Pass 9th fp argument correctly on System V/eabi; Add @plt for -fPIC/-mrelocatable
[official-gcc.git] / gcc / reload.c
blobc8a30d3a3538d01b7581ade393966937f8068209
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 88, 89, 92-6, 1997 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
57 NOTE SIDE EFFECTS:
59 find_reloads can alter the operands of the instruction it is called on.
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 #include "config.h"
91 #include <stdio.h>
92 #include "rtl.h"
93 #include "insn-config.h"
94 #include "insn-codes.h"
95 #include "recog.h"
96 #include "reload.h"
97 #include "regs.h"
98 #include "hard-reg-set.h"
99 #include "flags.h"
100 #include "real.h"
101 #include "output.h"
102 #include "expr.h"
104 #ifndef REGISTER_MOVE_COST
105 #define REGISTER_MOVE_COST(x, y) 2
106 #endif
108 #ifndef REGNO_MODE_OK_FOR_BASE_P
109 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
110 #endif
112 #ifndef REG_MODE_OK_FOR_BASE_P
113 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
114 #endif
116 /* The variables set up by `find_reloads' are:
118 n_reloads number of distinct reloads needed; max reload # + 1
119 tables indexed by reload number
120 reload_in rtx for value to reload from
121 reload_out rtx for where to store reload-reg afterward if nec
122 (often the same as reload_in)
123 reload_reg_class enum reg_class, saying what regs to reload into
124 reload_inmode enum machine_mode; mode this operand should have
125 when reloaded, on input.
126 reload_outmode enum machine_mode; mode this operand should have
127 when reloaded, on output.
128 reload_optional char, nonzero for an optional reload.
129 Optional reloads are ignored unless the
130 value is already sitting in a register.
131 reload_inc int, positive amount to increment or decrement by if
132 reload_in is a PRE_DEC, PRE_INC, POST_DEC, POST_INC.
133 Ignored otherwise (don't assume it is zero).
134 reload_in_reg rtx. A reg for which reload_in is the equivalent.
135 If reload_in is a symbol_ref which came from
136 reg_equiv_constant, then this is the pseudo
137 which has that symbol_ref as equivalent.
138 reload_reg_rtx rtx. This is the register to reload into.
139 If it is zero when `find_reloads' returns,
140 you must find a suitable register in the class
141 specified by reload_reg_class, and store here
142 an rtx for that register with mode from
143 reload_inmode or reload_outmode.
144 reload_nocombine char, nonzero if this reload shouldn't be
145 combined with another reload.
146 reload_opnum int, operand number being reloaded. This is
147 used to group related reloads and need not always
148 be equal to the actual operand number in the insn,
149 though it current will be; for in-out operands, it
150 is one of the two operand numbers.
151 reload_when_needed enum, classifies reload as needed either for
152 addressing an input reload, addressing an output,
153 for addressing a non-reloaded mem ref,
154 or for unspecified purposes (i.e., more than one
155 of the above).
156 reload_secondary_p int, 1 if this is a secondary register for one
157 or more reloads.
158 reload_secondary_in_reload
159 reload_secondary_out_reload
160 int, gives the reload number of a secondary
161 reload, when needed; otherwise -1
162 reload_secondary_in_icode
163 reload_secondary_out_icode
164 enum insn_code, if a secondary reload is required,
165 gives the INSN_CODE that uses the secondary
166 reload as a scratch register, or CODE_FOR_nothing
167 if the secondary reload register is to be an
168 intermediate register. */
169 int n_reloads;
171 rtx reload_in[MAX_RELOADS];
172 rtx reload_out[MAX_RELOADS];
173 enum reg_class reload_reg_class[MAX_RELOADS];
174 enum machine_mode reload_inmode[MAX_RELOADS];
175 enum machine_mode reload_outmode[MAX_RELOADS];
176 rtx reload_reg_rtx[MAX_RELOADS];
177 char reload_optional[MAX_RELOADS];
178 int reload_inc[MAX_RELOADS];
179 rtx reload_in_reg[MAX_RELOADS];
180 char reload_nocombine[MAX_RELOADS];
181 int reload_opnum[MAX_RELOADS];
182 enum reload_type reload_when_needed[MAX_RELOADS];
183 int reload_secondary_p[MAX_RELOADS];
184 int reload_secondary_in_reload[MAX_RELOADS];
185 int reload_secondary_out_reload[MAX_RELOADS];
186 enum insn_code reload_secondary_in_icode[MAX_RELOADS];
187 enum insn_code reload_secondary_out_icode[MAX_RELOADS];
189 /* All the "earlyclobber" operands of the current insn
190 are recorded here. */
191 int n_earlyclobbers;
192 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
194 int reload_n_operands;
196 /* Replacing reloads.
198 If `replace_reloads' is nonzero, then as each reload is recorded
199 an entry is made for it in the table `replacements'.
200 Then later `subst_reloads' can look through that table and
201 perform all the replacements needed. */
203 /* Nonzero means record the places to replace. */
204 static int replace_reloads;
206 /* Each replacement is recorded with a structure like this. */
207 struct replacement
209 rtx *where; /* Location to store in */
210 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
211 a SUBREG; 0 otherwise. */
212 int what; /* which reload this is for */
213 enum machine_mode mode; /* mode it must have */
216 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
218 /* Number of replacements currently recorded. */
219 static int n_replacements;
221 /* Used to track what is modified by an operand. */
222 struct decomposition
224 int reg_flag; /* Nonzero if referencing a register. */
225 int safe; /* Nonzero if this can't conflict with anything. */
226 rtx base; /* Base address for MEM. */
227 HOST_WIDE_INT start; /* Starting offset or register number. */
228 HOST_WIDE_INT end; /* Ending offset or register number. */
231 /* MEM-rtx's created for pseudo-regs in stack slots not directly addressable;
232 (see reg_equiv_address). */
233 static rtx memlocs[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
234 static int n_memlocs;
236 #ifdef SECONDARY_MEMORY_NEEDED
238 /* Save MEMs needed to copy from one class of registers to another. One MEM
239 is used per mode, but normally only one or two modes are ever used.
241 We keep two versions, before and after register elimination. The one
242 after register elimination is record separately for each operand. This
243 is done in case the address is not valid to be sure that we separately
244 reload each. */
246 static rtx secondary_memlocs[NUM_MACHINE_MODES];
247 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
248 #endif
250 /* The instruction we are doing reloads for;
251 so we can test whether a register dies in it. */
252 static rtx this_insn;
254 /* Nonzero if this instruction is a user-specified asm with operands. */
255 static int this_insn_is_asm;
257 /* If hard_regs_live_known is nonzero,
258 we can tell which hard regs are currently live,
259 at least enough to succeed in choosing dummy reloads. */
260 static int hard_regs_live_known;
262 /* Indexed by hard reg number,
263 element is nonegative if hard reg has been spilled.
264 This vector is passed to `find_reloads' as an argument
265 and is not changed here. */
266 static short *static_reload_reg_p;
268 /* Set to 1 in subst_reg_equivs if it changes anything. */
269 static int subst_reg_equivs_changed;
271 /* On return from push_reload, holds the reload-number for the OUT
272 operand, which can be different for that from the input operand. */
273 static int output_reloadnum;
275 /* Compare two RTX's. */
276 #define MATCHES(x, y) \
277 (x == y || (x != 0 && (GET_CODE (x) == REG \
278 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
279 : rtx_equal_p (x, y) && ! side_effects_p (x))))
281 /* Indicates if two reloads purposes are for similar enough things that we
282 can merge their reloads. */
283 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
284 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
285 || ((when1) == (when2) && (op1) == (op2)) \
286 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
287 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
288 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
289 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
290 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
292 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
293 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
294 ((when1) != (when2) \
295 || ! ((op1) == (op2) \
296 || (when1) == RELOAD_FOR_INPUT \
297 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
298 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
300 /* If we are going to reload an address, compute the reload type to
301 use. */
302 #define ADDR_TYPE(type) \
303 ((type) == RELOAD_FOR_INPUT_ADDRESS \
304 ? RELOAD_FOR_INPADDR_ADDRESS \
305 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
306 ? RELOAD_FOR_OUTADDR_ADDRESS \
307 : (type)))
309 static int push_secondary_reload PROTO((int, rtx, int, int, enum reg_class,
310 enum machine_mode, enum reload_type,
311 enum insn_code *));
312 static enum reg_class find_valid_class PROTO((enum machine_mode, int));
313 static int push_reload PROTO((rtx, rtx, rtx *, rtx *, enum reg_class,
314 enum machine_mode, enum machine_mode,
315 int, int, int, enum reload_type));
316 static void push_replacement PROTO((rtx *, int, enum machine_mode));
317 static void combine_reloads PROTO((void));
318 static rtx find_dummy_reload PROTO((rtx, rtx, rtx *, rtx *,
319 enum machine_mode, enum machine_mode,
320 enum reg_class, int, int));
321 static int earlyclobber_operand_p PROTO((rtx));
322 static int hard_reg_set_here_p PROTO((int, int, rtx));
323 static struct decomposition decompose PROTO((rtx));
324 static int immune_p PROTO((rtx, rtx, struct decomposition));
325 static int alternative_allows_memconst PROTO((char *, int));
326 static rtx find_reloads_toplev PROTO((rtx, int, enum reload_type, int, int));
327 static rtx make_memloc PROTO((rtx, int));
328 static int find_reloads_address PROTO((enum machine_mode, rtx *, rtx, rtx *,
329 int, enum reload_type, int, rtx));
330 static rtx subst_reg_equivs PROTO((rtx));
331 static rtx subst_indexed_address PROTO((rtx));
332 static int find_reloads_address_1 PROTO((enum machine_mode, rtx, int, rtx *,
333 int, enum reload_type,int, rtx));
334 static void find_reloads_address_part PROTO((rtx, rtx *, enum reg_class,
335 enum machine_mode, int,
336 enum reload_type, int));
337 static int find_inc_amount PROTO((rtx, rtx));
339 #ifdef HAVE_SECONDARY_RELOADS
341 /* Determine if any secondary reloads are needed for loading (if IN_P is
342 non-zero) or storing (if IN_P is zero) X to or from a reload register of
343 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
344 are needed, push them.
346 Return the reload number of the secondary reload we made, or -1 if
347 we didn't need one. *PICODE is set to the insn_code to use if we do
348 need a secondary reload. */
350 static int
351 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
352 type, picode)
353 int in_p;
354 rtx x;
355 int opnum;
356 int optional;
357 enum reg_class reload_class;
358 enum machine_mode reload_mode;
359 enum reload_type type;
360 enum insn_code *picode;
362 enum reg_class class = NO_REGS;
363 enum machine_mode mode = reload_mode;
364 enum insn_code icode = CODE_FOR_nothing;
365 enum reg_class t_class = NO_REGS;
366 enum machine_mode t_mode = VOIDmode;
367 enum insn_code t_icode = CODE_FOR_nothing;
368 enum reload_type secondary_type;
369 int i;
370 int s_reload, t_reload = -1;
372 if (type == RELOAD_FOR_INPUT_ADDRESS
373 || type == RELOAD_FOR_OUTPUT_ADDRESS
374 || type == RELOAD_FOR_INPADDR_ADDRESS
375 || type == RELOAD_FOR_OUTADDR_ADDRESS)
376 secondary_type = type;
377 else
378 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
380 *picode = CODE_FOR_nothing;
382 /* If X is a paradoxical SUBREG, use the inner value to determine both the
383 mode and object being reloaded. */
384 if (GET_CODE (x) == SUBREG
385 && (GET_MODE_SIZE (GET_MODE (x))
386 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
388 x = SUBREG_REG (x);
389 reload_mode = GET_MODE (x);
392 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
393 is still a pseudo-register by now, it *must* have an equivalent MEM
394 but we don't want to assume that), use that equivalent when seeing if
395 a secondary reload is needed since whether or not a reload is needed
396 might be sensitive to the form of the MEM. */
398 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
399 && reg_equiv_mem[REGNO (x)] != 0)
400 x = reg_equiv_mem[REGNO (x)];
402 #ifdef SECONDARY_INPUT_RELOAD_CLASS
403 if (in_p)
404 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
405 #endif
407 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
408 if (! in_p)
409 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
410 #endif
412 /* If we don't need any secondary registers, done. */
413 if (class == NO_REGS)
414 return -1;
416 /* Get a possible insn to use. If the predicate doesn't accept X, don't
417 use the insn. */
419 icode = (in_p ? reload_in_optab[(int) reload_mode]
420 : reload_out_optab[(int) reload_mode]);
422 if (icode != CODE_FOR_nothing
423 && insn_operand_predicate[(int) icode][in_p]
424 && (! (insn_operand_predicate[(int) icode][in_p]) (x, reload_mode)))
425 icode = CODE_FOR_nothing;
427 /* If we will be using an insn, see if it can directly handle the reload
428 register we will be using. If it can, the secondary reload is for a
429 scratch register. If it can't, we will use the secondary reload for
430 an intermediate register and require a tertiary reload for the scratch
431 register. */
433 if (icode != CODE_FOR_nothing)
435 /* If IN_P is non-zero, the reload register will be the output in
436 operand 0. If IN_P is zero, the reload register will be the input
437 in operand 1. Outputs should have an initial "=", which we must
438 skip. */
440 char insn_letter = insn_operand_constraint[(int) icode][!in_p][in_p];
441 enum reg_class insn_class
442 = (insn_letter == 'r' ? GENERAL_REGS
443 : REG_CLASS_FROM_LETTER (insn_letter));
445 if (insn_class == NO_REGS
446 || (in_p && insn_operand_constraint[(int) icode][!in_p][0] != '=')
447 /* The scratch register's constraint must start with "=&". */
448 || insn_operand_constraint[(int) icode][2][0] != '='
449 || insn_operand_constraint[(int) icode][2][1] != '&')
450 abort ();
452 if (reg_class_subset_p (reload_class, insn_class))
453 mode = insn_operand_mode[(int) icode][2];
454 else
456 char t_letter = insn_operand_constraint[(int) icode][2][2];
457 class = insn_class;
458 t_mode = insn_operand_mode[(int) icode][2];
459 t_class = (t_letter == 'r' ? GENERAL_REGS
460 : REG_CLASS_FROM_LETTER (t_letter));
461 t_icode = icode;
462 icode = CODE_FOR_nothing;
466 /* This case isn't valid, so fail. Reload is allowed to use the same
467 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
468 in the case of a secondary register, we actually need two different
469 registers for correct code. We fail here to prevent the possibility of
470 silently generating incorrect code later.
472 The convention is that secondary input reloads are valid only if the
473 secondary_class is different from class. If you have such a case, you
474 can not use secondary reloads, you must work around the problem some
475 other way.
477 Allow this when MODE is not reload_mode and assume that the generated
478 code handles this case (it does on the Alpha, which is the only place
479 this currently happens). */
481 if (in_p && class == reload_class && mode == reload_mode)
482 abort ();
484 /* If we need a tertiary reload, see if we have one we can reuse or else
485 make a new one. */
487 if (t_class != NO_REGS)
489 for (t_reload = 0; t_reload < n_reloads; t_reload++)
490 if (reload_secondary_p[t_reload]
491 && (reg_class_subset_p (t_class, reload_reg_class[t_reload])
492 || reg_class_subset_p (reload_reg_class[t_reload], t_class))
493 && ((in_p && reload_inmode[t_reload] == t_mode)
494 || (! in_p && reload_outmode[t_reload] == t_mode))
495 && ((in_p && (reload_secondary_in_icode[t_reload]
496 == CODE_FOR_nothing))
497 || (! in_p &&(reload_secondary_out_icode[t_reload]
498 == CODE_FOR_nothing)))
499 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
500 && MERGABLE_RELOADS (secondary_type,
501 reload_when_needed[t_reload],
502 opnum, reload_opnum[t_reload]))
504 if (in_p)
505 reload_inmode[t_reload] = t_mode;
506 if (! in_p)
507 reload_outmode[t_reload] = t_mode;
509 if (reg_class_subset_p (t_class, reload_reg_class[t_reload]))
510 reload_reg_class[t_reload] = t_class;
512 reload_opnum[t_reload] = MIN (reload_opnum[t_reload], opnum);
513 reload_optional[t_reload] &= optional;
514 reload_secondary_p[t_reload] = 1;
515 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[t_reload],
516 opnum, reload_opnum[t_reload]))
517 reload_when_needed[t_reload] = RELOAD_OTHER;
520 if (t_reload == n_reloads)
522 /* We need to make a new tertiary reload for this register class. */
523 reload_in[t_reload] = reload_out[t_reload] = 0;
524 reload_reg_class[t_reload] = t_class;
525 reload_inmode[t_reload] = in_p ? t_mode : VOIDmode;
526 reload_outmode[t_reload] = ! in_p ? t_mode : VOIDmode;
527 reload_reg_rtx[t_reload] = 0;
528 reload_optional[t_reload] = optional;
529 reload_inc[t_reload] = 0;
530 /* Maybe we could combine these, but it seems too tricky. */
531 reload_nocombine[t_reload] = 1;
532 reload_in_reg[t_reload] = 0;
533 reload_opnum[t_reload] = opnum;
534 reload_when_needed[t_reload] = secondary_type;
535 reload_secondary_in_reload[t_reload] = -1;
536 reload_secondary_out_reload[t_reload] = -1;
537 reload_secondary_in_icode[t_reload] = CODE_FOR_nothing;
538 reload_secondary_out_icode[t_reload] = CODE_FOR_nothing;
539 reload_secondary_p[t_reload] = 1;
541 n_reloads++;
545 /* See if we can reuse an existing secondary reload. */
546 for (s_reload = 0; s_reload < n_reloads; s_reload++)
547 if (reload_secondary_p[s_reload]
548 && (reg_class_subset_p (class, reload_reg_class[s_reload])
549 || reg_class_subset_p (reload_reg_class[s_reload], class))
550 && ((in_p && reload_inmode[s_reload] == mode)
551 || (! in_p && reload_outmode[s_reload] == mode))
552 && ((in_p && reload_secondary_in_reload[s_reload] == t_reload)
553 || (! in_p && reload_secondary_out_reload[s_reload] == t_reload))
554 && ((in_p && reload_secondary_in_icode[s_reload] == t_icode)
555 || (! in_p && reload_secondary_out_icode[s_reload] == t_icode))
556 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
557 && MERGABLE_RELOADS (secondary_type, reload_when_needed[s_reload],
558 opnum, reload_opnum[s_reload]))
560 if (in_p)
561 reload_inmode[s_reload] = mode;
562 if (! in_p)
563 reload_outmode[s_reload] = mode;
565 if (reg_class_subset_p (class, reload_reg_class[s_reload]))
566 reload_reg_class[s_reload] = class;
568 reload_opnum[s_reload] = MIN (reload_opnum[s_reload], opnum);
569 reload_optional[s_reload] &= optional;
570 reload_secondary_p[s_reload] = 1;
571 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[s_reload],
572 opnum, reload_opnum[s_reload]))
573 reload_when_needed[s_reload] = RELOAD_OTHER;
576 if (s_reload == n_reloads)
578 #ifdef SECONDARY_MEMORY_NEEDED
579 /* If we need a memory location to copy between the two reload regs,
580 set it up now. Note that we do the input case before making
581 the reload and the output case after. This is due to the
582 way reloads are output. */
584 if (in_p && icode == CODE_FOR_nothing
585 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
586 get_secondary_mem (x, reload_mode, opnum, type);
587 #endif
589 /* We need to make a new secondary reload for this register class. */
590 reload_in[s_reload] = reload_out[s_reload] = 0;
591 reload_reg_class[s_reload] = class;
593 reload_inmode[s_reload] = in_p ? mode : VOIDmode;
594 reload_outmode[s_reload] = ! in_p ? mode : VOIDmode;
595 reload_reg_rtx[s_reload] = 0;
596 reload_optional[s_reload] = optional;
597 reload_inc[s_reload] = 0;
598 /* Maybe we could combine these, but it seems too tricky. */
599 reload_nocombine[s_reload] = 1;
600 reload_in_reg[s_reload] = 0;
601 reload_opnum[s_reload] = opnum;
602 reload_when_needed[s_reload] = secondary_type;
603 reload_secondary_in_reload[s_reload] = in_p ? t_reload : -1;
604 reload_secondary_out_reload[s_reload] = ! in_p ? t_reload : -1;
605 reload_secondary_in_icode[s_reload] = in_p ? t_icode : CODE_FOR_nothing;
606 reload_secondary_out_icode[s_reload]
607 = ! in_p ? t_icode : CODE_FOR_nothing;
608 reload_secondary_p[s_reload] = 1;
610 n_reloads++;
612 #ifdef SECONDARY_MEMORY_NEEDED
613 if (! in_p && icode == CODE_FOR_nothing
614 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
615 get_secondary_mem (x, mode, opnum, type);
616 #endif
619 *picode = icode;
620 return s_reload;
622 #endif /* HAVE_SECONDARY_RELOADS */
624 #ifdef SECONDARY_MEMORY_NEEDED
626 /* Return a memory location that will be used to copy X in mode MODE.
627 If we haven't already made a location for this mode in this insn,
628 call find_reloads_address on the location being returned. */
631 get_secondary_mem (x, mode, opnum, type)
632 rtx x;
633 enum machine_mode mode;
634 int opnum;
635 enum reload_type type;
637 rtx loc;
638 int mem_valid;
640 /* By default, if MODE is narrower than a word, widen it to a word.
641 This is required because most machines that require these memory
642 locations do not support short load and stores from all registers
643 (e.g., FP registers). */
645 #ifdef SECONDARY_MEMORY_NEEDED_MODE
646 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
647 #else
648 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
649 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
650 #endif
652 /* If we already have made a MEM for this operand in MODE, return it. */
653 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
654 return secondary_memlocs_elim[(int) mode][opnum];
656 /* If this is the first time we've tried to get a MEM for this mode,
657 allocate a new one. `something_changed' in reload will get set
658 by noticing that the frame size has changed. */
660 if (secondary_memlocs[(int) mode] == 0)
662 #ifdef SECONDARY_MEMORY_NEEDED_RTX
663 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
664 #else
665 secondary_memlocs[(int) mode]
666 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
667 #endif
670 /* Get a version of the address doing any eliminations needed. If that
671 didn't give us a new MEM, make a new one if it isn't valid. */
673 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX, 0);
674 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
676 if (! mem_valid && loc == secondary_memlocs[(int) mode])
677 loc = copy_rtx (loc);
679 /* The only time the call below will do anything is if the stack
680 offset is too large. In that case IND_LEVELS doesn't matter, so we
681 can just pass a zero. Adjust the type to be the address of the
682 corresponding object. If the address was valid, save the eliminated
683 address. If it wasn't valid, we need to make a reload each time, so
684 don't save it. */
686 if (! mem_valid)
688 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
689 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
690 : RELOAD_OTHER);
692 find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
693 opnum, type, 0, 0);
696 secondary_memlocs_elim[(int) mode][opnum] = loc;
697 return loc;
700 /* Clear any secondary memory locations we've made. */
702 void
703 clear_secondary_mem ()
705 bzero ((char *) secondary_memlocs, sizeof secondary_memlocs);
707 #endif /* SECONDARY_MEMORY_NEEDED */
709 /* Find the largest class for which every register number plus N is valid in
710 M1 (if in range). Abort if no such class exists. */
712 static enum reg_class
713 find_valid_class (m1, n)
714 enum machine_mode m1;
715 int n;
717 int class;
718 int regno;
719 enum reg_class best_class;
720 int best_size = 0;
722 for (class = 1; class < N_REG_CLASSES; class++)
724 int bad = 0;
725 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
726 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
727 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
728 && ! HARD_REGNO_MODE_OK (regno + n, m1))
729 bad = 1;
731 if (! bad && reg_class_size[class] > best_size)
732 best_class = class, best_size = reg_class_size[class];
735 if (best_size == 0)
736 abort ();
738 return best_class;
741 /* Record one reload that needs to be performed.
742 IN is an rtx saying where the data are to be found before this instruction.
743 OUT says where they must be stored after the instruction.
744 (IN is zero for data not read, and OUT is zero for data not written.)
745 INLOC and OUTLOC point to the places in the instructions where
746 IN and OUT were found.
747 If IN and OUT are both non-zero, it means the same register must be used
748 to reload both IN and OUT.
750 CLASS is a register class required for the reloaded data.
751 INMODE is the machine mode that the instruction requires
752 for the reg that replaces IN and OUTMODE is likewise for OUT.
754 If IN is zero, then OUT's location and mode should be passed as
755 INLOC and INMODE.
757 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
759 OPTIONAL nonzero means this reload does not need to be performed:
760 it can be discarded if that is more convenient.
762 OPNUM and TYPE say what the purpose of this reload is.
764 The return value is the reload-number for this reload.
766 If both IN and OUT are nonzero, in some rare cases we might
767 want to make two separate reloads. (Actually we never do this now.)
768 Therefore, the reload-number for OUT is stored in
769 output_reloadnum when we return; the return value applies to IN.
