
;
8384 HOST_WIDE_INT const0
= *pconst0
;
8386 const0
&= GET_MODE_MASK (mode
);
8387 const1
&= GET_MODE_MASK (mode
);
8389 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8393 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8396 if (op1
== UNKNOWN
|| op0
== SET
)
8399 else if (op0
== UNKNOWN
)
8400 op0
= op1
, const0
= const1
;
8402 else if (op0
== op1
)
8426 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8427 else if (op0
== PLUS
|| op1
== PLUS
|| op0
== NEG
|| op1
== NEG
)
8430 /* If the two constants aren't the same, we can't do anything. The
8431 remaining six cases can all be done. */
8432 else if (const0
!= const1
)
8440 /* (a & b) | b == b */
8442 else /* op1 == XOR */
8443 /* (a ^ b) | b == a | b */
8449 /* (a & b) ^ b == (~a) & b */
8450 op0
= AND
, *pcomp_p
= 1;
8451 else /* op1 == IOR */
8452 /* (a | b) ^ b == a & ~b */
8453 op0
= AND
, const0
= ~const0
;
8458 /* (a | b) & b == b */
8460 else /* op1 == XOR */
8461 /* (a ^ b) & b) == (~a) & b */
8468 /* Check for NO-OP cases. */
8469 const0
&= GET_MODE_MASK (mode
);
8471 && (op0
== IOR
|| op0
== XOR
|| op0
== PLUS
))
8473 else if (const0
== 0 && op0
== AND
)
8475 else if ((unsigned HOST_WIDE_INT
) const0
== GET_MODE_MASK (mode
)
8479 /* ??? Slightly redundant with the above mask, but not entirely.
8480 Moving this above means we'd have to sign-extend the mode mask
8481 for the final test. */
8482 const0
= trunc_int_for_mode (const0
, mode
);
8490 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8491 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8492 simplify it. Otherwise, return a simplified value.
8494 The shift is normally computed in the widest mode we find in VAROP, as
8495 long as it isn't a different number of words than RESULT_MODE. Exceptions
8496 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8499 simplify_shift_const_1 (enum rtx_code code
, enum machine_mode result_mode
,
8500 rtx varop
, int orig_count
)
8502 enum rtx_code orig_code
= code
;
8503 rtx orig_varop
= varop
;
8505 enum machine_mode mode
= result_mode
;
8506 enum machine_mode shift_mode
, tmode
;
8507 unsigned int mode_words
8508 = (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
8509 /* We form (outer_op (code varop count) (outer_const)). */
8510 enum rtx_code outer_op
= UNKNOWN
;
8511 HOST_WIDE_INT outer_const
= 0;
8512 int complement_p
= 0;
8515 /* Make sure and truncate the "natural" shift on the way in. We don't
8516 want to do this inside the loop as it makes it more difficult to
8518 if (SHIFT_COUNT_TRUNCATED
)
8519 orig_count
&= GET_MODE_BITSIZE (mode
) - 1;
8521 /* If we were given an invalid count, don't do anything except exactly
8522 what was requested. */
8524 if (orig_count
< 0 || orig_count
>= (int) GET_MODE_BITSIZE (mode
))
8529 /* Unless one of the branches of the `if' in this loop does a `continue',
8530 we will `break' the loop after the `if'. */
8534 /* If we have an operand of (clobber (const_int 0)), fail. */
8535 if (GET_CODE (varop
) == CLOBBER
)
8538 /* If we discovered we had to complement VAROP, leave. Making a NOT
8539 here would cause an infinite loop. */
8543 /* Convert ROTATERT to ROTATE. */
8544 if (code
== ROTATERT
)
8546 unsigned int bitsize
= GET_MODE_BITSIZE (result_mode
);;
8548 if (VECTOR_MODE_P (result_mode
))
8549 count
= bitsize
/ GET_MODE_NUNITS (result_mode
) - count
;
8551 count
= bitsize
- count
;
8554 /* We need to determine what mode we will do the shift in. If the
8555 shift is a right shift or a ROTATE, we must always do it in the mode
8556 it was originally done in. Otherwise, we can do it in MODE, the
8557 widest mode encountered. */
8559 = (code
== ASHIFTRT
|| code
== LSHIFTRT
|| code
== ROTATE
8560 ? result_mode
: mode
);
8562 /* Handle cases where the count is greater than the size of the mode
8563 minus 1. For ASHIFT, use the size minus one as the count (this can
8564 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8565 take the count modulo the size. For other shifts, the result is
8568 Since these shifts are being produced by the compiler by combining
8569 multiple operations, each of which are defined, we know what the
8570 result is supposed to be. */
8572 if (count
> (GET_MODE_BITSIZE (shift_mode
) - 1))
8574 if (code
== ASHIFTRT
)
8575 count
= GET_MODE_BITSIZE (shift_mode
) - 1;
8576 else if (code
== ROTATE
|| code
== ROTATERT
)
8577 count
%= GET_MODE_BITSIZE (shift_mode
);
8580 /* We can't simply return zero because there may be an
8588 /* An arithmetic right shift of a quantity known to be -1 or 0
8590 if (code
== ASHIFTRT
8591 && (num_sign_bit_copies (varop
, shift_mode
)
8592 == GET_MODE_BITSIZE (shift_mode
)))
8598 /* If we are doing an arithmetic right shift and discarding all but
8599 the sign bit copies, this is equivalent to doing a shift by the
8600 bitsize minus one. Convert it into that shift because it will often
8601 allow other simplifications. */
8603 if (code
== ASHIFTRT
8604 && (count
+ num_sign_bit_copies (varop
, shift_mode
)
8605 >= GET_MODE_BITSIZE (shift_mode
)))
8606 count
= GET_MODE_BITSIZE (shift_mode
) - 1;
8608 /* We simplify the tests below and elsewhere by converting
8609 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8610 `make_compound_operation' will convert it to an ASHIFTRT for
8611 those machines (such as VAX) that don't have an LSHIFTRT. */
8612 if (GET_MODE_BITSIZE (shift_mode
) <= HOST_BITS_PER_WIDE_INT
8614 && ((nonzero_bits (varop
, shift_mode
)
8615 & ((HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (shift_mode
) - 1)))
8619 if (code
== LSHIFTRT
8620 && GET_MODE_BITSIZE (shift_mode
) <= HOST_BITS_PER_WIDE_INT
8621 && !(nonzero_bits (varop
, shift_mode
) >> count
))
8624 && GET_MODE_BITSIZE (shift_mode
) <= HOST_BITS_PER_WIDE_INT
8625 && !((nonzero_bits (varop
, shift_mode
) << count
)
8626 & GET_MODE_MASK (shift_mode
)))
8629 switch (GET_CODE (varop
))
8635 new = expand_compound_operation (varop
);
8644 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8645 minus the width of a smaller mode, we can do this with a
8646 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8647 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
8648 && ! mode_dependent_address_p (XEXP (varop
, 0))
8649 && ! MEM_VOLATILE_P (varop
)
8650 && (tmode
= mode_for_size (GET_MODE_BITSIZE (mode
) - count
,
8651 MODE_INT
, 1)) != BLKmode
)
8653 new = adjust_address_nv (varop
, tmode
,
8654 BYTES_BIG_ENDIAN
? 0
8655 : count
/ BITS_PER_UNIT
);
8657 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
8658 : ZERO_EXTEND
, mode
, new);
8665 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8666 the same number of words as what we've seen so far. Then store
8667 the widest mode in MODE. */
8668 if (subreg_lowpart_p (varop
)
8669 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
8670 > GET_MODE_SIZE (GET_MODE (varop
)))
8671 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
8672 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
8675 varop
= SUBREG_REG (varop
);
8676 if (GET_MODE_SIZE (GET_MODE (varop
)) > GET_MODE_SIZE (mode
))
8677 mode
= GET_MODE (varop
);
8683 /* Some machines use MULT instead of ASHIFT because MULT
8684 is cheaper. But it is still better on those machines to
8685 merge two shifts into one. */
8686 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
8687 && exact_log2 (INTVAL (XEXP (varop
, 1))) >= 0)
8690 = simplify_gen_binary (ASHIFT
, GET_MODE (varop
),
8692 GEN_INT (exact_log2 (
8693 INTVAL (XEXP (varop
, 1)))));
8699 /* Similar, for when divides are cheaper. */
8700 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
8701 && exact_log2 (INTVAL (XEXP (varop
, 1))) >= 0)
8704 = simplify_gen_binary (LSHIFTRT
, GET_MODE (varop
),
8706 GEN_INT (exact_log2 (
8707 INTVAL (XEXP (varop
, 1)))));
8713 /* If we are extracting just the sign bit of an arithmetic
8714 right shift, that shift is not needed. However, the sign
8715 bit of a wider mode may be different from what would be
8716 interpreted as the sign bit in a narrower mode, so, if
8717 the result is narrower, don't discard the shift. */
8718 if (code
== LSHIFTRT
8719 && count
== (GET_MODE_BITSIZE (result_mode
) - 1)
8720 && (GET_MODE_BITSIZE (result_mode
)
8721 >= GET_MODE_BITSIZE (GET_MODE (varop
))))
8723 varop
= XEXP (varop
, 0);
8727 /* ... fall through ... */
8732 /* Here we have two nested shifts. The result is usually the
8733 AND of a new shift with a mask. We compute the result below. */
8734 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
8735 && INTVAL (XEXP (varop
, 1)) >= 0
8736 && INTVAL (XEXP (varop
, 1)) < GET_MODE_BITSIZE (GET_MODE (varop
))
8737 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
8738 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
8739 && !VECTOR_MODE_P (result_mode
))
8741 enum rtx_code first_code
= GET_CODE (varop
);
8742 unsigned int first_count
= INTVAL (XEXP (varop
, 1));
8743 unsigned HOST_WIDE_INT mask
;
8746 /* We have one common special case. We can't do any merging if
8747 the inner code is an ASHIFTRT of a smaller mode. However, if
8748 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8749 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8750 we can convert it to
8751 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8752 This simplifies certain SIGN_EXTEND operations. */
8753 if (code
== ASHIFT
&& first_code
== ASHIFTRT
8754 && count
== (GET_MODE_BITSIZE (result_mode
)
8755 - GET_MODE_BITSIZE (GET_MODE (varop
))))
8757 /* C3 has the low-order C1 bits zero. */
8759 mask
= (GET_MODE_MASK (mode
)
8760 & ~(((HOST_WIDE_INT
) 1 << first_count
) - 1));
8762 varop
= simplify_and_const_int (NULL_RTX
, result_mode
,
8763 XEXP (varop
, 0), mask
);
8764 varop
= simplify_shift_const (NULL_RTX
, ASHIFT
, result_mode
,
8766 count
= first_count
;
8771 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8772 than C1 high-order bits equal to the sign bit, we can convert
8773 this to either an ASHIFT or an ASHIFTRT depending on the
8776 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8778 if (code
== ASHIFTRT
&& first_code
== ASHIFT
8779 && GET_MODE (varop
) == shift_mode
8780 && (num_sign_bit_copies (XEXP (varop
, 0), shift_mode
)
8783 varop
= XEXP (varop
, 0);
8784 count
-= first_count
;
8794 /* There are some cases we can't do. If CODE is ASHIFTRT,
8795 we can only do this if FIRST_CODE is also ASHIFTRT.
8797 We can't do the case when CODE is ROTATE and FIRST_CODE is
8800 If the mode of this shift is not the mode of the outer shift,
8801 we can't do this if either shift is a right shift or ROTATE.
8803 Finally, we can't do any of these if the mode is too wide
8804 unless the codes are the same.
8806 Handle the case where the shift codes are the same
8809 if (code
== first_code
)
8811 if (GET_MODE (varop
) != result_mode
8812 && (code
== ASHIFTRT
|| code
== LSHIFTRT
8816 count
+= first_count
;
8817 varop
= XEXP (varop
, 0);
8821 if (code
== ASHIFTRT
8822 || (code
== ROTATE
&& first_code
== ASHIFTRT
)
8823 || GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
8824 || (GET_MODE (varop
) != result_mode
8825 && (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
8826 || first_code
== ROTATE
8827 || code
== ROTATE
)))
8830 /* To compute the mask to apply after the shift, shift the
8831 nonzero bits of the inner shift the same way the
8832 outer shift will. */
8834 mask_rtx
= GEN_INT (nonzero_bits (varop
, GET_MODE (varop
)));
8837 = simplify_const_binary_operation (code
, result_mode
, mask_rtx
,
8840 /* Give up if we can't compute an outer operation to use. */
8842 || GET_CODE (mask_rtx
) != CONST_INT
8843 || ! merge_outer_ops (&outer_op
, &outer_const
, AND
,
8845 result_mode
, &complement_p
))
8848 /* If the shifts are in the same direction, we add the
8849 counts. Otherwise, we subtract them. */
8850 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
8851 == (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
))
8852 count
+= first_count
;
8854 count
-= first_count
;
8856 /* If COUNT is positive, the new shift is usually CODE,
8857 except for the two exceptions below, in which case it is
8858 FIRST_CODE. If the count is negative, FIRST_CODE should
8861 && ((first_code
== ROTATE
&& code
== ASHIFT
)
8862 || (first_code
== ASHIFTRT
&& code
== LSHIFTRT
)))
8865 code
= first_code
, count
= -count
;
8867 varop
= XEXP (varop
, 0);
8871 /* If we have (A << B << C) for any shift, we can convert this to
8872 (A << C << B). This wins if A is a constant. Only try this if
8873 B is not a constant. */
8875 else if (GET_CODE (varop
) == code
8876 && GET_CODE (XEXP (varop
, 0)) == CONST_INT
8877 && GET_CODE (XEXP (varop
, 1)) != CONST_INT
)
8879 rtx
new = simplify_const_binary_operation (code
, mode
,
8882 varop
= gen_rtx_fmt_ee (code
, mode
, new, XEXP (varop
, 1));
8889 /* Make this fit the case below. */
8890 varop
= gen_rtx_XOR (mode
, XEXP (varop
, 0),
8891 GEN_INT (GET_MODE_MASK (mode
)));
8897 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8898 with C the size of VAROP - 1 and the shift is logical if
8899 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8900 we have an (le X 0) operation. If we have an arithmetic shift
8901 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8902 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8904 if (GET_CODE (varop
) == IOR
&& GET_CODE (XEXP (varop
, 0)) == PLUS
8905 && XEXP (XEXP (varop
, 0), 1) == constm1_rtx
8906 && (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
8907 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
8908 && count
== (GET_MODE_BITSIZE (GET_MODE (varop
)) - 1)
8909 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
8912 varop
= gen_rtx_LE (GET_MODE (varop
), XEXP (varop
, 1),
8915 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
8916 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
8921 /* If we have (shift (logical)), move the logical to the outside
8922 to allow it to possibly combine with another logical and the
8923 shift to combine with another shift. This also canonicalizes to
8924 what a ZERO_EXTRACT looks like. Also, some machines have
8925 (and (shift)) insns. */
8927 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
8928 /* We can't do this if we have (ashiftrt (xor)) and the
8929 constant has its sign bit set in shift_mode. */
8930 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
8931 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
8933 && (new = simplify_const_binary_operation (code
, result_mode
,
8935 GEN_INT (count
))) != 0
8936 && GET_CODE (new) == CONST_INT
8937 && merge_outer_ops (&outer_op
, &outer_const
, GET_CODE (varop
),
8938 INTVAL (new), result_mode
, &complement_p
))
8940 varop
= XEXP (varop
, 0);
8944 /* If we can't do that, try to simplify the shift in each arm of the
8945 logical expression, make a new logical expression, and apply
8946 the inverse distributive law. This also can't be done
8947 for some (ashiftrt (xor)). */
8948 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
8949 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
8950 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
8953 rtx lhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
8954 XEXP (varop
, 0), count
);
8955 rtx rhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
8956 XEXP (varop
, 1), count
);
8958 varop
= simplify_gen_binary (GET_CODE (varop
), shift_mode
,
8960 varop
= apply_distributive_law (varop
);
8968 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8969 says that the sign bit can be tested, FOO has mode MODE, C is
8970 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8971 that may be nonzero. */
8972 if (code
== LSHIFTRT
8973 && XEXP (varop
, 1) == const0_rtx
8974 && GET_MODE (XEXP (varop
, 0)) == result_mode
8975 && count
== (GET_MODE_BITSIZE (result_mode
) - 1)
8976 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
8977 && STORE_FLAG_VALUE
== -1
8978 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
8979 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
8980 (HOST_WIDE_INT
) 1, result_mode
,
8983 varop
= XEXP (varop
, 0);
8990 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8991 than the number of bits in the mode is equivalent to A. */
8992 if (code
== LSHIFTRT
8993 && count
== (GET_MODE_BITSIZE (result_mode
) - 1)
8994 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1)
8996 varop
= XEXP (varop
, 0);
9001 /* NEG commutes with ASHIFT since it is multiplication. Move the
9002 NEG outside to allow shifts to combine. */
9004 && merge_outer_ops (&outer_op
, &outer_const
, NEG
,
9005 (HOST_WIDE_INT
) 0, result_mode
,
9008 varop
= XEXP (varop
, 0);
9014 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9015 is one less than the number of bits in the mode is
9016 equivalent to (xor A 1). */
9017 if (code
== LSHIFTRT
9018 && count
== (GET_MODE_BITSIZE (result_mode
) - 1)
9019 && XEXP (varop
, 1) == constm1_rtx
9020 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
9021 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
9022 (HOST_WIDE_INT
) 1, result_mode
,
9026 varop
= XEXP (varop
, 0);
9030 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9031 that might be nonzero in BAR are those being shifted out and those
9032 bits are known zero in FOO, we can replace the PLUS with FOO.
