Pass 9th fp argument correctly on System V/eabi; Add @plt for -fPIC/-mrelocatable
[official-gcc.git] / gcc / explow.c
blobf7fd847f98f799ac1fab77b5a715b89f4113877c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 91, 94, 95, 96, 1997 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include "rtl.h"
24 #include "tree.h"
25 #include "flags.h"
26 #include "expr.h"
27 #include "hard-reg-set.h"
28 #include "insn-config.h"
29 #include "recog.h"
30 #include "insn-flags.h"
31 #include "insn-codes.h"
33 static rtx break_out_memory_refs PROTO((rtx));
34 static void emit_stack_probe PROTO((rtx));
35 /* Return an rtx for the sum of X and the integer C.
37 This function should be used via the `plus_constant' macro. */
39 rtx
40 plus_constant_wide (x, c)
41 register rtx x;
42 register HOST_WIDE_INT c;
44 register RTX_CODE code;
45 register enum machine_mode mode;
46 register rtx tem;
47 int all_constant = 0;
49 if (c == 0)
50 return x;
52 restart:
54 code = GET_CODE (x);
55 mode = GET_MODE (x);
56 switch (code)
58 case CONST_INT:
59 return GEN_INT (INTVAL (x) + c);
61 case CONST_DOUBLE:
63 HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
64 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
65 HOST_WIDE_INT l2 = c;
66 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
67 HOST_WIDE_INT lv, hv;
69 add_double (l1, h1, l2, h2, &lv, &hv);
71 return immed_double_const (lv, hv, VOIDmode);
74 case MEM:
75 /* If this is a reference to the constant pool, try replacing it with
76 a reference to a new constant. If the resulting address isn't
77 valid, don't return it because we have no way to validize it. */
78 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
79 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
81 tem
82 = force_const_mem (GET_MODE (x),
83 plus_constant (get_pool_constant (XEXP (x, 0)),
84 c));
85 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
86 return tem;
88 break;
90 case CONST:
91 /* If adding to something entirely constant, set a flag
92 so that we can add a CONST around the result. */
93 x = XEXP (x, 0);
94 all_constant = 1;
95 goto restart;
97 case SYMBOL_REF:
98 case LABEL_REF:
99 all_constant = 1;
100 break;
102 case PLUS:
103 /* The interesting case is adding the integer to a sum.
104 Look for constant term in the sum and combine
105 with C. For an integer constant term, we make a combined
106 integer. For a constant term that is not an explicit integer,
107 we cannot really combine, but group them together anyway.
109 Use a recursive call in case the remaining operand is something
110 that we handle specially, such as a SYMBOL_REF. */
112 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
113 return plus_constant (XEXP (x, 0), c + INTVAL (XEXP (x, 1)));
114 else if (CONSTANT_P (XEXP (x, 0)))
115 return gen_rtx (PLUS, mode,
116 plus_constant (XEXP (x, 0), c),
117 XEXP (x, 1));
118 else if (CONSTANT_P (XEXP (x, 1)))
119 return gen_rtx (PLUS, mode,
120 XEXP (x, 0),
121 plus_constant (XEXP (x, 1), c));
124 if (c != 0)
125 x = gen_rtx (PLUS, mode, x, GEN_INT (c));
127 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
128 return x;
129 else if (all_constant)
130 return gen_rtx (CONST, mode, x);
131 else
132 return x;
135 /* This is the same as `plus_constant', except that it handles LO_SUM.
137 This function should be used via the `plus_constant_for_output' macro. */
140 plus_constant_for_output_wide (x, c)
141 register rtx x;
142 register HOST_WIDE_INT c;
144 register RTX_CODE code = GET_CODE (x);
145 register enum machine_mode mode = GET_MODE (x);
146 int all_constant = 0;
148 if (GET_CODE (x) == LO_SUM)
149 return gen_rtx (LO_SUM, mode, XEXP (x, 0),
150 plus_constant_for_output (XEXP (x, 1), c));
152 else
153 return plus_constant (x, c);
156 /* If X is a sum, return a new sum like X but lacking any constant terms.