770 Usually (presently always), when IN and OUT are nonzero,
771 the two reload-numbers are equal, but the caller should be careful to
772 distinguish them. */
774 static int
775 push_reload (in, out, inloc, outloc, class,
776 inmode, outmode, strict_low, optional, opnum, type)
777 register rtx in, out;
778 rtx *inloc, *outloc;
779 enum reg_class class;
780 enum machine_mode inmode, outmode;
781 int strict_low;
782 int optional;
783 int opnum;
784 enum reload_type type;
786 register int i;
787 int dont_share = 0;
788 int dont_remove_subreg = 0;
789 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
790 int secondary_in_reload = -1, secondary_out_reload = -1;
791 enum insn_code secondary_in_icode = CODE_FOR_nothing;
792 enum insn_code secondary_out_icode = CODE_FOR_nothing;
794 /* INMODE and/or OUTMODE could be VOIDmode if no mode
795 has been specified for the operand. In that case,
796 use the operand's mode as the mode to reload. */
797 if (inmode == VOIDmode && in != 0)
798 inmode = GET_MODE (in);
799 if (outmode == VOIDmode && out != 0)
800 outmode = GET_MODE (out);
802 /* If IN is a pseudo register everywhere-equivalent to a constant, and
803 it is not in a hard register, reload straight from the constant,
804 since we want to get rid of such pseudo registers.
805 Often this is done earlier, but not always in find_reloads_address. */
806 if (in != 0 && GET_CODE (in) == REG)
808 register int regno = REGNO (in);
810 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
811 && reg_equiv_constant[regno] != 0)
812 in = reg_equiv_constant[regno];
815 /* Likewise for OUT. Of course, OUT will never be equivalent to
816 an actual constant, but it might be equivalent to a memory location
817 (in the case of a parameter). */
818 if (out != 0 && GET_CODE (out) == REG)
820 register int regno = REGNO (out);
822 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
823 && reg_equiv_constant[regno] != 0)
824 out = reg_equiv_constant[regno];
827 /* If we have a read-write operand with an address side-effect,
828 change either IN or OUT so the side-effect happens only once. */
829 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
831 if (GET_CODE (XEXP (in, 0)) == POST_INC
832 || GET_CODE (XEXP (in, 0)) == POST_DEC)
833 in = gen_rtx (MEM, GET_MODE (in), XEXP (XEXP (in, 0), 0));
834 if (GET_CODE (XEXP (in, 0)) == PRE_INC
835 || GET_CODE (XEXP (in, 0)) == PRE_DEC)
836 out = gen_rtx (MEM, GET_MODE (out), XEXP (XEXP (out, 0), 0));
839 /* If we are reloading a (SUBREG constant ...), really reload just the
840 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
841 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
842 a pseudo and hence will become a MEM) with M1 wider than M2 and the
843 register is a pseudo, also reload the inside expression.
844 For machines that extend byte loads, do this for any SUBREG of a pseudo
845 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
846 M2 is an integral mode that gets extended when loaded.
847 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
848 either M1 is not valid for R or M2 is wider than a word but we only
849 need one word to store an M2-sized quantity in R.
850 (However, if OUT is nonzero, we need to reload the reg *and*
851 the subreg, so do nothing here, and let following statement handle it.)
853 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
854 we can't handle it here because CONST_INT does not indicate a mode.
856 Similarly, we must reload the inside expression if we have a
857 STRICT_LOW_PART (presumably, in == out in the cas).
859 Also reload the inner expression if it does not require a secondary
860 reload but the SUBREG does.
862 Finally, reload the inner expression if it is a register that is in
863 the class whose registers cannot be referenced in a different size
864 and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
865 cannot reload just the inside since we might end up with the wrong
866 register class. */
868 if (in != 0 && GET_CODE (in) == SUBREG && SUBREG_WORD (in) == 0
869 #ifdef CLASS_CANNOT_CHANGE_SIZE
870 && class != CLASS_CANNOT_CHANGE_SIZE
871 #endif
872 && (CONSTANT_P (SUBREG_REG (in))
873 || GET_CODE (SUBREG_REG (in)) == PLUS
874 || strict_low
875 || (((GET_CODE (SUBREG_REG (in)) == REG
876 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
877 || GET_CODE (SUBREG_REG (in)) == MEM)
878 && ((GET_MODE_SIZE (inmode)
879 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
880 #ifdef LOAD_EXTEND_OP
881 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
882 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
883 <= UNITS_PER_WORD)
884 && (GET_MODE_SIZE (inmode)
885 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
886 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
887 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
888 #endif
890 || (GET_CODE (SUBREG_REG (in)) == REG
891 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
892 /* The case where out is nonzero
893 is handled differently in the following statement. */
894 && (out == 0 || SUBREG_WORD (in) == 0)
895 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
896 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
897 > UNITS_PER_WORD)
898 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
899 / UNITS_PER_WORD)
900 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
901 GET_MODE (SUBREG_REG (in)))))
902 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in))
903 + SUBREG_WORD (in)),
904 inmode)))
905 #ifdef SECONDARY_INPUT_RELOAD_CLASS
906 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
907 && (SECONDARY_INPUT_RELOAD_CLASS (class,
908 GET_MODE (SUBREG_REG (in)),
909 SUBREG_REG (in))
910 == NO_REGS))
911 #endif
912 #ifdef CLASS_CANNOT_CHANGE_SIZE
913 || (GET_CODE (SUBREG_REG (in)) == REG
914 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
915 && (TEST_HARD_REG_BIT
916 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
917 REGNO (SUBREG_REG (in))))
918 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
919 != GET_MODE_SIZE (inmode)))
920 #endif
923 in_subreg_loc = inloc;
924 inloc = &SUBREG_REG (in);
925 in = *inloc;
926 #ifndef LOAD_EXTEND_OP
927 if (GET_CODE (in) == MEM)
928 /* This is supposed to happen only for paradoxical subregs made by
929 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
930 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
931 abort ();
932 #endif
933 inmode = GET_MODE (in);
936 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
937 either M1 is not valid for R or M2 is wider than a word but we only
938 need one word to store an M2-sized quantity in R.
940 However, we must reload the inner reg *as well as* the subreg in
941 that case. */
943 /* Similar issue for (SUBREG constant ...) if it was not handled by the
944 code above. This can happen if SUBREG_WORD != 0. */
946 if (in != 0 && GET_CODE (in) == SUBREG
947 && (CONSTANT_P (SUBREG_REG (in))
948 || (GET_CODE (SUBREG_REG (in)) == REG
949 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
950 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in))
951 + SUBREG_WORD (in),
952 inmode)
953 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
954 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
955 > UNITS_PER_WORD)
956 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
957 / UNITS_PER_WORD)
958 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
959 GET_MODE (SUBREG_REG (in)))))))))
961 /* This relies on the fact that emit_reload_insns outputs the
962 instructions for input reloads of type RELOAD_OTHER in the same
963 order as the reloads. Thus if the outer reload is also of type
964 RELOAD_OTHER, we are guaranteed that this inner reload will be
965 output before the outer reload. */
966 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
967 find_valid_class (inmode, SUBREG_WORD (in)),
968 VOIDmode, VOIDmode, 0, 0, opnum, type);
969 dont_remove_subreg = 1;
972 /* Similarly for paradoxical and problematical SUBREGs on the output.
973 Note that there is no reason we need worry about the previous value
974 of SUBREG_REG (out); even if wider than out,
975 storing in a subreg is entitled to clobber it all
976 (except in the case of STRICT_LOW_PART,
977 and in that case the constraint should label it input-output.) */
978 if (out != 0 && GET_CODE (out) == SUBREG && SUBREG_WORD (out) == 0
979 #ifdef CLASS_CANNOT_CHANGE_SIZE
980 && class != CLASS_CANNOT_CHANGE_SIZE
981 #endif
982 && (CONSTANT_P (SUBREG_REG (out))
983 || strict_low
984 || (((GET_CODE (SUBREG_REG (out)) == REG
985 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
986 || GET_CODE (SUBREG_REG (out)) == MEM)
987 && ((GET_MODE_SIZE (outmode)
988 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))))
989 || (GET_CODE (SUBREG_REG (out)) == REG
990 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
991 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
992 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
993 > UNITS_PER_WORD)
994 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
995 / UNITS_PER_WORD)
996 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
997 GET_MODE (SUBREG_REG (out)))))
998 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out))
999 + SUBREG_WORD (out)),
1000 outmode)))
1001 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1002 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1003 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1004 GET_MODE (SUBREG_REG (out)),
1005 SUBREG_REG (out))
1006 == NO_REGS))
1007 #endif
1008 #ifdef CLASS_CANNOT_CHANGE_SIZE
1009 || (GET_CODE (SUBREG_REG (out)) == REG
1010 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1011 && (TEST_HARD_REG_BIT
1012 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
1013 REGNO (SUBREG_REG (out))))
1014 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1015 != GET_MODE_SIZE (outmode)))
1016 #endif
1019 out_subreg_loc = outloc;
1020 outloc = &SUBREG_REG (out);
1021 out = *outloc;
1022 #ifndef LOAD_EXTEND_OP
1023 if (GET_CODE (out) == MEM
1024 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1025 abort ();
1026 #endif
1027 outmode = GET_MODE (out);
1030 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1031 either M1 is not valid for R or M2 is wider than a word but we only
1032 need one word to store an M2-sized quantity in R.
1034 However, we must reload the inner reg *as well as* the subreg in
1035 that case. In this case, the inner reg is an in-out reload. */
1037 if (out != 0 && GET_CODE (out) == SUBREG
1038 && GET_CODE (SUBREG_REG (out)) == REG
1039 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1040 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (out)) + SUBREG_WORD (out),
1041 outmode)
1042 || (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1043 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1044 > UNITS_PER_WORD)
1045 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1046 / UNITS_PER_WORD)
1047 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1048 GET_MODE (SUBREG_REG (out)))))))
1050 /* This relies on the fact that emit_reload_insns outputs the
1051 instructions for output reloads of type RELOAD_OTHER in reverse
1052 order of the reloads. Thus if the outer reload is also of type
1053 RELOAD_OTHER, we are guaranteed that this inner reload will be
1054 output after the outer reload. */
1055 dont_remove_subreg = 1;
1056 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1057 &SUBREG_REG (out),
1058 find_valid_class (outmode, SUBREG_WORD (out)),
1059 VOIDmode, VOIDmode, 0, 0,
1060 opnum, RELOAD_OTHER);
1063 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1064 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1065 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1066 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1067 dont_share = 1;
1069 /* If IN is a SUBREG of a hard register, make a new REG. This
1070 simplifies some of the cases below. */
1072 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1073 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1074 && ! dont_remove_subreg)
1075 in = gen_rtx (REG, GET_MODE (in),
1076 REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
1078 /* Similarly for OUT. */
1079 if (out != 0 && GET_CODE (out) == SUBREG
1080 && GET_CODE (SUBREG_REG (out)) == REG
1081 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1082 && ! dont_remove_subreg)
1083 out = gen_rtx (REG, GET_MODE (out),
1084 REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
1086 /* Narrow down the class of register wanted if that is
1087 desirable on this machine for efficiency. */
1088 if (in != 0)
1089 class = PREFERRED_RELOAD_CLASS (in, class);
1091 /* Output reloads may need analogous treatment, different in detail. */
1092 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1093 if (out != 0)
1094 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1095 #endif
1097 /* Make sure we use a class that can handle the actual pseudo
1098 inside any subreg. For example, on the 386, QImode regs
1099 can appear within SImode subregs. Although GENERAL_REGS
1100 can handle SImode, QImode needs a smaller class. */
1101 #ifdef LIMIT_RELOAD_CLASS
1102 if (in_subreg_loc)
1103 class = LIMIT_RELOAD_CLASS (inmode, class);
1104 else if (in != 0 && GET_CODE (in) == SUBREG)
1105 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1107 if (out_subreg_loc)
1108 class = LIMIT_RELOAD_CLASS (outmode, class);
1109 if (out != 0 && GET_CODE (out) == SUBREG)
1110 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1111 #endif
1113 /* Verify that this class is at least possible for the mode that
1114 is specified. */
1115 if (this_insn_is_asm)
1117 enum machine_mode mode;
1118 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1119 mode = inmode;
1120 else
1121 mode = outmode;
1122 if (mode == VOIDmode)
1124 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1125 mode = word_mode;
1126 if (in != 0)
1127 inmode = word_mode;
1128 if (out != 0)
1129 outmode = word_mode;
1131 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1132 if (HARD_REGNO_MODE_OK (i, mode)
1133 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1135 int nregs = HARD_REGNO_NREGS (i, mode);
1137 int j;
1138 for (j = 1; j < nregs; j++)
1139 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1140 break;
1141 if (j == nregs)
1142 break;
1144 if (i == FIRST_PSEUDO_REGISTER)
1146 error_for_asm (this_insn, "impossible register constraint in `asm'");
1147 class = ALL_REGS;
1151 if (class == NO_REGS)
1152 abort ();
1154 /* We can use an existing reload if the class is right
1155 and at least one of IN and OUT is a match
1156 and the other is at worst neutral.
1157 (A zero compared against anything is neutral.)
1159 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
1160 for the same thing since that can cause us to need more reload registers
1161 than we otherwise would. */
1163 for (i = 0; i < n_reloads; i++)
1164 if ((reg_class_subset_p (class, reload_reg_class[i])
1165 || reg_class_subset_p (reload_reg_class[i], class))
1166 /* If the existing reload has a register, it must fit our class. */
1167 && (reload_reg_rtx[i] == 0
1168 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1169 true_regnum (reload_reg_rtx[i])))
1170 && ((in != 0 && MATCHES (reload_in[i], in) && ! dont_share
1171 && (out == 0 || reload_out[i] == 0 || MATCHES (reload_out[i], out)))
1173 (out != 0 && MATCHES (reload_out[i], out)
1174 && (in == 0 || reload_in[i] == 0 || MATCHES (reload_in[i], in))))
1175 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
1176 && MERGABLE_RELOADS (type, reload_when_needed[i],
1177 opnum, reload_opnum[i]))
1178 break;
1180 /* Reloading a plain reg for input can match a reload to postincrement
1181 that reg, since the postincrement's value is the right value.
1182 Likewise, it can match a preincrement reload, since we regard
1183 the preincrementation as happening before any ref in this insn
1184 to that register. */
1185 if (i == n_reloads)
1186 for (i = 0; i < n_reloads; i++)
1187 if ((reg_class_subset_p (class, reload_reg_class[i])
1188 || reg_class_subset_p (reload_reg_class[i], class))
1189 /* If the existing reload has a register, it must fit our class. */
1190 && (reload_reg_rtx[i] == 0
1191 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1192 true_regnum (reload_reg_rtx[i])))
1193 && out == 0 && reload_out[i] == 0 && reload_in[i] != 0
1194 && ((GET_CODE (in) == REG
1195 && (GET_CODE (reload_in[i]) == POST_INC
1196 || GET_CODE (reload_in[i]) == POST_DEC
1197 || GET_CODE (reload_in[i]) == PRE_INC
1198 || GET_CODE (reload_in[i]) == PRE_DEC)
1199 && MATCHES (XEXP (reload_in[i], 0), in))
1201 (GET_CODE (reload_in[i]) == REG
1202 && (GET_CODE (in) == POST_INC
1203 || GET_CODE (in) == POST_DEC
1204 || GET_CODE (in) == PRE_INC
1205 || GET_CODE (in) == PRE_DEC)
1206 && MATCHES (XEXP (in, 0), reload_in[i])))
1207 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
1208 && MERGABLE_RELOADS (type, reload_when_needed[i],
1209 opnum, reload_opnum[i]))
1211 /* Make sure reload_in ultimately has the increment,
1212 not the plain register. */
1213 if (GET_CODE (in) == REG)
1214 in = reload_in[i];
1215 break;
1218 if (i == n_reloads)
1220 /* See if we need a secondary reload register to move between CLASS
1221 and IN or CLASS and OUT. Get the icode and push any required reloads
1222 needed for each of them if so. */
1224 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1225 if (in != 0)
1226 secondary_in_reload
1227 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1228 &secondary_in_icode);
1229 #endif
1231 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1232 if (out != 0 && GET_CODE (out) != SCRATCH)
1233 secondary_out_reload
1234 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1235 type, &secondary_out_icode);
1236 #endif
1238 /* We found no existing reload suitable for re-use.
1239 So add an additional reload. */
1241 #ifdef SECONDARY_MEMORY_NEEDED
1242 /* If a memory location is needed for the copy, make one. */
1243 if (in != 0 && GET_CODE (in) == REG
1244 && REGNO (in) < FIRST_PSEUDO_REGISTER
1245 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1246 class, inmode))
1247 get_secondary_mem (in, inmode, opnum, type);
1248 #endif
1250 i = n_reloads;
1251 reload_in[i] = in;
1252 reload_out[i] = out;
1253 reload_reg_class[i] = class;
1254 reload_inmode[i] = inmode;
1255 reload_outmode[i] = outmode;
1256 reload_reg_rtx[i] = 0;
1257 reload_optional[i] = optional;
1258 reload_inc[i] = 0;
1259 reload_nocombine[i] = 0;
1260 reload_in_reg[i] = inloc ? *inloc : 0;
1261 reload_opnum[i] = opnum;
1262 reload_when_needed[i] = type;
1263 reload_secondary_in_reload[i] = secondary_in_reload;
1264 reload_secondary_out_reload[i] = secondary_out_reload;
1265 reload_secondary_in_icode[i] = secondary_in_icode;
1266 reload_secondary_out_icode[i] = secondary_out_icode;
1267 reload_secondary_p[i] = 0;
1269 n_reloads++;
1271 #ifdef SECONDARY_MEMORY_NEEDED
1272 if (out != 0 && GET_CODE (out) == REG
1273 && REGNO (out) < FIRST_PSEUDO_REGISTER
1274 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1275 outmode))
1276 get_secondary_mem (out, outmode, opnum, type);
1277 #endif
1279 else
1281 /* We are reusing an existing reload,
1282 but we may have additional information for it.
1283 For example, we may now have both IN and OUT
1284 while the old one may have just one of them. */
1286 /* The modes can be different. If they are, we want to reload in
1287 the larger mode, so that the value is valid for both modes. */
1288 if (inmode != VOIDmode
1289 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (reload_inmode[i]))
1290 reload_inmode[i] = inmode;
1291 if (outmode != VOIDmode
1292 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (reload_outmode[i]))
1293 reload_outmode[i] = outmode;
1294 if (in != 0)
1295 reload_in[i] = in;
1296 if (out != 0)
1297 reload_out[i] = out;
1298 if (reg_class_subset_p (class, reload_reg_class[i]))
1299 reload_reg_class[i] = class;
1300 reload_optional[i] &= optional;
1301 if (MERGE_TO_OTHER (type, reload_when_needed[i],
1302 opnum, reload_opnum[i]))
1303 reload_when_needed[i] = RELOAD_OTHER;
1304 reload_opnum[i] = MIN (reload_opnum[i], opnum);
1307 /* If the ostensible rtx being reload differs from the rtx found
1308 in the location to substitute, this reload is not safe to combine
1309 because we cannot reliably tell whether it appears in the insn. */
1311 if (in != 0 && in != *inloc)
1312 reload_nocombine[i] = 1;
1314 #if 0
1315 /* This was replaced by changes in find_reloads_address_1 and the new
1316 function inc_for_reload, which go with a new meaning of reload_inc. */
1318 /* If this is an IN/OUT reload in an insn that sets the CC,
1319 it must be for an autoincrement. It doesn't work to store
1320 the incremented value after the insn because that would clobber the CC.
1321 So we must do the increment of the value reloaded from,
1322 increment it, store it back, then decrement again. */
1323 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1325 out = 0;
1326 reload_out[i] = 0;
1327 reload_inc[i] = find_inc_amount (PATTERN (this_insn), in);
1328 /* If we did not find a nonzero amount-to-increment-by,
1329 that contradicts the belief that IN is being incremented
1330 in an address in this insn. */
1331 if (reload_inc[i] == 0)
1332 abort ();
1334 #endif
1336 /* If we will replace IN and OUT with the reload-reg,
1337 record where they are located so that substitution need
1338 not do a tree walk. */
1340 if (replace_reloads)
1342 if (inloc != 0)
1344 register struct replacement *r = &replacements[n_replacements++];
1345 r->what = i;
1346 r->subreg_loc = in_subreg_loc;
1347 r->where = inloc;
1348 r->mode = inmode;
1350 if (outloc != 0 && outloc != inloc)
1352 register struct replacement *r = &replacements[n_replacements++];
1353 r->what = i;
1354 r->where = outloc;
1355 r->subreg_loc = out_subreg_loc;
1356 r->mode = outmode;
1360 /* If this reload is just being introduced and it has both
1361 an incoming quantity and an outgoing quantity that are
1362 supposed to be made to match, see if either one of the two
1363 can serve as the place to reload into.
1365 If one of them is acceptable, set reload_reg_rtx[i]
1366 to that one. */
1368 if (in != 0 && out != 0 && in != out && reload_reg_rtx[i] == 0)
1370 reload_reg_rtx[i] = find_dummy_reload (in, out, inloc, outloc,
1371 inmode, outmode,
1372 reload_reg_class[i], i,
1373 earlyclobber_operand_p (out));
1375 /* If the outgoing register already contains the same value
1376 as the incoming one, we can dispense with loading it.
1377 The easiest way to tell the caller that is to give a phony
1378 value for the incoming operand (same as outgoing one). */
1379 if (reload_reg_rtx[i] == out
1380 && (GET_CODE (in) == REG || CONSTANT_P (in))
1381 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1382 static_reload_reg_p, i, inmode))
1383 reload_in[i] = out;
1386 /* If this is an input reload and the operand contains a register that
1387 dies in this insn and is used nowhere else, see if it is the right class
1388 to be used for this reload. Use it if so. (This occurs most commonly
1389 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1390 this if it is also an output reload that mentions the register unless
1391 the output is a SUBREG that clobbers an entire register.
1393 Note that the operand might be one of the spill regs, if it is a
1394 pseudo reg and we are in a block where spilling has not taken place.
1395 But if there is no spilling in this block, that is OK.
1396 An explicitly used hard reg cannot be a spill reg. */
1398 if (reload_reg_rtx[i] == 0 && in != 0)
1400 rtx note;
1401 int regno;
1403 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1404 if (REG_NOTE_KIND (note) == REG_DEAD
1405 && GET_CODE (XEXP (note, 0)) == REG
1406 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1407 && reg_mentioned_p (XEXP (note, 0), in)
1408 && ! refers_to_regno_for_reload_p (regno,
1409 (regno
1410 + HARD_REGNO_NREGS (regno,
1411 inmode)),
1412 PATTERN (this_insn), inloc)
1413 /* If this is also an output reload, IN cannot be used as
1414 the reload register if it is set in this insn unless IN
1415 is also OUT. */
1416 && (out == 0 || in == out
1417 || ! hard_reg_set_here_p (regno,
1418 (regno
1419 + HARD_REGNO_NREGS (regno,
1420 inmode)),
1421 PATTERN (this_insn)))
1422 /* ??? Why is this code so different from the previous?
1423 Is there any simple coherent way to describe the two together?
1424 What's going on here. */
1425 && (in != out
1426 || (GET_CODE (in) == SUBREG
1427 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1428 / UNITS_PER_WORD)
1429 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1430 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1431 /* Make sure the operand fits in the reg that dies. */
1432 && GET_MODE_SIZE (inmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1433 && HARD_REGNO_MODE_OK (regno, inmode)
1434 && GET_MODE_SIZE (outmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1435 && HARD_REGNO_MODE_OK (regno, outmode)
1436 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
1437 && !fixed_regs[regno])
1439 reload_reg_rtx[i] = gen_rtx (REG, inmode, regno);
1440 break;
1444 if (out)
1445 output_reloadnum = i;
1447 return i;
1450 /* Record an additional place we must replace a value
1451 for which we have already recorded a reload.
1452 RELOADNUM is the value returned by push_reload
1453 when the reload was recorded.
1454 This is used in insn patterns that use match_dup. */
1456 static void
1457 push_replacement (loc, reloadnum, mode)
1458 rtx *loc;
1459 int reloadnum;
1460 enum machine_mode mode;
1462 if (replace_reloads)
1464 register struct replacement *r = &replacements[n_replacements++];
1465 r->what = reloadnum;
1466 r->where = loc;
1467 r->subreg_loc = 0;
1468 r->mode = mode;
1472 /* Transfer all replacements that used to be in reload FROM to be in
1473 reload TO. */
1475 void
1476 transfer_replacements (to, from)
1477 int to, from;
1479 int i;
1481 for (i = 0; i < n_replacements; i++)
1482 if (replacements[i].what == from)
1483 replacements[i].what = to;
1486 /* If there is only one output reload, and it is not for an earlyclobber
1487 operand, try to combine it with a (logically unrelated) input reload
1488 to reduce the number of reload registers needed.
