Pass 9th fp argument correctly on System V/eabi; Add @plt for -fPIC/-mrelocatable
[official-gcc.git] / gcc / tree.c
blobecd6961daf6ec4ba6c135bb3f4aa7a15ace766ee
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 88, 92-96, 1997 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
36 #include "config.h"
37 #include <setjmp.h>
38 #include "flags.h"
39 #include "tree.h"
40 #include "except.h"
41 #include "function.h"
42 #include "obstack.h"
43 #ifdef __STDC__
44 #include <stdarg.h>
45 #else
46 #include <varargs.h>
47 #endif
48 #include <stdio.h>
50 #ifdef HAVE_STDLIB_H
51 #include <stdlib.h>
52 #endif
54 #ifdef NEED_DECLARATION_FREE
55 extern void free PROTO((void *));
56 #endif
58 #define obstack_chunk_alloc xmalloc
59 #define obstack_chunk_free free
61 /* Tree nodes of permanent duration are allocated in this obstack.
62 They are the identifier nodes, and everything outside of
63 the bodies and parameters of function definitions. */
65 struct obstack permanent_obstack;
67 /* The initial RTL, and all ..._TYPE nodes, in a function
68 are allocated in this obstack. Usually they are freed at the
69 end of the function, but if the function is inline they are saved.
70 For top-level functions, this is maybepermanent_obstack.
71 Separate obstacks are made for nested functions. */
73 struct obstack *function_maybepermanent_obstack;
75 /* This is the function_maybepermanent_obstack for top-level functions. */
77 struct obstack maybepermanent_obstack;
79 /* This is a list of function_maybepermanent_obstacks for top-level inline
80 functions that are compiled in the middle of compiling other functions. */
82 struct simple_obstack_stack *toplev_inline_obstacks;
84 /* Former elements of toplev_inline_obstacks that have been recycled. */
86 struct simple_obstack_stack *extra_inline_obstacks;
88 /* This is a list of function_maybepermanent_obstacks for inline functions
89 nested in the current function that were compiled in the middle of
90 compiling other functions. */
92 struct simple_obstack_stack *inline_obstacks;
94 /* The contents of the current function definition are allocated
95 in this obstack, and all are freed at the end of the function.
96 For top-level functions, this is temporary_obstack.
97 Separate obstacks are made for nested functions. */
99 struct obstack *function_obstack;
101 /* This is used for reading initializers of global variables. */
103 struct obstack temporary_obstack;
105 /* The tree nodes of an expression are allocated
106 in this obstack, and all are freed at the end of the expression. */
108 struct obstack momentary_obstack;
110 /* The tree nodes of a declarator are allocated
111 in this obstack, and all are freed when the declarator
112 has been parsed. */
114 static struct obstack temp_decl_obstack;
116 /* This points at either permanent_obstack
117 or the current function_maybepermanent_obstack. */
119 struct obstack *saveable_obstack;
121 /* This is same as saveable_obstack during parse and expansion phase;
122 it points to the current function's obstack during optimization.
123 This is the obstack to be used for creating rtl objects. */
125 struct obstack *rtl_obstack;
127 /* This points at either permanent_obstack or the current function_obstack. */
129 struct obstack *current_obstack;
131 /* This points at either permanent_obstack or the current function_obstack
132 or momentary_obstack. */
134 struct obstack *expression_obstack;
136 /* Stack of obstack selections for push_obstacks and pop_obstacks. */
138 struct obstack_stack
140 struct obstack_stack *next;
141 struct obstack *current;
142 struct obstack *saveable;
143 struct obstack *expression;
144 struct obstack *rtl;
147 struct obstack_stack *obstack_stack;
149 /* Obstack for allocating struct obstack_stack entries. */
151 static struct obstack obstack_stack_obstack;
153 /* Addresses of first objects in some obstacks.
154 This is for freeing their entire contents. */
155 char *maybepermanent_firstobj;
156 char *temporary_firstobj;
157 char *momentary_firstobj;
158 char *temp_decl_firstobj;
160 /* This is used to preserve objects (mainly array initializers) that need to
161 live until the end of the current function, but no further. */
162 char *momentary_function_firstobj;
164 /* Nonzero means all ..._TYPE nodes should be allocated permanently. */
166 int all_types_permanent;
168 /* Stack of places to restore the momentary obstack back to. */
170 struct momentary_level
172 /* Pointer back to previous such level. */
173 struct momentary_level *prev;
174 /* First object allocated within this level. */
175 char *base;
176 /* Value of expression_obstack saved at entry to this level. */
177 struct obstack *obstack;
180 struct momentary_level *momentary_stack;
182 /* Table indexed by tree code giving a string containing a character
183 classifying the tree code. Possibilities are
184 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
186 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
188 char *standard_tree_code_type[] = {
189 #include "tree.def"
191 #undef DEFTREECODE
193 /* Table indexed by tree code giving number of expression
194 operands beyond the fixed part of the node structure.
195 Not used for types or decls. */
197 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
199 int standard_tree_code_length[] = {
200 #include "tree.def"
202 #undef DEFTREECODE
204 /* Names of tree components.
205 Used for printing out the tree and error messages. */
206 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
208 char *standard_tree_code_name[] = {
209 #include "tree.def"
211 #undef DEFTREECODE
213 /* Table indexed by tree code giving a string containing a character
214 classifying the tree code. Possibilities are
215 t, d, s, c, r, e, <, 1 and 2. See tree.def for details. */
217 char **tree_code_type;
219 /* Table indexed by tree code giving number of expression
220 operands beyond the fixed part of the node structure.
221 Not used for types or decls. */
223 int *tree_code_length;
225 /* Table indexed by tree code giving name of tree code, as a string. */
227 char **tree_code_name;
229 /* Statistics-gathering stuff. */
230 typedef enum
232 d_kind,
233 t_kind,
234 b_kind,
235 s_kind,
236 r_kind,
237 e_kind,
238 c_kind,
239 id_kind,
240 op_id_kind,
241 perm_list_kind,
242 temp_list_kind,
243 vec_kind,
244 x_kind,
245 lang_decl,
246 lang_type,
247 all_kinds
248 } tree_node_kind;
250 int tree_node_counts[(int)all_kinds];
251 int tree_node_sizes[(int)all_kinds];
252 int id_string_size = 0;
254 char *tree_node_kind_names[] = {
255 "decls",
256 "types",
257 "blocks",
258 "stmts",
259 "refs",
260 "exprs",
261 "constants",
262 "identifiers",
263 "op_identifiers",
264 "perm_tree_lists",
265 "temp_tree_lists",
266 "vecs",
267 "random kinds",
268 "lang_decl kinds",
269 "lang_type kinds"
272 /* Hash table for uniquizing IDENTIFIER_NODEs by name. */
274 #define MAX_HASH_TABLE 1009
275 static tree hash_table[MAX_HASH_TABLE]; /* id hash buckets */
277 /* 0 while creating built-in identifiers. */
278 static int do_identifier_warnings;
280 /* Unique id for next decl created. */
281 static int next_decl_uid;
282 /* Unique id for next type created. */
283 static int next_type_uid = 1;
285 /* Here is how primitive or already-canonicalized types' hash
286 codes are made. */
287 #define TYPE_HASH(TYPE) ((HOST_WIDE_INT) (TYPE) & 0777777)
289 extern char *mode_name[];
291 void gcc_obstack_init ();
293 /* Init the principal obstacks. */
295 void
296 init_obstacks ()
298 gcc_obstack_init (&obstack_stack_obstack);
299 gcc_obstack_init (&permanent_obstack);
301 gcc_obstack_init (&temporary_obstack);
302 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
303 gcc_obstack_init (&momentary_obstack);
304 momentary_firstobj = (char *) obstack_alloc (&momentary_obstack, 0);
305 momentary_function_firstobj = momentary_firstobj;
306 gcc_obstack_init (&maybepermanent_obstack);
307 maybepermanent_firstobj
308 = (char *) obstack_alloc (&maybepermanent_obstack, 0);
309 gcc_obstack_init (&temp_decl_obstack);
310 temp_decl_firstobj = (char *) obstack_alloc (&temp_decl_obstack, 0);
312 function_obstack = &temporary_obstack;
313 function_maybepermanent_obstack = &maybepermanent_obstack;
314 current_obstack = &permanent_obstack;
315 expression_obstack = &permanent_obstack;
316 rtl_obstack = saveable_obstack = &permanent_obstack;
318 /* Init the hash table of identifiers. */
319 bzero ((char *) hash_table, sizeof hash_table);
322 void
323 gcc_obstack_init (obstack)
324 struct obstack *obstack;
326 /* Let particular systems override the size of a chunk. */
327 #ifndef OBSTACK_CHUNK_SIZE
328 #define OBSTACK_CHUNK_SIZE 0
329 #endif
330 /* Let them override the alloc and free routines too. */
331 #ifndef OBSTACK_CHUNK_ALLOC
332 #define OBSTACK_CHUNK_ALLOC xmalloc
333 #endif
334 #ifndef OBSTACK_CHUNK_FREE
335 #define OBSTACK_CHUNK_FREE free
336 #endif
337 _obstack_begin (obstack, OBSTACK_CHUNK_SIZE, 0,
338 (void *(*) ()) OBSTACK_CHUNK_ALLOC,
339 (void (*) ()) OBSTACK_CHUNK_FREE);
342 /* Save all variables describing the current status into the structure *P.
343 This is used before starting a nested function.
345 CONTEXT is the decl_function_context for the function we're about to
346 compile; if it isn't current_function_decl, we have to play some games. */
348 void
349 save_tree_status (p, context)
350 struct function *p;
351 tree context;
353 p->all_types_permanent = all_types_permanent;
354 p->momentary_stack = momentary_stack;
355 p->maybepermanent_firstobj = maybepermanent_firstobj;
356 p->temporary_firstobj = temporary_firstobj;
357 p->momentary_firstobj = momentary_firstobj;
358 p->momentary_function_firstobj = momentary_function_firstobj;
359 p->function_obstack = function_obstack;
360 p->function_maybepermanent_obstack = function_maybepermanent_obstack;
361 p->current_obstack = current_obstack;
362 p->expression_obstack = expression_obstack;
363 p->saveable_obstack = saveable_obstack;
364 p->rtl_obstack = rtl_obstack;
365 p->inline_obstacks = inline_obstacks;
367 if (context == current_function_decl)
368 /* Objects that need to be saved in this function can be in the nonsaved
369 obstack of the enclosing function since they can't possibly be needed
370 once it has returned. */
371 function_maybepermanent_obstack = function_obstack;
372 else
374 /* We're compiling a function which isn't nested in the current
375 function. We need to create a new maybepermanent_obstack for this
376 function, since it can't go onto any of the existing obstacks. */
377 struct simple_obstack_stack **head;
378 struct simple_obstack_stack *current;
380 if (context == NULL_TREE)
381 head = &toplev_inline_obstacks;
382 else
384 struct function *f = find_function_data (context);
385 head = &f->inline_obstacks;
388 if (context == NULL_TREE && extra_inline_obstacks)
390 current = extra_inline_obstacks;
391 extra_inline_obstacks = current->next;
393 else
395 current = ((struct simple_obstack_stack *)
396 xmalloc (sizeof (struct simple_obstack_stack)));
398 current->obstack
399 = (struct obstack *) xmalloc (sizeof (struct obstack));
400 gcc_obstack_init (current->obstack);
403 function_maybepermanent_obstack = current->obstack;
405 current->next = *head;
406 *head = current;
409 maybepermanent_firstobj
410 = (char *) obstack_finish (function_maybepermanent_obstack);
412 function_obstack = (struct obstack *) xmalloc (sizeof (struct obstack));
413 gcc_obstack_init (function_obstack);
415 current_obstack = &permanent_obstack;
416 expression_obstack = &permanent_obstack;
417 rtl_obstack = saveable_obstack = &permanent_obstack;
419 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
420 momentary_firstobj = (char *) obstack_finish (&momentary_obstack);
421 momentary_function_firstobj = momentary_firstobj;
424 /* Restore all variables describing the current status from the structure *P.
425 This is used after a nested function. */
427 void
428 restore_tree_status (p, context)
429 struct function *p;
430 tree context;
432 all_types_permanent = p->all_types_permanent;
433 momentary_stack = p->momentary_stack;
435 obstack_free (&momentary_obstack, momentary_function_firstobj);
437 /* Free saveable storage used by the function just compiled and not
438 saved.
440 CAUTION: This is in function_obstack of the containing function.
441 So we must be sure that we never allocate from that obstack during
442 the compilation of a nested function if we expect it to survive
443 past the nested function's end. */
444 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
446 /* If we were compiling a toplevel function, we can free this space now. */
447 if (context == NULL_TREE)
449 obstack_free (&temporary_obstack, temporary_firstobj);
450 obstack_free (&momentary_obstack, momentary_function_firstobj);
453 /* If we were compiling a toplevel function that we don't actually want
454 to save anything from, return the obstack to the pool. */
455 if (context == NULL_TREE
456 && obstack_empty_p (function_maybepermanent_obstack))
458 struct simple_obstack_stack *current, **p = &toplev_inline_obstacks;
460 while ((*p)->obstack != function_maybepermanent_obstack)
461 p = &((*p)->next);
462 current = *p;
463 *p = current->next;
465 current->next = extra_inline_obstacks;
466 extra_inline_obstacks = current;
469 obstack_free (function_obstack, 0);
470 free (function_obstack);
472 temporary_firstobj = p->temporary_firstobj;
473 momentary_firstobj = p->momentary_firstobj;
474 momentary_function_firstobj = p->momentary_function_firstobj;
475 maybepermanent_firstobj = p->maybepermanent_firstobj;
476 function_obstack = p->function_obstack;
477 function_maybepermanent_obstack = p->function_maybepermanent_obstack;
478 current_obstack = p->current_obstack;
479 expression_obstack = p->expression_obstack;
480 saveable_obstack = p->saveable_obstack;
481 rtl_obstack = p->rtl_obstack;
482 inline_obstacks = p->inline_obstacks;
485 /* Start allocating on the temporary (per function) obstack.
486 This is done in start_function before parsing the function body,
487 and before each initialization at top level, and to go back
488 to temporary allocation after doing permanent_allocation. */
490 void
491 temporary_allocation ()
493 /* Note that function_obstack at top level points to temporary_obstack.
494 But within a nested function context, it is a separate obstack. */
495 current_obstack = function_obstack;
496 expression_obstack = function_obstack;
497 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
498 momentary_stack = 0;
499 inline_obstacks = 0;
502 /* Start allocating on the permanent obstack but don't
503 free the temporary data. After calling this, call
504 `permanent_allocation' to fully resume permanent allocation status. */
506 void
507 end_temporary_allocation ()
509 current_obstack = &permanent_obstack;
510 expression_obstack = &permanent_obstack;
511 rtl_obstack = saveable_obstack = &permanent_obstack;
514 /* Resume allocating on the temporary obstack, undoing
515 effects of `end_temporary_allocation'. */
517 void
518 resume_temporary_allocation ()
520 current_obstack = function_obstack;
521 expression_obstack = function_obstack;
522 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
525 /* While doing temporary allocation, switch to allocating in such a
526 way as to save all nodes if the function is inlined. Call
527 resume_temporary_allocation to go back to ordinary temporary
528 allocation. */
530 void
531 saveable_allocation ()
533 /* Note that function_obstack at top level points to temporary_obstack.
534 But within a nested function context, it is a separate obstack. */
535 expression_obstack = current_obstack = saveable_obstack;
538 /* Switch to current obstack CURRENT and maybepermanent obstack SAVEABLE,
539 recording the previously current obstacks on a stack.
540 This does not free any storage in any obstack. */
542 void
543 push_obstacks (current, saveable)
544 struct obstack *current, *saveable;
546 struct obstack_stack *p
547 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
548 (sizeof (struct obstack_stack)));
550 p->current = current_obstack;
551 p->saveable = saveable_obstack;
552 p->expression = expression_obstack;
553 p->rtl = rtl_obstack;
554 p->next = obstack_stack;
555 obstack_stack = p;
557 current_obstack = current;
558 expression_obstack = current;
559 rtl_obstack = saveable_obstack = saveable;
562 /* Save the current set of obstacks, but don't change them. */
564 void
565 push_obstacks_nochange ()
567 struct obstack_stack *p
568 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
569 (sizeof (struct obstack_stack)));
571 p->current = current_obstack;
572 p->saveable = saveable_obstack;
573 p->expression = expression_obstack;
574 p->rtl = rtl_obstack;
575 p->next = obstack_stack;
576 obstack_stack = p;
579 /* Pop the obstack selection stack. */
581 void
582 pop_obstacks ()
584 struct obstack_stack *p = obstack_stack;
585 obstack_stack = p->next;
587 current_obstack = p->current;
588 saveable_obstack = p->saveable;
589 expression_obstack = p->expression;
590 rtl_obstack = p->rtl;
592 obstack_free (&obstack_stack_obstack, p);
595 /* Nonzero if temporary allocation is currently in effect.