9033 Similarly in the other operand order. This code occurs when
9034 we are computing the size of a variable-size array. */
9036 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9037 && count
< HOST_BITS_PER_WIDE_INT
9038 && nonzero_bits (XEXP (varop
, 1), result_mode
) >> count
== 0
9039 && (nonzero_bits (XEXP (varop
, 1), result_mode
)
9040 & nonzero_bits (XEXP (varop
, 0), result_mode
)) == 0)
9042 varop
= XEXP (varop
, 0);
9045 else if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9046 && count
< HOST_BITS_PER_WIDE_INT
9047 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
9048 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
9050 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
9051 & nonzero_bits (XEXP (varop
, 1),
9054 varop
= XEXP (varop
, 1);
9058 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9060 && GET_CODE (XEXP (varop
, 1)) == CONST_INT
9061 && (new = simplify_const_binary_operation (ASHIFT
, result_mode
,
9063 GEN_INT (count
))) != 0
9064 && GET_CODE (new) == CONST_INT
9065 && merge_outer_ops (&outer_op
, &outer_const
, PLUS
,
9066 INTVAL (new), result_mode
, &complement_p
))
9068 varop
= XEXP (varop
, 0);
9072 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9073 signbit', and attempt to change the PLUS to an XOR and move it to
9074 the outer operation as is done above in the AND/IOR/XOR case
9075 leg for shift(logical). See details in logical handling above
9076 for reasoning in doing so. */
9077 if (code
== LSHIFTRT
9078 && GET_CODE (XEXP (varop
, 1)) == CONST_INT
9079 && mode_signbit_p (result_mode
, XEXP (varop
, 1))
9080 && (new = simplify_const_binary_operation (code
, result_mode
,
9082 GEN_INT (count
))) != 0
9083 && GET_CODE (new) == CONST_INT
9084 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
9085 INTVAL (new), result_mode
, &complement_p
))
9087 varop
= XEXP (varop
, 0);
9094 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9095 with C the size of VAROP - 1 and the shift is logical if
9096 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9097 we have a (gt X 0) operation. If the shift is arithmetic with
9098 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9099 we have a (neg (gt X 0)) operation. */
9101 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9102 && GET_CODE (XEXP (varop
, 0)) == ASHIFTRT
9103 && count
== (GET_MODE_BITSIZE (GET_MODE (varop
)) - 1)
9104 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
9105 && GET_CODE (XEXP (XEXP (varop
, 0), 1)) == CONST_INT
9106 && INTVAL (XEXP (XEXP (varop
, 0), 1)) == count
9107 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
9110 varop
= gen_rtx_GT (GET_MODE (varop
), XEXP (varop
, 1),
9113 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
9114 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
9121 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9122 if the truncate does not affect the value. */
9123 if (code
== LSHIFTRT
9124 && GET_CODE (XEXP (varop
, 0)) == LSHIFTRT
9125 && GET_CODE (XEXP (XEXP (varop
, 0), 1)) == CONST_INT
9126 && (INTVAL (XEXP (XEXP (varop
, 0), 1))
9127 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop
, 0)))
9128 - GET_MODE_BITSIZE (GET_MODE (varop
)))))
9130 rtx varop_inner
= XEXP (varop
, 0);
9133 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner
),
9134 XEXP (varop_inner
, 0),
9136 (count
+ INTVAL (XEXP (varop_inner
, 1))));
9137 varop
= gen_rtx_TRUNCATE (GET_MODE (varop
), varop_inner
);
9150 /* We need to determine what mode to do the shift in. If the shift is
9151 a right shift or ROTATE, we must always do it in the mode it was
9152 originally done in. Otherwise, we can do it in MODE, the widest mode
9153 encountered. The code we care about is that of the shift that will
9154 actually be done, not the shift that was originally requested. */
9156 = (code
== ASHIFTRT
|| code
== LSHIFTRT
|| code
== ROTATE
9157 ? result_mode
: mode
);
9159 /* We have now finished analyzing the shift. The result should be
9160 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9161 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9162 to the result of the shift. OUTER_CONST is the relevant constant,
9163 but we must turn off all bits turned off in the shift. */
9165 if (outer_op
== UNKNOWN
9166 && orig_code
== code
&& orig_count
== count
9167 && varop
== orig_varop
9168 && shift_mode
== GET_MODE (varop
))
9171 /* Make a SUBREG if necessary. If we can't make it, fail. */
9172 varop
= gen_lowpart (shift_mode
, varop
);
9173 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
9176 /* If we have an outer operation and we just made a shift, it is
9177 possible that we could have simplified the shift were it not
9178 for the outer operation. So try to do the simplification
9181 if (outer_op
!= UNKNOWN
)
9182 x
= simplify_shift_const_1 (code
, shift_mode
, varop
, count
);
9187 x
= simplify_gen_binary (code
, shift_mode
, varop
, GEN_INT (count
));
9189 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9190 turn off all the bits that the shift would have turned off. */
9191 if (orig_code
== LSHIFTRT
&& result_mode
!= shift_mode
)
9192 x
= simplify_and_const_int (NULL_RTX
, shift_mode
, x
,
9193 GET_MODE_MASK (result_mode
) >> orig_count
);
9195 /* Do the remainder of the processing in RESULT_MODE. */
9196 x
= gen_lowpart_or_truncate (result_mode
, x
);
9198 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9201 x
= simplify_gen_unary (NOT
, result_mode
, x
, result_mode
);
9203 if (outer_op
!= UNKNOWN
)
9205 if (GET_MODE_BITSIZE (result_mode
) < HOST_BITS_PER_WIDE_INT
)
9206 outer_const
= trunc_int_for_mode (outer_const
, result_mode
);
9208 if (outer_op
== AND
)
9209 x
= simplify_and_const_int (NULL_RTX
, result_mode
, x
, outer_const
);
9210 else if (outer_op
== SET
)
9211 /* This means that we have determined that the result is
9212 equivalent to a constant. This should be rare. */
9213 x
= GEN_INT (outer_const
);
9214 else if (GET_RTX_CLASS (outer_op
) == RTX_UNARY
)
9215 x
= simplify_gen_unary (outer_op
, result_mode
, x
, result_mode
);
9217 x
= simplify_gen_binary (outer_op
, result_mode
, x
,
9218 GEN_INT (outer_const
));
9224 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9225 The result of the shift is RESULT_MODE. If we cannot simplify it,
9226 return X or, if it is NULL, synthesize the expression with
9227 simplify_gen_binary. Otherwise, return a simplified value.
9229 The shift is normally computed in the widest mode we find in VAROP, as
9230 long as it isn't a different number of words than RESULT_MODE. Exceptions
9231 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9234 simplify_shift_const (rtx x
, enum rtx_code code
, enum machine_mode result_mode
,
9235 rtx varop
, int count
)
9237 rtx tem
= simplify_shift_const_1 (code
, result_mode
, varop
, count
);
9242 x
= simplify_gen_binary (code
, GET_MODE (varop
), varop
, GEN_INT (count
));
9243 if (GET_MODE (x
) != result_mode
)
9244 x
= gen_lowpart (result_mode
, x
);
9249 /* Like recog, but we receive the address of a pointer to a new pattern.
9250 We try to match the rtx that the pointer points to.
9251 If that fails, we may try to modify or replace the pattern,
9252 storing the replacement into the same pointer object.
9254 Modifications include deletion or addition of CLOBBERs.
9256 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9257 the CLOBBERs are placed.
9259 The value is the final insn code from the pattern ultimately matched,
9263 recog_for_combine (rtx
*pnewpat
, rtx insn
, rtx
*pnotes
)
9266 int insn_code_number
;
9267 int num_clobbers_to_add
= 0;
9270 rtx old_notes
, old_pat
;
9272 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9273 we use to indicate that something didn't match. If we find such a
9274 thing, force rejection. */
9275 if (GET_CODE (pat
) == PARALLEL
)
9276 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
9277 if (GET_CODE (XVECEXP (pat
, 0, i
)) == CLOBBER
9278 && XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
9281 old_pat
= PATTERN (insn
);
9282 old_notes
= REG_NOTES (insn
);
9283 PATTERN (insn
) = pat
;
9284 REG_NOTES (insn
) = 0;
9286 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
9288 /* If it isn't, there is the possibility that we previously had an insn
9289 that clobbered some register as a side effect, but the combined
9290 insn doesn't need to do that. So try once more without the clobbers
9291 unless this represents an ASM insn. */
9293 if (insn_code_number
< 0 && ! check_asm_operands (pat
)
9294 && GET_CODE (pat
) == PARALLEL
)
9298 for (pos
= 0, i
= 0; i
< XVECLEN (pat
, 0); i
++)
9299 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
)
9302 SUBST (XVECEXP (pat
, 0, pos
), XVECEXP (pat
, 0, i
));
9306 SUBST_INT (XVECLEN (pat
, 0), pos
);
9309 pat
= XVECEXP (pat
, 0, 0);
9311 PATTERN (insn
) = pat
;
9312 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
9314 PATTERN (insn
) = old_pat
;
9315 REG_NOTES (insn
) = old_notes
;
9317 /* Recognize all noop sets, these will be killed by followup pass. */
9318 if (insn_code_number
< 0 && GET_CODE (pat
) == SET
&& set_noop_p (pat
))
9319 insn_code_number
= NOOP_MOVE_INSN_CODE
, num_clobbers_to_add
= 0;
9321 /* If we had any clobbers to add, make a new pattern than contains
9322 them. Then check to make sure that all of them are dead. */
9323 if (num_clobbers_to_add
)
9325 rtx newpat
= gen_rtx_PARALLEL (VOIDmode
,
9326 rtvec_alloc (GET_CODE (pat
) == PARALLEL
9328 + num_clobbers_to_add
)
9329 : num_clobbers_to_add
+ 1));
9331 if (GET_CODE (pat
) == PARALLEL
)
9332 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
9333 XVECEXP (newpat
, 0, i
) = XVECEXP (pat
, 0, i
);
9335 XVECEXP (newpat
, 0, 0) = pat
;
9337 add_clobbers (newpat
, insn_code_number
);
9339 for (i
= XVECLEN (newpat
, 0) - num_clobbers_to_add
;
9340 i
< XVECLEN (newpat
, 0); i
++)
9342 if (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0))
9343 && ! reg_dead_at_p (XEXP (XVECEXP (newpat
, 0, i
), 0), insn
))
9345 notes
= gen_rtx_EXPR_LIST (REG_UNUSED
,
9346 XEXP (XVECEXP (newpat
, 0, i
), 0), notes
);
9354 return insn_code_number
;
9357 /* Like gen_lowpart_general but for use by combine. In combine it
9358 is not possible to create any new pseudoregs. However, it is
9359 safe to create invalid memory addresses, because combine will
9360 try to recognize them and all they will do is make the combine
9363 If for some reason this cannot do its job, an rtx
9364 (clobber (const_int 0)) is returned.
9365 An insn containing that will not be recognized. */
9368 gen_lowpart_for_combine (enum machine_mode omode
, rtx x
)
9370 enum machine_mode imode
= GET_MODE (x
);
9371 unsigned int osize
= GET_MODE_SIZE (omode
);
9372 unsigned int isize
= GET_MODE_SIZE (imode
);
9378 /* Return identity if this is a CONST or symbolic reference. */
9380 && (GET_CODE (x
) == CONST
9381 || GET_CODE (x
) == SYMBOL_REF
9382 || GET_CODE (x
) == LABEL_REF
))
9385 /* We can only support MODE being wider than a word if X is a
9386 constant integer or has a mode the same size. */
9387 if (GET_MODE_SIZE (omode
) > UNITS_PER_WORD
9388 && ! ((imode
== VOIDmode
9389 && (GET_CODE (x
) == CONST_INT
9390 || GET_CODE (x
) == CONST_DOUBLE
))
9394 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9395 won't know what to do. So we will strip off the SUBREG here and
9396 process normally. */
9397 if (GET_CODE (x
) == SUBREG
&& MEM_P (SUBREG_REG (x
)))
9401 /* For use in case we fall down into the address adjustments
9402 further below, we need to adjust the known mode and size of
9403 x; imode and isize, since we just adjusted x. */
9404 imode
= GET_MODE (x
);
9409 isize
= GET_MODE_SIZE (imode
);
9412 result
= gen_lowpart_common (omode
, x
);
9414 #ifdef CANNOT_CHANGE_MODE_CLASS
9415 if (result
!= 0 && GET_CODE (result
) == SUBREG
)
9416 record_subregs_of_mode (result
);
9426 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9428 if (MEM_VOLATILE_P (x
) || mode_dependent_address_p (XEXP (x
, 0)))
9431 /* If we want to refer to something bigger than the original memref,
9432 generate a paradoxical subreg instead. That will force a reload
9433 of the original memref X. */
9435 return gen_rtx_SUBREG (omode
, x
, 0);
9437 if (WORDS_BIG_ENDIAN
)
9438 offset
= MAX (isize
, UNITS_PER_WORD
) - MAX (osize
, UNITS_PER_WORD
);
9440 /* Adjust the address so that the address-after-the-data is
9442 if (BYTES_BIG_ENDIAN
)
9443 offset
-= MIN (UNITS_PER_WORD
, osize
) - MIN (UNITS_PER_WORD
, isize
);
9445 return adjust_address_nv (x
, omode
, offset
);
9448 /* If X is a comparison operator, rewrite it in a new mode. This
9449 probably won't match, but may allow further simplifications. */
9450 else if (COMPARISON_P (x
))
9451 return gen_rtx_fmt_ee (GET_CODE (x
), omode
, XEXP (x
, 0), XEXP (x
, 1));
9453 /* If we couldn't simplify X any other way, just enclose it in a
9454 SUBREG. Normally, this SUBREG won't match, but some patterns may
9455 include an explicit SUBREG or we may simplify it further in combine. */
9461 offset
= subreg_lowpart_offset (omode
, imode
);
9462 if (imode
== VOIDmode
)
9464 imode
= int_mode_for_mode (omode
);
9465 x
= gen_lowpart_common (imode
, x
);
9469 res
= simplify_gen_subreg (omode
, x
, imode
, offset
);
9475 return gen_rtx_CLOBBER (imode
, const0_rtx
);
9478 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9479 comparison code that will be tested.