1490 This is safe if the input reload does not appear in
1491 the value being output-reloaded, because this implies
1492 it is not needed any more once the original insn completes.
1494 If that doesn't work, see we can use any of the registers that
1495 die in this insn as a reload register. We can if it is of the right
1496 class and does not appear in the value being output-reloaded. */
1498 static void
1499 combine_reloads ()
1501 int i;
1502 int output_reload = -1;
1503 int secondary_out = -1;
1504 rtx note;
1506 /* Find the output reload; return unless there is exactly one
1507 and that one is mandatory. */
1509 for (i = 0; i < n_reloads; i++)
1510 if (reload_out[i] != 0)
1512 if (output_reload >= 0)
1513 return;
1514 output_reload = i;
1517 if (output_reload < 0 || reload_optional[output_reload])
1518 return;
1520 /* An input-output reload isn't combinable. */
1522 if (reload_in[output_reload] != 0)
1523 return;
1525 /* If this reload is for an earlyclobber operand, we can't do anything. */
1526 if (earlyclobber_operand_p (reload_out[output_reload]))
1527 return;
1529 /* Check each input reload; can we combine it? */
1531 for (i = 0; i < n_reloads; i++)
1532 if (reload_in[i] && ! reload_optional[i] && ! reload_nocombine[i]
1533 /* Life span of this reload must not extend past main insn. */
1534 && reload_when_needed[i] != RELOAD_FOR_OUTPUT_ADDRESS
1535 && reload_when_needed[i] != RELOAD_FOR_OUTADDR_ADDRESS
1536 && reload_when_needed[i] != RELOAD_OTHER
1537 && (CLASS_MAX_NREGS (reload_reg_class[i], reload_inmode[i])
1538 == CLASS_MAX_NREGS (reload_reg_class[output_reload],
1539 reload_outmode[output_reload]))
1540 && reload_inc[i] == 0
1541 && reload_reg_rtx[i] == 0
1542 #ifdef SECONDARY_MEMORY_NEEDED
1543 /* Don't combine two reloads with different secondary
1544 memory locations. */
1545 && (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]] == 0
1546 || secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] == 0
1547 || rtx_equal_p (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]],
1548 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]]))
1549 #endif
1550 && (SMALL_REGISTER_CLASSES
1551 ? (reload_reg_class[i] == reload_reg_class[output_reload])
1552 : (reg_class_subset_p (reload_reg_class[i],
1553 reload_reg_class[output_reload])
1554 || reg_class_subset_p (reload_reg_class[output_reload],
1555 reload_reg_class[i])))
1556 && (MATCHES (reload_in[i], reload_out[output_reload])
1557 /* Args reversed because the first arg seems to be
1558 the one that we imagine being modified
1559 while the second is the one that might be affected. */
1560 || (! reg_overlap_mentioned_for_reload_p (reload_out[output_reload],
1561 reload_in[i])
1562 /* However, if the input is a register that appears inside
1563 the output, then we also can't share.
1564 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1565 If the same reload reg is used for both reg 69 and the
1566 result to be stored in memory, then that result
1567 will clobber the address of the memory ref. */
1568 && ! (GET_CODE (reload_in[i]) == REG
1569 && reg_overlap_mentioned_for_reload_p (reload_in[i],
1570 reload_out[output_reload]))))
1571 && (reg_class_size[(int) reload_reg_class[i]]
1572 || SMALL_REGISTER_CLASSES)
1573 /* We will allow making things slightly worse by combining an
1574 input and an output, but no worse than that. */
1575 && (reload_when_needed[i] == RELOAD_FOR_INPUT
1576 || reload_when_needed[i] == RELOAD_FOR_OUTPUT))
1578 int j;
1580 /* We have found a reload to combine with! */
1581 reload_out[i] = reload_out[output_reload];
1582 reload_outmode[i] = reload_outmode[output_reload];
1583 /* Mark the old output reload as inoperative. */
1584 reload_out[output_reload] = 0;
1585 /* The combined reload is needed for the entire insn. */
1586 reload_when_needed[i] = RELOAD_OTHER;
1587 /* If the output reload had a secondary reload, copy it. */
1588 if (reload_secondary_out_reload[output_reload] != -1)
1590 reload_secondary_out_reload[i]
1591 = reload_secondary_out_reload[output_reload];
1592 reload_secondary_out_icode[i]
1593 = reload_secondary_out_icode[output_reload];
1596 #ifdef SECONDARY_MEMORY_NEEDED
1597 /* Copy any secondary MEM. */
1598 if (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] != 0)
1599 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]]
1600 = secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]];
1601 #endif
1602 /* If required, minimize the register class. */
1603 if (reg_class_subset_p (reload_reg_class[output_reload],
1604 reload_reg_class[i]))
1605 reload_reg_class[i] = reload_reg_class[output_reload];
1607 /* Transfer all replacements from the old reload to the combined. */
1608 for (j = 0; j < n_replacements; j++)
1609 if (replacements[j].what == output_reload)
1610 replacements[j].what = i;
1612 return;
1615 /* If this insn has only one operand that is modified or written (assumed
1616 to be the first), it must be the one corresponding to this reload. It
1617 is safe to use anything that dies in this insn for that output provided
1618 that it does not occur in the output (we already know it isn't an
1619 earlyclobber. If this is an asm insn, give up. */
1621 if (INSN_CODE (this_insn) == -1)
1622 return;
1624 for (i = 1; i < insn_n_operands[INSN_CODE (this_insn)]; i++)
1625 if (insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '='
1626 || insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '+')
1627 return;
1629 /* See if some hard register that dies in this insn and is not used in
1630 the output is the right class. Only works if the register we pick
1631 up can fully hold our output reload. */
1632 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1633 if (REG_NOTE_KIND (note) == REG_DEAD
1634 && GET_CODE (XEXP (note, 0)) == REG
1635 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1636 reload_out[output_reload])
1637 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1638 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1639 && TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[output_reload]],
1640 REGNO (XEXP (note, 0)))
1641 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1642 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1643 /* Ensure that a secondary or tertiary reload for this output
1644 won't want this register. */
1645 && ((secondary_out = reload_secondary_out_reload[output_reload]) == -1
1646 || (! (TEST_HARD_REG_BIT
1647 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1648 REGNO (XEXP (note, 0))))
1649 && ((secondary_out = reload_secondary_out_reload[secondary_out]) == -1
1650 || ! (TEST_HARD_REG_BIT
1651 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1652 REGNO (XEXP (note, 0)))))))
1653 && ! fixed_regs[REGNO (XEXP (note, 0))])
1655 reload_reg_rtx[output_reload] = gen_rtx (REG,
1656 reload_outmode[output_reload],
1657 REGNO (XEXP (note, 0)));
1658 return;
1662 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1663 See if one of IN and OUT is a register that may be used;
1664 this is desirable since a spill-register won't be needed.
1665 If so, return the register rtx that proves acceptable.
1667 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1668 CLASS is the register class required for the reload.
1670 If FOR_REAL is >= 0, it is the number of the reload,
1671 and in some cases when it can be discovered that OUT doesn't need
1672 to be computed, clear out reload_out[FOR_REAL].
1674 If FOR_REAL is -1, this should not be done, because this call
1675 is just to see if a register can be found, not to find and install it.
1677 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1678 puts an additional constraint on being able to use IN for OUT since
1679 IN must not appear elsewhere in the insn (it is assumed that IN itself
1680 is safe from the earlyclobber). */
1682 static rtx
1683 find_dummy_reload (real_in, real_out, inloc, outloc,
1684 inmode, outmode, class, for_real, earlyclobber)
1685 rtx real_in, real_out;
1686 rtx *inloc, *outloc;
1687 enum machine_mode inmode, outmode;
1688 enum reg_class class;
1689 int for_real;
1690 int earlyclobber;
1692 rtx in = real_in;
1693 rtx out = real_out;
1694 int in_offset = 0;
1695 int out_offset = 0;
1696 rtx value = 0;
1698 /* If operands exceed a word, we can't use either of them
1699 unless they have the same size. */
1700 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1701 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1702 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1703 return 0;
1705 /* Find the inside of any subregs. */
1706 while (GET_CODE (out) == SUBREG)
1708 out_offset = SUBREG_WORD (out);
1709 out = SUBREG_REG (out);
1711 while (GET_CODE (in) == SUBREG)
1713 in_offset = SUBREG_WORD (in);
1714 in = SUBREG_REG (in);
1717 /* Narrow down the reg class, the same way push_reload will;
1718 otherwise we might find a dummy now, but push_reload won't. */
1719 class = PREFERRED_RELOAD_CLASS (in, class);
1721 /* See if OUT will do. */
1722 if (GET_CODE (out) == REG
1723 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1725 register int regno = REGNO (out) + out_offset;
1726 int nwords = HARD_REGNO_NREGS (regno, outmode);
1727 rtx saved_rtx;
1729 /* When we consider whether the insn uses OUT,
1730 ignore references within IN. They don't prevent us
1731 from copying IN into OUT, because those refs would
1732 move into the insn that reloads IN.
1734 However, we only ignore IN in its role as this reload.
1735 If the insn uses IN elsewhere and it contains OUT,
1736 that counts. We can't be sure it's the "same" operand
1737 so it might not go through this reload. */
1738 saved_rtx = *inloc;
1739 *inloc = const0_rtx;
1741 if (regno < FIRST_PSEUDO_REGISTER
1742 /* A fixed reg that can overlap other regs better not be used
1743 for reloading in any way. */
1744 #ifdef OVERLAPPING_REGNO_P
1745 && ! (fixed_regs[regno] && OVERLAPPING_REGNO_P (regno))
1746 #endif
1747 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1748 PATTERN (this_insn), outloc))
1750 int i;
1751 for (i = 0; i < nwords; i++)
1752 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1753 regno + i))
1754 break;
1756 if (i == nwords)
1758 if (GET_CODE (real_out) == REG)
1759 value = real_out;
1760 else
1761 value = gen_rtx (REG, outmode, regno);
1765 *inloc = saved_rtx;
1768 /* Consider using IN if OUT was not acceptable
1769 or if OUT dies in this insn (like the quotient in a divmod insn).
1770 We can't use IN unless it is dies in this insn,
1771 which means we must know accurately which hard regs are live.
1772 Also, the result can't go in IN if IN is used within OUT,
1773 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1774 if (hard_regs_live_known
1775 && GET_CODE (in) == REG
1776 && REGNO (in) < FIRST_PSEUDO_REGISTER
1777 && (value == 0
1778 || find_reg_note (this_insn, REG_UNUSED, real_out))
1779 && find_reg_note (this_insn, REG_DEAD, real_in)
1780 && !fixed_regs[REGNO (in)]
1781 && HARD_REGNO_MODE_OK (REGNO (in),
1782 /* The only case where out and real_out might
1783 have different modes is where real_out
1784 is a subreg, and in that case, out
1785 has a real mode. */
1786 (GET_MODE (out) != VOIDmode
1787 ? GET_MODE (out) : outmode)))
1789 register int regno = REGNO (in) + in_offset;
1790 int nwords = HARD_REGNO_NREGS (regno, inmode);
1792 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
1793 && ! hard_reg_set_here_p (regno, regno + nwords,
1794 PATTERN (this_insn))
1795 && (! earlyclobber
1796 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1797 PATTERN (this_insn), inloc)))
1799 int i;
1800 for (i = 0; i < nwords; i++)
1801 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1802 regno + i))
1803 break;
1805 if (i == nwords)
1807 /* If we were going to use OUT as the reload reg
1808 and changed our mind, it means OUT is a dummy that
1809 dies here. So don't bother copying value to it. */
1810 if (for_real >= 0 && value == real_out)
1811 reload_out[for_real] = 0;
1812 if (GET_CODE (real_in) == REG)
1813 value = real_in;
1814 else
1815 value = gen_rtx (REG, inmode, regno);
1820 return value;
1823 /* This page contains subroutines used mainly for determining
1824 whether the IN or an OUT of a reload can serve as the
1825 reload register. */
1827 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1829 static int
1830 earlyclobber_operand_p (x)
1831 rtx x;
1833 int i;
1835 for (i = 0; i < n_earlyclobbers; i++)
1836 if (reload_earlyclobbers[i] == x)
1837 return 1;
1839 return 0;
1842 /* Return 1 if expression X alters a hard reg in the range
1843 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1844 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1845 X should be the body of an instruction. */
1847 static int
1848 hard_reg_set_here_p (beg_regno, end_regno, x)
1849 register int beg_regno, end_regno;
1850 rtx x;
1852 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1854 register rtx op0 = SET_DEST (x);
1855 while (GET_CODE (op0) == SUBREG)
1856 op0 = SUBREG_REG (op0);
1857 if (GET_CODE (op0) == REG)
1859 register int r = REGNO (op0);
1860 /* See if this reg overlaps range under consideration. */
1861 if (r < end_regno
1862 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1863 return 1;
1866 else if (GET_CODE (x) == PARALLEL)
1868 register int i = XVECLEN (x, 0) - 1;
1869 for (; i >= 0; i--)
1870 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
1871 return 1;
1874 return 0;
1877 /* Return 1 if ADDR is a valid memory address for mode MODE,
1878 and check that each pseudo reg has the proper kind of
1879 hard reg. */
1882 strict_memory_address_p (mode, addr)
1883 enum machine_mode mode;
1884 register rtx addr;
1886 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1887 return 0;
1889 win:
1890 return 1;
1893 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
1894 if they are the same hard reg, and has special hacks for
1895 autoincrement and autodecrement.
1896 This is specifically intended for find_reloads to use
1897 in determining whether two operands match.
1898 X is the operand whose number is the lower of the two.
1900 The value is 2 if Y contains a pre-increment that matches
1901 a non-incrementing address in X. */
1903 /* ??? To be completely correct, we should arrange to pass
1904 for X the output operand and for Y the input operand.
1905 For now, we assume that the output operand has the lower number
1906 because that is natural in (SET output (... input ...)). */
1909 operands_match_p (x, y)
1910 register rtx x, y;
1912 register int i;
1913 register RTX_CODE code = GET_CODE (x);
1914 register char *fmt;
1915 int success_2;
1917 if (x == y)
1918 return 1;
1919 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
1920 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
1921 && GET_CODE (SUBREG_REG (y)) == REG)))
1923 register int j;
1925 if (code == SUBREG)
1927 i = REGNO (SUBREG_REG (x));
1928 if (i >= FIRST_PSEUDO_REGISTER)
1929 goto slow;
1930 i += SUBREG_WORD (x);
1932 else
1933 i = REGNO (x);
1935 if (GET_CODE (y) == SUBREG)
1937 j = REGNO (SUBREG_REG (y));
1938 if (j >= FIRST_PSEUDO_REGISTER)
1939 goto slow;
1940 j += SUBREG_WORD (y);
1942 else
1943 j = REGNO (y);
1945 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
1946 multiple hard register group, so that for example (reg:DI 0) and
1947 (reg:SI 1) will be considered the same register. */
1948 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
1949 && i < FIRST_PSEUDO_REGISTER)
1950 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
1951 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
1952 && j < FIRST_PSEUDO_REGISTER)
1953 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
1955 return i == j;
1957 /* If two operands must match, because they are really a single
1958 operand of an assembler insn, then two postincrements are invalid
1959 because the assembler insn would increment only once.
1960 On the other hand, an postincrement matches ordinary indexing
1961 if the postincrement is the output operand. */
1962 if (code == POST_DEC || code == POST_INC)
1963 return operands_match_p (XEXP (x, 0), y);
1964 /* Two preincrements are invalid
1965 because the assembler insn would increment only once.
1966 On the other hand, an preincrement matches ordinary indexing
1967 if the preincrement is the input operand.
1968 In this case, return 2, since some callers need to do special
1969 things when this happens. */
1970 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC)
1971 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
1973 slow:
1975 /* Now we have disposed of all the cases
1976 in which different rtx codes can match. */
1977 if (code != GET_CODE (y))
1978 return 0;
1979 if (code == LABEL_REF)
1980 return XEXP (x, 0) == XEXP (y, 0);
1981 if (code == SYMBOL_REF)
1982 return XSTR (x, 0) == XSTR (y, 0);
1984 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1986 if (GET_MODE (x) != GET_MODE (y))
1987 return 0;
1989 /* Compare the elements. If any pair of corresponding elements
1990 fail to match, return 0 for the whole things. */
1992 success_2 = 0;
1993 fmt = GET_RTX_FORMAT (code);
1994 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1996 int val;
1997 switch (fmt[i])
1999 case 'w':
2000 if (XWINT (x, i) != XWINT (y, i))
2001 return 0;
2002 break;
2004 case 'i':
2005 if (XINT (x, i) != XINT (y, i))
2006 return 0;
2007 break;
2009 case 'e':
2010 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2011 if (val == 0)
2012 return 0;
2013 /* If any subexpression returns 2,
2014 we should return 2 if we are successful. */
2015 if (val == 2)
2016 success_2 = 1;
2017 break;
2019 case '0':
2020 break;
2022 /* It is believed that rtx's at this level will never
2023 contain anything but integers and other rtx's,
2024 except for within LABEL_REFs and SYMBOL_REFs. */
2025 default:
2026 abort ();
2029 return 1 + success_2;
2032 /* Return the number of times character C occurs in string S. */
2035 n_occurrences (c, s)
2036 int c;
2037 char *s;
2039 int n = 0;
2040 while (*s)
2041 n += (*s++ == c);
2042 return n;
2045 /* Describe the range of registers or memory referenced by X.
2046 If X is a register, set REG_FLAG and put the first register
2047 number into START and the last plus one into END.
2048 If X is a memory reference, put a base address into BASE
2049 and a range of integer offsets into START and END.
2050 If X is pushing on the stack, we can assume it causes no trouble,
2051 so we set the SAFE field. */
2053 static struct decomposition
2054 decompose (x)
2055 rtx x;
2057 struct decomposition val;
2058 int all_const = 0;
2060 val.reg_flag = 0;
2061 val.safe = 0;
2062 val.base = 0;
2063 if (GET_CODE (x) == MEM)
2065 rtx base, offset = 0;
2066 rtx addr = XEXP (x, 0);
2068 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2069 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2071 val.base = XEXP (addr, 0);
2072 val.start = - GET_MODE_SIZE (GET_MODE (x));
2073 val.end = GET_MODE_SIZE (GET_MODE (x));
2074 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2075 return val;
2078 if (GET_CODE (addr) == CONST)
2080 addr = XEXP (addr, 0);
2081 all_const = 1;
2083 if (GET_CODE (addr) == PLUS)
2085 if (CONSTANT_P (XEXP (addr, 0)))
2087 base = XEXP (addr, 1);
2088 offset = XEXP (addr, 0);
2090 else if (CONSTANT_P (XEXP (addr, 1)))
2092 base = XEXP (addr, 0);
2093 offset = XEXP (addr, 1);
2097 if (offset == 0)
2099 base = addr;
2100 offset = const0_rtx;
2102 if (GET_CODE (offset) == CONST)
2103 offset = XEXP (offset, 0);
2104 if (GET_CODE (offset) == PLUS)
2106 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2108 base = gen_rtx (PLUS, GET_MODE (base), base, XEXP (offset, 1));
2109 offset = XEXP (offset, 0);
2111 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2113 base = gen_rtx (PLUS, GET_MODE (base), base, XEXP (offset, 0));
2114 offset = XEXP (offset, 1);
2116 else
2118 base = gen_rtx (PLUS, GET_MODE (base), base, offset);
2119 offset = const0_rtx;
2122 else if (GET_CODE (offset) != CONST_INT)
2124 base = gen_rtx (PLUS, GET_MODE (base), base, offset);
2125 offset = const0_rtx;
2128 if (all_const && GET_CODE (base) == PLUS)
2129 base = gen_rtx (CONST, GET_MODE (base), base);
2131 if (GET_CODE (offset) != CONST_INT)
2132 abort ();
2134 val.start = INTVAL (offset);
2135 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2136 val.base = base;
2137 return val;
2139 else if (GET_CODE (x) == REG)
2141 val.reg_flag = 1;
2142 val.start = true_regnum (x);
2143 if (val.start < 0)
2145 /* A pseudo with no hard reg. */
2146 val.start = REGNO (x);
2147 val.end = val.start + 1;
2149 else
2150 /* A hard reg. */
2151 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2153 else if (GET_CODE (x) == SUBREG)
2155 if (GET_CODE (SUBREG_REG (x)) != REG)
2156 /* This could be more precise, but it's good enough. */
2157 return decompose (SUBREG_REG (x));
2158 val.reg_flag = 1;
2159 val.start = true_regnum (x);
2160 if (val.start < 0)
2161 return decompose (SUBREG_REG (x));
2162 else
2163 /* A hard reg. */
2164 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2166 else if (CONSTANT_P (x)
2167 /* This hasn't been assigned yet, so it can't conflict yet. */
2168 || GET_CODE (x) == SCRATCH)
2169 val.safe = 1;
2170 else
2171 abort ();
2172 return val;
2175 /* Return 1 if altering Y will not modify the value of X.
2176 Y is also described by YDATA, which should be decompose (Y). */
2178 static int
2179 immune_p (x, y, ydata)
2180 rtx x, y;
2181 struct decomposition ydata;
2183 struct decomposition xdata;
2185 if (ydata.reg_flag)
2186 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
2187 if (ydata.safe)
2188 return 1;
2190 if (GET_CODE (y) != MEM)
2191 abort ();
2192 /* If Y is memory and X is not, Y can't affect X. */
2193 if (GET_CODE (x) != MEM)
2194 return 1;
2196 xdata = decompose (x);
2198 if (! rtx_equal_p (xdata.base, ydata.base))
2200 /* If bases are distinct symbolic constants, there is no overlap. */
2201 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2202 return 1;
2203 /* Constants and stack slots never overlap. */
2204 if (CONSTANT_P (xdata.base)
2205 && (ydata.base == frame_pointer_rtx
2206 || ydata.base == hard_frame_pointer_rtx
2207 || ydata.base == stack_pointer_rtx))
2208 return 1;
2209 if (CONSTANT_P (ydata.base)
2210 && (xdata.base == frame_pointer_rtx
2211 || xdata.base == hard_frame_pointer_rtx
2212 || xdata.base == stack_pointer_rtx))
2213 return 1;
2214 /* If either base is variable, we don't know anything. */
2215 return 0;
2219 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2222 /* Similar, but calls decompose. */
2225 safe_from_earlyclobber (op, clobber)
2226 rtx op, clobber;
2228 struct decomposition early_data;
2230 early_data = decompose (clobber);
2231 return immune_p (op, clobber, early_data);
2234 /* Main entry point of this file: search the body of INSN
2235 for values that need reloading and record them with push_reload.
2236 REPLACE nonzero means record also where the values occur
2237 so that subst_reloads can be used.
2239 IND_LEVELS says how many levels of indirection are supported by this
2240 machine; a value of zero means that a memory reference is not a valid
2241 memory address.
2243 LIVE_KNOWN says we have valid information about which hard
2244 regs are live at each point in the program; this is true when
2245 we are called from global_alloc but false when stupid register
2246 allocation has been done.
2248 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2249 which is nonnegative if the reg has been commandeered for reloading into.
2250 It is copied into STATIC_RELOAD_REG_P and referenced from there
2251 by various subroutines. */
2253 void
2254 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2255 rtx insn;
2256 int replace, ind_levels;
2257 int live_known;
2258 short *reload_reg_p;
2260 #ifdef REGISTER_CONSTRAINTS
2262 register int insn_code_number;
2263 register int i, j;
2264 int noperands;
2265 /* These are the constraints for the insn. We don't change them. */
2266 char *constraints1[MAX_RECOG_OPERANDS];
2267 /* These start out as the constraints for the insn
2268 and they are chewed up as we consider alternatives. */
2269 char *constraints[MAX_RECOG_OPERANDS];
2270 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2271 a register. */
2272 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2273 char pref_or_nothing[MAX_RECOG_OPERANDS];
2274 /* Nonzero for a MEM operand whose entire address needs a reload. */
2275 int address_reloaded[MAX_RECOG_OPERANDS];
2276 /* Value of enum reload_type to use for operand. */
2277 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2278 /* Value of enum reload_type to use within address of operand. */
2279 enum reload_type address_type[MAX_RECOG_OPERANDS];
2280 /* Save the usage of each operand. */
2281 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2282 int no_input_reloads = 0, no_output_reloads = 0;
2283 int n_alternatives;
2284 int this_alternative[MAX_RECOG_OPERANDS];
2285 char this_alternative_win[MAX_RECOG_OPERANDS];
2286 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2287 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2288 int this_alternative_matches[MAX_RECOG_OPERANDS];
2289 int swapped;
2290 int goal_alternative[MAX_RECOG_OPERANDS];
2291 int this_alternative_number;
2292 int goal_alternative_number;
2293 int operand_reloadnum[MAX_RECOG_OPERANDS];
2294 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2295 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2296 char goal_alternative_win[MAX_RECOG_OPERANDS];
2297 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2298 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2299 int goal_alternative_swapped;
2300 int best;
2301 int commutative;
2302 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2303 rtx substed_operand[MAX_RECOG_OPERANDS];
2304 rtx body = PATTERN (insn);
2305 rtx set = single_set (insn);
2306 int goal_earlyclobber, this_earlyclobber;
2307 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2309 this_insn = insn;
2310 this_insn_is_asm = 0; /* Tentative. */
2311 n_reloads = 0;
2312 n_replacements = 0;
2313 n_memlocs = 0;
2314 n_earlyclobbers = 0;
2315 replace_reloads = replace;
2316 hard_regs_live_known = live_known;
2317 static_reload_reg_p = reload_reg_p;
2319 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2320 neither are insns that SET cc0. Insns that use CC0 are not allowed
2321 to have any input reloads. */
2322 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2323 no_output_reloads = 1;
2325 #ifdef HAVE_cc0
2326 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2327 no_input_reloads = 1;
2328 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2329 no_output_reloads = 1;
2330 #endif
2332 #ifdef SECONDARY_MEMORY_NEEDED
2333 /* The eliminated forms of any secondary memory locations are per-insn, so
2334 clear them out here. */
2336 bzero ((char *) secondary_memlocs_elim, sizeof secondary_memlocs_elim);
2337 #endif
2339 /* Find what kind of insn this is. NOPERANDS gets number of operands.