157 Add all the removed constant terms into *CONSTPTR.
158 X itself is not altered. The result != X if and only if
159 it is not isomorphic to X. */
162 eliminate_constant_term (x, constptr)
163 rtx x;
164 rtx *constptr;
166 register rtx x0, x1;
167 rtx tem;
169 if (GET_CODE (x) != PLUS)
170 return x;
172 /* First handle constants appearing at this level explicitly. */
173 if (GET_CODE (XEXP (x, 1)) == CONST_INT
174 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
175 XEXP (x, 1)))
176 && GET_CODE (tem) == CONST_INT)
178 *constptr = tem;
179 return eliminate_constant_term (XEXP (x, 0), constptr);
182 tem = const0_rtx;
183 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
184 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
185 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
186 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
187 *constptr, tem))
188 && GET_CODE (tem) == CONST_INT)
190 *constptr = tem;
191 return gen_rtx (PLUS, GET_MODE (x), x0, x1);
194 return x;
197 /* Returns the insn that next references REG after INSN, or 0
198 if REG is clobbered before next referenced or we cannot find
199 an insn that references REG in a straight-line piece of code. */
202 find_next_ref (reg, insn)
203 rtx reg;
204 rtx insn;
206 rtx next;
208 for (insn = NEXT_INSN (insn); insn; insn = next)
210 next = NEXT_INSN (insn);
211 if (GET_CODE (insn) == NOTE)
212 continue;
213 if (GET_CODE (insn) == CODE_LABEL
214 || GET_CODE (insn) == BARRIER)
215 return 0;
216 if (GET_CODE (insn) == INSN
217 || GET_CODE (insn) == JUMP_INSN
218 || GET_CODE (insn) == CALL_INSN)
220 if (reg_set_p (reg, insn))
221 return 0;
222 if (reg_mentioned_p (reg, PATTERN (insn)))
223 return insn;
224 if (GET_CODE (insn) == JUMP_INSN)
226 if (simplejump_p (insn))
227 next = JUMP_LABEL (insn);
228 else
229 return 0;
231 if (GET_CODE (insn) == CALL_INSN
232 && REGNO (reg) < FIRST_PSEUDO_REGISTER
233 && call_used_regs[REGNO (reg)])
234 return 0;
236 else
237 abort ();
239 return 0;
242 /* Return an rtx for the size in bytes of the value of EXP. */
245 expr_size (exp)
246 tree exp;
248 tree size = size_in_bytes (TREE_TYPE (exp));
250 if (TREE_CODE (size) != INTEGER_CST
251 && contains_placeholder_p (size))
252 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
254 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype),
255 EXPAND_MEMORY_USE_BAD);
258 /* Return a copy of X in which all memory references
259 and all constants that involve symbol refs
260 have been replaced with new temporary registers.
261 Also emit code to load the memory locations and constants
262 into those registers.
264 If X contains no such constants or memory references,
265 X itself (not a copy) is returned.
267 If a constant is found in the address that is not a legitimate constant
268 in an insn, it is left alone in the hope that it might be valid in the
269 address.
271 X may contain no arithmetic except addition, subtraction and multiplication.
272 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
274 static rtx
275 break_out_memory_refs (x)
276 register rtx x;
278 if (GET_CODE (x) == MEM
279 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
280 && GET_MODE (x) != VOIDmode))
281 x = force_reg (GET_MODE (x), x);
282 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
283 || GET_CODE (x) == MULT)
285 register rtx op0 = break_out_memory_refs (XEXP (x, 0));
286 register rtx op1 = break_out_memory_refs (XEXP (x, 1));
288 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
289 x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
292 return x;
295 #ifdef POINTERS_EXTEND_UNSIGNED
297 /* Given X, a memory address in ptr_mode, convert it to an address
298 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
299 the fact that pointers are not allowed to overflow by commuting arithmetic
300 operations over conversions so that address arithmetic insns can be
301 used. */
304 convert_memory_address (to_mode, x)
305 enum machine_mode to_mode;
306 rtx x;
308 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
309 rtx temp;
311 /* Here we handle some special cases. If none of them apply, fall through
312 to the default case. */
313 switch (GET_CODE (x))
315 case CONST_INT:
316 case CONST_DOUBLE:
317 return x;
319 case LABEL_REF:
320 return gen_rtx (LABEL_REF, to_mode, XEXP (x, 0));
322 case SYMBOL_REF:
323 temp = gen_rtx (SYMBOL_REF, to_mode, XSTR (x, 0));
324 SYMBOL_REF_FLAG (temp) = SYMBOL_REF_FLAG (x);
325 CONSTANT_POOL_ADDRESS_P (temp) = CONSTANT_POOL_ADDRESS_P (x);
326 return temp;
328 case CONST:
329 return gen_rtx (CONST, to_mode,
330 convert_memory_address (to_mode, XEXP (x, 0)));
332 case PLUS:
333 case MULT:
334 /* For addition the second operand is a small constant, we can safely
335 permute the converstion and addition operation. We can always safely
336 permute them if we are making the address narrower. In addition,
337 always permute the operations if this is a constant. */
338 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
339 || (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT
340 && (INTVAL (XEXP (x, 1)) + 20000 < 40000
341 || CONSTANT_P (XEXP (x, 0)))))
342 return gen_rtx (GET_CODE (x), to_mode,
343 convert_memory_address (to_mode, XEXP (x, 0)),
344 convert_memory_address (to_mode, XEXP (x, 1)));
347 return convert_modes (to_mode, from_mode,
348 x, POINTERS_EXTEND_UNSIGNED);
350 #endif
352 /* Given a memory address or facsimile X, construct a new address,
353 currently equivalent, that is stable: future stores won't change it.