9481 The result is a possibly different comparison code to use. *POP0 and
9482 *POP1 may be updated.
9484 It is possible that we might detect that a comparison is either always
9485 true or always false. However, we do not perform general constant
9486 folding in combine, so this knowledge isn't useful. Such tautologies
9487 should have been detected earlier. Hence we ignore all such cases. */
9489 static enum rtx_code
9490 simplify_comparison (enum rtx_code code
, rtx
*pop0
, rtx
*pop1
)
9496 enum machine_mode mode
, tmode
;
9498 /* Try a few ways of applying the same transformation to both operands. */
9501 #ifndef WORD_REGISTER_OPERATIONS
9502 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9503 so check specially. */
9504 if (code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
9505 && GET_CODE (op0
) == ASHIFTRT
&& GET_CODE (op1
) == ASHIFTRT
9506 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
9507 && GET_CODE (XEXP (op1
, 0)) == ASHIFT
9508 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == SUBREG
9509 && GET_CODE (XEXP (XEXP (op1
, 0), 0)) == SUBREG
9510 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0)))
9511 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1
, 0), 0))))
9512 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
9513 && XEXP (op0
, 1) == XEXP (op1
, 1)
9514 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
9515 && XEXP (op0
, 1) == XEXP (XEXP (op1
, 0), 1)
9516 && (INTVAL (XEXP (op0
, 1))
9517 == (GET_MODE_BITSIZE (GET_MODE (op0
))
9519 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0))))))))
9521 op0
= SUBREG_REG (XEXP (XEXP (op0
, 0), 0));
9522 op1
= SUBREG_REG (XEXP (XEXP (op1
, 0), 0));
9526 /* If both operands are the same constant shift, see if we can ignore the
9527 shift. We can if the shift is a rotate or if the bits shifted out of
9528 this shift are known to be zero for both inputs and if the type of
9529 comparison is compatible with the shift. */
9530 if (GET_CODE (op0
) == GET_CODE (op1
)
9531 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
9532 && ((GET_CODE (op0
) == ROTATE
&& (code
== NE
|| code
== EQ
))
9533 || ((GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFT
)
9534 && (code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
))
9535 || (GET_CODE (op0
) == ASHIFTRT
9536 && (code
!= GTU
&& code
!= LTU
9537 && code
!= GEU
&& code
!= LEU
)))
9538 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
9539 && INTVAL (XEXP (op0
, 1)) >= 0
9540 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
9541 && XEXP (op0
, 1) == XEXP (op1
, 1))
9543 enum machine_mode mode
= GET_MODE (op0
);
9544 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
9545 int shift_count
= INTVAL (XEXP (op0
, 1));
9547 if (GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFTRT
)
9548 mask
&= (mask
>> shift_count
) << shift_count
;
9549 else if (GET_CODE (op0
) == ASHIFT
)
9550 mask
= (mask
& (mask
<< shift_count
)) >> shift_count
;
9552 if ((nonzero_bits (XEXP (op0
, 0), mode
) & ~mask
) == 0
9553 && (nonzero_bits (XEXP (op1
, 0), mode
) & ~mask
) == 0)
9554 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0);
9559 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9560 SUBREGs are of the same mode, and, in both cases, the AND would
9561 be redundant if the comparison was done in the narrower mode,
9562 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9563 and the operand's possibly nonzero bits are 0xffffff01; in that case
9564 if we only care about QImode, we don't need the AND). This case
9565 occurs if the output mode of an scc insn is not SImode and
9566 STORE_FLAG_VALUE == 1 (e.g., the 386).
9568 Similarly, check for a case where the AND's are ZERO_EXTEND
9569 operations from some narrower mode even though a SUBREG is not
9572 else if (GET_CODE (op0
) == AND
&& GET_CODE (op1
) == AND
9573 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
9574 && GET_CODE (XEXP (op1
, 1)) == CONST_INT
)
9576 rtx inner_op0
= XEXP (op0
, 0);
9577 rtx inner_op1
= XEXP (op1
, 0);
9578 HOST_WIDE_INT c0
= INTVAL (XEXP (op0
, 1));
9579 HOST_WIDE_INT c1
= INTVAL (XEXP (op1
, 1));
9582 if (GET_CODE (inner_op0
) == SUBREG
&& GET_CODE (inner_op1
) == SUBREG
9583 && (GET_MODE_SIZE (GET_MODE (inner_op0
))
9584 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0
))))
9585 && (GET_MODE (SUBREG_REG (inner_op0
))
9586 == GET_MODE (SUBREG_REG (inner_op1
)))
9587 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0
)))
9588 <= HOST_BITS_PER_WIDE_INT
)
9589 && (0 == ((~c0
) & nonzero_bits (SUBREG_REG (inner_op0
),
9590 GET_MODE (SUBREG_REG (inner_op0
)))))
9591 && (0 == ((~c1
) & nonzero_bits (SUBREG_REG (inner_op1
),
9592 GET_MODE (SUBREG_REG (inner_op1
))))))
9594 op0
= SUBREG_REG (inner_op0
);
9595 op1
= SUBREG_REG (inner_op1
);
9597 /* The resulting comparison is always unsigned since we masked
9598 off the original sign bit. */
9599 code
= unsigned_condition (code
);
9605 for (tmode
= GET_CLASS_NARROWEST_MODE
9606 (GET_MODE_CLASS (GET_MODE (op0
)));
9607 tmode
!= GET_MODE (op0
); tmode
= GET_MODE_WIDER_MODE (tmode
))
9608 if ((unsigned HOST_WIDE_INT
) c0
== GET_MODE_MASK (tmode
))
9610 op0
= gen_lowpart (tmode
, inner_op0
);
9611 op1
= gen_lowpart (tmode
, inner_op1
);
9612 code
= unsigned_condition (code
);
9621 /* If both operands are NOT, we can strip off the outer operation
9622 and adjust the comparison code for swapped operands; similarly for
9623 NEG, except that this must be an equality comparison. */
9624 else if ((GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == NOT
)
9625 || (GET_CODE (op0
) == NEG
&& GET_CODE (op1
) == NEG
9626 && (code
== EQ
|| code
== NE
)))
9627 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0), code
= swap_condition (code
);
9633 /* If the first operand is a constant, swap the operands and adjust the
9634 comparison code appropriately, but don't do this if the second operand
9635 is already a constant integer. */
9636 if (swap_commutative_operands_p (op0
, op1
))
9638 tem
= op0
, op0
= op1
, op1
= tem
;
9639 code
= swap_condition (code
);
9642 /* We now enter a loop during which we will try to simplify the comparison.
9643 For the most part, we only are concerned with comparisons with zero,
9644 but some things may really be comparisons with zero but not start
9645 out looking that way. */
9647 while (GET_CODE (op1
) == CONST_INT
)
9649 enum machine_mode mode
= GET_MODE (op0
);
9650 unsigned int mode_width
= GET_MODE_BITSIZE (mode
);
9651 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
9652 int equality_comparison_p
;
9653 int sign_bit_comparison_p
;
9654 int unsigned_comparison_p
;
9655 HOST_WIDE_INT const_op
;
9657 /* We only want to handle integral modes. This catches VOIDmode,
9658 CCmode, and the floating-point modes. An exception is that we
9659 can handle VOIDmode if OP0 is a COMPARE or a comparison
9662 if (GET_MODE_CLASS (mode
) != MODE_INT
9663 && ! (mode
== VOIDmode
9664 && (GET_CODE (op0
) == COMPARE
|| COMPARISON_P (op0
))))
9667 /* Get the constant we are comparing against and turn off all bits
9668 not on in our mode. */
9669 const_op
= INTVAL (op1
);
9670 if (mode
!= VOIDmode
)
9671 const_op
= trunc_int_for_mode (const_op
, mode
);
9672 op1
= GEN_INT (const_op
);
9674 /* If we are comparing against a constant power of two and the value
9675 being compared can only have that single bit nonzero (e.g., it was
9676 `and'ed with that bit), we can replace this with a comparison
9679 && (code
== EQ
|| code
== NE
|| code
== GE
|| code
== GEU
9680 || code
== LT
|| code
== LTU
)
9681 && mode_width
<= HOST_BITS_PER_WIDE_INT
9682 && exact_log2 (const_op
) >= 0
9683 && nonzero_bits (op0
, mode
) == (unsigned HOST_WIDE_INT
) const_op
)
9685 code
= (code
== EQ
|| code
== GE
|| code
== GEU
? NE
: EQ
);
9686 op1
= const0_rtx
, const_op
= 0;
9689 /* Similarly, if we are comparing a value known to be either -1 or
9690 0 with -1, change it to the opposite comparison against zero. */
9693 && (code
== EQ
|| code
== NE
|| code
== GT
|| code
== LE
9694 || code
== GEU
|| code
== LTU
)
9695 && num_sign_bit_copies (op0
, mode
) == mode_width
)
9697 code
= (code
== EQ
|| code
== LE
|| code
== GEU
? NE
: EQ
);
9698 op1
= const0_rtx
, const_op
= 0;
9701 /* Do some canonicalizations based on the comparison code. We prefer
9702 comparisons against zero and then prefer equality comparisons.
9703 If we can reduce the size of a constant, we will do that too. */
9708 /* < C is equivalent to <= (C - 1) */
9712 op1
= GEN_INT (const_op
);
9714 /* ... fall through to LE case below. */
9720 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9724 op1
= GEN_INT (const_op
);
9728 /* If we are doing a <= 0 comparison on a value known to have
9729 a zero sign bit, we can replace this with == 0. */
9730 else if (const_op
== 0
9731 && mode_width
<= HOST_BITS_PER_WIDE_INT
9732 && (nonzero_bits (op0
, mode
)
9733 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)
9738 /* >= C is equivalent to > (C - 1). */
9742 op1
= GEN_INT (const_op
);
9744 /* ... fall through to GT below. */
9750 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9754 op1
= GEN_INT (const_op
);
9758 /* If we are doing a > 0 comparison on a value known to have
9759 a zero sign bit, we can replace this with != 0. */
9760 else if (const_op
== 0
9761 && mode_width
<= HOST_BITS_PER_WIDE_INT
9762 && (nonzero_bits (op0
, mode
)
9763 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)
9768 /* < C is equivalent to <= (C - 1). */
9772 op1
= GEN_INT (const_op
);
9774 /* ... fall through ... */
9777 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9778 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
9779 && (const_op
== (HOST_WIDE_INT
) 1 << (mode_width
- 1)))
9781 const_op
= 0, op1
= const0_rtx
;
9789 /* unsigned <= 0 is equivalent to == 0 */
9793 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9794 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
9795 && (const_op
== ((HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1))
9797 const_op
= 0, op1
= const0_rtx
;
9803 /* >= C is equivalent to > (C - 1). */
9807 op1
= GEN_INT (const_op
);
9809 /* ... fall through ... */
9812 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9813 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
9814 && (const_op
== (HOST_WIDE_INT
) 1 << (mode_width
- 1)))
9816 const_op
= 0, op1
= const0_rtx
;
9824 /* unsigned > 0 is equivalent to != 0 */
9828 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9829 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
9830 && (const_op
== ((HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1))
9832 const_op
= 0, op1
= const0_rtx
;
9841 /* Compute some predicates to simplify code below. */
9843 equality_comparison_p
= (code
== EQ
|| code
== NE
);
9844 sign_bit_comparison_p
= ((code
== LT
|| code
== GE
) && const_op
== 0);
9845 unsigned_comparison_p
= (code
== LTU
|| code
== LEU
|| code
== GTU
9848 /* If this is a sign bit comparison and we can do arithmetic in
9849 MODE, say that we will only be needing the sign bit of OP0. */
9850 if (sign_bit_comparison_p
9851 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
9852 op0
= force_to_mode (op0
, mode
,
9854 << (GET_MODE_BITSIZE (mode
) - 1)),
9857 /* Now try cases based on the opcode of OP0. If none of the cases
9858 does a "continue", we exit this loop immediately after the
9861 switch (GET_CODE (op0
))
9864 /* If we are extracting a single bit from a variable position in
9865 a constant that has only a single bit set and are comparing it
9866 with zero, we can convert this into an equality comparison
9867 between the position and the location of the single bit. */
9868 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9869 have already reduced the shift count modulo the word size. */
9870 if (!SHIFT_COUNT_TRUNCATED
9871 && GET_CODE (XEXP (op0
, 0)) == CONST_INT
9872 && XEXP (op0
, 1) == const1_rtx
9873 && equality_comparison_p
&& const_op
== 0
9874 && (i
= exact_log2 (INTVAL (XEXP (op0
, 0)))) >= 0)
9876 if (BITS_BIG_ENDIAN
)
9878 enum machine_mode new_mode
9879 = mode_for_extraction (EP_extzv
, 1);
9880 if (new_mode
== MAX_MACHINE_MODE
)
9881 i
= BITS_PER_WORD
- 1 - i
;
9885 i
= (GET_MODE_BITSIZE (mode
) - 1 - i
);
9889 op0
= XEXP (op0
, 2);
9893 /* Result is nonzero iff shift count is equal to I. */
9894 code
= reverse_condition (code
);
9898 /* ... fall through ... */
9901 tem
= expand_compound_operation (op0
);
9910 /* If testing for equality, we can take the NOT of the constant. */
9911 if (equality_comparison_p
9912 && (tem
= simplify_unary_operation (NOT
, mode
, op1
, mode
)) != 0)
9914 op0
= XEXP (op0
, 0);
9919 /* If just looking at the sign bit, reverse the sense of the
9921 if (sign_bit_comparison_p
)
9923 op0
= XEXP (op0
, 0);
9924 code
= (code
== GE
? LT
: GE
);
9930 /* If testing for equality, we can take the NEG of the constant. */
9931 if (equality_comparison_p
9932 && (tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
)) != 0)
9934 op0
= XEXP (op0
, 0);
9939 /* The remaining cases only apply to comparisons with zero. */
9943 /* When X is ABS or is known positive,
9944 (neg X) is < 0 if and only if X != 0. */
9946 if (sign_bit_comparison_p
9947 && (GET_CODE (XEXP (op0
, 0)) == ABS
9948 || (mode_width
<= HOST_BITS_PER_WIDE_INT
9949 && (nonzero_bits (XEXP (op0
, 0), mode
)
9950 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)))
9952 op0
= XEXP (op0
, 0);
9953 code
= (code
== LT
? NE
: EQ
);
9957 /* If we have NEG of something whose two high-order bits are the
9958 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9959 if (num_sign_bit_copies (op0
, mode
) >= 2)
9961 op0
= XEXP (op0
, 0);
9962 code
= swap_condition (code
);
9968 /* If we are testing equality and our count is a constant, we
9969 can perform the inverse operation on our RHS. */
9970 if (equality_comparison_p
&& GET_CODE (XEXP (op0
, 1)) == CONST_INT
9971 && (tem
= simplify_binary_operation (ROTATERT
, mode
,
9972 op1
, XEXP (op0
, 1))) != 0)
9974 op0
= XEXP (op0
, 0);
9979 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
9980 a particular bit. Convert it to an AND of a constant of that
9981 bit. This will be converted into a ZERO_EXTRACT. */
9982 if (const_op
== 0 && sign_bit_comparison_p
9983 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
9984 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
9986 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
9989 - INTVAL (XEXP (op0
, 1)))));
9990 code
= (code
== LT
? NE
: EQ
);
9997 /* ABS is ignorable inside an equality comparison with zero. */
9998 if (const_op
== 0 && equality_comparison_p
)
10000 op0
= XEXP (op0
, 0);
10006 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10007 (compare FOO CONST) if CONST fits in FOO's mode and we
10008 are either testing inequality or have an unsigned
10009 comparison with ZERO_EXTEND or a signed comparison with
10010 SIGN_EXTEND. But don't do it if we don't have a compare
10011 insn of the given mode, since we'd have to revert it
10012 later on, and then we wouldn't know whether to sign- or
10014 mode
= GET_MODE (XEXP (op0
, 0));
10015 if (mode
!= VOIDmode
&& GET_MODE_CLASS (mode
) == MODE_INT
10016 && ! unsigned_comparison_p
10017 && (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
10018 && ((unsigned HOST_WIDE_INT
) const_op
10019 < (((unsigned HOST_WIDE_INT
) 1
10020 << (GET_MODE_BITSIZE (mode
) - 1))))
10021 && cmp_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
10023 op0
= XEXP (op0
, 0);
10029 /* Check for the case where we are comparing A - C1 with C2, that is
10031 (subreg:MODE (plus (A) (-C1))) op (C2)
10033 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10034 comparison in the wider mode. One of the following two conditions
10035 must be true in order for this to be valid:
10037 1. The mode extension results in the same bit pattern being added
10038 on both sides and the comparison is equality or unsigned. As
10039 C2 has been truncated to fit in MODE, the pattern can only be
10042 2. The mode extension results in the sign bit being copied on
10045 The difficulty here is that we have predicates for A but not for
10046 (A - C1) so we need to check that C1 is within proper bounds so
10047 as to perturbate A as little as possible. */
10049 if (mode_width
<= HOST_BITS_PER_WIDE_INT
10050 && subreg_lowpart_p (op0
)
10051 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
))) > mode_width
10052 && GET_CODE (SUBREG_REG (op0
)) == PLUS
10053 && GET_CODE (XEXP (SUBREG_REG (op0
), 1)) == CONST_INT
)
10055 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