2340 Make OPERANDS point to a vector of operand values.
2341 Make OPERAND_LOCS point to a vector of pointers to
2342 where the operands were found.
2343 Fill CONSTRAINTS and CONSTRAINTS1 with pointers to the
2344 constraint-strings for this insn.
2345 Return if the insn needs no reload processing. */
2347 switch (GET_CODE (body))
2349 case USE:
2350 case CLOBBER:
2351 case ASM_INPUT:
2352 case ADDR_VEC:
2353 case ADDR_DIFF_VEC:
2354 return;
2356 case SET:
2357 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2358 is cheap to move between them. If it is not, there may not be an insn
2359 to do the copy, so we may need a reload. */
2360 if (GET_CODE (SET_DEST (body)) == REG
2361 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2362 && GET_CODE (SET_SRC (body)) == REG
2363 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2364 && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2365 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2366 return;
2367 case PARALLEL:
2368 case ASM_OPERANDS:
2369 reload_n_operands = noperands = asm_noperands (body);
2370 if (noperands >= 0)
2372 /* This insn is an `asm' with operands. */
2374 insn_code_number = -1;
2375 this_insn_is_asm = 1;
2377 /* expand_asm_operands makes sure there aren't too many operands. */
2378 if (noperands > MAX_RECOG_OPERANDS)
2379 abort ();
2381 /* Now get the operand values and constraints out of the insn. */
2383 decode_asm_operands (body, recog_operand, recog_operand_loc,
2384 constraints, operand_mode);
2385 if (noperands > 0)
2387 bcopy ((char *) constraints, (char *) constraints1,
2388 noperands * sizeof (char *));
2389 n_alternatives = n_occurrences (',', constraints[0]) + 1;
2390 for (i = 1; i < noperands; i++)
2391 if (n_alternatives != n_occurrences (',', constraints[i]) + 1)
2393 error_for_asm (insn, "operand constraints differ in number of alternatives");
2394 /* Avoid further trouble with this insn. */
2395 PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
2396 n_reloads = 0;
2397 return;
2400 break;
2403 default:
2404 /* Ordinary insn: recognize it, get the operands via insn_extract
2405 and get the constraints. */
2407 insn_code_number = recog_memoized (insn);
2408 if (insn_code_number < 0)
2409 fatal_insn_not_found (insn);
2411 reload_n_operands = noperands = insn_n_operands[insn_code_number];
2412 n_alternatives = insn_n_alternatives[insn_code_number];
2413 /* Just return "no reloads" if insn has no operands with constraints. */
2414 if (n_alternatives == 0)
2415 return;
2416 insn_extract (insn);
2417 for (i = 0; i < noperands; i++)
2419 constraints[i] = constraints1[i]
2420 = insn_operand_constraint[insn_code_number][i];
2421 operand_mode[i] = insn_operand_mode[insn_code_number][i];
2425 if (noperands == 0)
2426 return;
2428 commutative = -1;
2430 /* If we will need to know, later, whether some pair of operands
2431 are the same, we must compare them now and save the result.
2432 Reloading the base and index registers will clobber them
2433 and afterward they will fail to match. */
2435 for (i = 0; i < noperands; i++)
2437 register char *p;
2438 register int c;
2440 substed_operand[i] = recog_operand[i];
2441 p = constraints[i];
2443 modified[i] = RELOAD_READ;
2445 /* Scan this operand's constraint to see if it is an output operand,
2446 an in-out operand, is commutative, or should match another. */
2448 while (c = *p++)
2450 if (c == '=')
2451 modified[i] = RELOAD_WRITE;
2452 else if (c == '+')
2453 modified[i] = RELOAD_READ_WRITE;
2454 else if (c == '%')
2456 /* The last operand should not be marked commutative. */
2457 if (i == noperands - 1)
2459 if (this_insn_is_asm)
2460 warning_for_asm (this_insn,
2461 "`%%' constraint used with last operand");
2462 else
2463 abort ();
2465 else
2466 commutative = i;
2468 else if (c >= '0' && c <= '9')
2470 c -= '0';
2471 operands_match[c][i]
2472 = operands_match_p (recog_operand[c], recog_operand[i]);
2474 /* An operand may not match itself. */
2475 if (c == i)
2477 if (this_insn_is_asm)
2478 warning_for_asm (this_insn,
2479 "operand %d has constraint %d", i, c);
2480 else
2481 abort ();
2484 /* If C can be commuted with C+1, and C might need to match I,
2485 then C+1 might also need to match I. */
2486 if (commutative >= 0)
2488 if (c == commutative || c == commutative + 1)
2490 int other = c + (c == commutative ? 1 : -1);
2491 operands_match[other][i]
2492 = operands_match_p (recog_operand[other], recog_operand[i]);
2494 if (i == commutative || i == commutative + 1)
2496 int other = i + (i == commutative ? 1 : -1);
2497 operands_match[c][other]
2498 = operands_match_p (recog_operand[c], recog_operand[other]);
2500 /* Note that C is supposed to be less than I.
2501 No need to consider altering both C and I because in
2502 that case we would alter one into the other. */
2508 /* Examine each operand that is a memory reference or memory address
2509 and reload parts of the addresses into index registers.
2510 Also here any references to pseudo regs that didn't get hard regs
2511 but are equivalent to constants get replaced in the insn itself
2512 with those constants. Nobody will ever see them again.
2514 Finally, set up the preferred classes of each operand. */
2516 for (i = 0; i < noperands; i++)
2518 register RTX_CODE code = GET_CODE (recog_operand[i]);
2520 address_reloaded[i] = 0;
2521 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2522 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2523 : RELOAD_OTHER);
2524 address_type[i]
2525 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2526 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2527 : RELOAD_OTHER);
2529 if (*constraints[i] == 0)
2530 /* Ignore things like match_operator operands. */
2532 else if (constraints[i][0] == 'p')
2534 find_reloads_address (VOIDmode, NULL_PTR,
2535 recog_operand[i], recog_operand_loc[i],
2536 i, operand_type[i], ind_levels, insn);
2538 /* If we now have a simple operand where we used to have a
2539 PLUS or MULT, re-recognize and try again. */
2540 if ((GET_RTX_CLASS (GET_CODE (*recog_operand_loc[i])) == 'o'
2541 || GET_CODE (*recog_operand_loc[i]) == SUBREG)
2542 && (GET_CODE (recog_operand[i]) == MULT
2543 || GET_CODE (recog_operand[i]) == PLUS))
2545 INSN_CODE (insn) = -1;
2546 find_reloads (insn, replace, ind_levels, live_known,
2547 reload_reg_p);
2548 return;
2551 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2553 else if (code == MEM)
2555 if (find_reloads_address (GET_MODE (recog_operand[i]),
2556 recog_operand_loc[i],
2557 XEXP (recog_operand[i], 0),
2558 &XEXP (recog_operand[i], 0),
2559 i, address_type[i], ind_levels, insn))
2560 address_reloaded[i] = 1;
2561 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2563 else if (code == SUBREG)
2564 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
2565 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2566 ind_levels,
2567 set != 0
2568 && &SET_DEST (set) == recog_operand_loc[i]);
2569 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2570 /* We can get a PLUS as an "operand" as a result of register
2571 elimination. See eliminate_regs and gen_reload. We handle
2572 a unary operator by reloading the operand. */
2573 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
2574 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2575 ind_levels, 0);
2576 else if (code == REG)
2578 /* This is equivalent to calling find_reloads_toplev.
2579 The code is duplicated for speed.
2580 When we find a pseudo always equivalent to a constant,
2581 we replace it by the constant. We must be sure, however,
2582 that we don't try to replace it in the insn in which it
2583 is being set. */
2584 register int regno = REGNO (recog_operand[i]);
2585 if (reg_equiv_constant[regno] != 0
2586 && (set == 0 || &SET_DEST (set) != recog_operand_loc[i]))
2587 substed_operand[i] = recog_operand[i]
2588 = reg_equiv_constant[regno];
2589 #if 0 /* This might screw code in reload1.c to delete prior output-reload
2590 that feeds this insn. */
2591 if (reg_equiv_mem[regno] != 0)
2592 substed_operand[i] = recog_operand[i]
2593 = reg_equiv_mem[regno];
2594 #endif
2595 if (reg_equiv_address[regno] != 0)
2597 /* If reg_equiv_address is not a constant address, copy it,
2598 since it may be shared. */
2599 /* We must rerun eliminate_regs, in case the elimination
2600 offsets have changed. */
2601 rtx address = XEXP (eliminate_regs (reg_equiv_memory_loc[regno],
2602 0, NULL_RTX, 0),
2605 if (rtx_varies_p (address))
2606 address = copy_rtx (address);
2608 /* If this is an output operand, we must output a CLOBBER
2609 after INSN so find_equiv_reg knows REGNO is being written.
2610 Mark this insn specially, do we can put our output reloads
2611 after it. */
2613 if (modified[i] != RELOAD_READ)
2614 PUT_MODE (emit_insn_after (gen_rtx (CLOBBER, VOIDmode,
2615 recog_operand[i]),
2616 insn),
2617 DImode);
2619 *recog_operand_loc[i] = recog_operand[i]
2620 = gen_rtx (MEM, GET_MODE (recog_operand[i]), address);
2621 RTX_UNCHANGING_P (recog_operand[i])
2622 = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
2623 find_reloads_address (GET_MODE (recog_operand[i]),
2624 recog_operand_loc[i],
2625 XEXP (recog_operand[i], 0),
2626 &XEXP (recog_operand[i], 0),
2627 i, address_type[i], ind_levels, insn);
2628 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2631 /* If the operand is still a register (we didn't replace it with an
2632 equivalent), get the preferred class to reload it into. */
2633 code = GET_CODE (recog_operand[i]);
2634 preferred_class[i]
2635 = ((code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
2636 ? reg_preferred_class (REGNO (recog_operand[i])) : NO_REGS);
2637 pref_or_nothing[i]
2638 = (code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER
2639 && reg_alternate_class (REGNO (recog_operand[i])) == NO_REGS);
2642 /* If this is simply a copy from operand 1 to operand 0, merge the
2643 preferred classes for the operands. */
2644 if (set != 0 && noperands >= 2 && recog_operand[0] == SET_DEST (set)
2645 && recog_operand[1] == SET_SRC (set))
2647 preferred_class[0] = preferred_class[1]
2648 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2649 pref_or_nothing[0] |= pref_or_nothing[1];
2650 pref_or_nothing[1] |= pref_or_nothing[0];
2653 /* Now see what we need for pseudo-regs that didn't get hard regs
2654 or got the wrong kind of hard reg. For this, we must consider
2655 all the operands together against the register constraints. */
2657 best = MAX_RECOG_OPERANDS + 300;
2659 swapped = 0;
2660 goal_alternative_swapped = 0;
2661 try_swapped:
2663 /* The constraints are made of several alternatives.
2664 Each operand's constraint looks like foo,bar,... with commas
2665 separating the alternatives. The first alternatives for all
2666 operands go together, the second alternatives go together, etc.
2668 First loop over alternatives. */
2670 for (this_alternative_number = 0;
2671 this_alternative_number < n_alternatives;
2672 this_alternative_number++)
2674 /* Loop over operands for one constraint alternative. */
2675 /* LOSERS counts those that don't fit this alternative
2676 and would require loading. */
2677 int losers = 0;
2678 /* BAD is set to 1 if it some operand can't fit this alternative
2679 even after reloading. */
2680 int bad = 0;
2681 /* REJECT is a count of how undesirable this alternative says it is
2682 if any reloading is required. If the alternative matches exactly
2683 then REJECT is ignored, but otherwise it gets this much
2684 counted against it in addition to the reloading needed. Each
2685 ? counts three times here since we want the disparaging caused by
2686 a bad register class to only count 1/3 as much. */
2687 int reject = 0;
2689 this_earlyclobber = 0;
2691 for (i = 0; i < noperands; i++)
2693 register char *p = constraints[i];
2694 register int win = 0;
2695 /* 0 => this operand can be reloaded somehow for this alternative */
2696 int badop = 1;
2697 /* 0 => this operand can be reloaded if the alternative allows regs. */
2698 int winreg = 0;
2699 int c;
2700 register rtx operand = recog_operand[i];
2701 int offset = 0;
2702 /* Nonzero means this is a MEM that must be reloaded into a reg
2703 regardless of what the constraint says. */
2704 int force_reload = 0;
2705 int offmemok = 0;
2706 /* Nonzero if a constant forced into memory would be OK for this
2707 operand. */
2708 int constmemok = 0;
2709 int earlyclobber = 0;
2711 /* If the predicate accepts a unary operator, it means that
2712 we need to reload the operand. */
2713 if (GET_RTX_CLASS (GET_CODE (operand)) == '1')
2714 operand = XEXP (operand, 0);
2716 /* If the operand is a SUBREG, extract
2717 the REG or MEM (or maybe even a constant) within.
2718 (Constants can occur as a result of reg_equiv_constant.) */
2720 while (GET_CODE (operand) == SUBREG)
2722 offset += SUBREG_WORD (operand);
2723 operand = SUBREG_REG (operand);
2724 /* Force reload if this is a constant or PLUS or if there may may
2725 be a problem accessing OPERAND in the outer mode. */
2726 if (CONSTANT_P (operand)
2727 || GET_CODE (operand) == PLUS
2728 /* We must force a reload of paradoxical SUBREGs
2729 of a MEM because the alignment of the inner value
2730 may not be enough to do the outer reference. On
2731 big-endian machines, it may also reference outside
2732 the object.
2734 On machines that extend byte operations and we have a
2735 SUBREG where both the inner and outer modes are no wider
2736 than a word and the inner mode is narrower, is integral,
2737 and gets extended when loaded from memory, combine.c has
2738 made assumptions about the behavior of the machine in such
2739 register access. If the data is, in fact, in memory we
2740 must always load using the size assumed to be in the
2741 register and let the insn do the different-sized
2742 accesses. */
2743 || ((GET_CODE (operand) == MEM
2744 || (GET_CODE (operand)== REG
2745 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2746 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2747 < BIGGEST_ALIGNMENT)
2748 && (GET_MODE_SIZE (operand_mode[i])
2749 > GET_MODE_SIZE (GET_MODE (operand))))
2750 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2751 #ifdef LOAD_EXTEND_OP
2752 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2753 && (GET_MODE_SIZE (GET_MODE (operand))
2754 <= UNITS_PER_WORD)
2755 && (GET_MODE_SIZE (operand_mode[i])
2756 > GET_MODE_SIZE (GET_MODE (operand)))
2757 && INTEGRAL_MODE_P (GET_MODE (operand))
2758 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2759 #endif
2761 /* Subreg of a hard reg which can't handle the subreg's mode
2762 or which would handle that mode in the wrong number of
2763 registers for subregging to work. */
2764 || (GET_CODE (operand) == REG
2765 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2766 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2767 && (GET_MODE_SIZE (GET_MODE (operand))
2768 > UNITS_PER_WORD)
2769 && ((GET_MODE_SIZE (GET_MODE (operand))
2770 / UNITS_PER_WORD)
2771 != HARD_REGNO_NREGS (REGNO (operand),
2772 GET_MODE (operand))))
2773 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2774 operand_mode[i]))))
2775 force_reload = 1;
2778 this_alternative[i] = (int) NO_REGS;
2779 this_alternative_win[i] = 0;
2780 this_alternative_offmemok[i] = 0;
2781 this_alternative_earlyclobber[i] = 0;
2782 this_alternative_matches[i] = -1;
2784 /* An empty constraint or empty alternative
2785 allows anything which matched the pattern. */
2786 if (*p == 0 || *p == ',')
2787 win = 1, badop = 0;
2789 /* Scan this alternative's specs for this operand;
2790 set WIN if the operand fits any letter in this alternative.
2791 Otherwise, clear BADOP if this operand could
2792 fit some letter after reloads,
2793 or set WINREG if this operand could fit after reloads
2794 provided the constraint allows some registers. */
2796 while (*p && (c = *p++) != ',')
2797 switch (c)
2799 case '=':
2800 case '+':
2801 case '*':
2802 break;
2804 case '%':
2805 /* The last operand should not be marked commutative. */
2806 if (i != noperands - 1)
2807 commutative = i;
2808 break;
2810 case '?':
2811 reject += 3;
2812 break;
2814 case '!':
2815 reject = 300;
2816 break;
2818 case '#':
2819 /* Ignore rest of this alternative as far as
2820 reloading is concerned. */
2821 while (*p && *p != ',') p++;
2822 break;
2824 case '0':
2825 case '1':
2826 case '2':
2827 case '3':
2828 case '4':
2829 c -= '0';
2830 this_alternative_matches[i] = c;
2831 /* We are supposed to match a previous operand.
2832 If we do, we win if that one did.
2833 If we do not, count both of the operands as losers.
2834 (This is too conservative, since most of the time
2835 only a single reload insn will be needed to make
2836 the two operands win. As a result, this alternative
2837 may be rejected when it is actually desirable.) */
2838 if ((swapped && (c != commutative || i != commutative + 1))
2839 /* If we are matching as if two operands were swapped,
2840 also pretend that operands_match had been computed
2841 with swapped.
2842 But if I is the second of those and C is the first,
2843 don't exchange them, because operands_match is valid
2844 only on one side of its diagonal. */
2845 ? (operands_match
2846 [(c == commutative || c == commutative + 1)
2847 ? 2*commutative + 1 - c : c]
2848 [(i == commutative || i == commutative + 1)
2849 ? 2*commutative + 1 - i : i])
2850 : operands_match[c][i])
2852 /* If we are matching a non-offsettable address where an
2853 offsettable address was expected, then we must reject
2854 this combination, because we can't reload it. */
2855 if (this_alternative_offmemok[c]
2856 && GET_CODE (recog_operand[c]) == MEM
2857 && this_alternative[c] == (int) NO_REGS
2858 && ! this_alternative_win[c])
2859 bad = 1;
2861 win = this_alternative_win[c];
2863 else
2865 /* Operands don't match. */
2866 rtx value;
2867 /* Retroactively mark the operand we had to match
2868 as a loser, if it wasn't already. */
2869 if (this_alternative_win[c])
2870 losers++;
2871 this_alternative_win[c] = 0;
2872 if (this_alternative[c] == (int) NO_REGS)
2873 bad = 1;
2874 /* But count the pair only once in the total badness of
2875 this alternative, if the pair can be a dummy reload. */
2876 value
2877 = find_dummy_reload (recog_operand[i], recog_operand[c],
2878 recog_operand_loc[i], recog_operand_loc[c],
2879 operand_mode[i], operand_mode[c],
2880 this_alternative[c], -1,
2881 this_alternative_earlyclobber[c]);
2883 if (value != 0)
2884 losers--;
2886 /* This can be fixed with reloads if the operand
2887 we are supposed to match can be fixed with reloads. */
2888 badop = 0;
2889 this_alternative[i] = this_alternative[c];
2891 /* If we have to reload this operand and some previous
2892 operand also had to match the same thing as this
2893 operand, we don't know how to do that. So reject this
2894 alternative. */
2895 if (! win || force_reload)
2896 for (j = 0; j < i; j++)
2897 if (this_alternative_matches[j]
2898 == this_alternative_matches[i])
2899 badop = 1;
2901 break;
2903 case 'p':
2904 /* All necessary reloads for an address_operand
2905 were handled in find_reloads_address. */
2906 this_alternative[i] = (int) BASE_REG_CLASS;
2907 win = 1;
2908 break;
2910 case 'm':
2911 if (force_reload)
2912 break;
2913 if (GET_CODE (operand) == MEM
2914 || (GET_CODE (operand) == REG
2915 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
2916 && reg_renumber[REGNO (operand)] < 0))
2917 win = 1;
2918 if (CONSTANT_P (operand)
2919 /* force_const_mem does not accept HIGH. */
2920 && GET_CODE (operand) != HIGH)
2921 badop = 0;
2922 constmemok = 1;
2923 break;
2925 case '<':
2926 if (GET_CODE (operand) == MEM
2927 && ! address_reloaded[i]
2928 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
2929 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
2930 win = 1;
2931 break;
2933 case '>':
2934 if (GET_CODE (operand) == MEM
2935 && ! address_reloaded[i]
2936 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
2937 || GET_CODE (XEXP (operand, 0)) == POST_INC))
2938 win = 1;
2939 break;
2941 /* Memory operand whose address is not offsettable. */
2942 case 'V':
2943 if (force_reload)
2944 break;
2945 if (GET_CODE (operand) == MEM
2946 && ! (ind_levels ? offsettable_memref_p (operand)
2947 : offsettable_nonstrict_memref_p (operand))
2948 /* Certain mem addresses will become offsettable
2949 after they themselves are reloaded. This is important;
2950 we don't want our own handling of unoffsettables
2951 to override the handling of reg_equiv_address. */
2952 && !(GET_CODE (XEXP (operand, 0)) == REG
2953 && (ind_levels == 0
2954 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
2955 win = 1;
2956 break;
2958 /* Memory operand whose address is offsettable. */
2959 case 'o':
2960 if (force_reload)
2961 break;
2962 if ((GET_CODE (operand) == MEM
2963 /* If IND_LEVELS, find_reloads_address won't reload a
2964 pseudo that didn't get a hard reg, so we have to
2965 reject that case. */
2966 && (ind_levels ? offsettable_memref_p (operand)
2967 : offsettable_nonstrict_memref_p (operand)))
2968 /* A reloaded auto-increment address is offsettable,
2969 because it is now just a simple register indirect. */
2970 || (GET_CODE (operand) == MEM
2971 && address_reloaded[i]
2972 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
2973 || GET_CODE (XEXP (operand, 0)) == PRE_DEC
2974 || GET_CODE (XEXP (operand, 0)) == POST_INC
2975 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
2976 /* Certain mem addresses will become offsettable
2977 after they themselves are reloaded. This is important;
2978 we don't want our own handling of unoffsettables
2979 to override the handling of reg_equiv_address. */
2980 || (GET_CODE (operand) == MEM
2981 && GET_CODE (XEXP (operand, 0)) == REG
2982 && (ind_levels == 0
2983 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0))
2984 || (GET_CODE (operand) == REG
2985 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
2986 && reg_renumber[REGNO (operand)] < 0
2987 /* If reg_equiv_address is nonzero, we will be
2988 loading it into a register; hence it will be
2989 offsettable, but we cannot say that reg_equiv_mem
2990 is offsettable without checking. */
2991 && ((reg_equiv_mem[REGNO (operand)] != 0
2992 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
2993 || (reg_equiv_address[REGNO (operand)] != 0))))
2994 win = 1;
2995 /* force_const_mem does not accept HIGH. */
2996 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
2997 || GET_CODE (operand) == MEM)
2998 badop = 0;
2999 constmemok = 1;
3000 offmemok = 1;
3001 break;
3003 case '&':
3004 /* Output operand that is stored before the need for the
3005 input operands (and their index registers) is over. */
3006 earlyclobber = 1, this_earlyclobber = 1;
3007 break;
3009 case 'E':
3010 #ifndef REAL_ARITHMETIC
3011 /* Match any floating double constant, but only if
3012 we can examine the bits of it reliably. */
3013 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3014 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3015 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3016 break;
3017 #endif
3018 if (GET_CODE (operand) == CONST_DOUBLE)
3019 win = 1;
3020 break;
3022 case 'F':
3023 if (GET_CODE (operand) == CONST_DOUBLE)
3024 win = 1;
3025 break;
3027 case 'G':
3028 case 'H':
3029 if (GET_CODE (operand) == CONST_DOUBLE
3030 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3031 win = 1;
3032 break;
3034 case 's':
3035 if (GET_CODE (operand) == CONST_INT
3036 || (GET_CODE (operand) == CONST_DOUBLE
3037 && GET_MODE (operand) == VOIDmode))
3038 break;
3039 case 'i':
3040 if (CONSTANT_P (operand)
3041 #ifdef LEGITIMATE_PIC_OPERAND_P
3042 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3043 #endif
3045 win = 1;
3046 break;
3048 case 'n':
3049 if (GET_CODE (operand) == CONST_INT
3050 || (GET_CODE (operand) == CONST_DOUBLE
3051 && GET_MODE (operand) == VOIDmode))
3052 win = 1;
3053 break;
3055 case 'I':
3056 case 'J':
3057 case 'K':
3058 case 'L':
3059 case 'M':
3060 case 'N':
3061 case 'O':
3062 case 'P':
3063 if (GET_CODE (operand) == CONST_INT
3064 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3065 win = 1;
3066 break;
3068 case 'X':
3069 win = 1;
3070 break;
3072 case 'g':
3073 if (! force_reload
3074 /* A PLUS is never a valid operand, but reload can make
3075 it from a register when eliminating registers. */
3076 && GET_CODE (operand) != PLUS
3077 /* A SCRATCH is not a valid operand. */
3078 && GET_CODE (operand) != SCRATCH
3079 #ifdef LEGITIMATE_PIC_OPERAND_P
3080 && (! CONSTANT_P (operand)
3081 || ! flag_pic
3082 || LEGITIMATE_PIC_OPERAND_P (operand))
3083 #endif
3084 && (GENERAL_REGS == ALL_REGS
3085 || GET_CODE (operand) != REG
3086 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3087 && reg_renumber[REGNO (operand)] < 0)))
3088 win = 1;
3089 /* Drop through into 'r' case */
3091 case 'r':
3092 this_alternative[i]
3093 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3094 goto reg;
3096 #ifdef EXTRA_CONSTRAINT
3097 case 'Q':
3098 case 'R':
3099 case 'S':
3100 case 'T':
3101 case 'U':
3102 if (EXTRA_CONSTRAINT (operand, c))
3103 win = 1;
3104 break;
3105 #endif
3107 default:
3108 this_alternative[i]
3109 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3111 reg:
3112 if (GET_MODE (operand) == BLKmode)
3113 break;
3114 winreg = 1;
3115 if (GET_CODE (operand) == REG
3116 && reg_fits_class_p (operand, this_alternative[i],
3117 offset, GET_MODE (recog_operand[i])))
3118 win = 1;
3119 break;
3122 constraints[i] = p;
3124 /* If this operand could be handled with a reg,
3125 and some reg is allowed, then this operand can be handled. */
3126 if (winreg && this_alternative[i] != (int) NO_REGS)
3127 badop = 0;
3129 /* Record which operands fit this alternative. */
3130 this_alternative_earlyclobber[i] = earlyclobber;
3131 if (win && ! force_reload)
3132 this_alternative_win[i] = 1;
3133 else
3135 int const_to_mem = 0;
3137 this_alternative_offmemok[i] = offmemok;
3138 losers++;
3139 if (badop)
3140 bad = 1;
3141 /* Alternative loses if it has no regs for a reg operand. */
3142 if (GET_CODE (operand) == REG
3143 && this_alternative[i] == (int) NO_REGS
3144 && this_alternative_matches[i] < 0)
3145 bad = 1;
3147 /* Alternative loses if it requires a type of reload not
3148 permitted for this insn. We can always reload SCRATCH
3149 and objects with a REG_UNUSED note. */
3150 if (GET_CODE (operand) != SCRATCH
3151 && modified[i] != RELOAD_READ && no_output_reloads
3152 && ! find_reg_note (insn, REG_UNUSED, operand))
3153 bad = 1;
3154 else if (modified[i] != RELOAD_WRITE && no_input_reloads)
3155 bad = 1;
3157 /* If this is a constant that is reloaded into the desired
3158 class by copying it to memory first, count that as another
3159 reload. This is consistent with other code and is
3160 required to avoid choosing another alternative when
3161 the constant is moved into memory by this function on
3162 an early reload pass. Note that the test here is
3163 precisely the same as in the code below that calls
3164 force_const_mem. */
3165 if (CONSTANT_P (operand)
3166 /* force_const_mem does not accept HIGH. */
3167 && GET_CODE (operand) != HIGH
3168 && (PREFERRED_RELOAD_CLASS (operand,
3169 (enum reg_class) this_alternative[i])
3170 == NO_REGS)
3171 && operand_mode[i] != VOIDmode)
3173 const_to_mem = 1;
3174 if (this_alternative[i] != (int) NO_REGS)
3175 losers++;
3178 /* If we can't reload this value at all, reject this
3179 alternative. Note that we could also lose due to
3180 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3181 here. */
3183 if (! CONSTANT_P (operand)
3184 && (enum reg_class) this_alternative[i] != NO_REGS
3185 && (PREFERRED_RELOAD_CLASS (operand,
3186 (enum reg_class) this_alternative[i])
3187 == NO_REGS))
3188 bad = 1;
3190 /* We prefer to reload pseudos over reloading other things,
3191 since such reloads may be able to be eliminated later.