355 X must be composed of constants, register and memory references
356 combined with addition, subtraction and multiplication:
357 in other words, just what you can get from expand_expr if sum_ok is 1.
359 Works by making copies of all regs and memory locations used
360 by X and combining them the same way X does.
361 You could also stabilize the reference to this address
362 by copying the address to a register with copy_to_reg;
363 but then you wouldn't get indexed addressing in the reference. */
366 copy_all_regs (x)
367 register rtx x;
369 if (GET_CODE (x) == REG)
371 if (REGNO (x) != FRAME_POINTER_REGNUM
372 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
373 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
374 #endif
376 x = copy_to_reg (x);
378 else if (GET_CODE (x) == MEM)
379 x = copy_to_reg (x);
380 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
381 || GET_CODE (x) == MULT)
383 register rtx op0 = copy_all_regs (XEXP (x, 0));
384 register rtx op1 = copy_all_regs (XEXP (x, 1));
385 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
386 x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
388 return x;
391 /* Return something equivalent to X but valid as a memory address
392 for something of mode MODE. When X is not itself valid, this
393 works by copying X or subexpressions of it into registers. */
396 memory_address (mode, x)
397 enum machine_mode mode;
398 register rtx x;
400 register rtx oldx = x;
402 #ifdef POINTERS_EXTEND_UNSIGNED
403 if (GET_MODE (x) == ptr_mode)
404 x = convert_memory_address (Pmode, x);
405 #endif
407 /* By passing constant addresses thru registers
408 we get a chance to cse them. */
409 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
410 x = force_reg (Pmode, x);
412 /* Accept a QUEUED that refers to a REG
413 even though that isn't a valid address.
414 On attempting to put this in an insn we will call protect_from_queue
415 which will turn it into a REG, which is valid. */
416 else if (GET_CODE (x) == QUEUED
417 && GET_CODE (QUEUED_VAR (x)) == REG)
420 /* We get better cse by rejecting indirect addressing at this stage.
421 Let the combiner create indirect addresses where appropriate.
422 For now, generate the code so that the subexpressions useful to share
423 are visible. But not if cse won't be done! */
424 else
426 if (! cse_not_expected && GET_CODE (x) != REG)
427 x = break_out_memory_refs (x);
429 /* At this point, any valid address is accepted. */
430 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
432 /* If it was valid before but breaking out memory refs invalidated it,
433 use it the old way. */
434 if (memory_address_p (mode, oldx))
435 goto win2;
437 /* Perform machine-dependent transformations on X
438 in certain cases. This is not necessary since the code
439 below can handle all possible cases, but machine-dependent
440 transformations can make better code. */
441 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
443 /* PLUS and MULT can appear in special ways
444 as the result of attempts to make an address usable for indexing.
445 Usually they are dealt with by calling force_operand, below.
446 But a sum containing constant terms is special
447 if removing them makes the sum a valid address:
448 then we generate that address in a register
449 and index off of it. We do this because it often makes
450 shorter code, and because the addresses thus generated
451 in registers often become common subexpressions. */
452 if (GET_CODE (x) == PLUS)
454 rtx constant_term = const0_rtx;
455 rtx y = eliminate_constant_term (x, &constant_term);
456 if (constant_term == const0_rtx
457 || ! memory_address_p (mode, y))
458 x = force_operand (x, NULL_RTX);
459 else
461 y = gen_rtx (PLUS, GET_MODE (x), copy_to_reg (y), constant_term);
462 if (! memory_address_p (mode, y))
463 x = force_operand (x, NULL_RTX);
464 else
465 x = y;
469 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
470 x = force_operand (x, NULL_RTX);
472 /* If we have a register that's an invalid address,
473 it must be a hard reg of the wrong class. Copy it to a pseudo. */
474 else if (GET_CODE (x) == REG)
475 x = copy_to_reg (x);
477 /* Last resort: copy the value to a register, since
478 the register is a valid address. */
479 else
480 x = force_reg (Pmode, x);
482 goto done;
484 win2:
485 x = oldx;
486 win:
487 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
488 /* Don't copy an addr via a reg if it is one of our stack slots. */
489 && ! (GET_CODE (x) == PLUS
490 && (XEXP (x, 0) == virtual_stack_vars_rtx
491 || XEXP (x, 0) == virtual_incoming_args_rtx)))
493 if (general_operand (x, Pmode))
494 x = force_reg (Pmode, x);
495 else
496 x = force_operand (x, NULL_RTX);
500 done:
502 /* If we didn't change the address, we are done. Otherwise, mark
503 a reg as a pointer if we have REG or REG + CONST_INT. */
504 if (oldx == x)
505 return x;
506 else if (GET_CODE (x) == REG)
507 mark_reg_pointer (x, 1);
508 else if (GET_CODE (x) == PLUS
509 && GET_CODE (XEXP (x, 0)) == REG
510 && GET_CODE (XEXP (x, 1)) == CONST_INT)
511 mark_reg_pointer (XEXP (x, 0), 1);
513 /* OLDX may have been the address on a temporary. Update the address
514 to indicate that X is now used. */
515 update_temp_slot_address (oldx, x);
517 return x;
520 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
523 memory_address_noforce (mode, x)
524 enum machine_mode mode;
525 rtx x;
527 int ambient_force_addr = flag_force_addr;
528 rtx val;
530 flag_force_addr = 0;
531 val = memory_address (mode, x);
532 flag_force_addr = ambient_force_addr;
533 return val;
536 /* Convert a mem ref into one with a valid memory address.