596 Zero if currently doing permanent allocation. */
599 allocation_temporary_p ()
601 return current_obstack != &permanent_obstack;
604 /* Go back to allocating on the permanent obstack
605 and free everything in the temporary obstack.
607 FUNCTION_END is true only if we have just finished compiling a function.
608 In that case, we also free preserved initial values on the momentary
609 obstack. */
611 void
612 permanent_allocation (function_end)
613 int function_end;
615 /* Free up previous temporary obstack data */
616 obstack_free (&temporary_obstack, temporary_firstobj);
617 if (function_end)
619 obstack_free (&momentary_obstack, momentary_function_firstobj);
620 momentary_firstobj = momentary_function_firstobj;
622 else
623 obstack_free (&momentary_obstack, momentary_firstobj);
624 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
625 obstack_free (&temp_decl_obstack, temp_decl_firstobj);
627 /* Free up the maybepermanent_obstacks for any of our nested functions
628 which were compiled at a lower level. */
629 while (inline_obstacks)
631 struct simple_obstack_stack *current = inline_obstacks;
632 inline_obstacks = current->next;
633 obstack_free (current->obstack, 0);
634 free (current->obstack);
635 free (current);
638 current_obstack = &permanent_obstack;
639 expression_obstack = &permanent_obstack;
640 rtl_obstack = saveable_obstack = &permanent_obstack;
643 /* Save permanently everything on the maybepermanent_obstack. */
645 void
646 preserve_data ()
648 maybepermanent_firstobj
649 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
652 void
653 preserve_initializer ()
655 struct momentary_level *tem;
656 char *old_momentary;
658 temporary_firstobj
659 = (char *) obstack_alloc (&temporary_obstack, 0);
660 maybepermanent_firstobj
661 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
663 old_momentary = momentary_firstobj;
664 momentary_firstobj
665 = (char *) obstack_alloc (&momentary_obstack, 0);
666 if (momentary_firstobj != old_momentary)
667 for (tem = momentary_stack; tem; tem = tem->prev)
668 tem->base = momentary_firstobj;
671 /* Start allocating new rtl in current_obstack.
672 Use resume_temporary_allocation
673 to go back to allocating rtl in saveable_obstack. */
675 void
676 rtl_in_current_obstack ()
678 rtl_obstack = current_obstack;
681 /* Start allocating rtl from saveable_obstack. Intended to be used after
682 a call to push_obstacks_nochange. */
684 void
685 rtl_in_saveable_obstack ()
687 rtl_obstack = saveable_obstack;
690 /* Allocate SIZE bytes in the current obstack
691 and return a pointer to them.
692 In practice the current obstack is always the temporary one. */
694 char *
695 oballoc (size)
696 int size;
698 return (char *) obstack_alloc (current_obstack, size);
701 /* Free the object PTR in the current obstack
702 as well as everything allocated since PTR.
703 In practice the current obstack is always the temporary one. */
705 void
706 obfree (ptr)
707 char *ptr;
709 obstack_free (current_obstack, ptr);
712 /* Allocate SIZE bytes in the permanent obstack
713 and return a pointer to them. */
715 char *
716 permalloc (size)
717 int size;
719 return (char *) obstack_alloc (&permanent_obstack, size);
722 /* Allocate NELEM items of SIZE bytes in the permanent obstack
723 and return a pointer to them. The storage is cleared before
724 returning the value. */
726 char *
727 perm_calloc (nelem, size)
728 int nelem;
729 long size;
731 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
732 bzero (rval, nelem * size);
733 return rval;
736 /* Allocate SIZE bytes in the saveable obstack
737 and return a pointer to them. */
739 char *
740 savealloc (size)
741 int size;
743 return (char *) obstack_alloc (saveable_obstack, size);
746 /* Allocate SIZE bytes in the expression obstack
747 and return a pointer to them. */
749 char *
750 expralloc (size)
751 int size;
753 return (char *) obstack_alloc (expression_obstack, size);
756 /* Print out which obstack an object is in. */
758 void
759 print_obstack_name (object, file, prefix)
760 char *object;
761 FILE *file;
762 char *prefix;
764 struct obstack *obstack = NULL;
765 char *obstack_name = NULL;
766 struct function *p;
768 for (p = outer_function_chain; p; p = p->next)
770 if (_obstack_allocated_p (p->function_obstack, object))
772 obstack = p->function_obstack;
773 obstack_name = "containing function obstack";
775 if (_obstack_allocated_p (p->function_maybepermanent_obstack, object))
777 obstack = p->function_maybepermanent_obstack;
778 obstack_name = "containing function maybepermanent obstack";
782 if (_obstack_allocated_p (&obstack_stack_obstack, object))
784 obstack = &obstack_stack_obstack;
785 obstack_name = "obstack_stack_obstack";
787 else if (_obstack_allocated_p (function_obstack, object))
789 obstack = function_obstack;
790 obstack_name = "function obstack";
792 else if (_obstack_allocated_p (&permanent_obstack, object))
794 obstack = &permanent_obstack;
795 obstack_name = "permanent_obstack";
797 else if (_obstack_allocated_p (&momentary_obstack, object))
799 obstack = &momentary_obstack;
800 obstack_name = "momentary_obstack";
802 else if (_obstack_allocated_p (function_maybepermanent_obstack, object))
804 obstack = function_maybepermanent_obstack;
805 obstack_name = "function maybepermanent obstack";
807 else if (_obstack_allocated_p (&temp_decl_obstack, object))
809 obstack = &temp_decl_obstack;
810 obstack_name = "temp_decl_obstack";
813 /* Check to see if the object is in the free area of the obstack. */
814 if (obstack != NULL)
816 if (object >= obstack->next_free
817 && object < obstack->chunk_limit)
818 fprintf (file, "%s in free portion of obstack %s",
819 prefix, obstack_name);
820 else
821 fprintf (file, "%s allocated from %s", prefix, obstack_name);
823 else
824 fprintf (file, "%s not allocated from any obstack", prefix);
827 void
828 debug_obstack (object)
829 char *object;
831 print_obstack_name (object, stderr, "object");
832 fprintf (stderr, ".\n");
835 /* Return 1 if OBJ is in the permanent obstack.
836 This is slow, and should be used only for debugging.
837 Use TREE_PERMANENT for other purposes. */
840 object_permanent_p (obj)
841 tree obj;
843 return _obstack_allocated_p (&permanent_obstack, obj);
846 /* Start a level of momentary allocation.
847 In C, each compound statement has its own level
848 and that level is freed at the end of each statement.
849 All expression nodes are allocated in the momentary allocation level. */
851 void
852 push_momentary ()
854 struct momentary_level *tem
855 = (struct momentary_level *) obstack_alloc (&momentary_obstack,
856 sizeof (struct momentary_level));
857 tem->prev = momentary_stack;
858 tem->base = (char *) obstack_base (&momentary_obstack);
859 tem->obstack = expression_obstack;
860 momentary_stack = tem;
861 expression_obstack = &momentary_obstack;
864 /* Set things up so the next clear_momentary will only clear memory
865 past our present position in momentary_obstack. */
867 void
868 preserve_momentary ()
870 momentary_stack->base = (char *) obstack_base (&momentary_obstack);
873 /* Free all the storage in the current momentary-allocation level.
874 In C, this happens at the end of each statement. */
876 void
877 clear_momentary ()
879 obstack_free (&momentary_obstack, momentary_stack->base);
882 /* Discard a level of momentary allocation.
883 In C, this happens at the end of each compound statement.
884 Restore the status of expression node allocation
885 that was in effect before this level was created. */
887 void
888 pop_momentary ()
890 struct momentary_level *tem = momentary_stack;
891 momentary_stack = tem->prev;
892 expression_obstack = tem->obstack;
893 /* We can't free TEM from the momentary_obstack, because there might
894 be objects above it which have been saved. We can free back to the
895 stack of the level we are popping off though. */
896 obstack_free (&momentary_obstack, tem->base);
899 /* Pop back to the previous level of momentary allocation,
900 but don't free any momentary data just yet. */
902 void
903 pop_momentary_nofree ()
905 struct momentary_level *tem = momentary_stack;
906 momentary_stack = tem->prev;
907 expression_obstack = tem->obstack;
910 /* Call when starting to parse a declaration:
911 make expressions in the declaration last the length of the function.
912 Returns an argument that should be passed to resume_momentary later. */
915 suspend_momentary ()
917 register int tem = expression_obstack == &momentary_obstack;
918 expression_obstack = saveable_obstack;
919 return tem;
922 /* Call when finished parsing a declaration:
923 restore the treatment of node-allocation that was
924 in effect before the suspension.
925 YES should be the value previously returned by suspend_momentary. */
927 void
928 resume_momentary (yes)
929 int yes;
931 if (yes)
932 expression_obstack = &momentary_obstack;
935 /* Init the tables indexed by tree code.
936 Note that languages can add to these tables to define their own codes. */
938 void
939 init_tree_codes ()
941 tree_code_type = (char **) xmalloc (sizeof (standard_tree_code_type));
942 tree_code_length = (int *) xmalloc (sizeof (standard_tree_code_length));
943 tree_code_name = (char **) xmalloc (sizeof (standard_tree_code_name));
944 bcopy ((char *) standard_tree_code_type, (char *) tree_code_type,
945 sizeof (standard_tree_code_type));
946 bcopy ((char *) standard_tree_code_length, (char *) tree_code_length,
947 sizeof (standard_tree_code_length));
948 bcopy ((char *) standard_tree_code_name, (char *) tree_code_name,
949 sizeof (standard_tree_code_name));
952 /* Return a newly allocated node of code CODE.
953 Initialize the node's unique id and its TREE_PERMANENT flag.
954 For decl and type nodes, some other fields are initialized.
955 The rest of the node is initialized to zero.
957 Achoo! I got a code in the node. */
959 tree
960 make_node (code)
961 enum tree_code code;
963 register tree t;
964 register int type = TREE_CODE_CLASS (code);
965 register int length;
966 register struct obstack *obstack = current_obstack;
967 register int i;
968 register tree_node_kind kind;
970 switch (type)
972 case 'd': /* A decl node */
973 #ifdef GATHER_STATISTICS
974 kind = d_kind;
975 #endif
976 length = sizeof (struct tree_decl);
977 /* All decls in an inline function need to be saved. */
978 if (obstack != &permanent_obstack)
979 obstack = saveable_obstack;
981 /* PARM_DECLs go on the context of the parent. If this is a nested
982 function, then we must allocate the PARM_DECL on the parent's
983 obstack, so that they will live to the end of the parent's
984 closing brace. This is necessary in case we try to inline the
985 function into its parent.
987 PARM_DECLs of top-level functions do not have this problem. However,
988 we allocate them where we put the FUNCTION_DECL for languages such as
989 Ada that need to consult some flags in the PARM_DECLs of the function
990 when calling it.
992 See comment in restore_tree_status for why we can't put this
993 in function_obstack. */
994 if (code == PARM_DECL && obstack != &permanent_obstack)
996 tree context = 0;
997 if (current_function_decl)
998 context = decl_function_context (current_function_decl);
1000 if (context)
1001 obstack
1002 = find_function_data (context)->function_maybepermanent_obstack;
1004 break;
1006 case 't': /* a type node */
1007 #ifdef GATHER_STATISTICS
1008 kind = t_kind;
1009 #endif
1010 length = sizeof (struct tree_type);
1011 /* All data types are put where we can preserve them if nec. */
1012 if (obstack != &permanent_obstack)
1013 obstack = all_types_permanent ? &permanent_obstack : saveable_obstack;
1014 break;
1016 case 'b': /* a lexical block */
1017 #ifdef GATHER_STATISTICS
1018 kind = b_kind;
1019 #endif
1020 length = sizeof (struct tree_block);
1021 /* All BLOCK nodes are put where we can preserve them if nec. */
1022 if (obstack != &permanent_obstack)
1023 obstack = saveable_obstack;
1024 break;
1026 case 's': /* an expression with side effects */
1027 #ifdef GATHER_STATISTICS
1028 kind = s_kind;
1029 goto usual_kind;
1030 #endif
1031 case 'r': /* a reference */
1032 #ifdef GATHER_STATISTICS
1033 kind = r_kind;
1034 goto usual_kind;
1035 #endif
1036 case 'e': /* an expression */
1037 case '<': /* a comparison expression */
1038 case '1': /* a unary arithmetic expression */
1039 case '2': /* a binary arithmetic expression */
1040 #ifdef GATHER_STATISTICS
1041 kind = e_kind;
1042 usual_kind:
1043 #endif
1044 obstack = expression_obstack;
1045 /* All BIND_EXPR nodes are put where we can preserve them if nec. */
1046 if (code == BIND_EXPR && obstack != &permanent_obstack)
1047 obstack = saveable_obstack;
1048 length = sizeof (struct tree_exp)
1049 + (tree_code_length[(int) code] - 1) * sizeof (char *);
1050 break;
1052 case 'c': /* a constant */
1053 #ifdef GATHER_STATISTICS
1054 kind = c_kind;
1055 #endif
1056 obstack = expression_obstack;
1058 /* We can't use tree_code_length for INTEGER_CST, since the number of
1059 words is machine-dependent due to varying length of HOST_WIDE_INT,
1060 which might be wider than a pointer (e.g., long long). Similarly
1061 for REAL_CST, since the number of words is machine-dependent due
1062 to varying size and alignment of `double'. */
1064 if (code == INTEGER_CST)
1065 length = sizeof (struct tree_int_cst);
1066 else if (code == REAL_CST)
1067 length = sizeof (struct tree_real_cst);
1068 else
1069 length = sizeof (struct tree_common)
1070 + tree_code_length[(int) code] * sizeof (char *);
1071 break;
1073 case 'x': /* something random, like an identifier. */
1074 #ifdef GATHER_STATISTICS
1075 if (code == IDENTIFIER_NODE)
1076 kind = id_kind;
1077 else if (code == OP_IDENTIFIER)
1078 kind = op_id_kind;
1079 else if (code == TREE_VEC)
1080 kind = vec_kind;
1081 else
1082 kind = x_kind;
1083 #endif
1084 length = sizeof (struct tree_common)
1085 + tree_code_length[(int) code] * sizeof (char *);
1086 /* Identifier nodes are always permanent since they are
1087 unique in a compiler run. */
1088 if (code == IDENTIFIER_NODE) obstack = &permanent_obstack;
1089 break;
1091 default:
1092 abort ();
1095 t = (tree) obstack_alloc (obstack, length);
1097 #ifdef GATHER_STATISTICS
1098 tree_node_counts[(int)kind]++;
1099 tree_node_sizes[(int)kind] += length;
1100 #endif
1102 /* Clear a word at a time. */
1103 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1104 ((int *) t)[i] = 0;
1105 /* Clear any extra bytes. */
1106 for (i = length / sizeof (int) * sizeof (int); i < length; i++)
1107 ((char *) t)[i] = 0;
1109 TREE_SET_CODE (t, code);
1110 if (obstack == &permanent_obstack)
1111 TREE_PERMANENT (t) = 1;
1113 switch (type)
1115 case 's':
1116 TREE_SIDE_EFFECTS (t) = 1;
1117 TREE_TYPE (t) = void_type_node;
1118 break;
1120 case 'd':
1121 if (code != FUNCTION_DECL)
1122 DECL_ALIGN (t) = 1;
1123 DECL_IN_SYSTEM_HEADER (t)
1124 = in_system_header && (obstack == &permanent_obstack);
1125 DECL_SOURCE_LINE (t) = lineno;
1126 DECL_SOURCE_FILE (t) = (input_filename) ? input_filename : "<built-in>";
1127 DECL_UID (t) = next_decl_uid++;
1128 break;
1130 case 't':
1131 TYPE_UID (t) = next_type_uid++;
1132 TYPE_ALIGN (t) = 1;
1133 TYPE_MAIN_VARIANT (t) = t;
1134 TYPE_OBSTACK (t) = obstack;
1135 TYPE_ATTRIBUTES (t) = NULL_TREE;
1136 #ifdef SET_DEFAULT_TYPE_ATTRIBUTES
1137 SET_DEFAULT_TYPE_ATTRIBUTES (t);
1138 #endif
1139 break;
1141 case 'c':
1142 TREE_CONSTANT (t) = 1;
1143 break;
1146 return t;
1149 /* Return a new node with the same contents as NODE
1150 except that its TREE_CHAIN is zero and it has a fresh uid. */
1152 tree
1153 copy_node (node)
1154 tree node;
1156 register tree t;
1157 register enum tree_code code = TREE_CODE (node);
1158 register int length;
1159 register int i;
1161 switch (TREE_CODE_CLASS (code))
1163 case 'd': /* A decl node */
1164 length = sizeof (struct tree_decl);
1165 break;
1167 case 't': /* a type node */
1168 length = sizeof (struct tree_type);
1169 break;
1171 case 'b': /* a lexical block node */
1172 length = sizeof (struct tree_block);
1173 break;
1175 case 'r': /* a reference */
1176 case 'e': /* an expression */
1177 case 's': /* an expression with side effects */
1178 case '<': /* a comparison expression */
1179 case '1': /* a unary arithmetic expression */
1180 case '2': /* a binary arithmetic expression */
1181 length = sizeof (struct tree_exp)
1182 + (tree_code_length[(int) code] - 1) * sizeof (char *);
1183 break;
1185 case 'c': /* a constant */
1186 /* We can't use tree_code_length for INTEGER_CST, since the number of
1187 words is machine-dependent due to varying length of HOST_WIDE_INT,
1188 which might be wider than a pointer (e.g., long long). Similarly
1189 for REAL_CST, since the number of words is machine-dependent due
1190 to varying size and alignment of `double'. */
1191 if (code == INTEGER_CST)
1192 length = sizeof (struct tree_int_cst);
1193 else if (code == REAL_CST)
1194 length = sizeof (struct tree_real_cst);
1195 else
1196 length = (sizeof (struct tree_common)
1197 + tree_code_length[(int) code] * sizeof (char *));
1198 break;
1200 case 'x': /* something random, like an identifier. */
1201 length = sizeof (struct tree_common)
1202 + tree_code_length[(int) code] * sizeof (char *);
1203 if (code == TREE_VEC)
1204 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
1207 t = (tree) obstack_alloc (current_obstack, length);
1209 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1210 ((int *) t)[i] = ((int *) node)[i];
1211 /* Clear any extra bytes. */
1212 for (i = length / sizeof (int) * sizeof (int); i < length; i++)
1213 ((char *) t)[i] = ((char *) node)[i];
1215 TREE_CHAIN (t) = 0;
1216 TREE_ASM_WRITTEN (t) = 0;
1218 if (TREE_CODE_CLASS (code) == 'd')
1219 DECL_UID (t) = next_decl_uid++;
1220 else if (TREE_CODE_CLASS (code) == 't')
1222 TYPE_UID (t) = next_type_uid++;
1223 TYPE_OBSTACK (t) = current_obstack;
1225 /* The following is so that the debug code for
1226 the copy is different from the original type.