10056 rtx a
= XEXP (SUBREG_REG (op0
), 0);
10057 HOST_WIDE_INT c1
= -INTVAL (XEXP (SUBREG_REG (op0
), 1));
10060 && (unsigned HOST_WIDE_INT
) c1
10061 < (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)
10062 && (equality_comparison_p
|| unsigned_comparison_p
)
10063 /* (A - C1) zero-extends if it is positive and sign-extends
10064 if it is negative, C2 both zero- and sign-extends. */
10065 && ((0 == (nonzero_bits (a
, inner_mode
)
10066 & ~GET_MODE_MASK (mode
))
10068 /* (A - C1) sign-extends if it is positive and 1-extends
10069 if it is negative, C2 both sign- and 1-extends. */
10070 || (num_sign_bit_copies (a
, inner_mode
)
10071 > (unsigned int) (GET_MODE_BITSIZE (inner_mode
)
10074 || ((unsigned HOST_WIDE_INT
) c1
10075 < (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 2)
10076 /* (A - C1) always sign-extends, like C2. */
10077 && num_sign_bit_copies (a
, inner_mode
)
10078 > (unsigned int) (GET_MODE_BITSIZE (inner_mode
)
10079 - (mode_width
- 1))))
10081 op0
= SUBREG_REG (op0
);
10086 /* If the inner mode is narrower and we are extracting the low part,
10087 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10088 if (subreg_lowpart_p (op0
)
10089 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
))) < mode_width
)
10090 /* Fall through */ ;
10094 /* ... fall through ... */
10097 mode
= GET_MODE (XEXP (op0
, 0));
10098 if (mode
!= VOIDmode
&& GET_MODE_CLASS (mode
) == MODE_INT
10099 && (unsigned_comparison_p
|| equality_comparison_p
)
10100 && (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
10101 && ((unsigned HOST_WIDE_INT
) const_op
< GET_MODE_MASK (mode
))
10102 && cmp_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
10104 op0
= XEXP (op0
, 0);
10110 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10111 this for equality comparisons due to pathological cases involving
10113 if (equality_comparison_p
10114 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
10115 op1
, XEXP (op0
, 1))))
10117 op0
= XEXP (op0
, 0);
10122 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10123 if (const_op
== 0 && XEXP (op0
, 1) == constm1_rtx
10124 && GET_CODE (XEXP (op0
, 0)) == ABS
&& sign_bit_comparison_p
)
10126 op0
= XEXP (XEXP (op0
, 0), 0);
10127 code
= (code
== LT
? EQ
: NE
);
10133 /* We used to optimize signed comparisons against zero, but that
10134 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10135 arrive here as equality comparisons, or (GEU, LTU) are
10136 optimized away. No need to special-case them. */
10138 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10139 (eq B (minus A C)), whichever simplifies. We can only do
10140 this for equality comparisons due to pathological cases involving
10142 if (equality_comparison_p
10143 && 0 != (tem
= simplify_binary_operation (PLUS
, mode
,
10144 XEXP (op0
, 1), op1
)))
10146 op0
= XEXP (op0
, 0);
10151 if (equality_comparison_p
10152 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
10153 XEXP (op0
, 0), op1
)))
10155 op0
= XEXP (op0
, 1);
10160 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10161 of bits in X minus 1, is one iff X > 0. */
10162 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == ASHIFTRT
10163 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10164 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (XEXP (op0
, 0), 1))
10166 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
10168 op0
= XEXP (op0
, 1);
10169 code
= (code
== GE
? LE
: GT
);
10175 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10176 if C is zero or B is a constant. */
10177 if (equality_comparison_p
10178 && 0 != (tem
= simplify_binary_operation (XOR
, mode
,
10179 XEXP (op0
, 1), op1
)))
10181 op0
= XEXP (op0
, 0);
10188 case UNEQ
: case LTGT
:
10189 case LT
: case LTU
: case UNLT
: case LE
: case LEU
: case UNLE
:
10190 case GT
: case GTU
: case UNGT
: case GE
: case GEU
: case UNGE
:
10191 case UNORDERED
: case ORDERED
:
10192 /* We can't do anything if OP0 is a condition code value, rather
10193 than an actual data value. */
10195 || CC0_P (XEXP (op0
, 0))
10196 || GET_MODE_CLASS (GET_MODE (XEXP (op0
, 0))) == MODE_CC
)
10199 /* Get the two operands being compared. */
10200 if (GET_CODE (XEXP (op0
, 0)) == COMPARE
)
10201 tem
= XEXP (XEXP (op0
, 0), 0), tem1
= XEXP (XEXP (op0
, 0), 1);
10203 tem
= XEXP (op0
, 0), tem1
= XEXP (op0
, 1);
10205 /* Check for the cases where we simply want the result of the
10206 earlier test or the opposite of that result. */
10207 if (code
== NE
|| code
== EQ
10208 || (GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
10209 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10210 && (STORE_FLAG_VALUE
10211 & (((HOST_WIDE_INT
) 1
10212 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
10213 && (code
== LT
|| code
== GE
)))
10215 enum rtx_code new_code
;
10216 if (code
== LT
|| code
== NE
)
10217 new_code
= GET_CODE (op0
);
10219 new_code
= reversed_comparison_code (op0
, NULL
);
10221 if (new_code
!= UNKNOWN
)
10232 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10234 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == PLUS
10235 && XEXP (XEXP (op0
, 0), 1) == constm1_rtx
10236 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
10238 op0
= XEXP (op0
, 1);
10239 code
= (code
== GE
? GT
: LE
);
10245 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10246 will be converted to a ZERO_EXTRACT later. */
10247 if (const_op
== 0 && equality_comparison_p
10248 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
10249 && XEXP (XEXP (op0
, 0), 0) == const1_rtx
)
10251 op0
= simplify_and_const_int
10252 (NULL_RTX
, mode
, gen_rtx_LSHIFTRT (mode
,
10254 XEXP (XEXP (op0
, 0), 1)),
10255 (HOST_WIDE_INT
) 1);
10259 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10260 zero and X is a comparison and C1 and C2 describe only bits set
10261 in STORE_FLAG_VALUE, we can compare with X. */
10262 if (const_op
== 0 && equality_comparison_p
10263 && mode_width
<= HOST_BITS_PER_WIDE_INT
10264 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10265 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
10266 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10267 && INTVAL (XEXP (XEXP (op0
, 0), 1)) >= 0
10268 && INTVAL (XEXP (XEXP (op0
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
10270 mask
= ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
10271 << INTVAL (XEXP (XEXP (op0
, 0), 1)));
10272 if ((~STORE_FLAG_VALUE
& mask
) == 0
10273 && (COMPARISON_P (XEXP (XEXP (op0
, 0), 0))
10274 || ((tem
= get_last_value (XEXP (XEXP (op0
, 0), 0))) != 0
10275 && COMPARISON_P (tem
))))
10277 op0
= XEXP (XEXP (op0
, 0), 0);
10282 /* If we are doing an equality comparison of an AND of a bit equal
10283 to the sign bit, replace this with a LT or GE comparison of
10284 the underlying value. */
10285 if (equality_comparison_p
10287 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10288 && mode_width
<= HOST_BITS_PER_WIDE_INT
10289 && ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
10290 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10292 op0
= XEXP (op0
, 0);
10293 code
= (code
== EQ
? GE
: LT
);
10297 /* If this AND operation is really a ZERO_EXTEND from a narrower
10298 mode, the constant fits within that mode, and this is either an
10299 equality or unsigned comparison, try to do this comparison in
10304 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10305 -> (ne:DI (reg:SI 4) (const_int 0))
10307 unless TRULY_NOOP_TRUNCATION allows it or the register is
10308 known to hold a value of the required mode the
10309 transformation is invalid. */
10310 if ((equality_comparison_p
|| unsigned_comparison_p
)
10311 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10312 && (i
= exact_log2 ((INTVAL (XEXP (op0
, 1))
10313 & GET_MODE_MASK (mode
))
10315 && const_op
>> i
== 0
10316 && (tmode
= mode_for_size (i
, MODE_INT
, 1)) != BLKmode
10317 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode
),
10318 GET_MODE_BITSIZE (GET_MODE (op0
)))
10319 || (REG_P (XEXP (op0
, 0))
10320 && reg_truncated_to_mode (tmode
, XEXP (op0
, 0)))))
10322 op0
= gen_lowpart (tmode
, XEXP (op0
, 0));
10326 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10327 fits in both M1 and M2 and the SUBREG is either paradoxical
10328 or represents the low part, permute the SUBREG and the AND
10330 if (GET_CODE (XEXP (op0
, 0)) == SUBREG
)
10332 unsigned HOST_WIDE_INT c1
;
10333 tmode
= GET_MODE (SUBREG_REG (XEXP (op0
, 0)));
10334 /* Require an integral mode, to avoid creating something like
10336 if (SCALAR_INT_MODE_P (tmode
)
10337 /* It is unsafe to commute the AND into the SUBREG if the
10338 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10339 not defined. As originally written the upper bits
10340 have a defined value due to the AND operation.
10341 However, if we commute the AND inside the SUBREG then
10342 they no longer have defined values and the meaning of
10343 the code has been changed. */
10345 #ifdef WORD_REGISTER_OPERATIONS
10346 || (mode_width
> GET_MODE_BITSIZE (tmode
)
10347 && mode_width
<= BITS_PER_WORD
)
10349 || (mode_width
<= GET_MODE_BITSIZE (tmode
)
10350 && subreg_lowpart_p (XEXP (op0
, 0))))
10351 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10352 && mode_width
<= HOST_BITS_PER_WIDE_INT
10353 && GET_MODE_BITSIZE (tmode
) <= HOST_BITS_PER_WIDE_INT
10354 && ((c1
= INTVAL (XEXP (op0
, 1))) & ~mask
) == 0
10355 && (c1
& ~GET_MODE_MASK (tmode
)) == 0
10357 && c1
!= GET_MODE_MASK (tmode
))
10359 op0
= simplify_gen_binary (AND
, tmode
,
10360 SUBREG_REG (XEXP (op0
, 0)),
10361 gen_int_mode (c1
, tmode
));
10362 op0
= gen_lowpart (mode
, op0
);
10367 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10368 if (const_op
== 0 && equality_comparison_p
10369 && XEXP (op0
, 1) == const1_rtx
10370 && GET_CODE (XEXP (op0
, 0)) == NOT
)
10372 op0
= simplify_and_const_int
10373 (NULL_RTX
, mode
, XEXP (XEXP (op0
, 0), 0), (HOST_WIDE_INT
) 1);
10374 code
= (code
== NE
? EQ
: NE
);
10378 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10379 (eq (and (lshiftrt X) 1) 0).
10380 Also handle the case where (not X) is expressed using xor. */
10381 if (const_op
== 0 && equality_comparison_p
10382 && XEXP (op0
, 1) == const1_rtx
10383 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
)
10385 rtx shift_op
= XEXP (XEXP (op0
, 0), 0);
10386 rtx shift_count
= XEXP (XEXP (op0
, 0), 1);
10388 if (GET_CODE (shift_op
) == NOT
10389 || (GET_CODE (shift_op
) == XOR
10390 && GET_CODE (XEXP (shift_op
, 1)) == CONST_INT
10391 && GET_CODE (shift_count
) == CONST_INT
10392 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
10393 && (INTVAL (XEXP (shift_op
, 1))
10394 == (HOST_WIDE_INT
) 1 << INTVAL (shift_count
))))
10396 op0
= simplify_and_const_int
10398 gen_rtx_LSHIFTRT (mode
, XEXP (shift_op
, 0), shift_count
),
10399 (HOST_WIDE_INT
) 1);
10400 code
= (code
== NE
? EQ
: NE
);
10407 /* If we have (compare (ashift FOO N) (const_int C)) and
10408 the high order N bits of FOO (N+1 if an inequality comparison)
10409 are known to be zero, we can do this by comparing FOO with C
10410 shifted right N bits so long as the low-order N bits of C are
10412 if (GET_CODE (XEXP (op0
, 1)) == CONST_INT
10413 && INTVAL (XEXP (op0
, 1)) >= 0
10414 && ((INTVAL (XEXP (op0
, 1)) + ! equality_comparison_p
)
10415 < HOST_BITS_PER_WIDE_INT
)
10417 & (((HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1))) - 1)) == 0)
10418 && mode_width
<= HOST_BITS_PER_WIDE_INT
10419 && (nonzero_bits (XEXP (op0
, 0), mode
)
10420 & ~(mask
>> (INTVAL (XEXP (op0
, 1))
10421 + ! equality_comparison_p
))) == 0)
10423 /* We must perform a logical shift, not an arithmetic one,
10424 as we want the top N bits of C to be zero. */
10425 unsigned HOST_WIDE_INT temp
= const_op
& GET_MODE_MASK (mode
);
10427 temp
>>= INTVAL (XEXP (op0
, 1));
10428 op1
= gen_int_mode (temp
, mode
);
10429 op0
= XEXP (op0
, 0);
10433 /* If we are doing a sign bit comparison, it means we are testing
10434 a particular bit. Convert it to the appropriate AND. */
10435 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 1)) == CONST_INT
10436 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
10438 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
10441 - INTVAL (XEXP (op0
, 1)))));
10442 code
= (code
== LT
? NE
: EQ
);
10446 /* If this an equality comparison with zero and we are shifting
10447 the low bit to the sign bit, we can convert this to an AND of the
10449 if (const_op
== 0 && equality_comparison_p
10450 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10451 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (op0
, 1))
10454 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
10455 (HOST_WIDE_INT
) 1);
10461 /* If this is an equality comparison with zero, we can do this
10462 as a logical shift, which might be much simpler. */
10463 if (equality_comparison_p
&& const_op
== 0
10464 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
)
10466 op0
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
,
10468 INTVAL (XEXP (op0
, 1)));
10472 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10473 do the comparison in a narrower mode. */
10474 if (! unsigned_comparison_p
10475 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10476 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
10477 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
10478 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
10479 MODE_INT
, 1)) != BLKmode
10480 && (((unsigned HOST_WIDE_INT
) const_op
10481 + (GET_MODE_MASK (tmode
) >> 1) + 1)
10482 <= GET_MODE_MASK (tmode
)))
10484 op0
= gen_lowpart (tmode
, XEXP (XEXP (op0
, 0), 0));
10488 /* Likewise if OP0 is a PLUS of a sign extension with a
10489 constant, which is usually represented with the PLUS
10490 between the shifts. */
10491 if (! unsigned_comparison_p
10492 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10493 && GET_CODE (XEXP (op0
, 0)) == PLUS
10494 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10495 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == ASHIFT
10496 && XEXP (op0
, 1) == XEXP (XEXP (XEXP (op0
, 0), 0), 1)
10497 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
10498 MODE_INT
, 1)) != BLKmode
10499 && (((unsigned HOST_WIDE_INT
) const_op
10500 + (GET_MODE_MASK (tmode
) >> 1) + 1)
10501 <= GET_MODE_MASK (tmode
)))
10503 rtx inner
= XEXP (XEXP (XEXP (op0
, 0), 0), 0);
10504 rtx add_const
= XEXP (XEXP (op0
, 0), 1);
10505 rtx new_const
= simplify_gen_binary (ASHIFTRT
, GET_MODE (op0
),
10506 add_const
, XEXP (op0
, 1));
10508 op0
= simplify_gen_binary (PLUS
, tmode
,
10509 gen_lowpart (tmode
, inner
),
10514 /* ... fall through ... */
10516 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10517 the low order N bits of FOO are known to be zero, we can do this
10518 by comparing FOO with C shifted left N bits so long as no
10519 overflow occurs. */
10520 if (GET_CODE (XEXP (op0
, 1)) == CONST_INT
10521 && INTVAL (XEXP (op0
, 1)) >= 0
10522 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
10523 && mode_width
<= HOST_BITS_PER_WIDE_INT
10524 && (nonzero_bits (XEXP (op0
, 0), mode
)
10525 & (((HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1))) - 1)) == 0
10526 && (((unsigned HOST_WIDE_INT
) const_op
10527 + (GET_CODE (op0
) != LSHIFTRT
10528 ? ((GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1)) >> 1)
10531 <= GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1))))
10533 /* If the shift was logical, then we must make the condition
10535 if (GET_CODE (op0
) == LSHIFTRT
)
10536 code
= unsigned_condition (code
);
10538 const_op
<<= INTVAL (XEXP (op0
, 1));
10539 op1
= GEN_INT (const_op
);
10540 op0
= XEXP (op0
, 0);
10544 /* If we are using this shift to extract just the sign bit, we
10545 can replace this with an LT or GE comparison. */
10547 && (equality_comparison_p
|| sign_bit_comparison_p
)
10548 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10549 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (op0
, 1))
10552 op0
= XEXP (op0
, 0);
10553 code
= (code
== NE
|| code
== GT
? LT
: GE
);
10565 /* Now make any compound operations involved in this comparison. Then,
10566 check for an outmost SUBREG on OP0 that is not doing anything or is
10567 paradoxical. The latter transformation must only be performed when
10568 it is known that the "extra" bits will be the same in op0 and op1 or
10569 that they don't matter. There are three cases to consider:
10571 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10572 care bits and we can assume they have any convenient value. So
10573 making the transformation is safe.