3192 If we are reloading a SCRATCH, we won't be generating any
3193 insns, just using a register, so it is also preferred.
3194 So bump REJECT in other cases. Don't do this in the
3195 case where we are forcing a constant into memory and
3196 it will then win since we don't want to have a different
3197 alternative match then. */
3198 if (! (GET_CODE (operand) == REG
3199 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3200 && GET_CODE (operand) != SCRATCH
3201 && ! (const_to_mem && constmemok))
3202 reject++;
3205 /* If this operand is a pseudo register that didn't get a hard
3206 reg and this alternative accepts some register, see if the
3207 class that we want is a subset of the preferred class for this
3208 register. If not, but it intersects that class, use the
3209 preferred class instead. If it does not intersect the preferred
3210 class, show that usage of this alternative should be discouraged;
3211 it will be discouraged more still if the register is `preferred
3212 or nothing'. We do this because it increases the chance of
3213 reusing our spill register in a later insn and avoiding a pair
3214 of memory stores and loads.
3216 Don't bother with this if this alternative will accept this
3217 operand.
3219 Don't do this for a multiword operand, since it is only a
3220 small win and has the risk of requiring more spill registers,
3221 which could cause a large loss.
3223 Don't do this if the preferred class has only one register
3224 because we might otherwise exhaust the class. */
3227 if (! win && this_alternative[i] != (int) NO_REGS
3228 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3229 && reg_class_size[(int) preferred_class[i]] > 1)
3231 if (! reg_class_subset_p (this_alternative[i],
3232 preferred_class[i]))
3234 /* Since we don't have a way of forming the intersection,
3235 we just do something special if the preferred class
3236 is a subset of the class we have; that's the most
3237 common case anyway. */
3238 if (reg_class_subset_p (preferred_class[i],
3239 this_alternative[i]))
3240 this_alternative[i] = (int) preferred_class[i];
3241 else
3242 reject += (1 + pref_or_nothing[i]);
3247 /* Now see if any output operands that are marked "earlyclobber"
3248 in this alternative conflict with any input operands
3249 or any memory addresses. */
3251 for (i = 0; i < noperands; i++)
3252 if (this_alternative_earlyclobber[i]
3253 && this_alternative_win[i])
3255 struct decomposition early_data;
3257 early_data = decompose (recog_operand[i]);
3259 if (modified[i] == RELOAD_READ)
3261 if (this_insn_is_asm)
3262 warning_for_asm (this_insn,
3263 "`&' constraint used with input operand");
3264 else
3265 abort ();
3266 continue;
3269 if (this_alternative[i] == NO_REGS)
3271 this_alternative_earlyclobber[i] = 0;
3272 if (this_insn_is_asm)
3273 error_for_asm (this_insn,
3274 "`&' constraint used with no register class");
3275 else
3276 abort ();
3279 for (j = 0; j < noperands; j++)
3280 /* Is this an input operand or a memory ref? */
3281 if ((GET_CODE (recog_operand[j]) == MEM
3282 || modified[j] != RELOAD_WRITE)
3283 && j != i
3284 /* Ignore things like match_operator operands. */
3285 && *constraints1[j] != 0
3286 /* Don't count an input operand that is constrained to match
3287 the early clobber operand. */
3288 && ! (this_alternative_matches[j] == i
3289 && rtx_equal_p (recog_operand[i], recog_operand[j]))
3290 /* Is it altered by storing the earlyclobber operand? */
3291 && !immune_p (recog_operand[j], recog_operand[i], early_data))
3293 /* If the output is in a single-reg class,
3294 it's costly to reload it, so reload the input instead. */
3295 if (reg_class_size[this_alternative[i]] == 1
3296 && (GET_CODE (recog_operand[j]) == REG
3297 || GET_CODE (recog_operand[j]) == SUBREG))
3299 losers++;
3300 this_alternative_win[j] = 0;
3302 else
3303 break;
3305 /* If an earlyclobber operand conflicts with something,
3306 it must be reloaded, so request this and count the cost. */
3307 if (j != noperands)
3309 losers++;
3310 this_alternative_win[i] = 0;
3311 for (j = 0; j < noperands; j++)
3312 if (this_alternative_matches[j] == i
3313 && this_alternative_win[j])
3315 this_alternative_win[j] = 0;
3316 losers++;
3321 /* If one alternative accepts all the operands, no reload required,
3322 choose that alternative; don't consider the remaining ones. */
3323 if (losers == 0)
3325 /* Unswap these so that they are never swapped at `finish'. */
3326 if (commutative >= 0)
3328 recog_operand[commutative] = substed_operand[commutative];
3329 recog_operand[commutative + 1]
3330 = substed_operand[commutative + 1];
3332 for (i = 0; i < noperands; i++)
3334 goal_alternative_win[i] = 1;
3335 goal_alternative[i] = this_alternative[i];
3336 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3337 goal_alternative_matches[i] = this_alternative_matches[i];
3338 goal_alternative_earlyclobber[i]
3339 = this_alternative_earlyclobber[i];
3341 goal_alternative_number = this_alternative_number;
3342 goal_alternative_swapped = swapped;
3343 goal_earlyclobber = this_earlyclobber;
3344 goto finish;
3347 /* REJECT, set by the ! and ? constraint characters and when a register
3348 would be reloaded into a non-preferred class, discourages the use of
3349 this alternative for a reload goal. REJECT is incremented by three
3350 for each ? and one for each non-preferred class. */
3351 losers = losers * 3 + reject;
3353 /* If this alternative can be made to work by reloading,
3354 and it needs less reloading than the others checked so far,
3355 record it as the chosen goal for reloading. */
3356 if (! bad && best > losers)
3358 for (i = 0; i < noperands; i++)
3360 goal_alternative[i] = this_alternative[i];
3361 goal_alternative_win[i] = this_alternative_win[i];
3362 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3363 goal_alternative_matches[i] = this_alternative_matches[i];
3364 goal_alternative_earlyclobber[i]
3365 = this_alternative_earlyclobber[i];
3367 goal_alternative_swapped = swapped;
3368 best = losers;
3369 goal_alternative_number = this_alternative_number;
3370 goal_earlyclobber = this_earlyclobber;
3374 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3375 then we need to try each alternative twice,
3376 the second time matching those two operands
3377 as if we had exchanged them.
3378 To do this, really exchange them in operands.
3380 If we have just tried the alternatives the second time,
3381 return operands to normal and drop through. */
3383 if (commutative >= 0)
3385 swapped = !swapped;
3386 if (swapped)
3388 register enum reg_class tclass;
3389 register int t;
3391 recog_operand[commutative] = substed_operand[commutative + 1];
3392 recog_operand[commutative + 1] = substed_operand[commutative];
3394 tclass = preferred_class[commutative];
3395 preferred_class[commutative] = preferred_class[commutative + 1];
3396 preferred_class[commutative + 1] = tclass;
3398 t = pref_or_nothing[commutative];
3399 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3400 pref_or_nothing[commutative + 1] = t;
3402 bcopy ((char *) constraints1, (char *) constraints,
3403 noperands * sizeof (char *));
3404 goto try_swapped;
3406 else
3408 recog_operand[commutative] = substed_operand[commutative];
3409 recog_operand[commutative + 1] = substed_operand[commutative + 1];
3413 /* The operands don't meet the constraints.
3414 goal_alternative describes the alternative
3415 that we could reach by reloading the fewest operands.
3416 Reload so as to fit it. */
3418 if (best == MAX_RECOG_OPERANDS + 300)
3420 /* No alternative works with reloads?? */
3421 if (insn_code_number >= 0)
3422 abort ();
3423 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3424 /* Avoid further trouble with this insn. */
3425 PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
3426 n_reloads = 0;
3427 return;
3430 /* Jump to `finish' from above if all operands are valid already.
3431 In that case, goal_alternative_win is all 1. */
3432 finish:
3434 /* Right now, for any pair of operands I and J that are required to match,
3435 with I < J,
3436 goal_alternative_matches[J] is I.
3437 Set up goal_alternative_matched as the inverse function:
3438 goal_alternative_matched[I] = J. */
3440 for (i = 0; i < noperands; i++)
3441 goal_alternative_matched[i] = -1;
3443 for (i = 0; i < noperands; i++)
3444 if (! goal_alternative_win[i]
3445 && goal_alternative_matches[i] >= 0)
3446 goal_alternative_matched[goal_alternative_matches[i]] = i;
3448 /* If the best alternative is with operands 1 and 2 swapped,
3449 consider them swapped before reporting the reloads. Update the
3450 operand numbers of any reloads already pushed. */
3452 if (goal_alternative_swapped)
3454 register rtx tem;
3456 tem = substed_operand[commutative];
3457 substed_operand[commutative] = substed_operand[commutative + 1];
3458 substed_operand[commutative + 1] = tem;
3459 tem = recog_operand[commutative];
3460 recog_operand[commutative] = recog_operand[commutative + 1];
3461 recog_operand[commutative + 1] = tem;
3463 for (i = 0; i < n_reloads; i++)
3465 if (reload_opnum[i] == commutative)
3466 reload_opnum[i] = commutative + 1;
3467 else if (reload_opnum[i] == commutative + 1)
3468 reload_opnum[i] = commutative;
3472 /* Perform whatever substitutions on the operands we are supposed
3473 to make due to commutativity or replacement of registers
3474 with equivalent constants or memory slots. */
3476 for (i = 0; i < noperands; i++)
3478 *recog_operand_loc[i] = substed_operand[i];
3479 /* While we are looping on operands, initialize this. */
3480 operand_reloadnum[i] = -1;
3482 /* If this is an earlyclobber operand, we need to widen the scope.
3483 The reload must remain valid from the start of the insn being
3484 reloaded until after the operand is stored into its destination.
3485 We approximate this with RELOAD_OTHER even though we know that we
3486 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3488 One special case that is worth checking is when we have an
3489 output that is earlyclobber but isn't used past the insn (typically
3490 a SCRATCH). In this case, we only need have the reload live
3491 through the insn itself, but not for any of our input or output
3492 reloads.
3494 In any case, anything needed to address this operand can remain
3495 however they were previously categorized. */
3497 if (goal_alternative_earlyclobber[i])
3498 operand_type[i]
3499 = (find_reg_note (insn, REG_UNUSED, recog_operand[i])
3500 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3503 /* Any constants that aren't allowed and can't be reloaded
3504 into registers are here changed into memory references. */
3505 for (i = 0; i < noperands; i++)
3506 if (! goal_alternative_win[i]
3507 && CONSTANT_P (recog_operand[i])
3508 /* force_const_mem does not accept HIGH. */
3509 && GET_CODE (recog_operand[i]) != HIGH
3510 && (PREFERRED_RELOAD_CLASS (recog_operand[i],
3511 (enum reg_class) goal_alternative[i])
3512 == NO_REGS)
3513 && operand_mode[i] != VOIDmode)
3515 *recog_operand_loc[i] = recog_operand[i]
3516 = find_reloads_toplev (force_const_mem (operand_mode[i],
3517 recog_operand[i]),
3518 i, address_type[i], ind_levels, 0);
3519 if (alternative_allows_memconst (constraints1[i],
3520 goal_alternative_number))
3521 goal_alternative_win[i] = 1;
3524 /* Record the values of the earlyclobber operands for the caller. */
3525 if (goal_earlyclobber)
3526 for (i = 0; i < noperands; i++)
3527 if (goal_alternative_earlyclobber[i])
3528 reload_earlyclobbers[n_earlyclobbers++] = recog_operand[i];
3530 /* Now record reloads for all the operands that need them. */
3531 for (i = 0; i < noperands; i++)
3532 if (! goal_alternative_win[i])
3534 /* Operands that match previous ones have already been handled. */
3535 if (goal_alternative_matches[i] >= 0)
3537 /* Handle an operand with a nonoffsettable address
3538 appearing where an offsettable address will do
3539 by reloading the address into a base register.
3541 ??? We can also do this when the operand is a register and
3542 reg_equiv_mem is not offsettable, but this is a bit tricky,
3543 so we don't bother with it. It may not be worth doing. */
3544 else if (goal_alternative_matched[i] == -1
3545 && goal_alternative_offmemok[i]
3546 && GET_CODE (recog_operand[i]) == MEM)
3548 operand_reloadnum[i]
3549 = push_reload (XEXP (recog_operand[i], 0), NULL_RTX,
3550 &XEXP (recog_operand[i], 0), NULL_PTR,
3551 BASE_REG_CLASS, GET_MODE (XEXP (recog_operand[i], 0)),
3552 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3553 reload_inc[operand_reloadnum[i]]
3554 = GET_MODE_SIZE (GET_MODE (recog_operand[i]));
3556 /* If this operand is an output, we will have made any
3557 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3558 now we are treating part of the operand as an input, so
3559 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3561 if (modified[i] == RELOAD_WRITE)
3563 for (j = 0; j < n_reloads; j++)
3565 if (reload_opnum[j] == i)
3567 if (reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS)
3568 reload_when_needed[j] = RELOAD_FOR_INPUT_ADDRESS;
3569 else if (reload_when_needed[j]
3570 == RELOAD_FOR_OUTADDR_ADDRESS)
3571 reload_when_needed[j] = RELOAD_FOR_INPADDR_ADDRESS;
3576 else if (goal_alternative_matched[i] == -1)
3577 operand_reloadnum[i]
3578 = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3579 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
3580 (modified[i] != RELOAD_WRITE
3581 ? recog_operand_loc[i] : 0),
3582 modified[i] != RELOAD_READ ? recog_operand_loc[i] : 0,
3583 (enum reg_class) goal_alternative[i],
3584 (modified[i] == RELOAD_WRITE
3585 ? VOIDmode : operand_mode[i]),
3586 (modified[i] == RELOAD_READ
3587 ? VOIDmode : operand_mode[i]),
3588 (insn_code_number < 0 ? 0
3589 : insn_operand_strict_low[insn_code_number][i]),
3590 0, i, operand_type[i]);
3591 /* In a matching pair of operands, one must be input only
3592 and the other must be output only.
3593 Pass the input operand as IN and the other as OUT. */
3594 else if (modified[i] == RELOAD_READ
3595 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3597 operand_reloadnum[i]
3598 = push_reload (recog_operand[i],
3599 recog_operand[goal_alternative_matched[i]],
3600 recog_operand_loc[i],
3601 recog_operand_loc[goal_alternative_matched[i]],
3602 (enum reg_class) goal_alternative[i],
3603 operand_mode[i],
3604 operand_mode[goal_alternative_matched[i]],
3605 0, 0, i, RELOAD_OTHER);
3606 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3608 else if (modified[i] == RELOAD_WRITE
3609 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3611 operand_reloadnum[goal_alternative_matched[i]]
3612 = push_reload (recog_operand[goal_alternative_matched[i]],
3613 recog_operand[i],
3614 recog_operand_loc[goal_alternative_matched[i]],
3615 recog_operand_loc[i],
3616 (enum reg_class) goal_alternative[i],
3617 operand_mode[goal_alternative_matched[i]],
3618 operand_mode[i],
3619 0, 0, i, RELOAD_OTHER);
3620 operand_reloadnum[i] = output_reloadnum;
3622 else if (insn_code_number >= 0)
3623 abort ();
3624 else
3626 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3627 /* Avoid further trouble with this insn. */
3628 PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
3629 n_reloads = 0;
3630 return;
3633 else if (goal_alternative_matched[i] < 0
3634 && goal_alternative_matches[i] < 0
3635 && optimize)
3637 /* For each non-matching operand that's a MEM or a pseudo-register
3638 that didn't get a hard register, make an optional reload.
3639 This may get done even if the insn needs no reloads otherwise. */
3641 rtx operand = recog_operand[i];
3643 while (GET_CODE (operand) == SUBREG)
3644 operand = XEXP (operand, 0);
3645 if ((GET_CODE (operand) == MEM
3646 || (GET_CODE (operand) == REG
3647 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3648 && (enum reg_class) goal_alternative[i] != NO_REGS
3649 && ! no_input_reloads
3650 /* Optional output reloads don't do anything and we mustn't
3651 make in-out reloads on insns that are not permitted output
3652 reloads. */
3653 && (modified[i] == RELOAD_READ
3654 || (modified[i] == RELOAD_READ_WRITE && ! no_output_reloads)))
3655 operand_reloadnum[i]
3656 = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3657 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
3658 (modified[i] != RELOAD_WRITE
3659 ? recog_operand_loc[i] : 0),
3660 (modified[i] != RELOAD_READ
3661 ? recog_operand_loc[i] : 0),
3662 (enum reg_class) goal_alternative[i],
3663 (modified[i] == RELOAD_WRITE
3664 ? VOIDmode : operand_mode[i]),
3665 (modified[i] == RELOAD_READ
3666 ? VOIDmode : operand_mode[i]),
3667 (insn_code_number < 0 ? 0
3668 : insn_operand_strict_low[insn_code_number][i]),
3669 1, i, operand_type[i]);
3671 else if (goal_alternative_matches[i] >= 0
3672 && goal_alternative_win[goal_alternative_matches[i]]
3673 && modified[i] == RELOAD_READ
3674 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3675 && ! no_input_reloads && ! no_output_reloads
3676 && optimize)
3678 /* Similarly, make an optional reload for a pair of matching
3679 objects that are in MEM or a pseudo that didn't get a hard reg. */
3681 rtx operand = recog_operand[i];
3683 while (GET_CODE (operand) == SUBREG)
3684 operand = XEXP (operand, 0);
3685 if ((GET_CODE (operand) == MEM
3686 || (GET_CODE (operand) == REG
3687 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3688 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3689 != NO_REGS))
3690 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3691 = push_reload (recog_operand[goal_alternative_matches[i]],
3692 recog_operand[i],
3693 recog_operand_loc[goal_alternative_matches[i]],
3694 recog_operand_loc[i],
3695 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3696 operand_mode[goal_alternative_matches[i]],
3697 operand_mode[i],
3698 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3701 /* If this insn pattern contains any MATCH_DUP's, make sure that
3702 they will be substituted if the operands they match are substituted.
3703 Also do now any substitutions we already did on the operands.
3705 Don't do this if we aren't making replacements because we might be
3706 propagating things allocated by frame pointer elimination into places
3707 it doesn't expect. */
3709 if (insn_code_number >= 0 && replace)
3710 for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
3712 int opno = recog_dup_num[i];
3713 *recog_dup_loc[i] = *recog_operand_loc[opno];
3714 if (operand_reloadnum[opno] >= 0)
3715 push_replacement (recog_dup_loc[i], operand_reloadnum[opno],
3716 insn_operand_mode[insn_code_number][opno]);
3719 #if 0
3720 /* This loses because reloading of prior insns can invalidate the equivalence
3721 (or at least find_equiv_reg isn't smart enough to find it any more),
3722 causing this insn to need more reload regs than it needed before.
3723 It may be too late to make the reload regs available.
3724 Now this optimization is done safely in choose_reload_regs. */
3726 /* For each reload of a reg into some other class of reg,
3727 search for an existing equivalent reg (same value now) in the right class.