537 Pass through anything else unchanged. */
540 validize_mem (ref)
541 rtx ref;
543 if (GET_CODE (ref) != MEM)
544 return ref;
545 if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
546 return ref;
547 /* Don't alter REF itself, since that is probably a stack slot. */
548 return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
551 /* Return a modified copy of X with its memory address copied
552 into a temporary register to protect it from side effects.
553 If X is not a MEM, it is returned unchanged (and not copied).
554 Perhaps even if it is a MEM, if there is no need to change it. */
557 stabilize (x)
558 rtx x;
560 register rtx addr;
561 if (GET_CODE (x) != MEM)
562 return x;
563 addr = XEXP (x, 0);
564 if (rtx_unstable_p (addr))
566 rtx temp = copy_all_regs (addr);
567 rtx mem;
568 if (GET_CODE (temp) != REG)
569 temp = copy_to_reg (temp);
570 mem = gen_rtx (MEM, GET_MODE (x), temp);
572 /* Mark returned memref with in_struct if it's in an array or
573 structure. Copy const and volatile from original memref. */
575 MEM_IN_STRUCT_P (mem) = MEM_IN_STRUCT_P (x) || GET_CODE (addr) == PLUS;
576 RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (x);
577 MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (x);
578 return mem;
580 return x;
583 /* Copy the value or contents of X to a new temp reg and return that reg. */
586 copy_to_reg (x)
587 rtx x;
589 register rtx temp = gen_reg_rtx (GET_MODE (x));
591 /* If not an operand, must be an address with PLUS and MULT so
592 do the computation. */
593 if (! general_operand (x, VOIDmode))
594 x = force_operand (x, temp);
596 if (x != temp)
597 emit_move_insn (temp, x);
599 return temp;
602 /* Like copy_to_reg but always give the new register mode Pmode
603 in case X is a constant. */
606 copy_addr_to_reg (x)
607 rtx x;
609 return copy_to_mode_reg (Pmode, x);
612 /* Like copy_to_reg but always give the new register mode MODE
613 in case X is a constant. */
616 copy_to_mode_reg (mode, x)
617 enum machine_mode mode;
618 rtx x;
620 register rtx temp = gen_reg_rtx (mode);
622 /* If not an operand, must be an address with PLUS and MULT so
623 do the computation. */
624 if (! general_operand (x, VOIDmode))
625 x = force_operand (x, temp);
627 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
628 abort ();
629 if (x != temp)
630 emit_move_insn (temp, x);
631 return temp;
634 /* Load X into a register if it is not already one.
635 Use mode MODE for the register.
636 X should be valid for mode MODE, but it may be a constant which
637 is valid for all integer modes; that's why caller must specify MODE.
639 The caller must not alter the value in the register we return,
640 since we mark it as a "constant" register. */
643 force_reg (mode, x)
644 enum machine_mode mode;
645 rtx x;
647 register rtx temp, insn, set;
649 if (GET_CODE (x) == REG)
650 return x;
651 temp = gen_reg_rtx (mode);
652 insn = emit_move_insn (temp, x);
654 /* Let optimizers know that TEMP's value never changes
655 and that X can be substituted for it. Don't get confused
656 if INSN set something else (such as a SUBREG of TEMP). */
657 if (CONSTANT_P (x)
658 && (set = single_set (insn)) != 0
659 && SET_DEST (set) == temp)
661 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
663 if (note)
664 XEXP (note, 0) = x;
665 else
666 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, x, REG_NOTES (insn));
668 return temp;
671 /* If X is a memory ref, copy its contents to a new temp reg and return
672 that reg. Otherwise, return X. */
675 force_not_mem (x)
676 rtx x;
678 register rtx temp;
679 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
680 return x;
681 temp = gen_reg_rtx (GET_MODE (x));
682 emit_move_insn (temp, x);
683 return temp;
686 /* Copy X to TARGET (if it's nonzero and a reg)
687 or to a new temp reg and return that reg.
688 MODE is the mode to use for X in case it is a constant. */
691 copy_to_suggested_reg (x, target, mode)
692 rtx x, target;
693 enum machine_mode mode;
695 register rtx temp;
697 if (target && GET_CODE (target) == REG)
698 temp = target;
699 else
700 temp = gen_reg_rtx (mode);
702 emit_move_insn (temp, x);
703 return temp;
706 /* Return the mode to use to store a scalar of TYPE and MODE.