1227 The two statements usually duplicate each other
1228 (because they clear fields of the same union),
1229 but the optimizer should catch that. */
1230 TYPE_SYMTAB_POINTER (t) = 0;
1231 TYPE_SYMTAB_ADDRESS (t) = 0;
1234 TREE_PERMANENT (t) = (current_obstack == &permanent_obstack);
1236 return t;
1239 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1240 For example, this can copy a list made of TREE_LIST nodes. */
1242 tree
1243 copy_list (list)
1244 tree list;
1246 tree head;
1247 register tree prev, next;
1249 if (list == 0)
1250 return 0;
1252 head = prev = copy_node (list);
1253 next = TREE_CHAIN (list);
1254 while (next)
1256 TREE_CHAIN (prev) = copy_node (next);
1257 prev = TREE_CHAIN (prev);
1258 next = TREE_CHAIN (next);
1260 return head;
1263 #define HASHBITS 30
1265 /* Return an IDENTIFIER_NODE whose name is TEXT (a null-terminated string).
1266 If an identifier with that name has previously been referred to,
1267 the same node is returned this time. */
1269 tree
1270 get_identifier (text)
1271 register char *text;
1273 register int hi;
1274 register int i;
1275 register tree idp;
1276 register int len, hash_len;
1278 /* Compute length of text in len. */
1279 for (len = 0; text[len]; len++);
1281 /* Decide how much of that length to hash on */
1282 hash_len = len;
1283 if (warn_id_clash && len > id_clash_len)
1284 hash_len = id_clash_len;
1286 /* Compute hash code */
1287 hi = hash_len * 613 + (unsigned) text[0];
1288 for (i = 1; i < hash_len; i += 2)
1289 hi = ((hi * 613) + (unsigned) (text[i]));
1291 hi &= (1 << HASHBITS) - 1;
1292 hi %= MAX_HASH_TABLE;
1294 /* Search table for identifier */
1295 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1296 if (IDENTIFIER_LENGTH (idp) == len
1297 && IDENTIFIER_POINTER (idp)[0] == text[0]
1298 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1299 return idp; /* <-- return if found */
1301 /* Not found; optionally warn about a similar identifier */
1302 if (warn_id_clash && do_identifier_warnings && len >= id_clash_len)
1303 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1304 if (!strncmp (IDENTIFIER_POINTER (idp), text, id_clash_len))
1306 warning ("`%s' and `%s' identical in first %d characters",
1307 IDENTIFIER_POINTER (idp), text, id_clash_len);
1308 break;
1311 if (tree_code_length[(int) IDENTIFIER_NODE] < 0)
1312 abort (); /* set_identifier_size hasn't been called. */
1314 /* Not found, create one, add to chain */
1315 idp = make_node (IDENTIFIER_NODE);
1316 IDENTIFIER_LENGTH (idp) = len;
1317 #ifdef GATHER_STATISTICS
1318 id_string_size += len;
1319 #endif
1321 IDENTIFIER_POINTER (idp) = obstack_copy0 (&permanent_obstack, text, len);
1323 TREE_CHAIN (idp) = hash_table[hi];
1324 hash_table[hi] = idp;
1325 return idp; /* <-- return if created */
1328 /* If an identifier with the name TEXT (a null-terminated string) has
1329 previously been referred to, return that node; otherwise return
1330 NULL_TREE. */
1332 tree
1333 maybe_get_identifier (text)
1334 register char *text;
1336 register int hi;
1337 register int i;
1338 register tree idp;
1339 register int len, hash_len;
1341 /* Compute length of text in len. */
1342 for (len = 0; text[len]; len++);
1344 /* Decide how much of that length to hash on */
1345 hash_len = len;
1346 if (warn_id_clash && len > id_clash_len)
1347 hash_len = id_clash_len;
1349 /* Compute hash code */
1350 hi = hash_len * 613 + (unsigned) text[0];
1351 for (i = 1; i < hash_len; i += 2)
1352 hi = ((hi * 613) + (unsigned) (text[i]));
1354 hi &= (1 << HASHBITS) - 1;
1355 hi %= MAX_HASH_TABLE;
1357 /* Search table for identifier */
1358 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1359 if (IDENTIFIER_LENGTH (idp) == len
1360 && IDENTIFIER_POINTER (idp)[0] == text[0]
1361 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1362 return idp; /* <-- return if found */
1364 return NULL_TREE;
1367 /* Enable warnings on similar identifiers (if requested).
1368 Done after the built-in identifiers are created. */
1370 void
1371 start_identifier_warnings ()
1373 do_identifier_warnings = 1;
1376 /* Record the size of an identifier node for the language in use.
1377 SIZE is the total size in bytes.
1378 This is called by the language-specific files. This must be
1379 called before allocating any identifiers. */
1381 void
1382 set_identifier_size (size)
1383 int size;
1385 tree_code_length[(int) IDENTIFIER_NODE]
1386 = (size - sizeof (struct tree_common)) / sizeof (tree);
1389 /* Return a newly constructed INTEGER_CST node whose constant value
1390 is specified by the two ints LOW and HI.
1391 The TREE_TYPE is set to `int'.
1393 This function should be used via the `build_int_2' macro. */
1395 tree
1396 build_int_2_wide (low, hi)
1397 HOST_WIDE_INT low, hi;
1399 register tree t = make_node (INTEGER_CST);
1400 TREE_INT_CST_LOW (t) = low;
1401 TREE_INT_CST_HIGH (t) = hi;
1402 TREE_TYPE (t) = integer_type_node;
1403 return t;
1406 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1408 tree
1409 build_real (type, d)
1410 tree type;
1411 REAL_VALUE_TYPE d;
1413 tree v;
1414 int overflow = 0;
1416 /* Check for valid float value for this type on this target machine;
1417 if not, can print error message and store a valid value in D. */
1418 #ifdef CHECK_FLOAT_VALUE
1419 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1420 #endif
1422 v = make_node (REAL_CST);
1423 TREE_TYPE (v) = type;
1424 TREE_REAL_CST (v) = d;
1425 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1426 return v;
1429 /* Return a new REAL_CST node whose type is TYPE
1430 and whose value is the integer value of the INTEGER_CST node I. */
1432 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1434 REAL_VALUE_TYPE
1435 real_value_from_int_cst (type, i)
1436 tree type, i;
1438 REAL_VALUE_TYPE d;
1439 REAL_VALUE_TYPE e;
1440 /* Some 386 compilers mishandle unsigned int to float conversions,
1441 so introduce a temporary variable E to avoid those bugs. */
1443 #ifdef REAL_ARITHMETIC
1444 if (! TREE_UNSIGNED (TREE_TYPE (i)))
1445 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1446 TYPE_MODE (type));
1447 else
1448 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
1449 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
1450 #else /* not REAL_ARITHMETIC */
1451 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
1453 d = (double) (~ TREE_INT_CST_HIGH (i));
1454 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1455 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1456 d *= e;
1457 e = (double) (unsigned HOST_WIDE_INT) (~ TREE_INT_CST_LOW (i));
1458 d += e;
1459 d = (- d - 1.0);
1461 else
1463 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
1464 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1465 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1466 d *= e;
1467 e = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (i);
1468 d += e;
1470 #endif /* not REAL_ARITHMETIC */
1471 return d;
1474 /* This function can't be implemented if we can't do arithmetic
1475 on the float representation. */
1477 tree
1478 build_real_from_int_cst (type, i)
1479 tree type;
1480 tree i;
1482 tree v;
1483 int overflow = TREE_OVERFLOW (i);
1484 REAL_VALUE_TYPE d;
1485 jmp_buf float_error;
1487 v = make_node (REAL_CST);
1488 TREE_TYPE (v) = type;
1490 if (setjmp (float_error))
1492 d = dconst0;
1493 overflow = 1;
1494 goto got_it;
1497 set_float_handler (float_error);
1499 #ifdef REAL_ARITHMETIC
1500 d = real_value_from_int_cst (type, i);
1501 #else
1502 d = REAL_VALUE_TRUNCATE (TYPE_MODE (type),
1503 real_value_from_int_cst (type, i));
1504 #endif
1506 /* Check for valid float value for this type on this target machine. */
1508 got_it:
1509 set_float_handler (NULL_PTR);
1511 #ifdef CHECK_FLOAT_VALUE
1512 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1513 #endif
1515 TREE_REAL_CST (v) = d;
1516 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1517 return v;
1520 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1522 /* Return a newly constructed STRING_CST node whose value is
1523 the LEN characters at STR.
1524 The TREE_TYPE is not initialized. */
1526 tree
1527 build_string (len, str)
1528 int len;
1529 char *str;
1531 /* Put the string in saveable_obstack since it will be placed in the RTL
1532 for an "asm" statement and will also be kept around a while if
1533 deferring constant output in varasm.c. */
1535 register tree s = make_node (STRING_CST);
1536 TREE_STRING_LENGTH (s) = len;
1537 TREE_STRING_POINTER (s) = obstack_copy0 (saveable_obstack, str, len);
1538 return s;
1541 /* Return a newly constructed COMPLEX_CST node whose value is
1542 specified by the real and imaginary parts REAL and IMAG.
1543 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1544 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1546 tree
1547 build_complex (type, real, imag)
1548 tree type;
1549 tree real, imag;
1551 register tree t = make_node (COMPLEX_CST);
1553 TREE_REALPART (t) = real;
1554 TREE_IMAGPART (t) = imag;
1555 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1556 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1557 TREE_CONSTANT_OVERFLOW (t)
1558 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1559 return t;
1562 /* Build a newly constructed TREE_VEC node of length LEN. */
1564 tree
1565 make_tree_vec (len)
1566 int len;
1568 register tree t;
1569 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
1570 register struct obstack *obstack = current_obstack;
1571 register int i;
1573 #ifdef GATHER_STATISTICS
1574 tree_node_counts[(int)vec_kind]++;
1575 tree_node_sizes[(int)vec_kind] += length;
1576 #endif
1578 t = (tree) obstack_alloc (obstack, length);
1580 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1581 ((int *) t)[i] = 0;
1583 TREE_SET_CODE (t, TREE_VEC);
1584 TREE_VEC_LENGTH (t) = len;
1585 if (obstack == &permanent_obstack)
1586 TREE_PERMANENT (t) = 1;
1588 return t;
1591 /* Return 1 if EXPR is the integer constant zero or a complex constant
1592 of zero. */
1595 integer_zerop (expr)
1596 tree expr;
1598 STRIP_NOPS (expr);
1600 return ((TREE_CODE (expr) == INTEGER_CST
1601 && ! TREE_CONSTANT_OVERFLOW (expr)
1602 && TREE_INT_CST_LOW (expr) == 0
1603 && TREE_INT_CST_HIGH (expr) == 0)
1604 || (TREE_CODE (expr) == COMPLEX_CST
1605 && integer_zerop (TREE_REALPART (expr))
1606 && integer_zerop (TREE_IMAGPART (expr))));
1609 /* Return 1 if EXPR is the integer constant one or the corresponding
1610 complex constant. */
1613 integer_onep (expr)
1614 tree expr;
1616 STRIP_NOPS (expr);
1618 return ((TREE_CODE (expr) == INTEGER_CST
1619 && ! TREE_CONSTANT_OVERFLOW (expr)
1620 && TREE_INT_CST_LOW (expr) == 1
1621 && TREE_INT_CST_HIGH (expr) == 0)
1622 || (TREE_CODE (expr) == COMPLEX_CST
1623 && integer_onep (TREE_REALPART (expr))
1624 && integer_zerop (TREE_IMAGPART (expr))));
1627 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1628 it contains. Likewise for the corresponding complex constant. */
1631 integer_all_onesp (expr)
1632 tree expr;
1634 register int prec;
1635 register int uns;
1637 STRIP_NOPS (expr);
1639 if (TREE_CODE (expr) == COMPLEX_CST
1640 && integer_all_onesp (TREE_REALPART (expr))
1641 && integer_zerop (TREE_IMAGPART (expr)))
1642 return 1;
1644 else if (TREE_CODE (expr) != INTEGER_CST
1645 || TREE_CONSTANT_OVERFLOW (expr))
1646 return 0;
1648 uns = TREE_UNSIGNED (TREE_TYPE (expr));
1649 if (!uns)
1650 return TREE_INT_CST_LOW (expr) == -1 && TREE_INT_CST_HIGH (expr) == -1;
1652 /* Note that using TYPE_PRECISION here is wrong. We care about the
1653 actual bits, not the (arbitrary) range of the type. */
1654 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1655 if (prec >= HOST_BITS_PER_WIDE_INT)
1657 int high_value, shift_amount;
1659 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1661 if (shift_amount > HOST_BITS_PER_WIDE_INT)
1662 /* Can not handle precisions greater than twice the host int size. */
1663 abort ();
1664 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
1665 /* Shifting by the host word size is undefined according to the ANSI
1666 standard, so we must handle this as a special case. */
1667 high_value = -1;
1668 else
1669 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1671 return TREE_INT_CST_LOW (expr) == -1
1672 && TREE_INT_CST_HIGH (expr) == high_value;
1674 else
1675 return TREE_INT_CST_LOW (expr) == ((HOST_WIDE_INT) 1 << prec) - 1;
1678 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1679 one bit on). */
1682 integer_pow2p (expr)
1683 tree expr;
1685 int prec;
1686 HOST_WIDE_INT high, low;
1688 STRIP_NOPS (expr);
1690 if (TREE_CODE (expr) == COMPLEX_CST
1691 && integer_pow2p (TREE_REALPART (expr))
1692 && integer_zerop (TREE_IMAGPART (expr)))
1693 return 1;
1695 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1696 return 0;
1698 prec = (TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE
1699 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1700 high = TREE_INT_CST_HIGH (expr);
1701 low = TREE_INT_CST_LOW (expr);
1703 /* First clear all bits that are beyond the type's precision in case
1704 we've been sign extended. */
1706 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1708 else if (prec > HOST_BITS_PER_WIDE_INT)
1709 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1710 else
1712 high = 0;
1713 if (prec < HOST_BITS_PER_WIDE_INT)
1714 low &= ~((HOST_WIDE_INT) (-1) << prec);
1717 if (high == 0 && low == 0)
1718 return 0;
1720 return ((high == 0 && (low & (low - 1)) == 0)
1721 || (low == 0 && (high & (high - 1)) == 0));
1724 /* Return the power of two represented by a tree node known to be a
1725 power of two. */
1728 tree_log2 (expr)
1729 tree expr;
1731 int prec;
1732 HOST_WIDE_INT high, low;
1734 STRIP_NOPS (expr);
1736 if (TREE_CODE (expr) == COMPLEX_CST)
1737 return tree_log2 (TREE_REALPART (expr));
1739 prec = (TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE
1740 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1742 high = TREE_INT_CST_HIGH (expr);
1743 low = TREE_INT_CST_LOW (expr);
1745 /* First clear all bits that are beyond the type's precision in case
1746 we've been sign extended. */
1748 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1750 else if (prec > HOST_BITS_PER_WIDE_INT)
1751 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1752 else
1754 high = 0;
1755 if (prec < HOST_BITS_PER_WIDE_INT)
1756 low &= ~((HOST_WIDE_INT) (-1) << prec);
1759 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1760 : exact_log2 (low));
1763 /* Return 1 if EXPR is the real constant zero. */
1766 real_zerop (expr)
1767 tree expr;
1769 STRIP_NOPS (expr);
1771 return ((TREE_CODE (expr) == REAL_CST
1772 && ! TREE_CONSTANT_OVERFLOW (expr)
1773 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1774 || (TREE_CODE (expr) == COMPLEX_CST
1775 && real_zerop (TREE_REALPART (expr))
1776 && real_zerop (TREE_IMAGPART (expr))));
1779 /* Return 1 if EXPR is the real constant one in real or complex form. */
1782 real_onep (expr)
1783 tree expr;
1785 STRIP_NOPS (expr);
1787 return ((TREE_CODE (expr) == REAL_CST
1788 && ! TREE_CONSTANT_OVERFLOW (expr)
1789 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1790 || (TREE_CODE (expr) == COMPLEX_CST
1791 && real_onep (TREE_REALPART (expr))
1792 && real_zerop (TREE_IMAGPART (expr))));
1795 /* Return 1 if EXPR is the real constant two. */
1798 real_twop (expr)
1799 tree expr;
1801 STRIP_NOPS (expr);
1803 return ((TREE_CODE (expr) == REAL_CST
1804 && ! TREE_CONSTANT_OVERFLOW (expr)
1805 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1806 || (TREE_CODE (expr) == COMPLEX_CST
1807 && real_twop (TREE_REALPART (expr))
1808 && real_zerop (TREE_IMAGPART (expr))));
1811 /* Nonzero if EXP is a constant or a cast of a constant. */
1814 really_constant_p (exp)
1815 tree exp;
1817 /* This is not quite the same as STRIP_NOPS. It does more. */
1818 while (TREE_CODE (exp) == NOP_EXPR
1819 || TREE_CODE (exp) == CONVERT_EXPR
1820 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1821 exp = TREE_OPERAND (exp, 0);
1822 return TREE_CONSTANT (exp);
1825 /* Return first list element whose TREE_VALUE is ELEM.