3728 We can use it as long as we don't need to change its contents. */
3729 for (i = 0; i < n_reloads; i++)
3730 if (reload_reg_rtx[i] == 0
3731 && reload_in[i] != 0
3732 && GET_CODE (reload_in[i]) == REG
3733 && reload_out[i] == 0)
3735 reload_reg_rtx[i]
3736 = find_equiv_reg (reload_in[i], insn, reload_reg_class[i], -1,
3737 static_reload_reg_p, 0, reload_inmode[i]);
3738 /* Prevent generation of insn to load the value
3739 because the one we found already has the value. */
3740 if (reload_reg_rtx[i])
3741 reload_in[i] = reload_reg_rtx[i];
3743 #endif
3745 /* Perhaps an output reload can be combined with another
3746 to reduce needs by one. */
3747 if (!goal_earlyclobber)
3748 combine_reloads ();
3750 /* If we have a pair of reloads for parts of an address, they are reloading
3751 the same object, the operands themselves were not reloaded, and they
3752 are for two operands that are supposed to match, merge the reloads and
3753 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3755 for (i = 0; i < n_reloads; i++)
3757 int k;
3759 for (j = i + 1; j < n_reloads; j++)
3760 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3761 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3762 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3763 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3764 && (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
3765 || reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS
3766 || reload_when_needed[j] == RELOAD_FOR_INPADDR_ADDRESS
3767 || reload_when_needed[j] == RELOAD_FOR_OUTADDR_ADDRESS)
3768 && rtx_equal_p (reload_in[i], reload_in[j])
3769 && (operand_reloadnum[reload_opnum[i]] < 0
3770 || reload_optional[operand_reloadnum[reload_opnum[i]]])
3771 && (operand_reloadnum[reload_opnum[j]] < 0
3772 || reload_optional[operand_reloadnum[reload_opnum[j]]])
3773 && (goal_alternative_matches[reload_opnum[i]] == reload_opnum[j]
3774 || (goal_alternative_matches[reload_opnum[j]]
3775 == reload_opnum[i])))
3777 for (k = 0; k < n_replacements; k++)
3778 if (replacements[k].what == j)
3779 replacements[k].what = i;
3781 if (reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3782 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3783 reload_when_needed[i] = RELOAD_FOR_OPADDR_ADDR;
3784 else
3785 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3786 reload_in[j] = 0;
3790 /* Scan all the reloads and update their type.
3791 If a reload is for the address of an operand and we didn't reload
3792 that operand, change the type. Similarly, change the operand number
3793 of a reload when two operands match. If a reload is optional, treat it
3794 as though the operand isn't reloaded.
3796 ??? This latter case is somewhat odd because if we do the optional
3797 reload, it means the object is hanging around. Thus we need only
3798 do the address reload if the optional reload was NOT done.
3800 Change secondary reloads to be the address type of their operand, not
3801 the normal type.
3803 If an operand's reload is now RELOAD_OTHER, change any
3804 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3805 RELOAD_FOR_OTHER_ADDRESS. */
3807 for (i = 0; i < n_reloads; i++)
3809 if (reload_secondary_p[i]
3810 && reload_when_needed[i] == operand_type[reload_opnum[i]])
3811 reload_when_needed[i] = address_type[reload_opnum[i]];
3813 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3814 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3815 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3816 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3817 && (operand_reloadnum[reload_opnum[i]] < 0
3818 || reload_optional[operand_reloadnum[reload_opnum[i]]]))
3820 /* If we have a secondary reload to go along with this reload,
3821 change its type to RELOAD_FOR_OPADDR_ADDR. */
3823 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3824 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
3825 && reload_secondary_in_reload[i] != -1)
3827 int secondary_in_reload = reload_secondary_in_reload[i];
3829 reload_when_needed[secondary_in_reload]
3830 = RELOAD_FOR_OPADDR_ADDR;
3832 /* If there's a tertiary reload we have to change it also. */
3833 if (secondary_in_reload > 0
3834 && reload_secondary_in_reload[secondary_in_reload] != -1)
3835 reload_when_needed[reload_secondary_in_reload[secondary_in_reload]]
3836 = RELOAD_FOR_OPADDR_ADDR;
3839 if ((reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3840 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3841 && reload_secondary_out_reload[i] != -1)
3843 int secondary_out_reload = reload_secondary_out_reload[i];
3845 reload_when_needed[secondary_out_reload]
3846 = RELOAD_FOR_OPADDR_ADDR;
3848 /* If there's a tertiary reload we have to change it also. */
3849 if (secondary_out_reload
3850 && reload_secondary_out_reload[secondary_out_reload] != -1)
3851 reload_when_needed[reload_secondary_out_reload[secondary_out_reload]]
3852 = RELOAD_FOR_OPADDR_ADDR;
3854 if (reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3855 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3856 reload_when_needed[i] = RELOAD_FOR_OPADDR_ADDR;
3857 else
3858 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3861 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3862 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
3863 && operand_reloadnum[reload_opnum[i]] >= 0
3864 && (reload_when_needed[operand_reloadnum[reload_opnum[i]]]
3865 == RELOAD_OTHER))
3866 reload_when_needed[i] = RELOAD_FOR_OTHER_ADDRESS;
3868 if (goal_alternative_matches[reload_opnum[i]] >= 0)
3869 reload_opnum[i] = goal_alternative_matches[reload_opnum[i]];
3872 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
3873 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
3874 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
3876 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
3877 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
3878 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
3879 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
3880 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
3881 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
3882 This is complicated by the fact that a single operand can have more
3883 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
3884 choose_reload_regs without affecting code quality, and cases that
3885 actually fail are extremely rare, so it turns out to be better to fix
3886 the problem here by not generating cases that choose_reload_regs will
3887 fail for. */
3890 int op_addr_reloads = 0;
3891 for (i = 0; i < n_reloads; i++)
3892 if (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS)
3893 op_addr_reloads++;
3895 if (op_addr_reloads > 1)
3896 for (i = 0; i < n_reloads; i++)
3897 if (reload_when_needed[i] == RELOAD_FOR_OPADDR_ADDR)
3898 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3901 /* See if we have any reloads that are now allowed to be merged
3902 because we've changed when the reload is needed to
3903 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
3904 check for the most common cases. */
3906 for (i = 0; i < n_reloads; i++)
3907 if (reload_in[i] != 0 && reload_out[i] == 0
3908 && (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS
3909 || reload_when_needed[i] == RELOAD_FOR_OPADDR_ADDR
3910 || reload_when_needed[i] == RELOAD_FOR_OTHER_ADDRESS))
3911 for (j = 0; j < n_reloads; j++)
3912 if (i != j && reload_in[j] != 0 && reload_out[j] == 0
3913 && reload_when_needed[j] == reload_when_needed[i]
3914 && MATCHES (reload_in[i], reload_in[j])
3915 && reload_reg_class[i] == reload_reg_class[j]
3916 && !reload_nocombine[i] && !reload_nocombine[j]
3917 && reload_reg_rtx[i] == reload_reg_rtx[j])
3919 reload_opnum[i] = MIN (reload_opnum[i], reload_opnum[j]);
3920 transfer_replacements (i, j);
3921 reload_in[j] = 0;
3924 #else /* no REGISTER_CONSTRAINTS */
3925 int noperands;
3926 int insn_code_number;
3927 int goal_earlyclobber = 0; /* Always 0, to make combine_reloads happen. */
3928 register int i;
3929 rtx body = PATTERN (insn);
3931 n_reloads = 0;
3932 n_replacements = 0;
3933 n_earlyclobbers = 0;
3934 replace_reloads = replace;
3935 this_insn = insn;
3937 /* Find what kind of insn this is. NOPERANDS gets number of operands.
3938 Store the operand values in RECOG_OPERAND and the locations
3939 of the words in the insn that point to them in RECOG_OPERAND_LOC.
3940 Return if the insn needs no reload processing. */
3942 switch (GET_CODE (body))
3944 case USE:
3945 case CLOBBER:
3946 case ASM_INPUT:
3947 case ADDR_VEC:
3948 case ADDR_DIFF_VEC:
3949 return;
3951 case PARALLEL:
3952 case SET:
3953 noperands = asm_noperands (body);
3954 if (noperands >= 0)
3956 /* This insn is an `asm' with operands.
3957 First, find out how many operands, and allocate space. */
3959 insn_code_number = -1;
3960 /* ??? This is a bug! ???
3961 Give up and delete this insn if it has too many operands. */
3962 if (noperands > MAX_RECOG_OPERANDS)
3963 abort ();
3965 /* Now get the operand values out of the insn. */
3967 decode_asm_operands (body, recog_operand, recog_operand_loc,
3968 NULL_PTR, NULL_PTR);
3969 break;
3972 default:
3973 /* Ordinary insn: recognize it, allocate space for operands and
3974 constraints, and get them out via insn_extract. */
3976 insn_code_number = recog_memoized (insn);
3977 noperands = insn_n_operands[insn_code_number];
3978 insn_extract (insn);
3981 if (noperands == 0)
3982 return;
3984 for (i = 0; i < noperands; i++)
3986 register RTX_CODE code = GET_CODE (recog_operand[i]);
3987 int is_set_dest = GET_CODE (body) == SET && (i == 0);
3989 if (insn_code_number >= 0)
3990 if (insn_operand_address_p[insn_code_number][i])
3991 find_reloads_address (VOIDmode, NULL_PTR,
3992 recog_operand[i], recog_operand_loc[i],
3993 i, RELOAD_FOR_INPUT, ind_levels, insn);
3995 /* In these cases, we can't tell if the operand is an input
3996 or an output, so be conservative. In practice it won't be
3997 problem. */
3999 if (code == MEM)
4000 find_reloads_address (GET_MODE (recog_operand[i]),
4001 recog_operand_loc[i],
4002 XEXP (recog_operand[i], 0),
4003 &XEXP (recog_operand[i], 0),
4004 i, RELOAD_OTHER, ind_levels, insn);
4005 if (code == SUBREG)
4006 recog_operand[i] = *recog_operand_loc[i]
4007 = find_reloads_toplev (recog_operand[i], i, RELOAD_OTHER,
4008 ind_levels, is_set_dest);
4009 if (code == REG)
4011 register int regno = REGNO (recog_operand[i]);
4012 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4013 recog_operand[i] = *recog_operand_loc[i]
4014 = reg_equiv_constant[regno];
4015 #if 0 /* This might screw code in reload1.c to delete prior output-reload
4016 that feeds this insn. */
4017 if (reg_equiv_mem[regno] != 0)
4018 recog_operand[i] = *recog_operand_loc[i]
4019 = reg_equiv_mem[regno];
4020 #endif
4024 /* Perhaps an output reload can be combined with another
4025 to reduce needs by one. */
4026 if (!goal_earlyclobber)
4027 combine_reloads ();
4028 #endif /* no REGISTER_CONSTRAINTS */
4031 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4032 accepts a memory operand with constant address. */
4034 static int
4035 alternative_allows_memconst (constraint, altnum)
4036 char *constraint;
4037 int altnum;
4039 register int c;
4040 /* Skip alternatives before the one requested. */
4041 while (altnum > 0)
4043 while (*constraint++ != ',');
4044 altnum--;
4046 /* Scan the requested alternative for 'm' or 'o'.
4047 If one of them is present, this alternative accepts memory constants. */
4048 while ((c = *constraint++) && c != ',' && c != '#')
4049 if (c == 'm' || c == 'o')
4050 return 1;
4051 return 0;
4054 /* Scan X for memory references and scan the addresses for reloading.
4055 Also checks for references to "constant" regs that we want to eliminate
4056 and replaces them with the values they stand for.
4057 We may alter X destructively if it contains a reference to such.
4058 If X is just a constant reg, we return the equivalent value
4059 instead of X.
4061 IND_LEVELS says how many levels of indirect addressing this machine
4062 supports.
4064 OPNUM and TYPE identify the purpose of the reload.
4066 IS_SET_DEST is true if X is the destination of a SET, which is not
4067 appropriate to be replaced by a constant. */
4069 static rtx
4070 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest)
4071 rtx x;
4072 int opnum;
4073 enum reload_type type;
4074 int ind_levels;
4075 int is_set_dest;
4077 register RTX_CODE code = GET_CODE (x);
4079 register char *fmt = GET_RTX_FORMAT (code);
4080 register int i;
4082 if (code == REG)
4084 /* This code is duplicated for speed in find_reloads. */
4085 register int regno = REGNO (x);
4086 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4087 x = reg_equiv_constant[regno];
4088 #if 0
4089 /* This creates (subreg (mem...)) which would cause an unnecessary
4090 reload of the mem. */
4091 else if (reg_equiv_mem[regno] != 0)
4092 x = reg_equiv_mem[regno];
4093 #endif
4094 else if (reg_equiv_address[regno] != 0)
4096 /* If reg_equiv_address varies, it may be shared, so copy it. */
4097 /* We must rerun eliminate_regs, in case the elimination
4098 offsets have changed. */
4099 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
4100 NULL_RTX, 0),
4103 if (rtx_varies_p (addr))
4104 addr = copy_rtx (addr);
4106 x = gen_rtx (MEM, GET_MODE (x), addr);
4107 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4108 find_reloads_address (GET_MODE (x), NULL_PTR,
4109 XEXP (x, 0),
4110 &XEXP (x, 0), opnum, type, ind_levels, 0);
4112 return x;
4114 if (code == MEM)
4116 rtx tem = x;
4117 find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4118 opnum, type, ind_levels, 0);
4119 return tem;
4122 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4124 /* Check for SUBREG containing a REG that's equivalent to a constant.
4125 If the constant has a known value, truncate it right now.
4126 Similarly if we are extracting a single-word of a multi-word
4127 constant. If the constant is symbolic, allow it to be substituted
4128 normally. push_reload will strip the subreg later. If the
4129 constant is VOIDmode, abort because we will lose the mode of
4130 the register (this should never happen because one of the cases
4131 above should handle it). */
4133 register int regno = REGNO (SUBREG_REG (x));
4134 rtx tem;
4136 if (subreg_lowpart_p (x)
4137 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4138 && reg_equiv_constant[regno] != 0
4139 && (tem = gen_lowpart_common (GET_MODE (x),
4140 reg_equiv_constant[regno])) != 0)
4141 return tem;
4143 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4144 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4145 && reg_equiv_constant[regno] != 0
4146 && (tem = operand_subword (reg_equiv_constant[regno],
4147 SUBREG_WORD (x), 0,
4148 GET_MODE (SUBREG_REG (x)))) != 0)
4149 return tem;
4151 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4152 && reg_equiv_constant[regno] != 0
4153 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4154 abort ();
4156 /* If the subreg contains a reg that will be converted to a mem,
4157 convert the subreg to a narrower memref now.
4158 Otherwise, we would get (subreg (mem ...) ...),
4159 which would force reload of the mem.
4161 We also need to do this if there is an equivalent MEM that is
4162 not offsettable. In that case, alter_subreg would produce an
4163 invalid address on big-endian machines.
4165 For machines that extend byte loads, we must not reload using
4166 a wider mode if we have a paradoxical SUBREG. find_reloads will
4167 force a reload in that case. So we should not do anything here. */
4169 else if (regno >= FIRST_PSEUDO_REGISTER
4170 #ifdef LOAD_EXTEND_OP
4171 && (GET_MODE_SIZE (GET_MODE (x))
4172 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4173 #endif
4174 && (reg_equiv_address[regno] != 0
4175 || (reg_equiv_mem[regno] != 0
4176 && (! strict_memory_address_p (GET_MODE (x),
4177 XEXP (reg_equiv_mem[regno], 0))
4178 || ! offsettable_memref_p (reg_equiv_mem[regno])))))
4180 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
4181 /* We must rerun eliminate_regs, in case the elimination
4182 offsets have changed. */
4183 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
4184 NULL_RTX, 0),
4186 if (BYTES_BIG_ENDIAN)
4188 int size;
4189 size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
4190 offset += MIN (size, UNITS_PER_WORD);
4191 size = GET_MODE_SIZE (GET_MODE (x));
4192 offset -= MIN (size, UNITS_PER_WORD);
4194 addr = plus_constant (addr, offset);
4195 x = gen_rtx (MEM, GET_MODE (x), addr);
4196 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4197 find_reloads_address (GET_MODE (x), NULL_PTR,
4198 XEXP (x, 0),
4199 &XEXP (x, 0), opnum, type, ind_levels, 0);
4204 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4206 if (fmt[i] == 'e')
4207 XEXP (x, i) = find_reloads_toplev (XEXP (x, i), opnum, type,
4208 ind_levels, is_set_dest);
4210 return x;
4213 /* Return a mem ref for the memory equivalent of reg REGNO.
4214 This mem ref is not shared with anything. */
4216 static rtx
4217 make_memloc (ad, regno)
4218 rtx ad;
4219 int regno;
4221 register int i;
4222 /* We must rerun eliminate_regs, in case the elimination
4223 offsets have changed. */
4224 rtx tem = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX, 0),
4227 #if 0 /* We cannot safely reuse a memloc made here;
4228 if the pseudo appears twice, and its mem needs a reload,
4229 it gets two separate reloads assigned, but it only
4230 gets substituted with the second of them;
4231 then it can get used before that reload reg gets loaded up. */
4232 for (i = 0; i < n_memlocs; i++)
4233 if (rtx_equal_p (tem, XEXP (memlocs[i], 0)))
4234 return memlocs[i];
4235 #endif
4237 /* If TEM might contain a pseudo, we must copy it to avoid
4238 modifying it when we do the substitution for the reload. */
4239 if (rtx_varies_p (tem))
4240 tem = copy_rtx (tem);
4242 tem = gen_rtx (MEM, GET_MODE (ad), tem);
4243 RTX_UNCHANGING_P (tem) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4244 memlocs[n_memlocs++] = tem;
4245 return tem;
4248 /* Record all reloads needed for handling memory address AD
4249 which appears in *LOC in a memory reference to mode MODE
4250 which itself is found in location *MEMREFLOC.
4251 Note that we take shortcuts assuming that no multi-reg machine mode
4252 occurs as part of an address.
4254 OPNUM and TYPE specify the purpose of this reload.
4256 IND_LEVELS says how many levels of indirect addressing this machine
4257 supports.
4259 INSN, if nonzero, is the insn in which we do the reload. It is used
4260 to determine if we may generate output reloads.
4262 Value is nonzero if this address is reloaded or replaced as a whole.
4263 This is interesting to the caller if the address is an autoincrement.
4265 Note that there is no verification that the address will be valid after
4266 this routine does its work. Instead, we rely on the fact that the address
4267 was valid when reload started. So we need only undo things that reload
4268 could have broken. These are wrong register types, pseudos not allocated
4269 to a hard register, and frame pointer elimination. */
4271 static int
4272 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4273 enum machine_mode mode;
4274 rtx *memrefloc;
4275 rtx ad;
4276 rtx *loc;
4277 int opnum;
4278 enum reload_type type;
4279 int ind_levels;
4280 rtx insn;
4282 register int regno;
4283 rtx tem;
4285 /* If the address is a register, see if it is a legitimate address and
4286 reload if not. We first handle the cases where we need not reload
4287 or where we must reload in a non-standard way. */
4289 if (GET_CODE (ad) == REG)
4291 regno = REGNO (ad);
4293 if (reg_equiv_constant[regno] != 0
4294 && strict_memory_address_p (mode, reg_equiv_constant[regno]))
4296 *loc = ad = reg_equiv_constant[regno];
4297 return 1;
4300 else if (reg_equiv_address[regno] != 0)
4302 tem = make_memloc (ad, regno);
4303 find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
4304 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
4305 ind_levels, insn);
4306 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4307 reload_address_base_reg_class,
4308 GET_MODE (ad), VOIDmode, 0, 0,
4309 opnum, type);
4310 return 1;
4313 /* We can avoid a reload if the register's equivalent memory expression
4314 is valid as an indirect memory address.
4315 But not all addresses are valid in a mem used as an indirect address:
4316 only reg or reg+constant. */
4318 else if (reg_equiv_mem[regno] != 0 && ind_levels > 0
4319 && strict_memory_address_p (mode, reg_equiv_mem[regno])
4320 && (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == REG
4321 || (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == PLUS
4322 && GET_CODE (XEXP (XEXP (reg_equiv_mem[regno], 0), 0)) == REG
4323 && CONSTANT_P (XEXP (XEXP (reg_equiv_mem[regno], 0), 1)))))
4324 return 0;
4326 /* The only remaining case where we can avoid a reload is if this is a
4327 hard register that is valid as a base register and which is not the
4328 subject of a CLOBBER in this insn. */
4330 else if (regno < FIRST_PSEUDO_REGISTER
4331 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4332 && ! regno_clobbered_p (regno, this_insn))
4333 return 0;
4335 /* If we do not have one of the cases above, we must do the reload. */
4336 push_reload (ad, NULL_RTX, loc, NULL_PTR, reload_address_base_reg_class,
4337 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4338 return 1;
4341 if (strict_memory_address_p (mode, ad))
4343 /* The address appears valid, so reloads are not needed.
4344 But the address may contain an eliminable register.
4345 This can happen because a machine with indirect addressing
4346 may consider a pseudo register by itself a valid address even when
4347 it has failed to get a hard reg.
4348 So do a tree-walk to find and eliminate all such regs. */
4350 /* But first quickly dispose of a common case. */
4351 if (GET_CODE (ad) == PLUS
4352 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4353 && GET_CODE (XEXP (ad, 0)) == REG
4354 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4355 return 0;
4357 subst_reg_equivs_changed = 0;
4358 *loc = subst_reg_equivs (ad);
4360 if (! subst_reg_equivs_changed)
4361 return 0;
4363 /* Check result for validity after substitution. */
4364 if (strict_memory_address_p (mode, ad))
4365 return 0;
4368 /* The address is not valid. We have to figure out why. One possibility
4369 is that it is itself a MEM. This can happen when the frame pointer is
4370 being eliminated, a pseudo is not allocated to a hard register, and the
4371 offset between the frame and stack pointers is not its initial value.
4372 In that case the pseudo will have been replaced by a MEM referring to
4373 the stack pointer. */
4374 if (GET_CODE (ad) == MEM)
4376 /* First ensure that the address in this MEM is valid. Then, unless
4377 indirect addresses are valid, reload the MEM into a register. */
4378 tem = ad;
4379 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4380 opnum, ADDR_TYPE (type),
4381 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4383 /* If tem was changed, then we must create a new memory reference to
4384 hold it and store it back into memrefloc. */
4385 if (tem != ad && memrefloc)
4387 *memrefloc = copy_rtx (*memrefloc);
4388 copy_replacements (tem, XEXP (*memrefloc, 0));
4389 loc = &XEXP (*memrefloc, 0);
4392 /* Check similar cases as for indirect addresses as above except
4393 that we can allow pseudos and a MEM since they should have been
4394 taken care of above. */
4396 if (ind_levels == 0
4397 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4398 || GET_CODE (XEXP (tem, 0)) == MEM
4399 || ! (GET_CODE (XEXP (tem, 0)) == REG
4400 || (GET_CODE (XEXP (tem, 0)) == PLUS
4401 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4402 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4404 /* Must use TEM here, not AD, since it is the one that will
4405 have any subexpressions reloaded, if needed. */
4406 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4407 reload_address_base_reg_class, GET_MODE (tem),
4408 VOIDmode, 0,
4409 0, opnum, type);
4410 return 1;
4412 else
4413 return 0;
4416 /* If we have address of a stack slot but it's not valid because the
4417 displacement is too large, compute the sum in a register.
4418 Handle all base registers here, not just fp/ap/sp, because on some
4419 targets (namely SH) we can also get too large displacements from
4420 big-endian corrections. */
4421 else if (GET_CODE (ad) == PLUS
4422 && GET_CODE (XEXP (ad, 0)) == REG
4423 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4424 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4425 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4427 /* Unshare the MEM rtx so we can safely alter it. */
4428 if (memrefloc)
4430 *memrefloc = copy_rtx (*memrefloc);
4431 loc = &XEXP (*memrefloc, 0);
4433 if (double_reg_address_ok)
4435 /* Unshare the sum as well. */
4436 *loc = ad = copy_rtx (ad);
4437 /* Reload the displacement into an index reg.
4438 We assume the frame pointer or arg pointer is a base reg. */
4439 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4440 reload_address_index_reg_class,
4441 GET_MODE (ad), opnum, type, ind_levels);
4443 else
4445 /* If the sum of two regs is not necessarily valid,
4446 reload the sum into a base reg.
4447 That will at least work. */
4448 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4449 Pmode, opnum, type, ind_levels);
4451 return 1;
4454 /* If we have an indexed stack slot, there are three possible reasons why
4455 it might be invalid: The index might need to be reloaded, the address
4456 might have been made by frame pointer elimination and hence have a
4457 constant out of range, or both reasons might apply.
4459 We can easily check for an index needing reload, but even if that is the
4460 case, we might also have an invalid constant. To avoid making the
4461 conservative assumption and requiring two reloads, we see if this address
4462 is valid when not interpreted strictly. If it is, the only problem is
4463 that the index needs a reload and find_reloads_address_1 will take care
4464 of it.
4466 There is still a case when we might generate an extra reload,
4467 however. In certain cases eliminate_regs will return a MEM for a REG
4468 (see the code there for details). In those cases, memory_address_p
4469 applied to our address will return 0 so we will think that our offset
4470 must be too large. But it might indeed be valid and the only problem
4471 is that a MEM is present where a REG should be. This case should be
4472 very rare and there doesn't seem to be any way to avoid it.
4474 If we decide to do something here, it must be that
4475 `double_reg_address_ok' is true and that this address rtl was made by
4476 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4477 rework the sum so that the reload register will be added to the index.