707 PUNSIGNEDP points to the signedness of the type and may be adjusted
708 to show what signedness to use on extension operations.
710 FOR_CALL is non-zero if this call is promoting args for a call. */
712 enum machine_mode
713 promote_mode (type, mode, punsignedp, for_call)
714 tree type;
715 enum machine_mode mode;
716 int *punsignedp;
717 int for_call;
719 enum tree_code code = TREE_CODE (type);
720 int unsignedp = *punsignedp;
722 #ifdef PROMOTE_FOR_CALL_ONLY
723 if (! for_call)
724 return mode;
725 #endif
727 switch (code)
729 #ifdef PROMOTE_MODE
730 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
731 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
732 PROMOTE_MODE (mode, unsignedp, type);
733 break;
734 #endif
736 #ifdef POINTERS_EXTEND_UNSIGNED
737 case REFERENCE_TYPE:
738 case POINTER_TYPE:
739 mode = Pmode;
740 unsignedp = POINTERS_EXTEND_UNSIGNED;
741 break;
742 #endif
745 *punsignedp = unsignedp;
746 return mode;
749 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
750 This pops when ADJUST is positive. ADJUST need not be constant. */
752 void
753 adjust_stack (adjust)
754 rtx adjust;
756 rtx temp;
757 adjust = protect_from_queue (adjust, 0);
759 if (adjust == const0_rtx)
760 return;
762 temp = expand_binop (Pmode,
763 #ifdef STACK_GROWS_DOWNWARD
764 add_optab,
765 #else
766 sub_optab,
767 #endif
768 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
769 OPTAB_LIB_WIDEN);
771 if (temp != stack_pointer_rtx)
772 emit_move_insn (stack_pointer_rtx, temp);
775 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
776 This pushes when ADJUST is positive. ADJUST need not be constant. */
778 void
779 anti_adjust_stack (adjust)
780 rtx adjust;
782 rtx temp;
783 adjust = protect_from_queue (adjust, 0);
785 if (adjust == const0_rtx)
786 return;
788 temp = expand_binop (Pmode,
789 #ifdef STACK_GROWS_DOWNWARD
790 sub_optab,
791 #else
792 add_optab,
793 #endif
794 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
795 OPTAB_LIB_WIDEN);
797 if (temp != stack_pointer_rtx)
798 emit_move_insn (stack_pointer_rtx, temp);
801 /* Round the size of a block to be pushed up to the boundary required
802 by this machine. SIZE is the desired size, which need not be constant. */
805 round_push (size)
806 rtx size;
808 #ifdef STACK_BOUNDARY
809 int align = STACK_BOUNDARY / BITS_PER_UNIT;
810 if (align == 1)
811 return size;
812 if (GET_CODE (size) == CONST_INT)
814 int new = (INTVAL (size) + align - 1) / align * align;
815 if (INTVAL (size) != new)
816 size = GEN_INT (new);
818 else
820 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
821 but we know it can't. So add ourselves and then do
822 TRUNC_DIV_EXPR. */
823 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
824 NULL_RTX, 1, OPTAB_LIB_WIDEN);
825 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
826 NULL_RTX, 1);
827 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
829 #endif /* STACK_BOUNDARY */
830 return size;
833 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
834 to a previously-created save area. If no save area has been allocated,
835 this function will allocate one. If a save area is specified, it
836 must be of the proper mode.
838 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
839 are emitted at the current position. */
841 void
842 emit_stack_save (save_level, psave, after)
843 enum save_level save_level;
844 rtx *psave;
845 rtx after;
847 rtx sa = *psave;
848 /* The default is that we use a move insn and save in a Pmode object. */
849 rtx (*fcn) () = gen_move_insn;
850 enum machine_mode mode = Pmode;
852 /* See if this machine has anything special to do for this kind of save. */
853 switch (save_level)
855 #ifdef HAVE_save_stack_block
856 case SAVE_BLOCK:
857 if (HAVE_save_stack_block)
859 fcn = gen_save_stack_block;
860 mode = insn_operand_mode[CODE_FOR_save_stack_block][0];
862 break;
863 #endif
864 #ifdef HAVE_save_stack_function
865 case SAVE_FUNCTION:
866 if (HAVE_save_stack_function)
868 fcn = gen_save_stack_function;
869 mode = insn_operand_mode[CODE_FOR_save_stack_function][0];
871 break;
872 #endif
873 #ifdef HAVE_save_stack_nonlocal
874 case SAVE_NONLOCAL:
875 if (HAVE_save_stack_nonlocal)
877 fcn = gen_save_stack_nonlocal;
878 mode = insn_operand_mode[(int) CODE_FOR_save_stack_nonlocal][0];
880 break;
881 #endif
884 /* If there is no save area and we have to allocate one, do so. Otherwise
885 verify the save area is the proper mode. */
887 if (sa == 0)
889 if (mode != VOIDmode)
891 if (save_level == SAVE_NONLOCAL)
892 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
893 else
894 *psave = sa = gen_reg_rtx (mode);
897 else
899 if (mode == VOIDmode || GET_MODE (sa) != mode)
900 abort ();
903 if (after)
905 rtx seq;
907 start_sequence ();
908 /* We must validize inside the sequence, to ensure that any instructions
909 created by the validize call also get moved to the right place. */
910 if (sa != 0)
911 sa = validize_mem (sa);
912 emit_insn (fcn (sa, stack_pointer_rtx));
913 seq = gen_sequence ();
914 end_sequence ();
915 emit_insn_after (seq, after);
917 else
919 if (sa != 0)
920 sa = validize_mem (sa);
921 emit_insn (fcn (sa, stack_pointer_rtx));
925 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
926 area made by emit_stack_save. If it is zero, we have nothing to do.