1826 Return 0 if ELEM is not in LIST. */
1828 tree
1829 value_member (elem, list)
1830 tree elem, list;
1832 while (list)
1834 if (elem == TREE_VALUE (list))
1835 return list;
1836 list = TREE_CHAIN (list);
1838 return NULL_TREE;
1841 /* Return first list element whose TREE_PURPOSE is ELEM.
1842 Return 0 if ELEM is not in LIST. */
1844 tree
1845 purpose_member (elem, list)
1846 tree elem, list;
1848 while (list)
1850 if (elem == TREE_PURPOSE (list))
1851 return list;
1852 list = TREE_CHAIN (list);
1854 return NULL_TREE;
1857 /* Return first list element whose BINFO_TYPE is ELEM.
1858 Return 0 if ELEM is not in LIST. */
1860 tree
1861 binfo_member (elem, list)
1862 tree elem, list;
1864 while (list)
1866 if (elem == BINFO_TYPE (list))
1867 return list;
1868 list = TREE_CHAIN (list);
1870 return NULL_TREE;
1873 /* Return nonzero if ELEM is part of the chain CHAIN. */
1876 chain_member (elem, chain)
1877 tree elem, chain;
1879 while (chain)
1881 if (elem == chain)
1882 return 1;
1883 chain = TREE_CHAIN (chain);
1886 return 0;
1889 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1890 chain CHAIN. */
1891 /* ??? This function was added for machine specific attributes but is no
1892 longer used. It could be deleted if we could confirm all front ends
1893 don't use it. */
1896 chain_member_value (elem, chain)
1897 tree elem, chain;
1899 while (chain)
1901 if (elem == TREE_VALUE (chain))
1902 return 1;
1903 chain = TREE_CHAIN (chain);
1906 return 0;
1909 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1910 for any piece of chain CHAIN. */
1911 /* ??? This function was added for machine specific attributes but is no
1912 longer used. It could be deleted if we could confirm all front ends
1913 don't use it. */
1916 chain_member_purpose (elem, chain)
1917 tree elem, chain;
1919 while (chain)
1921 if (elem == TREE_PURPOSE (chain))
1922 return 1;
1923 chain = TREE_CHAIN (chain);
1926 return 0;
1929 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1930 We expect a null pointer to mark the end of the chain.
1931 This is the Lisp primitive `length'. */
1934 list_length (t)
1935 tree t;
1937 register tree tail;
1938 register int len = 0;
1940 for (tail = t; tail; tail = TREE_CHAIN (tail))
1941 len++;
1943 return len;
1946 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1947 by modifying the last node in chain 1 to point to chain 2.
1948 This is the Lisp primitive `nconc'. */
1950 tree
1951 chainon (op1, op2)
1952 tree op1, op2;
1955 if (op1)
1957 register tree t1;
1958 register tree t2;
1960 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1962 TREE_CHAIN (t1) = op2;
1963 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1964 if (t2 == t1)
1965 abort (); /* Circularity created. */
1966 return op1;
1968 else return op2;
1971 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1973 tree
1974 tree_last (chain)
1975 register tree chain;
1977 register tree next;
1978 if (chain)
1979 while (next = TREE_CHAIN (chain))
1980 chain = next;
1981 return chain;
1984 /* Reverse the order of elements in the chain T,
1985 and return the new head of the chain (old last element). */
1987 tree
1988 nreverse (t)
1989 tree t;
1991 register tree prev = 0, decl, next;
1992 for (decl = t; decl; decl = next)
1994 next = TREE_CHAIN (decl);
1995 TREE_CHAIN (decl) = prev;
1996 prev = decl;
1998 return prev;
2001 /* Given a chain CHAIN of tree nodes,
2002 construct and return a list of those nodes. */
2004 tree
2005 listify (chain)
2006 tree chain;
2008 tree result = NULL_TREE;
2009 tree in_tail = chain;
2010 tree out_tail = NULL_TREE;
2012 while (in_tail)
2014 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
2015 if (out_tail)
2016 TREE_CHAIN (out_tail) = next;
2017 else
2018 result = next;
2019 out_tail = next;
2020 in_tail = TREE_CHAIN (in_tail);
2023 return result;
2026 /* Return a newly created TREE_LIST node whose
2027 purpose and value fields are PARM and VALUE. */
2029 tree
2030 build_tree_list (parm, value)
2031 tree parm, value;
2033 register tree t = make_node (TREE_LIST);
2034 TREE_PURPOSE (t) = parm;
2035 TREE_VALUE (t) = value;
2036 return t;
2039 /* Similar, but build on the temp_decl_obstack. */
2041 tree
2042 build_decl_list (parm, value)
2043 tree parm, value;
2045 register tree node;
2046 register struct obstack *ambient_obstack = current_obstack;
2047 current_obstack = &temp_decl_obstack;
2048 node = build_tree_list (parm, value);
2049 current_obstack = ambient_obstack;
2050 return node;
2053 /* Similar, but build on the expression_obstack. */
2055 tree
2056 build_expr_list (parm, value)
2057 tree parm, value;
2059 register tree node;
2060 register struct obstack *ambient_obstack = current_obstack;
2061 current_obstack = expression_obstack;
2062 node = build_tree_list (parm, value);
2063 current_obstack = ambient_obstack;
2064 return node;
2067 /* Return a newly created TREE_LIST node whose
2068 purpose and value fields are PARM and VALUE
2069 and whose TREE_CHAIN is CHAIN. */
2071 tree
2072 tree_cons (purpose, value, chain)
2073 tree purpose, value, chain;
2075 #if 0
2076 register tree node = make_node (TREE_LIST);
2077 #else
2078 register int i;
2079 register tree node = (tree) obstack_alloc (current_obstack, sizeof (struct tree_list));
2080 #ifdef GATHER_STATISTICS
2081 tree_node_counts[(int)x_kind]++;
2082 tree_node_sizes[(int)x_kind] += sizeof (struct tree_list);
2083 #endif
2085 for (i = (sizeof (struct tree_common) / sizeof (int)) - 1; i >= 0; i--)
2086 ((int *) node)[i] = 0;
2088 TREE_SET_CODE (node, TREE_LIST);
2089 if (current_obstack == &permanent_obstack)
2090 TREE_PERMANENT (node) = 1;
2091 #endif
2093 TREE_CHAIN (node) = chain;
2094 TREE_PURPOSE (node) = purpose;
2095 TREE_VALUE (node) = value;
2096 return node;
2099 /* Similar, but build on the temp_decl_obstack. */
2101 tree
2102 decl_tree_cons (purpose, value, chain)
2103 tree purpose, value, chain;
2105 register tree node;
2106 register struct obstack *ambient_obstack = current_obstack;
2107 current_obstack = &temp_decl_obstack;
2108 node = tree_cons (purpose, value, chain);
2109 current_obstack = ambient_obstack;
2110 return node;
2113 /* Similar, but build on the expression_obstack. */
2115 tree
2116 expr_tree_cons (purpose, value, chain)
2117 tree purpose, value, chain;
2119 register tree node;
2120 register struct obstack *ambient_obstack = current_obstack;
2121 current_obstack = expression_obstack;
2122 node = tree_cons (purpose, value, chain);
2123 current_obstack = ambient_obstack;
2124 return node;
2127 /* Same as `tree_cons' but make a permanent object. */
2129 tree
2130 perm_tree_cons (purpose, value, chain)
2131 tree purpose, value, chain;
2133 register tree node;
2134 register struct obstack *ambient_obstack = current_obstack;
2135 current_obstack = &permanent_obstack;
2137 node = tree_cons (purpose, value, chain);
2138 current_obstack = ambient_obstack;
2139 return node;
2142 /* Same as `tree_cons', but make this node temporary, regardless. */
2144 tree
2145 temp_tree_cons (purpose, value, chain)
2146 tree purpose, value, chain;
2148 register tree node;
2149 register struct obstack *ambient_obstack = current_obstack;
2150 current_obstack = &temporary_obstack;
2152 node = tree_cons (purpose, value, chain);
2153 current_obstack = ambient_obstack;
2154 return node;
2157 /* Same as `tree_cons', but save this node if the function's RTL is saved. */
2159 tree
2160 saveable_tree_cons (purpose, value, chain)
2161 tree purpose, value, chain;
2163 register tree node;
2164 register struct obstack *ambient_obstack = current_obstack;
2165 current_obstack = saveable_obstack;
2167 node = tree_cons (purpose, value, chain);
2168 current_obstack = ambient_obstack;
2169 return node;
2172 /* Return the size nominally occupied by an object of type TYPE
2173 when it resides in memory. The value is measured in units of bytes,
2174 and its data type is that normally used for type sizes
2175 (which is the first type created by make_signed_type or
2176 make_unsigned_type). */
2178 tree
2179 size_in_bytes (type)
2180 tree type;
2182 tree t;
2184 if (type == error_mark_node)
2185 return integer_zero_node;
2186 type = TYPE_MAIN_VARIANT (type);
2187 if (TYPE_SIZE (type) == 0)
2189 incomplete_type_error (NULL_TREE, type);
2190 return integer_zero_node;
2192 t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
2193 size_int (BITS_PER_UNIT));
2194 if (TREE_CODE (t) == INTEGER_CST)
2195 force_fit_type (t, 0);
2196 return t;
2199 /* Return the size of TYPE (in bytes) as an integer,
2200 or return -1 if the size can vary. */
2203 int_size_in_bytes (type)
2204 tree type;
2206 unsigned int size;
2207 if (type == error_mark_node)
2208 return 0;
2209 type = TYPE_MAIN_VARIANT (type);
2210 if (TYPE_SIZE (type) == 0)
2211 return -1;
2212 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2213 return -1;
2214 if (TREE_INT_CST_HIGH (TYPE_SIZE (type)) != 0)
2216 tree t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
2217 size_int (BITS_PER_UNIT));
2218 return TREE_INT_CST_LOW (t);
2220 size = TREE_INT_CST_LOW (TYPE_SIZE (type));
2221 return (size + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
2224 /* Return, as a tree node, the number of elements for TYPE (which is an
2225 ARRAY_TYPE) minus one. This counts only elements of the top array.
2227 Don't let any SAVE_EXPRs escape; if we are called as part of a cleanup
2228 action, they would get unsaved. */
2230 tree
2231 array_type_nelts (type)
2232 tree type;
2234 tree index_type, min, max;
2236 /* If they did it with unspecified bounds, then we should have already
2237 given an error about it before we got here. */
2238 if (! TYPE_DOMAIN (type))
2239 return error_mark_node;
2241 index_type = TYPE_DOMAIN (type);
2242 min = TYPE_MIN_VALUE (index_type);
2243 max = TYPE_MAX_VALUE (index_type);
2245 if (! TREE_CONSTANT (min))
2247 STRIP_NOPS (min);
2248 if (TREE_CODE (min) == SAVE_EXPR)
2249 min = build (RTL_EXPR, TREE_TYPE (TYPE_MIN_VALUE (index_type)), 0,
2250 SAVE_EXPR_RTL (min));
2251 else
2252 min = TYPE_MIN_VALUE (index_type);
2255 if (! TREE_CONSTANT (max))
2257 STRIP_NOPS (max);
2258 if (TREE_CODE (max) == SAVE_EXPR)
2259 max = build (RTL_EXPR, TREE_TYPE (TYPE_MAX_VALUE (index_type)), 0,
2260 SAVE_EXPR_RTL (max));
2261 else
2262 max = TYPE_MAX_VALUE (index_type);
2265 return (integer_zerop (min)
2266 ? max
2267 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
2270 /* Return nonzero if arg is static -- a reference to an object in
2271 static storage. This is not the same as the C meaning of `static'. */
2274 staticp (arg)
2275 tree arg;
2277 switch (TREE_CODE (arg))
2279 case FUNCTION_DECL:
2280 /* Nested functions aren't static, since taking their address
2281 involves a trampoline. */
2282 return decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg);
2283 case VAR_DECL:
2284 return TREE_STATIC (arg) || DECL_EXTERNAL (arg);
2286 case CONSTRUCTOR:
2287 return TREE_STATIC (arg);
2289 case STRING_CST:
2290 return 1;
2292 /* If we are referencing a bitfield, we can't evaluate an
2293 ADDR_EXPR at compile time and so it isn't a constant. */
2294 case COMPONENT_REF:
2295 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
2296 && staticp (TREE_OPERAND (arg, 0)));
2298 case BIT_FIELD_REF:
2299 return 0;
2301 #if 0
2302 /* This case is technically correct, but results in setting
2303 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
2304 compile time. */
2305 case INDIRECT_REF:
2306 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
2307 #endif
2309 case ARRAY_REF:
2310 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2311 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2312 return staticp (TREE_OPERAND (arg, 0));
2314 default:
2315 return 0;
2319 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2320 Do this to any expression which may be used in more than one place,
2321 but must be evaluated only once.
2323 Normally, expand_expr would reevaluate the expression each time.
2324 Calling save_expr produces something that is evaluated and recorded
2325 the first time expand_expr is called on it. Subsequent calls to
2326 expand_expr just reuse the recorded value.
2328 The call to expand_expr that generates code that actually computes
2329 the value is the first call *at compile time*. Subsequent calls
2330 *at compile time* generate code to use the saved value.
2331 This produces correct result provided that *at run time* control
2332 always flows through the insns made by the first expand_expr
2333 before reaching the other places where the save_expr was evaluated.
2334 You, the caller of save_expr, must make sure this is so.
2336 Constants, and certain read-only nodes, are returned with no
2337 SAVE_EXPR because that is safe. Expressions containing placeholders
2338 are not touched; see tree.def for an explanation of what these
2339 are used for. */
2341 tree
2342 save_expr (expr)
2343 tree expr;
2345 register tree t = fold (expr);
2347 /* We don't care about whether this can be used as an lvalue in this
2348 context. */
2349 while (TREE_CODE (t) == NON_LVALUE_EXPR)
2350 t = TREE_OPERAND (t, 0);
2352 /* If the tree evaluates to a constant, then we don't want to hide that
2353 fact (i.e. this allows further folding, and direct checks for constants).
2354 However, a read-only object that has side effects cannot be bypassed.
2355 Since it is no problem to reevaluate literals, we just return the
2356 literal node. */
2358 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
2359 || TREE_CODE (t) == SAVE_EXPR || TREE_CODE (t) == ERROR_MARK)
2360 return t;
2362 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2363 it means that the size or offset of some field of an object depends on
2364 the value within another field.