4478 This is safe because we know the address isn't shared.
4480 We check for fp/ap/sp as both the first and second operand of the
4481 innermost PLUS. */
4483 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4484 && GET_CODE (XEXP (ad, 0)) == PLUS
4485 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4486 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4487 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4488 #endif
4489 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4490 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4491 #endif
4492 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4493 && ! memory_address_p (mode, ad))
4495 *loc = ad = gen_rtx (PLUS, GET_MODE (ad),
4496 plus_constant (XEXP (XEXP (ad, 0), 0),
4497 INTVAL (XEXP (ad, 1))),
4498 XEXP (XEXP (ad, 0), 1));
4499 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4500 reload_address_base_reg_class,
4501 GET_MODE (ad), opnum, type, ind_levels);
4502 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4503 type, 0, insn);
4505 return 1;
4508 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4509 && GET_CODE (XEXP (ad, 0)) == PLUS
4510 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4511 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4512 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4513 #endif
4514 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4515 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4516 #endif
4517 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4518 && ! memory_address_p (mode, ad))
4520 *loc = ad = gen_rtx (PLUS, GET_MODE (ad),
4521 XEXP (XEXP (ad, 0), 0),
4522 plus_constant (XEXP (XEXP (ad, 0), 1),
4523 INTVAL (XEXP (ad, 1))));
4524 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4525 reload_address_base_reg_class,
4526 GET_MODE (ad), opnum, type, ind_levels);
4527 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4528 type, 0, insn);
4530 return 1;
4533 /* See if address becomes valid when an eliminable register
4534 in a sum is replaced. */
4536 tem = ad;
4537 if (GET_CODE (ad) == PLUS)
4538 tem = subst_indexed_address (ad);
4539 if (tem != ad && strict_memory_address_p (mode, tem))
4541 /* Ok, we win that way. Replace any additional eliminable
4542 registers. */
4544 subst_reg_equivs_changed = 0;
4545 tem = subst_reg_equivs (tem);
4547 /* Make sure that didn't make the address invalid again. */
4549 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4551 *loc = tem;
4552 return 0;
4556 /* If constants aren't valid addresses, reload the constant address
4557 into a register. */
4558 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4560 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4561 Unshare it so we can safely alter it. */
4562 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4563 && CONSTANT_POOL_ADDRESS_P (ad))
4565 *memrefloc = copy_rtx (*memrefloc);
4566 loc = &XEXP (*memrefloc, 0);
4569 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4570 Pmode, opnum, type,
4571 ind_levels);
4572 return 1;
4575 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4576 insn);
4579 /* Find all pseudo regs appearing in AD
4580 that are eliminable in favor of equivalent values
4581 and do not have hard regs; replace them by their equivalents. */
4583 static rtx
4584 subst_reg_equivs (ad)
4585 rtx ad;
4587 register RTX_CODE code = GET_CODE (ad);
4588 register int i;
4589 register char *fmt;
4591 switch (code)
4593 case HIGH:
4594 case CONST_INT:
4595 case CONST:
4596 case CONST_DOUBLE:
4597 case SYMBOL_REF:
4598 case LABEL_REF:
4599 case PC:
4600 case CC0:
4601 return ad;
4603 case REG:
4605 register int regno = REGNO (ad);
4607 if (reg_equiv_constant[regno] != 0)
4609 subst_reg_equivs_changed = 1;
4610 return reg_equiv_constant[regno];
4613 return ad;
4615 case PLUS:
4616 /* Quickly dispose of a common case. */
4617 if (XEXP (ad, 0) == frame_pointer_rtx
4618 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4619 return ad;
4620 break;
4622 default:
4623 break;
4626 fmt = GET_RTX_FORMAT (code);
4627 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4628 if (fmt[i] == 'e')
4629 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i));
4630 return ad;
4633 /* Compute the sum of X and Y, making canonicalizations assumed in an
4634 address, namely: sum constant integers, surround the sum of two
4635 constants with a CONST, put the constant as the second operand, and
4636 group the constant on the outermost sum.
4638 This routine assumes both inputs are already in canonical form. */
4641 form_sum (x, y)
4642 rtx x, y;
4644 rtx tem;
4645 enum machine_mode mode = GET_MODE (x);
4647 if (mode == VOIDmode)
4648 mode = GET_MODE (y);
4650 if (mode == VOIDmode)
4651 mode = Pmode;
4653 if (GET_CODE (x) == CONST_INT)
4654 return plus_constant (y, INTVAL (x));
4655 else if (GET_CODE (y) == CONST_INT)
4656 return plus_constant (x, INTVAL (y));
4657 else if (CONSTANT_P (x))
4658 tem = x, x = y, y = tem;
4660 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4661 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4663 /* Note that if the operands of Y are specified in the opposite
4664 order in the recursive calls below, infinite recursion will occur. */
4665 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
4666 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4668 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4669 constant will have been placed second. */
4670 if (CONSTANT_P (x) && CONSTANT_P (y))
4672 if (GET_CODE (x) == CONST)
4673 x = XEXP (x, 0);
4674 if (GET_CODE (y) == CONST)
4675 y = XEXP (y, 0);
4677 return gen_rtx (CONST, VOIDmode, gen_rtx (PLUS, mode, x, y));
4680 return gen_rtx (PLUS, mode, x, y);
4683 /* If ADDR is a sum containing a pseudo register that should be
4684 replaced with a constant (from reg_equiv_constant),
4685 return the result of doing so, and also apply the associative
4686 law so that the result is more likely to be a valid address.
4687 (But it is not guaranteed to be one.)
4689 Note that at most one register is replaced, even if more are
4690 replaceable. Also, we try to put the result into a canonical form
4691 so it is more likely to be a valid address.
4693 In all other cases, return ADDR. */
4695 static rtx
4696 subst_indexed_address (addr)
4697 rtx addr;
4699 rtx op0 = 0, op1 = 0, op2 = 0;
4700 rtx tem;
4701 int regno;
4703 if (GET_CODE (addr) == PLUS)
4705 /* Try to find a register to replace. */
4706 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
4707 if (GET_CODE (op0) == REG
4708 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
4709 && reg_renumber[regno] < 0
4710 && reg_equiv_constant[regno] != 0)
4711 op0 = reg_equiv_constant[regno];
4712 else if (GET_CODE (op1) == REG
4713 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
4714 && reg_renumber[regno] < 0
4715 && reg_equiv_constant[regno] != 0)
4716 op1 = reg_equiv_constant[regno];
4717 else if (GET_CODE (op0) == PLUS
4718 && (tem = subst_indexed_address (op0)) != op0)
4719 op0 = tem;
4720 else if (GET_CODE (op1) == PLUS
4721 && (tem = subst_indexed_address (op1)) != op1)
4722 op1 = tem;
4723 else
4724 return addr;
4726 /* Pick out up to three things to add. */
4727 if (GET_CODE (op1) == PLUS)
4728 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
4729 else if (GET_CODE (op0) == PLUS)
4730 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4732 /* Compute the sum. */
4733 if (op2 != 0)
4734 op1 = form_sum (op1, op2);
4735 if (op1 != 0)
4736 op0 = form_sum (op0, op1);
4738 return op0;
4740 return addr;
4743 /* Record the pseudo registers we must reload into hard registers in a
4744 subexpression of a would-be memory address, X referring to a value
4745 in mode MODE. (This function is not called if the address we find
4746 is strictly valid.)
4748 CONTEXT = 1 means we are considering regs as index regs,
4749 = 0 means we are considering them as base regs.
4751 OPNUM and TYPE specify the purpose of any reloads made.
4753 IND_LEVELS says how many levels of indirect addressing are
4754 supported at this point in the address.
4756 INSN, if nonzero, is the insn in which we do the reload. It is used
4757 to determine if we may generate output reloads.
4759 We return nonzero if X, as a whole, is reloaded or replaced. */
4761 /* Note that we take shortcuts assuming that no multi-reg machine mode
4762 occurs as part of an address.
4763 Also, this is not fully machine-customizable; it works for machines
4764 such as vaxes and 68000's and 32000's, but other possible machines
4765 could have addressing modes that this does not handle right. */
4767 static int
4768 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
4769 enum machine_mode mode;
4770 rtx x;
4771 int context;
4772 rtx *loc;
4773 int opnum;
4774 enum reload_type type;
4775 int ind_levels;
4776 rtx insn;
4778 register RTX_CODE code = GET_CODE (x);
4780 switch (code)
4782 case PLUS:
4784 register rtx orig_op0 = XEXP (x, 0);
4785 register rtx orig_op1 = XEXP (x, 1);
4786 register RTX_CODE code0 = GET_CODE (orig_op0);
4787 register RTX_CODE code1 = GET_CODE (orig_op1);
4788 register rtx op0 = orig_op0;
4789 register rtx op1 = orig_op1;
4791 if (GET_CODE (op0) == SUBREG)
4793 op0 = SUBREG_REG (op0);
4794 code0 = GET_CODE (op0);
4795 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
4796 op0 = gen_rtx (REG, word_mode,
4797 REGNO (op0) + SUBREG_WORD (orig_op0));
4800 if (GET_CODE (op1) == SUBREG)
4802 op1 = SUBREG_REG (op1);
4803 code1 = GET_CODE (op1);
4804 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
4805 op1 = gen_rtx (REG, GET_MODE (op1),
4806 REGNO (op1) + SUBREG_WORD (orig_op1));
4809 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
4810 || code0 == ZERO_EXTEND || code1 == MEM)
4812 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
4813 type, ind_levels, insn);
4814 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4815 type, ind_levels, insn);
4818 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
4819 || code1 == ZERO_EXTEND || code0 == MEM)
4821 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
4822 type, ind_levels, insn);
4823 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
4824 type, ind_levels, insn);
4827 else if (code0 == CONST_INT || code0 == CONST
4828 || code0 == SYMBOL_REF || code0 == LABEL_REF)
4829 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4830 type, ind_levels, insn);
4832 else if (code1 == CONST_INT || code1 == CONST
4833 || code1 == SYMBOL_REF || code1 == LABEL_REF)
4834 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
4835 type, ind_levels, insn);
4837 else if (code0 == REG && code1 == REG)
4839 if (REG_OK_FOR_INDEX_P (op0)
4840 && REG_MODE_OK_FOR_BASE_P (op1, mode))
4841 return 0;
4842 else if (REG_OK_FOR_INDEX_P (op1)
4843 && REG_MODE_OK_FOR_BASE_P (op0, mode))
4844 return 0;
4845 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
4846 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
4847 type, ind_levels, insn);
4848 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
4849 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
4850 type, ind_levels, insn);
4851 else if (REG_OK_FOR_INDEX_P (op1))
4852 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
4853 type, ind_levels, insn);
4854 else if (REG_OK_FOR_INDEX_P (op0))
4855 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4856 type, ind_levels, insn);
4857 else
4859 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
4860 type, ind_levels, insn);
4861 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4862 type, ind_levels, insn);
4866 else if (code0 == REG)
4868 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
4869 type, ind_levels, insn);
4870 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4871 type, ind_levels, insn);
4874 else if (code1 == REG)
4876 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
4877 type, ind_levels, insn);
4878 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
4879 type, ind_levels, insn);
4883 return 0;
4885 case POST_INC:
4886 case POST_DEC:
4887 case PRE_INC:
4888 case PRE_DEC:
4889 if (GET_CODE (XEXP (x, 0)) == REG)
4891 register int regno = REGNO (XEXP (x, 0));
4892 int value = 0;
4893 rtx x_orig = x;
4895 /* A register that is incremented cannot be constant! */
4896 if (regno >= FIRST_PSEUDO_REGISTER
4897 && reg_equiv_constant[regno] != 0)
4898 abort ();
4900 /* Handle a register that is equivalent to a memory location
4901 which cannot be addressed directly. */
4902 if (reg_equiv_address[regno] != 0)
4904 rtx tem = make_memloc (XEXP (x, 0), regno);
4905 /* First reload the memory location's address.
4906 We can't use ADDR_TYPE (type) here, because we need to
4907 write back the value after reading it, hence we actually
4908 need two registers. */
4909 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
4910 &XEXP (tem, 0), opnum, type,
4911 ind_levels, insn);
4912 /* Put this inside a new increment-expression. */
4913 x = gen_rtx (GET_CODE (x), GET_MODE (x), tem);
4914 /* Proceed to reload that, as if it contained a register. */
4917 /* If we have a hard register that is ok as an index,
4918 don't make a reload. If an autoincrement of a nice register
4919 isn't "valid", it must be that no autoincrement is "valid".
4920 If that is true and something made an autoincrement anyway,
4921 this must be a special context where one is allowed.
4922 (For example, a "push" instruction.)
4923 We can't improve this address, so leave it alone. */
4925 /* Otherwise, reload the autoincrement into a suitable hard reg
4926 and record how much to increment by. */
4928 if (reg_renumber[regno] >= 0)
4929 regno = reg_renumber[regno];
4930 if ((regno >= FIRST_PSEUDO_REGISTER
4931 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
4932 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
4934 register rtx link;
4935 int reloadnum;
4937 /* If we can output the register afterwards, do so, this
4938 saves the extra update.
4939 We can do so if we have an INSN - i.e. no JUMP_INSN nor
4940 CALL_INSN - and it does not set CC0.
4941 But don't do this if we cannot directly address the
4942 memory location, since this will make it harder to
4943 reuse address reloads, and increses register pressure.
4944 Also don't do this if we can probably update x directly. */
4945 rtx equiv = reg_equiv_mem[regno];
4946 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
4947 if (insn && GET_CODE (insn) == INSN && equiv
4948 #ifdef HAVE_cc0
4949 && ! sets_cc0_p (PATTERN (insn))
4950 #endif
4951 && ! (icode != CODE_FOR_nothing
4952 && (*insn_operand_predicate[icode][0]) (equiv, Pmode)
4953 && (*insn_operand_predicate[icode][1]) (equiv, Pmode)))
4955 loc = &XEXP (x, 0);
4956 x = XEXP (x, 0);
4957 reloadnum
4958 = push_reload (x, x, loc, loc,
4959 (context
4960 ? reload_address_index_reg_class
4961 : reload_address_base_reg_class),
4962 GET_MODE (x), GET_MODE (x), 0, 0,
4963 opnum, RELOAD_OTHER);
4965 else
4967 reloadnum
4968 = push_reload (x, NULL_RTX, loc, NULL_PTR,
4969 (context
4970 ? reload_address_index_reg_class
4971 : reload_address_base_reg_class),
4972 GET_MODE (x), GET_MODE (x), 0, 0,
4973 opnum, type);
4974 reload_inc[reloadnum]
4975 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
4977 value = 1;
4980 #ifdef AUTO_INC_DEC
4981 /* Update the REG_INC notes. */
4983 for (link = REG_NOTES (this_insn);
4984 link; link = XEXP (link, 1))
4985 if (REG_NOTE_KIND (link) == REG_INC
4986 && REGNO (XEXP (link, 0)) == REGNO (XEXP (x_orig, 0)))
4987 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
4988 #endif
4990 return value;
4993 else if (GET_CODE (XEXP (x, 0)) == MEM)
4995 /* This is probably the result of a substitution, by eliminate_regs,
4996 of an equivalent address for a pseudo that was not allocated to a
4997 hard register. Verify that the specified address is valid and
4998 reload it into a register. */
4999 rtx tem = XEXP (x, 0);
5000 register rtx link;
5001 int reloadnum;
5003 /* Since we know we are going to reload this item, don't decrement
5004 for the indirection level.
5006 Note that this is actually conservative: it would be slightly
5007 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5008 reload1.c here. */
5009 /* We can't use ADDR_TYPE (type) here, because we need to
5010 write back the value after reading it, hence we actually
5011 need two registers. */
5012 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5013 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5014 opnum, type, ind_levels, insn);
5016 reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
5017 (context
5018 ? reload_address_index_reg_class
5019 : reload_address_base_reg_class),
5020 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5021 reload_inc[reloadnum]
5022 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5024 link = FIND_REG_INC_NOTE (this_insn, tem);
5025 if (link != 0)
5026 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5028 return 1;
5030 return 0;
5032 case MEM:
5033 /* This is probably the result of a substitution, by eliminate_regs, of
5034 an equivalent address for a pseudo that was not allocated to a hard
5035 register. Verify that the specified address is valid and reload it
5036 into a register.
5038 Since we know we are going to reload this item, don't decrement for
5039 the indirection level.
5041 Note that this is actually conservative: it would be slightly more
5042 efficient to use the value of SPILL_INDIRECT_LEVELS from
5043 reload1.c here. */
5045 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5046 opnum, ADDR_TYPE (type), ind_levels, insn);
5047 push_reload (*loc, NULL_RTX, loc, NULL_PTR,
5048 (context ? reload_address_index_reg_class
5049 : reload_address_base_reg_class),
5050 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5051 return 1;
5053 case REG:
5055 register int regno = REGNO (x);
5057 if (reg_equiv_constant[regno] != 0)
5059 find_reloads_address_part (reg_equiv_constant[regno], loc,
5060 (context
5061 ? reload_address_index_reg_class
5062 : reload_address_base_reg_class),
5063 GET_MODE (x), opnum, type, ind_levels);
5064 return 1;
5067 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5068 that feeds this insn. */
5069 if (reg_equiv_mem[regno] != 0)
5071 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
5072 (context
5073 ? reload_address_index_reg_class
5074 : reload_address_base_reg_class),
5075 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5076 return 1;
5078 #endif
5080 if (reg_equiv_address[regno] != 0)
5082 x = make_memloc (x, regno);
5083 find_reloads_address (GET_MODE (x), 0, XEXP (x, 0), &XEXP (x, 0),
5084 opnum, ADDR_TYPE (type), ind_levels, insn);
5087 if (reg_renumber[regno] >= 0)
5088 regno = reg_renumber[regno];
5090 if ((regno >= FIRST_PSEUDO_REGISTER
5091 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5092 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5094 push_reload (x, NULL_RTX, loc, NULL_PTR,
5095 (context
5096 ? reload_address_index_reg_class
5097 : reload_address_base_reg_class),
5098 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5099 return 1;
5102 /* If a register appearing in an address is the subject of a CLOBBER
5103 in this insn, reload it into some other register to be safe.
5104 The CLOBBER is supposed to make the register unavailable
5105 from before this insn to after it. */
5106 if (regno_clobbered_p (regno, this_insn))
5108 push_reload (x, NULL_RTX, loc, NULL_PTR,
5109 (context
5110 ? reload_address_index_reg_class
5111 : reload_address_base_reg_class),
5112 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5113 return 1;
5116 return 0;
5118 case SUBREG:
5119 if (GET_CODE (SUBREG_REG (x)) == REG)
5121 /* If this is a SUBREG of a hard register and the resulting register
5122 is of the wrong class, reload the whole SUBREG. This avoids
5123 needless copies if SUBREG_REG is multi-word. */
5124 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5126 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5128 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5129 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5131 push_reload (x, NULL_RTX, loc, NULL_PTR,
5132 (context
5133 ? reload_address_index_reg_class
5134 : reload_address_base_reg_class),
5135 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5136 return 1;
5139 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5140 is larger than the class size, then reload the whole SUBREG. */
5141 else
5143 enum reg_class class = (context
5144 ? reload_address_index_reg_class
5145 : reload_address_base_reg_class);
5146 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5147 > reg_class_size[class])
5149 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5150 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5151 return 1;
5155 break;
5157 default:
5158 break;
5162 register char *fmt = GET_RTX_FORMAT (code);
5163 register int i;
5165 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5167 if (fmt[i] == 'e')
5168 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5169 opnum, type, ind_levels, insn);
5173 return 0;
5176 /* X, which is found at *LOC, is a part of an address that needs to be
5177 reloaded into a register of class CLASS. If X is a constant, or if
5178 X is a PLUS that contains a constant, check that the constant is a
5179 legitimate operand and that we are supposed to be able to load
5180 it into the register.
5182 If not, force the constant into memory and reload the MEM instead.
5184 MODE is the mode to use, in case X is an integer constant.
5186 OPNUM and TYPE describe the purpose of any reloads made.
5188 IND_LEVELS says how many levels of indirect addressing this machine
5189 supports. */
5191 static void
5192 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5193 rtx x;
5194 rtx *loc;
5195 enum reg_class class;
5196 enum machine_mode mode;
5197 int opnum;
5198 enum reload_type type;
5199 int ind_levels;
5201 if (CONSTANT_P (x)
5202 && (! LEGITIMATE_CONSTANT_P (x)
5203 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5205 rtx tem = x = force_const_mem (mode, x);
5206 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5207 opnum, type, ind_levels, 0);
5210 else if (GET_CODE (x) == PLUS
5211 && CONSTANT_P (XEXP (x, 1))
5212 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5213 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5215 rtx tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5217 x = gen_rtx (PLUS, GET_MODE (x), XEXP (x, 0), tem);
5218 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5219 opnum, type, ind_levels, 0);
5222 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5223 mode, VOIDmode, 0, 0, opnum, type);
5226 /* Substitute into the current INSN the registers into which we have reloaded
5227 the things that need reloading. The array `replacements'
5228 says contains the locations of all pointers that must be changed
5229 and says what to replace them with.
5231 Return the rtx that X translates into; usually X, but modified. */
5233 void
5234 subst_reloads ()
5236 register int i;
5238 for (i = 0; i < n_replacements; i++)
5240 register struct replacement *r = &replacements[i];
5241 register rtx reloadreg = reload_reg_rtx[r->what];
5242 if (reloadreg)
5244 /* Encapsulate RELOADREG so its machine mode matches what
5245 used to be there. Note that gen_lowpart_common will
5246 do the wrong thing if RELOADREG is multi-word. RELOADREG
5247 will always be a REG here. */
5248 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5249 reloadreg = gen_rtx (REG, r->mode, REGNO (reloadreg));
5251 /* If we are putting this into a SUBREG and RELOADREG is a
5252 SUBREG, we would be making nested SUBREGs, so we have to fix
5253 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5255 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5257 if (GET_MODE (*r->subreg_loc)
5258 == GET_MODE (SUBREG_REG (reloadreg)))
5259 *r->subreg_loc = SUBREG_REG (reloadreg);
5260 else
5262 *r->where = SUBREG_REG (reloadreg);
5263 SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
5266 else
5267 *r->where = reloadreg;
5269 /* If reload got no reg and isn't optional, something's wrong. */
5270 else if (! reload_optional[r->what])
5271 abort ();
5275 /* Make a copy of any replacements being done into X and move those copies
5276 to locations in Y, a copy of X. We only look at the highest level of
5277 the RTL. */
5279 void
5280 copy_replacements (x, y)
5281 rtx x;
5282 rtx y;
5284 int i, j;
5285 enum rtx_code code = GET_CODE (x);
5286 char *fmt = GET_RTX_FORMAT (code);
5287 struct replacement *r;
5289 /* We can't support X being a SUBREG because we might then need to know its
5290 location if something inside it was replaced. */
5291 if (code == SUBREG)
5292 abort ();
5294 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5295 if (fmt[i] == 'e')
5296 for (j = 0; j < n_replacements; j++)
5298 if (replacements[j].subreg_loc == &XEXP (x, i))
5300 r = &replacements[n_replacements++];
5301 r->where = replacements[j].where;
5302 r->subreg_loc = &XEXP (y, i);
5303 r->what = replacements[j].what;
5304 r->mode = replacements[j].mode;
5306 else if (replacements[j].where == &XEXP (x, i))
5308 r = &replacements[n_replacements++];
5309 r->where = &XEXP (y, i);
5310 r->subreg_loc = 0;
5311 r->what = replacements[j].what;
5312 r->mode = replacements[j].mode;
5317 /* If LOC was scheduled to be replaced by something, return the replacement.
5318 Otherwise, return *LOC. */
5321 find_replacement (loc)
5322 rtx *loc;
5324 struct replacement *r;
5326 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5328 rtx reloadreg = reload_reg_rtx[r->what];
5330 if (reloadreg && r->where == loc)
5332 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5333 reloadreg = gen_rtx (REG, r->mode, REGNO (reloadreg));
5335 return reloadreg;
5337 else if (reloadreg && r->subreg_loc == loc)
5339 /* RELOADREG must be either a REG or a SUBREG.
5341 ??? Is it actually still ever a SUBREG? If so, why? */
5343 if (GET_CODE (reloadreg) == REG)
5344 return gen_rtx (REG, GET_MODE (*loc),
5345 REGNO (reloadreg) + SUBREG_WORD (*loc));
5346 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5347 return reloadreg;
5348 else
5349 return gen_rtx (SUBREG, GET_MODE (*loc), SUBREG_REG (reloadreg),
5350 SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
5354 return *loc;
5357 /* Return nonzero if register in range [REGNO, ENDREGNO)
5358 appears either explicitly or implicitly in X
5359 other than being stored into (except for earlyclobber operands).