10575 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10576 In this case the upper bits of op0 are undefined. We should not make
10577 the simplification in that case as we do not know the contents of
10580 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10581 UNKNOWN. In that case we know those bits are zeros or ones. We must
10582 also be sure that they are the same as the upper bits of op1.
10584 We can never remove a SUBREG for a non-equality comparison because
10585 the sign bit is in a different place in the underlying object. */
10587 op0
= make_compound_operation (op0
, op1
== const0_rtx
? COMPARE
: SET
);
10588 op1
= make_compound_operation (op1
, SET
);
10590 if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
10591 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10592 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0
))) == MODE_INT
10593 && (code
== NE
|| code
== EQ
))
10595 if (GET_MODE_SIZE (GET_MODE (op0
))
10596 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
))))
10598 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10600 if (REG_P (SUBREG_REG (op0
)))
10602 op0
= SUBREG_REG (op0
);
10603 op1
= gen_lowpart (GET_MODE (op0
), op1
);
10606 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
)))
10607 <= HOST_BITS_PER_WIDE_INT
)
10608 && (nonzero_bits (SUBREG_REG (op0
),
10609 GET_MODE (SUBREG_REG (op0
)))
10610 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
10612 tem
= gen_lowpart (GET_MODE (SUBREG_REG (op0
)), op1
);
10614 if ((nonzero_bits (tem
, GET_MODE (SUBREG_REG (op0
)))
10615 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
10616 op0
= SUBREG_REG (op0
), op1
= tem
;
10620 /* We now do the opposite procedure: Some machines don't have compare
10621 insns in all modes. If OP0's mode is an integer mode smaller than a
10622 word and we can't do a compare in that mode, see if there is a larger
10623 mode for which we can do the compare. There are a number of cases in
10624 which we can use the wider mode. */
10626 mode
= GET_MODE (op0
);
10627 if (mode
!= VOIDmode
&& GET_MODE_CLASS (mode
) == MODE_INT
10628 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
10629 && ! have_insn_for (COMPARE
, mode
))
10630 for (tmode
= GET_MODE_WIDER_MODE (mode
);
10632 && GET_MODE_BITSIZE (tmode
) <= HOST_BITS_PER_WIDE_INT
);
10633 tmode
= GET_MODE_WIDER_MODE (tmode
))
10634 if (have_insn_for (COMPARE
, tmode
))
10638 /* If the only nonzero bits in OP0 and OP1 are those in the
10639 narrower mode and this is an equality or unsigned comparison,
10640 we can use the wider mode. Similarly for sign-extended
10641 values, in which case it is true for all comparisons. */
10642 zero_extended
= ((code
== EQ
|| code
== NE
10643 || code
== GEU
|| code
== GTU
10644 || code
== LEU
|| code
== LTU
)
10645 && (nonzero_bits (op0
, tmode
)
10646 & ~GET_MODE_MASK (mode
)) == 0
10647 && ((GET_CODE (op1
) == CONST_INT
10648 || (nonzero_bits (op1
, tmode
)
10649 & ~GET_MODE_MASK (mode
)) == 0)));
10652 || ((num_sign_bit_copies (op0
, tmode
)
10653 > (unsigned int) (GET_MODE_BITSIZE (tmode
)
10654 - GET_MODE_BITSIZE (mode
)))
10655 && (num_sign_bit_copies (op1
, tmode
)
10656 > (unsigned int) (GET_MODE_BITSIZE (tmode
)
10657 - GET_MODE_BITSIZE (mode
)))))
10659 /* If OP0 is an AND and we don't have an AND in MODE either,
10660 make a new AND in the proper mode. */
10661 if (GET_CODE (op0
) == AND
10662 && !have_insn_for (AND
, mode
))
10663 op0
= simplify_gen_binary (AND
, tmode
,
10664 gen_lowpart (tmode
,
10666 gen_lowpart (tmode
,
10669 op0
= gen_lowpart (tmode
, op0
);
10670 if (zero_extended
&& GET_CODE (op1
) == CONST_INT
)
10671 op1
= GEN_INT (INTVAL (op1
) & GET_MODE_MASK (mode
));
10672 op1
= gen_lowpart (tmode
, op1
);
10676 /* If this is a test for negative, we can make an explicit
10677 test of the sign bit. */
10679 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
10680 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
10682 op0
= simplify_gen_binary (AND
, tmode
,
10683 gen_lowpart (tmode
, op0
),
10684 GEN_INT ((HOST_WIDE_INT
) 1
10685 << (GET_MODE_BITSIZE (mode
)
10687 code
= (code
== LT
) ? NE
: EQ
;
10692 #ifdef CANONICALIZE_COMPARISON
10693 /* If this machine only supports a subset of valid comparisons, see if we
10694 can convert an unsupported one into a supported one. */
10695 CANONICALIZE_COMPARISON (code
, op0
, op1
);
10704 /* Utility function for record_value_for_reg. Count number of
10709 enum rtx_code code
= GET_CODE (x
);
10713 if (GET_RTX_CLASS (code
) == '2'
10714 || GET_RTX_CLASS (code
) == 'c')
10716 rtx x0
= XEXP (x
, 0);
10717 rtx x1
= XEXP (x
, 1);
10720 return 1 + 2 * count_rtxs (x0
);
10722 if ((GET_RTX_CLASS (GET_CODE (x1
)) == '2'
10723 || GET_RTX_CLASS (GET_CODE (x1
)) == 'c')
10724 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
10725 return 2 + 2 * count_rtxs (x0
)
10726 + count_rtxs (x
== XEXP (x1
, 0)
10727 ? XEXP (x1
, 1) : XEXP (x1
, 0));
10729 if ((GET_RTX_CLASS (GET_CODE (x0
)) == '2'
10730 || GET_RTX_CLASS (GET_CODE (x0
)) == 'c')
10731 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
10732 return 2 + 2 * count_rtxs (x1
)
10733 + count_rtxs (x
== XEXP (x0
, 0)
10734 ? XEXP (x0
, 1) : XEXP (x0
, 0));
10737 fmt
= GET_RTX_FORMAT (code
);
10738 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
10740 ret
+= count_rtxs (XEXP (x
, i
));
10745 /* Utility function for following routine. Called when X is part of a value
10746 being stored into last_set_value. Sets last_set_table_tick
10747 for each register mentioned. Similar to mention_regs in cse.c */
10750 update_table_tick (rtx x
)
10752 enum rtx_code code
= GET_CODE (x
);
10753 const char *fmt
= GET_RTX_FORMAT (code
);
10758 unsigned int regno
= REGNO (x
);
10759 unsigned int endregno
10760 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
10761 ? hard_regno_nregs
[regno
][GET_MODE (x
)] : 1);
10764 for (r
= regno
; r
< endregno
; r
++)
10765 reg_stat
[r
].last_set_table_tick
= label_tick
;
10770 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
10771 /* Note that we can't have an "E" in values stored; see
10772 get_last_value_validate. */
10775 /* Check for identical subexpressions. If x contains
10776 identical subexpression we only have to traverse one of
10778 if (i
== 0 && ARITHMETIC_P (x
))
10780 /* Note that at this point x1 has already been
10782 rtx x0
= XEXP (x
, 0);
10783 rtx x1
= XEXP (x
, 1);
10785 /* If x0 and x1 are identical then there is no need to
10790 /* If x0 is identical to a subexpression of x1 then while
10791 processing x1, x0 has already been processed. Thus we
10792 are done with x. */
10793 if (ARITHMETIC_P (x1
)
10794 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
10797 /* If x1 is identical to a subexpression of x0 then we
10798 still have to process the rest of x0. */
10799 if (ARITHMETIC_P (x0
)
10800 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
10802 update_table_tick (XEXP (x0
, x1
== XEXP (x0
, 0) ? 1 : 0));
10807 update_table_tick (XEXP (x
, i
));
10811 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10812 are saying that the register is clobbered and we no longer know its
10813 value. If INSN is zero, don't update reg_stat[].last_set; this is
10814 only permitted with VALUE also zero and is used to invalidate the
10818 record_value_for_reg (rtx reg
, rtx insn
, rtx value
)
10820 unsigned int regno
= REGNO (reg
);
10821 unsigned int endregno
10822 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
10823 ? hard_regno_nregs
[regno
][GET_MODE (reg
)] : 1);
10826 /* If VALUE contains REG and we have a previous value for REG, substitute
10827 the previous value. */
10828 if (value
&& insn
&& reg_overlap_mentioned_p (reg
, value
))
10832 /* Set things up so get_last_value is allowed to see anything set up to
10834 subst_low_cuid
= INSN_CUID (insn
);
10835 tem
= get_last_value (reg
);
10837 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10838 it isn't going to be useful and will take a lot of time to process,
10839 so just use the CLOBBER. */
10843 if (ARITHMETIC_P (tem
)
10844 && GET_CODE (XEXP (tem
, 0)) == CLOBBER
10845 && GET_CODE (XEXP (tem
, 1)) == CLOBBER
)
10846 tem
= XEXP (tem
, 0);
10847 else if (count_occurrences (value
, reg
, 1) >= 2)
10849 /* If there are two or more occurrences of REG in VALUE,
10850 prevent the value from growing too much. */
10851 if (count_rtxs (tem
) > MAX_LAST_VALUE_RTL
)
10852 tem
= gen_rtx_CLOBBER (GET_MODE (tem
), const0_rtx
);
10855 value
= replace_rtx (copy_rtx (value
), reg
, tem
);
10859 /* For each register modified, show we don't know its value, that
10860 we don't know about its bitwise content, that its value has been
10861 updated, and that we don't know the location of the death of the
10863 for (i
= regno
; i
< endregno
; i
++)
10866 reg_stat
[i
].last_set
= insn
;
10868 reg_stat
[i
].last_set_value
= 0;
10869 reg_stat
[i
].last_set_mode
= 0;
10870 reg_stat
[i
].last_set_nonzero_bits
= 0;
10871 reg_stat
[i
].last_set_sign_bit_copies
= 0;
10872 reg_stat
[i
].last_death
= 0;
10873 reg_stat
[i
].truncated_to_mode
= 0;
10876 /* Mark registers that are being referenced in this value. */
10878 update_table_tick (value
);
10880 /* Now update the status of each register being set.
10881 If someone is using this register in this block, set this register
10882 to invalid since we will get confused between the two lives in this
10883 basic block. This makes using this register always invalid. In cse, we
10884 scan the table to invalidate all entries using this register, but this
10885 is too much work for us. */
10887 for (i
= regno
; i
< endregno
; i
++)
10889 reg_stat
[i
].last_set_label
= label_tick
;
10890 if (!insn
|| (value
&& reg_stat
[i
].last_set_table_tick
== label_tick
))
10891 reg_stat
[i
].last_set_invalid
= 1;
10893 reg_stat
[i
].last_set_invalid
= 0;
10896 /* The value being assigned might refer to X (like in "x++;"). In that
10897 case, we must replace it with (clobber (const_int 0)) to prevent
10899 if (value
&& ! get_last_value_validate (&value
, insn
,
10900 reg_stat
[regno
].last_set_label
, 0))
10902 value
= copy_rtx (value
);
10903 if (! get_last_value_validate (&value
, insn
,
10904 reg_stat
[regno
].last_set_label
, 1))
10908 /* For the main register being modified, update the value, the mode, the
10909 nonzero bits, and the number of sign bit copies. */
10911 reg_stat
[regno
].last_set_value
= value
;
10915 enum machine_mode mode
= GET_MODE (reg
);
10916 subst_low_cuid
= INSN_CUID (insn
);
10917 reg_stat
[regno
].last_set_mode
= mode
;
10918 if (GET_MODE_CLASS (mode
) == MODE_INT
10919 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
10920 mode
= nonzero_bits_mode
;
10921 reg_stat
[regno
].last_set_nonzero_bits
= nonzero_bits (value
, mode
);
10922 reg_stat
[regno
].last_set_sign_bit_copies
10923 = num_sign_bit_copies (value
, GET_MODE (reg
));
10927 /* Called via note_stores from record_dead_and_set_regs to handle one
10928 SET or CLOBBER in an insn. DATA is the instruction in which the
10929 set is occurring. */
10932 record_dead_and_set_regs_1 (rtx dest
, rtx setter
, void *data
)
10934 rtx record_dead_insn
= (rtx
) data
;
10936 if (GET_CODE (dest
) == SUBREG
)
10937 dest
= SUBREG_REG (dest
);
10939 if (!record_dead_insn
)
10942 record_value_for_reg (dest
, NULL_RTX
, NULL_RTX
);
10948 /* If we are setting the whole register, we know its value. Otherwise
10949 show that we don't know the value. We can handle SUBREG in
10951 if (GET_CODE (setter
) == SET
&& dest
== SET_DEST (setter
))
10952 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
10953 else if (GET_CODE (setter
) == SET
10954 && GET_CODE (SET_DEST (setter
)) == SUBREG
10955 && SUBREG_REG (SET_DEST (setter
)) == dest
10956 && GET_MODE_BITSIZE (GET_MODE (dest
)) <= BITS_PER_WORD
10957 && subreg_lowpart_p (SET_DEST (setter
)))
10958 record_value_for_reg (dest
, record_dead_insn
,
10959 gen_lowpart (GET_MODE (dest
),
10960 SET_SRC (setter
)));
10962 record_value_for_reg (dest
, record_dead_insn
, NULL_RTX
);
10964 else if (MEM_P (dest
)
10965 /* Ignore pushes, they clobber nothing. */
10966 && ! push_operand (dest
, GET_MODE (dest
)))
10967 mem_last_set
= INSN_CUID (record_dead_insn
);
10970 /* Update the records of when each REG was most recently set or killed
10971 for the things done by INSN. This is the last thing done in processing
10972 INSN in the combiner loop.
10974 We update reg_stat[], in particular fields last_set, last_set_value,
10975 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
10976 last_death, and also the similar information mem_last_set (which insn
10977 most recently modified memory) and last_call_cuid (which insn was the
10978 most recent subroutine call). */
10981 record_dead_and_set_regs (rtx insn
)
10986 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
10988 if (REG_NOTE_KIND (link
) == REG_DEAD
10989 && REG_P (XEXP (link
, 0)))
10991 unsigned int regno
= REGNO (XEXP (link
, 0));
10992 unsigned int endregno
10993 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
10994 ? hard_regno_nregs
[regno
][GET_MODE (XEXP (link
, 0))]
10997 for (i
= regno
; i
< endregno
; i
++)
10998 reg_stat
[i
].last_death
= insn
;
11000 else if (REG_NOTE_KIND (link
) == REG_INC
)
11001 record_value_for_reg (XEXP (link
, 0), insn
, NULL_RTX
);
11006 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
11007 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
11009 reg_stat
[i
].last_set_value
= 0;
11010 reg_stat
[i
].last_set_mode
= 0;
11011 reg_stat
[i
].last_set_nonzero_bits
= 0;
11012 reg_stat
[i
].last_set_sign_bit_copies
= 0;
11013 reg_stat
[i
].last_death
= 0;
11014 reg_stat
[i
].truncated_to_mode
= 0;
11017 last_call_cuid
= mem_last_set
= INSN_CUID (insn
);
11019 /* We can't combine into a call pattern. Remember, though, that
11020 the return value register is set at this CUID. We could
11021 still replace a register with the return value from the
11022 wrong subroutine call! */
11023 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, NULL_RTX
);
11026 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, insn
);
11029 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11030 register present in the SUBREG, so for each such SUBREG go back and
11031 adjust nonzero and sign bit information of the registers that are
11032 known to have some zero/sign bits set.