2366 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2367 and some variable since it would then need to be both evaluated once and
2368 evaluated more than once. Front-ends must assure this case cannot
2369 happen by surrounding any such subexpressions in their own SAVE_EXPR
2370 and forcing evaluation at the proper time. */
2371 if (contains_placeholder_p (t))
2372 return t;
2374 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
2376 /* This expression might be placed ahead of a jump to ensure that the
2377 value was computed on both sides of the jump. So make sure it isn't
2378 eliminated as dead. */
2379 TREE_SIDE_EFFECTS (t) = 1;
2380 return t;
2383 /* Arrange for an expression to be expanded multiple independent
2384 times. This is useful for cleanup actions, as the backend can
2385 expand them multiple times in different places. */
2387 tree
2388 unsave_expr (expr)
2389 tree expr;
2391 tree t;
2393 /* If this is already protected, no sense in protecting it again. */
2394 if (TREE_CODE (expr) == UNSAVE_EXPR)
2395 return expr;
2397 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
2398 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
2399 return t;
2402 /* Modify a tree in place so that all the evaluate only once things
2403 are cleared out. Return the EXPR given. */
2405 tree
2406 unsave_expr_now (expr)
2407 tree expr;
2409 enum tree_code code;
2410 register int i;
2411 int first_rtl;
2413 if (expr == NULL_TREE)
2414 return expr;
2416 code = TREE_CODE (expr);
2417 first_rtl = tree_code_length [(int) code];
2418 switch (code)
2420 case SAVE_EXPR:
2421 SAVE_EXPR_RTL (expr) = 0;
2422 first_rtl = 2;
2423 break;
2425 case TARGET_EXPR:
2426 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
2427 TREE_OPERAND (expr, 3) = NULL_TREE;
2428 break;
2430 case RTL_EXPR:
2431 /* I don't yet know how to emit a sequence multiple times. */
2432 if (RTL_EXPR_SEQUENCE (expr) != 0)
2433 abort ();
2434 first_rtl = 0;
2435 break;
2437 case CALL_EXPR:
2438 CALL_EXPR_RTL (expr) = 0;
2439 if (TREE_OPERAND (expr, 1)
2440 && TREE_CODE (TREE_OPERAND (expr, 1)) == TREE_LIST)
2442 tree exp = TREE_OPERAND (expr, 1);
2443 while (exp)
2445 unsave_expr_now (TREE_VALUE (exp));
2446 exp = TREE_CHAIN (exp);
2449 first_rtl = 2;
2450 break;
2452 case WITH_CLEANUP_EXPR:
2453 /* Should be defined to be 2. */
2454 first_rtl = 1;
2455 break;
2457 case METHOD_CALL_EXPR:
2458 first_rtl = 3;
2459 break;
2461 default:
2462 break;
2465 switch (TREE_CODE_CLASS (code))
2467 case 'c': /* a constant */
2468 case 't': /* a type node */
2469 case 'x': /* something random, like an identifier or an ERROR_MARK. */
2470 case 'd': /* A decl node */
2471 case 'b': /* A block node */
2472 return expr;
2474 case 'e': /* an expression */
2475 case 'r': /* a reference */
2476 case 's': /* an expression with side effects */
2477 case '<': /* a comparison expression */
2478 case '2': /* a binary arithmetic expression */
2479 case '1': /* a unary arithmetic expression */
2480 for (i = first_rtl - 1; i >= 0; i--)
2481 unsave_expr_now (TREE_OPERAND (expr, i));
2482 return expr;
2484 default:
2485 abort ();
2489 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2490 or offset that depends on a field within a record. */
2493 contains_placeholder_p (exp)
2494 tree exp;
2496 register enum tree_code code = TREE_CODE (exp);
2497 int result;
2499 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
2500 in it since it is supplying a value for it. */
2501 if (code == WITH_RECORD_EXPR)
2502 return 0;
2503 else if (code == PLACEHOLDER_EXPR)
2504 return 1;
2506 switch (TREE_CODE_CLASS (code))
2508 case 'r':
2509 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2510 position computations since they will be converted into a
2511 WITH_RECORD_EXPR involving the reference, which will assume
2512 here will be valid. */
2513 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2515 case 'x':
2516 if (code == TREE_LIST)
2517 return (contains_placeholder_p (TREE_VALUE (exp))
2518 || (TREE_CHAIN (exp) != 0
2519 && contains_placeholder_p (TREE_CHAIN (exp))));
2520 break;
2522 case '1':
2523 case '2': case '<':
2524 case 'e':
2525 switch (code)
2527 case COMPOUND_EXPR:
2528 /* Ignoring the first operand isn't quite right, but works best. */
2529 return contains_placeholder_p (TREE_OPERAND (exp, 1));
2531 case RTL_EXPR:
2532 case CONSTRUCTOR:
2533 return 0;
2535 case COND_EXPR:
2536 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2537 || contains_placeholder_p (TREE_OPERAND (exp, 1))
2538 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
2540 case SAVE_EXPR:
2541 /* If we already know this doesn't have a placeholder, don't
2542 check again. */
2543 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
2544 return 0;
2546 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
2547 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
2548 if (result)
2549 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
2551 return result;
2553 case CALL_EXPR:
2554 return (TREE_OPERAND (exp, 1) != 0
2555 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
2557 default:
2558 break;
2561 switch (tree_code_length[(int) code])
2563 case 1:
2564 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2565 case 2:
2566 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2567 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
2568 default:
2569 return 0;
2572 default:
2573 return 0;
2577 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2578 return a tree with all occurrences of references to F in a
2579 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2580 contains only arithmetic expressions or a CALL_EXPR with a
2581 PLACEHOLDER_EXPR occurring only in its arglist. */
2583 tree
2584 substitute_in_expr (exp, f, r)
2585 tree exp;
2586 tree f;
2587 tree r;
2589 enum tree_code code = TREE_CODE (exp);
2590 tree op0, op1, op2;
2591 tree new;
2592 tree inner;
2594 switch (TREE_CODE_CLASS (code))
2596 case 'c':
2597 case 'd':
2598 return exp;
2600 case 'x':
2601 if (code == PLACEHOLDER_EXPR)
2602 return exp;
2603 else if (code == TREE_LIST)
2605 op0 = (TREE_CHAIN (exp) == 0
2606 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
2607 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
2608 if (op0 == TREE_CHAIN (exp) || op1 == TREE_VALUE (exp))
2609 return exp;
2611 return tree_cons (TREE_PURPOSE (exp), op0, op1);
2614 abort ();
2616 case '1':
2617 case '2':
2618 case '<':
2619 case 'e':
2620 switch (tree_code_length[(int) code])
2622 case 1:
2623 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2624 if (op0 == TREE_OPERAND (exp, 0))
2625 return exp;
2627 new = fold (build1 (code, TREE_TYPE (exp), op0));
2628 break;
2630 case 2:
2631 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2632 could, but we don't support it. */
2633 if (code == RTL_EXPR)
2634 return exp;
2635 else if (code == CONSTRUCTOR)
2636 abort ();
2638 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2639 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2640 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2641 return exp;
2643 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2644 break;
2646 case 3:
2647 /* It cannot be that anything inside a SAVE_EXPR contains a
2648 PLACEHOLDER_EXPR. */
2649 if (code == SAVE_EXPR)
2650 return exp;
2652 else if (code == CALL_EXPR)
2654 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2655 if (op1 == TREE_OPERAND (exp, 1))
2656 return exp;
2658 return build (code, TREE_TYPE (exp),
2659 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2662 else if (code != COND_EXPR)
2663 abort ();
2665 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2666 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2667 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2668 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2669 && op2 == TREE_OPERAND (exp, 2))
2670 return exp;
2672 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2673 break;
2675 default:
2676 abort ();
2679 break;
2681 case 'r':
2682 switch (code)
2684 case COMPONENT_REF:
2685 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2686 and it is the right field, replace it with R. */
2687 for (inner = TREE_OPERAND (exp, 0);
2688 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2689 inner = TREE_OPERAND (inner, 0))
2691 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2692 && TREE_OPERAND (exp, 1) == f)
2693 return r;
2695 /* If this expression hasn't been completed let, leave it
2696 alone. */
2697 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2698 && TREE_TYPE (inner) == 0)
2699 return exp;
2701 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2702 if (op0 == TREE_OPERAND (exp, 0))
2703 return exp;
2705 new = fold (build (code, TREE_TYPE (exp), op0,
2706 TREE_OPERAND (exp, 1)));
2707 break;
2709 case BIT_FIELD_REF:
2710 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2711 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2712 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2713 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2714 && op2 == TREE_OPERAND (exp, 2))
2715 return exp;
2717 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2718 break;
2720 case INDIRECT_REF:
2721 case BUFFER_REF:
2722 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2723 if (op0 == TREE_OPERAND (exp, 0))
2724 return exp;
2726 new = fold (build1 (code, TREE_TYPE (exp), op0));
2727 break;
2729 default:
2730 abort ();
2732 break;
2734 default:
2735 abort ();
2738 TREE_READONLY (new) = TREE_READONLY (exp);
2739 return new;
2742 /* Stabilize a reference so that we can use it any number of times
2743 without causing its operands to be evaluated more than once.
2744 Returns the stabilized reference. This works by means of save_expr,
2745 so see the caveats in the comments about save_expr.
2747 Also allows conversion expressions whose operands are references.
2748 Any other kind of expression is returned unchanged. */
2750 tree
2751 stabilize_reference (ref)
2752 tree ref;
2754 register tree result;
2755 register enum tree_code code = TREE_CODE (ref);
2757 switch (code)
2759 case VAR_DECL:
2760 case PARM_DECL:
2761 case RESULT_DECL:
2762 /* No action is needed in this case. */
2763 return ref;
2765 case NOP_EXPR:
2766 case CONVERT_EXPR:
2767 case FLOAT_EXPR:
2768 case FIX_TRUNC_EXPR:
2769 case FIX_FLOOR_EXPR:
2770 case FIX_ROUND_EXPR:
2771 case FIX_CEIL_EXPR:
2772 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2773 break;
2775 case INDIRECT_REF:
2776 result = build_nt (INDIRECT_REF,
2777 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2778 break;
2780 case COMPONENT_REF:
2781 result = build_nt (COMPONENT_REF,
2782 stabilize_reference (TREE_OPERAND (ref, 0)),
2783 TREE_OPERAND (ref, 1));
2784 break;
2786 case BIT_FIELD_REF:
2787 result = build_nt (BIT_FIELD_REF,
2788 stabilize_reference (TREE_OPERAND (ref, 0)),
2789 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2790 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2791 break;
2793 case ARRAY_REF:
2794 result = build_nt (ARRAY_REF,
2795 stabilize_reference (TREE_OPERAND (ref, 0)),
2796 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2797 break;
2799 case COMPOUND_EXPR:
2800 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2801 it wouldn't be ignored. This matters when dealing with
2802 volatiles. */
2803 return stabilize_reference_1 (ref);
2805 case RTL_EXPR:
2806 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2807 save_expr (build1 (ADDR_EXPR,
2808 build_pointer_type (TREE_TYPE (ref)),
2809 ref)));
2810 break;
2813 /* If arg isn't a kind of lvalue we recognize, make no change.
2814 Caller should recognize the error for an invalid lvalue. */
2815 default:
2816 return ref;
2818 case ERROR_MARK:
2819 return error_mark_node;
2822 TREE_TYPE (result) = TREE_TYPE (ref);
2823 TREE_READONLY (result) = TREE_READONLY (ref);
2824 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2825 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2826 TREE_RAISES (result) = TREE_RAISES (ref);
2828 return result;
2831 /* Subroutine of stabilize_reference; this is called for subtrees of
2832 references. Any expression with side-effects must be put in a SAVE_EXPR
2833 to ensure that it is only evaluated once.
2835 We don't put SAVE_EXPR nodes around everything, because assigning very
2836 simple expressions to temporaries causes us to miss good opportunities
2837 for optimizations. Among other things, the opportunity to fold in the
2838 addition of a constant into an addressing mode often gets lost, e.g.
2839 "y[i+1] += x;". In general, we take the approach that we should not make
2840 an assignment unless we are forced into it - i.e., that any non-side effect
2841 operator should be allowed, and that cse should take care of coalescing
2842 multiple utterances of the same expression should that prove fruitful. */
2844 tree
2845 stabilize_reference_1 (e)
2846 tree e;
2848 register tree result;
2849 register enum tree_code code = TREE_CODE (e);
2851 /* We cannot ignore const expressions because it might be a reference
2852 to a const array but whose index contains side-effects. But we can
2853 ignore things that are actual constant or that already have been
2854 handled by this function. */
2856 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2857 return e;
2859 switch (TREE_CODE_CLASS (code))
2861 case 'x':
2862 case 't':
2863 case 'd':
2864 case 'b':
2865 case '<':
2866 case 's':
2867 case 'e':
2868 case 'r':
2869 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2870 so that it will only be evaluated once. */
2871 /* The reference (r) and comparison (<) classes could be handled as
2872 below, but it is generally faster to only evaluate them once. */
2873 if (TREE_SIDE_EFFECTS (e))
2874 return save_expr (e);
2875 return e;
2877 case 'c':
2878 /* Constants need no processing. In fact, we should never reach
2879 here. */
2880 return e;
2882 case '2':
2883 /* Division is slow and tends to be compiled with jumps,
2884 especially the division by powers of 2 that is often
2885 found inside of an array reference. So do it just once. */
2886 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2887 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2888 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2889 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2890 return save_expr (e);
2891 /* Recursively stabilize each operand. */
2892 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2893 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2894 break;
2896 case '1':
2897 /* Recursively stabilize each operand. */
2898 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2899 break;
2901 default:
2902 abort ();
2905 TREE_TYPE (result) = TREE_TYPE (e);
2906 TREE_READONLY (result) = TREE_READONLY (e);
2907 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2908 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2909 TREE_RAISES (result) = TREE_RAISES (e);
2911 return result;
2914 /* Low-level constructors for expressions. */
2916 /* Build an expression of code CODE, data type TYPE,
2917 and operands as specified by the arguments ARG1 and following arguments.
2918 Expressions and reference nodes can be created this way.
2919 Constants, decls, types and misc nodes cannot be. */
2921 tree
2922 build VPROTO((enum tree_code code, tree tt, ...))
2924 #ifndef __STDC__
2925 enum tree_code code;
2926 tree tt;
2927 #endif
2928 va_list p;
2929 register tree t;
2930 register int length;
2931 register int i;
2933 VA_START (p, tt);
2935 #ifndef __STDC__
2936 code = va_arg (p, enum tree_code);
2937 tt = va_arg (p, tree);
2938 #endif
2940 t = make_node (code);
2941 length = tree_code_length[(int) code];
2942 TREE_TYPE (t) = tt;
2944 if (length == 2)
2946 /* This is equivalent to the loop below, but faster. */
2947 register tree arg0 = va_arg (p, tree);
2948 register tree arg1 = va_arg (p, tree);
2949 TREE_OPERAND (t, 0) = arg0;
2950 TREE_OPERAND (t, 1) = arg1;
2951 if ((arg0 && TREE_SIDE_EFFECTS (arg0))
2952 || (arg1 && TREE_SIDE_EFFECTS (arg1)))
2953 TREE_SIDE_EFFECTS (t) = 1;
2954 TREE_RAISES (t)
2955 = (arg0 && TREE_RAISES (arg0)) || (arg1 && TREE_RAISES (arg1));
2957 else if (length == 1)
2959 register tree arg0 = va_arg (p, tree);
2961 /* Call build1 for this! */
2962 if (TREE_CODE_CLASS (code) != 's')
2963 abort ();
2964 TREE_OPERAND (t, 0) = arg0;
2965 if (arg0 && TREE_SIDE_EFFECTS (arg0))
2966 TREE_SIDE_EFFECTS (t) = 1;
2967 TREE_RAISES (t) = (arg0 && TREE_RAISES (arg0));
2969 else
2971 for (i = 0; i < length; i++)
2973 register tree operand = va_arg (p, tree);
2974 TREE_OPERAND (t, i) = operand;
2975 if (operand)
2977 if (TREE_SIDE_EFFECTS (operand))
2978 TREE_SIDE_EFFECTS (t) = 1;
2979 if (TREE_RAISES (operand))
2980 TREE_RAISES (t) = 1;
2984 va_end (p);
2985 return t;
2988 /* Same as above, but only builds for unary operators.
2989 Saves lions share of calls to `build'; cuts down use
2990 of varargs, which is expensive for RISC machines. */
2992 tree
2993 build1 (code, type, node)
2994 enum tree_code code;
2995 tree type;
2996 tree node;
2998 register struct obstack *obstack = expression_obstack;
2999 register int i, length;
3000 register tree_node_kind kind;
3001 register tree t;
3003 #ifdef GATHER_STATISTICS
3004 if (TREE_CODE_CLASS (code) == 'r')
3005 kind = r_kind;
3006 else
3007 kind = e_kind;
3008 #endif
3010 length = sizeof (struct tree_exp);
3012 t = (tree) obstack_alloc (obstack, length);
3014 #ifdef GATHER_STATISTICS
3015 tree_node_counts[(int)kind]++;
3016 tree_node_sizes[(int)kind] += length;
3017 #endif
3019 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
3020 ((int *) t)[i] = 0;
3022 TREE_TYPE (t) = type;
3023 TREE_SET_CODE (t, code);
3025 if (obstack == &permanent_obstack)
3026 TREE_PERMANENT (t) = 1;
3028 TREE_OPERAND (t, 0) = node;
3029 if (node)
3031 if (TREE_SIDE_EFFECTS (node))
3032 TREE_SIDE_EFFECTS (t) = 1;
3033 if (TREE_RAISES (node))
3034 TREE_RAISES (t) = 1;
3037 return t;
3040 /* Similar except don't specify the TREE_TYPE
3041 and leave the TREE_SIDE_EFFECTS as 0.