5361 References contained within the substructure at LOC do not count.
5362 LOC may be zero, meaning don't ignore anything.
5364 This is similar to refers_to_regno_p in rtlanal.c except that we
5365 look at equivalences for pseudos that didn't get hard registers. */
5368 refers_to_regno_for_reload_p (regno, endregno, x, loc)
5369 int regno, endregno;
5370 rtx x;
5371 rtx *loc;
5373 register int i;
5374 register RTX_CODE code;
5375 register char *fmt;
5377 if (x == 0)
5378 return 0;
5380 repeat:
5381 code = GET_CODE (x);
5383 switch (code)
5385 case REG:
5386 i = REGNO (x);
5388 /* If this is a pseudo, a hard register must not have been allocated.
5389 X must therefore either be a constant or be in memory. */
5390 if (i >= FIRST_PSEUDO_REGISTER)
5392 if (reg_equiv_memory_loc[i])
5393 return refers_to_regno_for_reload_p (regno, endregno,
5394 reg_equiv_memory_loc[i],
5395 NULL_PTR);
5397 if (reg_equiv_constant[i])
5398 return 0;
5400 abort ();
5403 return (endregno > i
5404 && regno < i + (i < FIRST_PSEUDO_REGISTER
5405 ? HARD_REGNO_NREGS (i, GET_MODE (x))
5406 : 1));
5408 case SUBREG:
5409 /* If this is a SUBREG of a hard reg, we can see exactly which
5410 registers are being modified. Otherwise, handle normally. */
5411 if (GET_CODE (SUBREG_REG (x)) == REG
5412 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5414 int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5415 int inner_endregno
5416 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
5417 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5419 return endregno > inner_regno && regno < inner_endregno;
5421 break;
5423 case CLOBBER:
5424 case SET:
5425 if (&SET_DEST (x) != loc
5426 /* Note setting a SUBREG counts as referring to the REG it is in for
5427 a pseudo but not for hard registers since we can
5428 treat each word individually. */
5429 && ((GET_CODE (SET_DEST (x)) == SUBREG
5430 && loc != &SUBREG_REG (SET_DEST (x))
5431 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
5432 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
5433 && refers_to_regno_for_reload_p (regno, endregno,
5434 SUBREG_REG (SET_DEST (x)),
5435 loc))
5436 /* If the output is an earlyclobber operand, this is
5437 a conflict. */
5438 || ((GET_CODE (SET_DEST (x)) != REG
5439 || earlyclobber_operand_p (SET_DEST (x)))
5440 && refers_to_regno_for_reload_p (regno, endregno,
5441 SET_DEST (x), loc))))
5442 return 1;
5444 if (code == CLOBBER || loc == &SET_SRC (x))
5445 return 0;
5446 x = SET_SRC (x);
5447 goto repeat;
5449 default:
5450 break;
5453 /* X does not match, so try its subexpressions. */
5455 fmt = GET_RTX_FORMAT (code);
5456 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5458 if (fmt[i] == 'e' && loc != &XEXP (x, i))
5460 if (i == 0)
5462 x = XEXP (x, 0);
5463 goto repeat;
5465 else
5466 if (refers_to_regno_for_reload_p (regno, endregno,
5467 XEXP (x, i), loc))
5468 return 1;
5470 else if (fmt[i] == 'E')
5472 register int j;
5473 for (j = XVECLEN (x, i) - 1; j >=0; j--)
5474 if (loc != &XVECEXP (x, i, j)
5475 && refers_to_regno_for_reload_p (regno, endregno,
5476 XVECEXP (x, i, j), loc))
5477 return 1;
5480 return 0;
5483 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
5484 we check if any register number in X conflicts with the relevant register
5485 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
5486 contains a MEM (we don't bother checking for memory addresses that can't
5487 conflict because we expect this to be a rare case.
5489 This function is similar to reg_overlap_mention_p in rtlanal.c except
5490 that we look at equivalences for pseudos that didn't get hard registers. */
5493 reg_overlap_mentioned_for_reload_p (x, in)
5494 rtx x, in;
5496 int regno, endregno;
5498 if (GET_CODE (x) == SUBREG)
5500 regno = REGNO (SUBREG_REG (x));
5501 if (regno < FIRST_PSEUDO_REGISTER)
5502 regno += SUBREG_WORD (x);
5504 else if (GET_CODE (x) == REG)
5506 regno = REGNO (x);
5508 /* If this is a pseudo, it must not have been assigned a hard register.
5509 Therefore, it must either be in memory or be a constant. */
5511 if (regno >= FIRST_PSEUDO_REGISTER)
5513 if (reg_equiv_memory_loc[regno])
5514 return refers_to_mem_for_reload_p (in);
5515 else if (reg_equiv_constant[regno])
5516 return 0;
5517 abort ();
5520 else if (CONSTANT_P (x))
5521 return 0;
5522 else if (GET_CODE (x) == MEM)
5523 return refers_to_mem_for_reload_p (in);
5524 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
5525 || GET_CODE (x) == CC0)
5526 return reg_mentioned_p (x, in);
5527 else
5528 abort ();
5530 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
5531 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5533 return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
5536 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
5537 registers. */
5540 refers_to_mem_for_reload_p (x)
5541 rtx x;
5543 char *fmt;
5544 int i;
5546 if (GET_CODE (x) == MEM)
5547 return 1;
5549 if (GET_CODE (x) == REG)
5550 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
5551 && reg_equiv_memory_loc[REGNO (x)]);
5553 fmt = GET_RTX_FORMAT (GET_CODE (x));
5554 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5555 if (fmt[i] == 'e'
5556 && (GET_CODE (XEXP (x, i)) == MEM
5557 || refers_to_mem_for_reload_p (XEXP (x, i))))
5558 return 1;
5560 return 0;
5563 /* Check the insns before INSN to see if there is a suitable register
5564 containing the same value as GOAL.
5565 If OTHER is -1, look for a register in class CLASS.
5566 Otherwise, just see if register number OTHER shares GOAL's value.
5568 Return an rtx for the register found, or zero if none is found.
5570 If RELOAD_REG_P is (short *)1,
5571 we reject any hard reg that appears in reload_reg_rtx
5572 because such a hard reg is also needed coming into this insn.
5574 If RELOAD_REG_P is any other nonzero value,
5575 it is a vector indexed by hard reg number
5576 and we reject any hard reg whose element in the vector is nonnegative
5577 as well as any that appears in reload_reg_rtx.
5579 If GOAL is zero, then GOALREG is a register number; we look
5580 for an equivalent for that register.
5582 MODE is the machine mode of the value we want an equivalence for.
5583 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
5585 This function is used by jump.c as well as in the reload pass.
5587 If GOAL is the sum of the stack pointer and a constant, we treat it
5588 as if it were a constant except that sp is required to be unchanging. */
5591 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
5592 register rtx goal;
5593 rtx insn;
5594 enum reg_class class;
5595 register int other;
5596 short *reload_reg_p;
5597 int goalreg;
5598 enum machine_mode mode;
5600 register rtx p = insn;
5601 rtx goaltry, valtry, value, where;
5602 register rtx pat;
5603 register int regno = -1;
5604 int valueno;
5605 int goal_mem = 0;
5606 int goal_const = 0;
5607 int goal_mem_addr_varies = 0;
5608 int need_stable_sp = 0;
5609 int nregs;
5610 int valuenregs;
5612 if (goal == 0)
5613 regno = goalreg;
5614 else if (GET_CODE (goal) == REG)
5615 regno = REGNO (goal);
5616 else if (GET_CODE (goal) == MEM)
5618 enum rtx_code code = GET_CODE (XEXP (goal, 0));
5619 if (MEM_VOLATILE_P (goal))
5620 return 0;
5621 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
5622 return 0;
5623 /* An address with side effects must be reexecuted. */
5624 switch (code)
5626 case POST_INC:
5627 case PRE_INC:
5628 case POST_DEC:
5629 case PRE_DEC:
5630 return 0;
5631 default:
5632 break;
5634 goal_mem = 1;
5636 else if (CONSTANT_P (goal))
5637 goal_const = 1;
5638 else if (GET_CODE (goal) == PLUS
5639 && XEXP (goal, 0) == stack_pointer_rtx
5640 && CONSTANT_P (XEXP (goal, 1)))
5641 goal_const = need_stable_sp = 1;
5642 else
5643 return 0;
5645 /* On some machines, certain regs must always be rejected
5646 because they don't behave the way ordinary registers do. */
5648 #ifdef OVERLAPPING_REGNO_P
5649 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5650 && OVERLAPPING_REGNO_P (regno))
5651 return 0;
5652 #endif
5654 /* Scan insns back from INSN, looking for one that copies
5655 a value into or out of GOAL.
5656 Stop and give up if we reach a label. */
5658 while (1)
5660 p = PREV_INSN (p);
5661 if (p == 0 || GET_CODE (p) == CODE_LABEL)
5662 return 0;
5663 if (GET_CODE (p) == INSN
5664 /* If we don't want spill regs ... */
5665 && (! (reload_reg_p != 0
5666 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
5667 /* ... then ignore insns introduced by reload; they aren't useful
5668 and can cause results in reload_as_needed to be different
5669 from what they were when calculating the need for spills.
5670 If we notice an input-reload insn here, we will reject it below,
5671 but it might hide a usable equivalent. That makes bad code.
5672 It may even abort: perhaps no reg was spilled for this insn
5673 because it was assumed we would find that equivalent. */
5674 || INSN_UID (p) < reload_first_uid))
5676 rtx tem;
5677 pat = single_set (p);
5678 /* First check for something that sets some reg equal to GOAL. */
5679 if (pat != 0
5680 && ((regno >= 0
5681 && true_regnum (SET_SRC (pat)) == regno
5682 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5684 (regno >= 0
5685 && true_regnum (SET_DEST (pat)) == regno
5686 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
5688 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
5689 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5690 || (goal_mem
5691 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
5692 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
5693 || (goal_mem
5694 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
5695 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
5696 /* If we are looking for a constant,
5697 and something equivalent to that constant was copied
5698 into a reg, we can use that reg. */
5699 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5700 NULL_RTX))
5701 && rtx_equal_p (XEXP (tem, 0), goal)
5702 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5703 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5704 NULL_RTX))
5705 && GET_CODE (SET_DEST (pat)) == REG
5706 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5707 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5708 && GET_CODE (goal) == CONST_INT
5709 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 0, 0,
5710 VOIDmode))
5711 && rtx_equal_p (goal, goaltry)
5712 && (valtry = operand_subword (SET_DEST (pat), 0, 0,
5713 VOIDmode))
5714 && (valueno = true_regnum (valtry)) >= 0)
5715 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5716 NULL_RTX))
5717 && GET_CODE (SET_DEST (pat)) == REG
5718 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5719 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5720 && GET_CODE (goal) == CONST_INT
5721 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
5722 VOIDmode))
5723 && rtx_equal_p (goal, goaltry)
5724 && (valtry
5725 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
5726 && (valueno = true_regnum (valtry)) >= 0)))
5727 if (other >= 0
5728 ? valueno == other
5729 : ((unsigned) valueno < FIRST_PSEUDO_REGISTER
5730 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
5731 valueno)))
5733 value = valtry;
5734 where = p;
5735 break;
5740 /* We found a previous insn copying GOAL into a suitable other reg VALUE
5741 (or copying VALUE into GOAL, if GOAL is also a register).
5742 Now verify that VALUE is really valid. */
5744 /* VALUENO is the register number of VALUE; a hard register. */
5746 /* Don't try to re-use something that is killed in this insn. We want
5747 to be able to trust REG_UNUSED notes. */
5748 if (find_reg_note (where, REG_UNUSED, value))
5749 return 0;
5751 /* If we propose to get the value from the stack pointer or if GOAL is
5752 a MEM based on the stack pointer, we need a stable SP. */
5753 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
5754 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
5755 goal)))
5756 need_stable_sp = 1;
5758 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
5759 if (GET_MODE (value) != mode)
5760 return 0;
5762 /* Reject VALUE if it was loaded from GOAL
5763 and is also a register that appears in the address of GOAL. */
5765 if (goal_mem && value == SET_DEST (single_set (where))
5766 && refers_to_regno_for_reload_p (valueno,
5767 (valueno
5768 + HARD_REGNO_NREGS (valueno, mode)),
5769 goal, NULL_PTR))
5770 return 0;
5772 /* Reject registers that overlap GOAL. */
5774 if (!goal_mem && !goal_const
5775 && regno + HARD_REGNO_NREGS (regno, mode) > valueno
5776 && regno < valueno + HARD_REGNO_NREGS (valueno, mode))
5777 return 0;
5779 /* Reject VALUE if it is one of the regs reserved for reloads.
5780 Reload1 knows how to reuse them anyway, and it would get
5781 confused if we allocated one without its knowledge.
5782 (Now that insns introduced by reload are ignored above,
5783 this case shouldn't happen, but I'm not positive.) */
5785 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1
5786 && reload_reg_p[valueno] >= 0)
5787 return 0;
5789 /* On some machines, certain regs must always be rejected
5790 because they don't behave the way ordinary registers do. */
5792 #ifdef OVERLAPPING_REGNO_P
5793 if (OVERLAPPING_REGNO_P (valueno))
5794 return 0;
5795 #endif
5797 nregs = HARD_REGNO_NREGS (regno, mode);
5798 valuenregs = HARD_REGNO_NREGS (valueno, mode);
5800 /* Reject VALUE if it is a register being used for an input reload
5801 even if it is not one of those reserved. */
5803 if (reload_reg_p != 0)
5805 int i;
5806 for (i = 0; i < n_reloads; i++)
5807 if (reload_reg_rtx[i] != 0 && reload_in[i])
5809 int regno1 = REGNO (reload_reg_rtx[i]);
5810 int nregs1 = HARD_REGNO_NREGS (regno1,
5811 GET_MODE (reload_reg_rtx[i]));
5812 if (regno1 < valueno + valuenregs
5813 && regno1 + nregs1 > valueno)
5814 return 0;
5818 if (goal_mem)
5819 /* We must treat frame pointer as varying here,
5820 since it can vary--in a nonlocal goto as generated by expand_goto. */
5821 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
5823 /* Now verify that the values of GOAL and VALUE remain unaltered
5824 until INSN is reached. */
5826 p = insn;
5827 while (1)
5829 p = PREV_INSN (p);
5830 if (p == where)
5831 return value;
5833 /* Don't trust the conversion past a function call
5834 if either of the two is in a call-clobbered register, or memory. */
5835 if (GET_CODE (p) == CALL_INSN
5836 && ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5837 && call_used_regs[regno])
5839 (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
5840 && call_used_regs[valueno])
5842 goal_mem
5843 || need_stable_sp))
5844 return 0;
5846 #ifdef NON_SAVING_SETJMP
5847 if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
5848 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
5849 return 0;
5850 #endif
5852 #ifdef INSN_CLOBBERS_REGNO_P
5853 if ((valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
5854 && INSN_CLOBBERS_REGNO_P (p, valueno))
5855 || (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5856 && INSN_CLOBBERS_REGNO_P (p, regno)))
5857 return 0;
5858 #endif
5860 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5862 /* If this insn P stores in either GOAL or VALUE, return 0.
5863 If GOAL is a memory ref and this insn writes memory, return 0.
5864 If GOAL is a memory ref and its address is not constant,
5865 and this insn P changes a register used in GOAL, return 0. */
5867 pat = PATTERN (p);
5868 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
5870 register rtx dest = SET_DEST (pat);
5871 while (GET_CODE (dest) == SUBREG
5872 || GET_CODE (dest) == ZERO_EXTRACT
5873 || GET_CODE (dest) == SIGN_EXTRACT
5874 || GET_CODE (dest) == STRICT_LOW_PART)
5875 dest = XEXP (dest, 0);
5876 if (GET_CODE (dest) == REG)
5878 register int xregno = REGNO (dest);
5879 int xnregs;
5880 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5881 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5882 else
5883 xnregs = 1;
5884 if (xregno < regno + nregs && xregno + xnregs > regno)
5885 return 0;
5886 if (xregno < valueno + valuenregs
5887 && xregno + xnregs > valueno)
5888 return 0;
5889 if (goal_mem_addr_varies
5890 && reg_overlap_mentioned_for_reload_p (dest, goal))
5891 return 0;
5893 else if (goal_mem && GET_CODE (dest) == MEM
5894 && ! push_operand (dest, GET_MODE (dest)))
5895 return 0;
5896 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
5897 && reg_equiv_memory_loc[regno] != 0)
5898 return 0;
5899 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
5900 return 0;
5902 else if (GET_CODE (pat) == PARALLEL)
5904 register int i;
5905 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
5907 register rtx v1 = XVECEXP (pat, 0, i);
5908 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
5910 register rtx dest = SET_DEST (v1);
5911 while (GET_CODE (dest) == SUBREG
5912 || GET_CODE (dest) == ZERO_EXTRACT
5913 || GET_CODE (dest) == SIGN_EXTRACT
5914 || GET_CODE (dest) == STRICT_LOW_PART)
5915 dest = XEXP (dest, 0);
5916 if (GET_CODE (dest) == REG)
5918 register int xregno = REGNO (dest);
5919 int xnregs;
5920 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5921 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5922 else
5923 xnregs = 1;
5924 if (xregno < regno + nregs
5925 && xregno + xnregs > regno)
5926 return 0;
5927 if (xregno < valueno + valuenregs
5928 && xregno + xnregs > valueno)
5929 return 0;
5930 if (goal_mem_addr_varies
5931 && reg_overlap_mentioned_for_reload_p (dest,
5932 goal))
5933 return 0;
5935 else if (goal_mem && GET_CODE (dest) == MEM
5936 && ! push_operand (dest, GET_MODE (dest)))
5937 return 0;
5938 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
5939 && reg_equiv_memory_loc[regno] != 0)
5940 return 0;
5941 else if (need_stable_sp
5942 && push_operand (dest, GET_MODE (dest)))
5943 return 0;
5948 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
5950 rtx link;
5952 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
5953 link = XEXP (link, 1))
5955 pat = XEXP (link, 0);
5956 if (GET_CODE (pat) == CLOBBER)
5958 register rtx dest = SET_DEST (pat);
5959 while (GET_CODE (dest) == SUBREG
5960 || GET_CODE (dest) == ZERO_EXTRACT
5961 || GET_CODE (dest) == SIGN_EXTRACT
5962 || GET_CODE (dest) == STRICT_LOW_PART)
5963 dest = XEXP (dest, 0);
5964 if (GET_CODE (dest) == REG)
5966 register int xregno = REGNO (dest);
5967 int xnregs;
5968 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5969 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5970 else
5971 xnregs = 1;
5972 if (xregno < regno + nregs
5973 && xregno + xnregs > regno)
5974 return 0;
5975 if (xregno < valueno + valuenregs
5976 && xregno + xnregs > valueno)
5977 return 0;
5978 if (goal_mem_addr_varies
5979 && reg_overlap_mentioned_for_reload_p (dest,
5980 goal))
5981 return 0;
5983 else if (goal_mem && GET_CODE (dest) == MEM
5984 && ! push_operand (dest, GET_MODE (dest)))
5985 return 0;
5986 else if (need_stable_sp
5987 && push_operand (dest, GET_MODE (dest)))
5988 return 0;
5993 #ifdef AUTO_INC_DEC
5994 /* If this insn auto-increments or auto-decrements
5995 either regno or valueno, return 0 now.
5996 If GOAL is a memory ref and its address is not constant,
5997 and this insn P increments a register used in GOAL, return 0. */
5999 register rtx link;
6001 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6002 if (REG_NOTE_KIND (link) == REG_INC
6003 && GET_CODE (XEXP (link, 0)) == REG)
6005 register int incno = REGNO (XEXP (link, 0));
6006 if (incno < regno + nregs && incno >= regno)
6007 return 0;
6008 if (incno < valueno + valuenregs && incno >= valueno)
6009 return 0;
6010 if (goal_mem_addr_varies
6011 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6012 goal))
6013 return 0;
6016 #endif
6021 /* Find a place where INCED appears in an increment or decrement operator
6022 within X, and return the amount INCED is incremented or decremented by.
6023 The value is always positive. */
6025 static int
6026 find_inc_amount (x, inced)
6027 rtx x, inced;
6029 register enum rtx_code code = GET_CODE (x);
6030 register char *fmt;
6031 register int i;
6033 if (code == MEM)
6035 register rtx addr = XEXP (x, 0);
6036 if ((GET_CODE (addr) == PRE_DEC
6037 || GET_CODE (addr) == POST_DEC
6038 || GET_CODE (addr) == PRE_INC
6039 || GET_CODE (addr) == POST_INC)
6040 && XEXP (addr, 0) == inced)
6041 return GET_MODE_SIZE (GET_MODE (x));
6044 fmt = GET_RTX_FORMAT (code);
6045 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6047 if (fmt[i] == 'e')
6049 register int tem = find_inc_amount (XEXP (x, i), inced);
6050 if (tem != 0)
6051 return tem;
6053 if (fmt[i] == 'E')
6055 register int j;
6056 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6058 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6059 if (tem != 0)
6060 return tem;
6065 return 0;
6068 /* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
6071 regno_clobbered_p (regno, insn)
6072 int regno;
6073 rtx insn;
6075 if (GET_CODE (PATTERN (insn)) == CLOBBER
6076 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6077 return REGNO (XEXP (PATTERN (insn), 0)) == regno;
6079 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6081 int i = XVECLEN (PATTERN (insn), 0) - 1;
6083 for (; i >= 0; i--)
6085 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6086 if (GET_CODE (elt) == CLOBBER && GET_CODE (XEXP (elt, 0)) == REG
6087 && REGNO (XEXP (elt, 0)) == regno)
6088 return 1;
6092 return 0;
6095 static char *reload_when_needed_name[] =
6097 "RELOAD_FOR_INPUT",
6098 "RELOAD_FOR_OUTPUT",
6099 "RELOAD_FOR_INSN",
6100 "RELOAD_FOR_INPUT_ADDRESS",
6101 "RELOAD_FOR_INPADDR_ADDRESS",
6102 "RELOAD_FOR_OUTPUT_ADDRESS",
6103 "RELOAD_FOR_OUTADDR_ADDRESS",
6104 "RELOAD_FOR_OPERAND_ADDRESS",
6105 "RELOAD_FOR_OPADDR_ADDR",
6106 "RELOAD_OTHER",
6107 "RELOAD_FOR_OTHER_ADDRESS"
6110 static char *reg_class_names[] = REG_CLASS_NAMES;
6112 /* These functions are used to print the variables set by 'find_reloads' */
6114 void
6115 debug_reload_to_stream (f)
6116 FILE *f;
6118 int r;
6119 char *prefix;
6121 if (! f)
6122 f = stderr;
6123 for (r = 0; r < n_reloads; r++)
6125 fprintf (f, "Reload %d: ", r);
6127 if (reload_in[r] != 0)
6129 fprintf (f, "reload_in (%s) = ",
6130 GET_MODE_NAME (reload_inmode[r]));
6131 print_inline_rtx (f, reload_in[r], 24);
6132 fprintf (f, "\n\t");
6135 if (reload_out[r] != 0)
6137 fprintf (f, "reload_out (%s) = ",
6138 GET_MODE_NAME (reload_outmode[r]));
6139 print_inline_rtx (f, reload_out[r], 24);
6140 fprintf (f, "\n\t");
6143 fprintf (f, "%s, ", reg_class_names[(int) reload_reg_class[r]]);
6145 fprintf (f, "%s (opnum = %d)",
6146 reload_when_needed_name[(int) reload_when_needed[r]],
6147 reload_opnum[r]);
6149 if (reload_optional[r])
6150 fprintf (f, ", optional");
6152 if (reload_inc[r] != 0)
6153 fprintf (f, ", inc by %d", reload_inc[r]);
6155 if (reload_nocombine[r])
6156 fprintf (f, ", can't combine");
6158 if (reload_secondary_p[r])
6159 fprintf (f, ", secondary_reload_p");
6161 if (reload_in_reg[r] != 0)
6163 fprintf (f, "\n\treload_in_reg: ");
6164 print_inline_rtx (f, reload_in_reg[r], 24);
6167 if (reload_reg_rtx[r] != 0)
6169 fprintf (f, "\n\treload_reg_rtx: ");
6170 print_inline_rtx (f, reload_reg_rtx[r], 24);
6173 prefix = "\n\t";
6174 if (reload_secondary_in_reload[r] != -1)
6176 fprintf (f, "%ssecondary_in_reload = %d",
6177 prefix, reload_secondary_in_reload[r]);
6178 prefix = ", ";
6181 if (reload_secondary_out_reload[r] != -1)
6182 fprintf (f, "%ssecondary_out_reload = %d\n",
6183 prefix, reload_secondary_out_reload[r]);
6185 prefix = "\n\t";
6186 if (reload_secondary_in_icode[r] != CODE_FOR_nothing)
6188 fprintf (f, "%ssecondary_in_icode = %s", prefix, insn_name[r]);
6189 prefix = ", ";
6192 if (reload_secondary_out_icode[r] != CODE_FOR_nothing)
6193 fprintf (f, "%ssecondary_out_icode = %s", prefix, insn_name[r]);
6195 fprintf (f, "\n");
6199 void
6200 debug_reload ()
6202 debug_reload_to_stream (stderr);