11034 This is needed because when combine blows the SUBREGs away, the
11035 information on zero/sign bits is lost and further combines can be
11036 missed because of that. */
11039 record_promoted_value (rtx insn
, rtx subreg
)
11042 unsigned int regno
= REGNO (SUBREG_REG (subreg
));
11043 enum machine_mode mode
= GET_MODE (subreg
);
11045 if (GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
11048 for (links
= LOG_LINKS (insn
); links
;)
11050 insn
= XEXP (links
, 0);
11051 set
= single_set (insn
);
11053 if (! set
|| !REG_P (SET_DEST (set
))
11054 || REGNO (SET_DEST (set
)) != regno
11055 || GET_MODE (SET_DEST (set
)) != GET_MODE (SUBREG_REG (subreg
)))
11057 links
= XEXP (links
, 1);
11061 if (reg_stat
[regno
].last_set
== insn
)
11063 if (SUBREG_PROMOTED_UNSIGNED_P (subreg
) > 0)
11064 reg_stat
[regno
].last_set_nonzero_bits
&= GET_MODE_MASK (mode
);
11067 if (REG_P (SET_SRC (set
)))
11069 regno
= REGNO (SET_SRC (set
));
11070 links
= LOG_LINKS (insn
);
11077 /* Check if X, a register, is known to contain a value already
11078 truncated to MODE. In this case we can use a subreg to refer to
11079 the truncated value even though in the generic case we would need
11080 an explicit truncation. */
11083 reg_truncated_to_mode (enum machine_mode mode
, rtx x
)
11085 enum machine_mode truncated
= reg_stat
[REGNO (x
)].truncated_to_mode
;
11087 if (truncated
== 0 || reg_stat
[REGNO (x
)].truncation_label
!= label_tick
)
11089 if (GET_MODE_SIZE (truncated
) <= GET_MODE_SIZE (mode
))
11091 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
11092 GET_MODE_BITSIZE (truncated
)))
11097 /* X is a REG or a SUBREG. If X is some sort of a truncation record
11098 it. For non-TRULY_NOOP_TRUNCATION targets we might be able to turn
11099 a truncate into a subreg using this information. */
11102 record_truncated_value (rtx x
)
11104 enum machine_mode truncated_mode
;
11106 if (GET_CODE (x
) == SUBREG
&& REG_P (SUBREG_REG (x
)))
11108 enum machine_mode original_mode
= GET_MODE (SUBREG_REG (x
));
11109 truncated_mode
= GET_MODE (x
);
11111 if (GET_MODE_SIZE (original_mode
) <= GET_MODE_SIZE (truncated_mode
))
11114 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode
),
11115 GET_MODE_BITSIZE (original_mode
)))
11118 x
= SUBREG_REG (x
);
11120 /* ??? For hard-regs we now record everything. We might be able to
11121 optimize this using last_set_mode. */
11122 else if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
11123 truncated_mode
= GET_MODE (x
);
11127 if (reg_stat
[REGNO (x
)].truncated_to_mode
== 0
11128 || reg_stat
[REGNO (x
)].truncation_label
< label_tick
11129 || (GET_MODE_SIZE (truncated_mode
)
11130 < GET_MODE_SIZE (reg_stat
[REGNO (x
)].truncated_to_mode
)))
11132 reg_stat
[REGNO (x
)].truncated_to_mode
= truncated_mode
;
11133 reg_stat
[REGNO (x
)].truncation_label
= label_tick
;
11137 /* Scan X for promoted SUBREGs and truncated REGs. For each one
11138 found, note what it implies to the registers used in it. */
11141 check_conversions (rtx insn
, rtx x
)
11143 if (GET_CODE (x
) == SUBREG
|| REG_P (x
))
11145 if (GET_CODE (x
) == SUBREG
11146 && SUBREG_PROMOTED_VAR_P (x
)
11147 && REG_P (SUBREG_REG (x
)))
11148 record_promoted_value (insn
, x
);
11150 record_truncated_value (x
);
11154 const char *format
= GET_RTX_FORMAT (GET_CODE (x
));
11157 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (x
)); i
++)
11161 check_conversions (insn
, XEXP (x
, i
));
11165 if (XVEC (x
, i
) != 0)
11166 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
11167 check_conversions (insn
, XVECEXP (x
, i
, j
));
11173 /* Utility routine for the following function. Verify that all the registers
11174 mentioned in *LOC are valid when *LOC was part of a value set when
11175 label_tick == TICK. Return 0 if some are not.
11177 If REPLACE is nonzero, replace the invalid reference with
11178 (clobber (const_int 0)) and return 1. This replacement is useful because
11179 we often can get useful information about the form of a value (e.g., if
11180 it was produced by a shift that always produces -1 or 0) even though
11181 we don't know exactly what registers it was produced from. */
11184 get_last_value_validate (rtx
*loc
, rtx insn
, int tick
, int replace
)
11187 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
11188 int len
= GET_RTX_LENGTH (GET_CODE (x
));
11193 unsigned int regno
= REGNO (x
);
11194 unsigned int endregno
11195 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
11196 ? hard_regno_nregs
[regno
][GET_MODE (x
)] : 1);
11199 for (j
= regno
; j
< endregno
; j
++)
11200 if (reg_stat
[j
].last_set_invalid
11201 /* If this is a pseudo-register that was only set once and not
11202 live at the beginning of the function, it is always valid. */
11203 || (! (regno
>= FIRST_PSEUDO_REGISTER
11204 && REG_N_SETS (regno
) == 1
11205 && (! REGNO_REG_SET_P
11206 (ENTRY_BLOCK_PTR
->next_bb
->il
.rtl
->global_live_at_start
,
11208 && reg_stat
[j
].last_set_label
> tick
))
11211 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
11217 /* If this is a memory reference, make sure that there were
11218 no stores after it that might have clobbered the value. We don't
11219 have alias info, so we assume any store invalidates it. */
11220 else if (MEM_P (x
) && !MEM_READONLY_P (x
)
11221 && INSN_CUID (insn
) <= mem_last_set
)
11224 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
11228 for (i
= 0; i
< len
; i
++)
11232 /* Check for identical subexpressions. If x contains
11233 identical subexpression we only have to traverse one of
11235 if (i
== 1 && ARITHMETIC_P (x
))
11237 /* Note that at this point x0 has already been checked
11238 and found valid. */
11239 rtx x0
= XEXP (x
, 0);
11240 rtx x1
= XEXP (x
, 1);
11242 /* If x0 and x1 are identical then x is also valid. */
11246 /* If x1 is identical to a subexpression of x0 then
11247 while checking x0, x1 has already been checked. Thus
11248 it is valid and so as x. */
11249 if (ARITHMETIC_P (x0
)
11250 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
11253 /* If x0 is identical to a subexpression of x1 then x is
11254 valid iff the rest of x1 is valid. */
11255 if (ARITHMETIC_P (x1
)
11256 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
11258 get_last_value_validate (&XEXP (x1
,
11259 x0
== XEXP (x1
, 0) ? 1 : 0),
11260 insn
, tick
, replace
);
11263 if (get_last_value_validate (&XEXP (x
, i
), insn
, tick
,
11267 /* Don't bother with these. They shouldn't occur anyway. */
11268 else if (fmt
[i
] == 'E')
11272 /* If we haven't found a reason for it to be invalid, it is valid. */
11276 /* Get the last value assigned to X, if known. Some registers
11277 in the value may be replaced with (clobber (const_int 0)) if their value
11278 is known longer known reliably. */
11281 get_last_value (rtx x
)
11283 unsigned int regno
;
11286 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11287 then convert it to the desired mode. If this is a paradoxical SUBREG,
11288 we cannot predict what values the "extra" bits might have. */
11289 if (GET_CODE (x
) == SUBREG
11290 && subreg_lowpart_p (x
)
11291 && (GET_MODE_SIZE (GET_MODE (x
))
11292 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
11293 && (value
= get_last_value (SUBREG_REG (x
))) != 0)
11294 return gen_lowpart (GET_MODE (x
), value
);
11300 value
= reg_stat
[regno
].last_set_value
;
11302 /* If we don't have a value, or if it isn't for this basic block and
11303 it's either a hard register, set more than once, or it's a live
11304 at the beginning of the function, return 0.
11306 Because if it's not live at the beginning of the function then the reg
11307 is always set before being used (is never used without being set).
11308 And, if it's set only once, and it's always set before use, then all
11309 uses must have the same last value, even if it's not from this basic
11313 || (reg_stat
[regno
].last_set_label
!= label_tick
11314 && (regno
< FIRST_PSEUDO_REGISTER
11315 || REG_N_SETS (regno
) != 1
11316 || (REGNO_REG_SET_P
11317 (ENTRY_BLOCK_PTR
->next_bb
->il
.rtl
->global_live_at_start
,
11321 /* If the value was set in a later insn than the ones we are processing,
11322 we can't use it even if the register was only set once. */
11323 if (INSN_CUID (reg_stat
[regno
].last_set
) >= subst_low_cuid
)
11326 /* If the value has all its registers valid, return it. */
11327 if (get_last_value_validate (&value
, reg_stat
[regno
].last_set
,
11328 reg_stat
[regno
].last_set_label
, 0))
11331 /* Otherwise, make a copy and replace any invalid register with
11332 (clobber (const_int 0)). If that fails for some reason, return 0. */
11334 value
= copy_rtx (value
);
11335 if (get_last_value_validate (&value
, reg_stat
[regno
].last_set
,
11336 reg_stat
[regno
].last_set_label
, 1))
11342 /* Return nonzero if expression X refers to a REG or to memory
11343 that is set in an instruction more recent than FROM_CUID. */
11346 use_crosses_set_p (rtx x
, int from_cuid
)
11350 enum rtx_code code
= GET_CODE (x
);
11354 unsigned int regno
= REGNO (x
);
11355 unsigned endreg
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
11356 ? hard_regno_nregs
[regno
][GET_MODE (x
)] : 1);
11358 #ifdef PUSH_ROUNDING
11359 /* Don't allow uses of the stack pointer to be moved,
11360 because we don't know whether the move crosses a push insn. */
11361 if (regno
== STACK_POINTER_REGNUM
&& PUSH_ARGS
)
11364 for (; regno
< endreg
; regno
++)
11365 if (reg_stat
[regno
].last_set
11366 && INSN_CUID (reg_stat
[regno
].last_set
) > from_cuid
)
11371 if (code
== MEM
&& mem_last_set
> from_cuid
)
11374 fmt
= GET_RTX_FORMAT (code
);
11376 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
11381 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
11382 if (use_crosses_set_p (XVECEXP (x
, i
, j
), from_cuid
))
11385 else if (fmt
[i
] == 'e'
11386 && use_crosses_set_p (XEXP (x
, i
), from_cuid
))
11392 /* Define three variables used for communication between the following
11395 static unsigned int reg_dead_regno
, reg_dead_endregno
;
11396 static int reg_dead_flag
;
11398 /* Function called via note_stores from reg_dead_at_p.
11400 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11401 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11404 reg_dead_at_p_1 (rtx dest
, rtx x
, void *data ATTRIBUTE_UNUSED
)
11406 unsigned int regno
, endregno
;
11411 regno
= REGNO (dest
);
11412 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
11413 ? hard_regno_nregs
[regno
][GET_MODE (dest
)] : 1);
11415 if (reg_dead_endregno
> regno
&& reg_dead_regno
< endregno
)
11416 reg_dead_flag
= (GET_CODE (x
) == CLOBBER
) ? 1 : -1;
11419 /* Return nonzero if REG is known to be dead at INSN.
11421 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11422 referencing REG, it is dead. If we hit a SET referencing REG, it is
11423 live. Otherwise, see if it is live or dead at the start of the basic
11424 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11425 must be assumed to be always live. */
11428 reg_dead_at_p (rtx reg
, rtx insn
)
11433 /* Set variables for reg_dead_at_p_1. */
11434 reg_dead_regno
= REGNO (reg
);
11435 reg_dead_endregno
= reg_dead_regno
+ (reg_dead_regno
< FIRST_PSEUDO_REGISTER
11436 ? hard_regno_nregs
[reg_dead_regno
]
11442 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11443 we allow the machine description to decide whether use-and-clobber
11444 patterns are OK. */
11445 if (reg_dead_regno
< FIRST_PSEUDO_REGISTER
)
11447 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
11448 if (!fixed_regs
[i
] && TEST_HARD_REG_BIT (newpat_used_regs
, i
))
11452 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11453 beginning of function. */
11454 for (; insn
&& !LABEL_P (insn
) && !BARRIER_P (insn
);
11455 insn
= prev_nonnote_insn (insn
))
11457 note_stores (PATTERN (insn
), reg_dead_at_p_1
, NULL
);
11459 return reg_dead_flag
== 1 ? 1 : 0;
11461 if (find_regno_note (insn
, REG_DEAD
, reg_dead_regno
))
11465 /* Get the basic block that we were in. */
11467 block
= ENTRY_BLOCK_PTR
->next_bb
;
11470 FOR_EACH_BB (block
)
11471 if (insn
== BB_HEAD (block
))
11474 if (block
== EXIT_BLOCK_PTR
)
11478 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
11479 if (REGNO_REG_SET_P (block
->il
.rtl
->global_live_at_start
, i
))
11485 /* Note hard registers in X that are used. This code is similar to
11486 that in flow.c, but much simpler since we don't care about pseudos. */
11489 mark_used_regs_combine (rtx x
)
11491 RTX_CODE code
= GET_CODE (x
);
11492 unsigned int regno
;
11505 case ADDR_DIFF_VEC
:
11508 /* CC0 must die in the insn after it is set, so we don't need to take
11509 special note of it here. */
11515 /* If we are clobbering a MEM, mark any hard registers inside the
11516 address as used. */
11517 if (MEM_P (XEXP (x
, 0)))
11518 mark_used_regs_combine (XEXP (XEXP (x
, 0), 0));
11523 /* A hard reg in a wide mode may really be multiple registers.