3042 It is permissible for arguments to be null,
3043 or even garbage if their values do not matter. */
3045 tree
3046 build_nt VPROTO((enum tree_code code, ...))
3048 #ifndef __STDC__
3049 enum tree_code code;
3050 #endif
3051 va_list p;
3052 register tree t;
3053 register int length;
3054 register int i;
3056 VA_START (p, code);
3058 #ifndef __STDC__
3059 code = va_arg (p, enum tree_code);
3060 #endif
3062 t = make_node (code);
3063 length = tree_code_length[(int) code];
3065 for (i = 0; i < length; i++)
3066 TREE_OPERAND (t, i) = va_arg (p, tree);
3068 va_end (p);
3069 return t;
3072 /* Similar to `build_nt', except we build
3073 on the temp_decl_obstack, regardless. */
3075 tree
3076 build_parse_node VPROTO((enum tree_code code, ...))
3078 #ifndef __STDC__
3079 enum tree_code code;
3080 #endif
3081 register struct obstack *ambient_obstack = expression_obstack;
3082 va_list p;
3083 register tree t;
3084 register int length;
3085 register int i;
3087 VA_START (p, code);
3089 #ifndef __STDC__
3090 code = va_arg (p, enum tree_code);
3091 #endif
3093 expression_obstack = &temp_decl_obstack;
3095 t = make_node (code);
3096 length = tree_code_length[(int) code];
3098 for (i = 0; i < length; i++)
3099 TREE_OPERAND (t, i) = va_arg (p, tree);
3101 va_end (p);
3102 expression_obstack = ambient_obstack;
3103 return t;
3106 #if 0
3107 /* Commented out because this wants to be done very
3108 differently. See cp-lex.c. */
3109 tree
3110 build_op_identifier (op1, op2)
3111 tree op1, op2;
3113 register tree t = make_node (OP_IDENTIFIER);
3114 TREE_PURPOSE (t) = op1;
3115 TREE_VALUE (t) = op2;
3116 return t;
3118 #endif
3120 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3121 We do NOT enter this node in any sort of symbol table.
3123 layout_decl is used to set up the decl's storage layout.
3124 Other slots are initialized to 0 or null pointers. */
3126 tree
3127 build_decl (code, name, type)
3128 enum tree_code code;
3129 tree name, type;
3131 register tree t;
3133 t = make_node (code);
3135 /* if (type == error_mark_node)
3136 type = integer_type_node; */
3137 /* That is not done, deliberately, so that having error_mark_node
3138 as the type can suppress useless errors in the use of this variable. */
3140 DECL_NAME (t) = name;
3141 DECL_ASSEMBLER_NAME (t) = name;
3142 TREE_TYPE (t) = type;
3144 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3145 layout_decl (t, 0);
3146 else if (code == FUNCTION_DECL)
3147 DECL_MODE (t) = FUNCTION_MODE;
3149 return t;
3152 /* BLOCK nodes are used to represent the structure of binding contours
3153 and declarations, once those contours have been exited and their contents
3154 compiled. This information is used for outputting debugging info. */
3156 tree
3157 build_block (vars, tags, subblocks, supercontext, chain)
3158 tree vars, tags, subblocks, supercontext, chain;
3160 register tree block = make_node (BLOCK);
3161 BLOCK_VARS (block) = vars;
3162 BLOCK_TYPE_TAGS (block) = tags;
3163 BLOCK_SUBBLOCKS (block) = subblocks;
3164 BLOCK_SUPERCONTEXT (block) = supercontext;
3165 BLOCK_CHAIN (block) = chain;
3166 return block;
3169 /* Return a declaration like DDECL except that its DECL_MACHINE_ATTRIBUTE
3170 is ATTRIBUTE. */
3172 tree
3173 build_decl_attribute_variant (ddecl, attribute)
3174 tree ddecl, attribute;
3176 DECL_MACHINE_ATTRIBUTES (ddecl) = attribute;
3177 return ddecl;
3180 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3181 is ATTRIBUTE.
3183 Record such modified types already made so we don't make duplicates. */
3185 tree
3186 build_type_attribute_variant (ttype, attribute)
3187 tree ttype, attribute;
3189 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3191 register int hashcode;
3192 register struct obstack *ambient_obstack = current_obstack;
3193 tree ntype;
3195 if (ambient_obstack != &permanent_obstack)
3196 current_obstack = TYPE_OBSTACK (ttype);
3198 ntype = copy_node (ttype);
3199 current_obstack = ambient_obstack;
3201 TYPE_POINTER_TO (ntype) = 0;
3202 TYPE_REFERENCE_TO (ntype) = 0;
3203 TYPE_ATTRIBUTES (ntype) = attribute;
3205 /* Create a new main variant of TYPE. */
3206 TYPE_MAIN_VARIANT (ntype) = ntype;
3207 TYPE_NEXT_VARIANT (ntype) = 0;
3208 TYPE_READONLY (ntype) = TYPE_VOLATILE (ntype) = 0;
3210 hashcode = TYPE_HASH (TREE_CODE (ntype))
3211 + TYPE_HASH (TREE_TYPE (ntype))
3212 + attribute_hash_list (attribute);
3214 switch (TREE_CODE (ntype))
3216 case FUNCTION_TYPE:
3217 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
3218 break;
3219 case ARRAY_TYPE:
3220 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
3221 break;
3222 case INTEGER_TYPE:
3223 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
3224 break;
3225 case REAL_TYPE:
3226 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
3227 break;
3228 default:
3229 break;
3232 ntype = type_hash_canon (hashcode, ntype);
3233 ttype = build_type_variant (ntype, TYPE_READONLY (ttype),
3234 TYPE_VOLATILE (ttype));
3237 return ttype;
3240 /* Return a 1 if ATTR_NAME and ATTR_ARGS is valid for either declaration DECL
3241 or type TYPE and 0 otherwise. Validity is determined the configuration
3242 macros VALID_MACHINE_DECL_ATTRIBUTE and VALID_MACHINE_TYPE_ATTRIBUTE. */
3245 valid_machine_attribute (attr_name, attr_args, decl, type)
3246 tree attr_name, attr_args;
3247 tree decl;
3248 tree type;
3250 int valid = 0;
3251 tree decl_attr_list = decl != 0 ? DECL_MACHINE_ATTRIBUTES (decl) : 0;
3252 tree type_attr_list = TYPE_ATTRIBUTES (type);
3254 if (TREE_CODE (attr_name) != IDENTIFIER_NODE)
3255 abort ();
3257 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
3258 if (decl != 0
3259 && VALID_MACHINE_DECL_ATTRIBUTE (decl, decl_attr_list, attr_name, attr_args))
3261 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3262 decl_attr_list);
3264 if (attr != NULL_TREE)
3266 /* Override existing arguments. Declarations are unique so we can
3267 modify this in place. */
3268 TREE_VALUE (attr) = attr_args;
3270 else
3272 decl_attr_list = tree_cons (attr_name, attr_args, decl_attr_list);
3273 decl = build_decl_attribute_variant (decl, decl_attr_list);
3276 valid = 1;
3278 #endif
3280 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
3281 if (VALID_MACHINE_TYPE_ATTRIBUTE (type, type_attr_list, attr_name, attr_args))
3283 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3284 type_attr_list);
3286 if (attr != NULL_TREE)
3288 /* Override existing arguments.
3289 ??? This currently works since attribute arguments are not
3290 included in `attribute_hash_list'. Something more complicated
3291 may be needed in the future. */
3292 TREE_VALUE (attr) = attr_args;
3294 else
3296 type_attr_list = tree_cons (attr_name, attr_args, type_attr_list);
3297 type = build_type_attribute_variant (type, type_attr_list);
3299 if (decl != 0)
3300 TREE_TYPE (decl) = type;
3301 valid = 1;
3304 /* Handle putting a type attribute on pointer-to-function-type by putting
3305 the attribute on the function type. */
3306 else if (TREE_CODE (type) == POINTER_TYPE
3307 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3308 && VALID_MACHINE_TYPE_ATTRIBUTE (TREE_TYPE (type), type_attr_list,
3309 attr_name, attr_args))
3311 tree inner_type = TREE_TYPE (type);
3312 tree inner_attr_list = TYPE_ATTRIBUTES (inner_type);
3313 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3314 type_attr_list);
3316 if (attr != NULL_TREE)
3317 TREE_VALUE (attr) = attr_args;
3318 else
3320 inner_attr_list = tree_cons (attr_name, attr_args, inner_attr_list);
3321 inner_type = build_type_attribute_variant (inner_type,
3322 inner_attr_list);
3325 if (decl != 0)
3326 TREE_TYPE (decl) = build_pointer_type (inner_type);
3328 valid = 1;
3330 #endif
3332 return valid;
3335 /* Return non-zero if IDENT is a valid name for attribute ATTR,
3336 or zero if not.
3338 We try both `text' and `__text__', ATTR may be either one. */
3339 /* ??? It might be a reasonable simplification to require ATTR to be only
3340 `text'. One might then also require attribute lists to be stored in
3341 their canonicalized form. */
3344 is_attribute_p (attr, ident)
3345 char *attr;
3346 tree ident;
3348 int ident_len, attr_len;
3349 char *p;
3351 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3352 return 0;
3354 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
3355 return 1;
3357 p = IDENTIFIER_POINTER (ident);
3358 ident_len = strlen (p);
3359 attr_len = strlen (attr);
3361 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3362 if (attr[0] == '_')
3364 if (attr[1] != '_'
3365 || attr[attr_len - 2] != '_'
3366 || attr[attr_len - 1] != '_')
3367 abort ();
3368 if (ident_len == attr_len - 4
3369 && strncmp (attr + 2, p, attr_len - 4) == 0)
3370 return 1;
3372 else
3374 if (ident_len == attr_len + 4
3375 && p[0] == '_' && p[1] == '_'
3376 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3377 && strncmp (attr, p + 2, attr_len) == 0)
3378 return 1;
3381 return 0;
3384 /* Given an attribute name and a list of attributes, return a pointer to the
3385 attribute's list element if the attribute is part of the list, or NULL_TREE
3386 if not found. */
3388 tree
3389 lookup_attribute (attr_name, list)
3390 char *attr_name;
3391 tree list;
3393 tree l;
3395 for (l = list; l; l = TREE_CHAIN (l))
3397 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
3398 abort ();
3399 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
3400 return l;
3403 return NULL_TREE;
3406 /* Return an attribute list that is the union of a1 and a2. */
3408 tree
3409 merge_attributes (a1, a2)
3410 register tree a1, a2;
3412 tree attributes;
3414 /* Either one unset? Take the set one. */
3416 if (! (attributes = a1))
3417 attributes = a2;
3419 /* One that completely contains the other? Take it. */
3421 else if (a2 && ! attribute_list_contained (a1, a2))
3422 if (attribute_list_contained (a2, a1))
3423 attributes = a2;
3424 else
3426 /* Pick the longest list, and hang on the other list. */
3427 /* ??? For the moment we punt on the issue of attrs with args. */
3429 if (list_length (a1) < list_length (a2))
3430 attributes = a2, a2 = a1;
3432 for (; a2; a2 = TREE_CHAIN (a2))
3433 if (lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3434 attributes) == NULL_TREE)
3436 a1 = copy_node (a2);
3437 TREE_CHAIN (a1) = attributes;
3438 attributes = a1;
3441 return attributes;
3444 /* Return a type like TYPE except that its TYPE_READONLY is CONSTP
3445 and its TYPE_VOLATILE is VOLATILEP.
3447 Such variant types already made are recorded so that duplicates
3448 are not made.
3450 A variant types should never be used as the type of an expression.
3451 Always copy the variant information into the TREE_READONLY
3452 and TREE_THIS_VOLATILE of the expression, and then give the expression
3453 as its type the "main variant", the variant whose TYPE_READONLY
3454 and TYPE_VOLATILE are zero. Use TYPE_MAIN_VARIANT to find the
3455 main variant. */
3457 tree
3458 build_type_variant (type, constp, volatilep)
3459 tree type;
3460 int constp, volatilep;
3462 register tree t;
3464 /* Treat any nonzero argument as 1. */
3465 constp = !!constp;
3466 volatilep = !!volatilep;
3468 /* Search the chain of variants to see if there is already one there just
3469 like the one we need to have. If so, use that existing one. We must
3470 preserve the TYPE_NAME, since there is code that depends on this. */
3472 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3473 if (constp == TYPE_READONLY (t) && volatilep == TYPE_VOLATILE (t)
3474 && TYPE_NAME (t) == TYPE_NAME (type))
3475 return t;
3477 /* We need a new one. */
3479 t = build_type_copy (type);
3480 TYPE_READONLY (t) = constp;
3481 TYPE_VOLATILE (t) = volatilep;
3483 return t;
3486 /* Create a new variant of TYPE, equivalent but distinct.
3487 This is so the caller can modify it. */
3489 tree
3490 build_type_copy (type)
3491 tree type;
3493 register tree t, m = TYPE_MAIN_VARIANT (type);
3494 register struct obstack *ambient_obstack = current_obstack;
3496 current_obstack = TYPE_OBSTACK (type);
3497 t = copy_node (type);
3498 current_obstack = ambient_obstack;
3500 TYPE_POINTER_TO (t) = 0;
3501 TYPE_REFERENCE_TO (t) = 0;
3503 /* Add this type to the chain of variants of TYPE. */
3504 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3505 TYPE_NEXT_VARIANT (m) = t;
3507 return t;
3510 /* Hashing of types so that we don't make duplicates.
3511 The entry point is `type_hash_canon'. */
3513 /* Each hash table slot is a bucket containing a chain
3514 of these structures. */
3516 struct type_hash
3518 struct type_hash *next; /* Next structure in the bucket. */
3519 int hashcode; /* Hash code of this type. */
3520 tree type; /* The type recorded here. */
3523 /* Now here is the hash table. When recording a type, it is added
3524 to the slot whose index is the hash code mod the table size.
3525 Note that the hash table is used for several kinds of types
3526 (function types, array types and array index range types, for now).
3527 While all these live in the same table, they are completely independent,
3528 and the hash code is computed differently for each of these. */
3530 #define TYPE_HASH_SIZE 59
3531 struct type_hash *type_hash_table[TYPE_HASH_SIZE];
3533 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3534 with types in the TREE_VALUE slots), by adding the hash codes
3535 of the individual types. */
3538 type_hash_list (list)
3539 tree list;
3541 register int hashcode;
3542 register tree tail;
3543 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3544 hashcode += TYPE_HASH (TREE_VALUE (tail));
3545 return hashcode;
3548 /* Look in the type hash table for a type isomorphic to TYPE.
3549 If one is found, return it. Otherwise return 0. */
3551 tree
3552 type_hash_lookup (hashcode, type)
3553 int hashcode;
3554 tree type;
3556 register struct type_hash *h;
3557 for (h = type_hash_table[hashcode % TYPE_HASH_SIZE]; h; h = h->next)
3558 if (h->hashcode == hashcode
3559 && TREE_CODE (h->type) == TREE_CODE (type)
3560 && TREE_TYPE (h->type) == TREE_TYPE (type)
3561 && attribute_list_equal (TYPE_ATTRIBUTES (h->type),
3562 TYPE_ATTRIBUTES (type))
3563 && (TYPE_MAX_VALUE (h->type) == TYPE_MAX_VALUE (type)
3564 || tree_int_cst_equal (TYPE_MAX_VALUE (h->type),
3565 TYPE_MAX_VALUE (type)))
3566 && (TYPE_MIN_VALUE (h->type) == TYPE_MIN_VALUE (type)
3567 || tree_int_cst_equal (TYPE_MIN_VALUE (h->type),
3568 TYPE_MIN_VALUE (type)))
3569 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3570 && (TYPE_DOMAIN (h->type) == TYPE_DOMAIN (type)
3571 || (TYPE_DOMAIN (h->type)
3572 && TREE_CODE (TYPE_DOMAIN (h->type)) == TREE_LIST
3573 && TYPE_DOMAIN (type)
3574 && TREE_CODE (TYPE_DOMAIN (type)) == TREE_LIST
3575 && type_list_equal (TYPE_DOMAIN (h->type),
3576 TYPE_DOMAIN (type)))))
3577 return h->type;
3578 return 0;
3581 /* Add an entry to the type-hash-table
3582 for a type TYPE whose hash code is HASHCODE. */
3584 void
3585 type_hash_add (hashcode, type)
3586 int hashcode;
3587 tree type;
3589 register struct type_hash *h;
3591 h = (struct type_hash *) oballoc (sizeof (struct type_hash));
3592 h->hashcode = hashcode;
3593 h->type = type;
3594 h->next = type_hash_table[hashcode % TYPE_HASH_SIZE];
3595 type_hash_table[hashcode % TYPE_HASH_SIZE] = h;
3598 /* Given TYPE, and HASHCODE its hash code, return the canonical
3599 object for an identical type if one already exists.
3600 Otherwise, return TYPE, and record it as the canonical object
3601 if it is a permanent object.
3603 To use this function, first create a type of the sort you want.
3604 Then compute its hash code from the fields of the type that
3605 make it different from other similar types.