928 Put any emitted insns after insn AFTER, if nonzero, otherwise at
929 current position. */
931 void
932 emit_stack_restore (save_level, sa, after)
933 enum save_level save_level;
934 rtx after;
935 rtx sa;
937 /* The default is that we use a move insn. */
938 rtx (*fcn) () = gen_move_insn;
940 /* See if this machine has anything special to do for this kind of save. */
941 switch (save_level)
943 #ifdef HAVE_restore_stack_block
944 case SAVE_BLOCK:
945 if (HAVE_restore_stack_block)
946 fcn = gen_restore_stack_block;
947 break;
948 #endif
949 #ifdef HAVE_restore_stack_function
950 case SAVE_FUNCTION:
951 if (HAVE_restore_stack_function)
952 fcn = gen_restore_stack_function;
953 break;
954 #endif
955 #ifdef HAVE_restore_stack_nonlocal
957 case SAVE_NONLOCAL:
958 if (HAVE_restore_stack_nonlocal)
959 fcn = gen_restore_stack_nonlocal;
960 break;
961 #endif
964 if (sa != 0)
965 sa = validize_mem (sa);
967 if (after)
969 rtx seq;
971 start_sequence ();
972 emit_insn (fcn (stack_pointer_rtx, sa));
973 seq = gen_sequence ();
974 end_sequence ();
975 emit_insn_after (seq, after);
977 else
978 emit_insn (fcn (stack_pointer_rtx, sa));
981 /* Return an rtx representing the address of an area of memory dynamically
982 pushed on the stack. This region of memory is always aligned to
983 a multiple of BIGGEST_ALIGNMENT.
985 Any required stack pointer alignment is preserved.
987 SIZE is an rtx representing the size of the area.
988 TARGET is a place in which the address can be placed.
990 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
993 allocate_dynamic_stack_space (size, target, known_align)
994 rtx size;
995 rtx target;
996 int known_align;
998 /* If we're asking for zero bytes, it doesn't matter what we point
999 to since we can't dereference it. But return a reasonable
1000 address anyway. */
1001 if (size == const0_rtx)
1002 return virtual_stack_dynamic_rtx;
1004 /* Otherwise, show we're calling alloca or equivalent. */
1005 current_function_calls_alloca = 1;
1007 /* Ensure the size is in the proper mode. */
1008 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1009 size = convert_to_mode (Pmode, size, 1);
1011 /* We will need to ensure that the address we return is aligned to
1012 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1013 always know its final value at this point in the compilation (it
1014 might depend on the size of the outgoing parameter lists, for
1015 example), so we must align the value to be returned in that case.
1016 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1017 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1018 We must also do an alignment operation on the returned value if
1019 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1021 If we have to align, we must leave space in SIZE for the hole
1022 that might result from the alignment operation. */
1024 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET) || ! defined (STACK_BOUNDARY)
1025 #define MUST_ALIGN 1
1026 #else
1027 #define MUST_ALIGN (STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1028 #endif
1030 if (MUST_ALIGN)
1032 if (GET_CODE (size) == CONST_INT)
1033 size = GEN_INT (INTVAL (size)
1034 + (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1));
1035 else
1036 size = expand_binop (Pmode, add_optab, size,
1037 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1038 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1041 #ifdef SETJMP_VIA_SAVE_AREA
1042 /* If setjmp restores regs from a save area in the stack frame,
1043 avoid clobbering the reg save area. Note that the offset of
1044 virtual_incoming_args_rtx includes the preallocated stack args space.
1045 It would be no problem to clobber that, but it's on the wrong side
1046 of the old save area. */
1048 rtx dynamic_offset
1049 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1050 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1051 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1052 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1054 #endif /* SETJMP_VIA_SAVE_AREA */
1056 /* Round the size to a multiple of the required stack alignment.
1057 Since the stack if presumed to be rounded before this allocation,
1058 this will maintain the required alignment.