11524 If so, mark all of them just like the first. */
11525 if (regno
< FIRST_PSEUDO_REGISTER
)
11527 unsigned int endregno
, r
;
11529 /* None of this applies to the stack, frame or arg pointers. */
11530 if (regno
== STACK_POINTER_REGNUM
11531 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11532 || regno
== HARD_FRAME_POINTER_REGNUM
11534 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11535 || (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
11537 || regno
== FRAME_POINTER_REGNUM
)
11540 endregno
= regno
+ hard_regno_nregs
[regno
][GET_MODE (x
)];
11541 for (r
= regno
; r
< endregno
; r
++)
11542 SET_HARD_REG_BIT (newpat_used_regs
, r
);
11548 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11550 rtx testreg
= SET_DEST (x
);
11552 while (GET_CODE (testreg
) == SUBREG
11553 || GET_CODE (testreg
) == ZERO_EXTRACT
11554 || GET_CODE (testreg
) == STRICT_LOW_PART
)
11555 testreg
= XEXP (testreg
, 0);
11557 if (MEM_P (testreg
))
11558 mark_used_regs_combine (XEXP (testreg
, 0));
11560 mark_used_regs_combine (SET_SRC (x
));
11568 /* Recursively scan the operands of this expression. */
11571 const char *fmt
= GET_RTX_FORMAT (code
);
11573 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
11576 mark_used_regs_combine (XEXP (x
, i
));
11577 else if (fmt
[i
] == 'E')
11581 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
11582 mark_used_regs_combine (XVECEXP (x
, i
, j
));
11588 /* Remove register number REGNO from the dead registers list of INSN.
11590 Return the note used to record the death, if there was one. */
11593 remove_death (unsigned int regno
, rtx insn
)
11595 rtx note
= find_regno_note (insn
, REG_DEAD
, regno
);
11599 REG_N_DEATHS (regno
)--;
11600 remove_note (insn
, note
);
11606 /* For each register (hardware or pseudo) used within expression X, if its
11607 death is in an instruction with cuid between FROM_CUID (inclusive) and
11608 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11609 list headed by PNOTES.
11611 That said, don't move registers killed by maybe_kill_insn.
11613 This is done when X is being merged by combination into TO_INSN. These
11614 notes will then be distributed as needed. */
11617 move_deaths (rtx x
, rtx maybe_kill_insn
, int from_cuid
, rtx to_insn
,
11622 enum rtx_code code
= GET_CODE (x
);
11626 unsigned int regno
= REGNO (x
);
11627 rtx where_dead
= reg_stat
[regno
].last_death
;
11628 rtx before_dead
, after_dead
;
11630 /* Don't move the register if it gets killed in between from and to. */
11631 if (maybe_kill_insn
&& reg_set_p (x
, maybe_kill_insn
)
11632 && ! reg_referenced_p (x
, maybe_kill_insn
))
11635 /* WHERE_DEAD could be a USE insn made by combine, so first we
11636 make sure that we have insns with valid INSN_CUID values. */
11637 before_dead
= where_dead
;
11638 while (before_dead
&& INSN_UID (before_dead
) > max_uid_cuid
)
11639 before_dead
= PREV_INSN (before_dead
);
11641 after_dead
= where_dead
;
11642 while (after_dead
&& INSN_UID (after_dead
) > max_uid_cuid
)
11643 after_dead
= NEXT_INSN (after_dead
);
11645 if (before_dead
&& after_dead
11646 && INSN_CUID (before_dead
) >= from_cuid
11647 && (INSN_CUID (after_dead
) < INSN_CUID (to_insn
)
11648 || (where_dead
!= after_dead
11649 && INSN_CUID (after_dead
) == INSN_CUID (to_insn
))))
11651 rtx note
= remove_death (regno
, where_dead
);
11653 /* It is possible for the call above to return 0. This can occur
11654 when last_death points to I2 or I1 that we combined with.
11655 In that case make a new note.
11657 We must also check for the case where X is a hard register
11658 and NOTE is a death note for a range of hard registers
11659 including X. In that case, we must put REG_DEAD notes for
11660 the remaining registers in place of NOTE. */
11662 if (note
!= 0 && regno
< FIRST_PSEUDO_REGISTER
11663 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
11664 > GET_MODE_SIZE (GET_MODE (x
))))
11666 unsigned int deadregno
= REGNO (XEXP (note
, 0));
11667 unsigned int deadend
11668 = (deadregno
+ hard_regno_nregs
[deadregno
]
11669 [GET_MODE (XEXP (note
, 0))]);
11670 unsigned int ourend
11671 = regno
+ hard_regno_nregs
[regno
][GET_MODE (x
)];
11674 for (i
= deadregno
; i
< deadend
; i
++)
11675 if (i
< regno
|| i
>= ourend
)
11676 REG_NOTES (where_dead
)
11677 = gen_rtx_EXPR_LIST (REG_DEAD
,
11679 REG_NOTES (where_dead
));
11682 /* If we didn't find any note, or if we found a REG_DEAD note that
11683 covers only part of the given reg, and we have a multi-reg hard
11684 register, then to be safe we must check for REG_DEAD notes
11685 for each register other than the first. They could have
11686 their own REG_DEAD notes lying around. */
11687 else if ((note
== 0
11689 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
11690 < GET_MODE_SIZE (GET_MODE (x
)))))
11691 && regno
< FIRST_PSEUDO_REGISTER
11692 && hard_regno_nregs
[regno
][GET_MODE (x
)] > 1)
11694 unsigned int ourend
11695 = regno
+ hard_regno_nregs
[regno
][GET_MODE (x
)];
11696 unsigned int i
, offset
;
11700 offset
= hard_regno_nregs
[regno
][GET_MODE (XEXP (note
, 0))];
11704 for (i
= regno
+ offset
; i
< ourend
; i
++)
11705 move_deaths (regno_reg_rtx
[i
],
11706 maybe_kill_insn
, from_cuid
, to_insn
, &oldnotes
);
11709 if (note
!= 0 && GET_MODE (XEXP (note
, 0)) == GET_MODE (x
))
11711 XEXP (note
, 1) = *pnotes
;
11715 *pnotes
= gen_rtx_EXPR_LIST (REG_DEAD
, x
, *pnotes
);
11717 REG_N_DEATHS (regno
)++;
11723 else if (GET_CODE (x
) == SET
)
11725 rtx dest
= SET_DEST (x
);
11727 move_deaths (SET_SRC (x
), maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
11729 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11730 that accesses one word of a multi-word item, some
11731 piece of everything register in the expression is used by
11732 this insn, so remove any old death. */
11733 /* ??? So why do we test for equality of the sizes? */
11735 if (GET_CODE (dest
) == ZERO_EXTRACT
11736 || GET_CODE (dest
) == STRICT_LOW_PART
11737 || (GET_CODE (dest
) == SUBREG
11738 && (((GET_MODE_SIZE (GET_MODE (dest
))
11739 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
11740 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
11741 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))))
11743 move_deaths (dest
, maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
11747 /* If this is some other SUBREG, we know it replaces the entire
11748 value, so use that as the destination. */
11749 if (GET_CODE (dest
) == SUBREG
)
11750 dest
= SUBREG_REG (dest
);
11752 /* If this is a MEM, adjust deaths of anything used in the address.
11753 For a REG (the only other possibility), the entire value is
11754 being replaced so the old value is not used in this insn. */
11757 move_deaths (XEXP (dest
, 0), maybe_kill_insn
, from_cuid
,
11762 else if (GET_CODE (x
) == CLOBBER
)
11765 len
= GET_RTX_LENGTH (code
);
11766 fmt
= GET_RTX_FORMAT (code
);
11768 for (i
= 0; i
< len
; i
++)
11773 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
11774 move_deaths (XVECEXP (x
, i
, j
), maybe_kill_insn
, from_cuid
,
11777 else if (fmt
[i
] == 'e')
11778 move_deaths (XEXP (x
, i
), maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
11782 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11783 pattern of an insn. X must be a REG. */
11786 reg_bitfield_target_p (rtx x
, rtx body
)
11790 if (GET_CODE (body
) == SET
)
11792 rtx dest
= SET_DEST (body
);
11794 unsigned int regno
, tregno
, endregno
, endtregno
;
11796 if (GET_CODE (dest
) == ZERO_EXTRACT
)
11797 target
= XEXP (dest
, 0);
11798 else if (GET_CODE (dest
) == STRICT_LOW_PART
)
11799 target
= SUBREG_REG (XEXP (dest
, 0));
11803 if (GET_CODE (target
) == SUBREG
)
11804 target
= SUBREG_REG (target
);
11806 if (!REG_P (target
))
11809 tregno
= REGNO (target
), regno
= REGNO (x
);
11810 if (tregno
>= FIRST_PSEUDO_REGISTER
|| regno
>= FIRST_PSEUDO_REGISTER
)
11811 return target
== x
;
11813 endtregno
= tregno
+ hard_regno_nregs
[tregno
][GET_MODE (target
)];
11814 endregno
= regno
+ hard_regno_nregs
[regno
][GET_MODE (x
)];
11816 return endregno
> tregno
&& regno
< endtregno
;
11819 else if (GET_CODE (body
) == PARALLEL
)
11820 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
11821 if (reg_bitfield_target_p (x
, XVECEXP (body
, 0, i
)))
11827 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11828 as appropriate. I3 and I2 are the insns resulting from the combination
11829 insns including FROM (I2 may be zero).
11831 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11832 not need REG_DEAD notes because they are being substituted for. This
11833 saves searching in the most common cases.
11835 Each note in the list is either ignored or placed on some insns, depending
11836 on the type of note. */
11839 distribute_notes (rtx notes
, rtx from_insn
, rtx i3
, rtx i2
, rtx elim_i2
,
11842 rtx note
, next_note
;
11845 for (note
= notes
; note
; note
= next_note
)
11847 rtx place
= 0, place2
= 0;
11849 next_note
= XEXP (note
, 1);
11850 switch (REG_NOTE_KIND (note
))
11854 /* Doesn't matter much where we put this, as long as it's somewhere.
11855 It is preferable to keep these notes on branches, which is most
11856 likely to be i3. */
11860 case REG_VALUE_PROFILE
:
11861 /* Just get rid of this note, as it is unused later anyway. */
11864 case REG_NON_LOCAL_GOTO
:
11869 gcc_assert (i2
&& JUMP_P (i2
));
11874 case REG_EH_REGION
:
11875 /* These notes must remain with the call or trapping instruction. */
11878 else if (i2
&& CALL_P (i2
))
11882 gcc_assert (flag_non_call_exceptions
);
11883 if (may_trap_p (i3
))
11885 else if (i2
&& may_trap_p (i2
))
11887 /* ??? Otherwise assume we've combined things such that we
11888 can now prove that the instructions can't trap. Drop the
11889 note in this case. */
11895 /* These notes must remain with the call. It should not be
11896 possible for both I2 and I3 to be a call. */
11901 gcc_assert (i2
&& CALL_P (i2
));
11907 /* Any clobbers for i3 may still exist, and so we must process
11908 REG_UNUSED notes from that insn.
11910 Any clobbers from i2 or i1 can only exist if they were added by
11911 recog_for_combine. In that case, recog_for_combine created the
11912 necessary REG_UNUSED notes. Trying to keep any original
11913 REG_UNUSED notes from these insns can cause incorrect output
11914 if it is for the same register as the original i3 dest.
11915 In that case, we will notice that the register is set in i3,
11916 and then add a REG_UNUSED note for the destination of i3, which
11917 is wrong. However, it is possible to have REG_UNUSED notes from
11918 i2 or i1 for register which were both used and clobbered, so
11919 we keep notes from i2 or i1 if they will turn into REG_DEAD
11922 /* If this register is set or clobbered in I3, put the note there
11923 unless there is one already. */
11924 if (reg_set_p (XEXP (note
, 0), PATTERN (i3
)))
11926 if (from_insn
!= i3
)
11929 if (! (REG_P (XEXP (note
, 0))
11930 ? find_regno_note (i3
, REG_UNUSED
, REGNO (XEXP (note
, 0)))
11931 : find_reg_note (i3
, REG_UNUSED
, XEXP (note
, 0))))
11934 /* Otherwise, if this register is used by I3, then this register
11935 now dies here, so we must put a REG_DEAD note here unless there
11937 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
))
11938 && ! (REG_P (XEXP (note
, 0))
11939 ? find_regno_note (i3
, REG_DEAD
,
11940 REGNO (XEXP (note
, 0)))
11941 : find_reg_note (i3
, REG_DEAD
, XEXP (note
, 0))))
11943 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
11951 /* These notes say something about results of an insn. We can
11952 only support them if they used to be on I3 in which case they
11953 remain on I3. Otherwise they are ignored.
11955 If the note refers to an expression that is not a constant, we
11956 must also ignore the note since we cannot tell whether the
11957 equivalence is still true. It might be possible to do
11958 slightly better than this (we only have a problem if I2DEST
11959 or I1DEST is present in the expression), but it doesn't
11960 seem worth the trouble. */
11962 if (from_insn
== i3
11963 && (XEXP (note
, 0) == 0 || CONSTANT_P (XEXP (note
, 0))))
11968 case REG_NO_CONFLICT
:
11969 /* These notes say something about how a register is used. They must
11970 be present on any use of the register in I2 or I3. */
11971 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
)))
11974 if (i2
&& reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
)))
11984 /* This can show up in several ways -- either directly in the
11985 pattern, or hidden off in the constant pool with (or without?)
11986 a REG_EQUAL note. */
11987 /* ??? Ignore the without-reg_equal-note problem for now. */
11988 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
))
11989 || ((tem
= find_reg_note (i3
, REG_EQUAL
, NULL_RTX
))
11990 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
11991 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0)))
11995 && (reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
))
11996 || ((tem
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
))
11997 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
11998 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0))))
12006 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12007 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12008 if (place
&& JUMP_P (place
))
12010 rtx label
= JUMP_LABEL (place
);
12013 JUMP_LABEL (place
) = XEXP (note
, 0);
12016 gcc_assert (label
== XEXP (note
, 0));
12017 if (LABEL_P (label
))
12018 LABEL_NUSES (label
)--;
12022 if (place2
&& JUMP_P (place2
))
12024 rtx label
= JUMP_LABEL (place2
);
12027 JUMP_LABEL (place2
) = XEXP (note
, 0);
12030 gcc_assert (label
== XEXP (note
, 0));
12031 if (LABEL_P (label
))
12032 LABEL_NUSES (label
)--;
12039 /* This note says something about the value of a register prior
12040 to the execution of an insn. It is too much trouble to see
12041 if the note is still correct in all situations. It is better
12042 to simply delete it. */
12046 /* If the insn previously containing this note still exists,
12047 put it back where it was. Otherwise move it to the previous
12048 insn. Adjust the corresponding REG_LIBCALL note. */
12049 if (!NOTE_P (from_insn
))
12053 tem
= find_reg_note (XEXP (note
, 0), REG_LIBCALL
, NULL_RTX
);
12054 place
= prev_real_insn (from_insn
);
12056 XEXP (tem
, 0) = place
;
12057 /* If we're deleting the last remaining instruction of a
12058 libcall sequence, don't add the notes. */
12059 else if (XEXP (note
, 0) == from_insn
)
12061 /* Don't add the dangling REG_RETVAL note. */
12068 /* This is handled similarly to REG_RETVAL. */
12069 if (!NOTE_P (from_insn
))
12073 tem
= find_reg_note (XEXP (note
, 0), REG_RETVAL
, NULL_RTX
);
12074 place
= next_real_insn (from_insn
);
12076 XEXP (tem
, 0) = place
;
12077 /* If we're deleting the last remaining instruction of a
12078 libcall sequence, don't add the notes. */
12079 else if (XEXP (note
, 0) == from_insn
)
12081 /* Don't add the dangling REG_LIBCALL note. */
12088 /* If the register is used as an input in I3, it dies there.