3606 Then call this function and use the value.
3607 This function frees the type you pass in if it is a duplicate. */
3609 /* Set to 1 to debug without canonicalization. Never set by program. */
3610 int debug_no_type_hash = 0;
3612 tree
3613 type_hash_canon (hashcode, type)
3614 int hashcode;
3615 tree type;
3617 tree t1;
3619 if (debug_no_type_hash)
3620 return type;
3622 t1 = type_hash_lookup (hashcode, type);
3623 if (t1 != 0)
3625 obstack_free (TYPE_OBSTACK (type), type);
3626 #ifdef GATHER_STATISTICS
3627 tree_node_counts[(int)t_kind]--;
3628 tree_node_sizes[(int)t_kind] -= sizeof (struct tree_type);
3629 #endif
3630 return t1;
3633 /* If this is a permanent type, record it for later reuse. */
3634 if (TREE_PERMANENT (type))
3635 type_hash_add (hashcode, type);
3637 return type;
3640 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3641 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3642 by adding the hash codes of the individual attributes. */
3645 attribute_hash_list (list)
3646 tree list;
3648 register int hashcode;
3649 register tree tail;
3650 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3651 /* ??? Do we want to add in TREE_VALUE too? */
3652 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3653 return hashcode;
3656 /* Given two lists of attributes, return true if list l2 is
3657 equivalent to l1. */
3660 attribute_list_equal (l1, l2)
3661 tree l1, l2;
3663 return attribute_list_contained (l1, l2)
3664 && attribute_list_contained (l2, l1);
3667 /* Given two lists of attributes, return true if list L2 is
3668 completely contained within L1. */
3669 /* ??? This would be faster if attribute names were stored in a canonicalized
3670 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3671 must be used to show these elements are equivalent (which they are). */
3672 /* ??? It's not clear that attributes with arguments will always be handled
3673 correctly. */
3676 attribute_list_contained (l1, l2)
3677 tree l1, l2;
3679 register tree t1, t2;
3681 /* First check the obvious, maybe the lists are identical. */
3682 if (l1 == l2)
3683 return 1;
3685 /* Maybe the lists are similar. */
3686 for (t1 = l1, t2 = l2;
3687 t1 && t2
3688 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3689 && TREE_VALUE (t1) == TREE_VALUE (t2);
3690 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3692 /* Maybe the lists are equal. */
3693 if (t1 == 0 && t2 == 0)
3694 return 1;
3696 for (; t2; t2 = TREE_CHAIN (t2))
3698 tree attr
3699 = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3701 if (attr == NULL_TREE)
3702 return 0;
3703 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3704 return 0;
3707 return 1;
3710 /* Given two lists of types
3711 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3712 return 1 if the lists contain the same types in the same order.
3713 Also, the TREE_PURPOSEs must match. */
3716 type_list_equal (l1, l2)
3717 tree l1, l2;
3719 register tree t1, t2;
3721 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3722 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3723 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3724 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3725 && (TREE_TYPE (TREE_PURPOSE (t1))
3726 == TREE_TYPE (TREE_PURPOSE (t2))))))
3727 return 0;
3729 return t1 == t2;
3732 /* Nonzero if integer constants T1 and T2
3733 represent the same constant value. */
3736 tree_int_cst_equal (t1, t2)
3737 tree t1, t2;
3739 if (t1 == t2)
3740 return 1;
3741 if (t1 == 0 || t2 == 0)
3742 return 0;
3743 if (TREE_CODE (t1) == INTEGER_CST
3744 && TREE_CODE (t2) == INTEGER_CST
3745 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3746 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3747 return 1;
3748 return 0;
3751 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3752 The precise way of comparison depends on their data type. */
3755 tree_int_cst_lt (t1, t2)
3756 tree t1, t2;
3758 if (t1 == t2)
3759 return 0;
3761 if (!TREE_UNSIGNED (TREE_TYPE (t1)))
3762 return INT_CST_LT (t1, t2);
3763 return INT_CST_LT_UNSIGNED (t1, t2);
3766 /* Return an indication of the sign of the integer constant T.
3767 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3768 Note that -1 will never be returned it T's type is unsigned. */
3771 tree_int_cst_sgn (t)
3772 tree t;
3774 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3775 return 0;
3776 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3777 return 1;
3778 else if (TREE_INT_CST_HIGH (t) < 0)
3779 return -1;
3780 else
3781 return 1;
3784 /* Compare two constructor-element-type constants. Return 1 if the lists
3785 are known to be equal; otherwise return 0. */
3788 simple_cst_list_equal (l1, l2)
3789 tree l1, l2;
3791 while (l1 != NULL_TREE && l2 != NULL_TREE)
3793 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3794 return 0;
3796 l1 = TREE_CHAIN (l1);
3797 l2 = TREE_CHAIN (l2);
3800 return (l1 == l2);
3803 /* Return truthvalue of whether T1 is the same tree structure as T2.
3804 Return 1 if they are the same.
3805 Return 0 if they are understandably different.
3806 Return -1 if either contains tree structure not understood by
3807 this function. */
3810 simple_cst_equal (t1, t2)
3811 tree t1, t2;
3813 register enum tree_code code1, code2;
3814 int cmp;
3816 if (t1 == t2)
3817 return 1;
3818 if (t1 == 0 || t2 == 0)
3819 return 0;
3821 code1 = TREE_CODE (t1);
3822 code2 = TREE_CODE (t2);
3824 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3825 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR || code2 == NON_LVALUE_EXPR)
3826 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3827 else
3828 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3829 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3830 || code2 == NON_LVALUE_EXPR)
3831 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3833 if (code1 != code2)
3834 return 0;
3836 switch (code1)
3838 case INTEGER_CST:
3839 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3840 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
3842 case REAL_CST:
3843 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3845 case STRING_CST:
3846 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3847 && !bcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3848 TREE_STRING_LENGTH (t1));
3850 case CONSTRUCTOR:
3851 abort ();
3853 case SAVE_EXPR:
3854 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3856 case CALL_EXPR:
3857 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3858 if (cmp <= 0)
3859 return cmp;
3860 return simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3862 case TARGET_EXPR:
3863 /* Special case: if either target is an unallocated VAR_DECL,
3864 it means that it's going to be unified with whatever the
3865 TARGET_EXPR is really supposed to initialize, so treat it
3866 as being equivalent to anything. */
3867 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3868 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3869 && DECL_RTL (TREE_OPERAND (t1, 0)) == 0)
3870 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3871 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3872 && DECL_RTL (TREE_OPERAND (t2, 0)) == 0))
3873 cmp = 1;
3874 else
3875 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3876 if (cmp <= 0)
3877 return cmp;
3878 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3880 case WITH_CLEANUP_EXPR:
3881 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3882 if (cmp <= 0)
3883 return cmp;
3884 return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
3886 case COMPONENT_REF:
3887 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3888 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3889 return 0;
3891 case VAR_DECL:
3892 case PARM_DECL:
3893 case CONST_DECL:
3894 case FUNCTION_DECL:
3895 return 0;
3897 default:
3898 break;
3901 /* This general rule works for most tree codes. All exceptions should be
3902 handled above. If this is a language-specific tree code, we can't
3903 trust what might be in the operand, so say we don't know
3904 the situation. */
3905 if ((int) code1
3906 >= sizeof standard_tree_code_type / sizeof standard_tree_code_type[0])
3907 return -1;
3909 switch (TREE_CODE_CLASS (code1))
3911 int i;
3912 case '1':
3913 case '2':
3914 case '<':
3915 case 'e':
3916 case 'r':
3917 case 's':
3918 cmp = 1;
3919 for (i=0; i<tree_code_length[(int) code1]; ++i)
3921 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3922 if (cmp <= 0)
3923 return cmp;
3925 return cmp;
3927 default:
3928 return -1;
3932 /* Constructors for pointer, array and function types.
3933 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3934 constructed by language-dependent code, not here.) */
3936 /* Construct, lay out and return the type of pointers to TO_TYPE.
3937 If such a type has already been constructed, reuse it. */
3939 tree
3940 build_pointer_type (to_type)
3941 tree to_type;
3943 register tree t = TYPE_POINTER_TO (to_type);
3945 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3947 if (t)
3948 return t;
3950 /* We need a new one. Put this in the same obstack as TO_TYPE. */
3951 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
3952 t = make_node (POINTER_TYPE);
3953 pop_obstacks ();
3955 TREE_TYPE (t) = to_type;
3957 /* Record this type as the pointer to TO_TYPE. */
3958 TYPE_POINTER_TO (to_type) = t;
3960 /* Lay out the type. This function has many callers that are concerned
3961 with expression-construction, and this simplifies them all.
3962 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3963 layout_type (t);
3965 return t;
3968 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3969 MAXVAL should be the maximum value in the domain
3970 (one less than the length of the array).
3972 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3973 We don't enforce this limit, that is up to caller (e.g. language front end).
3974 The limit exists because the result is a signed type and we don't handle
3975 sizes that use more than one HOST_WIDE_INT. */
3977 tree
3978 build_index_type (maxval)
3979 tree maxval;
3981 register tree itype = make_node (INTEGER_TYPE);
3983 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3984 TYPE_MIN_VALUE (itype) = size_zero_node;
3986 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
3987 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3988 pop_obstacks ();
3990 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3991 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3992 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3993 if (TREE_CODE (maxval) == INTEGER_CST)
3995 int maxint = (int) TREE_INT_CST_LOW (maxval);
3996 /* If the domain should be empty, make sure the maxval
3997 remains -1 and is not spoiled by truncation. */
3998 if (INT_CST_LT (maxval, integer_zero_node))
4000 TYPE_MAX_VALUE (itype) = build_int_2 (-1, -1);
4001 TREE_TYPE (TYPE_MAX_VALUE (itype)) = sizetype;
4003 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4005 else
4006 return itype;
4009 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4010 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4011 low bound LOWVAL and high bound HIGHVAL.
4012 if TYPE==NULL_TREE, sizetype is used. */
4014 tree
4015 build_range_type (type, lowval, highval)
4016 tree type, lowval, highval;
4018 register tree itype = make_node (INTEGER_TYPE);
4020 TREE_TYPE (itype) = type;
4021 if (type == NULL_TREE)
4022 type = sizetype;
4024 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
4025 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4026 TYPE_MAX_VALUE (itype) = convert (type, highval);
4027 pop_obstacks ();
4029 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4030 TYPE_MODE (itype) = TYPE_MODE (type);
4031 TYPE_SIZE (itype) = TYPE_SIZE (type);
4032 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4033 if ((TREE_CODE (lowval) == INTEGER_CST)
4034 && (TREE_CODE (highval) == INTEGER_CST))
4036 HOST_WIDE_INT highint = TREE_INT_CST_LOW (highval);
4037 HOST_WIDE_INT lowint = TREE_INT_CST_LOW (lowval);
4038 int maxint = (int) (highint - lowint);
4039 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4041 else
4042 return itype;
4045 /* Just like build_index_type, but takes lowval and highval instead
4046 of just highval (maxval). */
4048 tree
4049 build_index_2_type (lowval,highval)
4050 tree lowval, highval;
4052 return build_range_type (NULL_TREE, lowval, highval);
4055 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
4056 Needed because when index types are not hashed, equal index types
4057 built at different times appear distinct, even though structurally,
4058 they are not. */
4061 index_type_equal (itype1, itype2)
4062 tree itype1, itype2;
4064 if (TREE_CODE (itype1) != TREE_CODE (itype2))
4065 return 0;
4066 if (TREE_CODE (itype1) == INTEGER_TYPE)
4068 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
4069 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
4070 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
4071 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
4072 return 0;
4073 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
4074 TYPE_MIN_VALUE (itype2))
4075 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
4076 TYPE_MAX_VALUE (itype2)))
4077 return 1;
4080 return 0;
4083 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4084 and number of elements specified by the range of values of INDEX_TYPE.
4085 If such a type has already been constructed, reuse it. */
4087 tree
4088 build_array_type (elt_type, index_type)
4089 tree elt_type, index_type;
4091 register tree t;
4092 int hashcode;
4094 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4096 error ("arrays of functions are not meaningful");
4097 elt_type = integer_type_node;
4100 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
4101 build_pointer_type (elt_type);
4103 /* Allocate the array after the pointer type,
4104 in case we free it in type_hash_canon. */
4105 t = make_node (ARRAY_TYPE);
4106 TREE_TYPE (t) = elt_type;
4107 TYPE_DOMAIN (t) = index_type;
4109 if (index_type == 0)
4111 return t;
4114 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
4115 t = type_hash_canon (hashcode, t);
4117 if (TYPE_SIZE (t) == 0)
4118 layout_type (t);
4119 return t;
4122 /* Construct, lay out and return
4123 the type of functions returning type VALUE_TYPE
4124 given arguments of types ARG_TYPES.
4125 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4126 are data type nodes for the arguments of the function.
4127 If such a type has already been constructed, reuse it. */
4129 tree
4130 build_function_type (value_type, arg_types)
4131 tree value_type, arg_types;
4133 register tree t;
4134 int hashcode;
4136 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4138 error ("function return type cannot be function");
4139 value_type = integer_type_node;
4142 /* Make a node of the sort we want. */
4143 t = make_node (FUNCTION_TYPE);
4144 TREE_TYPE (t) = value_type;
4145 TYPE_ARG_TYPES (t) = arg_types;
4147 /* If we already have such a type, use the old one and free this one. */
4148 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
4149 t = type_hash_canon (hashcode, t);
4151 if (TYPE_SIZE (t) == 0)
4152 layout_type (t);
4153 return t;
4156 /* Build the node for the type of references-to-TO_TYPE. */
4158 tree
4159 build_reference_type (to_type)
4160 tree to_type;
4162 register tree t = TYPE_REFERENCE_TO (to_type);
4163 register struct obstack *ambient_obstack = current_obstack;
4164 register struct obstack *ambient_saveable_obstack = saveable_obstack;
4166 /* First, if we already have a type for pointers to TO_TYPE, use it. */
4168 if (t)
4169 return t;
4171 /* We need a new one. If TO_TYPE is permanent, make this permanent too. */
4172 if (TREE_PERMANENT (to_type))
4174 current_obstack = &permanent_obstack;
4175 saveable_obstack = &permanent_obstack;
4178 t = make_node (REFERENCE_TYPE);
4179 TREE_TYPE (t) = to_type;
4181 /* Record this type as the pointer to TO_TYPE. */
4182 TYPE_REFERENCE_TO (to_type) = t;
4184 layout_type (t);
4186 current_obstack = ambient_obstack;
4187 saveable_obstack = ambient_saveable_obstack;
4188 return t;
4191 /* Construct, lay out and return the type of methods belonging to class
4192 BASETYPE and whose arguments and values are described by TYPE.
4193 If that type exists already, reuse it.
4194 TYPE must be a FUNCTION_TYPE node. */
4196 tree
4197 build_method_type (basetype, type)
4198 tree basetype, type;
4200 register tree t;
4201 int hashcode;
4203 /* Make a node of the sort we want. */
4204 t = make_node (METHOD_TYPE);
4206 if (TREE_CODE (type) != FUNCTION_TYPE)
4207 abort ();
4209 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4210 TREE_TYPE (t) = TREE_TYPE (type);
4212 /* The actual arglist for this function includes a "hidden" argument
4213 which is "this". Put it into the list of argument types. */
4215 TYPE_ARG_TYPES (t)
4216 = tree_cons (NULL_TREE,
4217 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
4219 /* If we already have such a type, use the old one and free this one. */
4220 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4221 t = type_hash_canon (hashcode, t);
4223 if (TYPE_SIZE (t) == 0)
4224 layout_type (t);
4226 return t;
4229 /* Construct, lay out and return the type of offsets to a value
4230 of type TYPE, within an object of type BASETYPE.
4231 If a suitable offset type exists already, reuse it. */
4233 tree
4234 build_offset_type (basetype, type)
4235 tree basetype, type;
4237 register tree t;
4238 int hashcode;
4240 /* Make a node of the sort we want. */
4241 t = make_node (OFFSET_TYPE);
4243 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4244 TREE_TYPE (t) = type;
4246 /* If we already have such a type, use the old one and free this one. */
4247 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4248 t = type_hash_canon (hashcode, t);
4250 if (TYPE_SIZE (t) == 0)
4251 layout_type (t);
4253 return t;
4256 /* Create a complex type whose components are COMPONENT_TYPE. */
4258 tree
4259 build_complex_type (component_type)
4260 tree component_type;
4262 register tree t;
4263 int hashcode;
4265 /* Make a node of the sort we want. */
4266 t = make_node (COMPLEX_TYPE);
4268 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4269 TYPE_VOLATILE (t) = TYPE_VOLATILE (component_type);
4270 TYPE_READONLY (t) = TYPE_READONLY (component_type);
4272 /* If we already have such a type, use the old one and free this one. */
4273 hashcode = TYPE_HASH (component_type);
4274 t = type_hash_canon (hashcode, t);
4276 if (TYPE_SIZE (t) == 0)
4277 layout_type (t);
4279 return t;
4282 /* Return OP, stripped of any conversions to wider types as much as is safe.