1060 If the stack grows downward, we could save an insn by subtracting
1061 SIZE from the stack pointer and then aligning the stack pointer.
1062 The problem with this is that the stack pointer may be unaligned
1063 between the execution of the subtraction and alignment insns and
1064 some machines do not allow this. Even on those that do, some
1065 signal handlers malfunction if a signal should occur between those
1066 insns. Since this is an extremely rare event, we have no reliable
1067 way of knowing which systems have this problem. So we avoid even
1068 momentarily mis-aligning the stack. */
1070 #ifdef STACK_BOUNDARY
1071 /* If we added a variable amount to SIZE,
1072 we can no longer assume it is aligned. */
1073 #if !defined (SETJMP_VIA_SAVE_AREA)
1074 if (MUST_ALIGN || known_align % STACK_BOUNDARY != 0)
1075 #endif
1076 size = round_push (size);
1077 #endif
1079 do_pending_stack_adjust ();
1081 /* If needed, check that we have the required amount of stack. Take into
1082 account what has already been checked. */
1083 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1084 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1086 /* Don't use a TARGET that isn't a pseudo. */
1087 if (target == 0 || GET_CODE (target) != REG
1088 || REGNO (target) < FIRST_PSEUDO_REGISTER)
1089 target = gen_reg_rtx (Pmode);
1091 mark_reg_pointer (target, known_align / BITS_PER_UNIT);
1093 #ifndef STACK_GROWS_DOWNWARD
1094 emit_move_insn (target, virtual_stack_dynamic_rtx);
1095 #endif
1097 /* Perform the required allocation from the stack. Some systems do
1098 this differently than simply incrementing/decrementing from the
1099 stack pointer. */
1100 #ifdef HAVE_allocate_stack
1101 if (HAVE_allocate_stack)
1103 enum machine_mode mode
1104 = insn_operand_mode[(int) CODE_FOR_allocate_stack][0];
1106 size = convert_modes (mode, ptr_mode, size, 1);
1108 if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][0]
1109 && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][0])
1110 (size, mode)))
1111 size = copy_to_mode_reg (mode, size);
1113 emit_insn (gen_allocate_stack (size));
1115 else
1116 #endif
1118 size = convert_modes (Pmode, ptr_mode, size, 1);
1119 anti_adjust_stack (size);
1122 #ifdef STACK_GROWS_DOWNWARD
1123 emit_move_insn (target, virtual_stack_dynamic_rtx);
1124 #endif
1126 if (MUST_ALIGN)
1128 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1129 but we know it can't. So add ourselves and then do
1130 TRUNC_DIV_EXPR. */
1131 target = expand_binop (Pmode, add_optab, target,
1132 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1133 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1134 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1135 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1136 NULL_RTX, 1);
1137 target = expand_mult (Pmode, target,
1138 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1139 NULL_RTX, 1);
1142 /* Some systems require a particular insn to refer to the stack
1143 to make the pages exist. */
1144 #ifdef HAVE_probe
1145 if (HAVE_probe)
1146 emit_insn (gen_probe ());
1147 #endif
1149 /* Record the new stack level for nonlocal gotos. */
1150 if (nonlocal_goto_handler_slot != 0)
1151 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1153 return target;
1156 /* Emit one stack probe at ADDRESS, an address within the stack. */
1158 static void
1159 emit_stack_probe (address)
1160 rtx address;
1162 rtx memref = gen_rtx (MEM, word_mode, address);
1164 MEM_VOLATILE_P (memref) = 1;
1166 if (STACK_CHECK_PROBE_LOAD)
1167 emit_move_insn (gen_reg_rtx (word_mode), memref);
1168 else
1169 emit_move_insn (memref, const0_rtx);
1172 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1173 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1174 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1175 subtract from the stack. If SIZE is constant, this is done
1176 with a fixed number of probes. Otherwise, we must make a loop. */
1178 #ifdef STACK_GROWS_DOWNWARD
1179 #define STACK_GROW_OP MINUS
1180 #else
1181 #define STACK_GROW_OP PLUS
1182 #endif
1184 void
1185 probe_stack_range (first, size)
1186 HOST_WIDE_INT first;
1187 rtx size;
1189 /* First see if we have an insn to check the stack. Use it if so. */
1190 #ifdef HAVE_check_stack
1191 if (HAVE_check_stack)
1193 rtx last_addr = force_operand (gen_rtx (STACK_GROW_OP, Pmode,
1194 stack_pointer_rtx,
1195 plus_constant (size, first)),
1196 NULL_RTX);
1198 if (insn_operand_predicate[(int) CODE_FOR_check_stack][0]