12089 Similarly for I2, if it is nonzero and adjacent to I3.
12091 If the register is not used as an input in either I3 or I2
12092 and it is not one of the registers we were supposed to eliminate,
12093 there are two possibilities. We might have a non-adjacent I2
12094 or we might have somehow eliminated an additional register
12095 from a computation. For example, we might have had A & B where
12096 we discover that B will always be zero. In this case we will
12097 eliminate the reference to A.
12099 In both cases, we must search to see if we can find a previous
12100 use of A and put the death note there. */
12103 && CALL_P (from_insn
)
12104 && find_reg_fusage (from_insn
, USE
, XEXP (note
, 0)))
12106 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
)))
12108 else if (i2
!= 0 && next_nonnote_insn (i2
) == i3
12109 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
12113 && (rtx_equal_p (XEXP (note
, 0), elim_i2
)
12114 || rtx_equal_p (XEXP (note
, 0), elim_i1
)))
12119 basic_block bb
= this_basic_block
;
12121 /* You might think you could search back from FROM_INSN
12122 rather than from I3, but combine tries to split invalid
12123 combined instructions. This can result in the old I2
12124 or I1 moving later in the insn sequence. */
12125 for (tem
= PREV_INSN (i3
); place
== 0; tem
= PREV_INSN (tem
))
12127 if (! INSN_P (tem
))
12129 if (tem
== BB_HEAD (bb
))
12134 /* If the register is being set at TEM, see if that is all
12135 TEM is doing. If so, delete TEM. Otherwise, make this
12136 into a REG_UNUSED note instead. Don't delete sets to
12137 global register vars. */
12138 if ((REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
12139 || !global_regs
[REGNO (XEXP (note
, 0))])
12140 && reg_set_p (XEXP (note
, 0), PATTERN (tem
)))
12142 rtx set
= single_set (tem
);
12143 rtx inner_dest
= 0;
12145 rtx cc0_setter
= NULL_RTX
;
12149 for (inner_dest
= SET_DEST (set
);
12150 (GET_CODE (inner_dest
) == STRICT_LOW_PART
12151 || GET_CODE (inner_dest
) == SUBREG
12152 || GET_CODE (inner_dest
) == ZERO_EXTRACT
);
12153 inner_dest
= XEXP (inner_dest
, 0))
12156 /* Verify that it was the set, and not a clobber that
12157 modified the register.
12159 CC0 targets must be careful to maintain setter/user
12160 pairs. If we cannot delete the setter due to side
12161 effects, mark the user with an UNUSED note instead
12164 if (set
!= 0 && ! side_effects_p (SET_SRC (set
))
12165 && rtx_equal_p (XEXP (note
, 0), inner_dest
)
12167 && (! reg_mentioned_p (cc0_rtx
, SET_SRC (set
))
12168 || ((cc0_setter
= prev_cc0_setter (tem
)) != NULL
12169 && sets_cc0_p (PATTERN (cc0_setter
)) > 0))
12173 /* Move the notes and links of TEM elsewhere.
12174 This might delete other dead insns recursively.
12175 First set the pattern to something that won't use
12177 rtx old_notes
= REG_NOTES (tem
);
12179 PATTERN (tem
) = pc_rtx
;
12180 REG_NOTES (tem
) = NULL
;
12182 distribute_notes (old_notes
, tem
, tem
, NULL_RTX
,
12183 NULL_RTX
, NULL_RTX
);
12184 distribute_links (LOG_LINKS (tem
));
12186 SET_INSN_DELETED (tem
);
12189 /* Delete the setter too. */
12192 PATTERN (cc0_setter
) = pc_rtx
;
12193 old_notes
= REG_NOTES (cc0_setter
);
12194 REG_NOTES (cc0_setter
) = NULL
;
12196 distribute_notes (old_notes
, cc0_setter
,
12197 cc0_setter
, NULL_RTX
,
12198 NULL_RTX
, NULL_RTX
);
12199 distribute_links (LOG_LINKS (cc0_setter
));
12201 SET_INSN_DELETED (cc0_setter
);
12207 PUT_REG_NOTE_KIND (note
, REG_UNUSED
);
12209 /* If there isn't already a REG_UNUSED note, put one
12210 here. Do not place a REG_DEAD note, even if
12211 the register is also used here; that would not
12212 match the algorithm used in lifetime analysis
12213 and can cause the consistency check in the
12214 scheduler to fail. */
12215 if (! find_regno_note (tem
, REG_UNUSED
,
12216 REGNO (XEXP (note
, 0))))
12221 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (tem
))
12223 && find_reg_fusage (tem
, USE
, XEXP (note
, 0))))
12225 /* This may not be the correct place for the death
12226 note if FROM_INSN is before TEM, and the reg is
12227 set between FROM_INSN and TEM. The reg might
12228 die two or more times. An existing death note
12229 means we are looking at the wrong live range. */
12231 && INSN_CUID (from_insn
) < INSN_CUID (tem
)
12232 && find_regno_note (tem
, REG_DEAD
,
12233 REGNO (XEXP (note
, 0))))
12236 if (tem
== BB_HEAD (bb
))
12243 /* If we are doing a 3->2 combination, and we have a
12244 register which formerly died in i3 and was not used
12245 by i2, which now no longer dies in i3 and is used in
12246 i2 but does not die in i2, and place is between i2
12247 and i3, then we may need to move a link from place to
12249 if (i2
&& INSN_UID (place
) <= max_uid_cuid
12250 && INSN_CUID (place
) > INSN_CUID (i2
)
12252 && INSN_CUID (from_insn
) > INSN_CUID (i2
)
12253 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
12255 rtx links
= LOG_LINKS (place
);
12256 LOG_LINKS (place
) = 0;
12257 distribute_links (links
);
12262 if (tem
== BB_HEAD (bb
))
12266 /* We haven't found an insn for the death note and it
12267 is still a REG_DEAD note, but we have hit the beginning
12268 of the block. If the existing life info says the reg
12269 was dead, there's nothing left to do. Otherwise, we'll
12270 need to do a global life update after combine. */
12271 if (REG_NOTE_KIND (note
) == REG_DEAD
&& place
== 0
12272 && REGNO_REG_SET_P (bb
->il
.rtl
->global_live_at_start
,
12273 REGNO (XEXP (note
, 0))))
12274 SET_BIT (refresh_blocks
, this_basic_block
->index
);
12277 /* If the register is set or already dead at PLACE, we needn't do
12278 anything with this note if it is still a REG_DEAD note.
12279 We check here if it is set at all, not if is it totally replaced,
12280 which is what `dead_or_set_p' checks, so also check for it being
12283 if (place
&& REG_NOTE_KIND (note
) == REG_DEAD
)
12285 unsigned int regno
= REGNO (XEXP (note
, 0));
12287 /* Similarly, if the instruction on which we want to place
12288 the note is a noop, we'll need do a global live update
12289 after we remove them in delete_noop_moves. */
12290 if (noop_move_p (place
))
12291 SET_BIT (refresh_blocks
, this_basic_block
->index
);
12293 if (dead_or_set_p (place
, XEXP (note
, 0))
12294 || reg_bitfield_target_p (XEXP (note
, 0), PATTERN (place
)))
12296 /* Unless the register previously died in PLACE, clear
12297 last_death. [I no longer understand why this is
12299 if (reg_stat
[regno
].last_death
!= place
)
12300 reg_stat
[regno
].last_death
= 0;
12304 reg_stat
[regno
].last_death
= place
;
12306 /* If this is a death note for a hard reg that is occupying
12307 multiple registers, ensure that we are still using all
12308 parts of the object. If we find a piece of the object
12309 that is unused, we must arrange for an appropriate REG_DEAD
12310 note to be added for it. However, we can't just emit a USE
12311 and tag the note to it, since the register might actually
12312 be dead; so we recourse, and the recursive call then finds
12313 the previous insn that used this register. */
12315 if (place
&& regno
< FIRST_PSEUDO_REGISTER
12316 && hard_regno_nregs
[regno
][GET_MODE (XEXP (note
, 0))] > 1)
12318 unsigned int endregno
12319 = regno
+ hard_regno_nregs
[regno
]
12320 [GET_MODE (XEXP (note
, 0))];
12324 for (i
= regno
; i
< endregno
; i
++)
12325 if ((! refers_to_regno_p (i
, i
+ 1, PATTERN (place
), 0)
12326 && ! find_regno_fusage (place
, USE
, i
))
12327 || dead_or_set_regno_p (place
, i
))
12332 /* Put only REG_DEAD notes for pieces that are
12333 not already dead or set. */
12335 for (i
= regno
; i
< endregno
;
12336 i
+= hard_regno_nregs
[i
][reg_raw_mode
[i
]])
12338 rtx piece
= regno_reg_rtx
[i
];
12339 basic_block bb
= this_basic_block
;
12341 if (! dead_or_set_p (place
, piece
)
12342 && ! reg_bitfield_target_p (piece
,
12346 = gen_rtx_EXPR_LIST (REG_DEAD
, piece
, NULL_RTX
);
12348 distribute_notes (new_note
, place
, place
,
12349 NULL_RTX
, NULL_RTX
, NULL_RTX
);
12351 else if (! refers_to_regno_p (i
, i
+ 1,
12352 PATTERN (place
), 0)
12353 && ! find_regno_fusage (place
, USE
, i
))
12354 for (tem
= PREV_INSN (place
); ;
12355 tem
= PREV_INSN (tem
))
12357 if (! INSN_P (tem
))
12359 if (tem
== BB_HEAD (bb
))
12361 SET_BIT (refresh_blocks
,
12362 this_basic_block
->index
);
12367 if (dead_or_set_p (tem
, piece
)
12368 || reg_bitfield_target_p (piece
,
12372 = gen_rtx_EXPR_LIST (REG_UNUSED
, piece
,
12387 /* Any other notes should not be present at this point in the
12389 gcc_unreachable ();
12394 XEXP (note
, 1) = REG_NOTES (place
);
12395 REG_NOTES (place
) = note
;
12397 else if ((REG_NOTE_KIND (note
) == REG_DEAD
12398 || REG_NOTE_KIND (note
) == REG_UNUSED
)
12399 && REG_P (XEXP (note
, 0)))
12400 REG_N_DEATHS (REGNO (XEXP (note
, 0)))--;
12404 if ((REG_NOTE_KIND (note
) == REG_DEAD
12405 || REG_NOTE_KIND (note
) == REG_UNUSED
)
12406 && REG_P (XEXP (note
, 0)))
12407 REG_N_DEATHS (REGNO (XEXP (note
, 0)))++;
12409 REG_NOTES (place2
) = gen_rtx_fmt_ee (GET_CODE (note
),
12410 REG_NOTE_KIND (note
),
12412 REG_NOTES (place2
));
12417 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12418 I3, I2, and I1 to new locations. This is also called to add a link
12419 pointing at I3 when I3's destination is changed. */
12422 distribute_links (rtx links
)
12424 rtx link
, next_link
;
12426 for (link
= links
; link
; link
= next_link
)
12432 next_link
= XEXP (link
, 1);
12434 /* If the insn that this link points to is a NOTE or isn't a single
12435 set, ignore it. In the latter case, it isn't clear what we
12436 can do other than ignore the link, since we can't tell which
12437 register it was for. Such links wouldn't be used by combine
12440 It is not possible for the destination of the target of the link to
12441 have been changed by combine. The only potential of this is if we
12442 replace I3, I2, and I1 by I3 and I2. But in that case the
12443 destination of I2 also remains unchanged. */
12445 if (NOTE_P (XEXP (link
, 0))
12446 || (set
= single_set (XEXP (link
, 0))) == 0)
12449 reg
= SET_DEST (set
);
12450 while (GET_CODE (reg
) == SUBREG
|| GET_CODE (reg
) == ZERO_EXTRACT
12451 || GET_CODE (reg
) == STRICT_LOW_PART
)
12452 reg
= XEXP (reg
, 0);
12454 /* A LOG_LINK is defined as being placed on the first insn that uses
12455 a register and points to the insn that sets the register. Start
12456 searching at the next insn after the target of the link and stop
12457 when we reach a set of the register or the end of the basic block.
12459 Note that this correctly handles the link that used to point from
12460 I3 to I2. Also note that not much searching is typically done here
12461 since most links don't point very far away. */
12463 for (insn
= NEXT_INSN (XEXP (link
, 0));
12464 (insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR
12465 || BB_HEAD (this_basic_block
->next_bb
) != insn
));
12466 insn
= NEXT_INSN (insn
))
12467 if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
12469 if (reg_referenced_p (reg
, PATTERN (insn
)))
12473 else if (CALL_P (insn
)
12474 && find_reg_fusage (insn
, USE
, reg
))
12479 else if (INSN_P (insn
) && reg_set_p (reg
, insn
))
12482 /* If we found a place to put the link, place it there unless there
12483 is already a link to the same insn as LINK at that point. */
12489 for (link2
= LOG_LINKS (place
); link2
; link2
= XEXP (link2
, 1))
12490 if (XEXP (link2
, 0) == XEXP (link
, 0))
12495 XEXP (link
, 1) = LOG_LINKS (place
);
12496 LOG_LINKS (place
) = link
;
12498 /* Set added_links_insn to the earliest insn we added a
12500 if (added_links_insn
== 0
12501 || INSN_CUID (added_links_insn
) > INSN_CUID (place
))
12502 added_links_insn
= place
;
12508 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12509 Check whether the expression pointer to by LOC is a register or
12510 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12511 Otherwise return zero. */
12514 unmentioned_reg_p_1 (rtx
*loc
, void *expr
)
12519 && (REG_P (x
) || MEM_P (x
))
12520 && ! reg_mentioned_p (x
, (rtx
) expr
))
12525 /* Check for any register or memory mentioned in EQUIV that is not
12526 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12527 of EXPR where some registers may have been replaced by constants. */
12530 unmentioned_reg_p (rtx equiv
, rtx expr
)
12532 return for_each_rtx (&equiv
, unmentioned_reg_p_1
, expr
);
12535 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12538 insn_cuid (rtx insn
)
12540 while (insn
!= 0 && INSN_UID (insn
) > max_uid_cuid
12541 && NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == USE
)
12542 insn
= NEXT_INSN (insn
);
12544 gcc_assert (INSN_UID (insn
) <= max_uid_cuid
);
12546 return INSN_CUID (insn
);
12550 dump_combine_stats (FILE *file
)
12554 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12555 combine_attempts
, combine_merges
, combine_extras
, combine_successes
);
12559 dump_combine_total_stats (FILE *file
)
12563 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12564 total_attempts
, total_merges
, total_extras
, total_successes
);
12569 gate_handle_combine (void)
12571 return (optimize
> 0);
12574 /* Try combining insns through substitution. */
12575 static unsigned int
12576 rest_of_handle_combine (void)
12578 int rebuild_jump_labels_after_combine
12579 = combine_instructions (get_insns (), max_reg_num ());
12581 /* Combining insns may have turned an indirect jump into a
12582 direct jump. Rebuild the JUMP_LABEL fields of jumping
12584 if (rebuild_jump_labels_after_combine
)
12586 timevar_push (TV_JUMP
);
12587 rebuild_jump_labels (get_insns ());
12588 timevar_pop (TV_JUMP
);
12590 delete_dead_jumptables ();
12591 cleanup_cfg (CLEANUP_EXPENSIVE
| CLEANUP_UPDATE_LIFE
);
12596 struct tree_opt_pass pass_combine
=
12598 "combine", /* name */
12599 gate_handle_combine
, /* gate */
12600 rest_of_handle_combine
, /* execute */
12603 0, /* static_pass_number */
12604 TV_COMBINE
, /* tv_id */
12605 0, /* properties_required */
12606 0, /* properties_provided */
12607 0, /* properties_destroyed */
12608 0, /* todo_flags_start */
12610 TODO_ggc_collect
, /* todo_flags_finish */