4283 Converting the value back to OP's type makes a value equivalent to OP.
4285 If FOR_TYPE is nonzero, we return a value which, if converted to
4286 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4288 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4289 narrowest type that can hold the value, even if they don't exactly fit.
4290 Otherwise, bit-field references are changed to a narrower type
4291 only if they can be fetched directly from memory in that type.
4293 OP must have integer, real or enumeral type. Pointers are not allowed!
4295 There are some cases where the obvious value we could return
4296 would regenerate to OP if converted to OP's type,
4297 but would not extend like OP to wider types.
4298 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4299 For example, if OP is (unsigned short)(signed char)-1,
4300 we avoid returning (signed char)-1 if FOR_TYPE is int,
4301 even though extending that to an unsigned short would regenerate OP,
4302 since the result of extending (signed char)-1 to (int)
4303 is different from (int) OP. */
4305 tree
4306 get_unwidened (op, for_type)
4307 register tree op;
4308 tree for_type;
4310 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4311 /* TYPE_PRECISION is safe in place of type_precision since
4312 pointer types are not allowed. */
4313 register tree type = TREE_TYPE (op);
4314 register unsigned final_prec
4315 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4316 register int uns
4317 = (for_type != 0 && for_type != type
4318 && final_prec > TYPE_PRECISION (type)
4319 && TREE_UNSIGNED (type));
4320 register tree win = op;
4322 while (TREE_CODE (op) == NOP_EXPR)
4324 register int bitschange
4325 = TYPE_PRECISION (TREE_TYPE (op))
4326 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4328 /* Truncations are many-one so cannot be removed.
4329 Unless we are later going to truncate down even farther. */
4330 if (bitschange < 0
4331 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4332 break;
4334 /* See what's inside this conversion. If we decide to strip it,
4335 we will set WIN. */
4336 op = TREE_OPERAND (op, 0);
4338 /* If we have not stripped any zero-extensions (uns is 0),
4339 we can strip any kind of extension.
4340 If we have previously stripped a zero-extension,
4341 only zero-extensions can safely be stripped.
4342 Any extension can be stripped if the bits it would produce
4343 are all going to be discarded later by truncating to FOR_TYPE. */
4345 if (bitschange > 0)
4347 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4348 win = op;
4349 /* TREE_UNSIGNED says whether this is a zero-extension.
4350 Let's avoid computing it if it does not affect WIN
4351 and if UNS will not be needed again. */
4352 if ((uns || TREE_CODE (op) == NOP_EXPR)
4353 && TREE_UNSIGNED (TREE_TYPE (op)))
4355 uns = 1;
4356 win = op;
4361 if (TREE_CODE (op) == COMPONENT_REF
4362 /* Since type_for_size always gives an integer type. */
4363 && TREE_CODE (type) != REAL_TYPE
4364 /* Don't crash if field not layed out yet. */
4365 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4367 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4368 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4370 /* We can get this structure field in the narrowest type it fits in.
4371 If FOR_TYPE is 0, do this only for a field that matches the
4372 narrower type exactly and is aligned for it
4373 The resulting extension to its nominal type (a fullword type)
4374 must fit the same conditions as for other extensions. */
4376 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4377 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4378 && (! uns || final_prec <= innerprec
4379 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4380 && type != 0)
4382 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4383 TREE_OPERAND (op, 1));
4384 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4385 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4386 TREE_RAISES (win) = TREE_RAISES (op);
4389 return win;
4392 /* Return OP or a simpler expression for a narrower value
4393 which can be sign-extended or zero-extended to give back OP.
4394 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4395 or 0 if the value should be sign-extended. */
4397 tree
4398 get_narrower (op, unsignedp_ptr)
4399 register tree op;
4400 int *unsignedp_ptr;
4402 register int uns = 0;
4403 int first = 1;
4404 register tree win = op;
4406 while (TREE_CODE (op) == NOP_EXPR)
4408 register int bitschange
4409 = TYPE_PRECISION (TREE_TYPE (op))
4410 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4412 /* Truncations are many-one so cannot be removed. */
4413 if (bitschange < 0)
4414 break;
4416 /* See what's inside this conversion. If we decide to strip it,
4417 we will set WIN. */
4418 op = TREE_OPERAND (op, 0);
4420 if (bitschange > 0)
4422 /* An extension: the outermost one can be stripped,
4423 but remember whether it is zero or sign extension. */
4424 if (first)
4425 uns = TREE_UNSIGNED (TREE_TYPE (op));
4426 /* Otherwise, if a sign extension has been stripped,
4427 only sign extensions can now be stripped;
4428 if a zero extension has been stripped, only zero-extensions. */
4429 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4430 break;
4431 first = 0;
4433 else /* bitschange == 0 */
4435 /* A change in nominal type can always be stripped, but we must
4436 preserve the unsignedness. */
4437 if (first)
4438 uns = TREE_UNSIGNED (TREE_TYPE (op));
4439 first = 0;
4442 win = op;
4445 if (TREE_CODE (op) == COMPONENT_REF
4446 /* Since type_for_size always gives an integer type. */
4447 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE)
4449 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4450 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4452 /* We can get this structure field in a narrower type that fits it,
4453 but the resulting extension to its nominal type (a fullword type)
4454 must satisfy the same conditions as for other extensions.
4456 Do this only for fields that are aligned (not bit-fields),
4457 because when bit-field insns will be used there is no
4458 advantage in doing this. */
4460 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4461 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4462 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4463 && type != 0)
4465 if (first)
4466 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4467 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4468 TREE_OPERAND (op, 1));
4469 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4470 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4471 TREE_RAISES (win) = TREE_RAISES (op);
4474 *unsignedp_ptr = uns;
4475 return win;
4478 /* Return the precision of a type, for arithmetic purposes.
4479 Supports all types on which arithmetic is possible
4480 (including pointer types).
4481 It's not clear yet what will be right for complex types. */
4484 type_precision (type)
4485 register tree type;
4487 return ((TREE_CODE (type) == INTEGER_TYPE
4488 || TREE_CODE (type) == ENUMERAL_TYPE
4489 || TREE_CODE (type) == REAL_TYPE)
4490 ? TYPE_PRECISION (type) : POINTER_SIZE);
4493 /* Nonzero if integer constant C has a value that is permissible
4494 for type TYPE (an INTEGER_TYPE). */
4497 int_fits_type_p (c, type)
4498 tree c, type;
4500 if (TREE_UNSIGNED (type))
4501 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4502 && INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c))
4503 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4504 && INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type)))
4505 /* Negative ints never fit unsigned types. */
4506 && ! (TREE_INT_CST_HIGH (c) < 0
4507 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4508 else
4509 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4510 && INT_CST_LT (TYPE_MAX_VALUE (type), c))
4511 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4512 && INT_CST_LT (c, TYPE_MIN_VALUE (type)))
4513 /* Unsigned ints with top bit set never fit signed types. */
4514 && ! (TREE_INT_CST_HIGH (c) < 0
4515 && TREE_UNSIGNED (TREE_TYPE (c))));
4518 /* Return the innermost context enclosing DECL that is
4519 a FUNCTION_DECL, or zero if none. */
4521 tree
4522 decl_function_context (decl)
4523 tree decl;
4525 tree context;
4527 if (TREE_CODE (decl) == ERROR_MARK)
4528 return 0;
4530 if (TREE_CODE (decl) == SAVE_EXPR)
4531 context = SAVE_EXPR_CONTEXT (decl);
4532 else
4533 context = DECL_CONTEXT (decl);
4535 while (context && TREE_CODE (context) != FUNCTION_DECL)
4537 if (TREE_CODE (context) == RECORD_TYPE
4538 || TREE_CODE (context) == UNION_TYPE
4539 || TREE_CODE (context) == QUAL_UNION_TYPE)
4540 context = TYPE_CONTEXT (context);
4541 else if (TREE_CODE (context) == TYPE_DECL)
4542 context = DECL_CONTEXT (context);
4543 else if (TREE_CODE (context) == BLOCK)
4544 context = BLOCK_SUPERCONTEXT (context);
4545 else
4546 /* Unhandled CONTEXT !? */
4547 abort ();
4550 return context;
4553 /* Return the innermost context enclosing DECL that is
4554 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4555 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4557 tree
4558 decl_type_context (decl)
4559 tree decl;
4561 tree context = DECL_CONTEXT (decl);
4563 while (context)
4565 if (TREE_CODE (context) == RECORD_TYPE
4566 || TREE_CODE (context) == UNION_TYPE
4567 || TREE_CODE (context) == QUAL_UNION_TYPE)
4568 return context;
4569 if (TREE_CODE (context) == TYPE_DECL
4570 || TREE_CODE (context) == FUNCTION_DECL)
4571 context = DECL_CONTEXT (context);
4572 else if (TREE_CODE (context) == BLOCK)
4573 context = BLOCK_SUPERCONTEXT (context);
4574 else
4575 /* Unhandled CONTEXT!? */
4576 abort ();
4578 return NULL_TREE;
4581 /* Print debugging information about the size of the
4582 toplev_inline_obstacks. */
4584 void
4585 print_inline_obstack_statistics ()
4587 struct simple_obstack_stack *current = toplev_inline_obstacks;
4588 int n_obstacks = 0;
4589 int n_alloc = 0;
4590 int n_chunks = 0;
4592 for (; current; current = current->next, ++n_obstacks)
4594 struct obstack *o = current->obstack;
4595 struct _obstack_chunk *chunk = o->chunk;
4597 n_alloc += o->next_free - chunk->contents;
4598 chunk = chunk->prev;
4599 ++n_chunks;
4600 for (; chunk; chunk = chunk->prev, ++n_chunks)
4601 n_alloc += chunk->limit - &chunk->contents[0];
4603 fprintf (stderr, "inline obstacks: %d obstacks, %d bytes, %d chunks\n",
4604 n_obstacks, n_alloc, n_chunks);
4607 /* Print debugging information about the obstack O, named STR. */
4609 void
4610 print_obstack_statistics (str, o)
4611 char *str;
4612 struct obstack *o;
4614 struct _obstack_chunk *chunk = o->chunk;
4615 int n_chunks = 1;
4616 int n_alloc = 0;
4618 n_alloc += o->next_free - chunk->contents;
4619 chunk = chunk->prev;
4620 while (chunk)
4622 n_chunks += 1;
4623 n_alloc += chunk->limit - &chunk->contents[0];
4624 chunk = chunk->prev;
4626 fprintf (stderr, "obstack %s: %lu bytes, %d chunks\n",
4627 str, n_alloc, n_chunks);
4630 /* Print debugging information about tree nodes generated during the compile,
4631 and any language-specific information. */
4633 void
4634 dump_tree_statistics ()
4636 int i;
4637 int total_nodes, total_bytes;
4639 fprintf (stderr, "\n??? tree nodes created\n\n");
4640 #ifdef GATHER_STATISTICS
4641 fprintf (stderr, "Kind Nodes Bytes\n");
4642 fprintf (stderr, "-------------------------------------\n");
4643 total_nodes = total_bytes = 0;
4644 for (i = 0; i < (int) all_kinds; i++)
4646 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4647 tree_node_counts[i], tree_node_sizes[i]);
4648 total_nodes += tree_node_counts[i];
4649 total_bytes += tree_node_sizes[i];
4651 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
4652 fprintf (stderr, "-------------------------------------\n");
4653 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4654 fprintf (stderr, "-------------------------------------\n");
4655 #else
4656 fprintf (stderr, "(No per-node statistics)\n");
4657 #endif
4658 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4659 print_obstack_statistics ("maybepermanent_obstack", &maybepermanent_obstack);
4660 print_obstack_statistics ("temporary_obstack", &temporary_obstack);
4661 print_obstack_statistics ("momentary_obstack", &momentary_obstack);
4662 print_obstack_statistics ("temp_decl_obstack", &temp_decl_obstack);
4663 print_inline_obstack_statistics ();
4664 print_lang_statistics ();
4667 #define FILE_FUNCTION_PREFIX_LEN 9
4669 #ifndef NO_DOLLAR_IN_LABEL
4670 #define FILE_FUNCTION_FORMAT "_GLOBAL_$D$%s"
4671 #else /* NO_DOLLAR_IN_LABEL */
4672 #ifndef NO_DOT_IN_LABEL
4673 #define FILE_FUNCTION_FORMAT "_GLOBAL_.D.%s"
4674 #else /* NO_DOT_IN_LABEL */
4675 #define FILE_FUNCTION_FORMAT "_GLOBAL__D_%s"
4676 #endif /* NO_DOT_IN_LABEL */
4677 #endif /* NO_DOLLAR_IN_LABEL */
4679 extern char * first_global_object_name;
4681 /* If KIND=='I', return a suitable global initializer (constructor) name.
4682 If KIND=='D', return a suitable global clean-up (destructor) name. */
4684 tree
4685 get_file_function_name (kind)
4686 int kind;
4688 char *buf;
4689 register char *p;
4691 if (first_global_object_name)
4692 p = first_global_object_name;
4693 else if (main_input_filename)
4694 p = main_input_filename;
4695 else
4696 p = input_filename;
4698 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p));
4700 /* Set up the name of the file-level functions we may need. */
4701 /* Use a global object (which is already required to be unique over
4702 the program) rather than the file name (which imposes extra
4703 constraints). -- Raeburn@MIT.EDU, 10 Jan 1990. */
4704 sprintf (buf, FILE_FUNCTION_FORMAT, p);
4706 /* Don't need to pull weird characters out of global names. */
4707 if (p != first_global_object_name)
4709 for (p = buf+11; *p; p++)
4710 if (! ((*p >= '0' && *p <= '9')
4711 #if 0 /* we always want labels, which are valid C++ identifiers (+ `$') */
4712 #ifndef ASM_IDENTIFY_GCC /* this is required if `.' is invalid -- k. raeburn */
4713 || *p == '.'
4714 #endif
4715 #endif
4716 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4717 || *p == '$'
4718 #endif
4719 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4720 || *p == '.'
4721 #endif
4722 || (*p >= 'A' && *p <= 'Z')
4723 || (*p >= 'a' && *p <= 'z')))
4724 *p = '_';
4727 buf[FILE_FUNCTION_PREFIX_LEN] = kind;
4729 return get_identifier (buf);
4732 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4733 The result is placed in BUFFER (which has length BIT_SIZE),
4734 with one bit in each char ('\000' or '\001').
4736 If the constructor is constant, NULL_TREE is returned.
4737 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4739 tree
4740 get_set_constructor_bits (init, buffer, bit_size)
4741 tree init;
4742 char *buffer;
4743 int bit_size;
4745 int i;
4746 tree vals;
4747 HOST_WIDE_INT domain_min
4748 = TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))));
4749 tree non_const_bits = NULL_TREE;
4750 for (i = 0; i < bit_size; i++)
4751 buffer[i] = 0;
4753 for (vals = TREE_OPERAND (init, 1);
4754 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4756 if (TREE_CODE (TREE_VALUE (vals)) != INTEGER_CST
4757 || (TREE_PURPOSE (vals) != NULL_TREE
4758 && TREE_CODE (TREE_PURPOSE (vals)) != INTEGER_CST))
4759 non_const_bits
4760 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4761 else if (TREE_PURPOSE (vals) != NULL_TREE)
4763 /* Set a range of bits to ones. */
4764 HOST_WIDE_INT lo_index
4765 = TREE_INT_CST_LOW (TREE_PURPOSE (vals)) - domain_min;
4766 HOST_WIDE_INT hi_index
4767 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
4768 if (lo_index < 0 || lo_index >= bit_size
4769 || hi_index < 0 || hi_index >= bit_size)
4770 abort ();
4771 for ( ; lo_index <= hi_index; lo_index++)
4772 buffer[lo_index] = 1;
4774 else
4776 /* Set a single bit to one. */
4777 HOST_WIDE_INT index
4778 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
4779 if (index < 0 || index >= bit_size)
4781 error ("invalid initializer for bit string");
4782 return NULL_TREE;
4784 buffer[index] = 1;
4787 return non_const_bits;
4790 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4791 The result is placed in BUFFER (which is an array of bytes).
4792 If the constructor is constant, NULL_TREE is returned.
4793 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4795 tree
4796 get_set_constructor_bytes (init, buffer, wd_size)
4797 tree init;
4798 unsigned char *buffer;
4799 int wd_size;
4801 int i;
4802 tree vals = TREE_OPERAND (init, 1);
4803 int set_word_size = BITS_PER_UNIT;
4804 int bit_size = wd_size * set_word_size;
4805 int bit_pos = 0;
4806 unsigned char *bytep = buffer;
4807 char *bit_buffer = (char *) alloca(bit_size);
4808 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4810 for (i = 0; i < wd_size; i++)
4811 buffer[i] = 0;
4813 for (i = 0; i < bit_size; i++)
4815 if (bit_buffer[i])
4817 if (BYTES_BIG_ENDIAN)
4818 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4819 else
4820 *bytep |= 1 << bit_pos;
4822 bit_pos++;
4823 if (bit_pos >= set_word_size)
4824 bit_pos = 0, bytep++;
4826 return non_const_bits;