1199 && ! ((*insn_operand_predicate[(int) CODE_FOR_check_stack][0])
1200 (last_address, Pmode)))
1201 last_address = copy_to_mode_reg (Pmode, last_address);
1203 emit_insn (gen_check_stack (last_address));
1204 return;
1206 #endif
1208 /* If we have to generate explicit probes, see if we have a constant
1209 small number of them to generate. If so, that's the easy case. */
1210 if (GET_CODE (size) == CONST_INT && INTVAL (size) < 10)
1212 HOST_WIDE_INT offset;
1214 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1215 for values of N from 1 until it exceeds LAST. If only one
1216 probe is needed, this will not generate any code. Then probe
1217 at LAST. */
1218 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1219 offset < INTVAL (size);
1220 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1221 emit_stack_probe (gen_rtx (STACK_GROW_OP, Pmode,
1222 stack_pointer_rtx, GEN_INT (offset)));
1224 emit_stack_probe (gen_rtx (STACK_GROW_OP, Pmode, stack_pointer_rtx,
1225 plus_constant (size, first)));
1228 /* In the variable case, do the same as above, but in a loop. We emit loop
1229 notes so that loop optimization can be done. */
1230 else
1232 rtx test_addr
1233 = force_operand (gen_rtx (STACK_GROW_OP, Pmode, stack_pointer_rtx,
1234 GEN_INT (first
1235 + STACK_CHECK_PROBE_INTERVAL)),
1236 NULL_RTX);
1237 rtx last_addr
1238 = force_operand (gen_rtx (STACK_GROW_OP, Pmode, stack_pointer_rtx,
1239 plus_constant (size, first)),
1240 NULL_RTX);
1241 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1242 rtx loop_lab = gen_label_rtx ();
1243 rtx test_lab = gen_label_rtx ();
1244 rtx end_lab = gen_label_rtx ();
1245 rtx temp;
1247 if (GET_CODE (test_addr) != REG
1248 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1249 test_addr = force_reg (Pmode, test_addr);
1251 emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG);
1252 emit_jump (test_lab);
1254 emit_label (loop_lab);
1255 emit_stack_probe (test_addr);
1257 emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT);
1259 #ifdef STACK_GROWS_DOWNWARD
1260 #define CMP_OPCODE GTU
1261 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1262 1, OPTAB_WIDEN);
1263 #else
1264 #define CMP_OPCODE LTU
1265 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1266 1, OPTAB_WIDEN);
1267 #endif
1269 if (temp != test_addr)
1270 abort ();
1272 emit_label (test_lab);
1273 emit_cmp_insn (test_addr, last_addr, CMP_OPCODE, NULL_RTX, Pmode, 1, 0);
1274 emit_jump_insn ((*bcc_gen_fctn[(int) CMP_OPCODE]) (loop_lab));
1275 emit_jump (end_lab);
1276 emit_note (NULL_PTR, NOTE_INSN_LOOP_END);
1277 emit_label (end_lab);
1279 emit_stack_probe (last_addr);
1283 /* Return an rtx representing the register or memory location
1284 in which a scalar value of data type VALTYPE
1285 was returned by a function call to function FUNC.
1286 FUNC is a FUNCTION_DECL node if the precise function is known,
1287 otherwise 0. */
1290 hard_function_value (valtype, func)
1291 tree valtype;
1292 tree func;
1294 rtx val = FUNCTION_VALUE (valtype, func);
1295 if (GET_CODE (val) == REG
1296 && GET_MODE (val) == BLKmode)
1298 int bytes = int_size_in_bytes (valtype);
1299 enum machine_mode tmpmode;
1300 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1301 tmpmode != MAX_MACHINE_MODE;
1302 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1304 /* Have we found a large enough mode? */
1305 if (GET_MODE_SIZE (tmpmode) >= bytes)
1306 break;
1309 /* No suitable mode found. */
1310 if (tmpmode == MAX_MACHINE_MODE)
1311 abort ();
1313 PUT_MODE (val, tmpmode);
1315 return val;
1318 /* Return an rtx representing the register or memory location
1319 in which a scalar value of mode MODE was returned by a library call. */
1322 hard_libcall_value (mode)
1323 enum machine_mode mode;
1325 return LIBCALL_VALUE (mode);
1328 /* Look up the tree code for a given rtx code
1329 to provide the arithmetic operation for REAL_ARITHMETIC.
1330 The function returns an int because the caller may not know
1331 what `enum tree_code' means. */
1334 rtx_to_tree_code (code)
1335 enum rtx_code code;
1337 enum tree_code tcode;
1339 switch (code)
1341 case PLUS:
1342 tcode = PLUS_EXPR;
1343 break;
1344 case MINUS:
1345 tcode = MINUS_EXPR;
1346 break;
1347 case MULT:
1348 tcode = MULT_EXPR;
1349 break;
1350 case DIV:
1351 tcode = RDIV_EXPR;
1352 break;
1353 case SMIN:
1354 tcode = MIN_EXPR;
1355 break;
1356 case SMAX:
1357 tcode = MAX_EXPR;
1358 break;
1359 default:
1360 tcode = LAST_AND_UNUSED_TREE_CODE;
1361 break;
1363 return ((int) tcode);